WorldWideScience

Sample records for zsm-5 type catalysts

  1. Paraselectivity and Formation of Aromatic Hydrocarbons over ZSM-5 Type Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Unneberg, E

    1997-12-31

    The zeolite ZSM-5, patented by Mobil Oil Corporation in 1972, is able to convert methanol to gasoline (MTG) and water. Due to the size of the channels, undesired hydrocarbons larger than C{sub 11} are not present in the mixture, and a high octane gasoline is obtained. This has aroused a great deal of interest in the ZSM-5. Rather than being concerned with energy considerations, this doctoral thesis describes syntheses of ZSM-5 and discusses the ZSM-5 as such and studies the possible paraselectivities in various reactions over the catalyst ZSM-5. 774 refs., 113 figs., 54 tabs.

  2. Paraselectivity and Formation of Aromatic Hydrocarbons over ZSM-5 Type Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Unneberg, E.

    1996-12-31

    The zeolite ZSM-5, patented by Mobil Oil Corporation in 1972, is able to convert methanol to gasoline (MTG) and water. Due to the size of the channels, undesired hydrocarbons larger than C{sub 11} are not present in the mixture, and a high octane gasoline is obtained. This has aroused a great deal of interest in the ZSM-5. Rather than being concerned with energy considerations, this doctoral thesis describes syntheses of ZSM-5 and discusses the ZSM-5 as such and studies the possible paraselectivities in various reactions over the catalyst ZSM-5. 774 refs., 113 figs., 54 tabs.

  3. Synthesis of mesoporous Cr/ZSM-5 and W-Cr/ZSM-5 zeolite catalysts for oxidation of unsaturated fatty acid

    Directory of Open Access Journals (Sweden)

    Phan Huy Hoang

    2017-10-01

    Full Text Available The mesoporous Cr/ZSM-5 and W-Cr/ZSM-5 zeolites have been successfully synthesized by loading chromium and tungsten on zeolite support. The metal loaded ZSM-5 catalysts were analyzed by several characterizations such as XRD, SEM-EDS, TEM, and BET. The catalytic activities and recycle efficiency were also investigated by applying catalysts for oxidation of oleic acid. These catalysts exhibited the high catalytic efficiency for cleavage of double bond with the use of H2O2. The oleic conversion of 88.7% and 93.3% could be achieved for Cr/ZSM-5 and W-Cr/ZSM-5 catalyst, respectively. Moreover, the modified ZSM-5 catalysts also demonstrated a long life time and high stability.

  4. Cu-ZSM-5, Cu-ZSM-11, and Cu-ZSM-12 Catalysts for Direct NO Decomposition

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christiansen, Sofie E.

    2006-01-01

    Cu-ZSM-5 has for many years been recognized as a unique catalyst for direct NO decomposition. Here, it is discovered that both Cu-ZSM-11 and Cu-ZSM-12 are about twice as active as Cu-ZSM-5. This difference is attributed to the active sites located almost exclusively in the straight zeolite pores...

  5. Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts

    DEFF Research Database (Denmark)

    Kustova, Marina; Rasmussen, Søren Birk; Kustov, Arkadii

    2006-01-01

    Conventional Cu-ZSM-5 has for many years been recognized as a unique catalyst for direct NO decomposition. Zeolite-based catalysts have a crystallographically well-defined microporous structure. In such microporous catalysts, the creation and accessibility of the active sites is often influenced...... that ZSM-11 has only straight microporous channels, while ZSNI-5 has both straight and sinusoidal channels. Apparently, there is a preferential formation of active sites and/or improved accessibility in the straight channels compared to the sinusoidal channels, which make the ZSM-11 material a better...

