WorldWideScience

Sample records for a2 receptor targeting

  1. Novel approaches for targeting the adenosine A2A receptor.

    Science.gov (United States)

    Yuan, Gengyang; Gedeon, Nicholas G; Jankins, Tanner C; Jones, Graham B

    2015-01-01

    The adenosine A2A receptor (A2AR) represents a drug target for a wide spectrum of diseases. Approaches for targeting this membrane-bound protein have been greatly advanced by new stabilization techniques. The resulting X-ray crystal structures and subsequent analyses provide deep insight to the A2AR from both static and dynamic perspectives. Application of this, along with other biophysical methods combined with fragment-based drug design (FBDD), has become a standard approach in targeting A2AR. Complementarities of in silico screening based- and biophysical screening assisted- FBDD are likely to feature in future approaches in identifying novel ligands against this key receptor. This review describes evolution of the above approaches for targeting A2AR and highlights key modulators identified. It includes a review of: adenosine receptor structures, homology modeling, X-ray structural analysis, rational drug design, biophysical methods, FBDD and in silico screening. As a drug target, the A2AR is attractive as its function plays a role in a wide spectrum of diseases including oncologic, inflammatory, Parkinson's and cardiovascular diseases. Although traditional approaches such as high-throughput screening and homology model-based virtual screening (VS) have played a role in targeting A2AR, numerous shortcomings have generally restricted their applications to specific ligand families. Using stabilization methods for crystallization, X-ray structures of A2AR have greatly accelerated drug discovery and influenced development of biophysical-in silico hybrid screening methods. Application of these new methods to other ARs and G-protein-coupled receptors is anticipated in the future.

  2. The adenosine A2A receptor — Myocardial protectant and coronary target in endotoxemia

    Science.gov (United States)

    Reichelt, Melissa E.; Ashton, Kevin J.; Tan, Xing Lin; Mustafa, S. Jamal; Ledent, Catherine; Delbridge, Lea M.D.; Hofmann, Polly A.; Headrick, John P.; Morrison, R. Ray

    2013-01-01

    Background Cardiac injury and dysfunction are contributors to disease progression and mortality in sepsis. This study evaluated the cardiovascular role of intrinsic A2A adenosine receptor (A2AAR) activity during lipopolysaccharide (LPS)-induced inflammation. Methods We assessed the impact of 24 h of LPS challenge (20 mg/kg, IP) on cardiac injury, coronary function and inflammatory mediator levels in Wild-Type (WT) mice and mice lacking functional A2AARs (A2AAR KO). Results Cardiac injury was evident in LPS-treated WTs, with ∼7-fold elevation in serum cardiac troponin I (cTnI), and significant ventricular and coronary dysfunction. Absence of A2AARs increased LPS-provoked cTnI release at 24 h by 3-fold without additional demise of contraction function. Importantly, A2AAR deletion per se emulated detrimental effects of LPS on coronary function, and LPS was without effect in coronary vessels lacking A2AARs. Effects of A2AAR KO were independent of major shifts in circulating C-reactive protein (CRP) and haptoglobin. Cytokine responses were largely insensitive to A2AAR deletion; substantial LPS-induced elevations (up to 100-fold) in IFN-γ and IL-10 were unaltered in A2AAR KO mice, as were levels of IL-4 and TNF-α. However, late elevations in IL-2 and IL-5 were differentially modulated by A2AAR KO (IL-2 reduced, IL-5 increased). Data demonstrate that in the context of LPS-triggered cardiac and coronary injury, A2AAR activity protects myocardial viability without modifying contractile dysfunction, and selectively modulates cytokine (IL-2, IL-5) release. A2AARs also appear to be targeted by LPS in the coronary vasculature. Conclusions These experimental data suggest that preservation of A2AAR functionality might provide therapeutic benefit in human sepsis. PMID:22192288

  3. Adenosine A2B Receptors: An Optional Target for the Management of Irritable Bowel Syndrome with Diarrhea?

    Directory of Open Access Journals (Sweden)

    Teita Asano

    2017-11-01

    Full Text Available Irritable bowel syndrome (IBS is a functional gastrointestinal disorder, with the characteristic symptoms of chronic abdominal pain and altered bowel habits (diarrhea, constipation, or both. IBS is a highly prevalent condition, which negatively affects quality of life and is a significant burden on global healthcare costs. Although many pharmacological medicines have been proposed to treat IBS, including those targeting receptors, channels, and chemical mediators related to visceral hypersensitivity, successful pharmacotherapy for the disease has not been established. Visceral hypersensitivity plays an important role in IBS pathogenesis. Immune activation is observed in diarrhea-predominant patients with IBS and contributes to the development of visceral hypersensitivity. Adenosine is a chemical mediator that regulates many physiological processes, including inflammation and nociception. Among its receptors, the adenosine A2B receptor regulates intestinal secretion, motor function, and the immune response. We recently demonstrated that the adenosine A2B receptor is involved in visceral hypersensitivity in animal models of IBS. In this review, we discuss the possibility of the adenosine A2B receptor as a novel therapeutic target for IBS.

  4. Discovery of indolylpiperazinylpyrimidines with dual-target profiles at adenosine A2A and dopamine D2 receptors for Parkinson's disease treatment.

    Directory of Open Access Journals (Sweden)

    Yi-Ming Shao

    Full Text Available Parkinson's disease (PD is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra of the human brain, leading to depletion of dopamine production. Dopamine replacement therapy remains the mainstay for attenuation of PD symptoms. Nonetheless, the potential benefit of current pharmacotherapies is mostly limited by adverse side effects, such as drug-induced dyskinesia, motor fluctuations and psychosis. Non-dopaminergic receptors, such as human A2A adenosine receptors, have emerged as important therapeutic targets in potentiating therapeutic effects and reducing the unwanted side effects. In this study, new chemical entities targeting both human A2A adenosine receptor and dopamine D2 receptor were designed and evaluated. Two computational methods, namely support vector machine (SVM models and Tanimoto similarity-based clustering analysis, were integrated for the identification of compounds containing indole-piperazine-pyrimidine (IPP scaffold. Subsequent synthesis and testing resulted in compounds 5 and 6, which acted as human A2A adenosine receptor binders in the radioligand competition assay (Ki = 8.7-11.2 μM as well as human dopamine D2 receptor binders in the artificial cell membrane assay (EC50 = 22.5-40.2 μM. Moreover, compound 5 showed improvement in movement and mitigation of the loss of dopaminergic neurons in Drosophila models of PD. Furthermore, in vitro toxicity studies on compounds 5 and 6 did not reveal any mutagenicity (up to 100 μM, hepatotoxicity (up to 30 μM or cardiotoxicity (up to 30 μM.

  5. Novel GABA receptor pesticide targets.

    Science.gov (United States)

    Casida, John E; Durkin, Kathleen A

    2015-06-01

    The γ-aminobutyric acid (GABA) receptor has four distinct but overlapping and coupled targets of pesticide action importantly associated with little or no cross-resistance. The target sites are differentiated by binding assays with specific radioligands, resistant strains, site-directed mutagenesis and molecular modeling. Three of the targets are for non-competitive antagonists (NCAs) or channel blockers of widely varied chemotypes. The target of the first generation (20th century) NCAs differs between the larger or elongated compounds (NCA-IA) including many important insecticides of the past (cyclodienes and polychlorocycloalkanes) or present (fiproles) and the smaller or compact compounds (NCA-IB) highly toxic to mammals and known as cage convulsants, rodenticides or chemical threat agents. The target of greatest current interest is designated NCA-II for the second generation (21st century) of NCAs consisting for now of isoxazolines and meta-diamides. This new and uniquely different NCA-II site apparently differs enough between insects and mammals to confer selective toxicity. The fourth target is the avermectin site (AVE) for allosteric modulators of the chloride channel. NCA pesticides vary in molecular surface area and solvent accessible volume relative to avermectin with NCA-IBs at 20-22%, NCA-IAs at 40-45% and NCA-IIs at 57-60%. The same type of relationship relative to ligand-docked length is 27-43% for NCA-IBs, 63-71% for NCA-IAs and 85-105% for NCA-IIs. The four targets are compared by molecular modeling for the Drosophila melanogaster GABA-R. The principal sites of interaction are proposed to be: pore V1' and A2' for NCA-IB compounds; pore A2', L6' and T9' for NCA-IA compounds; pore T9' to S15' in proximity to M1/M3 subunit interface (or alternatively an interstitial site) for NCA-II compounds; and M1/M3, M2 interfaces for AVE. Understanding the relationships of these four binding sites is important in resistance management and in the discovery and use

  6. Receptor-targeted metalloradiopharmaceuticals. Final technical report

    International Nuclear Information System (INIS)

    Green, Mark A.

    2000-01-01

    Copper (II) and platinum (II) coordination complexes were prepared and characterized. These complexes were designed to afford structural homology with steroidal and non-steroidal estrogens for possible use as receptor-targeted radiopharmaceuticals. While weak affinity for the estrogen receptor was detectable, none would appear to have sufficient receptor-affinity for estrogen-receptor-targeted imaging or therapy

  7. Adenosine A2A receptors and A2A receptor heteromers as key players in striatal function

    Directory of Open Access Journals (Sweden)

    Sergi eFerre

    2011-06-01

    Full Text Available A very significant density of adenosine adenosine A2A receptors (A2ARs is present in the striatum, where they are preferentially localized postsynaptically in striatopallidal medium spiny neurons (MSNs. In this localization A2ARs establish reciprocal antagonistic interactions with dopamine D2 receptors (D2Rs. In one type of interaction, A2AR and D2R are forming heteromers and, by means of an allosteric interaction, A2AR counteracts D2R-mediated inhibitory modulation of the effects of NMDA receptor stimulation in the striato-pallidal neuron. This interaction is probably mostly responsible for the locomotor depressant and activating effects of A2AR agonist and antagonists, respectively. The second type of interaction involves A2AR and D2R that do not form heteromers and takes place at the level of adenylyl-cyclase (AC. Due to a strong tonic effect of endogenous dopamine on striatal D2R, this interaction keeps A2AR from signaling through AC. However, under conditions of dopamine depletion or with blockade of D2R, A2AR-mediated AC activation is unleashed with an increased gene expression and activity of the striato-pallidal neuron and with a consequent motor depression. This interaction is probably the main mechanism responsible for the locomotor depression induced by D2R antagonists. Finally, striatal A2ARs are also localized presynaptically, in cortico-striatal glutamatergic terminals that contact the striato-nigral MSN. These presynaptic A2ARs heteromerize with A1 receptors (A1Rs and their activation facilitates glutamate release. These three different types of A2ARs can be pharmacologically dissected by their ability to bind ligands with different affinity and can therefore provide selective targets for drug development in different basal ganglia disorders.

  8. Targeting Discoidin Domain Receptors in Prostate Cancer

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0226 TITLE: Targeting Discoidin Domain Receptors in Prostate Cancer PRINCIPAL INVESTIGATOR: Dr. Rafael Fridman...AND SUBTITLE 5a. CONTRACT NUMBER Targeting Discoidin Domain Receptors in Prostate Cancer 5b. GRANT NUMBER W81XWH-15-1-0226 5c. PROGRAM ELEMENT...response to collagen in prostate cancer. The project’s goal is to define the expression and therapeutic potential of DDRs in prostate cancer. During

  9. NCS-1 associates with adenosine A2A receptors and modulates receptor function

    Directory of Open Access Journals (Sweden)

    Gemma eNavarro

    2012-04-01

    Full Text Available Modulation of G protein-coupled receptor (GPCR signalling by local changes in intracellular calcium concentration is an established function of Calmodulin which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with calmodulin targets with different functional outcome. In the present study we aimed to investigate if a target of calmodulin – the A2A adenosine receptor, is able to associate with two other neuronal calcium binding proteins, namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer and co-immunoprecipitation experiments we show the existence of A2A - NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signalling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signalling.

  10. Targeting the TAM Receptors in Leukemia.

    Science.gov (United States)

    Huey, Madeline G; Minson, Katherine A; Earp, H Shelton; DeRyckere, Deborah; Graham, Douglas K

    2016-11-08

    Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK) family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK) cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.

  11. Targeting the TAM Receptors in Leukemia

    Directory of Open Access Journals (Sweden)

    Madeline G. Huey

    2016-11-01

    Full Text Available Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.

  12. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction.

    Science.gov (United States)

    Filip, M; Zaniewska, M; Frankowska, M; Wydra, K; Fuxe, K

    2012-01-01

    Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies

  13. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    International Nuclear Information System (INIS)

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-01-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine [(R)-AHPIA] into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling

  14. Adenosine A2B receptor: from cell biology to human diseases

    Science.gov (United States)

    Sun, Ying; Huang, Pingbo

    2016-08-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR’s functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases.

  15. Target tracking using a 2D radar

    CSIR Research Space (South Africa)

    Kriel, M

    2012-08-01

    Full Text Available stream_source_info Kriel_2012.pdf.txt stream_content_type text/plain stream_size 29522 Content-Encoding ISO-8859-1 stream_name Kriel_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 737 33 Target Tracking Using....410634] 0.000019 [ 0.000020]4000.0 0 0 250.0 3D AASC 3D AASC 3D AASC Er ro r (m ) Er ro r (m ) E rr o r (m ) Time (s) 0 0 250.0Time (s) 0 0 250.0Time (s) AACT : AASC : AACT : AASC : AACT : 4000.0 4000.0 FIGURE 33...

  16. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    Directory of Open Access Journals (Sweden)

    Felicita Pedata

    2014-01-01

    Full Text Available The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes. Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.

  17. PET imaging of adenosine A2A receptors

    NARCIS (Netherlands)

    Zhou, Xiaoyun

    2017-01-01

    This thesis describes the development and evaluation of [11C]preladenant as a novel radioligand for in vivo imaging of adenosine A2A receptors in the brain with positron-emission tomography (PET). The 11C-labeled drug [11C]preladenant was produced with high radiochemical yield and specific activity.

  18. Adenosine A2A Receptor in the Monkey Basal Ganglia: Ultrastructural Localization and Colocalization With the Metabotropic Glutamate Receptor 5 in the Striatum

    OpenAIRE

    Bogenpohl, James W.; Ritter, Stefanie L.; Hall, Randy A.; Smith, Yoland

    2012-01-01

    The adenosine A2A receptor (A2AR) is a potential drug target for the treatment of Parkinson’s disease and other neurological disorders. In rodents, the therapeutic efficacy of A2AR modulation is improved by concomitant modulation of the metabotropic glutamate receptor 5 (mGluR5). To elucidate the anatomical substrate(s) through which these therapeutic benefits could be mediated, pre-embedding electron microscopy immunohistochemistry was used to conduct a detailed, quantitative ultrastructural...

  19. A2A Receptor Antagonism and Dyskinesia in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Micaela Morelli

    2012-01-01

    Full Text Available Dyskinesia, a major complication of treatment of Parkinson’s disease (PD, involves two phases: induction, which is responsible for dyskinesia onset, and expression, which underlies its clinical manifestation. The unique cellular and regional distribution of adenosine A2A receptors in basal ganglia areas that are richly innervated by dopamine, and their antagonistic role towards dopamine receptor stimulation, have positioned A2A receptor antagonists as an attractive nondopaminergic target to improve the motor deficits that characterize PD. In this paper, we describe the biochemical characteristics of A2A receptors and the effects of adenosine A2A antagonists in rodent and primate models of PD on L-DOPA-induced dyskinesia, together with relevant biomarker studies. We also review clinical trials of A2A antagonists as adjuncts to L-DOPA in PD patients with motor fluctuations. These studies have generally demonstrated that the addition of an A2A antagonist to a stable L-DOPA regimen reduces OFF time and mildly increases dyskinesia. However, limited clinical data suggest that the addition of an A2A antagonist along with a reduction of L-DOPA might maintain anti-Parkinsonian benefit and reduce dyskinesia. Whether A2A antagonists might reduce the development of dyskinesia has not yet been tested clinically.

  20. Human Adenosine A2A Receptor: Molecular Mechanism of Ligand Binding and Activation

    Directory of Open Access Journals (Sweden)

    Byron Carpenter

    2017-12-01

    Full Text Available Adenosine receptors (ARs comprise the P1 class of purinergic receptors and belong to the largest family of integral membrane proteins in the human genome, the G protein-coupled receptors (GPCRs. ARs are classified into four subtypes, A1, A2A, A2B, and A3, which are all activated by extracellular adenosine, and play central roles in a broad range of physiological processes, including sleep regulation, angiogenesis and modulation of the immune system. ARs are potential therapeutic targets in a variety of pathophysiological conditions, including sleep disorders, cancer, and dementia, which has made them important targets for structural biology. Over a decade of research and innovation has culminated with the publication of more than 30 crystal structures of the human adenosine A2A receptor (A2AR, making it one of the best structurally characterized GPCRs at the atomic level. In this review we analyze the structural data reported for A2AR that described for the first time the binding of mode of antagonists, including newly developed drug candidates, synthetic and endogenous agonists, sodium ions and an engineered G protein. These structures have revealed the key conformational changes induced upon agonist and G protein binding that are central to signal transduction by A2AR, and have highlighted both similarities and differences in the activation mechanism of this receptor compared to other class A GPCRs. Finally, comparison of A2AR with the recently solved structures of A1R has provided the first structural insight into the molecular determinants of ligand binding specificity in different AR subtypes.

  1. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer

    Science.gov (United States)

    Narayanan, Ramesh; Dalton, James T.

    2016-01-01

    Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER) and human epidermal growth factor receptor (HER2) are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR) is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer. PMID:27918430

  2. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ramesh Narayanan

    2016-12-01

    Full Text Available Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER and human epidermal growth factor receptor (HER2 are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer.

  3. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain

    Science.gov (United States)

    Ferré, S.; Diamond, I.; Goldberg, S.R.; Yao, L.; Hourani, S.M.O.; Huang, Z.L.; Urade, Y.; Kitchen, I.

    2007-01-01

    Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of L-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus accumbens) contains a high density of A2A receptors, which presynaptically and postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent experimental evidence suggesting that A2A antagonists could become new therapeutic agents for drug addiction. Morphological and functional studies have identified lower levels of A2A receptors in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus, where adenosine plays an important role in sleep regulation. Although initially believed to be mostly dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A receptor antagonists could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders. Finally, nociception is another adenosine-regulated neural function previously thought to mostly involve A1 receptors. Although there is some conflicting literature on the effects of agonists and antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic potential in pain states, in particular where

  4. Behavioral control by striatal adenosine A2A -dopamine D2 receptor heteromers.

    Science.gov (United States)

    Taura, J; Valle-León, M; Sahlholm, K; Watanabe, M; Van Craenenbroeck, K; Fernández-Dueñas, V; Ferré, S; Ciruela, F

    2018-04-01

    G protein-coupled receptors (GPCR) exhibit the ability to form receptor complexes that include molecularly different GPCR (ie, GPCR heteromers), which endow them with singular functional and pharmacological characteristics. The relative expression of GPCR heteromers remains a matter of intense debate. Recent studies support that adenosine A 2A receptors (A 2A R) and dopamine D 2 receptors (D 2 R) predominantly form A 2A R-D 2 R heteromers in the striatum. The aim of the present study was evaluating the behavioral effects of pharmacological manipulation and genetic blockade of A 2A R and D 2 R within the frame of such a predominant striatal heteromeric population. First, in order to avoid possible strain-related differences, a new D 2 R-deficient mouse with the same genetic background (CD-1) than the A 2A R knock-out mouse was generated. Locomotor activity, pre-pulse inhibition (PPI) and drug-induced catalepsy were then evaluated in wild-type, A 2A R and D 2 R knock-out mice, with and without the concomitant administration of either the D 2 R agonist sumanirole or the A 2A R antagonist SCH442416. SCH442416-mediated locomotor effects were demonstrated to be dependent on D 2 R signaling. Similarly, a significant dependence on A 2A R signaling was observed for PPI and for haloperidol-induced catalepsy. The results could be explained by the existence of one main population of striatal postsynaptic A 2A R-D 2 R heteromers, which may constitute a relevant target for the treatment of Parkinson's disease and other neuropsychiatric disorders. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. The PACAP receptor: a novel target for migraine treatment

    DEFF Research Database (Denmark)

    Schytz, Henrik W; Olesen, Jes; Ashina, Messoud

    2010-01-01

    The origin of migraine pain has not yet been clarified, but accumulating data point to neuropeptides present in the perivascular space of cranial vessels as important mediators of nociceptive input during migraine attacks. Pituitary adenylate cyclase-activating polypeptide (PACAP) is present in s......) receptor, which suggests a possible signaling pathway implicated in migraine pain. This review summarizes the current evidence supporting the involvement of PACAP in migraine pathophysiology and the PAC(1) receptor as a possible novel target for migraine treatment....

  6. Targeting thyroid diseases with TSH receptor analogs.

    Science.gov (United States)

    Galofré, Juan C; Chacón, Ana M; Latif, Rauf

    2013-12-01

    The thyroid-stimulating hormone (TSH) receptor (TSHR) is a major regulator of thyroid function and growth, and is the key antigen in several pathological conditions including hyperthyroidism, hypothyroidism, and thyroid tumors. Various effective treatment strategies are currently available for many of these clinical conditions such as antithyroid drugs or radioiodine therapy, but they are not devoid of side effects. In addition, treatment of complications of Graves' disease such as Graves' ophthalmopathy is often difficult and unsatisfactory using current methods. Recent advances in basic research on both in vitro and in vivo models have suggested that TSH analogs could be used for diagnosis and treatment of some of the thyroid diseases. The advent of high-throughput screening methods has resulted in a group of TSH analogs called small molecules, which have the potential to be developed as promising drugs. Small molecules are low molecular weight compounds with agonist, antagonist and, in some cases, inverse agonist activity on TSHR. This short review will focus on current advances in development of TSH analogs and their potential clinical applications. Rapid advances in this field may lead to the conduct of clinical trials of small molecules related to TSHR for the management of Graves' disease, thyroid cancer, and thyroid-related osteoporosis in the coming years. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  7. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    Science.gov (United States)

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  8. Sigma-1 receptor: The novel intracellular target of neuropsychotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Teruo Hayashi

    2015-01-01

    Full Text Available Sigma-1 receptor ligands have been long expected to serve as drugs for treatment of human diseases such as neurodegenerative disorders, depression, idiopathic pain, drug abuse, and cancer. Recent research exploring the molecular function of the sigma-1 receptor started unveiling underlying mechanisms of the therapeutic activity of those ligands. Via the molecular chaperone activity, the sigma-1 receptor regulates protein folding/degradation, ER/oxidative stress, and cell survival. The chaperone activity is activated or inhibited by synthetic sigma-1 receptor ligands in an agonist-antagonist manner. Sigma-1 receptors are localized at the endoplasmic reticulum (ER membranes that are physically associated with the mitochondria (MAM: mitochondria-associated ER membrane. In specific types of neurons (e.g., those at the spinal cord, sigma-1 receptors are also clustered at ER membranes that juxtapose postsynaptic plasma membranes. Recent studies indicate that sigma-1 receptors, partly in sake of its unique subcellular localization, regulate the mitochondria function that involves bioenergetics and free radical generation. The sigma-1 receptor may thus provide an intracellular drug target that enables controlling ER stress and free radical generation under pathological conditions.

  9. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor alpha (PPARα is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  10. Frizzled Receptors as Potential Therapeutic Targets in Human Cancers

    Directory of Open Access Journals (Sweden)

    Chui-Mian Zeng

    2018-05-01

    Full Text Available Frizzled receptors (FZDs are a family of seven-span transmembrane receptors with hallmarks of G protein-coupled receptors (GPCRs that serve as receptors for secreted Wingless-type (WNT ligands in the WNT signaling pathway. Functionally, FZDs play crucial roles in regulating cell polarity, embryonic development, cell proliferation, formation of neural synapses, and many other processes in developing and adult organisms. In this review, we will introduce the basic structural features and review the biological function and mechanism of FZDs in the progression of human cancers, followed by an analysis of clinical relevance and therapeutic potential of FZDs. We will focus on the development of antibody-based and small molecule inhibitor-based therapeutic strategies by targeting FZDs for human cancers.

  11. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  12. Adenosine A2A receptors in the nucleus accumbens bi-directionally alter cocaine seeking in rats.

    Science.gov (United States)

    O'Neill, Casey E; LeTendre, McKenzie L; Bachtell, Ryan K

    2012-04-01

    Repeated cocaine administration enhances dopamine D(2) receptor sensitivity in the mesolimbic dopamine system, which contributes to drug relapse. Adenosine A(2A) receptors are colocalized with D(2) receptors on nucleus accumbens (NAc) medium spiny neurons where they antagonize D(2) receptor activity. Thus, A(2A) receptors represent a target for reducing enhanced D(2) receptor sensitivity that contributes to cocaine relapse. The aim of these studies were to determine the effects of adenosine A(2A) receptor modulation in the NAc on cocaine seeking in rats that were trained to lever press for cocaine. Following at least 15 daily self-administration sessions and 1 week of abstinence, lever pressing was extinguished in daily extinction sessions. We subsequently assessed the effects of intra-NAc core microinjections of the A(2A) receptor agonist, CGS 21680 (4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride), and the A(2A) receptor antagonist, MSX-3 (3,7-dihydro-8-[(1E)-2-(3-methoxyphenyl)ethenyl]-7-methyl-3-[3-(phosphonooxy)propyl-1-(2-propynyl)-1H-purine-2,6-dione disodium salt hydrate), in modulating cocaine- and quinpirole-induced reinstatement to cocaine seeking. Intra-NAc pretreatment of CGS 21680 reduced both cocaine- and quinpirole-induced reinstatement. These effects were specific to cocaine reinstatement as intra-NAc CGS 21680 had no effect on sucrose seeking in rats trained to self-administer sucrose pellets. Intra-NAc treatment with MSX-3 modestly reinstated cocaine seeking when given alone, and exacerbated both cocaine- and quinpirole-induced reinstatement. Interestingly, the exacerbation of cocaine seeking produced by MSX-3 was only observed at sub-threshold doses of cocaine and quinpirole, suggesting that removing tonic A(2A) receptor activity enables behaviors mediated by dopamine receptors. Taken together, these findings suggest that A(2A) receptor stimulation reduces, while A(2A) blockade

  13. Adenosine A2A Receptors in the Nucleus Accumbens Bi-Directionally Alter Cocaine Seeking in Rats

    Science.gov (United States)

    O'Neill, Casey E; LeTendre, Mckenzie L; Bachtell, Ryan K

    2012-01-01

    Repeated cocaine administration enhances dopamine D2 receptor sensitivity in the mesolimbic dopamine system, which contributes to drug relapse. Adenosine A2A receptors are colocalized with D2 receptors on nucleus accumbens (NAc) medium spiny neurons where they antagonize D2 receptor activity. Thus, A2A receptors represent a target for reducing enhanced D2 receptor sensitivity that contributes to cocaine relapse. The aim of these studies were to determine the effects of adenosine A2A receptor modulation in the NAc on cocaine seeking in rats that were trained to lever press for cocaine. Following at least 15 daily self-administration sessions and 1 week of abstinence, lever pressing was extinguished in daily extinction sessions. We subsequently assessed the effects of intra-NAc core microinjections of the A2A receptor agonist, CGS 21680 (4-[2-[[6-amino-9-(N-ethyl-b--ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride), and the A2A receptor antagonist, MSX-3 (3,7-dihydro-8-[(1E)-2-(3-methoxyphenyl)ethenyl]-7-methyl-3-[3-(phosphonooxy)propyl-1-(2-propynyl)-1H-purine-2,6-dione disodium salt hydrate), in modulating cocaine- and quinpirole-induced reinstatement to cocaine seeking. Intra-NAc pretreatment of CGS 21680 reduced both cocaine- and quinpirole-induced reinstatement. These effects were specific to cocaine reinstatement as intra-NAc CGS 21680 had no effect on sucrose seeking in rats trained to self-administer sucrose pellets. Intra-NAc treatment with MSX-3 modestly reinstated cocaine seeking when given alone, and exacerbated both cocaine- and quinpirole-induced reinstatement. Interestingly, the exacerbation of cocaine seeking produced by MSX-3 was only observed at sub-threshold doses of cocaine and quinpirole, suggesting that removing tonic A2A receptor activity enables behaviors mediated by dopamine receptors. Taken together, these findings suggest that A2A receptor stimulation reduces, while A2A blockade amplifies, D2 receptor

  14. Novel drugs targeting Toll-like receptors for antiviral therapy.

    Science.gov (United States)

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge Cg

    2014-09-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved 'pathogen-associated molecular patterns' of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release 'danger-associated molecular patterns' that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy.

  15. Adenosine A(2A) receptor dynamics studied with the novel fluorescent agonist Alexa488-APEC.

    Science.gov (United States)

    Brand, Frank; Klutz, Athena M; Jacobson, Kenneth A; Fredholm, Bertil B; Schulte, Gunnar

    2008-08-20

    G protein-coupled receptors, such as the adenosine A(2A) receptor, are dynamic proteins, which undergo agonist-dependent redistribution from the cell surface to intracellular membranous compartments, such as endosomes. In order to study the kinetics of adenosine A(2A) receptor redistribution in living cells, we synthesized a novel fluorescent agonist, Alexa488-APEC. Alexa488-APEC binds to adenosine A(2A) (K(i)=149+/-27 nM) as well as A(3) receptors (K(i)=240+/-160 nM) but not to adenosine A(1) receptors. Further, we characterized the dose-dependent increase in Alexa488-APEC-induced cAMP production as well as cAMP response element binding (CREB) protein phosphorylation, verifying the ligand's functionality at adenosine A(2A) but not A(2B) receptors. In live-cell imaging studies, Alexa488-APEC-induced adenosine A(2A) receptor internalization, which was blocked by the competitive reversible antagonist ZM 241385 and hyperosmolaric sucrose. Further, internalized adenosine A(2A) receptors co-localized with clathrin and Rab5, indicating that agonist stimulation promotes adenosine A(2A) receptor uptake through a clathrin-dependent mechanism to Rab5-positive endosomes. The basic characterization of Alexa488-APEC described here showed that it provides a useful tool for tracing adenosine A(2A) receptors in vitro.

  16. Prostanoid receptor EP2 as a therapeutic target.

    Science.gov (United States)

    Ganesh, Thota

    2014-06-12

    Cycoloxygenase-2 (COX-2) induction is prevalent in a variety of (brain and peripheral) injury models where COX-2 levels correlate with disease progression. Thus, COX-2 has been widely explored for anti-inflammatory therapy with COX-2 inhibitors, which proved to be effective in reducing the pain and inflammation in patients with arthritis and menstrual cramps, but they have not provided any benefit to patients with chronic inflammatory neurodegenerative disease. Recently, two COX-2 drugs, rofecoxib and valdecoxib, were withdrawn from the United States market due to cardiovascular side effects. Thus, future anti-inflammatory therapy could be targeted through a specific prostanoid receptor downstream of COX-2. The PGE2 receptor EP2 is emerging as a pro-inflammatory target in a variety of CNS and peripheral diseases. Here we highlight the latest developments on the role of EP2 in diseases, mechanism of activation, and small molecule discovery targeted either to enhance or to block the function of this receptor.

  17. Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta.

    Science.gov (United States)

    Vanacker, J M; Pettersson, K; Gustafsson, J A; Laudet, V

    1999-01-01

    The physiological activities of estrogens are thought to be mediated by specific nuclear receptors, ERalpha and ERbeta. However, certain tissues, such as the bone, that are highly responsive to estrogens only express a low level of these receptors. Starting from this apparent contradiction, we have evaluated the potentials of two related receptors ERRalpha and ERRbeta to intervene in estrogen signaling. ERalpha, ERRalpha and ERRbeta bind to and activate transcription through both the classical estrogen response element (ERE) and the SF-1 response element (SFRE). In contrast, ERbeta DNA-binding and transcriptional activity is restricted to the ERE. Accordingly, the osteopontin gene promoter is stimulated through SFRE sequences, by ERRalpha as well as by ERalpha, but not by ERbeta. Analysis of the cross-talk within the ER/ERR subgroup of nuclear receptors thus revealed common targets but also functional differences between the two ERs. PMID:10428965

  18. Targeting the epidermal growth factor receptor in solid tumor malignancies

    DEFF Research Database (Denmark)

    Nedergaard, Mette K; Hedegaard, Chris J; Poulsen, Hans S

    2012-01-01

    been proposed as valid targets in many cancer therapy settings. Different strategies have been developed in order to either inhibit EGFR/EGFRvIII activity or to ablate EGFR/EGFRvIII-positive tumor cells. Drugs that inhibit these receptors include monoclonal antibodies (mAbs) that bind...... to the extracellular part of EGFR, blocking the binding sites for the EGFR ligands, and intracellular tyrosine kinase inhibitors (TKIs) that block the ATP binding site of the tyrosine kinase domain. Besides an EGFRvIII-targeted vaccine, conjugated anti-EGFR mAbs have been used in different settings to deliver lethal...... agents to the EGFR/EGFRvIII-positive cells; among these are radio-labelled mAbs and immunotoxins. This article reviews the current status and efficacy of EGFR/EGFRvIII-targeted therapies....

  19. Peptide drugs to target G protein-coupled receptors.

    Science.gov (United States)

    Bellmann-Sickert, Kathrin; Beck-Sickinger, Annette G

    2010-09-01

    Major indications for use of peptide-based therapeutics include endocrine functions (especially diabetes mellitus and obesity), infectious diseases, and cancer. Whereas some peptide pharmaceuticals are drugs, acting as agonists or antagonists to directly treat cancer, others (including peptide diagnostics and tumour-targeting pharmaceuticals) use peptides to 'shuttle' a chemotherapeutic agent or a tracer to the tumour and allow sensitive imaging or targeted therapy. Significant progress has been made in the last few years to overcome disadvantages in peptide design such as short half-life, fast proteolytic cleavage, and low oral bioavailability. These advances include peptide PEGylation, lipidisation or multimerisation; the introduction of peptidomimetic elements into the sequences; and innovative uptake strategies such as liposomal, capsule or subcutaneous formulations. This review focuses on peptides targeting G protein-coupled receptors that are promising drug candidates or that have recently entered the pharmaceutical market. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Toll-like receptors as therapeutic targets in cystic fibrosis.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2008-12-01

    Background: Toll-like receptors (TLRs) are pattern recognition receptors that act as a first-line of defence in the innate immune response by recognising and responding to conserved molecular patterns in microbial factors and endogenous danger signals. Cystic fibrosis (CF)-affected airways represent a milieu potentially rich in TLR agonists and the chronic inflammatory phenotype evident in CF airway epithelial cells is probably due in large part to activation of TLRs. Objective\\/methods: To examine the prospects of developing novel therapies for CF by targeting TLRs. We outline the expression and function of TLRs and explore the therapeutic potential of naturally-occurring and synthetic TLR inhibitors for CF. Results\\/conclusion: Modulation of TLRs has therapeutic potential for the inflammatory lung manifestations of CF.

  1. Glutamate metabotropic receptors as targets for drug therapy in epilepsy.

    Science.gov (United States)

    Moldrich, Randal X; Chapman, Astrid G; De Sarro, Giovambattista; Meldrum, Brian S

    2003-08-22

    Metabotropic glutamate (mGlu) receptors have multiple actions on neuronal excitability through G-protein-linked modifications of enzymes and ion channels. They act presynaptically to modify glutamatergic and gamma-aminobutyric acid (GABA)-ergic transmission and can contribute to long-term changes in synaptic function. The recent identification of subtype-selective agonists and antagonists has permitted evaluation of mGlu receptors as potential targets in the treatment of epilepsy. Agonists acting on group I mGlu receptors (mGlu1 and mGlu5) are convulsant. Antagonists acting on mGlu1 or mGlu5 receptors are anticonvulsant against 3,5-dihydroxyphenylglycine (DHPG)-induced seizures and in mouse models of generalized motor seizures and absence seizures. The competitive, phenylglycine mGlu1/5 receptor antagonists generally require intracerebroventricular administration for potent anticonvulsant efficacy but noncompetitive antagonists, e.g., (3aS,6aS)-6a-naphthalen-2-ylmethyl-5-methyliden-hexahydrocyclopenta[c]furan-1-on (BAY36-7620), 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), and 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893) block generalized seizures with systemic administration. Agonists acting on group II mGlu receptors (mGlu2, mGlu3) to reduce glutamate release are anticonvulsant, e.g., 2R,4R-aminopyrrolidine-2,4-dicarboxylate [(2R,4R)-APDC], (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), and (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268). The classical agonists acting on group III mGlu receptors such as L-(+)-2-amino-4-phosphonobutyric acid, and L-serine-O-phosphate are acutely proconvulsant with some anticonvulsant activity. The more recently identified agonists (R,S)-4-phosphonophenylglycine [(R,S)-PPG] and (S)-3,4-dicarboxyphenylglycine [(S)-3,4-DCPG] and (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid [ACPT-1] are all anticonvulsant without proconvulsant effects. Studies in animal models of kindling

  2. Adenosine A2B and A3 receptor location at the mouse neuromuscular junction.

    Science.gov (United States)

    Garcia, Neus; Priego, Mercedes; Hurtado, Erica; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Lanuza, Maria Angel; Tomàs, Josep

    2014-07-01

    To date, four subtypes of adenosine receptors have been cloned (A(1)R, A(2A)R, A(2B)R, and A(3)R). In a previous study we used confocal immunocytochemistry to identify A(1)R and A(2A)R receptors at mouse neuromuscular junctions (NMJs). The data shows that these receptors are localized differently in the three cells (muscle, nerve and glia) that configure the NMJs. A(1)R localizes in the terminal teloglial Schwann cell and nerve terminal, whereas A(2A)R localizes in the postsynaptic muscle and in the axon and nerve terminal. Here, we use Western blotting to investigate the presence of A(2B)R and A(3)R receptors in striated muscle and immunohistochemistry to localize them in the three cells of the adult neuromuscular synapse. The data show that A(2B)R and A(3)R receptors are present in the nerve terminal and muscle cells at the NMJs. Neither A(2B)R nor A(3)R receptors are localized in the Schwann cells. Thus, the four subtypes of adenosine receptors are present in the motor endings. The presence of these receptors in the neuromuscular synapse allows the receptors to be involved in the modulation of transmitter release. © 2014 Anatomical Society.

  3. EphA2 is a functional receptor for the growth factor progranulin.

    Science.gov (United States)

    Neill, Thomas; Buraschi, Simone; Goyal, Atul; Sharpe, Catherine; Natkanski, Elizabeth; Schaefer, Liliana; Morrione, Andrea; Iozzo, Renato V

    2016-12-05

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. © 2016 Neill et al.

  4. A compound chimeric antigen receptor strategy for targeting multiple myeloma.

    Science.gov (United States)

    Chen, K H; Wada, M; Pinz, K G; Liu, H; Shuai, X; Chen, X; Yan, L E; Petrov, J C; Salman, H; Senzel, L; Leung, E L H; Jiang, X; Ma, Y

    2018-02-01

    Current clinical outcomes using chimeric-antigen receptors (CARs) against multiple myeloma show promise in the eradication of bulk disease. However, these anti-BCMA (CD269) CARs observe relapse as a common phenomenon after treatment due to the reemergence of either antigen-positive or -negative cells. Hence, the development of improvements in CAR design to target antigen loss and increase effector cell persistency represents a critical need. Here, we report on the anti-tumor activity of a CAR T-cell possessing two complete and independent CAR receptors against the multiple myeloma antigens BCMA and CS1. We determined that the resulting compound CAR (cCAR) T-cell possesses consistent, potent and directed cytotoxicity against each target antigen population. Using multiple mouse models of myeloma and mixed cell populations, we are further able to show superior in vivo survival by directed cytotoxicity against multiple populations compared to a single-expressing CAR T-cell. These findings indicate that compound targeting of BCMA and CS1 on myeloma cells can potentially be an effective strategy for augmenting the response against myeloma bulk disease and for initiation of broader coverage CAR therapy.

  5. Yersinia pestis targets neutrophils via complement receptor 3

    Science.gov (United States)

    Merritt, Peter M.; Nero, Thomas; Bohman, Lesley; Felek, Suleyman; Krukonis, Eric S.; Marketon, Melanie M.

    2015-01-01

    Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins due to reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria toward neutrophils during plague infection. PMID:25359083

  6. Adenosine A2A Receptor Modulates the Activity of Globus Pallidus Neurons in Rats

    Directory of Open Access Journals (Sweden)

    Hui-Ling Diao

    2017-11-01

    Full Text Available The globus pallidus is a central nucleus in the basal ganglia motor control circuit. Morphological studies have revealed the expression of adenosine A2A receptors in the globus pallidus. To determine the modulation of adenosine A2A receptors on the activity of pallidal neurons in both normal and parkinsonian rats, in vivo electrophysiological and behavioral tests were performed in the present study. The extracellular single unit recordings showed that micro-pressure administration of adenosine A2A receptor agonist, CGS21680, regulated the pallidal firing activity. GABAergic neurotransmission was involved in CGS21680-induced modulation of pallidal neurons via a PKA pathway. Furthermore, application of two adenosine A2A receptor antagonists, KW6002 or SCH442416, mainly increased the spontaneous firing of pallidal neurons, suggesting that endogenous adenosine system modulates the activity of pallidal neurons through adenosine A2A receptors. Finally, elevated body swing test (EBST showed that intrapallidal microinjection of adenosine A2A receptor agonist/antagonist induced ipsilateral/contralateral-biased swing, respectively. In addition, the electrophysiological and behavioral findings also revealed that activation of dopamine D2 receptors by quinpirole strengthened KW6002/SCH442416-induced excitation of pallidal activity. Co-application of quinpirole with KW6002 or SCH442416 alleviated biased swing in hemi-parkinsonian rats. Based on the present findings, we concluded that pallidal adenosine A2A receptors may be potentially useful in the treatment of Parkinson's disease.

  7. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    International Nuclear Information System (INIS)

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H.

    1990-01-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-[ 3 H]ethylcarboxamidoadenosine [( 3 H]NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the [ 3 H]NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors

  8. Antiphospholipase A2 Receptor Autoantibodies: A Step Forward in the Management of Primary Membranous Nephropathy

    Science.gov (United States)

    Obrisca, Bogdan; Ismail, Gener; Jurubita, Roxana; Baston, Catalin; Andronesi, Andreea; Mircescu, Gabriel

    2015-01-01

    Since the identification of PLA2R (M-type phospholipase A2 receptor) as the first human antigenic target in primary membranous nephropathy (MN), perpetual progress has been made in understanding the pathogenesis of this disease. Accumulating clinical data support a pathogenic role for the anti-PLA2R antibodies (PLA2R ABs), but confirmation in an animal model is still lacking. However, PLA2R ABs were related to disease activity and outcome, as well as to response therapy. Accordingly, PLA2R ABs assay seems to be promising tool not only to diagnose MN but also to predict the course of the disease and could open the way to personalize therapy. Nevertheless, validation of a universal assay with high precision and definition of cut-off levels, followed by larger studies with a prolonged follow-up period, are needed to confirm these prospects. PMID:26576418

  9. Antiphospholipase A2 Receptor Autoantibodies: A Step Forward in the Management of Primary Membranous Nephropathy.

    Science.gov (United States)

    Obrisca, Bogdan; Ismail, Gener; Jurubita, Roxana; Baston, Catalin; Andronesi, Andreea; Mircescu, Gabriel

    2015-01-01

    Since the identification of PLA2R (M-type phospholipase A2 receptor) as the first human antigenic target in primary membranous nephropathy (MN), perpetual progress has been made in understanding the pathogenesis of this disease. Accumulating clinical data support a pathogenic role for the anti-PLA2R antibodies (PLA2R ABs), but confirmation in an animal model is still lacking. However, PLA2R ABs were related to disease activity and outcome, as well as to response therapy. Accordingly, PLA2R ABs assay seems to be promising tool not only to diagnose MN but also to predict the course of the disease and could open the way to personalize therapy. Nevertheless, validation of a universal assay with high precision and definition of cut-off levels, followed by larger studies with a prolonged follow-up period, are needed to confirm these prospects.

  10. Antiphospholipase A2 Receptor Autoantibodies: A Step Forward in the Management of Primary Membranous Nephropathy

    Directory of Open Access Journals (Sweden)

    Bogdan Obrisca

    2015-01-01

    Full Text Available Since the identification of PLA2R (M-type phospholipase A2 receptor as the first human antigenic target in primary membranous nephropathy (MN, perpetual progress has been made in understanding the pathogenesis of this disease. Accumulating clinical data support a pathogenic role for the anti-PLA2R antibodies (PLA2R ABs, but confirmation in an animal model is still lacking. However, PLA2R ABs were related to disease activity and outcome, as well as to response therapy. Accordingly, PLA2R ABs assay seems to be promising tool not only to diagnose MN but also to predict the course of the disease and could open the way to personalize therapy. Nevertheless, validation of a universal assay with high precision and definition of cut-off levels, followed by larger studies with a prolonged follow-up period, are needed to confirm these prospects.

  11. Design and synthesis of small molecule agonists of EphA2 receptor.

    Science.gov (United States)

    Petty, Aaron; Idippily, Nethrie; Bobba, Viharika; Geldenhuys, Werner J; Zhong, Bo; Su, Bin; Wang, Bingcheng

    2018-01-01

    Ligand-independent activation of EphA2 receptor kinase promotes cancer metastasis and invasion. Activating EphA2 receptor tyrosine kinase with small molecule agonist is a novel strategy to treat EphA2 overexpressing cancer. In this study, we performed a lead optimization of a small molecule Doxazosin that was identified as an EphA2 receptor agonist. 33 new analogs were developed and evaluated; a structure-activity relationship was summarized based on the EphA2 activation of these derivatives. Two new derivative compounds 24 and 27 showed much improved activity compared to Doxazosin. Compound 24 possesses a bulky amide moiety, and compound 27 has a dimeric structure that is very different to the parental compound. Compound 27 with a twelve-carbon linker of the dimer activated the kinase and induced receptor internalization and cell death with the best potency. Another dimer with a six-carbon linker has significantly reduced potency compared to the dimer with a longer linker, suggesting that the length of the linker is critical for the activity of the dimeric agonist. To explore the receptor binding characteristics of the new molecules, we applied a docking study to examine how the small molecule binds to the EphA2 receptor. The results reveal that compounds 24 and 27 form more hydrogen bonds to EphA2 than Doxazosin, suggesting that they may have higher binding affinity to the receptor. Published by Elsevier Masson SAS.

  12. Designer interface peptide grafts target estrogen receptor alpha dimerization

    International Nuclear Information System (INIS)

    Chakraborty, S.; Asare, B.K.; Biswas, P.K.; Rajnarayanan, R.V.

    2016-01-01

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  13. Designer interface peptide grafts target estrogen receptor alpha dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Asare, B.K. [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States); Biswas, P.K., E-mail: pbiswas@tougaloo.edu [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Rajnarayanan, R.V., E-mail: rajendra@buffalo.edu [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States)

    2016-09-09

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  14. Identification of novel androgen receptor target genes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gerald William L

    2007-06-01

    Full Text Available Abstract Background The androgen receptor (AR plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa. However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant and LNCaP (androgen-dependent PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT, Protein kinase C delta (PRKCD, Glutathione S- transferase theta 2 (GSTT2, Transient receptor potential cation channel subfamily V member 3 (TRPV3, and Pyrroline-5-carboxylate reductase 1 (PYCR1 – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT, was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are

  15. Androgen receptor activation: a prospective therapeutic target for bladder cancer?

    Science.gov (United States)

    Mizushima, Taichi; Tirador, Kathleen A; Miyamoto, Hiroshi

    2017-03-01

    Patients with non-muscle-invasive or muscle-invasive bladder cancer undergoing surgery and currently available conventional therapy remain having a high risk of tumor recurrence or progression, respectively. Novel targeted molecular therapy is therefore expected to improve patient outcomes. Meanwhile, substantially higher incidence of bladder cancer in men has prompted research on androgen-mediated androgen receptor (AR) signaling in this malignancy. Indeed, preclinical evidence has suggested that AR signaling plays an important role in urothelial carcinogenesis and tumor outgrowth as well as resistance to some of the currently available conventional non-surgical therapies. Areas covered: We summarize and discuss available data suggesting the involvement of AR and its potential downstream targets in the development and progression of bladder cancer. Associations between AR signaling and sensitivity to cisplatin/doxorubicin or bacillus Calmette-Guérin treatment are also reviewed. Expert opinion: AR activation is likely to correlate with the promotion of urothelial carcinogenesis and cancer outgrowth as well as resistance to conventional therapies. Molecular therapy targeting the AR may thus provide effective chemopreventive and therapeutic approaches for urothelial cancer. Accordingly, bladder cancer can now be considered as an endocrine-related neoplasm. Clinical application of various anti-AR therapies available for AR-dependent prostate cancer to bladder cancer patients is anticipated.

  16. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    Science.gov (United States)

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  17. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Directory of Open Access Journals (Sweden)

    Shinji Kataoka

    Full Text Available In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3 on taste nerves as well as metabotropic (P2Y purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate, but not anterior (fungiform, palate taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  18. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Science.gov (United States)

    Kataoka, Shinji; Baquero, Arian; Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C; Finger, Thomas E

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  19. Toll-like receptors as targets for immune disorders.

    LENUS (Irish Health Repository)

    Keogh, Brian

    2012-02-01

    Since the identification of the first Toll-like receptor (TLR) in humans in 1997, understanding of the molecular basis for innate immunity has increased significantly. The TLR family and downstream signalling pathways have been extensively characterised, There is now significant evidence suggesting a role for TLRs in human inflammatory and immune diseases such as rheumatoid arthritis, diabetes, allergy\\/asthma and atherosclerosis. Various approaches have been taken to identify novel therapeutic agents targeting TLRs including biologics, small molecules and nucleic acid-based drugs. Several are now being evaluated in the clinic and showing promise against various diseases. This review paper outlines the recent advances in the understanding of TLR biology and highlights novel TLR agonists and antagonists in development for the treatment of immune diseases.

  20. Muscarinic receptors as targets for anti-inflammatory therapy.

    Science.gov (United States)

    Sales, María Elena

    2010-11-01

    ACh, the main neurotransmitter in the neuronal cholinergic system, is synthesized by pre-ganglionic fibers of the sympathetic and parasympathetic autonomic nervous system and by post-ganglionic parasympathetic fibers. There is increasing experimental evidence that ACh is widely expressed in prokaryotic and eukaryotic non-neuronal cells. The neuronal and non-neuronal cholinergic systems comprise ACh, choline acetyltransferase and cholinesterase, enzymes that synthesize and catabolize ACh, and the nicotinic and muscarinic ACh receptors (nAChRs and mAChRs, respectively), which are the targets for ACh action. This review analyzes the participation of the cholinergic system, particularly through mAChRs, in inflammation, and discusses the role of the different mAChR antagonists that have been used to treat skin inflammatory disorders, asthma and COPD, as well as intestinal inflammation and systemic inflammatory diseases, to assess the potential application of these compounds as therapeutic tools.

  1. The folate receptor as a molecular target for tumor-selective radionuclide delivery

    International Nuclear Information System (INIS)

    Ke, C.-Y.; Mathias, Carla J.; Green, Mark A.

    2003-01-01

    The cell-membrane folate receptor is a potential molecular target for tumor-selective drug delivery, including radiolabeled folate-chelate conjugates for diagnostic imaging. We review here some background on the folate receptor as tumor-associated molecular target for drug delivery, and briefly survey the literature on tumor-targeting with radiolabeled folate-chelate conjugates

  2. Targeting the urokinase plasminogen activator receptor inhibits ovarian cancer metastasis.

    Science.gov (United States)

    Kenny, Hilary A; Leonhardt, Payton; Ladanyi, Andras; Yamada, S Diane; Montag, Anthony; Im, Hae Kyung; Jagadeeswaran, Sujatha; Shaw, David E; Mazar, Andrew P; Lengyel, Ernst

    2011-02-01

    To understand the functional and preclinical efficacy of targeting the urokinase plasminogen activator receptor (u-PAR) in ovarian cancer. Expression of u-PAR was studied in 162 epithelial ovarian cancers, including 77 pairs of corresponding primary and metastatic tumors. The effect of an antibody against u-PAR (ATN-658) on proliferation, adhesion, invasion, apoptosis, and migration was assessed in 3 (SKOV3ip1, HeyA8, and CaOV3) ovarian cancer cell lines. The impact of the u-PAR antibody on tumor weight, number, and survival was examined in corresponding ovarian cancer xenograft models and the mechanism by which ATN-658 blocks metastasis was explored. Only 8% of all ovarian tumors were negative for u-PAR expression. Treatment of SKOV3ip1, HeyA8, and CaOV3 ovarian cancer cell lines with the u-PAR antibody inhibited cell invasion, migration, and adhesion. In vivo, anti-u-PAR treatment reduced the number of tumors and tumor weight in CaOV3 and SKOV3ip1 xenografts and reduced tumor weight and increased survival in HeyA8 xenografts. Immunostaining of CaOV3 xenograft tumors and ovarian cancer cell lines showed an increase in active-caspase 3 and TUNEL staining. Treatment with u-PAR antibody inhibited α(5)-integrin and u-PAR colocalization on primary human omental extracellular matrix. Anti-u-PAR treatment also decreased the expression of urokinase, u-PAR, β(3)-integrin, and fibroblast growth factor receptor-1 both in vitro and in vivo. This study shows that an antibody against u-PAR reduces metastasis, induces apoptosis, and reduces the interaction between u-PAR and α(5)-integrin. This provides a rationale for targeting the u-PAR pathway in patients with ovarian cancer and for further testing of ATN-658 in this indication. ©2010 AACR.

  3. The androgen receptor as an emerging target in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Kanda T

    2015-06-01

    Full Text Available Tatsuo Kanda, Osamu Yokosuka Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan Abstract: Hepatocellular carcinoma (HCC is one of the male-dominant liver diseases with poor prognosis, although treatments for HCC have been progressing in the past decades. Androgen receptor (AR is a member of the nuclear receptor superfamily. Previous studies reported that AR was expressed in human HCC and non-HCC tissues. AR is activated both ligand-dependently and ligand-independently. The latter is associated with a mitogen-activated protein kinase–, v-akt murine thymoma viral oncogene homolog 1–, or signal-transducer and activator of transcription–signaling pathway, which has been implicated in the development of HCC. It has been reported that more than 200 RNA expression levels are altered by androgen treatment. In the liver, androgen-responsive genes are cytochrome P450s, transforming growth factor , vascular endothelial growth factor, and glucose-regulated protein 78 kDa, which are also associated with human hepatocarcinogenesis. Recent studies also revealed that AR plays a role in cell migration and metastasis. It is possible that cross-talk among AR-signaling, endoplasmic reticulum stress, and innate immune response is important for human hepatocarcinogenesis and HCC development. This review shows that AR could play a potential role in human HCC and represent one of the important target molecules for the treatment of HCC. Keywords: vascular endothelial growth factor, angiogenesis, glucose-regulated protein 78 kDa, hepatocarcinogenesis, molecular targets 

  4. Identification of the A2 adenosine receptor binding subunit by photoaffinity crosslinking

    International Nuclear Information System (INIS)

    Barrington, W.W.; Jacobson, K.A.; Hutchison, A.J.; Williams, M.; Stiles, G.L.

    1989-01-01

    A high-affinity iodinated agonist radioligand for the A2 adenosine receptor has been synthesized to facilitate studies of the A2 adenosine receptor binding subunit. The radioligand 125I-labeled PAPA-APEC (125I-labeled 2-[4-(2-[2-[(4- aminophenyl)methylcarbonylamino]ethylaminocarbonyl]- ethyl)phenyl]ethylamino-5'-N-ethylcarboxamidoadenosine) was synthesized and found to bind to the A2 adenosine receptor in bovine striatal membranes with high affinity (Kd = 1.5 nM) and A2 receptor selectivity. Competitive binding studies reveal the appropriate A2 receptor pharmacologic potency order with 5'-N-ethylcarboxamidoadenosine (NECA) greater than (-)-N6-[(R)-1-methyl- 2-phenylethyl]adenosine (R-PIA) greater than (+)-N6-[(S)-1-methyl-2- phenylethyl]adenosine (S-PIA). Adenylate cyclase assays, in human platelet membranes, demonstrate a dose-dependent stimulation of cAMP production. PAPA-APEC (1 microM) produces a 43% increase in cAMP production, which is essentially the same degree of increase produced by 5'-N- ethylcarboxamidoadenosine (the prototypic A2 receptor agonist). These findings combined with the observed guanine nucleotide-mediated decrease in binding suggest that PAPA-APEC is a full A2 agonist. The A2 receptor binding subunit was identified by photoaffinity-crosslinking studies using 125I-labeled PAPA-APEC and the heterobifunctional crosslinking agent N-succinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate (SANPAH). After covalent incorporation, a single specifically radiolabeled protein with an apparent molecular mass of 45 kDa was observed on NaDodSO4/PAGE/autoradiography. Incorporation of 125I-labeled PAPA-APEC into this polypeptide is blocked by agonists and antagonists with the expected potency for A2 receptors and is decreased in the presence of 10(-4) M guanosine 5'-[beta, gamma-imido]triphosphate

  5. Progranulin and the receptor tyrosine kinase EphA2, partners in crime?

    Science.gov (United States)

    Chitramuthu, Babykumari; Bateman, Andrew

    2016-01-01

    Progranulin is a secreted protein with roles in tumorigenesis, inflammation, and neurobiology, but its signaling receptors have remained unclear. In this issue, Neill et al. (2016. J. Cell Biol. https://doi.org/10.1083/jcb.201603079) identify the tyrosine kinase EphA2 as a strong candidate for such a receptor, providing insight into progranulin and EphA2 signaling. PMID:27903608

  6. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    Science.gov (United States)

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  7. Targeting Gallium to Cancer Cells through the Folate Receptor

    Directory of Open Access Journals (Sweden)

    Nerissa Viola-Villegas

    2008-01-01

    Full Text Available The development of gallium(III compounds as anti-cancer agents for both treatment and diagnosis is a rapidly developing field of research. Problems remain in exploring the full potential of gallium(III as a safe and successful therapeutic agent or as an imaging agent. One of the major issues is that gallium(III compounds have little tropism for cancer cells. We have combined the targeting properties of folic acid (FA with long chain liquid polymer poly(ethylene glycol (PEG 'spacers’. This FA-PEG unit has been coupled to the gallium coordination complex of 1,4,7,10-tetraazacyclo-dodecane-N, N′, N′, N′′-tetraacetic acid (DOTA through amide linkages for delivery into target cells overexpressing the folate receptor (FR. In vitro cytotoxicity assays were conducted against a multi-drug resistant ovarian cell line (A2780/AD that overexpresses the FR and contrasted against a FR free Chinese hamster ovary (CHO cell line. Results are rationalized taking into account stability studies conducted in RPMI 1640 media and HEPES buffer at pH 7.4.

  8. Targeting Gallium to Cancer Cells through the Folate Receptor

    Directory of Open Access Journals (Sweden)

    Nerissa Viola-Villegas

    2008-01-01

    Full Text Available The development of gallium(III compounds as anti-cancer agents for both treatment and diagnosis is a rapidly developing field of research. Problems remain in exploring the full potential of gallium(III as a safe and successful therapeutic agent or as an imaging agent. One of the major issues is that gallium(III compounds have little tropism for cancer cells. We have combined the targeting properties of folic acid (FA with long chain liquid polymer poly(ethylene glycol (PEG ‘spacers’. This FA-PEG unit has been coupled to the gallium coordination complex of 1,4,7,10-tetraazacyclo-dodecane-N,N′,N′′,N′′′-tetraacetic acid (DOTA through amide linkages for delivery into target cells overexpressing the folate receptor (FR. In vitro cytotoxicity assays were conducted against a multi-drug resistant ovarian cell line (A2780/AD that overexpresses the FR and contrasted against a FR free Chinese hamster ovary (CHO cell line. Results are rationalized taking into account stability studies conducted in RPMI 1640 media and HEPES buffer at pH 7.4.

  9. IGF1 Receptor Targeted Theranostic Nanoparticles for Targeted and Image-Guided Therapy of Pancreatic Cancer.

    Science.gov (United States)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M; Wang, Liya; Wang, Y Andrew; Chen, Hongyu; Kooby, David; Yu, Qian; Lipowska, Malgorzata; Staley, Charles A; Mao, Hui; Yang, Lily

    2015-08-25

    Overcoming resistance to chemotherapy is a major and unmet medical challenge in the treatment of pancreatic cancer. Poor drug delivery due to stromal barriers in the tumor microenvironment and aggressive tumor biology are additional impediments toward a more successful treatment of pancreatic cancer. In attempts to address these challenges, we developed IGF1 receptor (IGF1R)-directed, multifunctional theranostic nanoparticles for targeted delivery of therapeutic agents into IGF1R-expressing drug-resistant tumor cells and tumor-associated stromal cells. These nanoparticles were prepared by conjugating recombinant human IGF1 to magnetic iron oxide nanoparticles (IONPs) carrying the anthracycline doxorubicin (Dox) as the chemotherapeutic payload. Intravenously administered IGF1-IONPs exhibited excellent tumor targeting and penetration in an orthotopic patient-derived xenograft (PDX) model of pancreatic cancer featuring enriched tumor stroma and heterogeneous cancer cells. IGF1R-targeted therapy using the theranostic IGF1-IONP-Dox significantly inhibited the growth of pancreatic PDX tumors. The effects of the intratumoral nanoparticle delivery and therapeutic responses in the orthotopic pancreatic PDX tumors could be detected by magnetic resonance imaging (MRI) with IONP-induced contrasts. Histological analysis showed that IGF1R-targeted delivery of Dox significantly inhibited cell proliferation and induced apoptotic cell death of pancreatic cancer cells. Therefore, further development of IGF1R-targeted theranostic IONPs and MRI-guided cancer therapy as a precision nanomedicine may provide the basis for more effective treatment of pancreatic cancer.

  10. Regulatory effects of adenosine A2A receptors on psychomotor ability and mood behavior of mice

    Directory of Open Access Journals (Sweden)

    Li JIANG

    2011-07-01

    Full Text Available Objective To explore the effects of gene knock-out,agonist or inhibitor of adenosine A2A receptor on the locomotor activity,and anxiety-or depression-like behavior of mice.Methods Male C57BL/6 mice,comprising those underwent gene knock-out of adenosine A2A receptor(A2AKO and their wild-type(WT littermates,were assigned into A2AKO group and WT group.Another batch of male C57BL/6,specific-pathogen-free(SPF mice,were assigned into SCH58261 group,CGS21680 group and control group.Mice of aforesaid 3 groups were transperitoneally administered with SCH58261,a specific inhibitor of adenosine A2A receptor at a dose of 2mg/kg,CGS21680,a specific agonist of adenosine A2A receptor at a dose of 0.5mg/kg,and vehicle(0.25ml,comprising DMSO and saline,respectively.Ten minutes after injection,mice of the 3 groups underwent open-field test,elevated plus-maze test and forced swimming test to detect their locomotor activity,anxiety-and depression-like behavior.Results a Compared with WT group,the total movement distance decreased(P 0.05.b Compared with control group,the total movement distance decreased and the stay time in the peripheral area increased significantly in the open field test(P 0.05.Conclusions The agonist of adenosine A2A receptor may depress the spontaneous motility and exploratory behavior,and exacerbate the anxiety and depression,and it simulates the effect induced by knock-out of A2A receptor gene,but it is opposite to the effect induced by A2A receptor inhibitor.

  11. Targeted delivery of anti-tuberculosis drugs to macrophages: targeting mannose receptors

    Science.gov (United States)

    Filatova, L. Yu; Klyachko, N. L.; Kudryashova, E. V.

    2018-04-01

    The development of systems for targeted delivery of anti-tuberculosis drugs is a challenge of modern biotechnology. Currently, these drugs are encapsulated in a variety of carriers such as liposomes, polymers, emulsions and so on. Despite successful in vitro testing of these systems, virtually no success was achieved in vivo, because of low accessibility of the foci of infection located in alveolar macrophage cells. A promising strategy for increasing the efficiency of therapeutic action of anti-tuberculosis drugs is to encapsulate the agents into mannosylated carriers targeting the mannose receptors of alveolar macrophages. The review addresses the methods for modification of drug substance carriers, such as liposomes and biodegradable polymers, with mannose residues. The use of mannosylated carriers to deliver anti-tuberculosis agents increases the drug circulation time in the blood stream and increases the drug concentration in alveolar macrophage cells. The bibliography includes 113 references.

  12. Involvement of ways of death receptors in the target and non target effects of ionizing radiations

    International Nuclear Information System (INIS)

    Luce, A.

    2008-10-01

    Delayed cell death by mitotic catastrophe is a frequent mode of breast cancer cell death after γ-irradiation. Whereas the mechanisms that underlie the early γ-irradiation-induced cell death are well documented, those that drive the delayed cell death are largely unknown. Here we show that the Fas, TRAIL and TNF-α death receptor pathways mediate the delayed cell death observed after γ-irradiation of breast cancer cells. Receptors of the three pathways are over expressed early after irradiation and sensitize cells to apoptosis, whereas their ligands are over expressed three to four days after γ-irradiation, leading to apoptosis of the irradiated cells through a mitotic catastrophe. We also show for the first time that irradiated breast cancer cells excrete soluble forms of the three ligands which can induce the death of sensitive bystander cells. Altogether, these results define the molecular basis of the delayed cell death induced by targeted and non-targeted effects of γ-irradiation. (author)

  13. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress.

    Science.gov (United States)

    Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A

    2015-06-23

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.

  14. Targeting cellular adhesion molecules, chemokines and chemokine receptors in rheumatoid arthritis

    NARCIS (Netherlands)

    Haringman, Jasper J.; Oostendorp, Roos L.; Tak, Paul P.

    2005-01-01

    The development of specific targeted therapies, such as anti-TNF-alpha treatment, for chronic inflammatory disorders such as rheumatoid arthritis, has significantly improved treatment, although not all patients respond. Targeting cellular adhesion molecules and chemokines/chemokine receptors as

  15. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption.

    Science.gov (United States)

    Cornelis, Marilyn C; El-Sohemy, Ahmed; Campos, Hannia

    2007-07-01

    Caffeine is the most widely consumed stimulant in the world, and individual differences in response to its stimulating effects may explain some of the variability in caffeine consumption within a population. We examined whether genetic variability in caffeine metabolism [cytochrome P450 1A2 (CYP1A2) -163A-->C] or the main target of caffeine action in the nervous system [adenosine A(2A) receptor (ADORA2A) 1083C-->T] is associated with habitual caffeine consumption. Subjects (n=2735) were participants from a study of gene-diet interactions and risk of myocardial infarction who did not have a history of hypertension. Genotype frequencies were examined among persons who were categorized according to their self-reported daily caffeine intake, as assessed with a validated food-frequency questionnaire. The ADORA2A, but not the CYP1A2, genotype was associated with different amounts of caffeine intake. Compared with persons consuming caffeine/d, the odds ratios for having the ADORA2A TT genotype were 0.74 (95% CI: 0.53, 1.03), 0.63 (95% CI: 0.48, 0.83), and 0.57 (95% CI: 0.42, 0.77) for those consuming 100-200, >200-400, and >400 mg caffeine/d, respectively. The association was more pronounced among current smokers than among nonsmokers (P for interaction = 0.07). Persons with the ADORA2A TT genotype also were significantly more likely to consume less caffeine (ie, caffeine consumption increases. This observation provides a biologic basis for caffeine consumption behavior and suggests that persons with this genotype may be less vulnerable to caffeine dependence.

  16. Virus-encoded chemokine receptors--putative novel antiviral drug targets

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M

    2005-01-01

    Large DNA viruses, in particular herpes- and poxviruses, have evolved proteins that serve as mimics or decoys for endogenous proteins in the host. The chemokines and their receptors serve key functions in both innate and adaptive immunity through control of leukocyte trafficking, and have...... receptors belong to the superfamily of G-protein coupled 7TM receptors that per se are excellent drug targets. At present, non-peptide antagonists have been developed against many chemokine receptors. The potentials of the virus-encoded chemokine receptors as drug targets--ie. as novel antiviral strategies...

  17. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    Science.gov (United States)

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  18. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    Science.gov (United States)

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  19. [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain

    International Nuclear Information System (INIS)

    Jarvis, M.F.; Schulz, R.; Hutchison, A.J.; Do, U.H.; Sills, M.A.; Williams, M.

    1989-01-01

    In the present study, the binding of a highly A2-selective agonist radioligand, [3H]CGS 21680 (2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamido adenosine) is described. [3H]CGS 21680 specific binding to rat striatal membranes was saturable, reversible and dependent upon protein concentration. Saturation studies revealed that [3H]CGS 21680 bound with high affinity (Kd = 15.5 nM) and limited capacity (apparent Bmax = 375 fmol/mg of protein) to a single class of recognition sites. Estimates of ligand affinity (16 nM) determined from association and dissociation kinetic experiments were in close agreement with the results from the saturation studies. [3H]CGS 21680 binding was greatest in striatal membranes with negligible specific binding obtained in rat cortical membranes. Adenosine agonists ligands competed for the binding of 5 nM [3H]CGS 21680 to striatal membranes with the following order of activity; CGS 21680 = 5'-N-ethylcarboxamidoadenosine greater than 2-phenylaminoadenosine (CV-1808) = 5'-N-methylcarboxamidoadenosine = 2-chloroadenosine greater than R-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than N6cyclopentyltheophylline greater than S-phenylisopropyladenosine. The nonxanthine adenosine antagonist, CGS 15943A, was the most active compound in inhibiting the binding of [3H]CGS 21680. Other adenosine antagonists inhibited binding in the following order; xanthine amine congener = 1,3-dipropyl-8-(2-amino-4-chloro)phenylxanthine greater than 1,3-dipropyl-8-cyclopentylxanthine greater than 1,3-diethyl-8-phenylxanthine greater than 8-phenyltheophylline greater than 8-cyclopentyltheophylline = xanthine carboxylic acid congener greater than 8-parasulfophenyltheophylline greater than theophylline greater than caffeine

  20. Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice.

    Science.gov (United States)

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-08-01

    Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer's disease, an effect mimicked by adenosine A2 A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. We determined whether A2 A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2 A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Scopolamine (1.0 mg·kg(-1) , i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2 A receptor antagonist (SCH 58261, 0.1-1.0 mg·kg(-1) , i.p.) and by the A1 receptor antagonist (DPCPX, 0.2-5.0 mg·kg(-1) , i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2 A receptors with CGS 21680 (0.1-0.5 mg·kg(-1) , i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg(-1) , i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. These results show that A2 A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. © 2015 The British Pharmacological Society.

  1. Toll-like receptors as targets for allergen immunotherapy.

    Science.gov (United States)

    Aryan, Zahra; Rezaei, Nima

    2015-12-01

    Toll-like receptors (TLRs) are novel and promising targets for allergen immunotherapy. Bench studies suggest that TLR agonists reduce Th2 responses and ameliorate airway hyper-responsiveness. In addition, clinical trials are at initial phases to evaluate the safety and efficacy of TLR agonists for the allergen immunotherapy of patients with allergic rhinitis and asthma. (Figure is included in full-text article.) To date, two allergy vaccine-containing TLR agonists have been investigated in clinical trials; Pollinex Quattro and AIC. The former contains monophosphoryl lipid, a TLR4 agonist and the latter contains, CpG motifs activating the TLR9 cascade. Preseasonal subcutaneous injection of both of these allergy vaccines has been safe and efficacious in control of nasal symptoms of patients with allergic rhinitis. CRX-675 (a TLR4 agonist), AZD8848 (a TLR7 agonist), VTX-1463 (a TLR8 agonist) and 1018 ISS and QbG10 (TLR9 agonists) are currently in clinical development for allergic rhinitis and asthma. TLR agonists herald promising results for allergen immunotherapy of patients with allergic rhinitis and asthma. Future research should be directed at utilizing these agents for immunotherapy of food allergy (for instance, peanut allergy) as well.

  2. Context dependent regulatory patterns of the androgen receptor and androgen receptor target genes

    International Nuclear Information System (INIS)

    Olsen, Jan Roger; Azeem, Waqas; Hellem, Margrete Reime; Marvyin, Kristo; Hua, Yaping; Qu, Yi; Li, Lisha; Lin, Biaoyang; Ke, XI- Song; Øyan, Anne Margrete; Kalland, Karl- Henning

    2016-01-01

    Expression of the androgen receptor (AR) is associated with androgen-dependent proliferation arrest and terminal differentiation of normal prostate epithelial cells. Additionally, activation of the AR is required for survival of benign luminal epithelial cells and primary cancer cells, thus androgen deprivation therapy (ADT) leads to apoptosis in both benign and cancerous tissue. Escape from ADT is known as castration-resistant prostate cancer (CRPC). In the course of CRPC development the AR typically switches from being a cell-intrinsic inhibitor of normal prostate epithelial cell proliferation to becoming an oncogene that is critical for prostate cancer cell proliferation. A clearer understanding of the context dependent activation of the AR and its target genes is therefore desirable. Immortalized human prostate basal epithelial EP156T cells and progeny cells that underwent epithelial to mesenchymal transition (EMT), primary prostate epithelial cells (PrECs) and prostate cancer cell lines LNCaP, VCaP and 22Rv1 were used to examine context dependent restriction and activation of the AR and classical target genes, such as KLK3. Genome-wide gene expression analyses and single cell protein analyses were applied to study the effect of different contexts. A variety of growth conditions were tested and found unable to activate AR expression and transcription of classical androgen-dependent AR target genes, such as KLK3, in prostate epithelial cells with basal cell features or in mesenchymal type prostate cells. The restriction of androgen- and AR-dependent transcription of classical target genes in prostate basal epithelial cells was at the level of AR expression. Exogenous AR expression was sufficient for androgen-dependent transcription of AR target genes in prostate basal epithelial cells, but did not exert a positive feedback on endogenous AR expression. Treatment of basal prostate epithelial cells with inhibitors of epigenetic gene silencing was not efficient in

  3. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Mohammad eKhanfar

    2016-05-01

    Full Text Available With the very recent market approval of pitolisant (Wakix®, the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.

  4. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Hillary Johnston-Cox

    Full Text Available High fat diet (HFD-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR, an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice.

  5. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting.

    Science.gov (United States)

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2013-12-23

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.

  6. Targeting Androgen Receptor in Breast Cancer: Enzalutamide as a Novel Breast Cancer Therapeutic

    Science.gov (United States)

    2016-09-01

    AR) is more widely expressed than estrogen receptor alpha (ER) or the progesterone receptor (PR) (1), which are used as therapeutic targets and...19 6. Products …………………………………….……….….…………….20 7. Participants & Other Collaborating Organizations……………22 8. Special Reporting...estrogen receptor alpha (ER) or the progesterone receptor (PR), which are used as therapeutic targets and biomarkers, suggesting a potential role

  7. Cocaine self-administration differentially affects allosteric A2A-D2 receptor-receptor interactions in the striatum. Relevance for cocaine use disorder.

    Science.gov (United States)

    Pintsuk, Julia; Borroto-Escuela, Dasiel O; Pomierny, Bartosz; Wydra, Karolina; Zaniewska, Magdalena; Filip, Malgorzata; Fuxe, Kjell

    2016-05-01

    In the current study behavioral and biochemical experiments were performed to study changes in the allosteric A2AR-D2R interactions in the ventral and dorsal striatum after cocaine self-administration versus corresponding yoked saline control. By using ex vivo [(3)H]-raclopride/quinpirole competition experiments, the effects of the A2AR agonist CGS 21680 (100 nM) on the KiH and KiL values of the D2-like receptor (D2-likeR) were determined. One major result was a significant reduction in the D2-likeR agonist high affinity state observed with CGS 21680 after cocaine self-administration in the ventral striatum compared with the yoked saline group. The results therefore support the hypothesis that A2AR agonists can at least in part counteract the motivational actions of cocaine. This action is mediated via the D2-likeR by targeting the A2AR protomer of A2AR-D2-like R heteroreceptor complexes in the ventral striatum, which leads to the reduction of D2-likeR protomer recognition through the allosteric receptor-receptor interaction. In contrast, in the dorsal striatum the CGS 21680-induced antagonistic modulation in the D2-likeR agonist high affinity state was abolished after cocaine self-administration versus the yoked saline group probably due to a local dysfunction/disruption of the A2AR-D2-like R heteroreceptor complexes. Such a change in the dorsal striatum in cocaine self-administration can contribute to the development of either locomotor sensitization, habit-forming learning and/or the compulsive drug seeking by enhanced D2-likeR protomer signaling. Potential differences in the composition and stoichiometry of the A2AR-D2R heteroreceptor complexes, including differential recruitment of sigma 1 receptor, in the ventral and dorsal striatum may explain the differential regional changes observed in the A2A-D2-likeR interactions after cocaine self-administration. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis.

    Science.gov (United States)

    Chen, Pengguo; Li, Jie; Huo, Yan; Lu, Jin; Wan, Lili; Li, Bin; Gan, Run; Guo, Cheng

    2015-01-01

    Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis, which is a pathological process characterized by extracellular matrix accumulation. NR4A2 is a nuclear receptor belonging to the NR4A subfamily and vital in regulating cell growth, metabolism, inflammation and other biological functions. However, its role in HSCs is unclear. We analyzed NR4A2 expression in fibrotic liver and stimulated HSCs compared with control group and studied the influence on cell proliferation, cell cycle, cell apoptosis and MAPK pathway after NR4A2 knockdown. NR4A2 expression was examined by real-time polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence analyses. NR4A2 expression was significantly lower in fibrotic liver tissues and PDGF BB or TGF-β stimulated HSCs compared with control group. After NR4A2 knockdown α-smooth muscle actin and Col1 expression increased. In addition, NR4A2 silencing led to the promotion of cell proliferation, increase of cell percentage in S phase and reduced phosphorylation of ERK1/2, P38 and JNK in HSCs. These results indicate that NR4A2 can inhibit HSC proliferation through MAPK pathway and decrease extracellular matrix in liver fibrogenesis. NR4A2 may be a promising therapeutic target for liver fibrosis.

  9. Subarachnoid hemorrhage induces enhanced expression of thromboxane A2 receptors in rat cerebral arteries

    DEFF Research Database (Denmark)

    Ansar, Saema; Larsen, Carl; Maddahi, Aida

    2010-01-01

    Cerebral ischemia remains the key cause of morbidity and mortality after subarachnoid hemorrhage (SAH) with a pathogenesis that is still poorly understood. The aim of the present study was to examine the involvement of thromboxane A(2) receptors (TP) in the pathophysiology of cerebral ischemia...

  10. Targeting Prostate Cancer with Bifunctional Modulators of the Androgen Receptor

    Science.gov (United States)

    2015-06-01

    Wittmann, B.; Dwyer, M.; Cui, H.; Dye, D.; McDonnell, D.; Norris , J. Inhibition of prostate cancer cell growth by second-site androgen receptor antagonists...Wittmann, B.; Dwyer, M.; Cui, H.; Dye, D.; McDonnell, D.; Norris , J. Inhibition of prostate cancer cell growth by second-site androgen receptor...important clin- ical problem in diseases such as asthma (51, 52), ne- phrotic syndrome (53), and malignancies such as acute lymphoblastic leukemia (54

  11. Angiotensin receptors in Dupuytren's disease: a target for pharmacological treatment?

    Science.gov (United States)

    Stephen, Christopher; Touil, Leila; Vaiude, Partha; Singh, Jaipaul; McKirdy, Stuart

    2018-02-01

    Attempts at the pharmacological treatment of Dupuytren's disease have so far been unsuccessful, and the disease is not yet fully understood on a cellular level. The Renin-Angiotensin System has long been understood to play a circulating hormonal role. However, there is much evidence showing Angiotensin II to play a local role in wound healing and fibrosis, with ACE inhibitors being widely used as an anti-fibrotic agent in renal and cardiac disease. This study was designed to investigate the presence of Angiotensin II receptors 1 (AT1) and 2 (AT2) in Dupuytren's tissue to form a basis for further study into the pharmacological treatment of this condition. Tissue was harvested from 11 patients undergoing surgery for Dupuytren's disease. Each specimen was processed into frozen sections and immunostaining was employed to identify AT1 and AT2 receptors. Immunostaining for AT1 receptors was mildly positive in one patient and negative in all the remaining patients. However, all specimens stained extensively for AT2 receptors. This suggests that the expression of AT2 receptors is more prominent than AT1 receptors in Dupuytren's disease. These findings have opened a new avenue for future research involving ACE inhibitors, AT2 agonists, and AT2 antagonists in Dupuytren's disease.

  12. Communication over the network of binary switches regulates the activation of A2A adenosine receptor.

    Directory of Open Access Journals (Sweden)

    Yoonji Lee

    2015-02-01

    Full Text Available Dynamics and functions of G-protein coupled receptors (GPCRs are accurately regulated by the type of ligands that bind to the orthosteric or allosteric binding sites. To glean the structural and dynamical origin of ligand-dependent modulation of GPCR activity, we performed total ~ 5 μsec molecular dynamics simulations of A2A adenosine receptor (A2AAR in its apo, antagonist-bound, and agonist-bound forms in an explicit water and membrane environment, and examined the corresponding dynamics and correlation between the 10 key structural motifs that serve as the allosteric hotspots in intramolecular signaling network. We dubbed these 10 structural motifs "binary switches" as they display molecular interactions that switch between two distinct states. By projecting the receptor dynamics on these binary switches that yield 2(10 microstates, we show that (i the receptors in apo, antagonist-bound, and agonist-bound states explore vastly different conformational space; (ii among the three receptor states the apo state explores the broadest range of microstates; (iii in the presence of the agonist, the active conformation is maintained through coherent couplings among the binary switches; and (iv to be most specific, our analysis shows that W246, located deep inside the binding cleft, can serve as both an agonist sensor and actuator of ensuing intramolecular signaling for the receptor activation. Finally, our analysis of multiple trajectories generated by inserting an agonist to the apo state underscores that the transition of the receptor from inactive to active form requires the disruption of ionic-lock in the DRY motif.

  13. DMPD: Toll-like receptors: novel pharmacological targets for the treatment ofneurological diseases. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17974478 Toll-like receptors: novel pharmacological targets for the treatment ofneu...png) (.svg) (.html) (.csml) Show Toll-like receptors: novel pharmacological targets for the treatment ofneur...ological diseases. PubmedID 17974478 Title Toll-like receptors: novel pharmacological target

  14. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion and anxiety

    Directory of Open Access Journals (Sweden)

    Joana E Coelho

    2014-06-01

    Full Text Available Adenosine A2A receptors (A2AR are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer’s disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR] and aged-matched wild-types (WT of the same strain (Sprague-Dawley were studied. The forced swimming test (FST, sucrose preference test (SPT and the open-field test (OFT were performed to evaluate behavioral despair, anhedonia, locomotion and anxiety. Tg(CaMKII-hA2AR animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR rats exhibit depressive-like behavior, hyperlocomotion and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress and Alzheimer’s disease.

  15. Overexpression of Adenosine A2A Receptors in Rats: Effects on Depression, Locomotion, and Anxiety.

    Science.gov (United States)

    Coelho, Joana E; Alves, Pedro; Canas, Paula M; Valadas, Jorge S; Shmidt, Tatiana; Batalha, Vânia L; Ferreira, Diana G; Ribeiro, Joaquim A; Bader, Michael; Cunha, Rodrigo A; do Couto, Frederico Simões; Lopes, Luísa V

    2014-01-01

    Adenosine A2A receptors (A2AR) are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well-established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer's disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine-related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR)] and aged-matched wild-types (WT) of the same strain (Sprague-Dawley) were studied. The forced swimming test (FST), sucrose preference test (SPT), and the open-field test (OFT) were performed to evaluate behavioral despair, anhedonia, locomotion, and anxiety. Tg(CaMKII-hA2AR) animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48 h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR) rats exhibit depressive-like behavior, hyperlocomotion, and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress, and Alzheimer's disease.

  16. Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer

    Science.gov (United States)

    Ferré, Sergi; Bonaventura, Jordi; Tomasi, Dardo; Navarro, Gemma; Moreno, Estefanía; Cortés, Antonio; Lluís, Carme; Casadó, Vicent; Volkow, Nora D.

    2017-01-01

    The structure constituted by a G protein coupled receptor (GPCR) homodimer and a G protein provides a main functional unit and oligomeric entities can be viewed as multiples of dimers. For GPCR heteromers, experimental evidence supports a tetrameric structure, comprised of two different homodimers, each able to signal with its preferred G protein. GPCR homomers and heteromers can act as the conduit of allosteric interactions between orthosteric ligands. The well-known agonist/agonist allosteric interaction in the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer, by which A2AR agonists decrease the affinity of D2R agonists, gave the first rationale for the use of A2AR antagonists in Parkinson’s disease. We review new pharmacological findings that can be explained in the frame of a tetrameric structure of the A2AR-D2R heteromer: first, ligand-independent allosteric modulations by the D2R that result in changes of the binding properties of A2AR ligands; second, differential modulation of the intrinsic efficacy of D2R ligands for G protein-dependent and independent signaling; third, the canonical antagonistic Gs-Gi interaction within the frame of the heteromer; and fourth, the ability of A2AR antagonists, including caffeine, to also exert the same allosteric modulations of D2R ligands than A2AR agonists, while A2AR agonists and antagonists counteract each other’s effects. These findings can have important clinical implications when evaluating the use of A2AR antagonists. They also call for the need of monitoring caffeine intake when evaluating the effect of D2R ligands, when used as therapeutic agents in neuropsychiatric disorders or as probes in imaging studies. PMID:26051403

  17. Comparative biodistribution of 12 111In-labelled gastrin/CCK2 receptor-targeting peptides

    NARCIS (Netherlands)

    P. Laverman (Peter); L. Joosten; A. Eek (Annemarie); S. Roosenburg (Susan); P.K. Peitl; T. Maina (Theodosia); H.R. Mäcke (Helmut); L. Aloj (Luigi); E. von Guggenber (Elisabeth); J.K. Sosabowski (Jane); M. de Jong (Marion); J.-C. Reubi (Jean-Claude); W.J.G. Oyen (Wim); O.C. Boerman (Otto)

    2011-01-01

    textabstractPurpose Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide

  18. Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2

    Energy Technology Data Exchange (ETDEWEB)

    Salaita, Khalid; Nair, Pradeep M; Petit, Rebecca S; Neve, Richard M; Das, Debopriya; Gray, Joe W; Groves, Jay T

    2009-09-09

    Activation of the EphA2 receptor tyrosine kinase by ephrin-A1 ligands presented on apposed cell surfaces plays important roles in development and exhibits poorly understood functional alterations in cancer. We reconstituted this intermembrane signaling geometry between live EphA2-expressing human breast cancer cells and supported membranes displaying laterally mobile ephrin-A1. Receptor-ligand binding, clustering, and subsequent lateral transport within this junction were observed. EphA2 transport can be blocked by physical barriers nanofabricated onto the underlying substrate. This physical reorganization of EphA2 alters the cellular response to ephrin-A1, as observed by changes in cytoskeleton morphology and recruitment of a disintegrin and metalloprotease 10. Quantitative analysis of receptor-ligand spatial organization across a library of 26 mammary epithelial cell lines reveals characteristic differences that strongly correlate with invasion potential. These observations reveal a mechanism for spatio-mechanical regulation of EphA2 signaling pathways.

  19. A2A Adenosine Receptor Antagonists as Therapeutic Candidates: are they still an interesting challenge?

    Science.gov (United States)

    Cacciari, Barbara; Federico, Stephanie; Spalluto, Giampiero

    2018-04-22

    In the past decades, many efforts were done to develope ligands for the adenosine receptors, with the purpose to individuate agonists and antagonists affine and selective for each subtypes , named A1, A2A, A2B, and A3. These intense studies allowed a deeper and deeper knowledge of the nature and, moreover, of the pathophysiological roles of all the adenosine receptor subtypes. In particular, the involvment of the A2A adenosine receptor subtype in some physiological mechanisms in the brain, that could be related to important diseases such as the Parkinson's disease, encouraged the research in this field. Particular attention was given to the antagonists endowed with high affinity and selectivity since they could have a real employment in the treatment of Parkinson's disease, and some compounds, such as istradefylline, preladenant and tozadenant, are already studied in clinical trials. Actually, the role of A2A antagonists in Parkinson's disease is becoming contradictory due to contrasting results in the last studies, but, at the same time, new possible employments are emerging for this class of antagonists in cancer pathologies as much interesting to legitimate further efforts in the research of A2A ligands. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Targeting EphA2-Sam and Its Interactome: Design and Evaluation of Helical Peptides Enriched in Charged Residues.

    Science.gov (United States)

    Mercurio, Flavia A; Marasco, Daniela; Di Natale, Concetta; Pirone, Luciano; Costantini, Susan; Pedone, Emilia M; Leone, Marilisa

    2016-11-17

    The EphA2 receptor controls diverse physiological and pathological conditions and its levels are often upregulated in cancer. Targeting receptor overexpression, through modulation of endocytosis and consequent degradation, appears to be an appealing strategy for attacking tumor malignancy. In this scenario, the Sam domain of EphA2 plays a pivotal role because it is the site where protein regulators of endocytosis and stability are recruited by means of heterotypic Sam-Sam interactions. Because EphA2-Sam heterotypic complexes are largely based on electrostatic contacts, we have investigated the possibility of attacking these interactions with helical peptides enriched in charged residues. Several peptide sequences with high predicted helical propensities were designed, and detailed conformational analyses were conducted by diverse techniques including NMR, CD, and molecular dynamics (MD) simulations. Interaction studies were also performed by NMR, surface plasmon resonance (SPR), and microscale thermophoresis (MST) and led to the identification of two peptides capable of binding to the first Sam domain of Odin. These molecules represent early candidates for the generation of efficient Sam domain binders and antagonists of Sam-Sam interactions involving EphA2. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preclinical evaluation of radiolabeled DOTA-derivatized cyclic minigastrin analogs for targeting cholecystokinin receptor expressing malignancies.

    NARCIS (Netherlands)

    Guggenberg, E. von; Rangger, C.; Sosabowski, J.; Laverman, P.; Reubi, J.C.; Virgolini, I.J.; Decristoforo, C.

    2012-01-01

    PURPOSE: Targeting of cholecystokinin receptor expressing malignancies such as medullary thyroid carcinoma is currently limited by low in vivo stability of radioligands. To increase the stability, we have developed and preclinically evaluated two cyclic

  2. Aberrant methylation of the M-type phospholipase A2 receptor gene in leukemic cells

    International Nuclear Information System (INIS)

    Menschikowski, Mario; Platzbecker, Uwe; Hagelgans, Albert; Vogel, Margot; Thiede, Christian; Schönefeldt, Claudia; Lehnert, Renate; Eisenhofer, Graeme; Siegert, Gabriele

    2012-01-01

    The M-type phospholipase A2 receptor (PLA2R1) plays a crucial role in several signaling pathways and may act as tumor-suppressor. This study examined the expression and methylation of the PLA2R1 gene in Jurkat and U937 leukemic cell lines and its methylation in patients with myelodysplastic syndrome (MDS) or acute leukemia. Sites of methylation of the PLA2R1 locus were identified by sequencing bisulfite-modified DNA fragments. Methylation specific-high resolution melting (MS-HRM) analysis was then carried out to quantify PLA2R1 methylation at 5-CpG sites identified with differences in methylation between healthy control subjects and leukemic patients using sequencing of bisulfite-modified genomic DNA. Expression of PLA2R1 was found to be completely down-regulated in Jurkat and U937 cells, accompanied by complete methylation of PLA2R1 promoter and down-stream regions; PLA2R1 was re-expressed after exposure of cells to 5-aza-2´-deoxycytidine. MS-HRM analysis of the PLA2R1 locus in patients with different types of leukemia indicated an average methylation of 28.9% ± 17.8%, compared to less than 9% in control subjects. In MDS patients the extent of PLA2R1 methylation significantly increased with disease risk. Furthermore, measurements of PLA2R1 methylation appeared useful for predicting responsiveness to the methyltransferase inhibitor, azacitidine, as a pre-emptive treatment to avoid hematological relapse in patients with high-risk MDS or acute myeloid leukemia. The study shows for the first time that PLA2R1 gene sequences are a target of hypermethylation in leukemia, which may have pathophysiological relevance for disease evolution in MDS and leukemogenesis

  3. Discoidin Domain Receptors: Novel Targets in Breast Cancer Bone Metastasis

    Science.gov (United States)

    2017-02-01

    progesterone receptor expression in ER+ tumors. We plan to continue these tissue analyses to elucidate the significance of these findings, and to...4 3. Accomplishments………..…………………………………………... 4 4. Impact…………………………...…………………………………… 12 5. Changes/Problems...….……………………………………………… 12 6. Products ...of association between DDR1 expression levels and age, race, menopausal status, estrogen receptor (ER), progesterone receptor (PR), HER2-neu

  4. Evidence that the EphA2 receptor exacerbates ischemic brain injury.

    Directory of Open Access Journals (Sweden)

    John Thundyil

    Full Text Available Ephrin (Eph signaling within the central nervous system is known to modulate axon guidance, synaptic plasticity, and to promote long-term potentiation. We investigated the potential involvement of EphA2 receptors in ischemic stroke-induced brain inflammation in a mouse model of focal stroke. Cerebral ischemia was induced in male C57Bl6/J wild-type (WT and EphA2-deficient (EphA2(-/- mice by middle cerebral artery occlusion (MCAO; 60 min, followed by reperfusion (24 or 72 h. Brain infarction was measured using triphenyltetrazolium chloride staining. Neurological deficit scores and brain infarct volumes were significantly less in EphA2(-/- mice compared with WT controls. This protection by EphA2 deletion was associated with a comparative decrease in brain edema, blood-brain barrier damage, MMP-9 expression and leukocyte infiltration, and higher expression levels of the tight junction protein, zona occludens-1. Moreover, EphA2(-/- brains had significantly lower levels of the pro-apoptotic proteins, cleaved caspase-3 and BAX, and higher levels of the anti-apoptotic protein, Bcl-2 as compared to WT group. We confirmed that isolated WT cortical neurons express the EphA2 receptor and its ligands (ephrin-A1-A3. Furthermore, expression of all four proteins was increased in WT primary cortical neurons following 24 h of glucose deprivation, and in the brains of WT mice following stroke. Glucose deprivation induced less cell death in primary neurons from EphA2(-/- compared with WT mice. In conclusion, our data provide the first evidence that the EphA2 receptor directly contributes to blood-brain barrier damage and neuronal death following ischemic stroke.

  5. Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticle†

    OpenAIRE

    Xiao, Bo; Yang, Yang; Viennois, Emilie; Zhang, Yuchen; Ayyadurai, Saravanan; Baker, Mark; Laroui, Hamed; Merlin, Didier

    2014-01-01

    Treatment strategies for inflammatory bowel disease have been constrained by limited therapeutic efficacy and serious adverse effects owing to a lack of receptor for targeted drug delivery to the inflamed colon. Upon inflammation, CD98 expression is highly elevated in colonic epithelial cells and infiltrating immune cells. To investigate whether CD98 can be used as a colitis-targeted delivery receptor, we constructed CD98 Fab′-bearing quantum dots (QDs)-loaded nanoparticles (Fab′-NPs). The re...

  6. Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2

    DEFF Research Database (Denmark)

    Seemann, Petra; Schwappacher, Raphaela; Kjær, Klaus Wilbrandt

    2005-01-01

    Here we describe 2 mutations in growth and differentiation factor 5 (GDF5) that alter receptor-binding affinities. They cause brachydactyly type A2 (L441P) and symphalangism (R438L), conditions previously associated with mutations in the GDF5 receptor bone morphogenetic protein receptor type 1b...

  7. Cannabinoid Receptors: A Novel Target for Therapy for Prostate Cancer

    National Research Council Canada - National Science Library

    Mukhtar, Hasan; Afaq, Farrukh; Sarfaraz, Sami

    2008-01-01

    We have shown that the expression levels of both cannabinoid receptors CB1 and CB2 are higher in human prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2 (WIN...

  8. Cannabinoid Receptors: A Novel Target for Treating Prostate Cancer

    National Research Council Canada - National Science Library

    Mukhtar, Hasan; Afaq, Farrukh; Sarfaraz, Sami

    2006-01-01

    Recently we have shown that expression levels of both cannabinoid receptors CB and CB12 are higher in human prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2...

  9. Cannabinoid Receptors: A Novel Target for Therapy of Prostate Cancer

    National Research Council Canada - National Science Library

    Mukhtar, Hasan; Afaq, Farrukh; Sarfaraz, Sami

    2007-01-01

    .... We have shown that the expression levels of both cannabinoid receptors CB1 and CB2 are higher in human prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2 (WIN...

  10. Cannabinoid Receptors: A Novel Target for Therapy of Prostate Cancer

    National Research Council Canada - National Science Library

    Mukhtar, Hasan; Afaq, Farrukh; Sarfaraz, Sami

    2005-01-01

    .... Here we show that expression levels of both cannabinoid receptors CB(sub 1) and CB(sub 2) are significantly higher in CA-HPV-10 and other human prostate cells LNCaP, DUI45, PC3, and CWR22RV1 than in human prostate epithelial and PZ-HPV-7 cells...

  11. The urokinase receptor as a potential target in cancer therapy

    DEFF Research Database (Denmark)

    Romer, John; Nielsen, Boye Schnack; Ploug, Michael

    2004-01-01

    The glycolipid-anchored receptor for urokinase-type plasminogen activator (uPAR) is essential for cell-surface associated plasminogen activation and is overexpressed at the invasive tumor-stromal microenvironment in many human cancers. In line with this, uPAR and uPA levels in both resected tumor...

  12. Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development

    Science.gov (United States)

    Nissim, Sahar; Weeks, Olivia; Talbot, Jared C.; Hedgepeth, John W.; Wucherpfennig, Julia; Schatzman-Bone, Stephanie; Swinburne, Ian; Cortes, Mauricio; Alexa, Kristen; Megason, Sean; North, Trista E.; Amacher, Sharon L.; Goessling, Wolfram

    2016-01-01

    The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic versus pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease. PMID:27474396

  13. Selecting an optimal number of binding site waters to improve virtual screening enrichments against the adenosine A2A receptor.

    Science.gov (United States)

    Lenselink, Eelke B; Beuming, Thijs; Sherman, Woody; van Vlijmen, Herman W T; IJzerman, Adriaan P

    2014-06-23

    A major challenge in structure-based virtual screening (VS) involves the treatment of explicit water molecules during docking in order to improve the enrichment of active compounds over decoys. Here we have investigated this in the context of the adenosine A2A receptor, where water molecules have previously been shown to be important for achieving high enrichment rates with docking, and where the positions of some binding site waters are known from a high-resolution crystal structure. The effect of these waters (both their presence and orientations) on VS enrichment was assessed using a carefully curated set of 299 high affinity A2A antagonists and 17,337 decoys. We show that including certain crystal waters greatly improves VS enrichment and that optimization of water hydrogen positions is needed in order to achieve the best results. We also show that waters derived from a molecular dynamics simulation - without any knowledge of crystallographic waters - can improve enrichments to a similar degree as the crystallographic waters, which makes this strategy applicable to structures without experimental knowledge of water positions. Finally, we used decision trees to select an ensemble of structures with different water molecule positions and orientations that outperforms any single structure with water molecules. The approach presented here is validated against independent test sets of A2A receptor antagonists and decoys from the literature. In general, this water optimization strategy could be applied to any target with waters-mediated protein-ligand interactions.

  14. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.

    Science.gov (United States)

    Ralevic, Vera

    2015-01-01

    This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets

  15. Getting a Handle on Neuropharmacology by Targeting Receptor-Associated Proteins.

    Science.gov (United States)

    Maher, Michael P; Matta, Jose A; Gu, Shenyan; Seierstad, Mark; Bredt, David S

    2017-12-06

    Targeted therapy for neuropsychiatric disorders requires selective modulation of dysfunctional neuronal pathways. Receptors relevant to CNS disorders typically have associated proteins discretely expressed in specific neuronal pathways; these accessory proteins provide a new dimension for drug discovery. Recent studies show that targeting a TARP auxiliary subunit of AMPA receptors selectively modulates neuronal excitability in specific forebrain pathways relevant to epilepsy. Other medicinally important ion channels, gated by glutamate, γ-aminobutyric acid (GABA), and acetylcholine, also have associated proteins, which may be druggable. This emerging pharmacology of receptor-associated proteins provides a new approach for improving drug efficacy while mitigating side effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Linear scaffolds for multivalent targeting of melanocortin receptors.

    Science.gov (United States)

    Dehigaspitiya, Dilani Chathurika; Anglin, Bobbi L; Smith, Kara R; Weber, Craig S; Lynch, Ronald M; Mash, Eugene A

    2015-12-21

    Molecules bearing one, two, three, or four copies of the tetrapeptide His-dPhe-Arg-Trp were attached to scaffolds based on ethylene glycol, glycerol, and d-mannitol by means of the copper-assisted azide-alkyne cyclization. The abilities of these compounds to block binding of a probe at the melanocortin 4 receptor were evaluated using a competitive binding assay. All of the multivalent molecules studied exhibited 30- to 40-fold higher apparent affinites when compared to a monovalent control. These results are consistent with divalent binding to receptor dimers. No evidence for tri- or tetravalent binding was obtained. Differences in the interligand spacing required for divalent binding, as opposed to tri- or tetravalent binding, may be responsible for these results.

  17. Receptor targeting of hemoglobin mediated by the haptoglobins

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Moestrup, Søren Kragh

    2009-01-01

    Haptoglobin, the haptoglobin-hemoglobin receptor CD163, and the heme oxygenase-1 are proteins with a well-established function in the clearance and metabolism of "free" hemoglobin released during intravascular hemolysis. This scavenging system counteracts the potentially harmful oxidative and NO......-scavenging effects associated with "free" hemoglobin, and, furthermore, elicits an anti-inflammatory response. In the late primate evolution, haptoglobin variants with distinct functions have arisen, including haptoglobin polymers and the haptoglobin-related protein. The latter associates with a subspecies of high......-density lipoprotein (HDL) particles playing a crucial role in the innate immunity against certain trypanosome parasites. Recent studies have elucidated this fairly sophisticated immune defense mechanism that takes advantage of a trypanosomal haptoglobin-hemoglobin receptor evolved to supply the parasite with heme...

  18. Targeting the innate repair receptor to treat neuropathy

    Directory of Open Access Journals (Sweden)

    Albert Dahan

    2016-07-01

    Full Text Available Abstract. The innate repair receptor (IRR is a heteromer of the erythropoietin receptor and the β-common (CD131 receptor, which simultaneously activates anti-inflammatory and tissue repair pathways. Experimental data suggest that after peripheral nerve injury, the IRR is upregulated in the spinal cord and modulates the neurogenic inflammatory response. The recently introduced selective IRR agonist ARA290 is an 11-amino acid peptide initially tested in animal models of neuropathy. After sciatic nerve injury, ARA290 produced a rapid and long-term relief of mechanical and cold allodynia in normal mice, but not in animals with a β-common receptor knockout phenotype. In humans, ARA290 has been evaluated in patients with small fiber neuropathy associated with sarcoidosis or type 2 diabetes (T2D mellitus. In patients with sarcoidosis, ARA290 significantly improved neuropathic and autonomic symptoms, as well as quality of life as assessed by the small fiber neuropathy screening list questionnaire. In addition, ARA290 treatment for 28 days initiated a regrowth of small nerve fibers in the cornea, but not in the epidermis. In patients with T2D, the results were similar to those observed in patients with sarcoidosis along with an improved metabolic profile. In both populations, ARA290 lacked significant adverse effects. These experimental and clinical studies show that ARA290 effectively reprograms a proinflammatory, tissue-damaging milieu into one of healing and tissue repair. Further clinical trials with long-term treatment and follow-up are needed to assess the full potential of IRR activation by ARA290 as a disease-modifying therapy in neuropathy of various etiologies.

  19. Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma

    International Nuclear Information System (INIS)

    McNeeley, Kathleen M; Annapragada, Ananth; Bellamkonda, Ravi V

    2007-01-01

    Liposomal and other nanocarrier based drug delivery vehicles can localize to tumours through passive and/or active targeting. Passively targeted liposomal nanocarriers accumulate in tumours via 'leaky' vasculature through the enhanced permeability and retention (EPR) effect. Passive accumulation depends upon the circulation time and the degree of tumour vessel 'leakiness'. After extravasation, actively targeted liposomal nanocarriers efficiently deliver their payload by receptor-mediated uptake. However, incorporation of targeting moieties can compromise circulation time in the blood due to recognition and clearance by the reticuloendothelial system, decreasing passive accumulation. Here, we compare the efficacy of passively targeted doxorubicin-loaded PEGylated liposomal nanocarriers to that of actively targeted liposomal nanocarriers in a rat 9L brain tumour model. Although folate receptor (FR)-targeted liposomal nanocarriers had significantly reduced blood circulation time compared to PEGylated liposomal nanocarriers; intratumoural drug concentrations both at 20 and 50 h after administration were equal for both treatments. Both treatments significantly increased tumour inoculated animal survival by 60-80% compared to non-treated controls, but no difference in survival was observed between FR-targeted and passively targeted nanocarriers. Therefore, alternate approaches allowing for active targeting without compromising circulation time may be important for fully realizing the benefits of receptor-mediated active targeting of gliomas

  20. Striatal pre- and postsynaptic profile of adenosine A(2A receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Marco Orru

    2011-01-01

    Full Text Available Striatal adenosine A(2A receptors (A(2ARs are highly expressed in medium spiny neurons (MSNs of the indirect efferent pathway, where they heteromerize with dopamine D(2 receptors (D(2Rs. A(2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A(1 receptors (A(1Rs. It has been hypothesized that postsynaptic A(2AR antagonists should be useful in Parkinson's disease, while presynaptic A(2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A(2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261 showed no clear preference. Radioligand-binding experiments were performed in cells expressing A(2AR-D(2R and A(1R-A(2AR heteromers to determine possible differences in the affinity of these compounds for different A(2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A(2AR when co-expressed with D(2R than with A(1R. KW-6002 showed the best relative affinity for A(2AR co-expressed with D(2R than co-expressed with A(1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile

  1. Identification of Molecular Receptors for Therapeutic Targeting in Prostate Cancer

    Science.gov (United States)

    2009-12-01

    proteins linking integrin and tyrosine kinase receptors to the c-Jun N-terminal kinase /stress-activated protein kinase signaling pathway. J Biol Chem...of its SH domains. First, they contain important protein-protein interaction modules; and secondly they are non-catalytic regulators of kinase ...transcriptional reporter assay the SH2 , the N-terminal SH3 (SH3-N) and the C-terminal SH3 (SH3-C) domains of CRKL. We found that all three SH domains were

  2. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors.

    Science.gov (United States)

    Vulfius, Catherine A; Kasheverov, Igor E; Kryukova, Elena V; Spirova, Ekaterina N; Shelukhina, Irina V; Starkov, Vladislav G; Andreeva, Tatyana V; Faure, Grazyna; Zouridakis, Marios; Tsetlin, Victor I; Utkin, Yuri N

    2017-01-01

    Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which should be proved by

  3. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Catherine A Vulfius

    Full Text Available Phospholipases A2 (PLA2s are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which

  4. Identification and characterization of a putative human platelet thromboxane A2/prostaglandin H2 receptor

    International Nuclear Information System (INIS)

    Saussy, D.L. Jr.

    1986-01-01

    The thromboxane A 2 (TXA 2 ) analog, 9,11-dimethylmethano-11,12-methano-16-(3-iodo-4-hydroxyphenyl)-13,14-dihydro-13-aza-15αβ-omega-tetranor TXA 2 (I-PTA-OH) was characterized as a competitive antagonist of TXA 2 mimetic-induced platelet aggregation, with a K/sub d/ of 190 nM in platelet rich plasma. This antagonism was specific for the putative thromboxane A 2 /prostaglandin H 2 (TXA 2 /PGH 2 ) receptor, since I-PTA-OH had no inhibitory effects on platelet aggregation stimulated by agonists which act independently of TXA 2 /PGH 2 , and did not inhibit platelet TXA 2 synthesis. [ 125 I]-PTA-OH binding to a particulate fraction from human platelets was saturable, displaceable, and linear with protein concentration. Scatchard analysis of equilibrium binding revealed a single class of high affinity binding sites, with a K/sub d/ of 30 +/- 4 nM and a B/sub max/ of 1.8 +/- 0.3 pmol/mg protein. Kinetic analysis yielded a k 1 of 1.35 x 10 6 M -1 x min -1 and a k√ 1 of 0.032 min -1 , K/sub d/ = k√ 1 /k 1 = 24 nM. The subcellular localization of the putative TXA 2 /PGH 2 receptor was determined using [ 125 I]-PTA-OH binding as a marker for the receptor. [ 125 I]-PTA-OH binding as a marker for the receptor. [ 125 I]-PTA-OH binding, was coenriched with markers for plasma membranes and dense tubular system; but not with markers for cytoplasmic constituents, mitochondria, or granules

  5. B cell receptor inhibition as a target for CLL therapy.

    Science.gov (United States)

    Jeyakumar, Deepa; O'Brien, Susan

    2016-03-01

    Inhibitors of the B cell receptor (BCR) represent an attractive therapeutic option for patients with chronic lymphocytic leukemia. Recently approved inhibitors of Bruton's tyrosine kinase (ibrutinib) and phosphatidylinositol 3-kinase (idelalisib), are promising agents because they are generally well tolerated and highly effective. These agents may be particularly important in the treatment of older patients who are less able to tolerate the myelosuppression (and infections) associated with chemoimmunotherapy. As a class of medications, BCR inhibitors have some unique side effects including redistribution lymphocytosis. Ibrutinib has specific toxicities including increased risk for bleeding and atrial fibrillation. Idelalisib also has some unique toxicities consisting of transaminitis, diarrhea and pneumonitis. Ongoing clinical trials are evaluating these agents in combination with antibodies, chemotherapy and other small molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Tannic Acid Preferentially Targets Estrogen Receptor-Positive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Brian W. Booth

    2013-01-01

    Full Text Available Research efforts investigating the potential of natural compounds in the fight against cancer are growing. Tannic acid (TA belongs to the class of hydrolysable tannins and is found in numerous plants and foods. TA is a potent collagen cross-linking agent; the purpose of this study was to generate TA-cross-linked beads and assess the effects on breast cancer cell growth. Collagen beads were stable at body temperature following crosslinking. Exposure to collagen beads with higher levels of TA inhibited proliferation and induced apoptosis in normal and cancer cells. TA-induced apoptosis involved activation of caspase 3/7 and caspase 9 but not caspase 8. Breast cancer cells expressing the estrogen receptor were more susceptible to the effects of TA. Taken together the results suggest that TA has the potential to become an anti-ER+ breast cancer treatment or preventative agent.

  7. The Vasopressin Type-2 Receptor and Prostaglandin Receptors EP2 and EP4 can Increase Aquaporin-2 Plasma Membrane Targeting Through a cAMP Independent Pathway

    DEFF Research Database (Denmark)

    Olesen, Emma Tina Bisgaard; Moeller, Hanne Bjerregaard; Assentoft, Mette

    2016-01-01

    Apical membrane targeting of the collecting duct water channel aquaporin-2 (AQP2) is essential for body water balance. As this event is regulated by Gs coupled 7-transmembrane receptors such as the vasopressin type 2 receptor (V2R) and the prostanoid receptors EP2 and EP4, it is believed to be c...

  8. Chimeric Antigen Receptor-Modified T Cells Redirected to EphA2 for the Immunotherapy of Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ning Li

    2018-02-01

    Full Text Available Erythropoietin-producing hepatocellular carcinoma A2 (EphA2 is overexpressed in more than 90% of non-small cell lung cancer (NSCLC but not significantly in normal lung tissue. It is therefore an important tumor antigen target for chimeric antigen receptors (CAR-T-based therapy in NSCLC. Here, we developed a specific CAR targeted to EphA2, and the anti-tumor effects of this CAR were investigated. A second generation CAR with co-stimulatory receptor 4-1BB targeted to EphA2 was developed. The functionality of EphA2-specific T cells in vitro was tested with flow cytometry and real-time cell electronic sensing system assays. The effect in vivo was evaluated in xenograft SCID Beige mouse model of EphA2 positive NSCLC. These EphA2-specifc T cells can cause tumor cell lysis by producing the cytokines IFN-γ when cocultured with EphA2-positive targets, and the cytotoxicity effects was specific in vitro. In vivo, the tumor signals of mice treated with EphA2-specifc T cells presented the tendency of decrease, and was much lower than the mice treated with non-transduced T cells. The anti-tumor effects of this CAR-T technology in vivo and vitro had been confirmed. Thus, EphA2-specific T-cell immunotherapy may be a promising approach for the treatment of EphA2-positive NSCLC.

  9. Targeting Androgen Receptor by Lysosomal Degradation in Prostate Cancer

    Science.gov (United States)

    2015-11-01

    Preparation of the Lysosomes A673 cells were treated with 100 pM chloroquine for 12 h or left untreated. Lysosomes were prepared using the Lysosome...were treated with 100 JlM chloroquine fur 12 h or left tmtreated, and the luciferase activity was determined using the same arnotmt of protein...TFEB levels or by activating TFEB using mTORC1 kinase inhibitor, torin 1. Additionally, we determined that the same approach can be used to target

  10. Epac is required for exogenous and endogenous stimulation of adenosine A2B receptor for inhibition of angiotensin II-induced collagen synthesis and myofibroblast differentiation.

    Science.gov (United States)

    Phosri, Sarawuth; Bunrukchai, Kwanchai; Parichatikanond, Warisara; Sato, Vilasinee H; Mangmool, Supachoke

    2018-01-10

    Angiotensin II (Ang II) plays an important role on the pathogenesis of cardiac fibrosis. Prolong and overstimulation of angiotensin II type 1 receptor with Ang II-induced collagen synthesis and myofibroblast differentiation in cardiac fibroblasts, leading to cardiac fibrosis. Although adenosine and its analogues are known to have cardioprotective effects, the mechanistic by which adenosine A 2 receptors (A 2 Rs) inhibit Ang II-induced cardiac fibrosis is not clearly understood. In the present study, we examined the effects of exogenous adenosine and endogenous adenosine on Ang II-induced collagen and myofibroblast differentiation determined by α-smooth muscle action (α-SMA) overexpression and their underlying signal transduction. Elevation of endogenous adenosine levels resulted in the inhibition of Ang II-induced collagen type I and III and α-SMA synthesis in cardiac fibroblasts. Moreover, treatment with exogenous adenosine which selectively stimulated A 2 Rs also suppressed Ang II-induced collagen synthesis and α-SMA production. These antifibrotic effects of both endogenous and exogenous adenosines are mediated through the A 2B receptor (A 2B R) subtype. Stimulation of A 2B R exhibited antifibrotic effects via the cAMP-dependent and Epac-dependent pathways. Our results provide new mechanistic insights regarding the role for cAMP and Epac on A 2B R-mediated antifibrotic effects. Thus, A 2B R is one of the potential therapeutic targets against cardiac fibrosis.

  11. Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors.

    Science.gov (United States)

    Chaturvedi, Madhu; Schilling, Justin; Beautrait, Alexandre; Bouvier, Michel; Benovic, Jeffrey L; Shukla, Arun K

    2018-05-04

    G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures. Furthermore, pepducins, aptamers, and intrabodies targeting the intracellular face of GPCRs have also been successfully utilized to modulate receptor signaling. Moreover, small molecule compounds, aptamers, and synthetic intrabodies targeting β-arrestins have also been discovered to modulate GPCR endocytosis and signaling. Here, we discuss the emerging paradigm of intracellular targeting of GPCRs, and outline the current challenges, potential opportunities, and future outlook in this particular area of GPCR biology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The sigma-2 receptor as a therapeutic target for drug delivery in triple negative breast cancer

    International Nuclear Information System (INIS)

    Makvandi, Mehran; Tilahun, Estifanos D.; Lieberman, Brian P.; Anderson, Redmond-Craig; Zeng, Chenbo; Xu, Kuiying; Hou, Catherine; McDonald, Elizabeth S.; Pryma, Daniel A.; Mach, Robert H.