  6. Catalytic para-xylene maximization. Part X: Toluene disproportionation on HF promoted H-ZSM-5 catalysts

    Directory of Open Access Journals (Sweden)

    Ahmed K. Aboul-Gheit

    2012-12-01

    Full Text Available H-ZSM-5 zeolite catalysts were doped with 2%, 3% and 4%HF to be used for investigating their activities and selectivities for xylenes production and for para-xylene maximization at temperatures of 300–500 °C via toluene disproportionation. This doping caused pore size modification of the H-ZSM-5 catalyst. The reaction was carried out in a fixed bed flow type reactor. The ratio of produced para-xylene relative to its thermodynamic composition reached as high as 3.29 at 300 °C on the 4%HF doped H-ZSM-5 catalyst although this catalyst possessed the lowest amount of the largest pores (3.0–5.7 nm and the smallest pores (0.4–1.7 nm. The overall activities of the catalysts were decreased with an increase in HF doping because of diffusion restriction. The kinetics of the reaction were simply treated and found to give Ea and ΔS∗ values compatible with the characterization data of the catalysts.

  7. Partial oxidation of methane to methanol over catalyst ZSM-5 from coal fly ash and rice husk ash

    Directory of Open Access Journals (Sweden)

    Mirda Yanti Fusia

    2017-01-01

    Full Text Available Methane is one of the greenhouse gases that can be converted into liquid fuels such as methanol to retain most of the energy of methane and produce a cleaner environment. The conversion of methane to methanol using ZMS-5 represents a breakthrough in the utilization of methane. However, material sources for zeolite synthesis as catalyst usually are pro-analysis grade materials, which are expensive. Therefore, in this research, coal fly ash and rice husk ash were used as raw materials for mesoporous ZSM-5 zeolite synthesis. First, coal fly ash and rice husk were subjected to pre-treatment to extract silicate (SiO44− and aluminate (AlO45− and impurities separation. The ZSM-5 zeolite was synthesized through hydrothermal treatment using two types of templates. After ZSM-5 was synthesized, it was modified with Cobalt through impregnation method. The catalytic activity of both ZSM-5 and Co/ZSM-5 zeolites as heterogeneous catalysts in partial oxidation of methane were preliminary tested and compared with that commercial one. The result showed that the zeolite catalyst ZSM-5 from fly ash coal and rice husk ash has the potential to be used as catalysts in the partial oxidation of methane to methanol.

  8. Carbon/H-ZSM-5 composites as supports for bi-functional Fischer-Tropsch synthesis catalysts

    NARCIS (Netherlands)

    Valero-Romero, M.J.; Sartipi, S.; Sun, X.; Rodríguez-Mirasol, J.; Cordero, T.; Kapteijn, F.; Gascon, J.

    2016-01-01

    Mesoporous H-ZSM-5–carbon composites, prepared via tetrapropylammonium hydroxide (TPAOH) post treatment of H-ZSM-5 followed by deposition of pyrolytic carbon, have been used as the support for the preparation of Co-based Fischer–Tropsch catalysts. The resulting catalysts display an improved

  9. Coke burning behavior of a catalyst of ZSM-5/ZSM-11 co-crystallized zeolite in the alkylation of benzene with FCC off-gas to ethylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yi; Zhai, Yuchun [Northeastern University, Shenyang, 110006 (P. R. China); Liu, Shenglin; Wang, Qingxia; Xu, Longya [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, P. O. Box 110, Dalian 116023 (P. R. China)

    2006-04-15

    Since the commercialization of ethylbenzene production via alkylation of benzene with the dilute ethene in FCC off-gas over a ZSM-5/ZSM-11 co-crystallized zeolite catalyst in China, the catalyst has been regenerated several times and showed good regeneration performance. During the alkylation process, the catalytic activity decreases, some of the catalyst pores are blocked and the acid centers are partly covered by coke deposition. Influence of the factors such as catalyst particle size, temperature, etc. on the burning rate of the coke was investigated by the TG technique, and a rate equation for coke burning on the ZSM-5/ZSM-11 co-crystallized catalyst was established. (author)

  10. Application of La-ZSM-5 Coated Silicon Carbide Foam Catalyst for Toluene Methylation with Methanol

    Directory of Open Access Journals (Sweden)