    2015-01-01

    Background: Triple-negative breast cancer (TNBC) is associated with high relapse rates and increased mortality when compared with other breast cancer subtypes. In contrast to receptor positive breast cancers, there are no approved targeted therapies for TNBC. Identifying biomarkers for TNBC is of high importance for the advancement of patient care. The sigma-2 receptor has been shown to be overexpressed in triple negative breast cancer in vivo and has been characterized as a marker of proliferation. The aim of the present study was to define the sigma-2 receptor as a target for therapeutic drug delivery and biomarker in TNBC. Methods: Three TNBC cell lines were evaluated: MDA-MB-231, HCC1937 and HCC1806. Sigma-2 compounds were tested for pharmacological properties specific to the sigma-2 receptor through competitive inhibition assays. Sigma-2 receptor expression was measured through radioligand receptor saturation studies. Drug sensitivity for taxol was compared to a sigma-2 targeting compound conjugated to a cytotoxic payload, SW IV-134. Cell viability was assessed after treatments for 2 or 48 h. Sigma-2 blockade was assessed to define sigma-2 mediated cytotoxicity of SW IV-134. Caspase 3/7 activation induced by SW IV-134 was measured at corresponding treatment time points. Results: SW IV-134 was the most potent compound tested in two of the three cell lines and was similarly effective in all three. MDA-MB-231 displayed a statistically significant higher sigma-2 receptor expression and also was the most sensitive cell line evaluated to SW IV-134. Conclusion: Targeting the sigma-2 receptor with a cytotoxic payload was effective in all the three cell lines evaluated and provides the proof of concept for future development of a therapeutic platform for the treatment of TNBC. - Highlights: • TNBC cells are sensitive to sigma-2 receptor targeted drug conjugate SW IV-134. • MDA-MB-231 displayed the highest amount of sigma-2 receptors and corresponded well with

  13. The sigma-2 receptor as a therapeutic target for drug delivery in triple negative breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Makvandi, Mehran; Tilahun, Estifanos D.; Lieberman, Brian P.; Anderson, Redmond-Craig; Zeng, Chenbo; Xu, Kuiying; Hou, Catherine; McDonald, Elizabeth S.; Pryma, Daniel A.; Mach, Robert H., E-mail: rmach@mail.med.upenn.edu

    2015-11-27

    Background: Triple-negative breast cancer (TNBC) is associated with high relapse rates and increased mortality when compared with other breast cancer subtypes. In contrast to receptor positive breast cancers, there are no approved targeted therapies for TNBC. Identifying biomarkers for TNBC is of high importance for the advancement of patient care. The sigma-2 receptor has been shown to be overexpressed in triple negative breast cancer in vivo and has been characterized as a marker of proliferation. The aim of the present study was to define the sigma-2 receptor as a target for therapeutic drug delivery and biomarker in TNBC. Methods: Three TNBC cell lines were evaluated: MDA-MB-231, HCC1937 and HCC1806. Sigma-2 compounds were tested for pharmacological properties specific to the sigma-2 receptor through competitive inhibition assays. Sigma-2 receptor expression was measured through radioligand receptor saturation studies. Drug sensitivity for taxol was compared to a sigma-2 targeting compound conjugated to a cytotoxic payload, SW IV-134. Cell viability was assessed after treatments for 2 or 48 h. Sigma-2 blockade was assessed to define sigma-2 mediated cytotoxicity of SW IV-134. Caspase 3/7 activation induced by SW IV-134 was measured at corresponding treatment time points. Results: SW IV-134 was the most potent compound tested in two of the three cell lines and was similarly effective in all three. MDA-MB-231 displayed a statistically significant higher sigma-2 receptor expression and also was the most sensitive cell line evaluated to SW IV-134. Conclusion: Targeting the sigma-2 receptor with a cytotoxic payload was effective in all the three cell lines evaluated and provides the proof of concept for future development of a therapeutic platform for the treatment of TNBC. - Highlights: • TNBC cells are sensitive to sigma-2 receptor targeted drug conjugate SW IV-134. • MDA-MB-231 displayed the highest amount of sigma-2 receptors and corresponded well with

  14. Simultaneous Vascular Targeting and Tumor Targeting of Cerebral Breast Cancer Metastases Using a T-Cell Receptor Mimic Antibody

    Science.gov (United States)

    2014-05-01

    in May 2013, the difference between nude mice (which lack T- cells , but still have a partially functional adaptive and innate immune system) and NSG...Mangada J, Greiner DL, Handgretinger R. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human...Targeting of Cerebral Breast Cancer Metastases Using a T- Cell Receptor Mimic Antibody PRINCIPAL INVESTIGATOR: Ulrich Bickel

  15. Structural and energetic effects of A2A adenosine receptor mutations on agonist and antagonist binding.

    Directory of Open Access Journals (Sweden)

    Henrik Keränen

    Full Text Available To predict structural and energetic effects of point mutations on ligand binding is of considerable interest in biochemistry and pharmacology. This is not only useful in connection with site-directed mutagenesis experiments, but could also allow interpretation and prediction of individual responses to drug treatment. For G-protein coupled receptors systematic mutagenesis has provided the major part of functional data as structural information until recently has been very limited. For the pharmacologically important A(2A adenosine receptor, extensive site-directed mutagenesis data on agonist and antagonist binding is available and crystal structures of both types of complexes have been determined. Here, we employ a computational strategy, based on molecular dynamics free energy simulations, to rationalize and interpret available alanine-scanning experiments for both agonist and antagonist binding to this receptor. These computer simulations show excellent agreement with the experimental data and, most importantly, reveal the molecular details behind the observed effects which are often not immediately evident from the crystal structures. The work further provides a distinct validation of the computational strategy used to assess effects of point-mutations on ligand binding. It also highlights the importance of considering not only protein-ligand interactions but also those mediated by solvent water molecules, in ligand design projects.

  16. Annexin A2 is a natural extrahepatic inhibitor of the PCSK9-induced LDL receptor degradation.

    Directory of Open Access Journals (Sweden)

    Nabil G Seidah

    Full Text Available Proprotein convertase subtilisin/kexin-9 (PCSK9 enhances the degradation of hepatic low-density lipoprotein receptor (LDLR. Deletion of PCSK9, and loss-of-function mutants in humans result in lower levels of circulating LDL-cholesterol and a strong protection against coronary heart disease. Accordingly, the quest for PCSK9 inhibitors has major clinical implications. We have previously identified annexin A2 (AnxA2 as an endogenous binding partner and functional inhibitor of PCSK9. Herein, we studied the relevance of AnxA2 in PCSK9 inhibition and lipid metabolism in vivo. Plasma analyses of AnxA2(-/- mice revealed: i a ∼1.4-fold increase in LDL-cholesterol without significant changes in VLDLs or HDLs, and ii a ∼2-fold increase in circulating PCSK9 levels. Western blotting and immunohistochemistry of AnxA2(-/- tissues revealed that the LDLR was decreased by ∼50% in extrahepatic tissues, such as adrenals and colon. We also show that AnxA2-derived synthetic peptides block the PCSK9≡LDLR interaction in vitro, and adenoviral overexpression of AnxA2 in mouse liver increases LDLR protein levels in vivo. These results suggest that AnxA2 acts as an endogenous regulator of LDLR degradation, mostly in extrahepatic tissues. Finally, we identified an AnxA2 coding polymorphism, V98L, that correlates with lower circulating levels of PCSK9 thereby extending our results on the physiological role of AnxA2 in humans.

  17. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  18. Folate Receptor Targeted Alpha-Therapy Using Terbium-149

    CERN Document Server

    Müller, Cristina; Haller, Stephanie; Dorrer, Holger; Köster, Ulli; Johnston, Karl; Zhernosekov, Konstantin; Türler, Andreas; Schibli, Roger

    2014-01-01

    Terbium-149 is among the most interesting therapeutic nuclides for medical applications. It decays by emission of short-range α-particles (Eα = 3.967 MeV) with a half-life of 4.12 h. The goal of this study was to investigate the anticancer efficacy of a 149Tb-labeled DOTA-folate conjugate (cm09) using folate receptor (FR)-positive cancer cells in vitro and in tumor-bearing mice. 149Tb was produced at the ISOLDE facility at CERN. Radiolabeling of cm09 with purified 149Tb resulted in a specific activity of ~1.2 MBq/nmol. In vitro assays performed with 149Tb-cm09 revealed a reduced KB cell viability in a FR-specific and activity concentration-dependent manner. Tumor-bearing mice were injected with saline only (group A) or with 149Tb-cm09 (group B: 2.2 MBq; group C: 3.0 MBq). A significant tumor growth delay was found in treated animals resulting in an increased average survival time of mice which received 149Tb-cm09 (B: 30.5 d; C: 43 d) compared to untreated controls (A: 21 d). Analysis of blood parameters rev...

  19. Meeting the EU recycling targets by introducing a 2-compartment bin to households

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Scheutz, Charlotte; Møller, Jacob

    A Danish municipality has introduced a 2-compartment bin in the waste collection scheme, this bin should increase recycling of dry household recyclables. An excessive waste sorting campaign was conducted and the efficiency of the bin assessed. The waste sorting campaign yielded a full waste...... targets can be fulfilled, there is still room for improvement (increase source separation), especially for hard plastic and metals....

  20. Pharmacological receptors of nematoda as target points for action of antiparasitic drugs

    Directory of Open Access Journals (Sweden)

    Trailović Saša M.

    2010-01-01

    Full Text Available Cholinergic receptors of parasitic nematodes are one of the most important possible sites of action of antiparasitic drugs. This paper presents some of our own results of electrophysiological and pharamcological examinations of nicotinic and muscarinic receptors of nematodes, as well as data from literature on a new class of anthelmintics that act precisely on cholinergic receptors. The nicotinic acetylcholine receptor (nAChR is located on somatic muscle cells of nematodes and it is responsible for the coordination of parasite movement. Cholinomimetic anthelmintics act on this receptor, as well as acetylcholine, an endogenic neurotransmitter, but they are not sensitive to enzyme acetylcholineesterase which dissolves acetylcholine. As opposed to the nicotinic receptor of vertebra, whose structure has been examined thoroughly, the stoichiometry of the nicotinic receptor of nematodes is not completely known. However, on the grounds of knowledge acquired so far, a model has been constructed recently of the potential composition of a type of nematodes nicotinic receptor, as the site of action of anthelmintics. Based on earlier investigations, it is supposed that a conventional muscarinic receptor exists in nematodes as well, so that it can also be a new pharamocological target for the development of antinematode drugs. The latest class of synthesized anthelmintics, named aminoacetonitriles (AAD, act via the nicotinic receptor. Monepantel is the first drug from the AAD group as a most significant candidate for registration in veterinary medicine. Even though several groups of cholinomimetic anthelmintics (imiodazothiazoles, tetrahydropyrimidines, organophosphat anthelmintics have been in use in veterinary practice for many years now, it is evident that cholinergic receptors of nematodes still present an attractive place in the examinations and development of new antinematode drugs. .

  1. Targeting the dopamine D3 receptor: an overview of drug design strategies.

    Science.gov (United States)

    Cortés, Antoni; Moreno, Estefanía; Rodríguez-Ruiz, Mar; Canela, Enric I; Casadó, Vicent

    2016-07-01

    Dopamine is a neurotransmitter widely distributed in both the periphery and the central nervous system (CNS). Its physiological effects are mediated by five closely related G protein-coupled receptors (GPCRs) that are divided into two major subclasses: the D1-like (D1, D5) and the D2-like (D2, D3, D4) receptors. D3 receptors (D3Rs) have the highest density in the limbic areas of the brain, which are associated with cognitive and emotional functions. These receptors are therefore attractive targets for therapeutic management. This review summarizes the functional and pharmacological characteristics of D3Rs, including the design and clinical relevance of full agonists, partial agonists and antagonists, as well as the capacity of these receptors to form active homodimers, heterodimers or higher order receptor complexes as pharmacological targets in several neurological and neurodegenerative disorders. The high sequence homology between D3R and the D2-type challenges the development of D3R-selective compounds. The design of new D3R-preferential ligands with improved physicochemical properties should provide a better pharmacokinetic/bioavailability profile and lesser toxicity than is found with existing D3R ligands. It is also essential to optimize D3R affinity and, especially, D3R vs. D2-type binding and functional selectivity ratios. Developing allosteric and bitopic ligands should help to improve the D3R selectivity of these drugs. As most evidence points to the ability of GPCRs to form homomers and heteromers, the most promising therapeutic strategy in the future is likely to involve the application of heteromer-selective drugs. These selective ligands would display different affinities for a given receptor depending on the receptor partners within the heteromer. Therefore, designing novel compounds that specifically target and modulate D1R-D3R heteromers would be an interesting approach for the treatment of levodopa (L-DOPA)-induced dyskinesias.

  2. Novel receptor targets for production and action of allopregnanolone in the central nervous system: a focus on pregnane xenobiotic receptor

    Directory of Open Access Journals (Sweden)

    Cheryl A Frye

    2014-04-01

    Full Text Available Neurosteroids are cholesterol-based hormones that can be produced in the brain, independent of secretion from peripheral endocrine glands, such as the gonads and adrenals. A focus in our laboratory for over 25 years has been how production of the pregnane neurosteroid, allopregnanolone, is regulated and the novel (i.e. non steroid receptor targets for steroid action for behavior. One endpoint of interest has been lordosis, the mating posture of female rodents. Allopregnanolone is necessary and sufficient for lordosis, and the brain circuitry underlying it, such as actions in the midbrain ventral tegmental area (VTA, has been well-characterized. Published and recent findings supporting a dynamic role of allopregnanolone are included in this review. First, contributions of ovarian and adrenal sources of precursors of allopregnanolone, and the requisite enzymatic actions for de novo production in the central nervous system will be discussed. Second, how allopregnanolone produced in the brain has actions on behavioral processes that are independent of binding to steroid receptors, but instead involve rapid modulatory actions via neurotransmitter targets (e.g. -amino butyric acid-GABA, n-methyl-D-aspartate- NMDA will be reviewed. Third, a recent focus on characterizing the role of a promiscuous nuclear receptor, pregnane xenobiotic receptor (PXR, involved in cholesterol metabolism and expressed in the VTA, as a target for allopregnanolone and how this relates to both actions and production of allopregnanolone will be addressed. For example, allopregnanolone can bind PXR and knocking down expression of PXR in the midbrain VTA attenuates actions of allopregnanolone via NMDA and/or GABAA for lordosis. Our understanding of allopregnanolone’s actions in the VTA for lordosis has been extended to reveal the role of allopregnanolone for broader, clinically-relevant questions, such as neuropsychiatric disorders, epilepsy, and aging.

  3. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    Science.gov (United States)

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  4. Ivy and neurogliaform interneurons are a major target of μ opioid receptor modulation

    OpenAIRE

    Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan

    2011-01-01

    Mu opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform ...

  5. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    International Nuclear Information System (INIS)

    Peres, Elodie A.; Valable, Samuel; Guillamo, Jean-Sebastien; Marteau, Lena; Bernaudin, Jean-Francois; Roussel, Simon; Lechapt-Zalcman, Emmanuele; Bernaudin, Myriam; Petit, Edwige

    2011-01-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  6. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells

    International Nuclear Information System (INIS)

    Luce, A.; Courtin, A.; Levalois, C.; Altmeyer-Morel, S.; Chevillard, S.; Lebeau, J.; Romeo, P.H.

    2009-01-01

    Delayed cell death by mitotic catastrophe is a frequent mode of solid tumor cell death after γ-irradiation, a widely used treatment of cancer. Whereas the mechanisms that underlie the early γ-irradiation-induced cell death are well documented, those that drive the delayed cell death are largely unknown. Here we show that the Fas, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor (TNF)-α death receptor pathways mediate the delayed cell death observed after γ-irradiation of breast cancer cells. Early after irradiation, we observe the increased expression of Fas, TRAIL-R and TNF-R that first sensitizes cells to apoptosis. Later, the increased expression of FasL, TRAIL and TNF-α permit the apoptosis engagement linked to mitotic catastrophe. Treatments with TNF-α, TRAIL or anti-Fas antibody, early after radiation exposure, induce apoptosis, whereas the neutralization of the three death receptors pathways impairs the delayed cell death. We also show for the first time that irradiated breast cancer cells excrete soluble forms of the three ligands that can induce the death of sensitive bystander cells. Overall, these results define the molecular basis of the delayed cell death of irradiated cancer cells and identify the death receptors pathways as crucial actors in apoptosis induced by targeted as well as non-targeted effects of ionizing radiation. (authors)

  7. Radio-peptides targeting g-protein coupled receptors in cancer: from bench to bed

    International Nuclear Information System (INIS)

    Maecke, H.R.

    2015-01-01

    Full text of publication follows. In the development of targeted imaging and therapy agents the most important challenge and prerequisite is to identify and validate the molecular targets of any disease. The targets should be specific, relevant, easily accessible and highly expressed. In addition they should have no or at least very low expression in normal tissue. Among the many drug targets is the large family of G-protein coupled receptors (GPCRs). It is the most important family of marketed drugs and the basic accomplishments in the field were recognised by the award of the recent Nobel price in chemistry. GPCRs also play a role in cancer. Several of these receptors are massively over-expressed in different human tumors such as neuroendocrine tumors (over-expression of the somatostatin receptor family), prostate and breast tumors (bombesin receptor family), brain tumors (NK1 receptor) etc.. This allows to develop (nuclear, MRI, optical) probes for imaging and potentially targeted therapy (theragnostics). Natural ligands targeting GPCRs are often peptides. They need to be modified for metabolic stability, modified for labeling with radio-metals (conjugation of bifunctional chelators) or radio-halogens (prosthetic groups). Preserved biological integrity after modification and labeling needs to be assured, long retention times in the tumor is important, conferred by internalisation. Radio-metal labeling in particular needs to be reasonably fast and the radio metal complexes have to show high stability with regard to radio-metal release. These prerequisites will be discussed for somatostatin receptor based radio-peptides in particular. For a successful clinical application preclinical imaging and biodistribution in adequate animal models are mandatory. New tracers for positron emission tomography (PET) and single photon emission computed tomography (SPECT) will be presented for neuroendocrine tumors and prostate cancer. In particular radiolabeled antagonists will

  8. Putative Biomarkers and Targets of Estrogen Receptor Negative Human Breast Cancer

    Directory of Open Access Journals (Sweden)

    Stephen W. Byers

    2011-07-01

    Full Text Available Breast cancer is a progressive and potentially fatal disease that affects women of all ages. Like all progressive diseases, early and reliable diagnosis is the key for successful treatment and annihilation. Biomarkers serve as indicators of pathological, physiological, or pharmacological processes. Her2/neu, CA15.3, estrogen receptor (ER, progesterone receptor (PR, and cytokeratins are biomarkers that have been approved by the Food and Drug Administration for disease diagnosis, prognosis, and therapy selection. The structural and functional complexity of protein biomarkers and the heterogeneity of the breast cancer pathology present challenges to the scientific community. Here we review estrogen receptor-related putative breast cancer biomarkers, including those of putative breast cancer stem cells, a minor population of estrogen receptor negative tumor cells that retain the stem cell property of self renewal. We also review a few promising cytoskeleton targets for ER alpha negative breast cancer.

  9. Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy.

    Science.gov (United States)

    Jacobsen, Jonathan Henry W; Hutchinson, Mark R; Mustafa, Sanam

    2016-02-01

    Drug addiction and dependence have proven to be difficult psychiatric disorders to treat. The limited efficacy of neuronally acting medications, such as acamprosate and naltrexone, highlights the need to identify novel targets. Recent research has underscored the importance of the neuroimmune system in many behavioural manifestations of drug addiction. In this review, we propose that our appreciation for complex phenotypes such as drug addiction and dependence will come with a greater understanding that these disorders are the result of intricate, interconnected signalling pathways that are, if only partially, determined at the receptor level. The idea of receptor heteromerisation and receptor mosaics will be introduced to explain cross talk between the receptors and signalling molecules implicated in neuroimmune signalling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. IL-13 and the IL-13 receptor as therapeutic targets for asthma and allergic disease.

    Science.gov (United States)

    Mitchell, Jesse; Dimov, Vesselin; Townley, Robert G

    2010-05-01

    It is widely accepted that T-helper 2 cell (Th2) cytokines play an important role in the maintenance of asthma and allergy. Emerging evidence has highlighted the role of IL-13 in the pathogenesis of these diseases. In particular, IL-13 is involved in the regulation of IgE synthesis, mucus hypersecretion, subepithelial fibrosis and eosinophil infiltration, and has been associated with the regulation of certain chemokine receptors, notably CCR5. Thus, targeting IL-13 and its associated receptors may be a therapeutic approach to the treatment of asthma and/or allergy. Pharmaceutical and biotechnology companies are researching various strategies, based on this approach, aimed at binding IL-13, increasing the level of the IL-13 decoy receptor, IL-13Ralpha2, or blocking the effect of the chemokine receptor CCR5. This review focuses on the therapeutic potential of anti-IL-13 agents and their role in the treatment of asthma and allergy.

  11. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    Science.gov (United States)

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-03-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.

  12. The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, M B; Fuxe, K; Werge, T

    2002-01-01

    The adenosine A2A receptor agonist CGS 21680 has shown effects similar to dopamine antagonists in behavioural assays in rats predictive for antipsychotic activity, without induction of extrapyramidal side-effects (EPS). In the present study, we examined whether this functional dopamine antagonism...... showed a functional anti-dopaminergic effect in Cebus apella monkeys without production of EPS. This further substantiates that adenosine A2A receptor agonists may have potential as antipsychotics with atypical profiles....

  13. Growth factor receptors as molecular targets for cancer diagnosis and therapy

    International Nuclear Information System (INIS)

    Zalutsky, M. R.

    1997-01-01

    Growth factor receptors are of great interest as molecular targets for the diagnosis and treatment of cancer. Growth factor receptors are frequently over expressed on malignant cell populations since many cellular oncogenes encode either growth factors of their receptors. The wild-type epidermal growth factor receptor has a molecular weight of 170 kD and is over expressed on gliomas, bladder tumors, squamous cells carcinomas and breast carcinomas. Another growth factor oncogene, c-erb B-2, encodes a 185-kD glycoprotein found on the surface of gliomas, breast and ovarian cancers as well as other carcinomas of epithelial origin. In addition to causing over expression, oncogenic transformation also can result in genomic re-arrangements. An important example from the perspective of targeting is EGFRvIII, a deletion mutant which lacks amino acids 6-273 in the extracellular domain of the epiderma growth factor receptor. The EGFRvIII molecule (145 kD) may be of great value for targeting because it appears to be tumor-specific. Antibodies have been developed with specific reactivity with these growth factor receptors. Since these antibodies are internalized into the cell after receptor binding, it is necessary to use radiolabeling methods which residualize the radioactivity in the tumor cell after intracellular catabolism. To investigate this problem they have evaluated the effect of radioiodination method on the in vitro an in vivo properties of an anti-EGFRvIII antibody. Methods studied were Iodogen, tyramine-cellobiose, and N-succinimidyl 5-iodo-3-pyridine-carboxylate with the last offering optimal localization in a human xenograft model

  14. In Vivo Phosphoproteomics Analysis Reveals the Cardiac Targets of β-Adrenergic Receptor Signaling

    DEFF Research Database (Denmark)

    Lundby, Alicia; Andersen, Martin N; Steffensen, Annette B

    2013-01-01

    β-Blockers are widely used to prevent cardiac arrhythmias and to treat hypertension by inhibiting β-adrenergic receptors (βARs) and thus decreasing contractility and heart rate. βARs initiate phosphorylation-dependent signaling cascades, but only a small number of the target proteins are known. We...

  15. Cholecystokinin Receptor-Targeted Polyplex Nanoparticle Inhibits Growth and Metastasis of Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Julian Burks

    2018-01-01

    Conclusions: Our polyplex nanoparticle platform establishes both a strong foundation for the development of receptor-targeted therapeutics and a unique approach for the delivery of siRNA in vivo, thus warranting further exploration of this approach in other types of cancers.

  16. Fluorescence analysis of the Hansenula polymorpha peroxisomal targeting signal-1 receptor, Pex5p

    NARCIS (Netherlands)

    Boteva, R.; Koek, A.; Visser, N.V.; Visser, A.J.W.G.; Krieger, E.; Zlateva, T.; Veenhuis, M.; Klei, van der I.

    2003-01-01

    Correct sorting of newly synthesized peroxisomal matrix proteins is dependent on a peroxisomal targeting signal (PTS). So far two PTSs are known. PTS1 consists of a tripeptide that is located at the extreme C terminus of matrix proteins and is specifically recognized by the PTS1-receptor Pex5p. We

  17. Orphan G protein receptor GPR55 as an emerging target in cancer therapy and management

    International Nuclear Information System (INIS)

    Leyva-Illades, Dinorah; DeMorrow, Sharon

    2013-01-01

    G protein-coupled receptors (GPCRs) modulate a vast array of cellular processes. The current review gives an overview of the general characteristics of GPCRs and their role in physiological conditions. In addition, it describes the current knowledge of the physiological and pathophysiological functions of GPR55, an orphan GPCR, and how it can be exploited as a therapeutic target to combat various cancers

  18. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions.

    Directory of Open Access Journals (Sweden)

    Ana Carolina eAriza

    2012-02-01

    Full Text Available The succinate receptor (also known as GPR91 is a G protein-coupled receptor that is closely related to the family of P2Y purinoreceptors. It is expressed in a variety of tissues, including blood cells, adipose tissue, the liver, retina and kidney. In these tissues, this receptor and its ligand succinate have recently emerged as novel mediators in local stress situations, including ischemia, hypoxia, toxicity and hyperglycemia. Amongst others, the succinate receptor is involved in recruitment of immune cells to transplanted tissues. Moreover, it was shown to play a key role in the development of diabetic retinopathy. However, most prominently, the role of locally increased succinate levels and succinate receptor activation in the kidney, stimulating the systemic and local renin-angiotensin system, starts to unfold: The succinate receptor is a key mediator in the development of hypertension and possibly fibrosis in diabetes mellitus and metabolic syndrome. This makes the succinate receptor a promising drug target to counteract or prevent cardiovascular and fibrotic defects in these expanding disorders. Recent development of SUCNR1-specific antagonists opens novel possibilities for research in models for these disorders and may eventually provide novel opportunities for the treatment of patients.

  19. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    International Nuclear Information System (INIS)

    Muñoz, Miguel; Coveñas, Rafael

    2015-01-01

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC

  20. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Miguel, E-mail: mmunoz@cica.es [Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Sevilla (Spain); Coveñas, Rafael [Laboratory of Neuroanatomy of the Peptidergic System (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37008 Salamanca (Spain)

    2015-07-06

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC.

  1. Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes.

    Science.gov (United States)

    Morrison, R Ray; Teng, Bunyen; Oldenburg, Peter J; Katwa, Laxmansa C; Schnermann, Jurgen B; Mustafa, S Jamal

    2006-10-01

    To examine ischemic tolerance in the absence of A(1) adenosine receptors (A(1)ARs), isolated wild-type (WT) and A(1)AR knockout (A(1)KO) murine hearts underwent global ischemia-reperfusion, and injury was measured in terms of functional recovery and efflux of lactate dehydrogenase (LDH). Hearts were analyzed by real-time RT-PCR both at baseline and at intervals during ischemia-reperfusion to determine whether compensatory expression of other adenosine receptor subtypes occurs with either A(1)AR deletion and/or ischemia-reperfusion. A(1)KO hearts had higher baseline coronary flow (CF) and left ventricular developed pressure (LVDP) than WT hearts, whereas heart rate was unchanged by A(1)AR deletion. After 20 min of ischemia, CF was attenuated in A(1)KO compared with WT hearts, and this reduction persisted throughout reperfusion. Final recovery of LVDP was decreased in A(1)KO hearts (54.4 +/- 5.1 vs. WT 81.1 +/- 3.4% preischemic baseline) and correlated with higher diastolic pressure during reperfusion. Postischemic efflux of LDH was greater in A(1)KO compared with WT hearts. Real-time RT-PCR demonstrated the absence of A(1)AR transcript in A(1)KO hearts, and the message for A(2A), A(2B), and A(3) adenosine receptors was similar in uninstrumented A(1)KO and WT hearts. Ischemia-reperfusion increased A(2B) mRNA expression 2.5-fold in both WT and A(1)KO hearts without changing A(1) or A(3) expression. In WT hearts, ischemia transiently doubled A(2A) mRNA, which returned to preischemic level upon reperfusion, a pattern not observed in A(1)KO hearts. Together, these data affirm the cardioprotective role of A(1)ARs and suggest that induced expression of other adenosine receptor subtypes may participate in the response to ischemia-reperfusion in isolated murine hearts.

  2. Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist.

    Science.gov (United States)

    Justinová, Zuzana; Ferré, Sergi; Redhi, Godfrey H; Mascia, Paola; Stroik, Jessica; Quarta, Davide; Yasar, Sevil; Müller, Christa E; Franco, Rafael; Goldberg, Steven R

    2011-07-01

    Several recent studies suggest functional and molecular interactions between striatal adenosine A(2A) and cannabinoid CB(1) receptors. Here, we demonstrate that A(2A) receptors selectively modulate reinforcing effects of cannabinoids. We studied effects of A(2A) receptor blockade on the reinforcing effects of delta-9-tetrahydrocannabinol (THC) and the endogenous CB(1) receptor ligand anandamide under a fixed-ratio schedule of intravenous drug injection in squirrel monkeys. A low dose of the selective adenosine A(2A) receptor antagonist MSX-3 (1 mg/kg) caused downward shifts of THC and anandamide dose-response curves. In contrast, a higher dose of MSX-3 (3 mg/kg) shifted THC and anandamide dose-response curves to the left. MSX-3 did not modify cocaine or food pellet self-administration. Also, MSX-3 neither promoted reinstatement of extinguished drug-seeking behavior nor altered reinstatement of drug-seeking behavior by non-contingent priming injections of THC. Finally, using in vivo microdialysis in freely-moving rats, a behaviorally active dose of MSX-3 significantly counteracted THC-induced, but not cocaine-induced, increases in extracellular dopamine levels in the nucleus accumbens shell. The significant and selective results obtained with the lower dose of MSX-3 suggest that adenosine A(2A) antagonists acting preferentially at presynaptic A(2A) receptors might selectively reduce reinforcing effects of cannabinoids that lead to their abuse. However, the appearance of potentiating rather than suppressing effects on cannabinoid reinforcement at the higher dose of MSX-3 would likely preclude the use of such a compound as a medication for cannabis abuse. Adenosine A(2A) antagonists with more selectivity for presynaptic versus postsynaptic receptors could be potential medications for treatment of cannabis abuse. Addiction Biology © 2010 Society for the Study of Addiction. No claim to original US government works.

  3. ALK receptor activation, ligands and therapeutic targeting in glioblastoma and in other cancers

    International Nuclear Information System (INIS)

    Wellstein, Anton

    2012-01-01

    The intracellular anaplastic lymphoma kinase (ALK) fragment shows striking homology with members of the insulin receptor family and was initially identified as an oncogenic fusion protein resulting from a translocation in lymphoma and more recently in a range of cancers. The full-length ALK transmembrane receptor of ~220 kDa was identified based on this initial work. This tyrosine kinase receptor and its ligands, the growth factors pleiotrophin (PTN) and midkine (MK) are highly expressed during development of the nervous system and other organs. Each of these genes has been implicated in malignant progression of different tumor types and shown to alter phenotypes as well as signal transduction in cultured normal and tumor cells. Beyond its role in cancer, the ALK receptor pathway is thought to contribute to nervous system development, function, and repair, as well as metabolic homeostasis and the maintenance of tissue regeneration. ALK receptor activity in cancer can be up-regulated by amplification, overexpression, ligand binding, mutations in the intracellular domain of the receptor and by activity of the receptor tyrosine phosphatase PTPRz. Here we discuss the evidence for ligand control of ALK activity as well as the potential prognostic and therapeutic implications from gene expression and functional studies. An analysis of 18 published gene expression data sets from different cancers shows that overexpression of ALK, its smaller homolog LTK (leukocyte tyrosine kinase) and the ligands PTN and MK in cancer tissues from patients correlate significantly with worse course and outcome of the disease. This observation together with preclinical functional studies suggests that this pathway could be a valid therapeutic target for which complementary targeting strategies with small molecule kinase inhibitors as well as antibodies to ligands or the receptors may be used.

  4. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    May, Felicity EB, E-mail: F.E.B.May@ncl.ac.uk [Northern Institute for Cancer Research and Department of Pathology, Faculty of Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom)

    2014-05-23

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  5. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    International Nuclear Information System (INIS)

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  6. Therapeutic targeting of angiotensin II receptor type 1 to regulate androgen receptor in prostate cancer.

    Science.gov (United States)

    Takahashi, Satoru; Uemura, Hiroji; Seeni, Azman; Tang, Mingxi; Komiya, Masami; Long, Ne; Ishiguro, Hitoshi; Kubota, Yoshinobu; Shirai, Tomoyuki

    2012-10-01

    With the limited strategies for curative treatment of castration-resistant prostate cancer (CRPC), public interest has focused on the potential prevention of prostate cancer. Recent studies have demonstrated that an angiotensin II receptor blocker (ARB) has the potential to decrease serum prostate-specific antigen (PSA) level and improve performance status in CRPC patients. These facts prompted us to investigate the direct effects of ARBs on prostate cancer growth and progression. Transgenic rat for adenocarcinoma of prostate (TRAP) model established in our laboratory was used. TRAP rats of 3 weeks of age received ARB (telmisartan or candesartan) at the concentration of 2 or 10 mg/kg/day in drinking water for 12 weeks. In vitro analyses for cell growth, ubiquitylation or reporter gene assay were performed using LNCaP cells. We found that both telmisartan and candesartan attenuated prostate carcinogenesis in TRAP rats by augmentation of apoptosis resulting from activation of caspases, inactivation of p38 MAPK and down-regulation of the androgen receptor (AR). Further, microarray analysis demonstrated up-regulation of estrogen receptor β (ERβ) by ARB treatment. In both parental and androgen-independent LNCaP cells, ARB inhibited both cell growth and AR-mediated transcriptional activity. ARB also exerted a mild additional effect on AR-mediated transcriptional activation by the ERβ up-regulation. An intervention study revealed that PSA progression was prolonged in prostate cancer patients given an ARB compared with placebo control. These data provide a new concept that ARBs are promising potential chemopreventive and chemotherapeutic agents for prostate cancer. Copyright © 2012 Wiley Periodicals, Inc.

  7. Computer-aided design of multi-target ligands at A1R, A2AR and PDE10A, key proteins in neurodegenerative diseases.

    Science.gov (United States)

    Kalash, Leen; Val, Cristina; Azuaje, Jhonny; Loza, María I; Svensson, Fredrik; Zoufir, Azedine; Mervin, Lewis; Ladds, Graham; Brea, José; Glen, Robert; Sotelo, Eddy; Bender, Andreas

    2017-12-30

    Compounds designed to display polypharmacology may have utility in treating complex diseases, where activity at multiple targets is required to produce a clinical effect. In particular, suitable compounds may be useful in treating neurodegenerative diseases by promoting neuronal survival in a synergistic manner via their multi-target activity at the adenosine A 1 and A 2A receptors (A 1 R and A 2A R) and phosphodiesterase 10A (PDE10A), which modulate intracellular cAMP levels. Hence, in this work we describe a computational method for the design of synthetically feasible ligands that bind to A 1 and A 2A receptors and inhibit phosphodiesterase 10A (PDE10A), involving a retrosynthetic approach employing in silico target prediction and docking, which may be generally applicable to multi-target compound design at several target classes. This approach has identified 2-aminopyridine-3-carbonitriles as the first multi-target ligands at A 1 R, A 2A R and PDE10A, by showing agreement between the ligand and structure based predictions at these targets. The series were synthesized via an efficient one-pot scheme and validated pharmacologically as A 1 R/A 2A R-PDE10A ligands, with IC 50 values of 2.4-10.0 μM at PDE10A and K i values of 34-294 nM at A 1 R and/or A 2A R. Furthermore, selectivity profiling of the synthesized 2-amino-pyridin-3-carbonitriles against other subtypes of both protein families showed that the multi-target ligand 8 exhibited a minimum of twofold selectivity over all tested off-targets. In addition, both compounds 8 and 16 exhibited the desired multi-target profile, which could be considered for further functional efficacy assessment, analog modification for the improvement of selectivity towards A 1 R, A 2A R and PDE10A collectively, and evaluation of their potential synergy in modulating cAMP levels.

  8. Epidermal Growth Factor Receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target.

    Science.gov (United States)

    Castañón, Eduardo; Martín, Patricia; Rolfo, Christian; Fusco, Juan P; Ceniceros, Lucía; Legaspi, Jairo; Santisteban, Marta; Gil-Bazo, Ignacio

    2014-01-01

    Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.

  9. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects

    Directory of Open Access Journals (Sweden)

    Esposito Emanuela

    2011-04-01

    Full Text Available Abstract Background Permanent functional deficits following spinal cord injury (SCI arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites. Methods Spinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord. Results SCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCI, reduced demyelination and levels of TNF-α, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein kinase (MAPK 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days, improved the neurological deficit up to 10 days after SCI. Adenosine A2A receptors are physiologically expressed in the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours, these receptors showed enhanced expression in neurons. Both the A2A agonist and antagonist, administered intraperitoneally, reduced expression of the A2A receptor, ruling out the possibility that the

  10. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Xu, Ling; Hausmann, Martin; Dietmaier, Wolfgang; Kellermeier, Silvia; Pesch, Theresa; Stieber-Gunckel, Manuela; Lippert, Elisabeth; Klebl, Frank; Rogler, Gerhard

    2010-01-01

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  11. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Kellermeier Silvia

    2010-06-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Methods Expression of EGFR (epithelial growth factor receptor, HGFR (hepatocyte growth factor receptor IGF1R (insulin-like growth factor 1 receptor, IGF2R (insulin-like growth factor 2 receptor and VEGFR1-3 (vascular endothelial growth factor receptor 1-3 were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1. The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. Results EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml, with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D. HuH28, OZ and TFK-1 lacked KRAS mutation. Conclusion CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab.

  12. P2X receptors as targets for the treatment of status epilepticus

    Science.gov (United States)

    Henshall, David C.; Diaz-Hernandez, Miguel; Miras-Portugal, M. Teresa; Engel, Tobias

    2013-01-01

    Prolonged seizures are amongst the most common neurological emergencies. Status epilepticus is a state of continuous seizures that is life-threatening and prompt termination of status epilepticus is critical to protect the brain from permanent damage. Frontline treatment comprises parenteral administration of anticonvulsants such as lorazepam that facilitate γ-amino butyric acid (GABA) transmission. Because status epilepticus can become refractory to anticonvulsants in a significant proportion of patients, drugs which act on different neurotransmitter systems may represent potential adjunctive treatments. P2X receptors are a class of ligand-gated ion channel activated by ATP that contributes to neuro- and glio-transmission. P2X receptors are expressed by both neurons and glia in various brain regions, including the hippocampus. Electrophysiology, pharmacology and genetic studies suggest certain P2X receptors are activated during pathologic brain activity. Expression of several members of the family including P2X2, P2X4, and P2X7 receptors has been reported to be altered in the hippocampus following status epilepticus. Recent studies have shown that ligands of the P2X7 receptor can have potent effects on seizure severity during status epilepticus and mice lacking this receptor display altered seizures in response to chemoconvulsants. Antagonists of the P2X7 receptor also modulate neuronal death, microglial responses and neuroinflammatory signaling. Recent work also found altered neuronal injury and inflammation after status epilepticus in mice lacking the P2X4 receptor. In summary, members of the P2X receptor family may serve important roles in the pathophysiology of status epilepticus and represent novel targets for seizure control and neuroprotection. PMID:24324404

  13. Novel Dual Mitochondrial and CD44 Receptor Targeting Nanoparticles for Redox Stimuli-Triggered Release

    Science.gov (United States)

    Wang, Kaili; Qi, Mengjiao; Guo, Chunjing; Yu, Yueming; Wang, Bingjie; Fang, Lei; Liu, Mengna; Wang, Zhen; Fan, Xinxin; Chen, Daquan

    2018-02-01

    In this work, novel mitochondrial and CD44 receptor dual-targeting redox-sensitive multifunctional nanoparticles (micelles) based on oligomeric hyaluronic acid (oHA) were proposed. The amphiphilic nanocarrier was prepared by (5-carboxypentyl)triphenylphosphonium bromide (TPP), oligomeric hyaluronic acid (oHA), disulfide bond, and curcumin (Cur), named as TPP-oHA-S-S-Cur. The TPP targeted the mitochondria, the antitumor drug Cur served as a hydrophobic core, the CD44 receptor targeting oHA worked as a hydrophilic shell, and the disulfide bond acted as a connecting arm. The chemical structure of TPP-oHA-S-S-Cur was characterized by 1HNMR technology. Cur was loaded into the TPP-oHA-S-S-Cur micelles by self-assembly. Some properties, including the preparation of micelles, morphology, redox sensitivity, and mitochondrial targeting, were studied. The results showed that TPP-oHA-S-S-Cur micelles had a mean diameter of 122.4 ± 23.4 nm, zeta potential - 26.55 ± 4.99 mV. In vitro release study and cellular uptake test showed that TPP-oHA-S-S-Cur micelles had redox sensibility, dual targeting to mitochondrial and CD44 receptor. This work provided a promising smart multifunctional nanocarrier platform to enhance the solubility, decrease the side effects, and improve the therapeutic efficacy of anticancer drugs.

  14. Adenosine A2b receptor promotes progression of human oral cancer

    International Nuclear Information System (INIS)

    Kasama, Hiroki; Sakamoto, Yosuke; Kasamatsu, Atsushi; Okamoto, Atsushi; Koyama, Tomoyoshi; Minakawa, Yasuyuki; Ogawara, Katsunori; Yokoe, Hidetaka; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2015-01-01

    Adenosine A2b receptor (ADORA2B) encodes an adenosine receptor that is a member of the G protein-coupled receptor superfamily. This integral membrane protein stimulates adenylate cyclase activity in the presence of adenosine. Little is known about the relevance of ADORA2B to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of ADORA2B in OSCC. The ADORA2B expression levels in nine OSCC-derived cells were analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunoblotting analyses. Using an ADORA2B knockdown model, we assessed cellular proliferation and expression of hypoxia-inducible factor1α (HIF-1α). We examined the adenosine receptor expression profile under both normoxic and hypoxic conditions in the OSCC-derived cells. In addition to in vitro data, the clinical correlation between the ADORA2B expression levels in primary OSCCs (n = 100 patients) and the clinicopathological status by immunohistochemistry (IHC) also was evaluated. ADORA2B mRNA and protein were up-regulated significantly (p < 0.05) in seven OSCC-derived cells compared with human normal oral keratinocytes. Suppression of ADORA2B expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells. HIF-1α also was down-regulated in ADORA2B knockdown OSCC cells. During hypoxia, ADORA2B expression was induced significantly (p < 0.05) in the mRNA and protein after 24 hours of incubation in OSCC-derived cells. IHC showed that ADORA2B expression in primary OSCCs was significantly (p < 0.05) greater than in the normal oral counterparts and that ADORA2B-positive OSCCs were correlated closely (p < 0.05) with tumoral size. Our results suggested that ADORA2B controls cellular proliferation via HIF-1α activation, indicating that ADORA2B may be a key regulator of tumoral progression in OSCCs. The online version of this article (doi:10.1186/s12885-015-1577-2) contains

  15. The Nicotinic Acetylcholine Receptor as a Target for Antidepressant Drug Development

    Directory of Open Access Journals (Sweden)

    Noah S. Philip

    2012-01-01

    Full Text Available An important new area of antidepressant drug development involves targeting the nicotinic acetylcholine receptor (nAChR. This receptor, which is distributed widely in regions of the brain associated with depression, is also implicated in other important processes that are relevant to depression, such as stress and inflammation. The two classes of drugs that target nAChRs can be broadly divided into mecamylamine- and cytisine-based compounds. These drugs probably exert their effects via antagonism at α4β2 nAChRs, and strong preclinical data support the antidepressant efficacy of both classes when used in conjunction with other primary antidepressants (e.g., monoamine reuptake inhibitors. Although clinical data remain limited, preliminary results in this area constitute a compelling argument for further evaluation of the nAChR as a target for future antidepressant drug development.

  16. Radioiodsodestannylation. Convenient synthesis of a high affinity thromboxane A2/prostaglandin H2 receptor antagonist

    International Nuclear Information System (INIS)

    Mais, D.E.; Hamanaka, Nobuyuki

    1991-01-01

    Radioiodination of methyl-7-[(2R, 2S, 5R)-6,6-dimethyl-3-(4-trimethylstannylbenzenesulfononylamino3S) bicyclo[3.1.1]hept-2-yl]-5(Z)-heptenoate with [ 125 I] Na using a modification of the chloramine-T method in organic solvent is simple with high yields and site specific. The product, following hydrolysis of the ester, 7-[(2R, 2S, 3S, 5R)-6,6-dimethyl-3-(4[ 125 I]-iodobenzenesulfonylamino) bicyclo[3.1.1]hept-2-yl]-5(Z)-heptenoic acid [( 125 I]-ISAP), was purified by HPLC. The high specific activity and specific binding will make the ligand a useful tool for the characterization of thromboxane A 2 /prostaglandin H 2 receptors. (author)

  17. A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.

    Science.gov (United States)

    Sarris, Panagiotis F; Duxbury, Zane; Huh, Sung Un; Ma, Yan; Segonzac, Cécile; Sklenar, Jan; Derbyshire, Paul; Cevik, Volkan; Rallapalli, Ghanasyam; Saucet, Simon B; Wirthmueller, Lennart; Menke, Frank L H; Sohn, Kee Hoon; Jones, Jonathan D G

    2015-05-21

    Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families.

    Science.gov (United States)

    Voloshanenko, Oksana; Gmach, Philipp; Winter, Jan; Kranz, Dominique; Boutros, Michael

    2017-11-01

    Signaling pathway modules are often encoded by several closely related paralogous genes that can have redundant roles and are therefore difficult to analyze by loss-of-function analysis. A typical example is the Wnt signaling pathway, which in mammals is mediated by 19 Wnt ligands that can bind to 10 Frizzled (FZD) receptors. Although significant progress in understanding Wnt-FZD receptor interactions has been made in recent years, tools to generate systematic interaction maps have been largely lacking. Here we generated cell lines with multiplex mutant alleles of FZD1 , FZD2 , and FZD7 and demonstrate that these cells are unresponsive to canonical Wnt ligands. Subsequently, we performed genetic rescue experiments with combinations of FZDs and canonical Wnts to create a functional ligand-receptor interaction map. These experiments showed that whereas several Wnt ligands, such as Wnt3a, induce signaling through a broad spectrum of FZD receptors, others, such as Wnt8a, act through a restricted set of FZD genes. Together, our results map functional interactions of FZDs and 10 Wnt ligands and demonstrate how multiplex targeting by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 can be used to systematically elucidate the functions of multigene families.-Voloshanenko, O., Gmach, P., Winter, J., Kranz, D., Boutros, M. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families. © The Author(s).

  19. Gold Nanorods Targeted to Delta Opioid Receptor: Plasmon-Resonant Contrast and Photothermal Agents

    Directory of Open Access Journals (Sweden)

    Kvar C. Black

    2008-01-01

    Full Text Available Molecularly targeted gold nanorods were investigated for applications in both diagnostic imaging and disease treatment with cellular resolution. The nanorods were tested in two genetically engineered cell lines derived from the human colon carcinoma HCT-116, a model for studying ligand-receptor interactions. One of these lines was modified to express delta opioid receptor (δOR and green fluorescent protein, whereas the other was receptor free and expressed a red fluorescent protein, to serve as the control. Deltorphin, a high-affinity ligand for δOR, was stably attached to the gold nanorods through a thiol-terminated linker. In a mixed population of cells, we demonstrated selective imaging and destruction of receptor-expressing cells while sparing those cells that did not express the receptor. The molecularly targeted nanorods can be used as an in vitro ligand-binding and cytotoxic treatment assay platform and could potentially be applied in vivo for diagnostic and therapeutic purposes with endoscopic technology.

  20. A Rationally Designed Agonist Defines Subfamily IIIA Abscisic Acid Receptors As Critical Targets for Manipulating Transpiration.

    Science.gov (United States)

    Vaidya, Aditya S; Peterson, Francis C; Yarmolinsky, Dmitry; Merilo, Ebe; Verstraeten, Inge; Park, Sang-Youl; Elzinga, Dezi; Kaundal, Amita; Helander, Jonathan; Lozano-Juste, Jorge; Otani, Masato; Wu, Kevin; Jensen, Davin R; Kollist, Hannes; Volkman, Brian F; Cutler, Sean R

    2017-11-17

    Increasing drought and diminishing freshwater supplies have stimulated interest in developing small molecules that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here, we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin Resistance 1 (PYR1) with low nanomolar potency. A 1.63 Å X-ray crystallographic structure of cyanabactin in complex with PYR1 illustrates that cyanabactin's arylnitrile mimics ABA's cyclohexenone oxygen and engages the tryptophan lock, a key component required to stabilize activated receptors. Further, its sulfonamide and 4-methylbenzyl substructures mimic ABA's carboxylate and C6 methyl groups, respectively. Isothermal titration calorimetry measurements show that cyanabactin's compact structure provides ready access to high ligand efficiency on a relatively simple scaffold. Cyanabactin treatments reduce Arabidopsis whole-plant stomatal conductance and activate multiple ABA responses, demonstrating that its in vitro potency translates to ABA-like activity in vivo. Genetic analyses show that the effects of cyanabactin, and the previously identified agonist quinabactin, can be abolished by the genetic removal of PYR1 and PYL1, which form subclade A within the dimeric subfamily III receptors. Thus, cyanabactin is a potent and selective agonist with a wide spectrum of ABA-like activities that defines subfamily IIIA receptors as key target sites for manipulating transpiration.

  1. Inverse agonism of SQ 29,548 and Ramatroban on Thromboxane A2 receptor.

    Directory of Open Access Journals (Sweden)

    Raja Chakraborty

    Full Text Available G protein-coupled receptors (GPCRs show some level of basal activity even in the absence of an agonist, a phenomenon referred to as constitutive activity. Such constitutive activity in GPCRs is known to have important pathophysiological roles in human disease. The thromboxane A2 receptor (TP is a GPCR that promotes thrombosis in response to binding of the prostanoid, thromboxane A2. TP dysfunction is widely implicated in pathophysiological conditions such as bleeding disorders, hypertension and cardiovascular disease. Recently, we reported the characterization of a few constitutively active mutants (CAMs in TP, including a genetic variant A160T. Using these CAMs as reporters, we now test the inverse agonist properties of known antagonists of TP, SQ 29,548, Ramatroban, L-670596 and Diclofenac, in HEK293T cells. Interestingly, SQ 29,548 reduced the basal activity of both, WT-TP and the CAMs while Ramatroban was able to reduce the basal activity of only the CAMs. Diclofenac and L-670596 showed no statistically significant reduction in basal activity of WT-TP or CAMs. To investigate the role of these compounds on human platelet function, we tested their effects on human megakaryocyte based system for platelet activation. Both SQ 29,548 and Ramatroban reduced the platelet hyperactivity of the A160T genetic variant. Taken together, our results suggest that SQ 29,548 and Ramatroban are inverse agonists for TP, whereas, L-670596 and Diclofenac are neutral antagonists. Our findings have important therapeutic applications in the treatment of TP mediated pathophysiological conditions.

  2. Targeting the interleukin-11 receptor α in metastatic prostate cancer: A first-in-man study.

    Science.gov (United States)

    Pasqualini, Renata; Millikan, Randall E; Christianson, Dawn R; Cardó-Vila, Marina; Driessen, Wouter H P; Giordano, Ricardo J; Hajitou, Amin; Hoang, Anh G; Wen, Sijin; Barnhart, Kirstin F; Baze, Wallace B; Marcott, Valerie D; Hawke, David H; Do, Kim-Anh; Navone, Nora M; Efstathiou, Eleni; Troncoso, Patricia; Lobb, Roy R; Logothetis, Christopher J; Arap, Wadih

    2015-07-15

    Receptors in tumor blood vessels are attractive targets for ligand-directed drug discovery and development. The authors have worked systematically to map human endothelial receptors ("vascular zip codes") within tumors through direct peptide library selection in cancer patients. Previously, they selected a ligand-binding motif to the interleukin-11 receptor alpha (IL-11Rα) in the human vasculature. The authors generated a ligand-directed, peptidomimetic drug (bone metastasis-targeting peptidomimetic-11 [BMTP-11]) for IL-11Rα-based human tumor vascular targeting. Preclinical studies (efficacy/toxicity) included evaluating BMTP-11 in prostate cancer xenograft models, drug localization, targeted apoptotic effects, pharmacokinetic/pharmacodynamic analyses, and dose-range determination, including formal (good laboratory practice) toxicity across rodent and nonhuman primate species. The initial BMTP-11 clinical development also is reported based on a single-institution, open-label, first-in-class, first-in-man trial (National Clinical Trials number NCT00872157) in patients with metastatic, castrate-resistant prostate cancer. BMTP-11 was preclinically promising and, thus, was chosen for clinical development in patients. Limited numbers of patients who had castrate-resistant prostate cancer with osteoblastic bone metastases were enrolled into a phase 0 trial with biology-driven endpoints. The authors demonstrated biopsy-verified localization of BMTP-11 to tumors in the bone marrow and drug-induced apoptosis in all patients. Moreover, the maximum tolerated dose was identified on a weekly schedule (20-30 mg/m(2) ). Finally, a renal dose-limiting toxicity was determined, namely, dose-dependent, reversible nephrotoxicity with proteinuria and casts involving increased serum creatinine. These biologic endpoints establish BMTP-11 as a targeted drug candidate in metastatic, castrate-resistant prostate cancer. Within a larger discovery context, the current findings indicate that

  3. Binding of the Antagonist Caffeine to the Human Adenosine Receptor hA2AR in Nearly Physiological Conditions.

    Directory of Open Access Journals (Sweden)

    Ruyin Cao

    Full Text Available Lipid composition may significantly affect membrane proteins function, yet its impact on the protein structural determinants is not well understood. Here we present a comparative molecular dynamics (MD study of the human adenosine receptor type 2A (hA(2AR in complex with caffeine--a system of high neuro-pharmacological relevance--within different membrane types. These are POPC, mixed POPC/POPE and cholesterol-rich membranes. 0.8-μs MD simulations unambiguously show that the helical folding of the amphipathic helix 8 depends on membrane contents. Most importantly, the distinct cholesterol binding into the cleft between helix 1 and 2 stabilizes a specific caffeine-binding pose against others visited during the simulation. Hence, cholesterol presence (~33%-50% in synaptic membrane in central nervous system, often neglected in X-ray determination of membrane proteins, affects the population of the ligand binding poses. We conclude that including a correct description of neuronal membranes may be very important for computer-aided design of ligands targeting hA(2AR and possibly other GPCRs.

  4. The neuronal Ca(2+) -binding protein 2 (NECAB2) interacts with the adenosine A(2A) receptor and modulates the cell surface expression and function of the receptor.

    Science.gov (United States)

    Canela, Laia; Luján, Rafael; Lluís, Carme; Burgueño, Javier; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Ciruela, Francisco

    2007-09-01

    Heptaspanning membrane also known as G protein-coupled receptors (GPCR) do interact with a variety of intracellular proteins whose function is regulate receptor traffic and/or signaling. Using a yeast two-hybrid screen, NECAB2, a neuronal calcium binding protein, was identified as a binding partner for the adenosine A(2A) receptor (A(2A)R) interacting with its C-terminal domain. Co-localization, co-immunoprecipitation and pull-down experiments showed a close and specific interaction between A(2A)R and NECAB2 in both transfected HEK-293 cells and also in rat striatum. Immunoelectron microscopy detection of NECAB2 and A(2A)R in the rat striatopallidal structures indicated that both proteins are co-distributed in the same glutamatergic nerve terminals. The interaction of NECAB2 with A(2A)R modulated the cell surface expression, the ligand-dependent internalization and the receptor-mediated activation of the MAPK pathway. Overall, these results show that A(2A)R interacts with NECAB2 in striatal neurones co-expressing the two proteins and that the interaction is relevant for A(2A)R function.

  5. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins.

    Science.gov (United States)

    Moreno, Estefanía; Canet, Júlia; Gracia, Eduard; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Cortés, Antoni; Casadó, Vicent

    2018-01-01

    Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A 2A R present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A 2A R and a modification of the bioluminescence resonance energy transfer (BRET) technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET), we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A 2A R involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A 2A R-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26) and dendritic cells (expressing A 2A R). This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without partitioning these functions in different subunits.

  6. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins

    Directory of Open Access Journals (Sweden)

    Estefanía Moreno

    2018-02-01

    Full Text Available Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26 and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A2AR present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A2AR and a modification of the bioluminescence resonance energy transfer (BRET technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET, we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A2AR involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A2AR-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26 and dendritic cells (expressing A2AR. This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector without partitioning these functions in different subunits.

  7. Macrophage galactose-type C-type lectin receptor for DC targeting of antitumor glycopeptide vaccines

    DEFF Research Database (Denmark)

    Nuti, M; Zizzari, I; Napoletano, C

    2011-01-01

    e13528 Background: Dendritic cells (DCs) are the most potent antigen presenting cells and are employed in cancer vaccination. Several receptors are being studied in order to identif strategies to increase DCs activating capacity. The C-type lectin macrophage galactose type C-type lectin (MGL...... of IFNg and IL-2 secretion by both CD8 and CD4 T cells. CONCLUSIONS: These results demonstrate that MGL engagement profoundly affects DC plasticity inducing and directing a Th1 immune response. Moreover, MGL receptor expressed on human DC can be targeted by glycopeptide based vaccines with adjuvant...

  8. Targeting CB2-GPR55 Receptor Heteromers Modulates Cancer Cell Signaling*

    Science.gov (United States)

    Moreno, Estefanía; Andradas, Clara; Medrano, Mireia; Caffarel, María M.; Pérez-Gómez, Eduardo; Blasco-Benito, Sandra; Gómez-Cañas, María; Pazos, M. Ruth; Irving, Andrew J.; Lluís, Carme; Canela, Enric I.; Fernández-Ruiz, Javier; Guzmán, Manuel; McCormick, Peter J.; Sánchez, Cristina

    2014-01-01

    The G protein-coupled receptors CB2 (CB2R) and GPR55 are overexpressed in cancer cells and human tumors. Because a modulation of GPR55 activity by cannabinoids has been suggested, we analyzed whether this receptor participates in cannabinoid effects on cancer cells. Here we show that CB2R and GPR55 form heteromers in cancer cells, that these structures possess unique signaling properties, and that modulation of these heteromers can modify the antitumoral activity of cannabinoids in vivo. These findings unveil the existence of previously unknown signaling platforms that help explain the complex behavior of cannabinoids and may constitute new targets for therapeutic intervention in oncology. PMID:24942731

  9. Antagonistic targeting of the histamine H3 receptor decreases caloric intake in higher mammalian species.

    Science.gov (United States)

    Malmlöf, Kjell; Hastrup, Sven; Wulff, Birgitte Schellerup; Hansen, Barbara C; Peschke, Bernd; Jeppesen, Claus Bekker; Hohlweg, Rolf; Rimvall, Karin

    2007-04-15

    The main purpose of this study was to examine the effects of a selective histamine H(3) receptor antagonist, NNC 38-1202, on caloric intake in pigs and in rhesus monkeys. The compound was given intragastrically (5 or 15 mg/kg), to normal pigs (n=7) and subcutaneously (1 or 0.1mg/kg) to obese rhesus monkeys (n=9). The energy intake recorded following administration of vehicle to the same animals served as control for the effect of the compound. In addition, rhesus monkey and pig histamine H(3) receptors were cloned from hypothalamic tissues and expressed in mammalian cell lines. The in vitro antagonist potencies of NNC 38-1202 at the H(3) receptors were determined using a functional GTPgammaS binding assay. Porcine and human H(3) receptors were found to have 93.3% identity at the amino acid level and the close homology between the monkey and human H(3) receptors (98.4% identity) was confirmed. The antagonist potencies of NNC 38-1202 at the porcine, monkey and human histamine H(3) receptors were high as evidenced by K(i)-values being clearly below 20 nM, whereas the K(i)-value on the rat H(3) receptor was significantly higher (56+/-6.0 nM). NNC 38-1202, given to pigs in a dose of 15 mg/kg, produced a significant (p<0.05) reduction (55%) of calorie intake compared with vehicle alone, (132.6+/-10.0 kcal/kgday versus 59.7+/-10.2 kcal/kgday). In rhesus monkeys administration of 0.1 and 1mg/kg decreased (p<0.05) average calorie intakes by 40 and 75%, respectively. In conclusion, the present study demonstrates that antagonistic targeting of the histamine H(3) receptor decreases caloric intake in higher mammalian species.

  10. Co-targeting the HER and IGF/insulin receptor axis in breast cancer, with triple targeting with endocrine therapy for hormone-sensitive disease.

    Science.gov (United States)

    Chakraborty, Ashok; Hatzis, Christos; DiGiovanna, Michael P

    2017-05-01

    Interactions between HER2, estrogen receptor (ER), and insulin-like growth factor I receptor (IGF1R) are implicated in resistance to monotherapies targeting these receptors. We have previously shown in pre-clinical studies synergistic anti-tumor effects for co-targeting each pairwise combination of HER2, IGF1R, and ER. Strikingly, synergy for HER2/IGF1R targeting occurred not only in a HER2+ model, but also in a HER2-normal model. The purpose of the current study was therefore to determine the generalizability of synergistic anti-tumor effects of co-targeting HER2/IGF1R, the anti-tumor activity of triple-targeting HER2/IGF1R/ER in hormone-dependent cell lines, and the effect of using the multi-targeting drugs neratinib (pan-HER) and BMS-754807 (dual IGF1R/insulin receptor). Proliferation and apoptosis assays were performed in a large panel of cell lines representing varying receptor expression levels. Mechanistic effects were studied using phospho-protein immunoblotting. Analyses of drug interaction effects were performed using linear mixed-effects regression models. Enhanced anti-proliferative effects of HER/IGF-insulin co-targeting were seen in most, though not all, cell lines, including HER2-normal lines. For ER+ lines, triple targeting with inclusion of anti-estrogen generally resulted in the greatest anti-tumor effects. Double or triple targeting generally resulted in marked increases in apoptosis in the sensitive lines. Mechanistic studies demonstrated that the synergy between drugs was correlated with maximal inhibition of Akt and ERK pathway signaling. Dual HER/IGF-insulin targeting, and triple targeting with inclusion of anti-estrogen drugs, shows striking anti-tumor activity across breast cancer types, and drugs with broader receptor specificity may be more effective than single receptor selective drugs, particularly for ER- cells.

  11. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    Kolko, Miriam; de Turco, Elena B; Diemer, Nils Henrik

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H...

  12. Targeting of TAM Receptors Ameliorates Fibrotic Mechanisms in Idiopathic Pulmonary Fibrosis.

    Science.gov (United States)

    Espindola, Milena S; Habiel, David M; Narayanan, Rohan; Jones, Isabelle; Coelho, Ana L; Murray, Lynne A; Jiang, Dianhua; Noble, Paul W; Hogaboam, Cory M

    2018-06-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung remodeling, which progressively abolishes lung function in an RTK (receptor tyrosine kinase)-dependent manner. Gas6 (growth arrest-specific 6) ligand, Tyro3 (TYRO3 protein tyrosine kinase 3), and Axl (anexelekto) RTK expression and activity are increased in IPF. To determine if targeting these RTK pathways would inhibit fibroblast activation and the development of pulmonary fibrosis. Quantitative genomic, proteomic, and functional analyses were used to determine Gas6/TAM (Tyro3, Axl, and Mertk [MER proto-oncogene, tyrosine kinase]) RTK expression and activation in tissues and fibroblasts from normal and IPF lungs. The profibrotic impact of these RTK pathways were also examined in bleomycin-induced pulmonary fibrosis and in SCID/Bg mice that developed pulmonary fibrosis after the intravenous administration of primary IPF fibroblasts. Gas6, Axl, and Tyro3 were increased in both rapidly and slowly progressive IPF compared with normal lung samples and fibroblasts. Targeting these pathways with either specific antibodies directed at Gas6 or Axl, or with small-molecule TAM inhibitors indicated that the small molecule-mediated targeting approach was more efficacious in both in vitro and in vivo studies. Specifically, the TAM receptor inhibitor R428 (also known as BGB324) significantly inhibited the synthetic, migratory, and proliferative properties of IPF fibroblasts compared with the other Gas6/TAM receptor targeting agents. Finally, loss of Gas6 expression decreased lung fibrotic responses to bleomycin and treatment with R428 inhibited pulmonary fibrosis in humanized SCID/Bg mice. Gas6/TAM receptor activity contributes to the activation of pulmonary fibroblasts in IPF, suggesting that targeting this RTK pathway might be an effective antifibrotic strategy in this disease.

  13. Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia.

    Science.gov (United States)

    Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Śniecikowska, Joanna; Pawłowski, Maciej; Kazek, Grzegorz; Siwek, Agata; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw

    2015-03-06

    We describe a novel class of designed multiple ligands (DMLs) combining serotonin 5-HT6 receptor (5-HT6R) antagonism with dopamine D2 receptor (D2R) partial agonism. Prototype hybrid molecules were designed using docking to receptor homology models. Diverse pharmacophore moieties yielded 3 series of hybrids with varying in vitro properties at 5-HT6R and D2R, and at M1 receptor and hERG channel antitargets. 4-(piperazin-1-yl)-1H-indole derivatives showed highest antagonist potency at 5-HT6R, with 7-butoxy-3,4-dihydroquinolin-2(1H)-one and 2-propoxybenzamide derivatives having promising D2R partial agonism. 2-(3-(4-(1-(phenylsulfonyl)-1H-indol-4-yl)piperazin-1-yl)propoxy)benzamide (47) exhibited nanomolar affinity at both 5-HT6R and D2R and was evaluated in rat models. It displayed potent antidepressant-like and anxiolytic-like activity in the Porsolt and Vogel tests, respectively, more pronounced than that of a reference selective 5-HT6R antagonist or D2R partial agonist. In addition, 47 also showed antidepressant-like activity (Porsolt's test) and anxiolytic-like activity (open field test) in aged (>18-month old) rats. In operant conditioning tests, 47 enhanced responding for sweet reward in the saccharin self-administration test, consistent with anti-anhedonic properties. Further, 47 facilitated extinction of non-reinforced responding for sweet reward, suggesting potential procognitive activity. Taken together, these studies suggest that DMLs combining 5-HT6R antagonism and D2R partial agonism may successfully target affective disorders in patients from different age groups without a risk of cognitive deficits. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Lipid-Polymer Nanoparticles for Folate-Receptor Targeting Delivery of Doxorubicin.

    Science.gov (United States)

    Zheng, Mingbin; Gong, Ping; Zheng, Cuifang; Zhao, Pengfei; Luo, Zhenyu; Ma, Yifan; Cai, Lintao

    2015-07-01

    A biocompatible PLGA-lipid hybrid nanoparticles (NPs) was developed for targeted delivery of anticancer drugs with doxorubicin (DOX). The hydrodynamic diameter and zeta potential of DOX-loaded PLGA-lipid NPs (DNPs) were affected by the mass ratio of Lipid/PLGA or DSPE-PEG-COOH/Lecithin. At the 1:20 drug/polymer mass ratio, the mean hydrodynamic diameter of DNPs was the lowest (99.2 1.83 nm) and the NPs presented the encapsulation efficiency of DOX with 42.69 1.30%. Due to the folate-receptor mediated endocytosis, the PLGA-lipid NPs with folic acid (FA) targeting ligand showed significant higher uptake by folate-receptor-positive MCF-7 cells as compared to PLGA-lipid NPs without folate. Confocal microscopic observation and flow cytometry analysis also supported the enhanced cellular uptake of the FA-targeted NPs. The results indicated that the FA-targeted DNPs exhibited higher cytotoxicity in MCF-7 cells compared with non-targeted NPs. The lipid-polymer nanoparticles provide a solution of biocompatible nanocarrier for cancer targeting therapy.

  15. Non-genomic actions of aldosterone: From receptors and signals to membrane targets.

    LENUS (Irish Health Repository)

    2012-02-01

    In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid \\'non-genomic\\' activation of protein kinases and secondary messenger signalling cascades has also been detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-induced changes in gene expression through receptor and transcription factor phosphorylation.

  16. Non-genomic actions of aldosterone: From receptors and signals to membrane targets.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-07-26

    In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid \\'non-genomic\\' activation of protein kinases and secondary messenger signalling cascades has also been detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-induced changes in gene expression through receptor and transcription factor phosphorylation.

  17. Type I IL-1 Receptor (IL-1RI as Potential New Therapeutic Target for Bronchial Asthma

    Directory of Open Access Journals (Sweden)

    Jyh-Hong Lee

    2010-01-01

    Full Text Available The IL-1R/TLR family has been receiving considerable attention as potential regulators of inflammation through their ability to act as either activators or suppressors of inflammation. Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness, allergic inflammation, elevated serum total, allergen-specific IgE levels, and increased Th2 cytokine production. The discovery that the IL-1RI–IL-1 and ST2–IL-33 pathways are crucial for allergic inflammation has raised interest in these receptors as potential targets for developing new therapeutic strategies for bronchial asthma. This paper discusses the current use of neutralizing mAb or soluble receptor constructs to deplete cytokines, the use of neutralizing mAb or recombinant receptor antagonists to block cytokine receptors, and gene therapy from experimental studies in asthma. Targeting IL-1RI–IL-1 as well as ST2–IL-33 pathways may promise a disease-modifying approach in the future.

  18. Cellular imaging and folate receptor targeting delivery of gum kondagogu capped gold nanoparticles in cancer cells.

    Science.gov (United States)

    Kumar, Sathish Sundar Dhilip; Mahesh, Ayyavu; Antoniraj, M Gover; Rathore, Hanumant Singh; Houreld, N N; Kandasamy, Ruckmani

    2018-04-01

    In this study, the green synthesis of gum kondagogu capped gold nanoparticles (GK-GNPs) was prepared using a naturally available polysaccharide. The anionic gum capped GK-GNPs enabled the successful coupling of folic acid (FA) and fluorescein isothiocyanate (FITC) to produce a fluorescently labelled GNP (F2-GNP). F2-GNPs were further characterized using different physicochemical methods Cellular viability, cellular imaging, and targeted delivery of F2-GNPs were further evaluated in both folate receptor positive (MCF-7) and folate receptor negative (A549) cancer cells. Physicochemical characterization revealed a nanoparticle with a small size (37 nm), smooth surface (surface charge of -23.7 mV), crystallinity of gold nanoparticles and existence of gum kondagogu in the F2-GNPs. Cellular uptake of F2-GNPs indicated a greater affinity towards folate receptor positive cells. This study shows that the F2-GNPs is as an effective nanocarrier for targeted drug delivery and cellular imaging via folate receptors. Copyright © 2017. Published by Elsevier B.V.

  19. Targeting of ECM molecules and their metabolizing enzymes and receptors for the treatment of CNS diseases

    DEFF Research Database (Denmark)

    Berezin, Vladimir; Walmod, Peter Schledermann; Filippov, Mikhail

    2014-01-01

    Extracellular matrix (ECM) molecules, their receptors at the cell surface, and cell adhesion molecules (CAMs) involved in cell-cell or cell-ECM interactions are implicated in processes related to major diseases of the central nervous system including Alzheimer's disease (AD), epilepsy......, schizophrenia, addiction, multiple sclerosis, Parkinson's disease, and cancer. There are multiple strategies for targeting the ECM molecules and their metabolizing enzymes and receptors with antibodies, peptides, glycosaminoglycans, and other natural and synthetic compounds. ECM-targeting treatments include...... chondroitinase ABC, heparin/heparan sulfate-mimicking oligosaccharides, ECM cross-linking antibodies, and drugs stimulating expression of ECM molecules. The amount or activity of ECM-degrading enzymes like matrix metalloproteinases can be modulated indirectly via the regulation of endogenous inhibitors like...

  20. Targeting death receptors to fight cancer: from biological rational to clinical implementation.

    Science.gov (United States)

    Mocellin, S

    2010-01-01

    Considering that most currently available chemotherapeutic drugs work by inducing cell apoptosis, it is not surprising that many expectations in cancer research come from the therapeutic exploitation of the naturally occurring death pathways. Receptor mediated apoptosis depends upon the engagement of specific ligands with their respective membrane receptors and - within the frame of complex regulatory networks - modulates some key physiological and pathological processes such as lymphocyte survival, inflammation and infectious diseases. A pivotal observation was that some of these pathways may be over activated in cancer under particular circumstances, which opened the avenue for tumor-specific therapeutic interventions. Although one death-related ligand (e.g., tumor necrosis factor, TNF) is currently the basis of effective anticancer regimens in the clinical setting, the systemic toxicity is hampering its wide therapeutic exploitation. However, strategies to split the therapeutic from the toxic TNF activity are being devised. Furthermore, other death receptor pathways (e.g., Fas/FasL, TRAIL/TRAIL receptor) are being intensively investigated in order to therapeutically exploit their activity against cancer. This article summarizes the current knowledge on the molecular features of death receptor pathways that make them an attractive target for anticancer therapeutics. In addition, the results so far obtained in the clinical oncology setting as well as the issues to be faced while interfering with these pathways for therapeutic purposes will be overviewed.

  1. The Prelude on Novel Receptor and Ligand Targets Involved in the Treatment of Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Venu Gopal Jonnalagadda

    2014-05-01

    Full Text Available Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes.

  2. Frizzled7: A Promising Achilles’ Heel for Targeting the Wnt Receptor Complex to Treat Cancer

    Science.gov (United States)

    Phesse, Toby; Flanagan, Dustin; Vincan, Elizabeth

    2016-01-01

    Frizzled7 is arguably the most studied member of the Frizzled family, which are the cognate Wnt receptors. Frizzled7 is highly conserved through evolution, from Hydra through to humans, and is expressed in diverse organisms, tissues and human disease contexts. Frizzled receptors can homo- or hetero-polymerise and associate with several co-receptors to transmit Wnt signalling. Notably, Frizzled7 can transmit signalling via multiple Wnt transduction pathways and bind to several different Wnt ligands, Frizzled receptors and co-receptors. These promiscuous binding and functional properties are thought to underlie the pivotal role Frizzled7 plays in embryonic developmental and stem cell function. Recent studies have identified that Frizzled7 is upregulated in diverse human cancers, and promotes proliferation, progression and invasion, and orchestrates cellular transitions that underscore cancer metastasis. Importantly, Frizzled7 is able to regulate Wnt signalling activity even in cancer cells which have mutations to down-stream signal transducers. In this review we discuss the various aspects of Frizzled7 signalling and function, and the implications these have for therapeutic targeting of Frizzled7 in cancer. PMID:27196929

  3. Extrasynaptic glycine receptors of rodent dorsal raphe serotonergic neurons:a sensitive target for ethanol

    OpenAIRE

    Maguire, Edward P.; Mitchell, Elizabeth A.; Greig, Scott J.; Corteen, Nicole; Balfour, David J. K.; Swinny, Jerome; Lambert, Jeremy J.; Belelli, Delia

    2014-01-01

    Alcohol abuse is a significant medical and social problem. Several neurotransmitter systems are implicated in ethanol's actions, with certain receptors and ion channels emerging as putative targets. The dorsal raphe (DR) nucleus is associated with the behavioral actions of alcohol, but ethanol actions on these neurons are not well understood. Here, using immunohistochemistry and electrophysiology we characterize DR inhibitory transmission and its sensitivity to ethanol. DR neurons exhibit inh...

  4. Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Fang, Ye

    2011-07-01

    We describe a label-free integrative pharmacology on-target (iPOT) method to assess the pharmacology of drugs at the β2-adrenergic receptor. This method combines dynamic mass redistribution (DMR) assays using an array of probe molecule-hijacked cells with similarity analysis. The whole cell DMR assays track cell system-based, ligand-directed, and kinetics-dependent biased activities of the drugs, and translates their on-target pharmacology into numerical descriptors which are subject to similarity analysis. We demonstrate that the approach establishes an effective link between the label-free pharmacology and in vivo therapeutic indications of drugs.

  5. Therapeutic Innovations for Targeting Childhood Neuroblastoma: Implications of the Neurokinin-1 Receptor System.

    Science.gov (United States)

    Berger, Michael; VON Schweinitz, Dietrich

    2017-11-01

    Neuroblastoma is the most common solid extracranial malignant tumor in children. Despite recent advances in the treatment of this heterogenous tumor with surgery and chemotherapy, the prognosis in advanced stages remains poor. Interestingly, neuroblastoma is one of the few solid tumors, to date, in which an effect for targeted immunotherapy has been proven in controlled clinical trials, giving hope for further advances in the treatment of this and other tumors by targeted therapy. A large array of novel therapeutic options for targeted therapy of neuroblastoma is on the horizon. To this repεrtoirε, the neurokinin-1 receptor (NK1R) system was recently added. The present article explores the most recent developments in targeting neuroblastoma cells via the NK1R and how this new knowledge could be helpful to create new anticancer therapies agains neuroblastoma and other cancers. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease?

    Science.gov (United States)

    Deming, Yuetiva; Li, Zeran; Benitez, Bruno A; Cruchaga, Carlos

    2018-06-20

    There are currently no effective therapeutics for Alzheimer disease (AD). Clinical trials targeting amyloid beta thus far have shown very little benefit and only in the earliest stages of disease. These limitations have driven research to identify alternative therapeutic targets, one of the most promising is the triggering receptor expressed on myeloid cells 2 (TREM2). Areas covered: Here, we review the literature to-date and discuss the potentials and pitfalls for targeting TREM2 as a potential therapeutic for AD. We focus on research in animal and cell models for AD and central nervous system injury models which may help in understanding the role of TREM2 in disease. Expert opinion: Studies suggest TREM2 plays a key role in AD pathology; however, results have been conflicting about whether TREM2 is beneficial or harmful. More research is necessary before designing TREM2-targeting therapies. Successful therapeutics will most likely be administered early in disease.

  7. Equol is more active than soy isoflavone itself to compete for binding to thromboxane A(2) receptor in human platelets.

    Science.gov (United States)

    Muñoz, Yenny; Garrido, Argelia; Valladares, Luis

    2009-03-01

    Several dietary intervention studies examining the health effect of soy isoflavones allude to the importance of equol in establishing the cardiovascular response to soy protein. Although, the specific mechanism by which this action occurs has not been established. The aim of this study was to investigate the inhibitory effect of soy-isoflavones and the metabolite of daidzein, equol, on agonist-induced platelet responses dependent on thromboxane A(2) (TxA(2)) receptor. Competitive radioligand binding assay was used to screen for affinity of these compounds to the TxA(2) receptor. The effect of equol on platelet activation, evaluate through of release of the ATP, by analogs of TxA(2) was analyzed. The effect of equol on platelet aggregation was investigated with ADP, U46619 (a TxA(2) mimic) and the calcium ionophore A23187. The data showed that aglycone isoflavones and equol bind to TxA(2) receptor in the micromol/L range, whereas their glucoside derivates had very low binding activity for this receptor. Under equilibrium conditions, the following order of the relative affinity in inhibiting [(3)H]-SQ29585 binding was: equol>genistein>daidzein>glycitein>genistin, daidzin, glycitin. Equol interaction was reversible and competitive for labeled-SQ29548 with not apparent decrease in the number of TxA(2) binding sites. In addition, from platelet activation studies, equol effectively inhibited ATP secretion elicited by the TxA(2) analog U46619. On the other hand, equol inhibited the platelet aggregation induced by U46619 and A23187, while it failed to inhibit that induced by ADP. The aglycone isoflavones from soy, and particularly equol, have been found to have biological effects attributable to thromboxane A(2) receptor antagonism. These findings may help elucidate how dietary isoflavone modulate platelet function and explain why soy-rich foods are claimed to have beneficial effects in the prevention of thrombotic events.

  8. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David; Bohn, Alan J.; Lee, Peter S.; Anderson, Caitlin E.; Nieusma, Travis; Holstein, Carly A.; Garcia, Natalie K.; Hooper, Kathryn A.; Ravichandran, Rashmi; Nelson, Jorgen W.; Sheffler, William; Bloom, Jesse D.; Lee, Kelly K.; Ward, Andrew B.; Yager, Paul; Fuller, Deborah H.; Wilson, Ian A.; Baker , David (UWASH); (Scripps); (FHCRC)

    2017-06-12

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.

  9. In vitro photodynamic effects of scavenger receptor targeted-photoactivatable nanoagents on activated macrophages.

    Science.gov (United States)

    Yi, Bong Gu; Park, Ok Kyu; Jeong, Myeong Seon; Kwon, Seung Hae; Jung, Jae In; Lee, Seongsoo; Ryoo, Sungwoo; Kim, Sung Eun; Kim, Jin Won; Moon, Won-Jin; Park, Kyeongsoon

    2017-04-01

    Scavenger receptors (SRs) expressed on the activated macrophages in inflammation sites have been considered as the most interesting and important target biomarker for targeted drug delivery, imaging and therapy. In the present study, we fabricated the scavenger receptor-A (SR-A) targeted-photoactivatable nanoagents (termed as Ce6/DS-DOCA) by entrapping chlorin e6 (Ce6) into the amphiphilic dextran sulfate-deoxycholic acid (DS-DOCA) conjugates via physically hydrophobic interactions. Insoluble Ce6 was easily encapsulated into DS-DOCA nanoparticles by a dialysis method and the loading efficiency was approximately 51.7%. The Ce6/DS-DOCA formed nano-sized self-assembled aggregates (28.8±5.6nm in diameter), confirmed by transmission electron microscope, UV/Vis and fluorescence spectrophotometer. The Ce6/DS-DOCA nanoagents could generate highly reactive singlet oxygen under laser irradiation. Also, in vitro studies showed that they were more specifically taken up by lipopolysaccharide (LPS)-induced activated macrophages (RAW 264.7) via a SR-A-mediated endocytosis, relative to by non-activated macrophages, and notably induced cell death of activated macrophages under laser irradiation. Therefore, SR-A targetable and photoactivatable Ce6/DS-DOCA nanoagents with more selective targeting to the activated macrophages will have great potential for treatment of inflammatory diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer

    Science.gov (United States)

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.

    2018-01-01

    Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910

  11. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    Science.gov (United States)

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  12. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer.

    Science.gov (United States)

    Philip, Philip A; Lutz, Manfred P

    2015-10-01

    Pancreatic cancer is aggressive, chemoresistant, and characterized by complex and poorly understood molecular biology. The epidermal growth factor receptor (EGFR) pathway is frequently activated in pancreatic cancer; therefore, it is a rational target for new treatments. However, the EGFR tyrosine kinase inhibitor erlotinib is currently the only targeted therapy to demonstrate a very modest survival benefit when added to gemcitabine in the treatment of patients with advanced pancreatic cancer. There is no molecular biomarker to predict the outcome of erlotinib treatment, although rash may be predictive of improved survival; EGFR expression does not predict the biologic activity of anti-EGFR drugs in pancreatic cancer, and no EGFR mutations are identified as enabling the selection of patients likely to benefit from treatment. Here, we review clinical studies of EGFR-targeted therapies in combination with conventional cytotoxic regimens or multitargeted strategies in advanced pancreatic cancer, as well as research directed at molecules downstream of EGFR as alternatives or adjuncts to receptor targeting. Limitations of preclinical models, patient selection, and trial design, as well as the complex mechanisms underlying resistance to EGFR-targeted agents, are discussed. Future clinical trials must incorporate translational research end points to aid patient selection and circumvent resistance to EGFR inhibitors.

  13. Striatal adenosine A2A receptor-mediated positron emission tomographic imaging in 6-hydroxydopamine-lesioned rats using [18F]-MRS5425

    International Nuclear Information System (INIS)

    Bhattacharjee, Abesh Kumar; Lang Lixin; Jacobson, Orit; Shinkre, Bidhan; Ma Ying; Niu Gang; Trenkle, William C.; Jacobson, Kenneth A.; Chen Xiaoyuan; Kiesewetter, Dale O.

    2011-01-01

    Introduction: A 2A receptors are expressed in the basal ganglia, specifically in striatopallidal GABAergic neurons in the striatum (caudate-putamen). This brain region undergoes degeneration of presynaptic dopamine projections and depletion of dopamine in Parkinson's disease. We developed an 18 F-labeled A 2A analog radiotracer ([ 18 F]-MRS5425) for A 2A receptor imaging using positron emission tomography (PET). We hypothesized that this tracer could image A 2A receptor changes in the rat model for Parkinson's disease, which is created following unilateral injection of the monoaminergic toxin 6-hydroxydopamine (6-OHDA) into the substantia nigra. Methods: [ 18 F]-MRS5425 was injected intravenously in anesthetized rats, and PET imaging data were collected. Image-derived percentage injected doses per gram (%ID/g) in regions of interest was measured in the striatum of normal rats and in rats unilaterally lesioned with 6-OHDA after intravenous administration of saline (baseline), D 2 agonist quinpirole (1.0 mg/kg) or D 2 antagonist raclopride (6.0 mg/kg). Results: Baseline %ID/g reached a maximum at 90 s and maintained plateau for 3.5 min, and then declined slowly thereafter. In 6-OHDA-lesioned rats, %ID/g was significantly higher in the lesioned side compared to the intact side, and the baseline total %ID/g (data from both hemispheres were combined) was significantly higher compared to quinpirole stimulation starting from 4.5 min until the end of acquisition at 30 min. Raclopride did not produce any change in uptake compared to baseline or between the hemispheres. Conclusion: Thus, increase of A 2A receptor-mediated uptake of radioactive MRS5425 could be a superior molecular target for Parkinson's imaging.

  14. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders

    International Nuclear Information System (INIS)

    Agarwal, Swati; Yadav, Anuradha; Chaturvedi, Rajnish Kumar

    2017-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found that the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models. - Highlights: • Peroxisome -activated receptors (PPARs) serve to be a promising therapeutic target for several neurodegenerative disorders. • PPAR agonist as well as provides neuroprotection in vitro as well as in vivo animal models of neurodegenerative disorders. • PPAR activating anti-inflammatory drugs use is effective in decreasing progression of neurodegenerative diseases.

  15. Cysteine 893 is a target of regulatory thiol modifications of GluA1 AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Lotta von Ossowski

    Full Text Available Recent studies indicate that glutamatergic signaling involves, and is regulated by, thiol modifying and redox-active compounds. In this study, we examined the role of a reactive cysteine residue, Cys-893, in the cytosolic C-terminal tail of GluA1 AMPA receptor as a potential regulatory target. Elimination of the thiol function by substitution of serine for Cys-893 led to increased steady-state expression level and strongly reduced interaction with SAP97, a major cytosolic interaction partner of GluA1 C-terminus. Moreover, we found that of the three cysteine residues in GluA1 C-terminal tail, Cys-893 is the predominant target for S-nitrosylation induced by exogenous nitric oxide donors in cultured cells and lysates. Co-precipitation experiments provided evidence for native association of SAP97 with neuronal nitric oxide synthase (nNOS and for the potential coupling of Ca2+-permeable GluA1 receptors with nNOS via SAP97. Our results show that Cys-893 can serve as a molecular target for regulatory thiol modifications of GluA1 receptors, including the effects of nitric oxide.

  16. Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors.

    Science.gov (United States)

    Xu, K; Di Luca, D G; Orrú, M; Xu, Y; Chen, J-F; Schwarzschild, M A

    2016-05-13

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of parkinson's disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine's neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine (MPTP) neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in central nervous system (CNS) cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25mg/kgip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine's locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined. Copyright © 2016 IBRO. All rights reserved.

  17. Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting.

    Science.gov (United States)

    Staquicini, Daniela I; Rangel, Roberto; Guzman-Rojas, Liliana; Staquicini, Fernanda I; Dobroff, Andrey S; Tarleton, Christy A; Ozbun, Michelle A; Kolonin, Mikhail G; Gelovani, Juri G; Marchiò, Serena; Sidman, Richard L; Hajjar, Katherine A; Arap, Wadih; Pasqualini, Renata

    2017-06-26

    Cytoskeletal-associated proteins play an active role in coordinating the adhesion and migration machinery in cancer progression. To identify functional protein networks and potential inhibitors, we screened an internalizing phage (iPhage) display library in tumor cells, and selected LGRFYAASG as a cytosol-targeting peptide. By affinity purification and mass spectrometry, intracellular annexin A2 was identified as the corresponding binding protein. Consistently, annexin A2 and a cell-internalizing, penetratin-fused version of the selected peptide (LGRFYAASG-pen) co-localized and specifically accumulated in the cytoplasm at the cell edges and cell-cell contacts. Functionally, tumor cells incubated with LGRFYAASG-pen showed disruption of filamentous actin, focal adhesions and caveolae-mediated membrane trafficking, resulting in impaired cell adhesion and migration in vitro. These effects were paralleled by a decrease in the phosphorylation of both focal adhesion kinase (Fak) and protein kinase B (Akt). Likewise, tumor cells pretreated with LGRFYAASG-pen exhibited an impaired capacity to colonize the lungs in vivo in several mouse models. Together, our findings demonstrate an unrecognized functional link between intracellular annexin A2 and tumor cell adhesion, migration and in vivo grafting. Moreover, this work uncovers a new peptide motif that binds to and inhibits intracellular annexin A2 as a candidate therapeutic lead for potential translation into clinical applications.

  18. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    Science.gov (United States)

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  19. Adenosine A2A receptor-dependent proliferation of pulmonary endothelial cells is mediated through calcium mobilization, PI3-kinase and ERK1/2 pathways

    International Nuclear Information System (INIS)

    Ahmad, Aftab; Schaack, Jerome B.; White, Carl W.; Ahmad, Shama

    2013-01-01

    Highlights: •A 2A receptor-induced pulmonary endothelial growth is mediated by PI3K and ERK1/2. •Cytosolic calcium mobilization is also critical for pulmonary endothelial growth. •Effectors of A 2A receptor, like tyrosine kinases and cAMP increase PI3K/Akt signaling. •Activation of A 2A receptor can contribute to vascular remodeling. -- Abstract: Hypoxia and HIF-2α-dependent A 2A receptor expression and activation increase proliferation of human lung microvascular endothelial cells (HLMVECs). This study was undertaken to investigate the signaling mechanisms that mediate the proliferative effects of A 2A receptor. A 2A receptor-mediated proliferation of HLMVECs was inhibited by intracellular calcium chelation, and by specific inhibitors of ERK1/2 and PI3-kinase (PI3K). The adenosine A 2A receptor agonist CGS21680 caused intracellular calcium mobilization in controls and, to a greater extent, in A 2A receptor-overexpressing HLMVECs. Adenoviral-mediated A 2A receptor overexpression as well as receptor activation by CGS21680 caused increased PI3K activity and Akt phosphorylation. Cells overexpressing A 2A receptor also manifested enhanced ERK1/2 phosphorylation upon CGS21680 treatment. A 2A receptor activation also caused enhanced cAMP production. Likewise, treatment with 8Br-cAMP increased PI3K activity. Hence A 2A receptor-mediated cAMP production and PI3K and Akt phosphorylation are potential mediators of the A 2A -mediated proliferative response of HLMVECs. Cytosolic calcium mobilization and ERK1/2 phosphorylation are other critical effectors of HLMVEC proliferation and growth. These studies underscore the importance of adenosine A 2A receptor in activation of survival and proliferative pathways in pulmonary endothelial cells that are mediated through PI3K/Akt and ERK1/2 pathways

  20. Drug Discovery Targeting Serotonin G Protein-Coupled Receptors in the Treatment of Neuropsychiatric Disorders

    Science.gov (United States)

    Felsing, Daniel E.

    Clinical data show that activation of 5-HT2C G protein-coupled receptors (GPCRs) can treat obesity (lorcaserin/BelviqRTM) and psychotic disorders (aripiprazole/Abilify.), including schizophrenia. 5-HT2C GPCRs are members of the 5-HT2 sub-family of 5-HT GPCRs, which include 5-HT2A, 5-HT2B, and 5-HT 2C GPCRs. 5-HT2C is structurally similar to 5-HT2A and 5-HT2B GPCRs, but activation of 5-HT2A and/or 5-HT 2B causes deleterious effects, including hallucinations and cardiac valvulopathy. Thus, there is a challenge to develop drugs that selectively activate only 5-HT2C. Prolonged activation of GPCRs by agonists reduces their function via a regulatory process called desensitization. This has clinical relevance, as 45% of drugs approved by the FDA target GPCRs, and agonist drugs (e.g., morphine) typically lose efficacy over time due to desensitization, which invites tolerance. Agonists that cause less desensitization may show extended clinical efficacy as well as a more acceptable clinical dose range. We hypothesized that structurally distinct agonists of the 5-HT2C receptor may cause varying degrees of desensitization by stabilizing unique 5-HT2C receptor conformations. Discovery of 5-HT2C agonists that exhibit minimal desensitization is therapeutically relevant for the pharmacotherapeutic treatment of chronic diseases such as obesity and psychotic disorders. The 5-HT7 receptor has recently been discovered as a druggable target, and selective activation of the 5-HT7 receptor has been shown to alleviate locomotor deficits in mouse models of Rett Syndrome. Additionally, buspirone has been shown to display therapeutically relevant affinity at 5-HT 1A and is currently in phase II clinical trials to treat stereotypy in children with autism. The 5-PAT chemical scaffold shows high affinity towards the 5-HT7 and 5-HT1A receptors. Modulations around the 5-phenyl moiety were able to improve selectivity in binding towards the 5-HT 7 receptor, whereas modulations of the alkyl chains

  1. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    International Nuclear Information System (INIS)

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing; Bosland, Maarten C.; Kajdacsy-Balla, André; Gnanasekar, Munirathinam

    2012-01-01

    Highlights: ► Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. ► Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. ► Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. ► Knock down of RAGE abrogates prostate tumor growth in vivo. ► Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  2. When cytokinin, a plant hormone, meets the adenosine A2A receptor: a novel neuroprotectant and lead for treating neurodegenerative disorders?

    Directory of Open Access Journals (Sweden)

    Yi-Chao Lee

    Full Text Available It is well known that cytokinins are a class of phytohormones that promote cell division in plant roots and shoots. However, their targets, biological functions, and implications in mammalian systems have rarely been examined. In this study, we show that one cytokinin, zeatin riboside, can prevent pheochromocytoma (PC12 cells from serum deprivation-induced apoptosis by acting on the adenosine A(2A receptor (A(2A-R, which was blocked by an A(2A-R antagonist and a protein kinase A (PKA inhibitor, demonstrating the functional ability of zeatin riboside by mediating through A(2A-R signaling event. Since the A(2A-R was implicated as a therapeutic target in treating Huntington's disease (HD, a cellular model of HD was applied by transfecting mutant huntingtin in PC12 cells. By using filter retardation assay and confocal microscopy we found that zeatin riboside reversed mutant huntingtin (Htt-induced protein aggregations and proteasome deactivation through A(2A-R signaling. PKA inhibitor blocked zeatin riboside-induced suppression of mutant Htt aggregations. In addition, PKA activated proteasome activity and reduced mutant Htt protein aggregations. However, a proteasome inhibitor blocked both zeatin riboside-and PKA activator-mediated suppression of mutant Htt aggregations, confirming mediation of the A(2A-R/PKA/proteasome pathway. Taken together, zeatin riboside might have therapeutic potential as a novel neuroprotectant and a lead for treating neurodegenerative disorders.

  3. The Sam-Sam interaction between Ship2 and the EphA2 receptor: design and analysis of peptide inhibitors.

    Science.gov (United States)

    Mercurio, Flavia Anna; Di Natale, Concetta; Pirone, Luciano; Iannitti, Roberta; Marasco, Daniela; Pedone, Emilia Maria; Palumbo, Rosanna; Leone, Marilisa

    2017-12-12

    The lipid phosphatase Ship2 represents a drug discovery target for the treatment of different diseases, including cancer. Its C-terminal sterile alpha motif domain (Ship2-Sam) associates with the Sam domain from the EphA2 receptor (EphA2-Sam). This interaction is expected to mainly induce pro-oncogenic effects in cells therefore, inhibition of the Ship2-Sam/EphA2-Sam complex may represent an innovative route to discover anti-cancer therapeutics. In the present work, we designed and analyzed several peptide sequences encompassing the interaction interface of EphA2-Sam for Ship2-Sam. Peptide conformational analyses and interaction assays with Ship2-Sam conducted through diverse techniques (CD, NMR, SPR and MST), identified a positively charged penta-amino acid native motif in EphA2-Sam, that once repeated three times in tandem, binds Ship2-Sam. NMR experiments show that the peptide targets the negatively charged binding site of Ship2-Sam for EphA2-Sam. Preliminary in vitro cell-based assays indicate that -at 50 µM concentration- it induces necrosis of PC-3 prostate cancer cells with more cytotoxic effect on cancer cells than on normal dermal fibroblasts. This work represents a pioneering study that opens further opportunities for the development of inhibitors of the Ship2-Sam/EphA2-Sam complex for therapeutic applications.

  4. Modes of Action, Resistance and Toxicity of Insecticides Targeting Nicotinic Acetylcholine Receptors.

    Science.gov (United States)

    Ihara, Makoto; Buckingham, Steven D; Matsuda, Kazuhiko; Sattelle, David B

    2017-01-01

    Nicotinic acetylcholine receptors (nAChRs) of insects play a key role in fast excitatory neurotransmission. Several classes of insecticides target insect nAChRs, which are composed of subunit members of a family of multiple subunit encoding genes. Alternative splicing and RNA A-to-I editing can add further to receptor diversity. Native and recombinant receptors have been explored as sites of insecticide action using radioligands, electrophysiology and site-directed mutagenesis. We have reviewed the properties of native and recombinant insect nAChRs, the challenges of functional recombinant insect nAChR expression, nAChR interactions with ligands acting at orthosteric and allosteric sites and in particular their interactions with insecticides. Actions on insect nAChRs of cartap, neonicotinoids, spinosyns, sulfoxamines, butenolides and mesoionic insecticides are reviewed and current knowledge of their modes of action are addressed. Mutations that add to our understanding of insecticide action and those leading to resistance are discussed. Co-crystallisation of neonicotinoids with the acetylcholine binding protein (AChBP), a surrogate for the nAChR ligand binding domain, has proved instructive. Toxicity issues relating to insecticides targeting nAChRs are also considered. An overview of insecticide classes targeting insect nAChRs has enhanced our understanding of these important receptors and their insecticide binding sites. However, the subunit composition of native nAChRs remains poorly understood and functional expression still presents difficulties. These topics together with improved understanding of the precise sites of insecticide actions on insect nAChRs will be the subject of future research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  6. Charomers-Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery.

    Science.gov (United States)

    Hahn, Ulrich

    2017-12-06

    Interleukin-6 (IL-6) is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R) presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT). Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2'-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers-in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld.

  7. Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticle.

    Science.gov (United States)

    Xiao, Bo; Yang, Yang; Viennois, Emilie; Zhang, Yuchen; Ayyadurai, Saravanan; Baker, Mark; Laroui, Hamed; Merlin, Didier

    2014-03-21

    Treatment strategies for inflammatory bowel disease have been constrained by limited therapeutic efficacy and serious adverse effects owing to a lack of receptor for targeted drug delivery to the inflamed colon. Upon inflammation, CD98 expression is highly elevated in colonic epithelial cells and infiltrating immune cells. To investigate whether CD98 can be used as a colitis-targeted delivery receptor, we constructed CD98 Fab'-bearing quantum dots (QDs)-loaded nanoparticles (Fab'-NPs). The resultant Fab'-NPs had desired particle size (~458 nm) with a narrow size distribution and zeta-potential (approximately +19 mV), low cytotoxicity, and excellent fluorescence properties. Electron microscopy images provided direct evidence for the well-dispersed distribution of QDs within spherical Fab'-NPs. Cellular uptake experiments demonstrated that Fab'-NPs were efficiently internalized into Colon-26 and RAW 264.7 cells through the CD98-mediated endocytosis pathway, and showed that the targeting effect of CD98 Fab' markedly increased their cellular uptake efficiency compared with control pegylated QDs-loaded NPs (PEG-NPs). Furthermore, ex vivo studies showed much more effective accumulation of Fab'-NPs in colitis tissue than that of PEG-NPs. These findings suggest that because of inflammation-dependent over-expression of CD98, active colitis-targeted delivery can be accomplished using NPs decorated with CD98 antibody.

  8. Charomers—Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery

    Science.gov (United States)

    2017-01-01

    Interleukin-6 (IL-6) is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R) presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT). Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2′-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers—in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld. PMID:29211023

  9. Charomers—Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ulrich Hahn

    2017-12-01

    Full Text Available Interleukin-6 (IL-6 is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT. Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2′-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers—in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld.

  10. Regulation of the tumor suppressor FOXO3 by the thromboxane-A2 receptors in urothelial cancer.

    Directory of Open Access Journals (Sweden)

    Philip M Sobolesky

    Full Text Available The transcription factor FOXO3 is a well-established tumor suppressor whose activity, stability, and localization are regulated by phosphorylation and acetylation. Previous data by our laboratory demonstrated amplified thromboxane-A2 signaling was associated with poor prognoses in bladder cancer patients and overexpression of the thromboxane-A2 isoform-β receptor (TPβ, but not TPα, induced malignant transformation of immortalized bladder cells in vivo. Here, we describe a mechanism of TP mediated modulation of FOXO3 activity and localization by phosphorylation and deacetylation in a bladder cancer cell model. In vitro gain and loss of function studies performed in non-transformed cell lines, UROsta and SV-HUC, revealed knockdown of FOXO3 expression by shRNA increased cell migration and invasion, while exogenously overexpressing TPβ raised basal phosphorylated (pFOXO3-S294 levels. Conversely, overexpression of ERK-resistant, mutant FOXO3 reduced increases in UMUC3 cell migration and invasion, including that mediated by TP agonist (U46619. Additionally, stimulation of UMUC3 cells with U46619 increased pFOXO3-S294 expression, which could be attenuated by treatment with a TP antagonist (PTXA2 or ERK inhibitor (U0126. Initially U46619 caused nuclear accumulation of pFOXO3-S294; however, prolonged stimulation increased FOXO3 cytoplasmic localization. U46619 stimulation decreased overall FOXO3 transcriptional activity, but was associated with increased expression of its pro-survival target, manganese superoxide dismutase. The data also shows that TP stimulation increased the expression of the histone deacetylase, SIRT1, and corresponded with decreased acetylated-FOXO3. Collectively, the data suggest a role for TP signaling in the regulation of FOXO3 activity, mediated in part through phosphorylation and deacetylation.

  11. Crystal Structure of Botulinum Neurotoxin A2 in Complex with the Human Protein Receptor SV2C Reveals Plasticity in Receptor Binding

    Directory of Open Access Journals (Sweden)

    Robert Gustafsson

    2018-04-01

    Full Text Available Botulinum neurotoxins (BoNTs are a family of highly dangerous bacterial toxins, with seven major serotypes (BoNT/A-G. Members of BoNTs, BoNT/A1 and BoNT/B1, have been utilized to treat an increasing number of medical conditions. The clinical trials are ongoing for BoNT/A2, another subtype of BoNT/A, which showed promising therapeutic properties. Both BoNT/A1 and BoNT/A2 utilize three isoforms of synaptic vesicle protein SV2 (SV2A, B, and C as their protein receptors. We here present a high resolution (2.0 Å co-crystal structure of the BoNT/A2 receptor-binding domain in complex with the human SV2C luminal domain. The structure is similar to previously reported BoNT/A-SV2C complexes, but a shift of the receptor-binding segment in BoNT/A2 rotates SV2C in two dimensions giving insight into the dynamic behavior of the interaction. Small differences in key residues at the binding interface may influence the binding to different SV2 isoforms, which may contribute to the differences between BoNT/A1 and BoNT/A2 observed in the clinic.

  12. Targeting Alternative Sites on the Androgen Receptor to Treat Castration-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Paul S. Rennie

    2013-06-01

    Full Text Available Recurrent, metastatic prostate cancer continues to be a leading cause of cancer-death in men. The androgen receptor (AR is a modular, ligand-inducible transcription factor that regulates the expression of genes that can drive the progression of this disease, and as a consequence, this receptor is a key therapeutic target for controlling prostate cancer. The current drugs designed to directly inhibit the AR are called anti-androgens, and all act by competing with androgens for binding to the androgen/ligand binding site. Unfortunately, with the inevitable progression of the cancer to castration resistance, many of these drugs become ineffective. However, there are numerous other regulatory sites on this protein that have not been exploited therapeutically. The regulation of AR activity involves a cascade of complex interactions with numerous chaperones, co-factors and co-regulatory proteins, leading ultimately to direct binding of AR dimers to specific DNA androgen response elements within the promoter and enhancers of androgen-regulated genes. As part of the family of nuclear receptors, the AR is organized into modular structural and functional domains with specialized roles in facilitating their inter-molecular interactions. These regions of the AR present attractive, yet largely unexploited, drug target sites for reducing or eliminating androgen signaling in prostate cancers. The design of small molecule inhibitors targeting these specific AR domains is only now being realized and is the culmination of decades of work, including crystallographic and biochemistry approaches to map the shape and accessibility of the AR surfaces and cavities. Here, we review the structure of the AR protein and describe recent advancements in inhibiting its activity with small molecules specifically designed to target areas distinct from the receptor’s androgen binding site. It is anticipated that these new classes of anti-AR drugs will provide an additional

  13. Hyaluronan functionalizing QDs as turn-on fluorescent probe for targeted recognition CD44 receptor

    Science.gov (United States)

    Zhou, Shang; Huo, Danqun; Hou, Changjun; Yang, Mei; Fa, Huanbao

    2017-09-01

    The recognition of tumor markers in living cancer cells has attracted increasing interest. In the present study, the turn-on fluorescence probe was designed based on the fluorescence of thiolated chitosan-coated CdTe QDs (CdTe/TCS QDs) quenched by hyaluronan, which could provide the low background signal for sensitive cellular imaging. This system is expected to offer specific recognition of CD44 receptor over other substances owing to the specific affinity of hyaluronan and CD44 receptor ( 8-9 kcal/mol). The probe is stable in aqueous and has little toxicity to living cells; thus, it can be utilized for targeted cancer cell imaging. The living lung cancer cell imaging experiments further demonstrate its value in recognizing cell-surface CD44 receptor with turn-on mode. In addition, the probe can be used to recognize and differentiate the subtypes of lung cancer cells based on the difference of CD44 expression on the surface of lung cancer cells. And, the western blot test further confirmed that the expression level of the CD44 receptor in lung cancer cells is different. Therefore, this probe may be potentially applied in recognizing lung cancer cells with higher contrast and sensitivity and provide new tools for cancer prognosis and therapy. [Figure not available: see fulltext.

  14. A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons.

    Science.gov (United States)

    Li, Shu-Jing; Vaughan, Alexander; Sturgill, James Fitzhugh; Kepecs, Adam

    2018-06-06

    Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Targeting of liposomes to cells bearing nerve growth factor receptors mediated by biotinylated NGF

    International Nuclear Information System (INIS)

    Rosenberg, M.B.

    1986-01-01

    Previous studies of liposome targeting have concentrated on immunological systems, the use of ligand-receptor interactions has received little attention. The protein hormone beta-nerve growth factor (NGF) was modified by biotinylation via carboxyl group substitution (C-bio-NGF) under reaction conditions that yielded an average of 3 biotin additions per NGF subunit. NGF was also biotinylated through amino group substitution to produce derivatives with ratios of 1, 2 and 4 biotin moieties per NGF subunit (N-bio-NGF). These derivatives were compared with native NGF for their ability to compete with 125 I-NGF for binding to NGF receptors on rat pheochromocytoma (PC 12) cells at 4 0 C. C-bio-NGF was as effective as native NGF in binding to NGF receptors, while N-bio-NGF containing 1 biotin per NGF subunit was only 28% as active in binding as native NGF. C-bio-NGF, but not N-bio-NGF, mediated the specific binding of 125 I-streptavidin to PC12 cells. Biocytin-NGF, a derivative of C-bio-NGF with an extended spacer chain, was also synthesized and retained full biological and receptor binding activities. C-bio-NGF and biocytin-NGF were as effective as native NGF in a bioassay involving induction of neurite outgrowth from PC12 cells

  16. Data on overlapping brain disorders and emerging drug targets in human Dopamine Receptors Interaction Network

    Directory of Open Access Journals (Sweden)

    Avijit Podder

    2017-06-01

    Full Text Available Intercommunication of Dopamine Receptors (DRs with their associate protein partners is crucial to maintain regular brain function in human. Majority of the brain disorders arise due to malfunctioning of such communication process. Hence, contributions of genetic factors, as well as phenotypic indications for various neurological and psychiatric disorders are often attributed as sharing in nature. In our earlier research article entitled “Human Dopamine Receptors Interaction Network (DRIN: a systems biology perspective on topology, stability and functionality of the network” (Podder et al., 2014 [1], we had depicted a holistic interaction map of human Dopamine Receptors. Given emphasis on the topological parameters, we had characterized the functionality along with the vulnerable properties of the network. In support of this, we hereby provide an additional data highlighting the genetic overlapping of various brain disorders in the network. The data indicates the sharing nature of disease genes for various neurological and psychiatric disorders in dopamine receptors connecting protein-protein interactions network. The data also indicates toward an alternative approach to prioritize proteins for overlapping brain disorders as valuable drug targets in the network.

  17. Exploring an interaction of adenosine A2A receptor variability with coffee and tea intake in Parkinson's disease.

    Science.gov (United States)

    Tan, E K; Lu, Z Y; Fook-Chong, S M C; Tan, E; Shen, H; Chua, E; Yih, Y; Teo, Y Y; Zhao, Y

    2006-09-05

    Caffeine is an adenosine receptor A1 and A2A receptor antagonist and a putative functional genetic variant of the A2A receptor (2592C > Tins) mediates caffeine-induced anxiety. Here we investigated the potential interaction of this A2A genetic variant with the quantity of coffee and tea intake and their relationship with the risk of PD. A total of 441 subjects consisting of 222 PD and 219 race, gender and age matched controls were included. A multivariate analysis of the variables including the 2592C > Tins A2A genotypes, age of onset, gender, and the quantity of tea and coffee intake, interaction of the A2A genotypes with coffee intake, interaction of A2A genotypes with tea intake demonstrated the quantity of coffee intake to be significantly associated with PD (P coffee and tea intake in modulating the risk of PD. The dose dependent protective effect of coffee intake in PD was independent of the 2592C > Tins A2A genotype suggesting that the pharmacogenetic action of caffeine in PD may be mediated differently from other caffeine-induced neurologic syndromes.

  18. Do Neuroendocrine Peptides and Their Receptors Qualify as Novel Therapeutic Targets in Osteoarthritis?

    Directory of Open Access Journals (Sweden)

    Susanne Grässel

    2018-01-01

    Full Text Available Joint tissues like synovium, articular cartilage, meniscus and subchondral bone, are targets for neuropeptides. Resident cells of these tissues express receptors for various neuroendocrine-derived peptides including proopiomelanocortin (POMC-derived peptides, i.e., α-melanocyte-stimulating hormone (α-MSH, adrenocorticotropin (ACTH and β-endorphin (β-ED, and sympathetic neuropeptides like vasoactive intestinal peptide (VIP and neuropeptide y (NPY. Melanocortins attained particular attention due to their immunomodulatory and anti-inflammatory effects in several tissues and organs. In particular, α-MSH, ACTH and specific melanocortin-receptor (MCR agonists appear to have promising anti-inflammatory actions demonstrated in animal models of experimentally induced arthritis and osteoarthritis (OA. Sympathetic neuropeptides have obtained increasing attention as they have crucial trophic effects that are critical for joint tissue and bone homeostasis. VIP and NPY are implicated in direct and indirect activation of several anabolic signaling pathways in bone and synovial cells. Additionally, pituitary adenylate cyclase-activating polypeptide (PACAP proved to be chondroprotective and, thus, might be a novel target in OA. Taken together, it appears more and more likely that the anabolic effects of these neuroendocrine peptides or their respective receptor agonists/antagonists may be exploited for the treatment of patients with inflammatory and degenerative joint diseases in the future.

  19. Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology.

    Science.gov (United States)

    Xia, Chun-Fang; Zhang, Yufeng; Zhang, Yun; Boado, Ruben J; Pardridge, William M

    2007-12-01

    The effective delivery of short interfering RNA (siRNA) to brain following intravenous administration requires the development of a delivery system for transport of the siRNA across the brain capillary endothelial wall, which forms the blood-brain barrier in vivo. siRNA was delivered to brain in vivo with the combined use of a receptor-specific monoclonal antibody delivery system, and avidin-biotin technology. The siRNA was mono-biotinylated on either terminus of the sense strand, in parallel with the production of a conjugate of the targeting MAb and streptavidin. Rat glial cells (C6 or RG-2) were permanently transfected with the luciferase gene, and implanted in the brain of adult rats. Following the formation of intra-cranial tumors, the rats were treated with a single intravenous injection of 270 microg/kg of biotinylated siRNA attached to a transferrin receptor antibody via a biotin-streptavidin linker. The intravenous administration of the siRNA caused a 69-81% decrease in luciferase gene expression in the intracranial brain cancer in vivo. Brain delivery of siRNA following intravenous administration is possible with siRNAs that are targeted to brain with the combined use of receptor specific antibody delivery systems and avidin-biotin technology.

  20. Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases.

    Science.gov (United States)

    Felder, Christian C; Goldsmith, Paul J; Jackson, Kimberley; Sanger, Helen E; Evans, David A; Mogg, Adrian J; Broad, Lisa M

    2018-01-25

    The cholinergic signalling system has been an attractive pathway to seek targets for modulation of arousal, cognition, and attention which are compromised in neurodegenerative and neuropsychiatric diseases. The acetylcholine muscarinic receptor M1 and M4 subtypes which are highly expressed in the central nervous system, in cortex, hippocampus and striatum, key areas of cognitive and neuropsychiatric control, have received particular attention. Historical muscarinic drug development yielded first generation agonists with modest selectivity for these two receptor targets over M2 and M3 receptors, the major peripheral sub-types hypothesised to underlie the dose-limiting clinical side effects. More recent compound screening and medicinal chemistry optimization of orthosteric and allosteric agonists, and positive allosteric modulators binding to sites distinct from the highly homologous acetylcholine binding pocket have yielded a collection of highly selective tool compounds for preclinical validation studies. Several M1 selective ligands have progressed to early clinical development and in time will hopefully lead to useful therapeutics for treating symptoms of Alzheimer's disease and related disorders. Copyright © 2018. Published by Elsevier Ltd.

  1. An anti-phospholipase A2 receptor quantitative immunoassay and epitope analysis in membranous nephropathy reveals different antigenic domains of the receptor.

    Directory of Open Access Journals (Sweden)

    Astrid Behnert

    Full Text Available The phospholipase A2 receptor (PLA2R was recently discovered as a target autoantigen in patients with idiopathic membranous nephropathy (IMN. Published evidence suggests that the autoantibodies directed towards a conformation dependent epitope are currently effectively detected by a cell based assay (CBA utilizing indirect immunofluorescence (IIF on tissue culture cells transfected with the PLA2R cDNA. Limitations of such IIF-CBA assays include observer dependent subjective evaluation of semi-quantitative test results and the protocols are not amenable to high throughput diagnostic testing. We developed a quantitative, observer independent, high throughput capture immunoassay for detecting PLA2R autoantibodies on an addressable laser bead immunoassay (ALBIA platform. Since reactive domains of PLA2R (i.e. epitopes could be used to improve diagnostic tests by using small peptides in various high throughput diagnostic platforms, we identified PLA2R epitopes that bound autoantibodies of IMN patients. These studies confirmed that inter-molecular epitope spreading occurs in IMN but use of the cognate synthetic peptides in immunoassays was unable to conclusively distinguish between IMN patients and normal controls. However, combinations of these peptides were able to effectively absorb anti-PLA2R reactivity in IIF-CBA and an immunoassay that employed a lysate derived from HEK cells tranfected with and overexpressing PLA2R. While we provide evidence of intermolecular epitope spreading, our data indicates that in addition to conformational epitopes, human anti-PLA2R reactivity in a commercially available CBA and an addressable laser bead immunoassay is significantly absorbed by peptides representing epitopes of PLA2R.

  2. Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1 into Diverse Memory T-Cell Populations.

    Directory of Open Access Journals (Sweden)

    Drew C Deniger

    Full Text Available T cells modified with chimeric antigen receptors (CARs targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1 is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28 or CD137 (designated ROR1RCD137 and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC, which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire.

  3. Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Dorsal Striatum.