    Debarpita Ghosal

    2015-07-01

    Full Text Available The performance of toluene methylation reaction was studied on H-ZSM-5 catalyst modified with La, Ce and Nb at different percentage loading. It was found that 10% metal loading produced the best performance in the reaction in terms of toluene conversion. The catalyst was coated on silicon carbide foam support which showed better conversion than the pelleted catalyst. Again, among the treated and untreated H-ZSM-5, the La-ZSM-5 catalyst is chosen for the reaction for its highest selectivity towards xylene, the main product. All catalysts were characterized in terms of surface properties, SEM, XRD and NH3-TPD. Kinetic study was done on La-ZSM-5 catalyst with 10% loading. In this kineticstudy, Langmuir Hinshelwood kinetic model with surface reaction as rate controlling step was selected as the rate equation. The activation energy was found to be 47 kJ/mol. © 2015 BCREC UNDIP. All rights reserved. Received: 9th December 2014; Revised: 27th April 2015; Accepted: 29th April 2015  How to Cite: Ghosal, D., Basu, J.K., Sengupta, S. (2015. Application of La-ZSM-5 Coated Silicon Carbide Foam Catalyst for Toluene Methylation with Methanol. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 201-209. (doi:10.9767/bcrec.10.2.7872.201-209 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7872.201-209  

  11. Alkaline leaching for synthesis of improved Fe-ZSM5 catalysts

    NARCIS (Netherlands)

    Espinosa, S; Mentruit, C; Kapteijn, F; Moulijn, JA; Melián-Cabrera, I.

    Fe-ZSM5 catalysts were fully Fe-exchanged by pretreating the parent zeolite with base a solution prior to the Fe-exchange. The catalysts prepared in this way showed very low amount of inactive FeOx and improved performance in N2O decomposition. Alkaline leaching breaks down the zeolite crystals -

  12. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH_3

    International Nuclear Information System (INIS)

    Zhang, Tao; Shi, Juan; Liu, Jian; Wang, Daxi; Zhao, Zhen; Cheng, Kai; Li, Jianmei

    2016-01-01

    Highlights: • The hydrothermal stability of Cu-ZSM-5 catalyst was enhanced after surface modification. • An inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer. • The contact between Si and Cu and Al atoms could form Si-O-Al and Si- O−Cu bonds. • The redox and acidity properties of Cu-ZSM-5-CLD-Aged catalyst were largely retained. • The adsorption and activation of NO and NH_3 was almost unchanged over Cu-ZSM-5-CLD catalyst before and after hydrothermal treatment. - Abstract: The surface of Cu-ZSM-5 catalyst was modified by chemical liquid deposition (CLD) of tetraethoxysilane (TEOS) for enhancing its hydrothermal stability in the selective catalytic reduction of NO with NH_3. After hydrothermal aging at 750 °C for 13 h, the catalytic performance of Cu-ZSM-5-Aged catalyst was significantly reduced for NO reduction in the entire temperature range, while that of Cu-ZSM-5-CLD-Aged catalyst was affected very little. The characterization results indicated that an inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer, which prevents the detachment of Cu"2"+ from ZSM-5 ion-exchange positions and the dealumination of zeolite during the hydrothermal aging process. Based on the data it is hypothesized to be the primary reason for the high hydrothermal stability of Cu-ZSM-5-CLD catalyst.

  13. Selective Synthesis of Gasoline-Ranged Hydrocarbons from Syngas over Hybrid Catalyst Consisting of Metal-Loaded ZSM-5 Coupled with Copper-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2014-04-01