    Science.gov (United States)

    Moreno, Estefanía; Chiarlone, Anna; Medrano, Mireia; Puigdellívol, Mar; Bibic, Lucka; Howell, Lesley A; Resel, Eva; Puente, Nagore; Casarejos, María J; Perucho, Juan; Botta, Joaquín; Suelves, Nuria; Ciruela, Francisco; Ginés, Silvia; Galve-Roperh, Ismael; Casadó, Vicent; Grandes, Pedro; Lutz, Beat; Monory, Krisztina; Canela, Enric I; Lluís, Carmen; McCormick, Peter J; Guzmán, Manuel

    2018-04-01

    The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A 2A receptor (A 2A R) and cannabinoid CB 1 receptor (CB 1 R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A 2A R and CB 1 R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A 2A R-CB 1 R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically modified animal models, together with biochemical and pharmacological approaches, we provide a high-resolution expression map and a detailed functional characterization of A 2A R-CB 1 R heteromers in the dorsal striatum. Specifically, our data unveil that the A 2A R-CB 1 R heteromer (i) is essentially absent from corticostriatal projections and striatonigral neurons, and, instead, is largely present in striatopallidal neurons, (ii) displays a striking G protein-coupled signaling profile, where co-stimulation of both receptors leads to strongly reduced downstream signaling, and (iii) undergoes an unprecedented dysfunction in Huntington's disease, an archetypal disease that affects striatal neurons. Altogether, our findings may open a new conceptual framework to understand the role of coordinated adenosine-endocannabinoid signaling in the indirect striatal pathway, which may be relevant in motor function and neurodegenerative diseases.

  4. Biodegradable microspheres for the sustained release of PDGF-receptor directed pPB-HSA targeted to the fibrotic kidney

    NARCIS (Netherlands)

    Teekamp, Naomi; van Dijk, Fransien; Beljaars, Eleonora; Hinrichs, Wouter; Steendam, Rob; Zuidema, Johan; Poelstra, Klaas; Frijlink, H.W.; Olinga, Peter

    2016-01-01

    Platelet Derived Growth Factor (PDGF) plays a key role in the development of fibrotic processes in several tissues. Accordingly, the PDGF receptor is abundantly present in these fibrotic tissues. Specific targeting to this receptor is established for a series of compounds in different animal models,

  5. Biodegradable microspheres for the sustained release of PDGF-receptor directed PPB-HSA targeted to the fibrotic kidney

    NARCIS (Netherlands)

    Teekamp, Naomi; van Dijk, Fransien; Beljaars, Eleonora; Hinrichs, Wouter; Poelstra, Klaas; Frijlink, H.W.; Olinga, Peter

    2016-01-01

    Platelet Derived Growth Factor (PDGF) plays a key role in the development of fibrotic processes in several tissues. Accordingly, the PDGFβ receptor is abundantly present in these fibrotic tissues. Specific targeting to this receptor is established for a series of compounds in different animal

  6. Comparative biodistribution of 12 (1)(1)(1)In-labelled gastrin/CCK2 receptor-targeting peptides

    NARCIS (Netherlands)

    Laverman, P.; Joosten, L.; Eek, A.; Roosenburg, S.; Peitl, P.K.; Maina, T.; Macke, H.; Aloj, L.; Guggenberg, E. von; Sosabowski, J.K.; Jong, M. de; Reubi, J.C.; Oyen, W.J.G.; Boerman, O.C.

    2011-01-01

    PURPOSE: Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy. Several

  7. Adenoviruses using the cancer marker EphA2 as a receptor in vitro and in vivo by genetic ligand insertion into different capsid scaffolds.

    Directory of Open Access Journals (Sweden)

    Michael Behr

    Full Text Available Adenoviral gene therapy and oncolysis would critically benefit from targeted cell entry by genetically modified capsids. This requires both the ablation of native adenovirus tropism and the identification of ligands that remain functional in virus context. Here, we establish cell type-specific entry of HAdV-5-based vectors by genetic ligand insertion into a chimeric fiber with shaft and knob domains of the short HAdV-41 fiber (Ad5T/41sSK. This fiber format was reported to ablate transduction in vitro and biodistribution to the liver in vivo. We show that the YSA peptide, binding to the pan-cancer marker EphA2, can be inserted into three positions of the chimeric fiber, resulting in strong transduction of EphA2-positive but not EphA2-negative cells of human melanoma biopsies and of tumor xenografts after intratumoral injection. Transduction was blocked by soluble YSA peptide and restored for EphA2-negative cells after recombinant EphA2 expression. The YSA peptide could also be inserted into three positions of a CAR binding-ablated HAdV-5 fiber enabling specific transduction; however, the Ad5T/41sSK format was superior in vivo. In conclusion, we establish an adenovirus capsid facilitating functional insertion of targeting peptides and a novel adenovirus using the tumor marker EphA2 as receptor with high potential for cancer gene therapy and viral oncolysis.

  8. Adenoviruses Using the Cancer Marker EphA2 as a Receptor In Vitro and In Vivo by Genetic Ligand Insertion into Different Capsid Scaffolds

    Science.gov (United States)

    Behr, Michael; Kaufmann, Johanna K.; Ketzer, Patrick; Engelhardt, Sarah; Mück-Häusl, Martin; Okun, Pamela M.; Petersen, Gabriele; Neipel, Frank; Hassel, Jessica C.; Ehrhardt, Anja; Enk, Alexander H.; Nettelbeck, Dirk M.

    2014-01-01

    Adenoviral gene therapy and oncolysis would critically benefit from targeted cell entry by genetically modified capsids. This requires both the ablation of native adenovirus tropism and the identification of ligands that remain functional in virus context. Here, we establish cell type-specific entry of HAdV-5-based vectors by genetic ligand insertion into a chimeric fiber with shaft and knob domains of the short HAdV-41 fiber (Ad5T/41sSK). This fiber format was reported to ablate transduction in vitro and biodistribution to the liver in vivo. We show that the YSA peptide, binding to the pan-cancer marker EphA2, can be inserted into three positions of the chimeric fiber, resulting in strong transduction of EphA2-positive but not EphA2-negative cells of human melanoma biopsies and of tumor xenografts after intratumoral injection. Transduction was blocked by soluble YSA peptide and restored for EphA2-negative cells after recombinant EphA2 expression. The YSA peptide could also be inserted into three positions of a CAR binding-ablated HAdV-5 fiber enabling specific transduction; however, the Ad5T/41sSK format was superior in vivo. In conclusion, we establish an adenovirus capsid facilitating functional insertion of targeting peptides and a novel adenovirus using the tumor marker EphA2 as receptor with high potential for cancer gene therapy and viral oncolysis. PMID:24760010

  9. Thromboxane A(2 receptor stimulation promotes closure of the rat ductus arteriosus through enhancing neointima formation.

    Directory of Open Access Journals (Sweden)

    Tomohiro Yokota

    Full Text Available Ductus arteriosus (DA closure follows constriction and remodeling of the entire vessel wall. Patent ductus arteriosus occurs when the DA does not close after birth, and this condition is currently treated using cyclooxygenase inhibitors. However, the efficacy of cyclooxygenase inhibitors is often limited. Our previous study demonstrated that low-dose thromboxane A2 receptor (TP stimulation constricted the DA with minimal adverse effects in rat neonates. However, its effect on DA remodeling remains unknown. In this study, we focused on the impact of the exogenous TP stimulation on the DA remodeling, especially intimal thickening. Using DA explants from rat fetuses at embryonic day 19 as a ex vivo model and primary cultured rat DA smooth muscle cells from embryonic day 21 as a in vitro model, we evaluated the effect of TP stimulation on the DA remodeling. The selective TP agonists U46619 and I-BOP promoted neointima formation in the ex vivo DA explants, and TP stimulation increased DA SMC migration in a dose-dependent manner. Both effects were inhibited by the selective TP antagonist SQ29548 or the siRNA against TP. TP stimulation also increased DA SMC proliferation in the presence of 10% fetal bovine serum. LC/MS/MS analysis revealed that TP stimulation increased secretion of several extracellular matrix proteins that may contribute to an increase in neointima formation. In conclusion, we uncovered that exogenous administration of TP agonist promotes neointima formation through the induction of migration and proliferation of DA SMC, which could contribute to DA closure and also to its vasoconstrictive action.

  10. Synthesis and properties of a new water-soluble prodrug of the adenosine A 2A receptor antagonist MSX-2.

    Science.gov (United States)

    Vollmann, Karl; Qurishi, Ramatullah; Hockemeyer, Jörg; Müller, Christa E

    2008-02-12

    The compound L-valine-3-{8-[(E)-2-[3-methoxyphenyl)ethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4) was synthesized as an amino acid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to be stable in artificial gastric acid, but readily cleaved by pig liver esterase.

  11. Thermodynamics and structural analysis of positive allosteric modulation of the ionotropic glutamate receptor GluA2

    DEFF Research Database (Denmark)

    Krintel, Christian; Frydenvang, Karla; Olsen, Lars

    2012-01-01

    Positive allosteric modulators of the ionotropic glutamate receptor-2 (GluA2) are promising compounds for the treatment of cognitive disorders, e.g. Alzheimer's disease. These modulators bind within the dimer interface of the ligand-binding domain and stabilize the agonist-bound conformation slow...

  12. Synthesis and Properties of a New Water-Soluble Prodrug of the Adenosine A2A Receptor Antagonist MSX-2

    Directory of Open Access Journals (Sweden)

    Christa E. Müller

    2008-02-01

    Full Text Available The compound L-valine-3-{8-[(E-2-[3-methoxyphenylethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4 was synthesized as an aminoacid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to bestable in artificial gastric acid, but readily cleaved by pig liver esterase.

  13. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    Science.gov (United States)

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Drug-target residence time--a case for G protein-coupled receptors.

    Science.gov (United States)

    Guo, Dong; Hillger, Julia M; IJzerman, Adriaan P; Heitman, Laura H

    2014-07-01

    A vast number of marketed drugs act on G protein-coupled receptors (GPCRs), the most successful category of drug targets to date. These drugs usually possess high target affinity and selectivity, and such combined features have been the driving force in the early phases of drug discovery. However, attrition has also been high. Many investigational new drugs eventually fail in clinical trials due to a demonstrated lack of efficacy. A retrospective assessment of successfully launched drugs revealed that their beneficial effects in patients may be attributed to their long drug-target residence times (RTs). Likewise, for some other GPCR drugs short RT could be beneficial to reduce the potential for on-target side effects. Hence, the compounds' kinetics behavior might in fact be the guiding principle to obtain a desired and durable effect in vivo. We therefore propose that drug-target RT should be taken into account as an additional parameter in the lead selection and optimization process. This should ultimately lead to an increased number of candidate drugs moving to the preclinical development phase and on to the market. This review contains examples of the kinetics behavior of GPCR ligands with improved in vivo efficacy and summarizes methods for assessing drug-target RT. © 2014 Wiley Periodicals, Inc.

  15. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy

    Directory of Open Access Journals (Sweden)

    Ágatha Oliveira-Giacomelli

    2018-04-01

    Full Text Available Since proving adenosine triphosphate (ATP functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD, motor neuron diseases (MND, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington's Disease (HD, restless leg syndrome (RLS, and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.

  16. Free fatty acids-sensing G protein-coupled receptors in drug targeting and therapeutics.

    Science.gov (United States)

    Yonezawa, Tomo; Kurata, Riho; Yoshida, Kaori; Murayama, Masanori A; Cui, Xiaofeng; Hasegawa, Akihiko

    2013-01-01

    G protein-coupled receptor (GPCR) (also known as seven-transmembrane domain receptor) superfamily represents the largest protein family in the human genome. These receptors respond to various physiological ligands such as photons, odors, pheromones, hormones, ions, and small molecules including amines, amino acids to large peptides and steroids. Thus, GPCRs are involved in many diseases and the target of around half of all conventional drugs. The physiological roles of free fatty acids (FFAs), in particular, long-chain FFAs, are important for the development of many metabolic disease including obesity, diabetes, and atherosclerosis. In the past half decade, deorphanization of several GPCRs has revealed that GPR40, GPR41, GPR43, GPR84 and GPR120 sense concentration of extracellular FFAs with various carbon chain lengths. GPR40 and GPR120 are activated by medium- and long-chain FFAs. GPR84 is activated by medium- chain, but not long-chain, FFAs. GPR41 and GPR43 are activated by short-chain FFAs. GPR40 is highly expressed in pancreatic beta cells and plays a crucial role in FFAs-induced insulin secretion. GPR120 is mainly expressed in enteroendocrine cells and plays an important role for FFAs-induced glucagon-like peptide-1. GPR43 is abundant in leukocytes and adipose tissue, whilst GPR41 is highly expressed in adipose tissue, the pancreas and leukocytes. GPR84 is expressed in leukocytes and monocyte/macrophage. This review aims to shed light on the physiological roles and development of drugs targeting these receptors.

  17. Selective autophagy of non-ubiquitylated targets in plants: looking for cognate receptor/adaptor proteins

    Directory of Open Access Journals (Sweden)

    Vasko eVeljanovski

    2014-06-01

    Full Text Available Cellular homeostasis is essential for the physiology of eukaryotic cells. Eukaryotic cells, including plant cells, utilize two main pathways to adjust the level of cytoplasmic components, namely the proteasomal and the lysosomal/vacuolar pathways. Macroautophagy is a lysosomal/vacuolar pathway which, until recently, was thought to be non-specific and a bulk degradation process. However, selective autophagy which can be activated in the cell under various physiological conditions, involves the specific degradation of defined macromolecules or organelles by a conserved molecular mechanism. For this process to be efficient, the mechanisms underlying the recognition and selection of the cargo to be engulfed by the double-membrane autophagosome are critical, and not yet well understood. Ubiquitin (poly-ubiquitin conjugation to the target appears to be a conserved ligand mechanism in many types of selective autophagy, and defined receptors/adaptors recognizing and regulating the autophagosomal capture of the ubiquitylated target have been characterized. However, non-proteinaceous and non-ubiquitylated cargoes are also selectively degraded by this pathway. This ubiquitin-independent selective autophagic pathway also involves receptor and/or adaptor proteins linking the cargo to the autophagic machinery. Some of these receptor/adaptor proteins including accessory autophagy-related (Atg and non-Atg proteins have been described in yeast and animal cells but not yet in plants. In this review we discuss the ubiquitin-independent cargo selection mechanisms in selective autophagy degradation of organelles and macromolecules and speculate on potential plant receptor/adaptor proteins.

  18. From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation

    Directory of Open Access Journals (Sweden)

    Ken Howick

    2017-01-01

    Full Text Available Ghrelin is the only known peripherally-derived orexigenic hormone, increasing appetite and subsequent food intake. The ghrelinergic system has therefore received considerable attention as a therapeutic target to reduce appetite in obesity as well as to stimulate food intake in conditions of anorexia, malnutrition and cachexia. As the therapeutic potential of targeting this hormone becomes clearer, it is apparent that its pleiotropic actions span both the central nervous system and peripheral organs. Despite a wealth of research, a therapeutic compound specifically targeting the ghrelin system for appetite modulation remains elusive although some promising effects on metabolic function are emerging. This is due to many factors, ranging from the complexity of the ghrelin receptor (Growth Hormone Secretagogue Receptor, GHSR-1a internalisation and heterodimerization, to biased ligand interactions and compensatory neuroendocrine outputs. Not least is the ubiquitous expression of the GHSR-1a, which makes it impossible to modulate centrallymediated appetite regulation without encroaching on the various peripheral functions attributable to ghrelin. It is becoming clear that ghrelin’s central signalling is critical for its effects on appetite, body weight regulation and incentive salience of food. Improving the ability of ghrelin ligands to penetrate the blood brain barrier would enhance central delivery to GHSR-1a expressing brain regions, particularly within the mesolimbic reward circuitry.

  19. Targeting the androgen receptor in triple-negative breast cancer: current perspectives

    Directory of Open Access Journals (Sweden)

    Mina A

    2017-09-01

    Full Text Available Alain Mina,1 Rachel Yoder,2 Priyanka Sharma1 1Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Westwood, 2University of Kansas Cancer Center, Kansas City, KS, USA Abstract: Triple-negative breast cancer (TNBC is an aggressive subtype associated with frequent recurrence and metastasis. Unlike hormone receptor-positive subtypes, treatment of TNBC is currently limited by the lack of clinically available targeted therapies. Androgen signaling is necessary for normal breast development, and its dysregulation has been implicated in breast tumorigenesis. In recent years, gene expression studies have identified a subset of TNBC that is enriched for androgen receptor (AR signaling. Interference with androgen signaling in TNBC is promising, and AR-inhibiting drugs have shown antitumorigenic activity in preclinical and proof of concept clinical studies. Recent advances in our understanding of androgenic signaling in TNBC, along with the identification of interacting pathways, are allowing development of the next generation of clinical trials with AR inhibitors. As novel AR-targeting agents are developed and evaluated in clinical trials, it is equally important to establish a robust set of biomarkers for identification of TNBC tumors that are most likely to respond to AR inhibition. Keywords: triple-negative breast cancer, androgen signaling, targeted therapy, biomarkers, prognosis 

  20. Oppositional effects of serotonin receptors 5-HT1a, 2 and 2c in the regulation of adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Friederike Klempin

    2010-07-01

    Full Text Available Serotonin (5-HT appears to play a major role in controlling adult hippocampal neurogenesis and thereby it is relevant for theories linking failing adult neurogenesis to the pathogenesis of major depression and the mechanisms of action of antidepressants. Serotonergic drugs lack acute effects on adult neurogenesis in many studies, which suggests a surprising long latency phase. Here we report that the selective serotonin reuptake inhibitor fluoxetine, which has no acute effect on precursor cell proliferation, causes the well-described increase in net neurogenesis upon prolonged treatment partly by promoting the survival and maturation of new postmitotic neurons. We hypothesized that this result is the cumulative effect of several 5-HT-dependent events in the course of adult neurogenesis. Thus, we used specific agonists and antagonists to 5-HT1a, 2, and 2c receptor subtypes to analyze their impact on different developmental stages. We found that 5-HT exerts acute and opposing effects on proliferation and survival or differentiation of precursor cells by activating the diverse receptor subtypes on different stages within the neuronal lineage in vivo. This was confirmed in vitro by demonstrating that 5-HT1a receptors are involved in self-renewal of precursor cells, whereas 5-HT2 receptors effect both proliferation and promote neuronal differentiation. We propose that under acute conditions 5-HT2 effects counteract the positive proliferative effect of 5-HT1a receptor activation. However, prolonged 5-HT2c receptor activation fosters an increase in late stage progenitor cells and early postmitotic neurons, leading to a net increase in adult neurogenesis. Our data indicate that serotonin does not show effect latency in the adult dentate gyrus. Rather, the delayed response to serotonergic drugs with respect to endpoints downstream of the immediate receptor activity is largely due to the initially antagonistic and un-balanced action of different 5-HT

  1. Modulation of short-term social memory in rats by adenosine A1 and A(2A) receptors.

    Science.gov (United States)

    Prediger, Rui D S; Takahashi, Reinaldo N

    2005-03-16

    The recognition of an unfamiliar juvenile rat by an adult rat has been shown to imply short-term memory processes. The present study was designed to examine the role of adenosine receptors in the short-term social memory of rats using the social recognition paradigm. Adenosine (5.0-10.0 mg/kg), the selective adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA, 0.025-0.05 mg/kg) and the selective adenosine A(2A) receptor agonist N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine (DPMA, 1.0-5.0 mg/kg), given by i.p. route 30 min before the test, disrupted the juvenile recognition ability of adult rats. This negative effect of adenosine (5.0 mg/kg, i.p.) on social memory was prevented by pretreatment with the non-selective adenosine receptor antagonist caffeine (10.0 mg/kg, i.p.), the adenosine A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1.0 mg/kg, i.p.) and the adenosine A(2A) antagonist 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM241385, 1.0 mg/kg, i.p.). Furthermore, acute administration of caffeine (10.0-30.0 mg/kg, i.p.), DPCPX (1.0-3.0 mg/kg, i.p.) or ZM241385 (0.5-1.0 mg/kg, i.p.) improved the short-term social memory in a specific manner. These results indicate that adenosine modulates the short-term social memory in rats by acting on both A1 and A(2A) receptors, with adenosine receptor agonists and antagonists, respectively, disrupting and enhancing the social memory.

  2. Bitter taste receptors as targets for tocolytics in preterm labor therapy.

    Science.gov (United States)

    Zheng, Kaizhi; Lu, Ping; Delpapa, Ellen; Bellve, Karl; Deng, Ruitang; Condon, Jennifer C; Fogarty, Kevin; Lifshitz, Lawrence M; Simas, Tiffany A Moore; Shi, Fangxiong; ZhuGe, Ronghua

    2017-09-01

    Preterm birth (PTB) is the leading cause of neonatal mortality and morbidity, with few prevention and treatment options. Uterine contraction is a central feature of PTB, so gaining new insights into the mechanisms of this contraction and consequently identifying novel targets for tocolytics are essential for more successful management of PTB. Here we report that myometrial cells from human and mouse express bitter taste receptors (TAS2Rs) and their canonical signaling components ( i.e., G-protein gustducin and phospholipase C β2). Bitter tastants can completely relax myometrium precontracted by different uterotonics. In isolated single mouse myometrial cells, a phenotypical bitter tastant (chloroquine, ChQ) reverses the rise in intracellular Ca 2+ concentration ([Ca 2+ ] i ) and cell shortening induced by uterotonics, and this reversal effect is inhibited by pertussis toxin and by genetic deletion of α-gustducin. In human myometrial cells, knockdown of TAS2R14 but not TAS2R10 inhibits ChQ's reversal effect on an oxytocin-induced rise in [Ca 2+ ] i Finally, ChQ prevents mouse PTBs induced by bacterial endotoxin LPS or progesterone receptor antagonist mifepristone more often than current commonly used tocolytics, and this prevention is largely lost in α-gustducin-knockout mice. Collectively, our results reveal that activation of the canonical TAS2R signaling system in myometrial cells produces profound relaxation of myometrium precontracted by a broad spectrum of contractile agonists, and that targeting TAS2Rs is an attractive approach to developing effective tocolytics for PTB management.-Zheng, K., Lu, P., Delpapa, E., Bellve, K., Deng, R., Condon, J. C., Fogarty, K., Lifshitz, L. M., Simas, T. A. M., Shi, F., ZhuGe, R. Bitter taste receptors as targets for tocolytics in preterm labor therapy. © FASEB.

  3. Adenosine A2A receptors modulate the dopamine D2 receptor-mediated inhibition of synaptic transmission in the mouse prefrontal cortex.

    Science.gov (United States)

    Real, Joana I; Simões, Ana Patrícia; Cunha, Rodrigo A; Ferreira, Samira G; Rial, Daniel

    2018-05-01

    Prefrontal cortex (PFC) circuits are modulated by dopamine acting on D 1 - and D 2 -like receptors, which are pharmacologically exploited to manage neuropsychiatric conditions. Adenosine A 2A receptors (A 2 A R) also control PFC-related responses and A 2 A R antagonists are potential anti-psychotic drugs. As tight antagonistic A 2 A R-D 2 R and synergistic A 2 A R-D 1 R interactions occur in other brain regions, we now investigated the crosstalk between A 2 A R and D 1 /D 2 R controlling synaptic transmission between layers II/III and V in mouse PFC coronal slices. Dopamine decreased synaptic transmission, a presynaptic effect based on the parallel increase in paired-pulse responses. Dopamine inhibition was prevented by the D 2 R-like antagonist sulpiride but not by the D 1 R antagonist SCH23390 and was mimicked by the D 2 R agonist sumanirole, but not by the agonists of either D 4 R (A-412997) or D 3 R (PD128907). Dopamine inhibition was prevented by the A 2 A R antagonist, SCH58261, and attenuated in A 2 A R knockout mice. Accordingly, triple-labelling immunocytochemistry experiments revealed the co-localization of A 2 A R and D 2 R immunoreactivity in glutamatergic (vGluT1-positive) nerve terminals of the PFC. This reported positive A 2 A R-D 2 R interaction controlling PFC synaptic transmission provides a mechanistic justification for the anti-psychotic potential of A 2 A R antagonists. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Targeting to 5-HT1F Receptor Subtype for Migraine Treatment

    DEFF Research Database (Denmark)

    Mitsikostas, Dimos D; Tfelt-Hansen, Peer

    2012-01-01

    attacks with efficacy in the same range as oral sumatriptan 100mg, the gold standard for triptans. The LY334370 project withdrew because of toxicity in animals, while lasmiditan is still testing. In this review we present all the available preclinical and clinical data on the 5-HT1F agonists...... inhibited markers associated with electrical stimulation of the TG. Thus 5-HT1F receptor represents an ideal target for anti-migraine drugs. So far two selective 5-HT1F agonists have been tested in human trials for migraine: LY334370 and lasmiditan. Both molecules were efficient in attenuating migraine...

  5. Targeting Adenosine A2A Receptors in Parkinson’s Disease

    Science.gov (United States)

    2006-11-01

    Pereira1,2 , Francisco Velasco1,3 and John D. Salamone1 1Dept. of Psychology, University of Connecticut, Storrs, CT 06269-1020 2Seccion Fisiologia y...Universitat Jaume I. Area de Psicobiologia. Castellon, Spain. 3Seccion Fisiologia y Nutricion, Facultad de Ciencias, Universidad de la Republica Montevideo...06269-1020 2Universität Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie, Poppelsdorf, Bonn, Germany 3 Seccion Fisiologia y Nutricion

  6. The Role of Skp1-Cul1-F-box Ubiquitin Ligases in Src-Stimulated Estrogen Receptor Proteolysis and Estrogen Receptor Target Gene Expression

    Science.gov (United States)

    2014-03-01

    Korach,K.S. (2006). Estrogen receptors and human disease. J Clin Invest 116, 561‐ 570 .  Glickman,M.H.  and  Ciechanover,A.  (2002).  The  ubiquitin...P, Nola E et al. Tyrosine kinas/p21ras/MAP-kinase pathway activation by estradiol receptor complex in MCF-7 cells. EMBO J 1996; 15: 1292–1300. 2...elements (EREs) on target gene promoters in order to activate or repress transcription. • Multiple signalling pathways downstream of receptor tyrosine

  7. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting

    International Nuclear Information System (INIS)

    Reubi, Jean Claude; Waser, Beatrice

    2003-01-01

    Peptide receptors have been found to represent excellent targets for in vivo cancer diagnosis and therapy. Recent in vitro studies have shown that many cancers can overexpress not only one but several peptide receptors concomitantly. One of the challenges for nuclear medicine in this field in the coming decade will be to take advantage of the co-expression of peptide receptors for multireceptor tumour targeting. In vitro receptor studies can reveal which peptide receptor is overexpressed in which tumour and which receptors are co-expressed in an individual tumour; such knowledge is a prerequisite for successful in vivo development. One group of tumours of particular interest in this respect is the neuroendocrine tumours, which have previously been shown often to express peptide receptors. This review summarises our investigations of the concomitant expression of 13 different peptide receptors, in more than 100 neuroendocrine tumours of the human intestine, pancreas and lung, using in vitro receptor autoradiography with subtype-selective ligands. The incidence and density of the somatostatin receptors sst 1 -sst 5 , the VIP receptors VPAC 1 and VPAC 2 , the CCK 1 and CCK 2 receptors, the three bombesin receptor subtypes BB 1 (NMB receptor), BB 2 (GRP receptor) and BB 3 , and GLP-1 receptors were evaluated. While the presence of VPAC 1 and sst 2 was detected in the majority of these neuroendocrine tumours, the other receptors, more differentially expressed, revealed a characteristic receptor pattern in several tumour types. Ileal carcinoids expressed sst 2 and VPAC 1 receptors in virtually all cases and had CCK 1 , CCK 2 , sst 1 or sst 5 in approximately half of the cases; they were the only tumours of this series to express NMB receptors. Insulinomas were characterised by a very high incidence of GLP-1, CCK 2 and VPAC 1 receptors, with the GLP-1 receptors expressed in a particularly high density; they expressed sst 2 in two-thirds and sst 1 in approximately half of

  8. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting

    Energy Technology Data Exchange (ETDEWEB)

    Reubi, Jean Claude; Waser, Beatrice [Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Murtenstrasse 31, PO Box 62, 3010, Berne (Switzerland)

    2003-05-01

    Peptide receptors have been found to represent excellent targets for in vivo cancer diagnosis and therapy. Recent in vitro studies have shown that many cancers can overexpress not only one but several peptide receptors concomitantly. One of the challenges for nuclear medicine in this field in the coming decade will be to take advantage of the co-expression of peptide receptors for multireceptor tumour targeting. In vitro receptor studies can reveal which peptide receptor is overexpressed in which tumour and which receptors are co-expressed in an individual tumour; such knowledge is a prerequisite for successful in vivo development. One group of tumours of particular interest in this respect is the neuroendocrine tumours, which have previously been shown often to express peptide receptors. This review summarises our investigations of the concomitant expression of 13 different peptide receptors, in more than 100 neuroendocrine tumours of the human intestine, pancreas and lung, using in vitro receptor autoradiography with subtype-selective ligands. The incidence and density of the somatostatin receptors sst{sub 1}-sst{sub 5}, the VIP receptors VPAC{sub 1} and VPAC{sub 2}, the CCK{sub 1} and CCK{sub 2} receptors, the three bombesin receptor subtypes BB{sub 1} (NMB receptor), BB{sub 2} (GRP receptor) and BB{sub 3}, and GLP-1 receptors were evaluated. While the presence of VPAC{sub 1} and sst{sub 2} was detected in the majority of these neuroendocrine tumours, the other receptors, more differentially expressed, revealed a characteristic receptor pattern in several tumour types. Ileal carcinoids expressed sst{sub 2} and VPAC{sub 1} receptors in virtually all cases and had CCK{sub 1}, CCK{sub 2}, sst{sub 1} or sst{sub 5} in approximately half of the cases; they were the only tumours of this series to express NMB receptors. Insulinomas were characterised by a very high incidence of GLP-1, CCK{sub 2} and VPAC{sub 1} receptors, with the GLP-1 receptors expressed in a

  9. Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats.

    Science.gov (United States)

    Yamada, Koji; Kobayashi, Minoru; Shiozaki, Shizuo; Ohta, Teruko; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2014-07-01

    Istradefylline, an adenosine A2A receptor antagonist, improves motor function in animal models of Parkinson's disease (PD) and in patients with PD. In addition, some A2A antagonists exert antidepressant-like activity in rodent models of depression, such as the forced swim and the tail suspension tests. We have investigated the effect of istradefylline on depression-like behaviors using the rat learned helplessness (LH) model. Acute, as well as chronic, oral administration of istradefylline significantly improved the inescapable shock (IES)-induced escape deficit with a degree of efficacy comparable to chronic treatment with the tricyclic antidepressant desipramine and the selective serotonin (5-HT) reuptake inhibitor, fluoxetine. Both the A1/A2A receptor nonspecific antagonist theophylline and the moderately selective antagonist CGS15943, but not the A1 selective antagonist DPCPX, ameliorated the IES-induced escape deficit. The enhancement of escape response by istradefylline was reversed by a local injection of the A2A specific agonist CGS21680 either into the nucleus accumbens, the caudate-putamen, or the paraventricular nucleus of the hypothalamus, but not by the A1 specific agonist R-PIA into the nucleus accumbens. Moreover, neither the 5-HT2A/2C receptor antagonist methysergide or the adrenergic α 2 antagonist yohimbine, nor the β-adrenergic antagonist propranolol, affected the improvement of escape response induced by istradefylline. Istradefylline exerts antidepressant-like effects via modulation of A2A receptor activity which is independent of monoaminergic transmission in the brain. Istradefylline may represent a novel treatment option for depression in PD as well as for the motor symptoms.

  10. Orexin Receptor Targets for Anti-Relapse Medication Development in Drug Addiction

    Directory of Open Access Journals (Sweden)

    Ronald E. See

    2011-06-01

    Full Text Available Drug addiction is a chronic illness characterized by high rates of relapse. Relapse to drug use can be triggered by re-exposure to drug-associated cues, stressful events, or the drug itself after a period of abstinence. Pharmacological intervention to reduce the impact of relapse-instigating factors offers a promising target for addiction treatment. Growing evidence has implicated an important role of the orexin/hypocretin system in drug reward and drug-seeking, including animal models of relapse. Here, we review the evidence for the role of orexins in modulating reward and drug-seeking in animal models of addiction and the potential for orexin receptors as specific targets for anti-relapse medication approaches.

  11. Adenosine A(2A receptors measured with [C]TMSX PET in the striata of Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Masahiro Mishina

    Full Text Available Adenosine A(2A receptors (A2ARs are thought to interact negatively with the dopamine D(2 receptor (D2R, so selective A2AR antagonists have attracted attention as novel treatments for Parkinson's disease (PD. However, no information about the receptor in living patients with PD is available. The purpose of this study was to investigate the relationship between A2ARs and the dopaminergic system in the striata of drug-naïve PD patients and PD patients with dyskinesia, and alteration of these receptors after antiparkinsonian therapy. We measured binding ability of striatal A2ARs using positron emission tomography (PET with [7-methyl-(11C]-(E-8-(3,4,5-trimethoxystyryl-1,3,7-trimethylxanthine ([(11C]TMSX in nine drug-naïve patients with PD, seven PD patients with mild dyskinesia and six elderly control subjects using PET. The patients and eight normal control subjects were also examined for binding ability of dopamine transporters and D2Rs. Seven of the drug-naïve patients underwent a second series of PET scans following therapy. We found that the distribution volume ratio of A2ARs in the putamen were larger in the dyskinesic patients than in the control subjects (p<0.05, Tukey-Kramer post hoc test. In the drug-naïve patients, the binding ability of the A2ARs in the putamen, but not in the head of caudate nucleus, was significantly lower on the more affected side than on the less affected side (p<0.05, paired t-test. In addition, the A2ARs were significantly increased after antiparkinsonian therapy in the bilateral putamen of the drug-naïve patients (p<0.05, paired t-test but not in the bilateral head of caudate nucleus. Our study demonstrated that the A2ARs in the putamen were increased in the PD patients with dyskinesia, and also suggest that the A2ARs in the putamen compensate for the asymmetrical decrease of dopamine in drug-naïve PD patients and that antiparkinsonian therapy increases the A2ARs in the putamen. The A2ARs may play an

  12. Hyaluronic Acid Immobilized Polyacrylamide Nanoparticle Sensors for CD44 Receptor Targeting and pH Measurement in Cells

    DEFF Research Database (Denmark)

    Sun, Honghao; Benjaminsen, Rikke Vicki; Almdal, Kristoffer

    2012-01-01

    Our ability to design receptor-targeted nanocarriers aimed at drug release after endocytosis is limited by the current knowledge of intracellular nanoparticle (NP) trafficking. It is not clear if NP size, surface chemistry, and/or targeting of cell surface receptors changes the intracellular fate...... of NPs; i.e., will all NPs enter acidic compartments and eventually end up in lysosomes or are there escape mechanisms or receptor-specific signaling that can be induced to change the cellular processing of an internalized NP? To give new insight into the intracellular trafficking of NPs that target...... nanosensors indicates that the intracellular trafficking is aimed at lysosomes regardless of whether CD44 receptor-specific or unspecific uptake is induced....

  13. Effects of Polyethylene Glycol Spacer Length and Ligand Density on Folate Receptor Targeting of Liposomal Doxorubicin In Vitro

    Directory of Open Access Journals (Sweden)

    Kumi Kawano

    2011-01-01

    Full Text Available The folate receptor is an attractive target for selective tumor delivery of liposomal doxorubicin (DXR because it is abundantly expressed in a large percentage of tumors. This study examined the effect of polyethylene glycol (PEG spacer length and folate ligand density on the targeting ability of folate-modified liposomes. Liposomes were modified with folate-derivatized PEG-distearoylphosphatidylethanolamine with PEG molecular weights of 2000, 3400, or 5000. The association of DXR-loaded liposomes with KB cells, which overexpress the folate receptor, was evaluated by flow cytometry at various ratios of folate modification. A low ratio of folate modification with a sufficiently long PEG chain showed the highest folate receptor-mediated association with the cells, but did not show the highest in vitro cytotoxicity. DXR release from folate-modified liposomes in endosomes might be different. These findings will be useful for designing folate receptor-targeting carriers.

  14. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [Department of Geratory, Linzi District People’s Hospital of Zibo City, Zibo, Shandong (China); Zhang, Suhua, E-mail: drsuhuangzhang@qq.com [Department of HealthCare, Qilu Hospital of Shandong University (Qingdao), Qingdao City, Qingdao (China)

    2016-08-05

    Transformation of macrophages into foam cells plays a critical role in the pathogenesis of atherosclerosis. The aim of this study was to determine the expression and biological roles of microRNA (miR)-150 in the formation of macrophage foam cells and to identify its functional target(s). Exposure to 50 μg/ml oxidized low-density lipoprotein (oxLDL) led to a significant upregulation of miR-150 in THP-1 macrophages. Overexpression of miR-150 inhibited oxLDL-induced lipid accumulation in THP-1 macrophages, while knockdown of miR-150 enhanced lipid accumulation. apoA-I- and HDL-mediated cholesterol efflux was increased by 66% and 43%, respectively, in miR-150-overexpressing macrophages relative to control cells. In contrast, downregulation of miR-150 significantly reduced cholesterol efflux from oxLDL-laden macrophages. Bioinformatic analysis and luciferase reporter assay revealed adiponectin receptor 2 (AdipoR2) as a direct target of miR-150. Small interfering RNA-mediated downregulation of AdipoR2 phenocopied the effects of miR-150 overexpression, reducing lipid accumulation and facilitating cholesterol efflux in oxLDL-treated THP-1 macrophages. Knockdown of AdipoR2 induced the expression of proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα), ABCA1, and ABCG1. Moreover, pharmacological inhibition of PPARγ or LXRα impaired AdipoR2 silencing-induced upregulation of ABCA1 and ABCG1. Taken together, our results indicate that miR-150 can attenuate oxLDL-induced lipid accumulation in macrophages via promotion of cholesterol efflux. The suppressive effects of miR-150 on macrophage foam cell formation are mediated through targeting of AdipoR2. Delivery of miR-150 may represent a potential approach to prevent macrophage foam cell formation in atherosclerosis. -- Highlights: •miR-150 inhibits macrophage foam cell formation. •miR-150 accelerates cholesterol efflux from oxLDL-laden macrophages. •miR-150 suppresses macrophage foam cell

  15. Orexin–Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine

    Science.gov (United States)

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A.; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I.

    2015-01-01

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R–OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R–OX1R heteromer. Cocaine binding to the σ1R–CRF1R–OX1R complex promotes a long-term disruption of the orexin-A–CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking. PMID:25926444

  16. Orexin-corticotropin-releasing factor receptor heteromers in the ventral tegmental area as targets for cocaine.

    Science.gov (United States)

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I; Ferré, Sergi; McCormick, Peter J

    2015-04-29

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R-OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R-OX1R heteromer. Cocaine binding to the σ1R-CRF1R-OX1R complex promotes a long-term disruption of the orexin-A-CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking. Copyright © 2015 the authors 0270-6474/15/356639-15$15.00/0.

  17. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    Science.gov (United States)

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  18. High-level expression, purification and characterization of a constitutively active thromboxane A2 receptor polymorphic variant.

    Directory of Open Access Journals (Sweden)

    Bing Xu

    Full Text Available G protein-coupled receptors (GPCRs exhibit some level of basal signaling even in the absence of a bound agonist. This basal or constitutive signaling can have important pathophysiological roles. In the past few years, a number of high resolution crystal structures of GPCRs have been reported, including two crystal structures of constitutively active mutants (CAM of the dim-light receptor, rhodopsin. The structural characterizations of CAMs are impeded by the lack of proper expression systems. The thromboxane A2 receptor (TP is a GPCR that mediates vasoconstriction and promotes thrombosis in response to the binding of thromboxane. Here, we report on the expression and purification of a genetic variant and CAM in TP, namely A160T, using tetracycline-inducible HEK293S-TetR and HEK293S (GnTI¯-TetR cell lines. Expression of the TP and the A160T genes in these mammalian cell lines resulted in a 4-fold increase in expression to a level of 15.8 ±0.3 pmol of receptor/mg of membrane protein. The receptors expressed in the HEK293S (GnTI(--TetR cell line showed homogeneous glycosylation. The functional yield of the receptors using a single step affinity purification was 45 µg/10⁶ cells. Temperature- dependent secondary structure changes of the purified TP and A160T receptors were characterized using circular dichroism (CD spectropolarimetry. The CD spectra shows that the loss of activity or thermal sensitivity that was previously observed for the A160T mutant, is not owing to large unfolding of the protein but rather to a more subtle effect. This is the first study to report on the successful high-level expression, purification, and biophysical characterization of a naturally occurring, diffusible ligand activated GPCR CAM.

  19. Cytosolic Phospholipase A2 Protein as a Novel Therapeutic Target for Spinal Cord Injury

    Science.gov (United States)

    Liu, Nai-Kui; Deng, Ling-Xiao; Zhang, Yi Ping; Lu, Qing-Bo; Wang, Xiao-Fei; Hu, Jian-Guo; Oakes, Eddie; Bonventre, Joseph V; Shields, Christopher B; Xu, Xiao-Ming

    2014-01-01

    Objective The objective of this study was to investigate whether cytosolic phospholipase A2 (cPLA2), an important isoform of PLA2 that mediates the release of arachidonic acid, plays a role in the pathogenesis of spinal cord injury (SCI). Methods A combination of molecular, histological, immunohistochemical, and behavioral assessments were used to test whether blocking cPLA2 activation pharmacologically or genetically reduced cell death, protected spinal cord tissue, and improved behavioral recovery after a contusive SCI performed at the 10th thoracic level in adult mice. Results SCI significantly increased cPLA2 expression and activation. Activated cPLA2 was localized mainly in neurons and oligodendrocytes. Notably, the SCI-induced cPLA2 activation was mediated by the extracellular signal-regulated kinase signaling pathway. In vitro, activation of cPLA2 by ceramide-1-phosphate or A23187 induced spinal neuronal death, which was substantially reversed by arachidonyl trifluoromethyl ketone, a cPLA2 inhibitor. Remarkably, blocking cPLA2 pharmacologically at 30 minutes postinjury or genetically deleting cPLA2 in mice ameliorated motor deficits, and reduced cell loss and tissue damage after SCI. Interpretation cPLA2 may play a key role in the pathogenesis of SCI, at least in the C57BL/6 mouse, and as such could be an attractive therapeutic target for ameliorating secondary tissue damage and promoting recovery of function after SCI. PMID:24623140

  20. The synthesis and biological evaluation of integrin receptor targeting molecules as potential radiopharmaceuticals

    Science.gov (United States)

    Pellegrini, Paul

    This thesis reports on the synthesis, characterisation and biological evaluation of a number of metal complexes designed to interact with the alphavbeta3 integrin receptor, an important biological target that is heavily involved in angiogenesis, and thus cancer related processes. Two approaches were used to synthesise the integrin-avid targets. The first was to attach a variety of bifunctional chelators (BFC's) for the incorporation of different metal centres to a known integrin antagonist, L-748,415, developed by Merck. The BFC's used were the hydrazinonicotinamide (HYNIC) and monoamine monoamide dithiol (MAMA) systems for coordination to Tc-99m and rhenium of which was used as a characterization surrogate for the unstable Tc core. The 1,4,7,10-tetraazacyclotridecanetetraacetic acid (TRITA) BFC was attached for the inclusion of copper and lutetium. This 'conjugate' approach was designed to yield information on how the BFC and the linker length would affect the affinity for the integrin receptor. The second approach was an 'integrated' method where the chelation moiety was integral to the biologically relevant part of the molecule, which in the case of the alphavbeta3 integrin receptor, is the arginine-glycine-aspartic acid (RGD) mimicking sequence. Two complexes were created with a modified MAMA derivative placed between a benzimidazole moiety (arginine mimick) and the aspartic acid mimicking terminal carboxylic acid to see how it would affect binding while keeping the molecular weight relatively low. The molecules were tested in vitro against purified human alphavbeta3 integrin receptor protein in a solid phase receptor binding assay to evaluate their inhibition constants against a molecule of known high affinity and selectivity in [I125]L-775,219, the I125 labelled alphavbeta3 integrin antagonist. The radiolabelled analogues were also tested in vivo against the A375 human melanoma cell line transplanted into balb/c nude mice as well as Fischer rats implanted

  1. Prostanoid receptors as possible targets for anti-allergic drugs: recent advances in prostanoids on allergy and immunology.

    Science.gov (United States)

    Honda, Tetsuya; Tokura, Yoshiki; Miyachi, Yoshiki; Kabashima, Kenji

    2010-12-01

    Prostanoids, consisting of prostaglandins and thromboxane, are cyclooxygenase metabolites of arachidonic acid released in various pathophysiological conditions which exert a range of actions mediated through their respective receptors expressed on target cells. Although it has been difficult to analyze the physiological role of prostanoids, recent developments in both the disruption of the respective gene and receptor selective compounds have enabled us to investigate the physiological roles for each receptor. It has been demonstrated that each prostanoid receptor has multiple functions, and that their expression is regulated in a context-dependent manner that sometimes results in opposite, excitatory and inhibitory, outcomes. The balance of prostanoid production and receptor expression has been revealed to be important for homeostasis of the human body. Here, we review new findings on the roles of prostanoids in allergic and immune diseases, focusing on contact dermatitis, atopic dermatitis, asthma, rheumatoid arthritis, and encephalomyelitis, and also discuss the clinical potentials of receptor-selective drugs.

  2. Blockade of A2b Adenosine Receptor Reduces Tumor Growth and Immune Suppression Mediated by Myeloid-Derived Suppressor Cells in a Mouse Model of Melanoma

    Directory of Open Access Journals (Sweden)

    Raffaella Iannone

    2013-12-01

    Full Text Available The A2b receptor (A2bR belongs to the adenosine receptor family. Emerging evidence suggest that A2bR is implicated in tumor progression in some murine tumor models, but the therapeutic potential of targeting A2bR in melanoma has not been examined. This study first shows that melanoma-bearing mice treated with Bay 60-6583, a selective A2bR agonist, had increased melanoma growth. This effect was associated with higher levels of immune regulatory mediators interleukin-10 (IL-10 and monocyte chemoattractant protein 1 (MCP-1 and accumulation of tumor-associated CD11b positive Gr1 positive cells (CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs. Depletion of CD11b+Gr1+ cells completely reversed the protumor activity of Bay 60-6583. Conversely, pharmacological blockade of A2bR with PSB1115 reversed immune suppression in the tumor microenvironment, leading to a significant melanoma growth delay. PSB1115 treatment reduced both levels of IL-10 and MCP-1 and CD11b+Gr1+ cell number in melanoma lesions. These effects were associated with higher frequency of tumor-infiltrating CD8 positive (CD8+ T cells and natural killer T (NKT cells and increased levels of T helper 1 (Th1-like cytokines. Adoptive transfer of CD11b+Gr1+ cells abrogated the antitumor activity of PSB1115. These data suggest that the antitumor activity of PSB1115 relies on its ability to lower accumulation of tumor-infiltrating MDSCs and restore an efficient antitumor T cell response. The antitumor effect of PSB1115 was not observed in melanoma-bearing nude mice. Furthermore, PSB1115 enhanced the antitumor efficacy of dacarbazine. These data indicate that A2bR antagonists such as PSB1115 should be investigated as adjuvants in the treatment of melanoma.

  3. Development of epidermal growth factor receptor targeted therapy in pancreatic cancer.

    Science.gov (United States)

    Qing, Liu; Qing, Wang

    2018-02-01

    The epidermal growth factor receptor (EGFR) family are a series of important cancer therapeutic targets involved in cancer biology. These genes play an important role in tumor biological characteristics including angiogenesis, cell survival, invasion and glucose metabolism. In recent years, progresses have been achieved upon the cellular and molecular biological characteristics of EGFR and its role in cancer development based on the study of tumor specimens and experimental animal model. EGFR(HER1/ErbB) is overexpressed in over sixty percent of triple-negative breast cancers and occurs in pancreatic, bladder, lung and head-and-neck cancers. Up to now, EGFR inhibitors have been applied in various of cancer, such as lung, breast, bladder and head and neck cancers etc., in which the combination of EGFR inhibitors plus chemotherapeutic agents is now seen as the standard of care for advanced/metastatic pancreatic cancer. For these reasons, EGFR inhibitors and their therapeutic effect for pancreatic cancer is becoming the focus in Laboratory and clinical research. In this paper, research progress of the development of epidermal growth factor receptor targeted therapy in pancreatic cancer is introduced.

  4. Preparation and Characterization of an Antibody Antagonist That Targets the Porcine Growth Hormone Receptor

    Directory of Open Access Journals (Sweden)

    Huanzhong Cui

    2016-10-01

    Full Text Available A series of antagonists specifically targeting growth hormone receptors (GHR in different species, such as humans, rats, bovines, and mice, have been designed; however, there are currently no antagonists that target the porcine growth hormone (GH. Therefore, in this study, we developed and characterized a porcine GHR (pGHR antibody antagonist (denoted by AN98 via the hybridoma technique. The results from enzyme-linked immunosorbent assay, fluorescence activated cell sorter, indirect immunoinfluscent assay, and competitive receptor binding analysis showed that AN98 could specifically recognize pGHR, and further experiments indicated that AN98 could effectively inhibit pGH-induced signalling in CHO-pGHR cells and porcine hepatocytes. In addition, AN98 also inhibited GH-induced insulin-like growth factor-1 (IGF-1 secretion in porcine hepatocytes. In summary, these findings indicated that AN98, as a pGHR-specific antagonist, has potential applications in pGH-pGHR-related research on domestic pigs.

  5. Protease-Activated Receptor 4 (PAR4): A Promising Target for Antiplatelet Therapy.

    Science.gov (United States)

    Rwibasira Rudinga, Gamariel; Khan, Ghulam Jilany; Kong, Yi

    2018-02-14

    Cardiovascular diseases (CVDs) are currently among the leading causes of death worldwide. Platelet aggregation is a key cellular component of arterial thrombi and major cause of CVDs. Protease-activated receptors (PARs), including PAR1, PAR2, PAR3 and PAR4, fall within a subfamily of seven-transmembrane G-protein-coupled receptors (GPCR). Human platelets express PAR1 and PAR4, which contribute to the signaling transduction processes. In association with CVDs, PAR4 not only contributes to platelet activation but also is a modulator of cellular responses that serve as hallmarks of inflammation. Although several antiplatelet drugs are available on the market, they have many side effects that limit their use. Emerging evidence shows that PAR4 targeting is a safer strategy for preventing thrombosis and consequently may improve the overall cardiac safety profile. Our present review summarizes the PAR4 structural characteristics, activation mechanism, role in the pathophysiology of diseases and understanding the association of PAR4 targeting for improved cardiac protection. Conclusively, this review highlights the importance of PAR4 antagonists and its potential utility in different CVDs.

  6. Protease-Activated Receptor 4 (PAR4: A Promising Target for Antiplatelet Therapy

    Directory of Open Access Journals (Sweden)

    Gamariel Rwibasira Rudinga

    2018-02-01

    Full Text Available Cardiovascular diseases (CVDs are currently among the leading causes of death worldwide. Platelet aggregation is a key cellular component of arterial thrombi and major cause of CVDs. Protease-activated receptors (PARs, including PAR1, PAR2, PAR3 and PAR4, fall within a subfamily of seven-transmembrane G-protein-coupled receptors (GPCR. Human platelets express PAR1 and PAR4, which contribute to the signaling transduction processes. In association with CVDs, PAR4 not only contributes to platelet activation but also is a modulator of cellular responses that serve as hallmarks of inflammation. Although several antiplatelet drugs are available on the market, they have many side effects that limit their use. Emerging evidence shows that PAR4 targeting is a safer strategy for preventing thrombosis and consequently may improve the overall cardiac safety profile. Our present review summarizes the PAR4 structural characteristics, activation mechanism, role in the pathophysiology of diseases and understanding the association of PAR4 targeting for improved cardiac protection. Conclusively, this review highlights the importance of PAR4 antagonists and its potential utility in different CVDs.

  7. Intravascular optical imaging of high-risk plaques in vivo by targeting macrophage mannose receptors

    Science.gov (United States)

    Kim, Ji Bak; Park, Kyeongsoon; Ryu, Jiheun; Lee, Jae Joong; Lee, Min Woo; Cho, Han Saem; Nam, Hyeong Soo; Park, Ok Kyu; Song, Joon Woo; Kim, Tae Shik; Oh, Dong Joo; Gweon, Daegab; Oh, Wang-Yuhl; Yoo, Hongki; Kim, Jin Won

    2016-03-01

    Macrophages mediate atheroma expansion and disruption, and denote high-risk arterial plaques. Therefore, they are substantially gaining importance as a diagnostic imaging target for the detection of rupture-prone plaques. Here, we developed an injectable near-infrared fluorescence (NIRF) probe by chemically conjugating thiolated glycol chitosan with cholesteryl chloroformate, NIRF dye (cyanine 5.5 or 7), and maleimide-polyethylene glycol-mannose as mannose receptor binding ligands to specifically target a subset of macrophages abundant in high-risk plaques. This probe showed high affinity to mannose receptors, low toxicity, and allowed the direct visualization of plaque macrophages in murine carotid atheroma. After the scale-up of the MMR-NIRF probe, the administration of the probe facilitated in vivo intravascular imaging of plaque inflammation in coronary-sized vessels of atheromatous rabbits using a custom-built dual-modal optical coherence tomography (OCT)-NIRF catheter-based imaging system. This novel imaging approach represents a potential imaging strategy enabling the identification of high-risk plaques in vivo and holds promise for future clinical implications.

  8. Modifying 5-HT1A receptor gene expression as a new target for antidepressant therapy

    Directory of Open Access Journals (Sweden)

    Paul R Albert

    2010-06-01

    Full Text Available Major depression is the most common form of mental illness, and is treated with antidepressant compounds that increase serotonin (5-HT neurotransmission. Increased 5-HT1A autoreceptor levels in the raphe nuclei act as a “brake” to inhibit the 5-HT system, leading to depression and resistance to antidepressants. Several 5-HT1A receptor agonists (buspirone, flesinoxan, ipsapirone that preferentially desensitize 5-HT1A autoreceptors have been tested for augmentation of antidepressant drugs with mixed results. One explanation could be the presence of the C(-1019G 5-HT1A promoter polymorphism that prevents gene repression of the 5-HT1A autoreceptor. Furthermore, down-regulation of 5-HT1A autoreceptor expression, not simply desensitization of receptor signaling, appears to be required to enhance and accelerate antidepressant action. The current review focuses on the transcriptional regulators of 5-HT1A autoreceptor expression, their roles in permitting response to 5-HT1A-targeted treatments and their potential as targets for new antidepressant compounds for treatment-resistant depression.

  9. Sphingosine 1-Phosphate Receptor 1 as a Useful Target for Treatment of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Kunitomo Adachi

    2012-05-01

    Full Text Available Sphingosine 1-phosphate (S1P, a lysophospholipid mediator, is generated from sphingosine by sphingosine kinases and binds five known cell surface receptors. S1P receptor 1 (S1P1 plays an essential role in lymphocyte egress from secondary lymphoid organs (SLO, as evinced by the inability of lymphocytes to exit from the SLO in mice lacking lymphocytic S1P1. Fingolimod hydrochloride (FTY720 is a first-in-class, orally active, S1P receptor modulator with a structure closely related to sphingosine. FTY720 was first synthesized by chemical modification of a natural product, myriocin. FTY720 is effectively converted to an active metabolite, FTY720 phosphate (FTY720-P by sphingosine kinases. FTY720-P shows high affinity to 4 of the S1P receptors (S1P1, S1P3, S1P4, and S1P5. In particular, FTY720-P strongly induces internalization and degradation of S1P1, inhibits S1P responsiveness of lymphocytes in the SLO, and acts as a functional antagonist at lymphocytic S1P1. Consequently, FTY720 inhibits S1P1-dependent lymphocyte egress from the SLO to decrease circulation of lymphocytes including autoreactive Th17 cells and is highly effective in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Because FTY720 shows a superior efficacy in relapsing remitting MS patients compared to intramuscular interferon-β-1a (Avonex®, S1P1 is presumed to be a useful target for the therapy of MS.