    Full Text Available The conversion of syngas (CO + H2 to gasoline-ranged hydrocarbons was carried out using a hybrid catalyst consisting of metal-loaded ZSM-5 coupled with Cu-ZnO in a near-critical n-hexane solvent. Methanol was synthesized from syngas over Cu-ZnO; subsequently, was converted to hydrocarbons through the formation of dimethyl ether (DME over the metal-loaded ZSM-5. When 0.5 wt% Pd/ZSM-5 and 5 wt% Cu/ZSM-5 among the metal-loaded ZSM-5 catalysts with Pd, Co, Fe or Cu were employed as a portion of the hybrid catalyst, the gasoline-ranged hydrocarbons were selectively produced (the gasoline-ranged hydrocarbons in all hydrocarbons: 59% for the hybrid catalyst with Pd/ZSM-5 and 64% for that with Cu/ZSM-5 with a similar CO conversion during the reaction. An increase in the Cu loading on ZSM-5 resulted in increasing the yield of the gasoline-ranged hydrocarbons, and in decreasing the yield of DME. Furthermore, the hybrid catalyst with Cu/ZSM-5 exhibited no deactivation for 30 h of the reaction. It was revealed that a hybrid catalyst containing Cu/ZSM-5 was efficient in the selective synthesis of gasoline-ranged hydrocarbons from syngas via methanol in the near-critical n-hexane fluid.

  14. Deactivation of La-Fe-ZSM-5 catalyst for selective catalytic reduction of NO with NH{sup 3}. Field study results

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Gongshin; Yang, Ralph T. [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Chang, Ramsay; Cardoso, Sylvio [Air Pollution Control, Power Generation, Electric Power Research Institute, Palo Alto, CA 94304-1395 (United States); Smith, Randall A. [Fossil Energy Research Corporation, Laguna Hills, CA 92653 (United States)

    2004-11-08

    Results are summarized for a study on the effects of poisons on the La-Fe-ZSM-5 catalyst activity for the selective catalytic reduction of NO by ammonia. The deactivation of La-Fe-ZSM-5 honeycombs was studied in field tests. A honeycomb catalyst containing 25%La-Fe-ZSM-5 had an overall activity similar to that of a commercial vanadia honeycomb catalyst. Long-term activity test results show that the 25%La-Fe-ZSM-5 catalyst activity decreased to 50% after 300h and 25% after 1769h of on-stream flue gas exposure. The deactivation is correlated to the amounts of poisons deposited on the catalyst. Poisons include alkali and alkaline earth metals, As and Hg. Hg was found to be ion-exchanged from HgCl{sup 2} to form Hg-ZSM-5, and Hg was found to be among the strongest poisons. The poisoning effects of these elements appeared to be additive. Thus, from the chemical analysis of the deactivated catalyst, the deactivation of Fe-ZSM-5 can be predicted.

  15. A comparative study on the quality of bio-oil derived from green macroalga Enteromorpha clathrata over metal modified ZSM-5 catalysts.

    Science.gov (United States)

    Wang, Shuang; Cao, Bin; Liu, Xinlin; Xu, Lujiang; Hu, Yamin; Afonaa-Mensah, Stephen; Abomohra, Abd El-Fatah; He, Zhixia; Wang, Qian; Xu, Shannan

    2018-05-01

    The green macroalga Enteromorpha clathrata was pyrolyzed with or without catalysts at the temperature of 550 °C for producing high-quality bio-oil. The ZSM-5 and 1,2,3 mmol Mg-Ce/ZSM-5 catalysts were introduced to investigate the yields and components distribution of bio-oil. Increase of bio-oil production was obtained with the use of ZSM-5 and 1,2,3 mmol Mg-Ce/ZSM-5 catalysts. The 1 mmol Mg-Ce/ZSM-5 catalyst exhibited more promising property for promoting the relative content of C 5 -C 7 compounds, and decreasing the relative content of acids in bio-oil. The results suggested that E. clathrata had potential as pyrolysis feedstocks for producing the high-quality bio-oil with large amounts of C 5 -C 7 compounds and low relative content of acids when the 1 mmol Mg-Ce/ZSM-5 catalyst was used. Furthermore, the physicochemical properties of ZSM-5 and 1 mmol Mg-Ce/ZSM-5 catalysts were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and temperature-programmed desorption of ammonia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Nanocrystalline Hierarchical ZSM-5: An Efficient Catalyst for the Alkylation of Phenol with Cyclohexene.