  10. Adiponectin release and insulin receptor targeting share trans-Golgi-dependent endosomal trafficking routes

    Directory of Open Access Journals (Sweden)

    Maria Rödiger

    2018-02-01

    Full Text Available Objective: Intracellular vesicle trafficking maintains cellular structures and functions. The assembly of cargo-laden vesicles at the trans-Golgi network is initiated by the ARF family of small GTPases. Here, we demonstrate the role of the trans-Golgi localized monomeric GTPase ARFRP1 in endosomal-mediated vesicle trafficking of mature adipocytes. Methods: Control (Arfrp1flox/flox and inducible fat-specific Arfrp1 knockout (Arfrp1iAT−/− mice were metabolically characterized. In vitro experiments on mature 3T3-L1 cells and primary mouse adipocytes were conducted to validate the impact of ARFRP1 on localization of adiponectin and the insulin receptor. Finally, secretion and transferrin-based uptake and recycling assays were performed with HeLa and HeLa M-C1 cells. Results: We identified the ARFRP1-based sorting machinery to be involved in vesicle trafficking relying on the endosomal compartment for cell surface delivery. Secretion of adiponectin from fat depots was selectively reduced in Arfrp1iAT−/− mice, and Arfrp1-depleted 3T3-L1 adipocytes revealed an accumulation of adiponectin in Rab11-positive endosomes. Plasma adiponectin deficiency of Arfrp1iAT−/− mice resulted in deteriorated hepatic insulin sensitivity, increased gluconeogenesis and elevated fasting blood glucose levels. Additionally, the insulin receptor, undergoing endocytic recycling after ligand binding, was less abundant at the plasma membrane of adipocytes lacking Arfrp1. This had detrimental effects on adipose insulin signaling, followed by insufficient suppression of basal lipolytic activity and impaired adipose tissue expansion. Conclusions: Our findings suggest that adiponectin secretion and insulin receptor surface targeting utilize the same post-Golgi trafficking pathways that are essential for an appropriate systemic insulin sensitivity and glucose homeostasis. Keywords: Adiponectin, ARFRP1, Exocytosis, Insulin receptor, trans-Golgi

  11. The epidermal growth factor receptor as a target for gastrointestinal cancer therapy.

    Science.gov (United States)

    Tedesco, Karen L; Lockhart, A Craig; Berlin, Jordan D

    2004-10-01

    The epidermal growth factor receptor (EGFR) is a member of the family of transmembrane protein kinase receptors known as the erbB or HER receptor family. When activated, EGFR phosphorylates and activates other intracellular proteins that affect cell signaling pathways, cellular proliferation, control of apoptosis and angiogenesis. EGFR signaling is best thought of as a network of activating and inactivating proteins with EGFR as the entry point into the network. EGFR overexpression occurs in most GI malignancies and while data are not entirely consistent, EGFR overexpression often confers a poor prognosis in those GI malignancies that have been studied. It often correlates with poorly differentiated histology, more advanced stage and other known poor prognostic markers. The EGFR is a tempting target because of its presence and overexpression on so many tumor types. However, downstream of the EGFR are several proteins that may be activated without EGFR thus allowing blockade to be overcome. Therefore, while blocking the activity of the EGFR protein appears to be a promising anticancer strategy, a simplistic strategy of blocking only EGFR is likely to only impact a minority of patients. It is time for the laboratory and clinical researchers to work closely together to develop this treatment strategy, moving back and forth from clinical to laboratory to best understand how to block this network effectively enough to produce a broader antitumor effect. While multiple methods of targeting the EGFR pathway are under development, including the inhibition of downstream proteins, only two modalities have entered clinical trials in GI malignancies: small molecule inhibitors of the intracellular kinase domain of EGFR and antibodies designed to block the extracellular ligand-binding domain of EGFR. EGFR inhibitors are still experimental in every GI malignancy with the notable exception of cetuximab that is approved for second or third-line therapy of metastatic colorectal

  12. Chlorin e6 Conjugated Interleukin-6 Receptor Aptamers Selectively Kill Target Cells Upon Irradiation

    Directory of Open Access Journals (Sweden)

    Sven Kruspe

    2014-01-01

    Full Text Available Photodynamic therapy (PDT uses the therapeutic properties of light in combination with certain chemicals, called photosensitizers, to successfully treat brain, breast, prostate, and skin cancers. To improve PDT, current research focuses on the development of photosensitizers to specifically target cancer cells. In the past few years, aptamers have been developed to directly deliver cargo molecules into target cells. We conjugated the photosensitizer chlorin e6 (ce6 with a human interleukin-6 receptor (IL-6R binding RNA aptamer, AIR-3A yielding AIR-3A-ce6 for application in high efficient PDT. AIR-3A-ce6 was rapidly and specifically internalized by IL-6R presenting (IL-6R+ cells. Upon light irradiation, targeted cells were selectively killed, while free ce6 did not show any toxic effect. Cells lacking the IL-6R were also not affected by AIR-3A-ce6. With this approach, we improved the target specificity of ce6-mediated PDT. In the future, other tumor-specific aptamers might be used to selectively localize photosensitizers into cells of interest and improve the efficacy and specificity of PDT in cancer and other diseases.

  13. IκBα mediates prostate cancer cell death induced by combinatorial targeting of the androgen receptor

    International Nuclear Information System (INIS)

    Carter, Sarah Louise; Centenera, Margaret Mary; Tilley, Wayne Desmond; Selth, Luke Ashton; Butler, Lisa Maree

    2016-01-01

    Combining different clinical agents to target multiple pathways in prostate cancer cells, including androgen receptor (AR) signaling, is potentially an effective strategy to improve outcomes for men with metastatic disease. We have previously demonstrated that sub-effective concentrations of an AR antagonist, bicalutamide, and the histone deacetylase inhibitor, vorinostat, act synergistically when combined to cause death of AR-dependent prostate cancer cells. In this study, expression profiling of human prostate cancer cells treated with bicalutamide or vorinostat, alone or in combination, was employed to determine the molecular mechanisms underlying this synergistic action. Cell viability assays and quantitative real time PCR were used to validate identified candidate genes. A substantial proportion of the genes modulated by the combination of bicalutamide and vorinostat were androgen regulated. Independent pathway analysis identified further pathways and genes, most notably NFKBIA (encoding IκBα, an inhibitor of NF-κB and p53 signaling), as targets of this combinatorial treatment. Depletion of IκBα by siRNA knockdown enhanced apoptosis of prostate cancer cells, while ectopic overexpression of IκBα markedly suppressed cell death induced by the combination of bicalutamide and vorinostat. These findings implicate IκBα as a key mediator of the apoptotic action of this combinatorial AR targeting strategy and a promising new therapeutic target for prostate cancer. The online version of this article (doi:10.1186/s12885-016-2188-2) contains supplementary material, which is available to authorized users

  14. Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455

    Directory of Open Access Journals (Sweden)

    Stefania Gessi

    2017-12-01

    Full Text Available Several evidences indicate that the ubiquitous nucleoside adenosine, acting through A1, A2A, A2B, and A3 receptor (AR subtypes, plays crucial roles in tumor development. Adenosine has contrasting effects on cell proliferation depending on the engagement of different receptor subtypes in various tumors. The involvement of A2AARs in human A375 melanoma, as well as in human A549 lung and rat MRMT1 breast carcinoma proliferation has been evaluated in view of the availability of a novel A2AAR antagonist, with high affinity and selectivity, named as 2-(2-furanyl-N5-(2-methoxybenzyl[1,3]thiazolo[5,4-d]pyrimidine-5,7-diammine (TP455. Specifically, the signaling pathways triggered in the cancer cells of different origin and the antagonist effect of TP455 were investigated. The A2AAR protein expression was evaluated through receptor binding assays. Furthermore, the effect of A2AAR activation on cell proliferation at 24, 48 and 72 hours was studied. The selective A2AAR agonist 2-p-(2-carboxyethylphenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS21680, concentration-dependently induced cell proliferation in A375, A549, and MRMT1 cancer cells and the effect was potently antagonized by the A2AAR antagonist TP455, as well as by the reference A2AAR blocker 4-(2-[7-amino-2-(2-furyl[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethylphenol (ZM241385. As for the signaling pathway recruited in this response we demonstrated that, by using the specific inhibitors of signal transduction pathways, the effect of A2AAR stimulation was induced through phospholipase C (PLC and protein kinase C-delta (PKC-δ. In addition, we evaluated, through the AlphaScreen SureFire phospho(p protein assay, the kinases enrolled by A2AAR to stimulate cell proliferation and we found the involvement of protein kinase B (AKT, extracellular regulated kinases (ERK1/2, and c-Jun N-terminal kinases (JNKs. Indeed, we demonstrated that the CGS21680 stimulatory effect on kinases was

  15. Pharmacological Blockade of Adenosine A2A but Not A1 Receptors Enhances Goal-Directed Valuation in Satiety-Based Instrumental Behavior

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-04-01

    Full Text Available The balance and smooth shift between flexible, goal-directed behaviors and repetitive, habitual actions are critical to optimal performance of behavioral tasks. The striatum plays an essential role in control of goal-directed versus habitual behaviors through a rich interplay of the numerous neurotransmitters and neuromodulators to modify the input, processing and output functions of the striatum. The adenosine receptors (namely A2AR and A1R, with their high expression pattern in the striatum and abilities to interact and integrate dopamine, glutamate and cannabinoid signals in the striatum, may represent novel therapeutic targets for modulating instrumental behavior. In this study, we examined the effects of pharmacological blockade of the A2ARs and A1Rs on goal-directed versus habitual behaviors in different information processing phases of instrumental learning using a satiety-based instrumental behavior procedure. We found that A2AR antagonist acts at the coding, consolidation and expression phases of instrumental learning to modulate animals’ sensitivity to goal-directed valuation without modifying action-outcome contingency. However, pharmacological blockade and genetic knockout of A1Rs did not affect acquisition or sensitivity to goal-valuation of instrumental behavior. These findings provide pharmacological evidence for a potential therapeutic strategy to control abnormal instrumental behaviors associated with drug addiction and obsessive-compulsive disorder by targeting the A2AR.

  16. Synthesis and Preliminary Evaluation of a 2-Oxoquinoline Carboxylic Acid Derivative for PET Imaging the Cannabinoid Type 2 Receptor

    Directory of Open Access Journals (Sweden)

    Linjing Mu

    2014-03-01

    Full Text Available Cannabinoid receptor subtype 2 (CB2 has been shown to be up-regulated in activated microglia and therefore plays an important role in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral sclerosis and Alzheimer’s disease. The CB2 receptor is therefore considered as a very promising target for therapeutic approaches as well as for imaging. A promising 2-oxoquinoline derivative designated KP23 was synthesized and radiolabeled and its potential as a ligand for PET imaging the CB2 receptor was evaluated. [11C]KP23 was obtained in 10%–25% radiochemical yield (decay corrected and 99% radiochemical purity. It showed high stability in phosphate buffer, rat and mouse plasma. In vitro autoradiography of rat and mouse spleen slices, as spleen expresses a high physiological expression of CB2 receptors, demonstrated that [11C]KP23 exhibits specific binding towards CB2. High spleen uptake of [11C]KP23 was observed in dynamic in vivo PET studies with Wistar rats. In conclusion, [11C]KP23 showed promising in vitro and in vivo characteristics. Further evaluation with diseased animal model which has higher CB2 expression levels in the brain is warranted.

  17. The alpha-fetoprotein third domain receptor binding fragment: in search of scavenger and associated receptor targets.

    Science.gov (United States)

    Mizejewski, G J

    2015-01-01

    Recent studies have demonstrated that the carboxyterminal third domain of alpha-fetoprotein (AFP-CD) binds with various ligands and receptors. Reports within the last decade have established that AFP-CD contains a large fragment of amino acids that interact with several different receptor types. Using computer software specifically designed to identify protein-to-protein interaction at amino acid sequence docking sites, the computer searches identified several types of scavenger-associated receptors and their amino acid sequence locations on the AFP-CD polypeptide chain. The scavenger receptors (SRs) identified were CD36, CD163, Stabilin, SSC5D, SRB1 and SREC; the SR-associated receptors included the mannose, low-density lipoprotein receptors, the asialoglycoprotein receptor, and the receptor for advanced glycation endproducts (RAGE). Interestingly, some SR interaction sites were localized on the AFP-derived Growth Inhibitory Peptide (GIP) segment at amino acids #480-500. Following the detection studies, a structural subdomain analysis of both the receptor and the AFP-CD revealed the presence of epidermal growth factor (EGF) repeats, extracellular matrix-like protein regions, amino acid-rich motifs and dimerization subdomains. For the first time, it was reported that EGF-like sequence repeats were identified on each of the three domains of AFP. Thereafter, the localization of receptors on specific cell types were reviewed and their functions were discussed.

  18. Near infrared spectral polarization imaging of prostate cancer tissues using Cybesin: a receptor-targeted contrast agent

    Science.gov (United States)

    Pu, Yang; Wang, W. B.; Tang, G. C.; Liang, Kexian; Achilefu, S.; Alfano, R. R.

    2013-03-01

    Cybesin, a smart contrast agent to target cancer cells, was investigated using a near infrared (NIR) spectral polarization imaging technique for prostate cancer detection. The approach relies on applying a contrast agent that can target cancer cells. Cybesin, as a small ICG-derivative dye-peptide, emit fluorescence between 750 nm and 900 nm, which is in the "tissue optical window". Cybesin was reported targeting the over-expressed bombesin receptors in cancer cells in animal model and the human prostate cancers over-expressing bombesin receptors. The NIR spectral polarization imaging study reported here demonstrated that Cybesin can be used as a smart optical biomarker and as a prostate cancer receptor targeted contrast agent.

  19. Synthesis and evaluation of ligand targeting the somatostatin receptor for drug delivery to tumor cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Young; Hong, Young Don; Jung, Sung Hee; Choi, Sun Ju [Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    Most of targeted therapies block the action of certain enzymes, proteins, or other molecules involved in the growth and spread of cancer cells to produce its cytotoxic effect. Either small molecule drugs or monoclonal antibodies are mostly used in targeted therapies. Unfortunately, targeted therapy has a certain degree of unwanted side effect like other cytotoxicity inducing chemotherapies. To overcome and to reduce unwanted side effects during a cancer therapy, recently radiopeptide therapies has got the worlds' attraction for the tumor targeting modalities due to its beneficial effect on less side effect compared to cytotoxic chemotherapies. Among radiopeptide therapies, {sup 177}Lu-DOTATATE is a major modality as an effective one invented so far in treating neuroendocrine tumor (NET) and it has been in clinical trials at least one decade. Although it does have rather effective therapeutic effect on NET, it has less effective in rather large solid tumor. There are many ways to improve or increase therapeutic effect of radiopeptide are a finding the potent small molecules to target the tumor site selectively, or a labeling with radioisotope of emitting high energy, or an improving its biological half-life by introducing different moieties to increase lipophilicity. Present study was focus to increase a biological halflife of radio somatostatin which will target the somatostatin receptor by altering the bifunctional chelator (BFCA) by introducing lipophilic moiety to the somatostatin, which would make the labeled peptide stay longer in the tumor site and thus it can intensify the therapeutic effect on tumor cell itself and around tissues.

  20. Structural Probing of Off-Target G Protein-Coupled Receptor Activities within a Series of Adenosine/Adenine Congeners

    Science.gov (United States)

    Paoletta, Silvia; Tosh, Dilip K.; Salvemini, Daniela; Jacobson, Kenneth A.

    2014-01-01

    We studied patterns of off-target receptor interactions, mostly at G protein-coupled receptors (GPCRs) in the µM range, of nucleoside derivatives that are highly engineered for nM interaction with adenosine receptors (ARs). Because of the considerable interest of using AR ligands for treating diseases of the CNS, we used the Psychoactive Drug Screening Program (PDSP) for probing promiscuity of these adenosine/adenine congeners at 41 diverse receptors, channels and a transporter. The step-wise truncation of rigidified, trisubstituted (at N6, C2, and 5′ positions) nucleosides revealed unanticipated interactions mainly with biogenic amine receptors, such as adrenergic receptors and serotonergic receptors, with affinities as high as 61 nM. The unmasking of consistent sets of structure activity relationship (SAR) at novel sites suggested similarities between receptor families in molecular recognition. Extensive molecular modeling of the GPCRs affected suggested binding modes of the ligands that supported the patterns of SAR at individual receptors. In some cases, the ligand docking mode closely resembled AR binding and in other cases the ligand assumed different orientations. The recognition patterns for different GPCRs were clustered according to which substituent groups were tolerated and explained in light of the complementarity with the receptor binding site. Thus, some likely off-target interactions, a concern for secondary drug effects, can be predicted for analogues of this set of substructures, aiding the design of additional structural analogues that either eliminate or accentuate certain off-target activities. Moreover, similar analyses could be performed for unrelated structural families for other GPCRs. PMID:24859150

  1. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    Science.gov (United States)

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  2. Cytosolic Phospholipase A2-α: A Potential Therapeutic Target for Prostate Cancer

    Science.gov (United States)

    Patel, Manish I.; Singh, Jaskirat; Niknami, Marzieh; Kurek, Caroline; Yao, Mu; Lu, Sasa; Maclean, Fiona; King, Nicholas J.C.; Gelb, Michael H.; Scott, Kieran F.; Russell, Pamela J.; Boulas, John; Dong., Qihan

    2008-01-01

    Purpose Cytosolic Phospholipase A2-α (cPLA2-α) provides intracellular arachidonic acid to supply both cyclooxygenase and lipoxygenase pathways. We aim to determine the expression and activation of cPLA2-α in prostate cancer (PC) cell line and tissue and the effect of targeting cPLA2-α in-vitro and in-vivo. Experimental Design The expression of cPLA2-α was determined in PC cells by RT-PCR, Western blot and immunocytochemistry. Growth inhibition, apoptosis and cPLA2-α activity were determined after inhibition with cPLA2-α siRNA or inhibitor (Wyeth-1). cPLA2-α inhibitor or vehicle was also administered to PC xenograft mouse models. Finally the expression of phospho-cPLA2-α was determined by immunohistochemistry in human normal, androgen sensitive and insensitive PC specimens. Results cPLA2-α is present in all PC cells lines, but increased in androgen insensitive cells. Inhibition with siRNA or Wyeth-1 results in significant reductions in PC cell numbers, as a result of reduced proliferation as well as increased apoptosis and this was also associated with a reduction in cPLA2-α activity. Expression of cyclin D1 and phosphorylation of Akt were also observed to decrease. Wyeth-1 inhibited PC3 xenograft growth by approximately 33% and again, also reduced cyclin D1. Immunohistochemistry of human prostate tissue revealed that phospho-cPLA2-α is increased when hormone refractory is reached. Conclusions cPLA2-α expression and activation is increased in the androgen insensitive cancer cell line and tissue. Inhibition of cPLA2-α results in cells and xenograft tumor growth inhibition and serves as a potentially effective therapy for hormone refractory PC. PMID:19088022

  3. Low-dose radiation potentiates the therapeutic efficacy of folate receptor-targeted hapten therapy.

    Science.gov (United States)

    Sega, Emanuela I; Lu, Yingjuan; Ringor, Michael; Leamon, Christopher P; Low, Philip S

    2008-06-01

    Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm(3) before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Mice bearing 300-mm(3) subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon alpha) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm(3). More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.

  4. Low-Dose Radiation Potentiates the Therapeutic Efficacy of Folate Receptor-Targeted Hapten Therapy

    International Nuclear Information System (INIS)

    Sega, Emanuela I.; Lu Yingjuan; Ringor, Michael; Leamon, Christopher P.; Low, Philip S.

    2008-01-01

    Purpose: Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm 3 before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Methods and Materials: Mice bearing 300-mm 3 subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon α) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Results: Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm 3 . More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. Conclusions: These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice

  5. Nucleoside conjugates of quantum dots for characterization of G protein-coupled receptors: strategies for immobilizing A2A adenosine receptor agonists

    Directory of Open Access Journals (Sweden)

    Gao Zhan-Guo

    2010-05-01

    Full Text Available Abstract Background Quantum dots (QDs are crystalline nanoparticles that are compatible with biological systems to provide a chemically and photochemically stable fluorescent label. New ligand probes with fluorescent reporter groups are needed for detection and characterization of G protein-coupled receptors (GPCRs. Results Synthetic strategies for coupling the A2A adenosine receptor (AR agonist CGS21680 (2-[4-(2-carboxyethylphenylethylamino]-5'-N-ethylcarboxamidoadenosine to functionalized QDs were explored. Conjugates tethered through amide-linked chains and poly(ethyleneglycol (PEG displayed low solubility and lacked receptor affinity. The anchor to the dendron was either through two thiol groups of (R-thioctic acid or through amide formation to a commercial carboxy-derivatized QD. The most effective approach was to use polyamidoamine (PAMAM D5 dendrons as multivalent spacer groups, grafted on the QD surface through a thioctic acid moiety. In radioligand binding assays, dendron nucleoside conjugate 11 displayed a moderate affinity at the human A2AAR (Kiapp 1.02 ± 0.15 μM. The QD conjugate of increased water solubility 13, resulting from the anchoring of this dendron derivative, interacted with the receptor with Kiapp of 118 ± 54 nM. The fluorescence emission of 13 occurred at 565 nm, and the presence of the pendant nucleoside did not appreciably quench the fluorescence. Conclusions This is a feasibility study to demonstrate a means of conjugating to a QD a small molecular pharmacophore of a GPCR that is relatively hydrophobic. Further enhancement of affinity by altering the pharmacophore or the linking structures will be needed to make useful affinity probes.

  6. Design, synthesis, and testing of multivalent compounds targeted to melanocortin receptors

    Science.gov (United States)

    Dehigaspitiya, Dilani Chathurika

    Our focus is on developing non-invasive molecular imaging reagents, which target human cancers that presently are difficult to detect, such as melanoma. We wish to apply the multivalency concept to differentiate between healthy cells and melanoma cells. Melanoma cells are known to over-express alpha melanocyte stimulating hormone receptors. A successful multivalent construct should show greater avidity towards melanoma cells than healthy cells due to the synergistic effects arising from multivalency. Both oligomeric and shorter linear constructs bearing the minimum active sequence of melanocyte stimulating hormone, His-DPhe-Arg-Trp-NH2(MSH4), which binds with low micromolar affinity to alpha melanocyte stimulating hormone receptors, were synthesized. Binding affinities of these constructs were evaluated in a competitive binding assay by competing with labeled ligands, Eu-DTPA-PEGO-MSH7 and/or Eu-DTPA-PEGO-NDP-alpha-MSH on the engineered cell line HEK293 CCK2R/hMC4R, which is genetically modified to over-express both the cholecystokinin 2 receptor (CCK2R) and human melanocortin 4 receptor (hMC4R). The oligomers were rapidly assembled using microwave-assisted copper catalyzed azide-alkyne cycloaddition between a dialkyne derivative of MSH4 and a diazide derivative of (Pro-Gly)3 as co-monomers. Three oligomer mixtures were further analyzed based on their degree of oligomerization and the route by which the MSH4 monomers were oligomerized, protected vs deprotected. Completive binding assay against Eu-DTPA-PEGO-MSH7 showed only a statistical enhancement of binding when calculated based on the total MSH4 concentration. However, when the calculation of avidity is based on an estimation of the particles numbers, there was a seven times enhancement of binding compared to a monovalent MSH4 control. The shorter linear multivalent MSH4 constructs were synthesized using ethylene glycol, glycerol, and mannitol as core scaffolds with maximum inter-ligand distances ranging from 27

  7. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    Science.gov (United States)

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB 1 receptor (CB 1 R)-induced memory deficits through an adenosine A 1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A 2A receptors (A 2A Rs) affects long-term episodic memory deficits induced by a single injection of a selective CB 1 R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB 1 /CB 2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A 2A R blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A 2A Rs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB 1 Rs was assessed by using the CB 1 R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB 1 R-mediated memory disruption is prevented by antagonism of adenosine A 2A Rs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB 1 R drugs is desired. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A novel small peptide as an epidermal growth factor receptor targeting ligand for nanodelivery in vitro

    Directory of Open Access Journals (Sweden)

    Han CY

    2013-04-01

    Full Text Available Cui-yan Han,1,2 Li-ling Yue,2 Ling-yu Tai,1 Li Zhou,2 Xue-yan Li,2 Gui-hua Xing,2 Xing-gang Yang,1 Ming-shuang Sun,1 Wei-san Pan1 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China; 2Qiqihar Medical University, Qiqihar, People’s Republic of China Abstract: The epidermal growth factor receptor (EGFR serves an important function in the proliferation of tumors in humans and is an effective target for the treatment of cancer. In this paper, we studied the targeting characteristics of small peptides (AEYLR, EYINQ, and PDYQQD that were derived from three major autophosphorylation sites of the EGFR C-terminus domain in vitro. These small peptides were labeled with fluorescein isothiocyanate (FITC and used the peptide LARLLT as a positive control, which bound to putative EGFR selected from a virtual peptide library by computer-aided design, and the independent peptide RALEL as a negative control. Analyses with flow cytometry and an internalization assay using NCI-H1299 and K562 with high EGFR and no EGFR expression, respectively, indicated that FITC-AEYLR had high EGFR targeting activity. Biotin-AEYLR that was specifically bound to human EGFR proteins demonstrated a high affinity for human non-small-cell lung tumors. We found that AEYLR peptide-conjugated, nanostructured lipid carriers enhanced specific cellular uptake in vitro during a process that was apparently mediated by tumor cells with high-expression EGFR. Analysis of the MTT assay indicated that the AEYLR peptide did not significantly stimulate or inhibit the growth activity of the cells. These findings suggest that, when mediated by EGFR, AEYLR may be a potentially safe and efficient delivery ligand for targeted chemotherapy, radiotherapy, and gene therapy. Keywords: EGFR, small peptide, tumor targeting, lung cancer, NLC

  9. Targeting low-density lipoprotein receptors with protein-only nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhikun [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain); Céspedes, María Virtudes [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Unzueta, Ugutz [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain); Álamo, Patricia [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Pesarrodona, Mireia [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain); Mangues, Ramón [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vázquez, Esther; Villaverde, Antonio, E-mail: antoni.villaverde@uab.cat; Ferrer-Miralles, Neus, E-mail: neus.ferrer@uab.cat [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain)

    2015-03-15

    Low-density lipoprotein receptors (LDLR) are appealing cell surface targets in drug delivery, as they are expressed in the blood–brain barrier (BBB) endothelium and are able to mediate transcytosis of functionalized drugs for molecular therapies of the central nervous system (CNS). On the other hand, brain-targeted drug delivery is currently limited, among others, by the poor availability of biocompatible vehicles, as most of the nanoparticles under development as drug carriers pose severe toxicity issues. In this context, protein nanoparticles offer functional versatility, easy and cost-effective bioproduction, and full biocompatibility. In this study, we have designed and characterized several chimerical proteins containing different LDLR ligands, regarding their ability to bind and internalize target cells and to self-organize as viral mimetic nanoparticles of about 18 nm in diameter. While the self-assembling of LDLR-binding proteins as nanoparticles positively influences cell penetration in vitro, the nanoparticulate architecture might be not favoring BBB crossing in vivo. These findings are discussed in the context of the use of nanostructured materials as vehicles for the systemic treatment of CNS diseases.

  10. Methotrexate transport mechanisms: the basis for targeted drug delivery and ß-folate-receptor-specific treatment.

    Science.gov (United States)

    Fiehn, C

    2010-01-01

    Methotrexate (MTX) plays a pivotal role in the treatment of rheumatoid arthritis (RA). The transport mechanisms with which MTX reaches is target after application are an important part of MTX pharmacology and its concentration in target tissue such as RA synovial membrane might strongly influence the effectiveness of the drug. Physiological plasma protein binding of MTX to albumin is important for the distribution of MTX in the body and relative high concentrations of the drug are found in the liver. However, targeted drug delivery into inflamed joints and increased anti-arthritic efficiency can be obtained by covalent coupling of MTX ex-vivo to human serum albumin (MTX-HSA) or in-vivo to endogenous albumin mediated through the MTX-pro-drug AWO54. High expression of the folate receptor β (FR-β) on synovial macrophages of RA patients and its capacity to mediate binding and uptake of MTX has been demonstrated. To further improve drug treatment of RA, FR-β specific drugs have been developed and were characterised for their therapeutic potency in synovial inflammation. Therefore, different approaches to improve folate inhibitory and FR-β specific therapy of RA beyond MTX are in development and will be described.

  11. Activation loop targeting strategy for design of receptor-interacting protein kinase 2 (RIPK2) inhibitors.

    Science.gov (United States)

    Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D

    2018-02-15

    Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Targeting low-density lipoprotein receptors with protein-only nanoparticles

    International Nuclear Information System (INIS)

    Xu, Zhikun; Céspedes, María Virtudes; Unzueta, Ugutz; Álamo, Patricia; Pesarrodona, Mireia; Mangues, Ramón; Vázquez, Esther; Villaverde, Antonio; Ferrer-Miralles, Neus

    2015-01-01

    Low-density lipoprotein receptors (LDLR) are appealing cell surface targets in drug delivery, as they are expressed in the blood–brain barrier (BBB) endothelium and are able to mediate transcytosis of functionalized drugs for molecular therapies of the central nervous system (CNS). On the other hand, brain-targeted drug delivery is currently limited, among others, by the poor availability of biocompatible vehicles, as most of the nanoparticles under development as drug carriers pose severe toxicity issues. In this context, protein nanoparticles offer functional versatility, easy and cost-effective bioproduction, and full biocompatibility. In this study, we have designed and characterized several chimerical proteins containing different LDLR ligands, regarding their ability to bind and internalize target cells and to self-organize as viral mimetic nanoparticles of about 18 nm in diameter. While the self-assembling of LDLR-binding proteins as nanoparticles positively influences cell penetration in vitro, the nanoparticulate architecture might be not favoring BBB crossing in vivo. These findings are discussed in the context of the use of nanostructured materials as vehicles for the systemic treatment of CNS diseases

  13. Sodium modulates opioid receptors through a membrane component different from G-proteins. Demonstration by target size analysis

    International Nuclear Information System (INIS)

    Ott, S.; Costa, T.; Herz, A.

    1988-01-01

    The target size for opioid receptor binding was studied after manipulations known to affect the interactions between receptor and GTP-binding regulatory proteins (G-proteins). Addition of GTP or its analogs to the binding reaction, exposure of intact cells to pertussis toxin prior to irradiation, or treatment of irradiated membranes with N-ethylmaleimide did not change the target size (approximately equal to 100 kDa) for opioid receptors in NG 108-15 cells and rat brain. These data suggest that the 100-kDa species does not include an active subunit of a G-protein or alternatively that GTP does not promote the dissociation of the receptor-G-protein complex. The presence of Na+ (100 mM) in the radioligand binding assay induced a biphasic decay curve for agonist binding and a flattening of the monoexponential decay curve for a partial agonist. In both cases the effect was explained by an irradiation-induced loss of the low affinity state of the opioid receptor produced by the addition of Na+. This suggests that an allosteric inhibitor that mediates the effect of sodium on the receptor is destroyed at low doses of irradiation, leaving receptors which are no longer regulated by sodium. The effect of Na+ on target size was slightly increased by the simultaneous addition of GTP but was not altered by pertussis toxin treatment. Thus, the sodium unit is distinct from G-proteins and may represent a new component of the opioid receptor complex. Assuming a simple bimolecular model of one Na+ unit/receptor, the size of this inhibitor can be measured as 168 kDa

  14. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system

    Science.gov (United States)

    Holzer, Peter

    2011-01-01

    Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca2+ and Mg2+, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. PMID:21420431

  15. (Pro)renin receptor: Involvement in diabetic retinopathy and development of molecular targeted therapy.

    Science.gov (United States)

    Kanda, Atsuhiro; Ishida, Susumu

    2018-03-25

    The renin-angiotensin system (RAS), a crucial regulator of systemic blood pressure (circulatory RAS), plays distinct roles in pathological angiogenesis and inflammation in various organs (tissue RAS), such as diabetic microvascular complications. Using ocular clinical samples and animal disease models, we elucidated molecular mechanisms in which tissue RAS excites the expression of vascular endothelial growth factor (VEGF)-A responsible for retinal inflammation and angiogenesis, the two major pathological events in diabetic retinopathy (DR). Furthermore, we showed the involvement of (pro)renin receptor [(P)RR] in retinal RAS activation and its concurrent intracellular signal transduction (e.g., extracellular signal-regulated kinase); namely, the (P)RR-induced dual pathogenic bioactivity referred to as the receptor-associated prorenin system. Indeed, neovascular endothelial cells in the fibrovascular tissue collected from eyes with proliferative DR were immunoreactive for the receptor-associated prorenin system components including prorenin, (P)RR, phosphorylated extracellular signal-regulated kinase and VEGF-A. Protein levels of soluble (P)RR increased with its positive correlations with prorenin, renin enzymatic activity and VEGF in the vitreous of proliferative DR eyes, suggesting a close link between (P)RR and VEGF-A-driven angiogenic activity. Furthermore, we revealed an unsuspected, PAPS-independent role of (P)RR in glucose-induced oxidative stress. Recently, we developed an innovative single-strand ribonucleic acid interference molecule selectively targeting human and mouse (P)RR, and confirmed its efficacy in suppressing diabetes-induced retinal inflammation in mice. Our data using clinical samples and animal models suggested the significant implication of (P)RR in the pathogenesis of DR, and the potential usefulness of the ribonucleic acid interference molecule as a therapeutic agent to attenuate ocular inflammation and angiogenesis. © 2018 The Authors

  16. Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild

    2004-01-01

    Background and purpose: Inhibition of the epidermal growth factor receptor (EGFR) is a fastly developing field in preclinical and clinical cancer research. This review presents the current status of knowledge and discusses radiobiological mechanisms which may underly the efficacy of EGFR inhibitors combined with irradiation. Materials and methods: Preclinical and clinical results on combined targeting of the EGFR and irradiation from the literature and from this laboratory are reviewed. Focus is given to the radiobiological rationale of this approach and to endpoints of experimental radiotherapy. Results: Overexpression of the EGFR is associated with decreased local tumour control after radiotherapy, especially when the overall treatment time is long. Inhibition of the EGFR either alone or in combination with irradiation decreases the growth rate of tumours expressing this receptor. Preclinical data provide proof-of-principle that local tumour control may be improved by combining irradiation with C225 mAb. In a randomised phase III clinical trial, simultaneous irradiation and treatment with the EGFR antibody Cetuximab (Erbitux[reg]; C225) in head and neck cancer patients resulted in significantly improved locoregional tumour control and survival compared to curative irradiation alone. Acute skin reactions increased in the experimental arm. The underlying mechanisms of enhanced radiation effects of combined EGFR inhibition with irradiation and of the partly conflicting results in different studies are poorly understood. There is increasing evidence, that important intertumoral heterogeneity in the response to EGFR inhibition alone and combined with irradiation exists, which appears to be at least partly dependent on specific mutations of the receptor as well as of molecules that are involved in the intracellular signal transduction pathway. Conclusions and outlook: Further investigations at all levels of the translational research chain exploring the mechanisms of

  17. Andrographolide suppresses TRIF-dependent signaling of toll-like receptors by targeting TBK1.

    Science.gov (United States)

    Kim, Ah-Yeon; Shim, Hyun-Jin; Shin, Hyeon-Myeong; Lee, Yoo Jung; Nam, Hyeonjeong; Kim, Su Yeon; Youn, Hyung-Sun

    2018-04-01

    Toll-like receptors (TLRs) play a crucial role in danger recognition and induction of innate immune response against bacterial and viral infections. The TLR adaptor molecule, toll-interleukin-1 receptor domain-containing adapter inducing interferon-β (TRIF), facilitates TLR3 and TLR4 signaling, leading to the activation of the transcription factor, NF-κB and interferon regulatory factor 3 (IRF3). Andrographolide, the active component of Andrographis paniculata, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the role of andrographolide in TLR signaling pathways. Andrographolide suppressed NF-κB activation as well as COX-2 expression induced by TLR3 or TLR4 agonists. Andrographolide also suppressed the activation of IRF3 and the expression of interferon inducible protein-10 (IP-10) induced by TLR3 or TLR4 agonists. Andrographolide attenuated ligand-independent activation of IRF3 following overexpression of TRIF, TBK1, or IRF3. Furthermore, andrographolide inhibited TBK1 kinase activity in vitro. These results indicate that andrographolide modulates the TRIF-dependent pathway of TLRs by targeting TBK1 and represents a potential new anti-inflammatory candidate. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Synthesis of a Fluorescently Labeled 68Ga-DOTA-TOC Analog for Somatostatin Receptor Targeting.

    Science.gov (United States)

    Ghosh, Sukhen C; Hernandez Vargas, Servando; Rodriguez, Melissa; Kossatz, Susanne; Voss, Julie; Carmon, Kendra S; Reiner, Thomas; Schonbrunn, Agnes; Azhdarinia, Ali

    2017-07-13

    Fluorescently labeled imaging agents can identify surgical margins in real-time to help achieve complete resections and minimize the likelihood of local recurrence. However, photon attenuation limits fluorescence-based imaging to superficial lesions or lesions that are a few millimeters beneath the tissue surface. Contrast agents that are dual-labeled with a radionuclide and fluorescent dye can overcome this limitation and combine quantitative, whole-body nuclear imaging with intraoperative fluorescence imaging. Using a multimodality chelation (MMC) scaffold, IRDye 800CW was conjugated to the clinically used somatostatin analog, 68 Ga-DOTA-TOC, to produce the dual-labeled analog, 68 Ga-MMC(IRDye 800CW)-TOC, with high yield and specific activity. In vitro pharmacological assays demonstrated retention of receptor-targeting properties for the dual-labeled compound with robust internalization that was somatostatin receptor (SSTR) 2-mediated. Biodistribution studies in mice identified the kidneys as the primary excretion route for 68 Ga-MMC(IRDye 800CW)-TOC, along with clearance via the reticuloendothelial system. Higher uptake was observed in most tissues compared to 68 Ga-DOTA-TOC but decreased as a function of time. The combination of excellent specificity for SSTR2-expressing cells and suitable biodistribution indicate potential application of 68 Ga-MMC(IRDye 800CW)-TOC for intraoperative detection of SSTR2-expressing tumors.

  19. Identification of potential pathway mediation targets in Toll-like receptor signaling.

    Directory of Open Access Journals (Sweden)

    Fan Li

    2009-02-01

    Full Text Available Recent advances in reconstruction and analytical methods for signaling networks have spurred the development of large-scale models that incorporate fully functional and biologically relevant features. An extended reconstruction of the human Toll-like receptor signaling network is presented herein. This reconstruction contains an extensive complement of kinases, phosphatases, and other associated proteins that mediate the signaling cascade along with a delineation of their associated chemical reactions. A computational framework based on the methods of large-scale convex analysis was developed and applied to this network to characterize input-output relationships. The input-output relationships enabled significant modularization of the network into ten pathways. The analysis identified potential candidates for inhibitory mediation of TLR signaling with respect to their specificity and potency. Subsequently, we were able to identify eight novel inhibition targets through constraint-based modeling methods. The results of this study are expected to yield meaningful avenues for further research in the task of mediating the Toll-like receptor signaling network and its effects.

  20. Formyl peptide receptor as a novel therapeutic target for anxiety-related disorders.

    Directory of Open Access Journals (Sweden)

    Irene Gallo

    Full Text Available Formyl peptide receptors (FPR belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/- mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface.

  1. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    Science.gov (United States)

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  2. Targeting Stromal Androgen Receptor Suppresses Prolactin-Driven Benign Prostatic Hyperplasia (BPH)

    Science.gov (United States)

    Lai, Kuo-Pao; Huang, Chiung-Kuei; Fang, Lei-Ya; Izumi, Kouji; Lo, Chi-Wen; Wood, Ronald; Kindblom, Jon; Yeh, Shuyuan

    2013-01-01

    Stromal-epithelial interaction plays a pivotal role to mediate the normal prostate growth, the pathogenesis of benign prostatic hyperplasia (BPH), and prostate cancer development. Until now, the stromal androgen receptor (AR) functions in the BPH development, and the underlying mechanisms remain largely unknown. Here we used a genetic knockout approach to ablate stromal fibromuscular (fibroblasts and smooth muscle cells) AR in a probasin promoter-driven prolactin transgenic mouse model (Pb-PRL tg mice) that could spontaneously develop prostate hyperplasia to partially mimic human BPH development. We found Pb-PRL tg mice lacking stromal fibromuscular AR developed smaller prostates, with more marked changes in the dorsolateral prostate lobes with less proliferation index. Mechanistically, prolactin mediated hyperplastic prostate growth involved epithelial-stromal interaction through epithelial prolactin/prolactin receptor signals to regulate granulocyte macrophage-colony stimulating factor expression to facilitate stromal cell growth via sustaining signal transducer and activator of transcription-3 activity. Importantly, the stromal fibromuscular AR could modulate such epithelial-stromal interacting signals. Targeting stromal fibromuscular AR with the AR degradation enhancer, ASC-J9®, led to the reduction of prostate size, which could be used in future therapy. PMID:23893956

  3. Overexpression of endothelin B receptor in glioblastoma: a prognostic marker and therapeutic target?

    KAUST Repository

    Vasaikar, Suhas

    2018-02-06

    BackgroundGlioblastoma (GBM) is the most common malignant brain tumor with median survival of 12-15 months. Owing to uncertainty in clinical outcome, additional prognostic marker(s) apart from existing markers are needed. Since overexpression of endothelin B receptor (ETBR) has been demonstrated in gliomas, we aimed to test whether ETBR is a useful prognostic marker in GBM and examine if the clinically available endothelin receptor antagonists (ERA) could be useful in the disease treatment.MethodsData from The Cancer Genome Atlas and the Gene Expression Omnibus database were analyzed to assess ETBR expression. For survival analysis, glioblastoma samples from 25 Swedish patients were immunostained for ETBR, and the findings were correlated with clinical history. The druggability of ETBR was assessed by protein-protein interaction network analysis. ERAs were analyzed for toxicity in in vitro assays with GBM and breast cancer cells.ResultsBy bioinformatics analysis, ETBR was found to be upregulated in glioblastoma patients, and its expression levels were correlated with reduced survival. ETBR interacts with key proteins involved in cancer pathogenesis, suggesting it as a druggable target. In vitro viability assays showed that ERAs may hold promise to treat glioblastoma and breast cancer.ConclusionsETBR is overexpressed in glioblastoma and other cancers and may be a prognostic marker in glioblastoma. ERAs may be useful for treating cancer patients.

  4. The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy.

    Science.gov (United States)

    Sockolosky, Jonathan T; Szoka, Francis C

    2015-08-30

    Immunoglobulin G (IgG)-based drugs are arguably the most successful class of protein therapeutics due in part to their remarkably long blood circulation. This arises from IgG interaction with the neonatal Fc receptor, FcRn. FcRn is the central regulator of IgG and albumin homeostasis throughout life and is increasingly being recognized as an important player in autoimmune disease, mucosal immunity, and tumor immune surveillance. Various engineering approaches that hijack or disrupt the FcRn-mediated transport pathway have been devised to develop long-lasting and non-invasive protein therapeutics, protein subunit vaccines, and therapeutics for treatment of autoimmune and infectious disease. In this review, we highlight the diverse biological functions of FcRn, emerging therapeutic opportunities, as well as the associated challenges of targeting FcRn for drug delivery and disease therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Structure of a prehandover mammalian ribosomal SRP·SRP receptor targeting complex.

    Science.gov (United States)

    Kobayashi, Kan; Jomaa, Ahmad; Lee, Jae Ho; Chandrasekar, Sowmya; Boehringer, Daniel; Shan, Shu-Ou; Ban, Nenad

    2018-04-20

    Signal recognition particle (SRP) targets proteins to the endoplasmic reticulum (ER). SRP recognizes the ribosome synthesizing a signal sequence and delivers it to the SRP receptor (SR) on the ER membrane followed by the transfer of the signal sequence to the translocon. Here, we present the cryo-electron microscopy structure of the mammalian translating ribosome in complex with SRP and SR in a conformation preceding signal sequence handover. The structure visualizes all eukaryotic-specific SRP and SR proteins and reveals their roles in stabilizing this conformation by forming a large protein assembly at the distal site of SRP RNA. We provide biochemical evidence that the guanosine triphosphate hydrolysis of SRP·SR is delayed at this stage, possibly to provide a time window for signal sequence handover to the translocon. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Treatment-Resistant Major Depression: Rationale for NMDA Receptors as Targets and Nitrous Oxide as Therapy

    Science.gov (United States)

    Zorumski, Charles F.; Nagele, Peter; Mennerick, Steven; Conway, Charles R.

    2015-01-01

    Major depressive disorder (MDD) remains a huge personal and societal encumbrance. Particularly burdensome is a virulent subtype of MDD, treatment resistant major depression (TMRD), which afflicts 15–30% of MDD patients. There has been recent interest in N-methyl-d-aspartate receptors (NMDARs) as targets for treatment of MDD and perhaps TMRD. To date, most pre-clinical and clinical studies have focused on ketamine, although psychotomimetic and other side effects may limit ketamine’s utility. These considerations prompted a recent promising pilot clinical trial of nitrous oxide, an NMDAR antagonist that acts through a mechanism distinct from that of ketamine, in patients with severe TRMD. In this paper, we review the clinical picture of TRMD as a subtype of MDD, the evolution of ketamine as a fast-acting antidepressant, and clinical and basic science studies supporting the possible use of nitrous oxide as a rapid antidepressant. PMID:26696909

  7. Targeting the Peroxisome Proliferator-Activated Receptor-γ to Counter the Inflammatory Milieu in Obesity

    Directory of Open Access Journals (Sweden)

    Cesar Corzo

    2013-12-01

    Full Text Available Adipose tissue, which was once viewed as a simple organ for storage of triglycerides, is now considered an important endocrine organ. Abnormal adipose tissue mass is associated with defects in endocrine and metabolic functions which are the underlying causes of the metabolic syndrome. Many adipokines, hormones secreted by adipose tissue, regulate cells from the immune system. Interestingly, most of these adipokines are proinflammatory mediators, which increase dramatically in the obese state and are believed to be involved in the pathogenesis of insulin resistance. Drugs that target peroxisome proliferator-activated receptor-γ have been shown to possess anti-inflammatory effects in animal models of diabetes. These findings, and the link between inflammation and the metabolic syndrome, will be reviewed here.

  8. Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects

    Science.gov (United States)

    Ferraldeschi, R; Welti, J; Luo, J; Attard, G; de Bono, JS

    2015-01-01

    Androgen receptor (AR) signaling is a critical pathway for prostate cancer cells, and androgen-deprivation therapy (ADT) remains the principal treatment for patients with locally advanced and metastatic disease. However, over time, most tumors become resistant to ADT. The view of castration-resistant prostate cancer (CRPC) has changed dramatically in the last several years. Progress in understanding the disease biology and mechanisms of castration resistance led to significant advancements and to paradigm shift in the treatment. Accumulating evidence showed that prostate cancers develop adaptive mechanisms for maintaining AR signaling to allow for survival and further evolution. The aim of this review is to summarize molecular mechanisms of castration resistance and provide an update in the development of novel agents and strategies to more effectively target the AR signaling pathway. PMID:24837363

  9. Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, Florence; Ray, Anne Marie; Dontenwill, Monique, E-mail: monique.dontenwill@unistra.fr [UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Tumoral signaling and therapeutic targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch (France)

    2013-01-15

    Integrins are transmembrane heterodimeric proteins sensing the cell microenvironment and modulating numerous signalling pathways. Changes in integrin expression between normal and tumoral cells support involvement of specific integrins in tumor progression and aggressiveness. This review highlights the current knowledge about α5β1 integrin, also called the fibronectin receptor, in solid tumors. We summarize data showing that α5β1 integrin is a pertinent therapeutic target expressed by tumoral neovessels and tumoral cells. Although mainly evaluated in preclinical models, α5β1 integrin merits interest in particular in colon, breast, ovarian, lung and brain tumors where its overexpression is associated with a poor prognosis for patients. Specific α5β1 integrin antagonists will be listed that may represent new potential therapeutic agents to fight defined subpopulations of particularly aggressive tumors.

  10. Orphan G protein receptor GPR55 as an emerging target in cancer therapy and management

    Directory of Open Access Journals (Sweden)

    Leyva-Illades D

    2013-07-01

    Full Text Available Dinorah Leyva-Illades,1–3 Sharon DeMorrow1–3 1Digestive Disease Research Center, Scott and White Hospital, Temple, TX, USA; 2Department of Internal MedicineTexas A&M Health Science Center, Temple, TX, USA; 3Research Service, Central Texas Veterans Health Care System, Temple, TX, USA Abstract: G protein-coupled receptors (GPCRs modulate a vast array of cellular processes. The current review gives an overview of the general characteristics of GPCRs and their role in physiological conditions. In addition, it describes the current knowledge of the physiological and pathophysiological functions of GPR55, an orphan GPCR, and how it can be exploited as a therapeutic target to combat various cancers. Keywords: GPR55, cancer, GPCR, endocannabinoids

  11. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle

    Science.gov (United States)

    Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar

    2014-05-01

    Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied

  12. Ethanol-induced increase in portal blood flow: Role of acetate and A1- and A2-adenosine receptors

    International Nuclear Information System (INIS)

    Carmichael, F.J.; Saldivia, V.; Varghese, G.A.; Israel, Y.; Orrego, H.

    1988-01-01

    The increase in portal blood flow induced by ethanol appears to be adenosine mediated. Acetate, which is released by the liver during ethanol metabolism, is known to increase adenosine levels in tissues and in blood. The effects of acetate on portal blood flow were investigated in rats using the microsphere technique. The intravenous infusion of acetate resulted in vasodilation of the preportal vasculature and in a dose-dependent increase in portal blood flow. This acetate-induced increase in portal blood flow was suppressed by the adenosine receptor blocker, 8-phenyltheophylline. Using the A 1 -adenosine receptor agonist N-6-cyclohexyl adenosine and the A 2 -agonist 5'-N-ethylcarboxamido adenosine, we demonstrate that the effect of adenosine on the preportal vasculature is mediated by the A 2 -subtype of adenosine receptors. In conclusion, these data support the hypothesis that the increase in portal blood flow after ethanol administration results from a preportal vasodilatory effect of adenosine formed from acetate metabolism in extrahepatic tissues

  13. Distribution of the a2, a3, and a5 nicotinic acetylcholine receptor subunits in the chick brain

    Directory of Open Access Journals (Sweden)

    Torrão A.S.

    1997-01-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are ionotropic receptors comprised of a and ß subunits. These receptors are widely distributed in the central nervous system, and previous studies have revealed specific patterns of localization for some nAChR subunits in the vertebrate brain. In the present study we used immunohistochemical methods and monoclonal antibodies to localize the a2, a3, and a5 nAChR subunits in the chick mesencephalon and diencephalon. We observed a differential distribution of these three subunits in the chick brain, and showed that the somata and neuropil of many central structures contain the a5 nAChR subunit. The a2 and a3 subunits, on the other hand, exhibited a more restricted distribution than a5 and other subunits previously studied, namely a7, a8 and ß2. The patterns of distribution of the different nAChR subunits suggest that neurons in many brain structures may contain several subtypes of nAChRs and that in a few regions one particular subtype may determine the cholinergic nicotinic responses

  14. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    Science.gov (United States)

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  15. Effective therapeutic approach for head and neck cancer by an engineered minibody targeting the EGFR receptor.

    Directory of Open Access Journals (Sweden)

    Young Pil Kim

    Full Text Available Cetuximab, a chimeric monoclonal antibody developed for targeting the Epidermal Growth Factor Receptor (EGFR, has been intensively used to treat cancer patients with metastatic colorectal cancer and head and neck cancer. Intact immunoglobulin G (IgG antibody like cetuximab, however, has some limitations such as high production cost and low penetration rate from vasculature into solid tumor mass due to its large size. In attempt to overcome these limitations, we engineered cetuximab to create single chain variable fragments (scFv-CH3; Minibody that were expressed in bacterial system. Among three engineered minibodies, we found that MI061 minibody, which is composed of the variable heavy (VH and light (VL region joined by an 18-residue peptide linker, displays higher solubility and better extraction properties from bacterial lysate. In addition, we validated that purified MI061 significantly interferes ligand binding to EGFR and blocks EGFR's phosphorylation. By using a protein microarray composed of 16,368 unique human proteins covering around 2,400 plasma membrane associated proteins such as receptors and channels, we also demonstrated that MI061 only recognizes the EGFR but not other proteins as compared with cetuximab. These results indicated that engineered MI061 retains both binding specificity and affinity of cetuximab for EGFR. Although it had relatively short half-life in serum, it was shown to be highly significant anti-tumor effect by inhibiting ERK pathway in A431 xenograft model. Taken together, our present study provides compelling evidence that engineered minibody is more effective and promising agent for in vivo targeting of solid tumors.

  16. Nebulisation of receptor-targeted nanocomplexes for gene delivery to the airway epithelium.

    Science.gov (United States)

    Manunta, Maria D I; McAnulty, Robin J; Tagalakis, Aristides D; Bottoms, Stephen E; Campbell, Frederick; Hailes, Helen C; Tabor, Alethea B; Laurent, Geoffrey J; O'Callaghan, Christopher; Hart, Stephen L

    2011-01-01

    Gene therapy mediated by synthetic vectors may provide opportunities for new treatments for cystic fibrosis (CF) via aerosolisation. Vectors for CF must transfect the airway epithelium efficiently and not cause inflammation so they are suitable for repeated dosing. The inhaled aerosol should be deposited in the airways since the cystic fibrosis transmembrane conductance regulator gene (CFTR) is expressed predominantly in the epithelium of the submucosal glands and in the surface airway epithelium. The aim of this project was to develop an optimised aerosol delivery approach applicable to treatment of CF lung disease by gene therapy. The vector suspension investigated in this study comprises receptor-targeting peptides, cationic liposomes and plasmid DNA that self-assemble by electrostatic interactions to form a receptor-targeted nanocomplex (RTN) of approximately 150 nm with a cationic surface charge of +50 mV. The aerodynamic properties of aerosolised nanocomplexes produced with three different nebulisers were compared by determining aerosol deposition in the different stages of a Next Generation Pharmaceutical Impactor (NGI). We also investigated the yield of intact plasmid DNA by agarose gel electrophoresis and densitometry, and transfection efficacies in vitro and in vivo. RTNs nebulised with the AeroEclipse II BAN were the most effective, compared to other nebulisers tested, for gene delivery both in vitro and in vivo. The biophysical properties of the nanocomplexes were unchanged after nebulisation while the deposition of RTNs suggested a range of aerosol aerodynamic sizes between 5.5 µm-1.4 µm cut off (NGI stages 3-6) compatible with deposition in the central and lower airways. RTNs showed their ability at delivering genes via nebulisation, thus suggesting their potential applications for therapeutic interventions of cystic fibrosis and other respiratory disorders.

  17. Nebulisation of receptor-targeted nanocomplexes for gene delivery to the airway epithelium.

    Directory of Open Access Journals (Sweden)

    Maria D I Manunta

    Full Text Available Gene therapy mediated by synthetic vectors may provide opportunities for new treatments for cystic fibrosis (CF via aerosolisation. Vectors for CF must transfect the airway epithelium efficiently and not cause inflammation so they are suitable for repeated dosing. The inhaled aerosol should be deposited in the airways since the cystic fibrosis transmembrane conductance regulator gene (CFTR is expressed predominantly in the epithelium of the submucosal glands and in the surface airway epithelium. The aim of this project was to develop an optimised aerosol delivery approach applicable to treatment of CF lung disease by gene therapy.The vector suspension investigated in this study comprises receptor-targeting peptides, cationic liposomes and plasmid DNA that self-assemble by electrostatic interactions to form a receptor-targeted nanocomplex (RTN of approximately 150 nm with a cationic surface charge of +50 mV. The aerodynamic properties of aerosolised nanocomplexes produced with three different nebulisers were compared by determining aerosol deposition in the different stages of a Next Generation Pharmaceutical Impactor (NGI. We also investigated the yield of intact plasmid DNA by agarose gel electrophoresis and densitometry, and transfection efficacies in vitro and in vivo.RTNs nebulised with the AeroEclipse II BAN were the most effective, compared to other nebulisers tested, for gene delivery both in vitro and in vivo. The biophysical properties of the nanocomplexes were unchanged after nebulisation while the deposition of RTNs suggested a range of aerosol aerodynamic sizes between 5.5 µm-1.4 µm cut off (NGI stages 3-6 compatible with deposition in the central and lower airways.RTNs showed their ability at delivering genes via nebulisation, thus suggesting their potential applications for therapeutic interventions of cystic fibrosis and other respiratory disorders.

  18. Metabotropic glutamate receptor 5 as a potential target for smoking cessation.

    Science.gov (United States)

    Chiamulera, Cristiano; Marzo, Claudio Marcello; Balfour, David J K

    2017-05-01

    Most habitual smokers find it difficult to quit smoking because they are dependent upon the nicotine present in tobacco smoke. Tobacco dependence is commonly treated pharmacologically using nicotine replacement therapy or drugs, such as varenicline, that target the nicotinic receptor. Relapse rates, however, remain high, and there remains a need to develop novel non-nicotinic pharmacotherapies for the dependence that are more effective than existing treatments. The purpose of this paper is to review the evidence from preclinical and clinical studies that drugs that antagonise the metabotropic glutamate receptor 5 (mGluR5) in the brain are likely to be efficacious as treatments for tobacco dependence. Imaging studies reveal that chronic exposure to tobacco smoke reduces the density of mGluR5s in human brain. Preclinical results demonstrate that negative allosteric modulators (NAMs) at mGluR5 attenuate both nicotine self-administration and the reinstatement of responding evoked by exposure to conditioned cues paired with nicotine delivery. They also attenuate the effects of nicotine on brain dopamine pathways implicated in addiction. Although mGluR5 NAMs attenuate most of the key facets of nicotine dependence, they potentiate the symptoms of nicotine withdrawal. This may limit their value as smoking cessation aids. The NAMs that have been employed most widely in preclinical studies of nicotine dependence have too many "off-target" effects to be used clinically. However, newer mGluR5 NAMs have been developed for clinical use in other indications. Future studies will determine if these agents can also be used effectively and safely to treat tobacco dependence.

  19. Antibody Selection for Cancer Target Validation of FSH-Receptor in Immunohistochemical Settings

    Directory of Open Access Journals (Sweden)

    Nina Moeker

    2017-10-01

    Full Text Available Background: The follicle-stimulating hormone (FSH-receptor (FSHR has been reported to be an attractive target for antibody therapy in human cancer. However, divergent immunohistochemical (IHC findings have been reported for FSHR expression in tumor tissues, which could be due to the specificity of the antibodies used. Methods: Three frequently used antibodies (sc-7798, sc-13935, and FSHR323 were validated for their suitability in an immunohistochemical study for FSHR expression in different tissues. As quality control, two potential therapeutic anti-hFSHR Ylanthia® antibodies (Y010913, Y010916 were used. The specificity criteria for selection of antibodies were binding to native hFSHR of different sources, and no binding to non-related proteins. The ability of antibodies to stain the paraffin-embedded Flp-In Chinese hamster ovary (CHO/FSHR cells was tested after application of different epitope retrieval methods. Results: From the five tested anti-hFSHR antibodies, only Y010913, Y010916, and FSHR323 showed specific binding to native, cell-presented hFSHR. Since Ylanthia® antibodies were selected to specifically recognize native FSHR, as required for a potential therapeutic antibody candidate, FSHR323 was the only antibody to detect the receptor in IHC/histochemical settings on transfected cells, and at markedly lower, physiological concentrations (ex., in Sertoli cells of human testes. The pattern of FSH323 staining noticed for ovarian, prostatic, and renal adenocarcinomas indicated that FSHR was expressed mainly in the peripheral tumor blood vessels. Conclusion: Of all published IHC antibodies tested, only antibody FSHR323 proved suitable for target validation of hFSHR in an IHC setting for cancer. Our studies could not confirm the previously reported FSHR overexpression in ovarian and prostate cancer cells. Instead, specific overexpression in peripheral tumor blood vessels could be confirmed after thorough validation of the antibodies used.

  20. Identifying novel targets of oncogenic EGF receptor signaling in lung cancer through global phosphoproteomics.

    Science.gov (United States)

    Zhang, Xu; Belkina, Natalya; Jacob, Harrys Kishore Charles; Maity, Tapan; Biswas, Romi; Venugopalan, Abhilash; Shaw, Patrick G; Kim, Min-Sik; Chaerkady, Raghothama; Pandey, Akhilesh; Guha, Udayan

    2015-01-01

    Mutations in the epidermal growth factor receptor (EGFR) kinase domain occur in 10-30% of lung adenocarcinoma and are associated with tyrosine kinase inhibitor (TKI) sensitivity. We sought to identify the immediate direct and indirect phosphorylation targets of mutant EGFRs in lung adenocarcinoma. We undertook SILAC strategy, phosphopeptide enrichment, and quantitative MS to identify dynamic changes of phosphorylation downstream of mutant EGFRs in lung adenocarcinoma cells harboring EGFR(L858R) and EGFR(L858R/T790M) , the TKI-sensitive, and TKI-resistant mutations, respectively. Top canonical pathways that were inhibited upon erlotinib treatment in sensitive cells, but not in the resistant cells include EGFR, insulin receptor, hepatocyte growth factor, mitogen-activated protein kinase, mechanistic target of rapamycin, ribosomal protein S6 kinase beta 1, and Janus kinase/signal transducer and activator of transcription signaling. We identified phosphosites in proteins of the autophagy network, such as ULK1 (S623) that is constitutively phosphorylated in these lung adenocarcinoma cells; phosphorylation is inhibited upon erlotinib treatment in sensitive cells, but not in resistant cells. Finally, kinase-substrate prediction analysis from our data indicated that substrates of basophilic kinases from, AGC and Calcium and calmodulin-dependent kinase groups, as well as STE group kinases were significantly enriched and those of proline-directed kinases from, CMGC and Casein kinase groups were significantly depleted among substrates that exhibited increased phosphorylation upon EGF stimulation and reduced phosphorylation upon TKI inhibition. This is the first study to date to examine global phosphorylation changes upon erlotinib treatment of lung adenocarcinoma cells and results from this study provide new insights into signaling downstream of mutant EGFRs in lung adenocarcinoma. All MS data have been deposited in the ProteomeXchange with identifier PXD001101 (http

  1. Review article: transient receptor potential channels as possible therapeutic targets in irritable bowel syndrome.

    Science.gov (United States)

    Beckers, A B; Weerts, Z Z R M; Helyes, Z; Masclee, A A M; Keszthelyi, D

    2017-11-01

    Abdominal pain in irritable bowel syndrome (IBS) remains challenging to treat effectively. Researchers have attempted to elucidate visceral nociceptive processes in order to guide treatment development. Transient receptor potential (TRP) channels have been implied in the generation (TRPV1, TRPV4, TRPA1) and inhibition (TRPM8) of visceral pain signals. Pathological changes in their functioning have been demonstrated in inflammatory conditions, and appear to be present in IBS as well. To provide a comprehensive review of the current literature on TRP channels involved in visceral nociception. In particular, we emphasise the clinical implications of these nociceptors in the treatment of IBS. Evidence to support this review was obtained from an electronic database search via PubMed using the search terms "visceral nociception," "visceral hypersensitivity," "irritable bowel syndrome" and "transient receptor potential channels." After screening the abstracts the articles deemed relevant were cross-referenced for additional manuscripts. Recent studies have resulted in significant advances in our understanding of TRP channel mediated visceral nociception. The diversity of TRP channel sensitization pathways is increasingly recognised. Endogenous TRP agonists, including poly-unsaturated fatty acid metabolites and hydrogen sulphide, have been implied in augmented visceral pain generation in IBS. New potential targets for treatment development have been identified (TRPA1 and TRPV4,) and alternative means of affecting TRP channel signalling (partial antagonists, downstream targeting and RNA-based therapy) are currently being explored. The improved understanding of mechanisms involved in visceral nociception provides a solid basis for the development of new treatment strategies for abdominal pain in IBS. © 2017 John Wiley & Sons Ltd.

  2. Selective Vitamin D Receptor Activation as Anti-Inflammatory Target in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    J. Donate-Correa

    2014-01-01

    Full Text Available Paricalcitol, a selective vitamin D receptor (VDR activator used for treatment of secondary hyperparathyroidism in chronic kidney disease (CKD, has been associated with survival advantages, suggesting that this drug, beyond its ability to suppress parathyroid hormone, may have additional beneficial actions. In this prospective, nonrandomised, open-label, proof-of-concept study, we evaluated the hypothesis that selective vitamin D receptor activation with paricalcitol is an effective target to modulate inflammation in CKD patients. Eight patients with an estimated glomerular filtration rate between 15 and 44 mL/min/1.73 m2 and an intact parathyroid hormone (PTH level higher than 110 pg/mL received oral paricalcitol (1 μg/48 hours as therapy for secondary hyperparathyroidism. Nine patients matched by age, sex, and stage of CKD, but a PTH level <110 pg/mL, were enrolled as a control group. Our results show that five months of paricalcitol administration were associated with a reduction in serum concentrations of hs-CRP (13.9%, P<0.01, TNF-α (11.9%, P=0.01, and IL-6 (7%, P<0.05, with a nonsignificant increase of IL-10 by 16%. In addition, mRNA expression levels of the TNFα and IL-6 genes in peripheral blood mononuclear cells decreased significantly by 30.8% (P=0.01 and 35.4% (P=0.01, respectively. In conclusion, selective VDR activation is an effective target to modulate inflammation in CKD.

  3. Optimization and in Vivo Validation of Peptide Vectors Targeting the LDL Receptor.

    Science.gov (United States)

    Jacquot, Guillaume; Lécorché, Pascaline; Malcor, Jean-Daniel; Laurencin, Mathieu; Smirnova, Maria; Varini, Karine; Malicet, Cédric; Gassiot, Fanny; Abouzid, Karima; Faucon, Aude; David, Marion; Gaudin, Nicolas; Masse, Maxime; Ferracci, Géraldine; Dive, Vincent; Cisternino, Salvatore; Khrestchatisky, Michel

    2016-12-05

    Active targeting and delivery to pathophysiological organs of interest is of paramount importance to increase specific accumulation of therapeutic drugs or imaging agents while avoiding systemic side effects. We recently developed a family of new peptide ligands of the human and rodent LDL receptor (LDLR), an attractive cell-surface receptor with high uptake activity and local enrichment in several normal or pathological tissues (Malcor et al., J. Med. Chem. 2012, 55 (5), 2227). Initial chemical optimization of the 15-mer, all natural amino acid compound 1/VH411 (DSGL[CMPRLRGC] c DPR) and structure-activity relationship (SAR) investigation led to the cyclic 8 amino acid analogue compound 22/VH445 ([cMPRLRGC] c ) which specifically binds hLDLR with a K D of 76 nM and has an in vitro blood half-life of ∼3 h. Further introduction of non-natural amino acids led to the identification of compound 60/VH4106 ([(d)-"Pen"M"Thz"RLRGC] c ), which showed the highest K D value of 9 nM. However, this latter analogue displayed the lowest in vitro blood half-life (∼1.9 h). In the present study, we designed a new set of peptide analogues, namely, VH4127 to VH4131, with further improved biological properties. Detailed analysis of the hLDLR-binding kinetics of previous and new analogues showed that the latter all displayed very high on-rates, in the 10 6 s -1. M -1 range, and off-rates varying from the low 10 -2 s -1 to the 10 -1 s -1 range. Furthermore, all these new analogues showed increased blood half-lives in vitro, reaching ∼7 and 10 h for VH4129 and VH4131, respectively. Interestingly, we demonstrate in cell-based assays using both VH445 and the most balanced optimized analogue VH4127 ([cM"Thz"RLRG"Pen"] c ), showing a K D of 18 nM and a blood half-life of ∼4.3 h, that its higher on-rate correlated with a significant increase in both the extent of cell-surface binding to hLDLR and the endocytosis potential. Finally, intravenous injection of tritium-radiolabeled 3 H

  4. Deletion of the distal COOH-terminus of the A2B adenosine receptor switches internalization to an arrestin- and clathrin-independent pathway and inhibits recycling.

    Science.gov (United States)

    Mundell, S J; Matharu, A-L; Nisar, S; Palmer, T M; Benovic, J L; Kelly, E

    2010-02-01

    We have investigated the effect of deletions of a postsynaptic density, disc large and zo-1 protein (PDZ) motif at the end of the COOH-terminus of the rat A(2B) adenosine receptor on intracellular trafficking following long-term exposure to the agonist 5'-(N-ethylcarboxamido)-adenosine. The trafficking of the wild type A(2B) adenosine receptor and deletion mutants expressed in Chinese hamster ovary cells was studied using an enzyme-linked immunosorbent assay in combination with immunofluorescence microscopy. The wild type A(2B) adenosine receptor and deletion mutants were all extensively internalized following prolonged treatment with NECA. The intracellular compartment through which the Gln(325)-stop receptor mutant, which lacks the Type II PDZ motif found in the wild type receptor initially trafficked was not the same as the wild type receptor. Expression of dominant negative mutants of arrestin-2, dynamin or Eps-15 inhibited internalization of wild type and Leu(330)-stop receptors, whereas only dominant negative mutant dynamin inhibited agonist-induced internalization of Gln(325)-stop, Ser(326)-stop and Phe(328)-stop receptors. Following internalization, the wild type A(2B) adenosine receptor recycled rapidly to the cell surface, whereas the Gln(325)-stop receptor did not recycle. Deletion of the COOH-terminus of the A(2B) adenosine receptor beyond Leu(330) switches internalization from an arrestin- and clathrin-dependent pathway to one that is dynamin dependent but arrestin and clathrin independent. The presence of a Type II PDZ motif appears to be essential for arrestin- and clathrin-dependent internalization, as well as recycling of the A(2B) adenosine receptor following prolonged agonist addition.

  5. A novel murine T-cell receptor targeting NY-ESO-1.

    Science.gov (United States)

    Rosati, Shannon F; Parkhurst, Maria R; Hong, Young; Zheng, Zhili; Feldman, Steven A; Rao, Mahadev; Abate-Daga, Daniel; Beard, Rachel E; Xu, Hui; Black, Mary A; Robbins, Paul F; Schrump, David A; Rosenberg, Steven A; Morgan, Richard A

    2014-04-01

    Cancer testis antigens, such as NY-ESO-1, are expressed in a variety of prevalent tumors and represent potential targets for T-cell receptor (TCR) gene therapy. DNA encoding a murine anti-NY-ESO-1 TCR gene (mTCR) was isolated from immunized HLA-A*0201 transgenic mice and inserted into a γ-retroviral vector. Two mTCR vectors were produced and used to transduce human PBL. Transduced cells were cocultured with tumor target cell lines and T2 cells pulsed with the NY-ESO-1 peptide, and assayed for cytokine release and cell lysis activity. The most active TCR construct was selected for production of a master cell bank for clinical use. mTCR-transduced PBL maintained TCR expression in short-term and long-term culture, ranging from 50% to 90% efficiency 7-11 days after stimulation and 46%-82% 10-20 days after restimulation. High levels of interferon-γ secretion were observed (1000-12000 pg/mL), in tumor coculture assays and recognition of peptide-pulsed cells was observed at 0.1 ng/mL, suggesting that the new mTCR had high avidity for antigen recognition. mTCR-transduced T cells also specifically lysed human tumor targets. In all assays, the mTCR was equivalent or better than the comparable human TCR. As the functional activity of TCR-transduced cells may be affected by the formation of mixed dimers, mTCRs, which are less likely to form mixed dimers with endogenous hTCRs, may be more effective in vivo. This new mTCR targeted to NY-ESO-1 represents a novel potential therapeutic option for adoptive cell-transfer therapy for a variety of malignancies.

  6. Covalent Targeting of Fibroblast Growth Factor Receptor Inhibits Metastatic Breast Cancer.

    Science.gov (United States)

    Brown, Wells S; Tan, Li; Smith, Andrew; Gray, Nathanael S; Wendt, Michael K

    2016-09-01

    Therapeutic targeting of late-stage breast cancer is limited by an inadequate understanding of how tumor cell signaling evolves during metastatic progression and by the currently available small molecule inhibitors capable of targeting these processes. Herein, we demonstrate that both β3 integrin and fibroblast growth factor receptor-1 (FGFR1) are part of an epithelial-mesenchymal transition (EMT) program that is required to facilitate metastatic outgrowth in response to fibroblast growth factor-2 (FGF2). Mechanistically, β3 integrin physically disrupts an interaction between FGFR1 and E-cadherin, leading to a dramatic redistribution of FGFR1 subcellular localization, enhanced FGF2 signaling and increased three-dimensional (3D) outgrowth of metastatic breast cancer cells. This ability of β3 integrin to drive FGFR signaling requires the enzymatic activity of focal adhesion kinase (FAK). Consistent with these mechanistic data, we demonstrate that FGFR, β3 integrin, and FAK constitute a molecular signature capable of predicting decreased survival of patients with the basal-like subtype of breast cancer. Importantly, covalent targeting of a conserved cysteine in the P-loop of FGFR1-4 with our newly developed small molecule, FIIN-4, more effectively blocks 3D metastatic outgrowth as compared with currently available FGFR inhibitors. In vivo application of FIIN-4 potently inhibited the growth of metastatic, patient-derived breast cancer xenografts and murine-derived metastases growing within the pulmonary microenvironment. Overall, the current studies demonstrate that FGFR1 works in concert with other EMT effector molecules to drive aberrant downstream signaling, and that these events can be effectively targeted using our novel therapeutics for the treatment of the most aggressive forms of breast cancer. Mol Cancer Ther; 15(9); 2096-106. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Adenosine A2A Receptors Control Glutamatergic Synaptic Plasticity in Fast Spiking Interneurons of the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Amber Kerkhofs

    2018-03-01

    Full Text Available Adenosine A2A receptors (A2AR are activated upon increased synaptic activity to assist in the implementation of long-term plastic changes at synapses. While it is reported that A2AR are involved in the control of prefrontal cortex (PFC-dependent behavior such as working memory, reversal learning and effort-based decision making, it is not known whether A2AR control glutamatergic synapse plasticity within the medial PFC (mPFC. To elucidate that, we tested whether A2AR blockade affects long-term plasticity (LTP of excitatory post-synaptic potentials in pyramidal neurons and fast spiking (FS interneurons in layer 5 of the mPFC and of population spikes. Our results show that A2AR are enriched at mPFC synapses, where their blockade reversed the direction of plasticity at excitatory synapses onto layer 5 FS interneurons from LTP to long-term depression, while their blockade had no effect on the induction of LTP at excitatory synapses onto layer 5 pyramidal neurons. At the network level, extracellularly induced LTP of population spikes was reduced by A2AR blockade. The interneuron-specificity of A2AR in controlling glutamatergic synapse LTP may ensure that during periods of high synaptic activity, a proper excitation/inhibition balance is maintained within the mPFC.

  8. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    Science.gov (United States)

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  9. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    Directory of Open Access Journals (Sweden)

    Van-Han Nguyen

    2015-03-01

    Full Text Available In indoor environments, the Global Positioning System (GPS and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  10. The effect of caffeine to increase reaction time in the rat during a test of attention is mediated through antagonism of adenosine A2A receptors.

    Science.gov (United States)

    Higgins, Guy A; Grzelak, Michael E; Pond, Annamarie J; Cohen-Williams, Mary E; Hodgson, Robert A; Varty, Geoffrey B

    2007-12-11

    Caffeine produces effects on cognitive function particularly relating to aspects of attention such as reaction time. Considering the plasma exposure levels following regular caffeine intake, and the affinity of caffeine for known protein targets, these effects are likely mediated by either the adenosine A(1) or A(2A) receptor. In the present studies, two rat strains [Long-Evans (LE) and CD] were trained to asymptote performance in a test of selective attention, the 5-choice serial reaction time task (5-CSRTT). Next, the effects of caffeine were compared to the selective A(2A) antagonists, SCH 412348 and KW-6002 (Istradefylline), and the A(1) antagonist, DPCPX. Further studies compared the psychostimulant effects of each drug. Finally, we tested the A(2A) agonist, CGS-21680, on 5-CSRTT performance and given the antipsychotic potential of this drug class, studied the interaction between CGS-21680 and amphetamine in this task. Caffeine (3-10mg/kg IP) increased reaction time in both LE and CD rats, with no effect on accuracy, an effect replicated by SCH 412348 (0.1-1mg/kg PO) and KW-6002 (1-3mg/kg PO), but not DPCPX (3-30 mg/kg PO). At least with SCH 412348, these effects were at doses that were not overtly psychostimulant. In contrast, CGS-21680 (0.03-0. 3mg/kg IP) slowed reaction speed and increased omissions. Interestingly, at a comparatively low dose of 0.03 mg/kg, CGS-21680 attenuated the increased premature responding produced by amphetamine (1mg/kg IP). The present results suggest that the attention-enhancing effects of caffeine are mediated through A(2A) receptor blockade, and selective A(2A) receptor antagonists may have potential as therapies for attention-related disorders. Furthermore, the improvement in response control in amphetamine-treated rats following CGS-21680 pretreatment supports the view that A(2A) agonists have potential as novel antipsychotics.

  11. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    Science.gov (United States)

    2013-01-01

    Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775

  12. Value of the radiolabelled GLP-1 receptor antagonist exendin(9-39) for targeting of GLP-1 receptor-expressing pancreatic tissues in mice and humans

    International Nuclear Information System (INIS)

    Waser, Beatrice; Reubi, Jean Claude

    2011-01-01

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. Moreover, it was recently reported that antagonist tracers were superior to agonist tracers for somatostatin and gastrin-releasing peptide receptor targeting of tumours. The present preclinical study determines therefore the value of an established GLP-1 receptor antagonist for the in vitro visualization of GLP-1 receptor-expressing tissues in mice and humans. Receptor autoradiography studies with 125 I-GLP-1(7-36)amide agonist or 125 I-Bolton-Hunter-exendin(9-39) antagonist radioligands were performed in mice pancreas and insulinomas as well as in human insulinomas; competition experiments were performed in the presence of increasing concentration of GLP-1(7-36)amide or exendin(9-39). The antagonist 125 I-Bolton-Hunter-exendin(9-39) labels mouse pancreatic β-cells and mouse insulinomas, but it does not label human pancreatic β-cells and insulinomas. High affinity displacement (IC 50 approximately 2 nM) is observed in mouse β-cells and insulinomas with either the exendin(9-39) antagonist or GLP-1(7-36)amide agonist. For comparison, the agonist 125 I-GLP-1(7-36)amide intensively labels mouse pancreatic β-cells, mouse insulinoma and human insulinomas; high affinity displacement is observed for the GLP-1(7-36)amide in all tissues; however, a 5 and 20 times lower affinity is found for exendin(9-39) in the mouse and human tissues, respectively. This study reports a species-dependent behaviour of the GLP-1 receptor antagonist exendin(9-39) that can optimally target GLP-1 receptors in mice but not in human tissue. Due to its overly low binding affinity, this antagonist is an inadequate targeting agent for human GLP-1 receptor-expressing tissues, as opposed to the GLP-1 receptor agonist, GLP-1(7-36)amide. (orig.)

  13. Value of the radiolabelled GLP-1 receptor antagonist exendin(9-39) for targeting of GLP-1 receptor-expressing pancreatic tissues in mice and humans

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, P.O. Box 62, Bern (Switzerland)

    2011-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. Moreover, it was recently reported that antagonist tracers were superior to agonist tracers for somatostatin and gastrin-releasing peptide receptor targeting of tumours. The present preclinical study determines therefore the value of an established GLP-1 receptor antagonist for the in vitro visualization of GLP-1 receptor-expressing tissues in mice and humans. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-Bolton-Hunter-exendin(9-39) antagonist radioligands were performed in mice pancreas and insulinomas as well as in human insulinomas; competition experiments were performed in the presence of increasing concentration of GLP-1(7-36)amide or exendin(9-39). The antagonist {sup 125}I-Bolton-Hunter-exendin(9-39) labels mouse pancreatic {beta}-cells and mouse insulinomas, but it does not label human pancreatic {beta}-cells and insulinomas. High affinity displacement (IC{sub 50} approximately 2 nM) is observed in mouse {beta}-cells and insulinomas with either the exendin(9-39) antagonist or GLP-1(7-36)amide agonist. For comparison, the agonist {sup 125}I-GLP-1(7-36)amide intensively labels mouse pancreatic {beta}-cells, mouse insulinoma and human insulinomas; high affinity displacement is observed for the GLP-1(7-36)amide in all tissues; however, a 5 and 20 times lower affinity is found for exendin(9-39) in the mouse and human tissues, respectively. This study reports a species-dependent behaviour of the GLP-1 receptor antagonist exendin(9-39) that can optimally target GLP-1 receptors in mice but not in human tissue. Due to its overly low binding affinity, this antagonist is an inadequate targeting agent for human GLP-1 receptor-expressing tissues, as opposed to the GLP-1 receptor agonist, GLP-1(7-36)amide. (orig.)

  14. Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration.

    Directory of Open Access Journals (Sweden)

    Jhon Alberto Ochoa-Alvarez

    Full Text Available Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth.

  15. The A2b adenosine receptor antagonist PSB-603 promotes oxidative phosphorylation and ROS production in colorectal cancer cells via adenosine receptor-independent mechanism.

    Science.gov (United States)

    Mølck, Christina; Ryall, James; Failla, Laura M; Coates, Janine L; Pascussi, Jean-Marc; Heath, Joan K; Stewart, Gregory; Hollande, Frédéric

    2016-12-01

    Adenosine is a multifaceted regulator of tumor progression. It modulates immune cell activity as well as acting directly on tumor cells. The A 2b adenosine receptor (A 2b -AR) is thought to be an important mediator of these effects. In this study we sought to analyze the contribution of the A 2b -AR to the behavior of colorectal cancer cells. The A 2b -AR antagonist PSB-603 changed cellular redox state without affecting cellular viability. Quantification of cellular bioenergetics demonstrated that PSB-603 increased basal oxygen consumption rates, indicative of enhanced mitochondrial oxidative phosphorylation. Unexpectedly, pharmacological and genetic approaches to antagonize AR-related signalling of PSB-603 did not abolish the response, suggesting that it was AR-independent. PSB-603 also induced acute increases in reactive oxygen species, and PSB-603 synergized with chemotherapy treatment to increase colorectal cancer cell death, consistent with the known link between cellular metabolism and chemotherapy response. PSB-603 alters cellular metabolism in colorectal cancer cells and increases their sensitivity to chemotherapy. Although requiring more mechanistic insight into its A 2b -AR-independent activity, our results show that PSB-603 may have clinical value as an anti-colorectal cancer therapeutic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Adenosine A2A Receptor and IL-10 in Peripheral Blood Mononuclear Cells of Patients with Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Beatrice Arosio

    2011-01-01

    Full Text Available Adenosine suppresses immune responses through the A2A receptor (A2AR. This study investigated the interleukin 10 (IL-10 genetic profile and the expression of A2AR in peripheral blood mononuclear cells (PBMCs of patients with mild cognitive impairment (MCI, Alzheimer disease (AD, and age-matched controls to verify, if they may help distinguish different forms of cognitive decline. We analyzed the IL-10 genotype and the expression of A2AR in 41 subjects with AD, 10 with amnestic MCI (a-MCI, 49 with multiple cognitive domain MCI (mcd-MCI, and 46 controls. There was a significant linear increase in A2AR mRNA levels and A2AR density from mcd-MCI to a-MCI, with intermediate levels being found in AD. The IL-10 AA genotype frequency was 67% in a-MCI, 46% in AD, 35% in mcd-MCI, and 20% in controls. These data suggest that the assessment of the IL-10 genotype and the expression of A2AR in PBMCs may be a valuable means of differentiating between a-MCI and mcd-MCI.

  17. c-MET receptor tyrosine kinase as a molecular target in advanced hepatocellular carcinoma.

    Science.gov (United States)

    Granito, Alessandro; Guidetti, Elena; Gramantieri, Laura

    2015-01-01

    c-MET is the membrane receptor for hepatocyte growth factor (HGF), also known as scatter factor or tumor cytotoxic factor, a mitogenic growth factor for hepatocytes. HGF is mainly produced by cells of mesenchymal origin and it mainly acts on neighboring epidermal and endothelial cells, regulating epithelial growth and morphogenesis. HGF/MET signaling has been identified among the drivers of tumorigenesis in human cancers. As such, c-MET is a recognized druggable target, and against it, targeted agents are currently under clinical investigation. c-MET overexpression is a common event in a wide range of human malignancies, including gastric, lung, breast, ovary, colon, kidney, thyroid, and liver carcinomas. Despite c-MET overexpression being reported by a large majority of studies, no evidence for a c-MET oncogenic addiction exists in hepatocellular carcinoma (HCC). In particular, c-MET amplification is a rare event, accounting for 4%-5% of cases while no mutation has been identified in c-MET oncogene in HCC. Thus, the selection of patient subgroups more likely to benefit from c-MET inhibition is challenging. Notwithstanding, c-MET overexpression was reported to be associated with increased metastatic potential and poor prognosis in patients with HCC, providing a rationale for its therapeutic inhibition. Here we summarize the role of activated HGF/MET signaling in HCC, its prognostic relevance, and the implications for therapeutic approaches in HCC.

  18. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target

    Science.gov (United States)

    Beningo, Karen A.; Wang, Yu-li

    2002-01-01

    Phagocytosis is an actin-based process used by macrophages to clear particles greater than 0.5 microm in diameter. In addition to its role in immunological responses, phagocytosis is also necessary for tissue remodeling and repair. To prevent catastrophic autoimmune reactions, phagocytosis must be tightly regulated. It is commonly assumed that the recognition/selection of phagocytic targets is based solely upon receptor-ligand binding. Here we report an important new criterion, that mechanical parameters of the target can dramatically affect the efficiency of phagocytosis. When presented with particles of identical chemical properties but different rigidity, macrophages showed a strong preference to engulf rigid objects. Furthermore, phagocytosis of soft particles can be stimulated with the microinjection of constitutively active Rac1 but not RhoA, and with lysophosphatidic acid, an agent known to activate the small GTP-binding proteins of the Rho family. These data suggest a Rac1-dependent mechanosensory mechanism for phagocytosis, which probably plays an important role in a number of physiological and pathological processes from embryonic development to autoimmune diseases.

  19. Molecular Imaging of Hepatocellular Carcinoma Xenografts with Epidermal Growth Factor Receptor Targeted Affibody Probes

    Directory of Open Access Journals (Sweden)

    Ping Zhao

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is a highly aggressive and lethal cancer. It is typically asymptomatic at the early stage, with only 10%–20% of HCC patients being diagnosed early enough for appropriate surgical treatment. The delayed diagnosis of HCC is associated with limited treatment options and much lower survival rates. Therefore, the early and accurate detection of HCC is crucial to improve its currently dismal prognosis. The epidermal growth factor receptor (EGFR has been reported to be involved in HCC tumorigenesis and to represent an attractive target for HCC imaging and therapy. In this study, an affibody molecule, Ac-Cys-ZEGFR:1907, targeting the extracellular domain of EGFR, was used for the first time to assess its potential to detect HCC xenografts. By evaluating radio- or fluorescent-labeled Ac-Cys-ZEGFR:1907 as a probe for positron emission tomography (PET or optical imaging of HCC, subcutaneous EGFR-positive HCC xenografts were found to be successfully imaged by the PET probe. Thus, affibody-based PET imaging of EGFR provides a promising approach for detecting HCC in vivo.

  20. Identifying Medication Targets for Psychostimulant Addiction: Unraveling the Dopamine D3 Receptor Hypothesis

    Science.gov (United States)

    2016-01-01

    The dopamine D3 receptor (D3R) is a target for developing medications to treat substance use disorders. D3R-selective compounds with high affinity and varying efficacies have been discovered, providing critical research tools for cell-based studies that have been translated to in vivo models of drug abuse. D3R antagonists and partial agonists have shown especially promising results in rodent models of relapse-like behavior, including stress-, drug-, and cue-induced reinstatement of drug seeking. However, to date, translation to human studies has been limited. Herein, we present an overview and illustrate some of the pitfalls and challenges of developing novel D3R-selective compounds toward clinical utility, especially for treatment of cocaine abuse. Future research and development of D3R-selective antagonists and partial agonists for substance abuse remains critically important but will also require further evaluation and development of translational animal models to determine the best time in the addiction cycle to target D3Rs for optimal therapeutic efficacy. PMID:25826710

  1. Chitosan-based DNA delivery vector targeted to gonadotropin-releasing hormone (GnRH) receptor.

    Science.gov (United States)

    Boonthum, Chatwalee; Namdee, Katawut; Boonrungsiman, Suwimon; Chatdarong, Kaywalee; Saengkrit, Nattika; Sajomsang, Warayuth; Ponglowhapan, Suppawiwat; Yata, Teerapong

    2017-02-10

    The main purpose of this study was to investigate the application of modified chitosan as a potential vector for gene delivery to gonadotropin-releasing hormone receptor (GnRHR)-expressing cells. Such design of gene carrier could be useful in particular for gene therapy for cancers related to the reproductive system, gene disorders of sexual development, and contraception and fertility control. In this study, a decapeptide GnRH was successfully conjugated to chitosan (CS) as confirmed by proton nuclear magnetic resonance spectroscopy ( 1 H NMR) and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The synthesized GnRH-conjugated chitosan (GnRH-CS) was able to condense DNA to form positively charged nanoparticles and specifically deliver plasmid DNA to targeted cells in both two-dimensional (2D) and three-dimensional (3D) cell cultures systems. Importantly, GnRH-CS exhibited higher transfection activity compared to unmodified CS. In conclusion, GnRH-conjugated chitosan can be a promising carrier for targeted DNA delivery to GnRHR-expressing cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Targeting the Insulin-Like Growth Factor 1 Receptor in Ewing's Sarcoma: Reality and Expectations

    Directory of Open Access Journals (Sweden)

    David Olmos

    2011-01-01

    Full Text Available Ewing's sarcoma family of tumours comprises a group of very aggressive diseases that are potentially curable with multimodality treatment. Despite the undoubted success of current treatment, approximately 30% of patients will relapse and ultimately die of disease. The insulin-like growth factor 1 receptor (IGF-1R has been implicated in the genesis, growth, proliferation, and the development of metastatic disease in Ewing's sarcoma. In addition, IGF1-R has been validated, both in vitro and in vivo, as a potential therapeutic target in Ewing's sarcoma. Phase I studies of IGF-1R monoclonal antibodies reported several radiological and clinical responses in Ewing's sarcoma patients, and initial reports of several Phase II studies suggest that about a fourth of the patients would benefit from IGF-1R monoclonal antibodies as single therapy, with approximately 10% of patients achieving objective responses. Furthermore, these therapies are well tolerated, and thus far severe toxicity has been rare. Other studies assessing IGF-1R monoclonal antibodies in combination with traditional cytotoxics or other targeted therapies are expected. Despite, the initial promising results, not all patients benefit from IGF-1R inhibition, and consequently, there is an urgent need for the identification of predictive markers of response.

  3. Targeting the Insulin-Like Growth Factor 1 Receptor in Ewing's Sarcoma: Reality and Expectations

    Science.gov (United States)

    Olmos, David; Martins, Ana Sofia; Jones, Robin L.; Alam, Salma; Scurr, Michelle; Judson, Ian R.

    2011-01-01

    Ewing's sarcoma family of tumours comprises a group of very aggressive diseases that are potentially curable with multimodality treatment. Despite the undoubted success of current treatment, approximately 30% of patients will relapse and ultimately die of disease. The insulin-like growth factor 1 receptor (IGF-1R) has been implicated in the genesis, growth, proliferation, and the development of metastatic disease in Ewing's sarcoma. In addition, IGF1-R has been validated, both in vitro and in vivo, as a potential therapeutic target in Ewing's sarcoma. Phase I studies of IGF-1R monoclonal antibodies reported several radiological and clinical responses in Ewing's sarcoma patients, and initial reports of several Phase II studies suggest that about a fourth of the patients would benefit from IGF-1R monoclonal antibodies as single therapy, with approximately 10% of patients achieving objective responses. Furthermore, these therapies are well tolerated, and thus far severe toxicity has been rare. Other studies assessing IGF-1R monoclonal antibodies in combination with traditional cytotoxics or other targeted therapies are expected. Despite, the initial promising results, not all patients benefit from IGF-1R inhibition, and consequently, there is an urgent need for the identification of predictive markers of response. PMID:21647361

  4. Target Therapy Using a Small Molecule Inhibitor against Angiogenic Receptors in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Peter Büchler

    2007-02-01

    Full Text Available PURPOSE: PD173074, a small molecule inhibitor of VEGF-RII and FGF-RI, targets neoangiogenesis and mitogenesis. This study aimed to analyze a singlecompound-driven inhibition of FGF and VEGF receptors in pancreatic cancer. EXPERIMENTAL DESIGN: RT-PCR and Western blots were performed to quantify protein expression and phosphorylation. Anchorage dependent and independent growth assays were used to study cell growth. With flow cytometry, cell cycle analysis and apoptosis were studied. In vivo HPAF-II and MIA PaCa-2 cells were xenografted. Animals were treated daily for 10 weeks. Immunohistochemistry was used to quantify microvessel density and apoptosis. RESULTS: Highest levels of FGF-RI were detectable in MIA PaCa-2 cells, lowest in HPAF-II cells. PD173074 inhibited cell growth most prominently in cells expressing high levels of FGF-RI. Cell cycle progression was inhibited by blocking transition in the G0/G1 phase, and consequently, apoptosis was increased. In vivo significant inhibition of orthotopic tumor growth was achieved by a combination effect of inhibition of mitogenesis, induction of apoptosis, and reduction of angiogenesis in PD173074-treated animals. CONCLUSIONS: These data highlight VEGF-RII and FGF-RI as therapeutic targets and suggest a potential role for the combined use of tyrosine kinase inhibitors in the management of inoperable pancreatic cancer patients.

  5. Targeting Aberrant p70S6K Activation for Estrogen Receptor-Negative Breast Cancer Prevention.

    Science.gov (United States)

    Wang, Xiao; Yao, Jun; Wang, Jinyang; Zhang, Qingling; Brady, Samuel W; Arun, Banu; Seewaldt, Victoria L; Yu, Dihua

    2017-11-01

    The prevention of estrogen receptor-negative (ER-) breast cancer remains a major challenge in the cancer prevention field, although antiestrogen and aromatase inhibitors have shown adequate efficacy in preventing estrogen receptor-positive (ER + ) breast cancer. Lack of commonly expressed, druggable targets is a major obstacle for meeting this challenge. Previously, we detected the activation of Akt signaling pathway in atypical hyperplasic early-stage lesions of patients. In the current study, we found that Akt and the downstream 70 kDa ribosomal protein S6 kinase (p70S6K) signaling pathway was highly activated in ER - premalignant breast lesions and ER - breast cancer. In addition, p70S6K activation induced transformation of ER - human mammary epithelial cells (hMEC). Therefore, we explored the potential of targeting Akt/p70S6K in the p70S6K activated, ER - hMEC models and mouse mammary tumor models for the prevention of ER - breast cancer. We found that a clinically applicable Akt/p70S6K dual inhibitor, LY2780301, drastically decreased proliferation of hMECs with ErbB2-induced p70S6K activation via Cyclin B1 inhibition and cell-cycle blockade at G 0 -G 1 phase, while it did not significantly reverse the abnormal acinar morphology of these hMECs. In addition, a brief treatment of LY2780301 in MMTV- neu mice that developed atypical hyperplasia (ADH) and mammary intraepithelial neoplasia (MIN) lesions with activated p70S6K was sufficient to suppress S6 phosphorylation and decrease cell proliferation in hyperplasic MECs. In summary, targeting the aberrant Akt/p70S6K activation in ER - hMEC models in vitro and in the MMTV- neu transgenic mouse model in vivo effectively inhibited Akt/S6K signaling and reduced proliferation of hMECs in vitro and ADH/MIN lesions in vivo , indicating its potential in prevention of p70S6K activated ER - breast cancer. Cancer Prev Res; 10(11); 641-50. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial myocytes.

    Science.gov (United States)

    Molina, Cristina E; Llach, Anna; Herraiz-Martínez, Adela; Tarifa, Carmen; Barriga, Montserrat; Wiegerinck, Rob F; Fernandes, Jacqueline; Cabello, Nuria; Vallmitjana, Alex; Benitéz, Raúl; Montiel, José; Cinca, Juan; Hove-Madsen, Leif

    2016-01-01

    Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation.

  7. Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease.

    Science.gov (United States)

    Rodríguez-Ruiz, Mar; Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Mallol, Josefa; Cortés, Antonio; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Franco, Rafael

    2017-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D 1 , histamine H 3 , and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H 3 receptor agonists, via negative cross-talk, and H 3 receptor antagonists, via cross-antagonism, decreased D 1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D 1 receptor-mediated excitotoxic cell death. Both D 1 and H 3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D 1 -H 3 receptor heteromer function. Likely due to heteromerization, H 3 receptors act as allosteric regulator for D 1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D 1 or H 3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D 1 -H 3 -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H 3 receptor antagonists reduced NMDA or D 1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H 3 receptor antagonists reverted the toxicity induced by ß 1-42 -amyloid peptide. Thus, histamine H 3 receptors in D 1 -H 3 -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.

  8. Adenosine A2A receptor blockade Prevents Rotenone-Induced Motor Impairment in a Rat Model of Parkinsonism

    Directory of Open Access Journals (Sweden)

    Ahmed M Fathalla

    2016-02-01

    Full Text Available Pharmacological studies implicate the blockade of adenosine receptorsas an effective strategy for reducing Parkinson's disease (PD symptoms. The objective of this study is to elucidate the possible protective effects of ZM241385 and 8-cyclopentyl-1,3-dipropylxanthine, two selective A2Aand A1 receptor antagonists, on a rotenone rat model of PD. Rats were split into four groups: vehicle control (1 ml/kg/48 h, rotenone(1.5 mg/kg/48 h, s.c., ZM241385 (3.3 mg/kg/day, i.p and 8-cyclopentyl-1,3-dipropylxanthine (5 mg/kg/day, i.p. After that, animals were subjected to behavioral (stride length and grid walking and biochemical (measuring concentration of dopamine levels using high performance liquid chromatography. In the rotenone group, rats displayed a reduced motor activity and disturbed movement coordination in the behavioral tests and a decreased dopamine concentration as foundby high performance liquid chromatography. The effect of rotenone was partially preventedin the ZM241385 group, but not with 8-cyclopentyl-1,3-dipropylxanthine administration. The administration of ZM241385 has led toan improvement improved of motor function and movement coordination (a partial increase of stride length and partial decrease in the number of foot slips and an increase in dopamine concentration in the rotenone-injected rats. However, the 8-cyclopentyl-1,3-dipropylxanthine and rotenone groups were not significantly different. These results indicate that selective A2Areceptor blockade by ZM241385, but not A1receptor blockadeby 8-cyclopentyl-1,3-dipropylxanthine, may treat PD motor symptoms. This reinforces the potential use of A2A receptor antagonists as a treatment strategy for PD patients.. This may provide a more selective treatment strategy for PD patients.

  9. Receptor tyrosine kinase (c-Kit inhibitors: a potential therapeutic target in cancer cells

    Directory of Open Access Journals (Sweden)

    Abbaspour Babaei M

    2016-08-01

    Full Text Available Maryam Abbaspour Babaei,1 Behnam Kamalidehghan,2,3 Mohammad Saleem,4–6 Hasniza Zaman Huri,1,7 Fatemeh Ahmadipour1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB, Shahrak-e Pajoohesh, 3Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 4Department of Urology, 5Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, 6Section of Molecular Therapeutics & Cancer Health Disparity, The Hormel Institute, Austin, MN, USA; 7Clinical Investigation Centre, University Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia Abstract: c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c

  10. Role of Adenosine Receptor A2A in Traumatic Optic Neuropathies

    Science.gov (United States)

    2015-02-01

    360–366. Ding, C., Cicuttini, F., Li , J., Jones, G., 2009. Targeting IL-6 in the treatment of inflammatory and autoimmune diseases. Expert Opin...Zhu, G., Yousufzai, B., Mian , S., et al., 2008. Medi- ation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and...have a crucial role in deter mining the degree of brain injury ( Li et al., 2008). Next, we studied the effect of ABT 702 on oxidative and nitrosative

  11. Up-regulation of thromboxane A2 receptor expression by lipid soluble smoking particles through post-transcriptional mechanisms

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars

    2008-01-01

    Atherosclerosis is a key factor in vascular disease, and cigarette smoking is a well-known risk factor that may induce an inflammatory response and enhance plaque formation in arteries. Thromboxane (Tx) is one key inflammatory mediator involved in the pathogenesis of cardiovascular disease....... The present study was designed to test if lipid soluble smoking particles (DSP) enhance TxA(2) receptor (TP) expression in rat mesenteric arteries, and if intracellular mitogen-activated protein kinase (MAPK) pathways play a role. Organ culture of rat mesenteric arteries in the presence of DSP (0.2 microl...

  12. The insect ecdysone receptor is a good potential target for RNAi-based pest control.

    Science.gov (United States)

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.

  13. Ivy and neurogliaform interneurons are a major target of μ opioid receptor modulation

    Science.gov (United States)

    Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan

    2011-01-01

    Mu opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous, but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABAB response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Further, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR-activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking PV basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR-activation. Together these findings identify a major, previously unrecognized, target of μOR-modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications. PMID:22016519

  14. Ivy and neurogliaform interneurons are a major target of μ-opioid receptor modulation.

    Science.gov (United States)

    Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan

    2011-10-19

    μ-Opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin-expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABA(B) response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that, across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Furthermore, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking parvalbumin basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR activation. Together, these findings identify a major, previously unrecognized, target of μOR modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications.

  15. Senescence as biologic endpoint following pharmacological targeting of receptor tyrosine kinases in cancer.

    Science.gov (United States)

    Francica, Paola; Aebersold, Daniel M; Medová, Michaela

    2017-02-15

    Cellular senescence was first described in 1961 in a seminal study by Hayflick and Moorhead as a limit to the replicative lifespan of somatic cells after serial cultivation. Since then, major advances in our understanding of senescence have been achieved suggesting that this mechanism is activated also by oncogenic stimuli, oxidative stress and DNA damage, giving rise to the concept of premature senescence. Regardless of the initial trigger, numerous experimental observations have been provided to support the notion that both replicative and premature senescence play pivotal roles in early stages of tumorigenesis and in response of tumor cells to anticancer treatments. Moreover, various studies have suggested that the induction of senescence by both chemo- and radiotherapy in a variety of cancer types correlates with treatment outcome. As it is widely accepted that cellular senescence may function as a fundamental barrier of tumor progression, the significance of senescence for clinical interventions that make use of novel molecular targeting-based modalities needs to be well defined. Interestingly, despite numerous studies evaluating efficacies of receptor tyrosine kinases (RTKs) targeting strategies in both preclinical and clinical settings, the relevance of RTKs inhibition-associated senescence in tumors remains less characterized. Here we review the available literature that describes premature senescence as a major mechanism following targeting of RTKs in preclinical as well as in clinical settings. Additionally, we discuss the possible role of diverse RTKs in regulating the induction of senescence following cellular stress and possible implications of this crosstalk in identification of biomarkers of inhibitor-mediated chemo- and radiosensitization approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Partial purification and identification of the thrombozane A2/prostaglandin H2 receptor protein in human platelets

    International Nuclear Information System (INIS)

    Lim, C.T.; Kattelman, E.J.; Arora, S.K.; Venton, D.L.; Le Breton, G.C.

    1986-01-01

    The thromboxane A 2 /prostaglandin H 2 (TXA 2 /PGH 2 ) receptor antagonist [ 3 H]-13-azaprostanoic acid (13-APA) was used to identify and purify the platelet TXA 2 /PGH 2 receptor protein. Optimal solubilization of the 13-APA binding protein was achieved by extraction with 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate (CHAPS) detergent. Preliminary purification of the crude solubilized membrane fraction was performed by gel filtration chromatography using a Sepharose 4B column. Further purification was accomplished by high performance liquid chromatography (HPLC) using a Synchropak GPC-500 column. The HPLC protein profile revealed two protein peaks, only one of which was enriched in [ 3 H]-13-APA. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of this peak revealed two bands with molecular weights of 65,000 and 60,000 daltons. In binding studies using the 60,000 dalton-enriched subfraction, unlabelled 13-APA, the TXA 2 /PGH 2 mimetic U46619 and the TXA 2 /PGH 2 antagonist SQ 29,548 all competed for [ 3 H]-13-APA binding whereas TXB 2 did not compete for binding. Heat denaturation of this subfraction resulted in a complete loss of binding activity. These findings indicate that a protein of approximately 60,000 daltons represents the human platelet TXA 2 /PGH 2 receptor

  17. Cognitive enhancers (Nootropics). Part 3: drugs interacting with targets other than receptors or enzymes. Disease-modifying drugs. Update 2014.

    Science.gov (United States)

    Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    Scientists working in the field of Alzheimer's disease and, in particular, cognitive enhancers, are very productive. The review "Drugs interacting with Targets other than Receptors or Enzymes. Disease-modifying Drugs" was accepted in October 2012. In the last 20 months, new targets for the potential treatment of Alzheimer's disease were identified. Enormous progress was realized in the pharmacological characterization of natural products with cognitive enhancing properties. This review covers the evolution of research in this field through May 2014.

  18. Receptor-targeted, drug-loaded, functionalized graphene oxides for chemotherapy and photothermal therapy

    Directory of Open Access Journals (Sweden)

    Thapa RK

    2016-06-01

    Full Text Available Raj Kumar Thapa,1 Ju Yeon Choi,1 Bijay Kumar Poudel,1 Han-Gon Choi,2 Chul Soon Yong,1 Jong Oh Kim1 1College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, South Korea; 2College of Pharmacy, Hanyang University, Ansan, South Korea Abstract: Cancer is one of the leading causes of death worldwide. Although different chemotherapeutic agents have been developed to treat cancers, their use can be limited by low cellular uptake, drug resistance, and side effects. Hence, targeted drug delivery systems are continually being developed in order to improve the efficacy of chemotherapeutic agents. The main aim of this study was to prepare folic acid (FA-conjugated polyvinyl pyrrolidone-functionalized graphene oxides (GO (FA-GO for targeted delivery of sorafenib (SF. GO were prepared using a modified Hummer’s method and subsequently altered to prepare FA-GO and SF-loaded FA-GO (FA-GO/SF. Characterization of GO derivatives was done using ultraviolet/visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, zeta potential measurements, and determination of in vitro drug release. Hemolytic toxicity, in vitro cytotoxicity, cellular uptake, and apoptotic effects of FA-GO/SF were also investigated. The results revealed that GO was successfully synthesized and that further transformation to FA-GO improved the stability and SF drug-loading capacity. In addition, the enhanced SF release under acidic conditions suggested possible benefits for cancer treatment. Conjugation of FA within the FA-GO/SF delivery system enabled targeted delivery of SF to cancer cells expressing high levels of FA receptors, thus increasing the cellular uptake and apoptotic effects of SF. Furthermore, the photothermal effect achieved by exposure of GO to near-infrared irradiation enhanced the anticancer effects of FA-GO/SF. Taken together, FA-GO/SF is a potential carrier for targeted delivery of chemotherapeutic agents in cancer

  19. Eph receptor A10 has a potential as a target for a prostate cancer therapy

    International Nuclear Information System (INIS)

    Nagano, Kazuya; Yamashita, Takuya; Inoue, Masaki; Higashisaka, Kazuma; Yoshioka, Yasuo; Abe, Yasuhiro; Mukai, Yohei; Kamada, Haruhiko

    2014-01-01

    Highlights: • EphA10 mRNA is overexpressed in breast, prostate and colon cancer cell lines. • EphA10 is overexpressed in clinical prostate tumors at mRNA and protein levels. • Anti-EphA10 antibodies were cytotoxic on EphA10-positive prostate cancer cells. - Abstract: We recently identified Eph receptor A10 (EphA10) as a novel breast cancer-specific protein. Moreover, we also showed that an in-house developed anti-EphA10 monoclonal antibody (mAb) significantly inhibited proliferation of breast cancer cells, suggesting EphA10 as a promising target for breast cancer therapy. However, the only other known report for EphA10 was its expression in the testis at the mRNA level. Therefore, the potency of EphA10 as a drug target against cancers other than the breast is not known. The expression of EphA10 in a wide variety of cancer cells was studied and the potential of EphA10 as a drug target was evaluated. Screening of EphA10 mRNA expression showed that EphA10 was overexpressed in breast cancer cell lines as well as in prostate and colon cancer cell lines. Thus, we focused on prostate cancers in which EphA10 expression was equivalent to that in breast cancers. As a result, EphA10 expression was clearly shown in clinical prostate tumor tissues as well as in cell lines at the mRNA and protein levels. In order to evaluate the potential of EphA10 as a drug target, we analyzed complement-dependent cytotoxicity effects of anti-EphA10 mAb and found that significant cytotoxicity was mediated by the expression of EphA10. Therefore, the idea was conceived that the overexpression of EphA10 in prostate cancers might have a potential as a target for prostate cancer therapy, and formed the basis for the studies reported here

  20. From Ugly Duckling to Swan: Unexpected Identification from Cell-SELEX of an Anti-Annexin A2 Aptamer Targeting Tumors

    Science.gov (United States)

    Cibiel, Agnes; Nguyen Quang, Nam; Gombert, Karine; Thézé, Benoit; Garofalakis, Anikitos; Ducongé, Frédéric

    2014-01-01

    Background Cell-SELEX is now widely used for the selection of aptamers against cell surface biomarkers. However, despite negative selection steps using mock cells, this method sometimes results in aptamers against undesirable targets that are expressed both on mock and targeted cells. Studying these junk aptamers might be useful for further applications than those originally envisaged. Methodology/Principal Findings Cell-SELEX was performed to identify aptamers against CHO-K1 cells expressing human Endothelin type B receptor (ETBR). CHO-K1 cells were used for negative selection of aptamers. Several aptamers were identified but no one could discriminate between both cell lines. We decided to study one of these aptamers, named ACE4, and we identified that it binds to the Annexin A2, a protein overexpressed in many cancers. Radioactive binding assays and flow cytometry demonstrated that the aptamer was able to bind several cancer cell lines from different origins, particularly the MCF-7 cells. Fluorescence microscopy revealed it could be completely internalized in cells in 2 hours. Finally, the tumor targeting of the aptamer was evaluated in vivo in nude mice xenograft with MCF-7 cells using fluorescence diffuse optical tomography (fDOT) imaging. Three hours after intravenous injection, the aptamer demonstrated a significantly higher uptake in the tumor compared to a scramble sequence. Conclusions/Significance Although aptamers could be selected during cell-SELEX against other targets than those initially intended, they represent a potential source of ligands for basic research, diagnoses and therapy. Here, studying such aptamers, we identify one with high affinity for Annexin A2 that could be a promising tool for biomedical application. PMID:24489826

  1. A Novel Antagonist of the Immune Checkpoint Protein Adenosine A2a Receptor Restores Tumor-Infiltrating Lymphocyte Activity in the Context of the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Melanie Mediavilla-Varela

    2017-07-01

    Full Text Available BACKGROUND: Therapeutic strategies targeting immune checkpoint proteins have led to significant responses in patients with various tumor types. The success of these studies has led to the development of various antibodies/inhibitors for the different checkpoint proteins involved in immune evasion of the tumor. Adenosine present in high concentrations in the tumor microenvironment activates the immune checkpoint adenosine A2a receptor (A2aR, leading to the suppression of antitumor responses. Inhibition of this checkpoint has the potential to enhance antitumor T-cell responsiveness. METHODS: We developed a novel A2aR antagonist (PBF-509 and tested its antitumor response in vitro, in a mouse model, and in non-small cell lung cancer patient samples. RESULTS: Our studies showed that PBF-509 is highly specific to the A2aR as well as inhibitory of A2aR function in an in vitro model. In a mouse model, we found that lung metastasis was decreased after treatment with PBF-509 compared with its control. Furthermore, freshly resected tumor-infiltrating lymphocytes from lung cancer patients showed increased A2aR expression in CD4+ cells and variable expression in CD8+ cells. Ex vivo studies showed an increased responsiveness of human tumor-infiltrating lymphocytes when PBF-509 was combined with anti-PD-1 or anti-PD-L1. CONCLUSIONS: Our studies demonstrate that inhibition of the A2aR using the novel inhibitor PBF-509 could lead to novel immunotherapeutic strategies in non-small cell lung cancer.

  2. Targeted biomarker profiling of matched primary and metastatic estrogen receptor positive breast cancers.

    Directory of Open Access Journals (Sweden)

    Erica B Schleifman

    Full Text Available Patients with newly diagnosed, early stage estrogen receptor positive (ER+ breast cancer often show disease free survival in excess of five years following surgery and systemic adjuvant therapy. An important question is whether diagnostic tumor tissue from the primary lesion offers an accurate molecular portrait of the cancer post recurrence and thus may be used for predictive diagnostic purposes for patients with relapsed, metastatic disease. As the class I phosphatidylinositol 3' kinase (PI3K pathway is frequently activated in ER+ breast cancer and has been linked to acquired resistance to hormonal therapy, we hypothesized pathway status could evolve over time and treatment. Biomarker analyses were conducted on matched, asynchronous primary and metastatic tumors from 77 patients with ER+ breast cancer. We examined whether PIK3CA and AKT1 alterations or PTEN and Ki67 levels showed differences between primary and metastatic samples. We also sought to look more broadly at gene expression markers reflective of proliferation, molecular subtype, and key receptors and signaling pathways using an mRNA analysis platform developed on the Fluidigm BioMark™ microfluidics system to measure the relative expression of 90 breast cancer related genes in formalin-fixed paraffin-embedded (FFPE tissue. Application of this panel of biomarker assays to matched tumor pairs showed a high concordance between primary and metastatic tissue, with generally few changes in mutation status, proliferative markers, or gene expression between matched samples. The collection of assays described here has been optimized for FFPE tissue and may have utility in exploratory analyses to identify patient subsets responsive to targeted therapies.

  3. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    Science.gov (United States)

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  4. Asialoglycoprotein-receptor-targeted hepatocyte imaging using {sup 99m}Tc galactosylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Mi [Department of Nuclear Medicine, Research Institute of Clinical Medicine, Chonbuk National University School of Medicine, Jeonju, Jeonbuk (Korea, Republic of); Jeong, Hwan-Jeong [Department of Nuclear Medicine, Research Institute of Clinical Medicine, Chonbuk National University School of Medicine, Jeonju, Jeonbuk (Korea, Republic of)]. E-mail: jayjeong@chonbuk.ac.kr; Kim, Se-Lim [Department of Nuclear Medicine, Research Institute of Clinical Medicine, Chonbuk National University School of Medicine, Jeonju, Jeonbuk (Korea, Republic of); Sohn, Myung-Hee [Department of Nuclear Medicine, Research Institute of Clinical Medicine, Chonbuk National University School of Medicine, Jeonju, Jeonbuk (Korea, Republic of); Nah, Jae-Woon [Division of Applied Materials Engineering, Department of Polymer Science and Engineering, Sunchon National University, Sunchon, Jeonnam (Korea, Republic of); Bom, Hee-Seung [Department of Nuclear Medicine, Chonnam National University School of Medicine, Gwangju (Korea, Republic of); Park, In-Kyu [School of Agricultural Biotechnology, Seoul National University, Seoul (Korea, Republic of); Cho, Chong-Su [School of Agricultural Biotechnology, Seoul National University, Seoul (Korea, Republic of)

    2006-05-15

    This study investigated the usefulness of {sup 99m}Tc hydrazinonicotinamide-galactosylated chitosan (HGC) in hepatocyte imaging. HGC was obtained by coupling the galactose moiety of both lactobionic acid and succinimidyl 6-hydrazinonicotinate hydrochloride (succinimidyl HYNIC). The coupled product was then radiolabeled with {sup 99m}Tc using stannous chloride and tricine as reducing agent and coligand, respectively. Labeling efficiency was >90% both in room temperature and in serum up to 24 h after injection. The hepatic uptake properties of {sup 99m}Tc HGC were studied in Balb/C mice. {sup 99m}Tc HGC and {sup 99m}Tc hydrazinonicotinamide chitosan (HC) were intravenously injected into mice, with receptor binding identified by coinjection with 9 and 14 mg of free galactose. Images were acquired with a {gamma}-camera. After injection via the tail vein of the mice, {sup 99m}Tc HGC showed high selectivity for the liver, while {sup 99m}Tc HC without a galactose group showed low liver uptake. In addition, the hepatic uptake of {sup 99m}Tc HGC was blocked by coinjection of free galactose. Tissue distribution was determined at three different times (10, 60 and 120 min). The liver accumulated 13.16{+-}2.72%, 16.11{+-}5.70% and 16.55{+-}2.28% of the injected dose per gram at 10, 60 and 120 min after injection, respectively. {sup 99m}Tc HGC showed specific and rapid targeting of hepatocytes. It is a promising receptor-specific radiopharmaceutical with potential applications in liver imaging for the evaluation of hepatocytic function.

  5. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    DEFF Research Database (Denmark)

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar

    2014-01-01

    hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A...

  6. Preclinical evaluation of a urokinase plasminogen activator receptor-targeted nanoprobe in rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Chen Y

    2015-10-01

    Full Text Available Yushu Chen,1 Li Gong,2 Ning Gao,3 Jichun Liao,1 Jiayu Sun,1 Yuqing Wang,1 Lei Wang,1 Pengjin Zhu,1 Qing Fan,1 Yongqiang Andrew Wang,4 Wen Zeng,2 Hui Mao,3 Lily Yang,5 Fabao Gao11Molecular Imaging Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 2Sichuan Primed Bio-Tech Group Co, Ltd, Chengdu, People’s Republic of China; 3Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 4Ocean NanoTech, LLC, San Diego, CA, 5Department of Surgery, Emory University School of Medicine, Atlanta, GA, USAPurpose: To translate a recombinant peptide containing the amino-terminal fragment (ATF of urokinase plasminogen activator receptor-targeted magnetic iron oxide (IO nanoparticles (uPAR-targeted human ATF-IONPs into clinical applications, we conducted a pilot study to evaluate the toxicity and pharmacokinetics of this nanoparticle in normal rhesus monkeys.Methods: We assessed the changes in the following: magnetic resonance imaging (MRI signals from pretreatment stage to 14 days posttreatment, serum iron concentrations from 5 minutes posttreatment to 12 weeks posttreatment, routine blood examination and serum chemistry analysis results from pretreatment stage to 12 weeks after administration, and results of staining of the liver with Perls’ Prussian Blue and hematoxylin–eosin at 24 hours and 3 months posttreatment in two rhesus monkeys following an intravenous administration of the targeted nanoparticles either with a polyethylene glycol (ATF-PEG-IONP or without a PEG (ATF-IONP coating.Results: The levels of alkaline phosphatase, alanine transaminase, and direct bilirubin in the two monkeys increased immediately after the administration of the IONPs but returned to normal within 20 days and stayed within the normal reference range 3 months after the injection. The creatinine levels of the two monkeys stayed within the normal range during the study. In addition, red blood cells

  7. Biodegradable microspheres for the sustained release of ppB-HSA to target PDGFβ-receptors in fibrotic tissues

    NARCIS (Netherlands)

    Teekamp, Naomi; van Dijk, Fransien; Beljaars, Eleonora; Post, Eduard; Hinrichs, Wouter; Poelstra, Klaas; Olinga, Peter

    2016-01-01

    Introduction pPB-HSA is a protein construct, which consists of human serum albumin (HSA), coupled to a cyclic peptide (pPB). This cyclic peptide binds specifically to the PDGF receptor without eliciting an intracellular response. Hence, this construct can be used as a carrier vehicle to target drugs

  8. Monocyte CD64 or CD89 targeting by surfactant protein D/anti-Fc receptor mediates bacterial uptake.

    NARCIS (Netherlands)

    Tacken, P.J.; Batenburg, J.J.