    Science.gov (United States)

    Radhika, N P; Selvin, Rosilda; Kakkar, Rita; Roselin, L Selva

    2018-08-01

    In this paper, authors report the synthesis of nanocrystalline hierarchical zeolite ZSM-5 and its application as a heterogeneous catalyst in the alkylation of phenol with cyclohexene. The catalyst was synthesized by vacuum-concentration coupled hydrothermal technique in the presence of two templates. This synthetic route could successfully introduce pores of higher hierarchy in the zeolite ZSM-5 structure. Hierarchical ZSM-5 could catalyse effectively the industrially important reaction of cyclohexene with phenol. We ascribe the high efficiency of the catalyst to its conducive structural features such as nanoscale size, high surface area, presence of hierarchy of pores and existence of Lewis sites along with Brønsted acid sites. The effect of various reaction parameters like duration, catalyst amount, reactant mole ratio and temperature were assessed. Under optimum reaction conditions, the catalyst showed up to 65% selectivity towards the major product, cyclohexyl phenyl ether. There was no discernible decline in percent conversion or selectivity even when the catalyst was re-used for up to four runs. Kinetic studies were done through regression analysis and a mechanistic route based on LHHW model was suggested.

  17. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tao; Shi, Juan; Liu, Jian, E-mail: liujian@cup.edu.cn; Wang, Daxi; Zhao, Zhen, E-mail: zhenzhao@cup.edu.cn; Cheng, Kai; Li, Jianmei

    2016-07-01

    Highlights: • The hydrothermal stability of Cu-ZSM-5 catalyst was enhanced after surface modification. • An inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer. • The contact between Si and Cu and Al atoms could form Si-O-Al and Si- O−Cu bonds. • The redox and acidity properties of Cu-ZSM-5-CLD-Aged catalyst were largely retained. • The adsorption and activation of NO and NH{sub 3} was almost unchanged over Cu-ZSM-5-CLD catalyst before and after hydrothermal treatment. - Abstract: The surface of Cu-ZSM-5 catalyst was modified by chemical liquid deposition (CLD) of tetraethoxysilane (TEOS) for enhancing its hydrothermal stability in the selective catalytic reduction of NO with NH{sub 3}. After hydrothermal aging at 750 °C for 13 h, the catalytic performance of Cu-ZSM-5-Aged catalyst was significantly reduced for NO reduction in the entire temperature range, while that of Cu-ZSM-5-CLD-Aged catalyst was affected very little. The characterization results indicated that an inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer, which prevents the detachment of Cu{sup 2+} from ZSM-5 ion-exchange positions and the dealumination of zeolite during the hydrothermal aging process. Based on the data it is hypothesized to be the primary reason for the high hydrothermal stability of Cu-ZSM-5-CLD catalyst.

  18. X-ray emission spectroscopy study of iron silicate catalyst FeZSM-5

    International Nuclear Information System (INIS)

    Csencsits, R.; Lyman, C.E.; Gronsky, R.

    1988-03-01

    Iron silicate analogs of the zeolite ZMS-5 may be directly synthesized from iron silicate gels in a manner which differs slightly from the alumino-silicate ZSM-5. The resultant white, crystalline iron silicate is referred to as FeZSM-5 in the as-synthesized form. Thermal treatment removes the organic crystal-directing agent and moves some of the framework iron into non-framework sites producing the calcined form of the molecular sieve FeZSM-5. Homogeneity in the distribution of catalytic iron throughout the particles is desired in an optimal catalyst. Distribution of the iron throughout the framework in the as-synthesized forms would affect the final distribution of catalytic iron in the calcined and steamed forms; thus, the iron distribution throughout the as-synthesized and calcined forms of FeZSM-5 were studied using the high spatial resolution on the analytical electron microscope. 7 refs., 3 figs

  19. Mesoporous Fe-containing ZSM-5 zeolite single crystal catalysts for selective catalytic reduction of nitric oxide by ammonia

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Egeblad, Kresten; Kustova, Marina

    2007-01-01

    Mesoporous and conventional Fe-containing ZSM-5 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnationmethod and tested in NO selective catalytic reduction (SCR) with NH3. It was found that mesoporous Fe-ZSM-5 catalysts exhibit higher SCR activities than comparable conventional cataly...