    2006-01-01

    We recently showed that a chimeric protein, consisting of a recombinant fragment of human surfactant protein D (rfSP-D) coupled to a Fab' fragment directed against the human Fcalpha receptor (CD89), effectively targets pathogens recognized by SP-D to human neutrophils. The present study evaluates

  9. Targeting pro-apoptotic trail receptors sensitizes HeLa cervical cancer cells to irradiation-induced apoptosis

    NARCIS (Netherlands)

    Maduro, John H.; de Vries, Elisabeth G. E.; Meersma, Gert-Jan; Hougardy, Brigitte M. T.; van der Zee, Ate G. J.; De Jong, Steven

    2008-01-01

    Purpose: To investigate the potential of irradiation in combination with drugs targeting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor (DR)4 and DR5 and their mechanism of action in a cervical cancer cell line. Methods and Materials: Recombinant human TRAIL

  10. Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats.

    Science.gov (United States)

    Cadirci, Elif; Halici, Zekai; Bayir, Yasin; Albayrak, Abdulmecit; Karakus, Emre; Polat, Beyzagul; Unal, Deniz; Atamanalp, Sabri S; Aksak, Selina; Gundogdu, Cemal

    2013-10-01

    Sepsis is a complex pathophysiological event involving metabolic acidosis, systemic inflammatory response syndrome, tissue damage and multiple organ dysfunction syndrome. Although many new mechanisms are being investigated to enlighten the pathophysiology of sepsis, there is no effective treatment protocol yet. Presence of 5-HT7 receptors in immune tissues prompted us to hypothesize that these receptors have roles in inflammation and sepsis. We investigated the effects of 5-HT7 receptor agonists and antagonists on serum cytokine levels, lung oxidative stress, lung histopathology, nuclear factor κB (NF-κB) positivity and lung 5-HT7 receptor density in cecal ligation and puncture (CLP) induced sepsis model of rats. Agonist administration to septic rats increased survival time; decreased serum cytokine response against CLP; decreased oxidative stress and increased antioxidant system in lungs; decreased the tissue NF-κB immunopositivity, which is high in septic rats; and decreased the sepsis-induced lung injury. In septic rats, as a result of high inflammatory response, 5-HT7 receptor expression in lungs increased significantly and agonist administration, which decreased inflammatory response and related mortality, decreased the 5-HT7 receptor expression. In conclusion, all these data suggest that stimulation of 5-HT7 receptors may be a new therapeutic target for prevention of impaired inflammatory response related lung injury and mortality. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. Targeting protease activated receptor-1 with P1pal-12 limits bleomycin-induced pulmonary fibrosis

    NARCIS (Netherlands)

    Lin, Cong; Duitman, Janwillem; Daalhuisen, Joost; ten Brink, Marieke; von der Thüsen, Jan; van der Poll, Tom; Borensztajn, Keren; Spek, C. Arnold

    2014-01-01

    Idiopathic pulmonary fibrosis is the most devastating fibrotic diffuse parenchymal lung disease which remains refractory to pharmacological therapies. Therefore, novel treatments are urgently required. Protease-activated receptor (PAR)-1 is a G-protein-coupled receptor that mediates critical

  12. Overexpression of endothelin B receptor in glioblastoma: a prognostic marker and therapeutic target?

    KAUST Repository

    Vasaikar, Suhas; Tsipras, Giorgos; Landá zuri, Natalia; Costa, Helena; Wilhelmi, Vanessa; Scicluna, Patrick; Cui, Huanhuan L.; Mohammad, Abdul-Aleem; Davoudi, Belghis; Shang, Mingmei; Ananthaseshan, Sharan; Strå å t, Klas; Stragliotto, Giuseppe; Rahbar, Afsar; Wong, Kum Thong; Tegner, Jesper; Yaiw, Koon-Chu; Sö derberg-Naucler, Cecilia

    2018-01-01

    of endothelin B receptor (ETBR) has been demonstrated in gliomas, we aimed to test whether ETBR is a useful prognostic marker in GBM and examine if the clinically available endothelin receptor antagonists (ERA) could be useful in the disease treatment

  13. Glycine receptors in CNS neurons as a target for nonretrograde action of cannabinoids

    NARCIS (Netherlands)

    Lozovaya, N.; Yatsenko, N.; Beketov, A.; Tsintsadze, T.; Burnashev, N.

    2005-01-01

    At many central synapses, endocannabinoids released by postsynaptic cells act retrogradely on presynaptic G-protein-coupled cannabinoid receptors to inhibit neurotransmitter release. Here, we demonstrate that cannabinoids may directly affect the functioning of inhibitory glycine receptor (GlyR)

  14. Translational PK-PD modelling of molecular target modulation for the AMPA receptor positive allosteric modulator Org 26576.

    Science.gov (United States)

    Bursi, Roberta; Erdemli, Gul; Campbell, Robert; Hutmacher, Matthew M; Kerbusch, Thomas; Spanswick, David; Jeggo, Ross; Nations, Kari R; Dogterom, Peter; Schipper, Jacques; Shahid, Mohammed

    2011-12-01

    The α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor potentiator Org 26576 represents an interesting pharmacological tool to evaluate the utility of glutamatergic enhancement towards the treatment of psychiatric disorders. In this study, a rat-human translational pharmacokinetic-pharmacodynamic (PK-PD) model of AMPA receptor modulation was used to predict human target engagement and inform dose selection in efficacy clinical trials. Modelling and simulation was applied to rat plasma and cerebrospinal fluid (CSF) pharmacokinetic and pharmacodynamic measurements to identify a target concentration (EC(80)) for AMPA receptor modulation. Human plasma pharmacokinetics was determined from 33 healthy volunteers and eight major depressive disorder patients. From four out of these eight patients, CSF PK was also determined. Simulations of human CSF levels were performed for several doses of Org 26576. Org 26576 (0.1-10 mg/kg, i.v.) potentiated rat hippocampal AMPA receptor responses in an exposure-dependant manner. The rat plasma and CSF PK data were fitted by one-compartment model each. The rat CSF PK-PD model yielded an EC(80) value of 593 ng/ml (90% confidence interval 406.8, 1,264.1). The human plasma and CSF PK data were simultaneously well described by a two-compartment model. Simulations showed that in humans at 100 mg QD, CSF levels of Org 26576 would exceed the EC(80) target concentration for about 2 h and that 400 mg BID would engage AMPA receptors for 24 h. The modelling approach provided useful insight on the likely human dose-molecular target engagement relationship for Org 26576. Based on the current analysis, 100 and 400 mg BID would be suitable to provide 'phasic' and 'continuous' AMPA receptor engagement, respectively.

  15. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder.

    Science.gov (United States)

    Freitag, Christine M; Agelopoulos, Konstantin; Huy, Ellen; Rothermundt, Matthias; Krakowitzky, Petra; Meyer, Jobst; Deckert, Jürgen; von Gontard, Alexander; Hohoff, Christa

    2010-01-01

    Autism spectrum disorders (ASDs) are heterogeneous disorders presenting with increased rates of anxiety. The adenosine A(2A) receptor gene (ADORA2A) is associated with panic disorder and is located on chromosome 22q11.23. Its gene product, the adenosine A(2A) receptor, is strongly expressed in the caudate nucleus, which also is involved in ASD. As autistic symptoms are increased in individuals with 22q11.2 deletion syndrome, and large 22q11.2 deletions and duplications have been observed in ASD individuals, in this study, 98 individuals with ASD and 234 control individuals were genotyped for eight single-nucleotide polymorphisms in ADORA2A. Nominal association with the disorder was observed for rs2236624-CC, and phenotypic variability in ASD symptoms was influenced by rs3761422, rs5751876 and rs35320474. In addition, association of ADORA2A variants with anxiety was replicated for individuals with ASD. Findings point toward a possible mediating role of ADORA2A variants on phenotypic expression in ASD that need to be replicated in a larger sample.

  16. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    Science.gov (United States)

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  17. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  18. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    International Nuclear Information System (INIS)

    Bolado-Carrancio, A.; Riancho, J.A.; Sainz, J.; Rodríguez-Rey, J.C.

    2014-01-01

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity

  19. Calcium modulates calmodulin/α-actinin 1 interaction with and agonist-dependent internalization of the adenosine A2A receptor.

    Science.gov (United States)

    Piirainen, Henni; Taura, Jaume; Kursula, Petri; Ciruela, Francisco; Jaakola, Veli-Pekka

    2017-04-01

    Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A 2A receptor (A 2A R), has an exceptionally long intracellular C terminus (A 2A R-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A 2A R and the role of Ca 2+ in this process. First, we studied the A 2A R-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A 2A R-ct through its distal calmodulin-like domain in a Ca 2+ -independent manner with a dissociation constant of 5-12μM, thus showing an ~100 times lower affinity compared to the A 2A R-calmodulin/Ca 2+ complex. Importantly, calmodulin displaced α-actinin 1 from the A 2A R-ct in a Ca 2+ -dependent fashion, disrupting the A 2A R-α-actinin 1 complex. Finally, we assessed the impact of Ca 2+ on A 2A R internalization in living cells, a function operated by the A 2A R-α-actinin 1 complex. Interestingly, while Ca 2+ influx did not affect constitutive A 2A R endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A 2A R/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A 2A R with calmodulin and α-actinin 1 is fine-tuned by Ca 2+ , a fact that might power agonist-mediated receptor internalization and function. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. c-MET receptor tyrosine kinase as a molecular target in advanced hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Granito A

    2015-04-01

    Full Text Available Alessandro Granito,1 Elena Guidetti,1 Laura Gramantieri2,3 1Dipartimento di Scienze Mediche e Chirurgiche Università di Bologna, Bologna, Italy; 2Dipartimento dell'Apparato Digerente, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; 3Centro di Ricerca Biomedica Applicata (CRBA, Azienda Ospedaliero-Universitaria Policlinico S Orsola-Malpighi e Università di Bologna, Bologna, Italy Abstract: c-MET is the membrane receptor for hepatocyte growth factor (HGF, also known as scatter factor or tumor cytotoxic factor, a mitogenic growth factor for hepatocytes. HGF is mainly produced by cells of mesenchymal origin and it mainly acts on neighboring epidermal and endothelial cells, regulating epithelial growth and morphogenesis. HGF/MET signaling has been identified among the drivers of tumorigenesis in human cancers. As such, c-MET is a recognized druggable target, and against it, targeted agents are currently under clinical investigation. c-MET overexpression is a common event in a wide range of human malignancies, including gastric, lung, breast, ovary, colon, kidney, thyroid, and liver carcinomas. Despite c-MET overexpression being reported by a large majority of studies, no evidence for a c-MET oncogenic addiction exists in hepatocellular carcinoma (HCC. In particular, c-MET amplification is a rare event, accounting for 4%–5% of cases while no mutation has been identified in c-MET oncogene in HCC. Thus, the selection of patient subgroups more likely to benefit from c-MET inhibition is challenging. Notwithstanding, c-MET overexpression was reported to be associated with increased metastatic potential and poor prognosis in patients with HCC, providing a rationale for its therapeutic inhibition. Here we summarize the role of activated HGF/MET signaling in HCC, its prognostic relevance, and the implications for therapeutic approaches in HCC. Keywords: hepatocellular carcinoma, c-MET, clinical trials

  1. Synergistic co-targeting of prostate-specific membrane antigen and androgen receptor in prostate cancer.

    Science.gov (United States)

    Murga, Jose D; Moorji, Sameer M; Han, Amy Q; Magargal, Wells W; DiPippo, Vincent A; Olson, William C

    2015-02-15

    Antibody-drug conjugates (ADCs) are an emerging class of cancer therapies that have demonstrated favorable activity both as single agents and as components of combination regimens. Phase 2 testing of an ADC targeting prostate-specific membrane antigen (PSMA) in advanced prostate cancer has shown antitumor activity. The present study examined PSMA ADC used in combination with potent antiandrogens (enzalutamide and abiraterone) and other compounds. Antiproliferative activity and expression of PSMA, prostate-specific antigen and androgen receptor were evaluated in the prostate cancer cell lines LNCaP and C4-2. Cells were tested for susceptibility to antiandrogens or other inhibitors, used alone and in combination with PSMA ADC. Potential drug synergy or antagonism was evaluated using the Bliss independence method. Enzalutamide and abiraterone demonstrated robust, statistically significant synergy when combined with PSMA ADC. Largely additive activity was observed between the antiandrogens and the individual components of the ADC (free drug and unmodified antibody). Rapamycin also synergized with PSMA ADC in certain settings. Synergy was linked in part to upregulation of PSMA expression. In androgen-dependent LNCaP cells, enzalutamide and abiraterone each inhibited proliferation, upregulated PSMA expression, and synergized with PSMA ADC. In androgen-independent C4-2 cells, enzalutamide and abiraterone showed no measurable antiproliferative activity on their own but increased PSMA expression and synergized with PSMA ADC nonetheless. PSMA expression increased progressively over 3 weeks with enzalutamide and returned to baseline levels 1 week after enzalutamide removal. The findings support exploration of clinical treatment regimens that combine potent antiandrogens and PSMA-targeted therapies for prostate cancer. © 2014 Wiley Periodicals, Inc.

  2. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target

    Science.gov (United States)

    Asim, Mohammad; Massie, Charles E.; Orafidiya, Folake; Pértega-Gomes, Nelma; Warren, Anne Y.; Esmaeili, Mohsen; Selth, Luke A.; Zecchini, Heather I.; Luko, Katarina; Qureshi, Arham; Baridi, Ajoeb; Menon, Suraj; Madhu, Basetti; Escriu, Carlos; Lyons, Scott; Vowler, Sarah L.; Zecchini, Vincent R.; Shaw, Greg; Hessenkemper, Wiebke; Russell, Roslin; Mohammed, Hisham; Stefanos, Niki; Lynch, Andy G.; Grigorenko, Elena; D’Santos, Clive; Taylor, Chris; Lamb, Alastair; Sriranjan, Rouchelle; Yang, Jiali; Stark, Rory; Dehm, Scott M.; Rennie, Paul S.; Carroll, Jason S.; Griffiths, John R.; Tavaré, Simon; Mills, Ian G.; McEwan, Iain J.; Baniahmad, Aria; Tilley, Wayne D.; Neal, David E.

    2016-01-01

    Background: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. Methods: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ2 tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. Results: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. Conclusions: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa. PMID:26657335

  3. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man.

    Directory of Open Access Journals (Sweden)

    Evangelia Charmandari

    Full Text Available Circulating cortisol fluctuates diurnally under the control of the "master" circadian CLOCK, while the peripheral "slave" counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans.We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs as non-synchronized controls.GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo.Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night.

  4. Peripheral CLOCK Regulates Target-Tissue Glucocorticoid Receptor Transcriptional Activity in a Circadian Fashion in Man

    Science.gov (United States)

    Charmandari, Evangelia; Chrousos, George P.; Lambrou, George I.; Pavlaki, Aikaterini; Koide, Hisashi; Ng, Sinnie Sin Man; Kino, Tomoshige

    2011-01-01

    Context and Objective Circulating cortisol fluctuates diurnally under the control of the “master” circadian CLOCK, while the peripheral “slave” counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR) at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans. Design and Participants We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs) obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs) as non-synchronized controls. Results GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo. Conclusions Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night. PMID:21980503

  5. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control

    International Nuclear Information System (INIS)

    El-Mas, Mahmoud M.; El-gowilly, Sahar M.; Fouda, Mohamed A.; Saad, Evan I.

    2011-01-01

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16 μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100 μg/kg i.v.) dose-dependently reduced BRS SNP in contrast to no effect on BRS PE . BRS SNP was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS SNP were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS SNP was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A 2A antagonist), or VUF5574 (A 3 antagonist). In contrast, BRS SNP was preserved after blockade of A 1 (DPCPX) or A 2B (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS SNP depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A 2A receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms. - Research highlights: → The role of central adenosinergic sites in

  6. Genetically Targeted Ratiometric and Activated pH Indicator Complexes (TRApHIC) for Receptor Trafficking.

    Science.gov (United States)

    Perkins, Lydia A; Yan, Qi; Schmidt, Brigitte F; Kolodieznyi, Dmytro; Saurabh, Saumya; Larsen, Mads Breum; Watkins, Simon C; Kremer, Laura; Bruchez, Marcel P

    2018-02-06

    Fluorescent protein-based pH sensors are useful tools for measuring protein trafficking through pH changes associated with endo- and exocytosis. However, commonly used pH-sensing probes are ubiquitously expressed with their protein of interest throughout the cell, hindering our ability to focus on specific trafficking pools of proteins. We developed a family of excitation ratiometric, activatable pH responsive tandem dyes, consisting of a pH sensitive Cy3 donor linked to a fluorogenic malachite green acceptor. These cell-excluded dyes are targeted and activated upon binding to a genetically expressed fluorogen-activating protein and are suitable for selective labeling of surface proteins for analysis of endocytosis and recycling in live cells using both confocal and superresolution microscopy. Quantitative profiling of the endocytosis and recycling of tagged β2-adrenergic receptor (B2AR) at a single-vesicle level revealed differences among B2AR agonists, consistent with more detailed pharmacological profiling.

  7. Neuronal Nicotinic Receptors as New Targets for Amphetamine-Induced Oxidative Damage and Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Elena Escubedo

    2011-06-01

    Full Text Available Amphetamine derivatives such as methamphetamine (METH and 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy” are widely abused drugs in a recreational context. This has led to concern because of the evidence that they are neurotoxic in animal models and cognitive impairments have been described in heavy abusers. The main targets of these drugs are plasmalemmal and vesicular monoamine transporters, leading to reverse transport and increased monoamine efflux to the synapse. As far as neurotoxicity is concerned, increased reactive oxygen species (ROS production seems to be one of the main causes. Recent research has demonstrated that blockade of a7 nicotinic acetylcholine receptors (nAChR inhibits METH- and MDMA-induced ROS production in striatal synaptosomes which is dependent on calcium and on NO-synthase activation. Moreover, a7 nAChR antagonists (methyllycaconitine and memantine attenuated in vivo the neurotoxicity induced by METH and MDMA, and memantine prevented the cognitive impairment induced by these drugs. Radioligand binding experiments demonstrated that both drugs have affinity to a7 and heteromeric nAChR, with MDMA showing lower Ki values, while fluorescence calcium experiments indicated that MDMA behaves as a partial agonist on a7 and as an antagonist on heteromeric nAChR. Sustained Ca increase led to calpain and caspase-3 activation. In addition, modulatory effects of MDMA on a7 and heteromeric nAChR populations have been found.

  8. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees

    Science.gov (United States)

    Moffat, Christopher; Buckland, Stephen T.; Samson, Andrew J.; McArthur, Robin; Chamosa Pino, Victor; Bollan, Karen A.; Huang, Jeffrey T.-J.; Connolly, Christopher N.

    2016-04-01

    There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species.

  9. TNF and TNF Receptor Superfamily Members in HIV infection: New Cellular Targets for Therapy?

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2013-01-01

    Full Text Available Tumor necrosis factor (TNF and TNF receptors (TNFR superfamily members are engaged in diverse cellular phenomena such as cellular proliferation, morphogenesis, apoptosis, inflammation, and immune regulation. Their role in regulating viral infections has been well documented. Viruses have evolved with numerous strategies to interfere with TNF-mediated signaling indicating the importance of TNF and TNFR superfamily in viral pathogenesis. Recent research reports suggest that TNF and TNFRs play an important role in the pathogenesis of HIV. TNFR signaling modulates HIV replication and HIV proteins interfere with TNF/TNFR pathways. Since immune activation and inflammation are the hallmark of HIV infection, the use of TNF inhibitors can have significant impact on HIV disease progression. In this review, we will describe how HIV infection is modulated by signaling mediated through members of TNF and TNFR superfamily and in turn how these latter could be targeted by HIV proteins. Finally, we will discuss the emerging therapeutics options based on modulation of TNF activity that could ultimately lead to the cure of HIV-infected patients.

  10. Glucocorticoid Receptor Interacting Co-regulators: Putative Candidates for Future Drug Targeting Therapy.

    Science.gov (United States)

    Di Silvestre, Alessia; Lucafo, Marianna; De Iudicibus, Sara; Ventura, Alessandro; Martelossi, Stefano; Stocco, Gabriele; Decorti, Giuliana

    2017-01-01

    Glucocorticoids (GCs) are largely used in different inflammatory, autoimmune and proliferative diseases. To date their mechanism of action is not completely clear and more studies are necessary, in particular to explain the great interindividual variability in clinical response. In this panorama the glucocorticoid receptor (GR) has an important role: in fact it regulates the pharmacological response thanks to the capability to interact with different molecules (DNA, RNA, ncRNA and proteins) that are known to influence its activity. In this review our aim is to highlight the knowledge about the role of protein-protein, RNAprotein interactions and epigenetic modifications on the GR and the consequent response to GCs. The characteristics of these interactions with the GR and their effects on the pharmacological activity of GCs will be examined. This information could contribute to the prediction of individual sensitivity to steroids through the identification of new markers of GC resistance. In addition this knowledge may be used in developing new strategies for targeted therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy.

    Science.gov (United States)

    Akalu, Yemsratch T; Rothlin, Carla V; Ghosh, Sourav

    2017-03-01

    Cancer immunotherapy utilizing T-cell checkpoint inhibitors has shown tremendous clinical success. Yet, this mode of treatment is effective in only a subset of patients. Unresponsive patients tend to have non-T-cell-inflamed tumors that lack markers associated with the activation of adaptive anti-tumor immune responses. Notably, elimination of cancer cells by T cells is critically dependent on the optimal activity of innate immune cells. Therefore, identifying new targets that regulate innate immune cell function and promote the engagement of adaptive tumoricidal responses is likely to lead to the development of improved therapies against cancer. Here, we review the TAM receptor tyrosine kinases-TYRO3, AXL, and MERTK-as an emerging class of innate immune checkpoints that participate in key steps of anti-tumoral immunity. Namely, TAM-mediated efferocytosis, negative regulation of dendritic cell activity, and dysregulated production of chemokines collectively favor the escape of malignant cells. Hence, disabling TAM signaling may promote engagement of adaptive immunity and complement T-cell checkpoint blockade. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Somatostatin receptor expression in Merkel cell carcinoma as target for molecular imaging

    International Nuclear Information System (INIS)

    Buder, Kristina; Becker, Jürgen C; Lapa, Constantin; Kreissl, Michael C; Schirbel, Andreas; Herrmann, Ken; Schnack, Alexander; Bröcker, Eva-Bettina; Goebeler, Matthias; Buck, Andreas K

    2014-01-01

    Merkel cell carcinoma (MCC) is a rare cutaneous neoplasm with increasing incidence, aggressive behavior and poor prognosis. Somatostatin receptors (SSTR) are expressed in MCC and represent a potential target for both imaging and treatment. To non-invasively assess SSTR expression in MCC using PET and the radiotracers [ 68 Ga]DOTA-D-Phe 1 -Tyr 3 -octreotide (DOTATOC) or -octreotate (DOTATATE) as surrogate for tumor burden. In 24 patients with histologically proven MCC SSTR-PET was performed and compared to results of computed tomography (CT). SSTR-PET detected primary and metastatic MCC lesions. On a patient-based analysis, sensitivity of SSTR-PET was 73% for nodal metastases, 100% for bone, and 67% for soft-tissue metastases, respectively. Notably, brain metastases were initially detected by SSTR-PET in 2 patients, whereas liver and lung metastases were diagnosed exclusively by CT. SSTR-PET showed concordance to CT results in 20 out of 24 patients. Four patients (17%) were up-staged due to SSTR-PET and patient management was changed in 3 patients (13%). SSTR-PET showed high sensitivity for imaging bone, soft tissue and brain metastases, and particularly in combination with CT had a significant impact on clinical stage and patient management

  13. Targeting Interleukin-4 Receptor Alpha by Hybrid Peptide for Novel Biliary Tract Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Kahori Seto

    2014-01-01

    Full Text Available It is known that the interleukin-4 receptor α (IL-4Rα is highly expressed on the surface of various human solid tumors. We previously designed novel IL-4Rα-lytic hybrid peptide composed of binding peptide to IL-4Rα and cell-lytic peptide and reported that the designed IL-4Rα-lytic hybrid peptide exhibited cytotoxic and antitumor activity both in vitro and in vivo against the human pancreatic cancer cells expressing IL-4Rα. Here, we evaluated the antitumor activity of the IL-4Rα-lytic hybrid peptide as a novel molecular targeted therapy for human biliary tract cancer (BTC. The IL-4Rα-lytic hybrid peptide showed cytotoxic activity in six BTC cell lines with a concentration that killed 50% of all cells (IC50 as low as 5 μM. We also showed that IL-4Rα-lytic hybrid peptide in combination with gemcitabine exhibited synergistic cytotoxic activity in vitro. In addition, intravenous administration of IL-4Rα-lytic hybrid peptide significantly inhibited tumor growth in a xenograft model of human BTC in vivo. Taken together, these results indicated that the IL-4Rα-lytic hybrid peptide is a potent agent that might provide a novel therapy for patients with BTC.

  14. The lymphotoxin β receptor is a potential therapeutic target in renal inflammation.

    Science.gov (United States)

    Seleznik, Gitta; Seeger, Harald; Bauer, Judith; Fu, Kai; Czerkowicz, Julie; Papandile, Adrian; Poreci, Uriana; Rabah, Dania; Ranger, Ann; Cohen, Clemens D; Lindenmeyer, Maja; Chen, Jin; Edenhofer, Ilka; Anders, Hans J; Lech, Maciej; Wüthrich, Rudolf P; Ruddle, Nancy H; Moeller, Marcus J; Kozakowski, Nicolas; Regele, Heinz; Browning, Jeffrey L; Heikenwalder, Mathias; Segerer, Stephan

    2016-01-01

    Accumulation of inflammatory cells in different renal compartments is a hallmark of progressive kidney diseases including glomerulonephritis (GN). Lymphotoxin β receptor (LTβR) signaling is crucial for the formation of lymphoid tissue, and inhibition of LTβR signaling has ameliorated several non-renal inflammatory models. Therefore, we tested whether LTβR signaling could also have a role in renal injury. Renal biopsies from patients with GN were found to express both LTα and LTβ ligands, as well as LTβR. The LTβR protein and mRNA were localized to tubular epithelial cells, parietal epithelial cells, crescents, and cells of the glomerular tuft, whereas LTβ was found on lymphocytes and tubular epithelial cells. Human tubular epithelial cells, mesangial cells, and mouse parietal epithelial cells expressed both LTα and LTβ mRNA upon stimulation with TNF in vitro. Several chemokine mRNAs and proteins were expressed in response to LTβR signaling. Importantly, in a murine lupus model, LTβR blockade improved renal function without the reduction of serum autoantibody titers or glomerular immune complex deposition. Thus, a preclinical mouse model and human studies strongly suggest that LTβR signaling is involved in renal injury and may be a suitable therapeutic target in renal diseases. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  15. Neurotrophin Receptors TrkA, p75NTR, and Sortilin Are Increased and Targetable in Thyroid Cancer.

    Science.gov (United States)

    Faulkner, Sam; Jobling, Philip; Rowe, Christopher W; Rodrigues Oliveira, S M; Roselli, Severine; Thorne, Rick F; Oldmeadow, Christopher; Attia, John; Jiang, Chen Chen; Zhang, Xu Dong; Walker, Marjorie M; Hondermarck, Hubert

    2018-01-01

    Neurotrophin receptors are emerging targets in oncology, but their clinicopathologic significance in thyroid cancer is unclear. In this study, the neurotrophin tyrosine receptor kinase TrkA (also called NTRK1), the common neurotrophin receptor p75 NTR , and the proneurotrophin receptor sortilin were analyzed with immunohistochemistry in a cohort of thyroid cancers (n = 128) and compared with adenomas and normal thyroid tissues (n = 62). TrkA was detected in 20% of thyroid cancers, compared with none of the benign samples (P = 0.0007). TrkA expression was independent of histologic subtypes but associated with lymph node metastasis (P = 0.0148), suggesting the involvement of TrkA in tumor invasiveness. Nerves in the tumor microenvironment were positive for TrkA. p75 NTR was overexpressed in anaplastic thyroid cancers compared with papillary and follicular subtypes (P Neurotrophin receptor expression was confirmed in a panel of thyroid cancer cell lines at the mRNA and protein levels. Functional investigations using the anaplastic thyroid cancer cell line CAL-62 found that siRNA against TrkA, p75 NTR , and sortilin decreased cell survival and cell migration through decreased SRC and ERK activation. Together, these data reveal TrkA, p75 NTR , and sortilin as potential therapeutic targets in thyroid cancer. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Follicle-Stimulating Hormone Receptor Is Expressed by Most Ovarian Cancer Subtypes and Is a Safe and Effective Immunotherapeutic Target.

    Science.gov (United States)

    Perales-Puchalt, Alfredo; Svoronos, Nikolaos; Rutkowski, Melanie R; Allegrezza, Michael J; Tesone, Amelia J; Payne, Kyle K; Wickramasinghe, Jayamanna; Nguyen, Jenny M; O'Brien, Shane W; Gumireddy, Kiranmai; Huang, Qihong; Cadungog, Mark G; Connolly, Denise C; Tchou, Julia; Curiel, Tyler J; Conejo-Garcia, Jose R

    2017-01-15

    To define the safety and effectiveness of T cells redirected against follicle-stimulating hormone receptor (FSHR)-expressing ovarian cancer cells. FSHR expression was determined by Western blotting, immunohistochemistry, and qPCR in 77 human ovarian cancer specimens from 6 different histologic subtypes and 20 human healthy tissues. The effectiveness of human T cells targeted with full-length FSH in vivo was determined against a panel of patient-derived xenografts. Safety and effectiveness were confirmed in immunocompetent tumor-bearing mice, using constructs targeting murine FSHR and syngeneic T cells. FSHR is expressed in gynecologic malignancies of different histologic types but not in nonovarian healthy tissues. Accordingly, T cells expressing full-length FSHR-redirected chimeric receptors mediate significant therapeutic effects (including tumor rejection) against a panel of patient-derived tumors in vivo In immunocompetent mice growing syngeneic, orthotopic, and aggressive ovarian tumors, fully murine FSHR-targeted T cells also increased survival without any measurable toxicity. Notably, chimeric receptors enhanced the ability of endogenous tumor-reactive T cells to abrogate malignant progression upon adoptive transfer into naïve recipients subsequently challenged with the same tumor. Interestingly, FSHR-targeted T cells persisted as memory lymphocytes without noticeable PD-1-dependent exhaustion during end-stage disease, in the absence of tumor cell immunoediting. However, exosomes in advanced tumor ascites diverted the effector activity of this and other chimeric receptor-transduced T cells away from targeted tumor cells. T cells redirected against FSHR + tumor cells with full-length FSH represent a promising therapeutic alternative against a broad range of ovarian malignancies, with negligible toxicity even in the presence of cognate targets in tumor-free ovaries. Clin Cancer Res; 23(2); 441-53. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    Science.gov (United States)

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  18. Yeast two-hybrid screening of proteins interacting with plasmin receptor subunit: C-terminal fragment of annexin A2.

    Science.gov (United States)

    Li, Qun; Laumonnier, Yves; Syrovets, Tatiana; Simmet, Thomas

    2011-11-01

    To identify proteins that interact with the C-terminal fragment of annexin A2 (A2IC), generated by plasmin cleavage of the plasmin receptor, a heterotetramer (AA2t) containing annexin A2. The gene that encodes the A2IC fragment was obtained from PCR-amplified cDNA isolated from human monocytes, and was ligated into the pBTM116 vector using a DNA ligation kit. The resultant plasmid (pBTM116-A2IC) was sequenced with an ABI PRISM 310 Genetic Analyzer. The expression of an A2IC bait protein fused with a LexA-DNA binding domain (BD) was determined using Western blot analysis. The identification of proteins that interact with A2IC and are encoded in a human monocyte cDNA library was performed using yeast two-hybrid screening. The DNA sequences of the relevant cDNAs were determined using an ABI PRISM BigDye terminator cycle sequencing ready reaction kit. Nucleotide sequence databases were searched for homologous sequences using BLAST search analysis (http://www.ncbi.nlm.nih.gov). Confirmation of the interaction between the protein LexA-A2IC and each of cathepsin S and SNX17 was conducted using a small-scale yeast transformation and X-gal assay. The yeast transformed with plasmids encoding the bait proteins were screened with a human monocyte cDNA library by reconstituting full-length transcription factors containing the GAL4-active domain (GAL4-AD) as the prey in a yeast two-hybrid approach. After screening 1×10(7) clones, 23 independent β-Gal-positive clones were identified. Sequence analysis and a database search revealed that 15 of these positive clones matched eight different proteins (SNX17, ProCathepsin S, RPS2, ZBTB4, OGDH, CCDC32, PAPD4, and actin which was already known to interact with annexin A2). A2IC A2IC interacts with various proteins to form protein complexes, which may contribute to the molecular mechanism of monocyte activation induced by plasmin. The yeast two-hybrid system is an efficient approach for investigating protein interactions.

  19. Insulin-increased L-arginine transport requires A(2A adenosine receptors activation in human umbilical vein endothelium.

    Directory of Open Access Journals (Sweden)

    Enrique Guzmán-Gutiérrez

    Full Text Available Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1. This process involves the activation of A(2A adenosine receptors (A(2AAR in human umbilical vein endothelial cells (HUVECs. Insulin increases hCAT-1 activity and expression in HUVECs, and A(2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A(2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR, and SLC7A1 (for hCAT-1 reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K(m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1(-1606 or pGL3-hCAT-1(-650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1(-1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A(2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.

  20. Blocking Synaptic Removal of GluA2-Containing AMPA Receptors Prevents the Natural Forgetting of Long-Term Memories.

    Science.gov (United States)

    Migues, Paola Virginia; Liu, Lidong; Archbold, Georgina E B; Einarsson, Einar Ö; Wong, Jacinda; Bonasia, Kyra; Ko, Seung Hyun; Wang, Yu Tian; Hardt, Oliver

    2016-03-23

    The neurobiological processes underpinning the natural forgetting of long-term memories are poorly understood. Based on the critical role of GluA2-containing AMPA receptors (GluA2/AMPARs) in long-term memory persistence, we tested in rats whether their synaptic removal underpins time-dependent memory loss. We found that blocking GluA2/AMPAR removal with the interference peptides GluA23Y or G2CT in the dorsal hippocampus during a memory retention interval prevented the normal forgetting of established, long-term object location memories, but did not affect their acquisition. The same intervention also preserved associative memories of food-reward conditioned place preference that would otherwise be lost over time. We then explored whether this forgetting process could play a part in behavioral phenomena involving time-dependent memory change. We found that infusing GluA23Y into the dorsal hippocampus during a 2 week retention interval blocked generalization of contextual fear expression, whereas infusing it into the infralimbic cortex after extinction of auditory fear prevented spontaneous recovery of the conditioned response. Exploring possible physiological mechanisms that could be involved in this form of memory decay, we found that bath application of GluA23Y prevented depotentiation, but not induction of long-term potentiation, in a hippocampal slice preparation. Together, these findings suggest that a decay-like forgetting process that involves the synaptic removal of GluA2/AMPARs erases consolidated long-term memories in the hippocampus and other brain structures over time. This well regulated forgetting process may critically contribute to establishing adaptive behavior, whereas its dysregulation could promote the decline of memory and cognition in neuropathological disorders. The neurobiological mechanisms involved in the natural forgetting of long-term memory and its possible functions are not fully understood. Based on our previous work describing the

  1. Comparative biodistribution of 12 {sup 111}In-labelled gastrin/CCK2 receptor-targeting peptides

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Joosten, Lieke; Eek, Annemarie; Roosenburg, Susan; Oyen, Wim J.G.; Boerman, Otto C. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Peitl, Petra Kolenc [University Medical Centre Ljubljana, Department of Nuclear Medicine, Ljubljana (Slovenia); Maina, Theodosia [National Center for Scientific Research Demokritos, Molecular Radiopharmacy, Institute of Radioisotopes-Radiodiagnostic Products, Athens (Greece); Maecke, Helmut [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Aloj, Luigi [Fondazione ' ' G. Pascale' ' , Department of Nuclear Medicine, Istituto Nazionale Tumouri, Naples (Italy); Guggenberg, Elisabeth von [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria); Sosabowski, Jane K. [Queen Mary, University of London, Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, London (United Kingdom); Jong, Marion de [Erasmus MC, Department of Nuclear Medicine, Rotterdam (Netherlands); Reubi, Jean-Claude [University of Berne, Institute of Pathology, Berne (Switzerland)

    2011-08-15

    Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy. Several CCK-2 receptor-binding radiopeptides have been developed and some have been tested in patients. Here we aimed to compare the in vivo tumour targeting properties of 12 {sup 111}In-labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated gastrin/CCK2 receptor-binding peptides. Two CCK8-based peptides and ten gastrin-based peptide analogues were tested. All peptides were conjugated with DOTA and labelled with {sup 111}In. Biodistribution studies were performed in mice with subcutaneous CCK2/gastrin receptor-expressing tumours and with receptor-negative tumours contralaterally. Biodistribution was studied by counting dissected tissues at 1 and 4 h after injection. Both the CCK analogues displayed relatively low tumour uptake (approximately 2.5%ID/g) as compared to minigastrin analogues. Two linear minigastrin peptides (MG0 and sargastrin) displayed moderate tumour uptake at both 1 and 4 h after injection, but also very high kidney uptake (both higher than 48%ID/g). The linear MG11, lacking the penta-Glu sequence, showed lower tumour uptake and also low kidney uptake. Varying the N-terminal Glu residues in the minigastrin analogues led to improved tumour targeting properties, with PP-F11 displaying the optimal biodistribution. Besides the monomeric linear peptides, a cyclized peptide and a divalent peptide were tested. Based on these studies, optimal peptides for peptide receptor radionuclide targeting of CCK2/gastrin receptor-expressing tumours were the linear minigastrin analogue with six D-Glu residues (PP-F11), the divalent analogue MGD5 and the cyclic peptide cyclo-MG1. These peptides combined high tumour uptake with low kidney retention, and may

  2. CB1 and CB2 Receptors are Novel Molecular Targets for Tamoxifen and 4OH-Tamoxifen

    OpenAIRE

    Prather, Paul L.; FrancisDevaraj, FeAna; Dates, Centdrika R.; Greer, Aleksandra K.; Bratton, Stacie M.; Ford, Benjamin M.; Franks, Lirit N.; Radominska-Pandya, Anna

    2013-01-01

    Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for t...

  3. Ex vivo lung perfusion with adenosine A2A receptor agonist allows prolonged cold preservation of lungs donated after cardiac death.

    Science.gov (United States)

    Wagner, Cynthia E; Pope, Nicolas H; Charles, Eric J; Huerter, Mary E; Sharma, Ashish K; Salmon, Morgan D; Carter, Benjamin T; Stoler, Mark H; Lau, Christine L; Laubach, Victor E; Kron, Irving L

    2016-02-01

    Ex vivo lung perfusion has been successful in the assessment of marginal donor lungs, including donation after cardiac death (DCD) donor lungs. Ex vivo lung perfusion also represents a unique platform for targeted drug delivery. We sought to determine whether ischemia-reperfusion injury would be decreased after transplantation of DCD donor lungs subjected to prolonged cold preservation and treated with an adenosine A2A receptor agonist during ex vivo lung perfusion. Porcine DCD donor lungs were preserved at 4°C for 12 hours and underwent ex vivo lung perfusion for 4 hours. Left lungs were then transplanted and reperfused for 4 hours. Three groups (n = 4/group) were randomized according to treatment with the adenosine A2A receptor agonist ATL-1223 or the dimethyl sulfoxide vehicle: Infusion of dimethyl sulfoxide during ex vivo lung perfusion and reperfusion (DMSO), infusion of ATL-1223 during ex vivo lung perfusion and dimethyl sulfoxide during reperfusion (ATL-E), and infusion of ATL-1223 during ex vivo lung perfusion and reperfusion (ATL-E/R). Final Pao2/Fio2 ratios (arterial oxygen partial pressure/fraction of inspired oxygen) were determined from samples obtained from the left superior and inferior pulmonary veins. Final Pao2/Fio2 ratios in the ATL-E/R group (430.1 ± 26.4 mm Hg) were similar to final Pao2/Fio2 ratios in the ATL-E group (413.6 ± 18.8 mm Hg), but both treated groups had significantly higher final Pao2/Fio2 ratios compared with the dimethyl sulfoxide group (84.8 ± 17.7 mm Hg). Low oxygenation gradients during ex vivo lung perfusion did not preclude superior oxygenation capacity during reperfusion. After prolonged cold preservation, treatment of DCD donor lungs with an adenosine A2A receptor agonist during ex vivo lung perfusion enabled Pao2/Fio2 ratios greater than 400 mm Hg after transplantation in a preclinical porcine model. Pulmonary function during ex vivo lung perfusion was not predictive of outcomes after transplantation. Copyright

  4. Receptor-mediated targeting of 67Ga-Deferoxamine-Folate to folate-receptor-positive human kb tumor xenografts

    International Nuclear Information System (INIS)

    Mathias, Carla J.; Wang, Susan; Low, Philip S.; Waters, David J.; Green, Mark A.

    1999-01-01

    The radiochemical synthesis and stability of 67 Ga-deferoxamine-folate ([ 67 Ga]Ga-DF-Folate) were examined as a function of DF-Folate concentration. Optimal labeling occurred at DF-Folate concentrations ≥2.5 μg/mL. To define the possible biological significance of variations in product formulation, the biodistribution of [ 67 Ga]Ga-DF-Folate was examined as a function of administered deferoxamine-folate dose in an athymic mouse KB tumor model. The folate-receptor-positive KB tumors were found to concentrate the 67 Ga radiolabel in a dose-dependent fashion, consistent with saturable involvement of the folate receptor in mediating tumor accumulation of the radiopharmaceutical

  5. Targeting Multiple Tumors Using T-Cells Engineered to Express a Natural Cytotoxicity Receptor 2-Based Chimeric Receptor

    Directory of Open Access Journals (Sweden)

    Vasyl Eisenberg

    2017-09-01

    Full Text Available Recent developments in cancer treatment are demonstrating the increasing and powerful potential of immunotherapeutic strategies. In this regard, the adoptive transfer of tumor-specific T-lymphocytes approaches can lead to tumor regression in cancer patients. More recently, the use of T-cells genetically engineered to express cancer-specific receptors such as the anti-CD19 chimeric antigen receptor (CAR continues to show promise for the treatment of hematological malignancies. Still, there is a crucial need to develop efficient CAR-T cell approaches for the treatment of solid tumors. It has been shown that other lymphocytes such as natural killer (NK cells can demonstrate potent antitumor function—nonetheless, their use in immunotherapy is rather limited due to difficulties in expanding these cells to therapeutically relevant numbers and to suppression by endogenous inhibitory mechanisms. Cancer recognition by NK cells is partly mediated by molecules termed natural cytotoxicity receptors (NCRs. In the present study, we hypothesize that it is possible to endow T-cells with an NK recognition pattern, providing them with a mean to recognize tumor cells, in a non-MHC restricted way. To test this, we genetically modified human T-cells with different chimeric receptors based on the human NCR2 molecule and then assessed their antitumor activity in vitro and in vivo. Our results show that expression in primary lymphocytes of an NCR2-derived CAR, termed s4428z, confers T-cells with the ability to specifically recognize heterogeneous tumors and to mediate tumor cytotoxicity in a mouse model. This study demonstrates the benefit of combining tumor recognition capability of NK cells with T cell effectiveness to improve cancer immunotherapy.

  6. Quantification of adenosine A2A receptors in the human brain using [11C]TMSX and positron emission tomography

    International Nuclear Information System (INIS)

    Naganawa, Mika; Kimura, Yuichi; Oda, Keiichi; Ishii, Kenji; Ishiwata, Kiichi; Mishina, Masahiro; Manabe, Yoshitsugu; Chihara, Kunihiro

    2007-01-01

    [7-methyl- 11 C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([ 11 C]TMSX) is a positron-emitting adenosine A 2A receptor (A2AR) antagonist for visualisation of A2AR distribution by positron emission tomography (PET). The aims of this paper were to use a kinetic model to analyse the behaviour of [ 11 C]TMSX in the brain and to examine the applicability of the Logan plot. We also studied the applicability of a simplified Logan plot by omitting metabolite correction and arterial blood sampling. The centrum semiovale was used as a reference region on the basis of a post-mortem study showing that it has a negligibly low density of A2ARs. Compartmental analysis was performed in five normal subjects. Parametric images of A2AR binding potential (BP) were also generated using a Logan plot with or without metabolite correction and with or without arterial blood sampling. To omit arterial blood sampling, we applied a method to extract the plasma-related information using independent component analysis (EPICA). The estimated K 1 /k 2 was confirmed to be common in the centrum semiovale and main cortices. The three-compartment model was well fitted to the other regions using the fixed value of K 1 /k 2 estimated from the centrum semiovale. The estimated BPs using the Logan plot matched those derived from compartment analysis. Without the metabolite correction, the estimate of BP underestimated the true value by 5%. The estimated BPs agreed regardless of arterial blood sampling. A three-compartment model with a reference region, the centrum semiovale, describes the kinetic behaviour of [ 11 C]TMSX PET images. A2ARs in the human brain can be visualised as a BP image using [ 11 C]TMSX PET without arterial blood sampling. (orig.)

  7. Tyrosine kinase receptor inhibitor-targeted combined chemotherapy for metastatic bladder cancer

    Directory of Open Access Journals (Sweden)

    Chia-Lun Wu

    2012-04-01

    increased subG1 in cell cycle was seen in the epirubicin and sunitinib combination treatment group. The activation of apoptosis pathway was confirmed by increased cleaved caspase-3 and cleaved PARP in MBT-2 cells. In tail vein tumor inoculation C3H mice model, epirubicin alone and sunitinib combination therapy decreased tumor growth in lungs with marginal effect. Sunitinib and epirubicin combination had shown a synergistic cytotoxic effect and inhibited cell migration ability in MBT-2 cells. The combination can induce cell cycle arrest at G2/M phase and increase subG1 cells. Metastatic animal study also showed that sunitinib combined with epirubicin has a marginal effect on inhibition of tumor growth of lungs. The tyrosine kinase receptor inhibitor-targeted combined chemotherapy regimen may provide as a new treatment modality for advanced bladder cancer in the future.

  8. Liposomes containing alkylated methotrexate analogues for phospholipase A(2) mediated tumor targeted drug delivery

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars; Jensen, Simon Skøde

    2009-01-01

    of alkylated compounds in liposomes, it was demonstrated that the MTX-analogue partitioned into the water phase and thereby became available for cell uptake. It was concluded that liposomes containing alkylated MTX-analogues show promise as a drug delivery system, although the MTX-analogue needs to be more......Two lipophilic methotrexate analogues have been synthesized and evaluated for cytotoxicity against KATO III and HT-29 human colon cancer cells. Both analogues contained a C-16-alkyl chain attached to the gamma-carboxylic acid and one of the analogues had an additional benzyl group attached...... cytotoxicity was incorporated into liposomes that were designed to be particularly Susceptible to a liposome degrading enzyme, secretory phospholipase A(2) (sPLA(2)), which is found in high concentrations in tumors of several different cancer types. Liposome incorporation was investigated by differential...

  9. Expression of the adhesion G protein-coupled receptor A2 (adgra2) during Xenopus laevis development.

    Science.gov (United States)

    Seigfried, Franziska A; Dietmann, Petra; Kühl, Michael; Kühl, Susanne J

    2018-06-01

    The adhesion G protein-coupled receptor A2 (Adgra2) is a seven transmembrane receptor that has been described to be a regulator for angiogenesis in mice. Furthermore, the zebrafish ouchless mutant is unable to develop dorsal root ganglia through a disrupted trafficking of Adgra2. Besides RNA sequencing data, nothing is reported about Adgra2 in the south African crawled frog Xenopus laevis. In this study, we investigated for the first time the spatio-temporal expression of adgra2 during early Xenopus embryogenesis in detail. In silico approaches showed that the genomic adgra2 region as well as the Adgra2 protein sequence is highly conserved among different species including Xenopus. RT-PCR experiments confirmed that embryonic adgra2 expression is primarily detected at the beginning of neurulation and is then present throughout the whole Xenopus embryogenesis until stage 42. Whole mount in situ hybridization approaches visualized adgra2 expression in many tissues during Xenopus embryogenesis such as the cardiovascular system including the heart, the migrating neural crest cells and the developing eye including the periocular mesenchyme. Our results indicate a role of Adgra2 for embryogenesis and are a good starting point for further functional studies during early vertebrate development. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Interleukin-24 as a target cytokine of environmental aryl hydrocarbon receptor agonist exposure in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yueh-Hsia; Kuo, Yu-Chun; Tsai, Ming-Hsien; Ho, Chia-Chi; Tsai, Hui-Ti; Hsu, Chin-Yu; Chen, Yu-Cheng; Lin, Pinpin, E-mail: pplin@nhri.org.tw

    2017-06-01

    Exposure to environmental aryl hydrocarbon receptor (AhR) agonists, such as halogenated aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs), has great impacts on the development of various lung diseases. As emerging molecular targets for AhR agonists, cytokines may contribute to the inflammatory or immunotoxic effects of environmental AhR agonists. However, general cytokine expression may not specifically indicate environmental AhR agonist exposure. By comparing cytokine and chemokine expression profiles in human lung adenocarcinoma cell line CL5 treated with AhR agonists and the non-AhR agonist polychlorinated biphenyl (PCB) 39, we identified a target cytokine of environmental AhR agonist exposure of in the lungs. Thirteen cytokine and chemokine genes were altered in the AhR agonists-treated cells, but none were altered in the PCB39-treated cells. Interleukin (IL)-24 was the most highly induced gene among AhR-modulated cytokines. Cotreatment with AhR antagonist completely prevented IL-24 induction by AhR agonists in the CL5 cells. Knockdown AhR expression with short-hairpin RNA (shRNA) significantly reduced benzo[a]pyrene (BaP)-induced IL-24 mRNA levels. We further confirmed that gene transcription, but not mRNA stability, was involved in IL-24 upregulation by BaP. Particulate matter (PM) in the ambient air contains some PAHs and is reported to activate AhR. Oropharyngeal aspiration of PM significantly increased IL-24 levels in lung epithelia and in bronchoalveolar lavage fluid of mice 4 weeks after treatment. Thus, our data suggests that IL-24 is a pulmonary exposure target cytokine of environmental AhR agonists. - Graphical abstract: (A) Cytokine and chemokine gene expressions were examined in CL5 cells treated with AhR and non-AhR agonists. Thirteen cytokines and chemokines genes were altered in the AhR agonist-treated cells, but not in the non-AhR agonist-treated cells. IL-24 was the most highly induced gene among the AhR-modulated cytokines. (B

  11. Performances and stability of a 2.4 ton Gd organic liquid scintillator target for ν-bar e detection

    International Nuclear Information System (INIS)

    Barabanov, I R; Bezrukov, L B; Danilov, N A; Krilov, Yu S; Yanovich, E A; Malguin, A S; Cattadori, C M; Vacri, A di; Ioannucci, L; Bruno, G; Aglietta, M; Bonardi, A; Fulgione, W; Porta, A; Kemp, E; Selvi, M

    2010-01-01

    In this paper we report the performance and the chemical and physical properties of a 2 x 1.2 ton organic liquid scintillator target doped with Gd up to ∼ 0.1%, and the results of a 3 year long stability survey of the target. In particular we have measured and monitored the optical and fluorescent properties of the Gd-doped liquid scintillator (LS), the amount of both Gd and primary fluor in solution, and the performance of the two Gd doped targets as neutron detectors, namely neutron capture efficiency and average capture time. The experimental survey is ongoing, the targets being continuously monitored. From the spectrophotometric measurements performed on samples periodically extracted along the three years, we can exclude, at 99% C.L. level, a degradation of the light transmittance of the Gd-doped liquid scintillator larger than 1% y -1 ; from the in-tank measurements no significant decrease of the neutron capture efficiency and neutron capture time is observed. This is the largest stable Gd-doped organic liquid scintillator target ever produced and continuously operated for a long period.

  12. The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, M B; Fuxe, K; Werge, T

    2002-01-01

    and lack of EPS in rodents could also be observed in non-human primates. We investigated the effects of CGS 21680 on behaviours induced by D-amphetamine and (-)-apomorphine in EPS-sensitized Cebus apella monkeys. CGS 21680 was administered s.c. in doses of 0.01, 0.025 and 0.05 mg/kg, alone...... and in combination with D-amphetamine and (-)-apomorphine. The monkeys were videotaped after drug administration and the tapes were rated for EPS and psychosis-like symptoms. CGS 21680 decreased apomorphine-induced behavioural unrest, arousal (0.01-0.05 mg/kg) and stereotypies (0.05 mg/kg) while amphetamine...... showed a functional anti-dopaminergic effect in Cebus apella monkeys without production of EPS. This further substantiates that adenosine A2A receptor agonists may have potential as antipsychotics with atypical profiles....

  13. Adenosine concentration in the porcine coronary artery wall and A2A receptor involvement in hypoxia-induced vasodilatation.

    Science.gov (United States)

    Frøbert, Ole; Haink, Gesine; Simonsen, Ulf; Gravholt, Claus H; Levin, Max; Deussen, Andreas

    2006-01-15

    We tested whether hypoxia-induced coronary artery dilatation could be mediated by an increase in adenosine concentration within the coronary artery wall or by an increase in adenosine sensitivity. Porcine left anterior descendent coronary arteries, precontracted with prostaglandin F(2alpha) (10(-5) M), were mounted in a pressure myograph and microdialysis catheters were inserted into the tunica media. Dialysate adenosine concentrations were analysed by HPLC. Glucose, lactate and pyruvate were measured by an automated spectrophotometric kinetic enzymatic analyser. The exchange fraction of [(14)C]adenosine over the microdialysis membrane increased from 0.32 +/- 0.02 to 0.46 +/- 0.02 (n = 4, P lactate/pyruvate ratio was significantly increased in hypoxic arteries but did not correlate with adenosine concentration. We conclude that hypoxia-induced coronary artery dilatation is not mediated by increased adenosine produced within the artery wall but might be facilitated by increased adenosine sensitivity at the A(2A) receptor level.

  14. Muscarinic Acetylcholine Receptor Subtypes as Potential Drug Targets for the Treatment of Schizophrenia, Drug Abuse and Parkinson's Disease

    DEFF Research Database (Denmark)

    Dencker, Ditte; Thomsen, Morgane; Wörtwein, Gitta

    2011-01-01

    's disease and drug abuse. Dopaminergic systems are regulated by cholinergic, especially muscarinic, input. Not surprisingly, increasing evidence implicates muscarinic acetylcholine receptor-mediated pathways as potential targets for the treatment of these disorders classically viewed as "dopamine based...... site. Such agents may lead to the development of novel classes of drugs useful for the treatment of psychosis, drug abuse and Parkinson's disease. The present review highlights recent studies carried out using muscarinic receptor knock-out mice and new subtype-selective allosteric ligands to assess...... the roles of M(1), M(4), and M(5) receptors in various central processes that are under strong dopaminergic control. The outcome of these studies opens new perspectives for the use of novel muscarinic drugs for several severe disorders of the CNS....

  15. Targeting mGlu5 Metabotropic Glutamate Receptors in the Treatment of Cognitive Dysfunction in a Mouse Model of Phenylketonuria

    Directory of Open Access Journals (Sweden)

    Francesca Nardecchia

    2018-03-01

    Full Text Available We studied group-I metabotropic glutamate (mGlu receptors in Pahenu2 (ENU2 mice, which mimic the genetics and neurobiology of human phenylketonuria (PKU, a metabolic disorder characterized, if untreated, by autism, and intellectual disability (ID. Male ENU2 mice showed increased mGlu5 receptor protein levels in the hippocampus and corpus striatum (but not in the prefrontal cortex whereas the transcript of the mGlu5 receptor was unchanged. No changes in mGlu1 receptor mRNA and protein levels were found in any of the three brain regions of ENU2 mice. We extended the analysis to Homer proteins, which act as scaffolds by linking mGlu1 and mGlu5 receptors to effector proteins. Expression of the long isoforms of Homer was significantly reduced in the hippocampus of ENU2 mice, whereas levels of the short Homer isoform (Homer 1a were unchanged. mGlu5 receptors were less associated to immunoprecipitated Homer in the hippocampus of ENU2 mice. The lack of mGlu5 receptor-mediated long-term depression (LTD in wild-type mice (of BTBR strain precluded the analysis of hippocampal synaptic plasticity in ENU2 mice. We therefore performed a behavioral analysis to examine whether pharmacological blockade of mGlu5 receptors could correct behavioral abnormalities in ENU2 mice. Using the same apparatus we sequentially assessed locomotor activity, object exploration, and spatial object recognition (spatial novelty test after displacing some of the objects from their original position in the arena. Systemic treatment with the mGlu5 receptor antagonist, MPEP (20 mg/kg, i.p., had a striking effect in the spatial novelty test by substantially increasing the time spent in exploring the displaced objects in ENU2 mice (but not in wild-type mice. These suggest a role for mGlu5 receptors in the pathophysiology of ID in PKU and suggest that, also in adult untreated animals, cognitive dysfunction may be improved by targeting these receptors with an appropriate therapy.

  16. Synergistic interaction between a PDE5 inhibitor (sildenafil) and a new adenosine A2A receptor agonist (LASSBio-1359) improves pulmonary hypertension in rats.

    Science.gov (United States)

    Alencar, Allan K; Carvalho, Fábio I; Silv