  20. Zeolite ZSM5 catalysts for abatement of nitrogen oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ganemi, Bager

    1999-07-01

    Airborne pollutants from the combustion of fossil fuels are a global problem. Emission of nitrogen oxides (NO{sub x}) is increasing with the worldwide increase in the use of energy. Atmospheric and photochemical reactions link nitrogen oxides to hydrocarbons and tropospheric ozone. The emission of NO{sub x} has to be tackled urgently in order to limit the harmful effects of anthropogenic activity on the environment. The subject of this thesis is catalytic nitrogen oxide abatement through direct decomposition and reduction by methane over ion-exchanged zeolite ZSM5. The work covers catalytic conversion and surface intermediates, including correlations with the level of exchanged Cu{sup 2+} cations and Ni{sup 2+} or Pd{sup 2+} co-cations. Special attention is given to the aluminium content of the support and changes in structural parameters. It was found that NO{sub x} conversion over cation-exchanged ZSM5 is strongly influenced by the ion-exchange procedure and by the above material parameters. Characterization of Cu-ZSM5 reveals that approximately two molecules of water per Cu{sup 2+} ion desorb at temperatures between 150 and 350 Deg C, in addition to the conventional dehydration at lower temperatures. The desorbed water comes from the decomposition of Cu(OH){sub 2}. Decomposition of hydroxylated copper ions results in the formation Of Cu{sup 2+}-O-Cu{sup 2+} dimers, which are suggested to be the active sites for catalytic decomposition of NO. Acid sites are important for the dispersion of copper ions on the catalyst surface. Acid sites are also important for the interaction between copper species and the zeolite. Increased acidity leads to a stronger interaction between the exchanged cation and the framework, i.e. the exchanged cations become more resistant to mobility. The stronger bond between the exchanged cations and lattice oxygen also prevents dealumination of the catalyst and decreases the thermal expansion at higher temperatures. The temperature of

  1. Direct Synthesis of Methanol by Partial Oxidation of Methane with Oxygen over Cobalt Modified Mesoporous H-ZSM-5 Catalyst

    Directory of Open Access Journals (Sweden)

    Yuni Krisyuningsih Krisnandi

    2015-11-01

    Full Text Available Partial oxidation of methane over mesoporous catalyst cobalt modified H-ZSM-5 has been carried out. Mesoporous Na-ZSM-5 (Si/Al = 35.4 was successfully synthesized using double template method which has high surface area (450 m2/g and average pore diameter distribution of 1.9 nm. The as-synthesized Na-ZSM-5 was converted to H-ZSM-5 through multi-exchange treatment with ammonium ion solution, causing decreased crystallinity and surface area, but increased porous diameter, due to dealumination during treatment process. Moreover, H-ZSM-5 was loaded with cobalt (Co = 2.5% w by the incipient impregnation method and calcined at 550 °C. Partial oxidation of methane was performed in the batch reactor with 0.75 bar methane and 2 bar of nitrogen (with impurities of 0.5% oxygen as the input at various reaction time (30, 60 and 120 min. The reaction results show that cobalt species in catalyst has an important role, because H-ZSM-5 cannot produce methanol in partial oxidation of methane. The presence of molecular oxygen increased the percentage of methanol yield. The reaction is time-dependent with the highest methanol yield (79% was acquired using Co/H-ZSM-5 catalyst for 60 min.

  2. Selective catalytic reduction of nitric oxide by ethylene over metal-modified ZSM-5- and {gamma}-Al{sub 2}O{sub 3}-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Eraenen, K; Kumar, N; Lindfors, L E [Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry

    1997-12-31

    Metal-modified ZSM-5 and {gamma}-Al{sub 2}O{sub 3} catalysts were tested in reduction of nitric oxide by ethylene. Different metals were introduced into the ZSM-5 catalyst by ion-exchange and by introduction of metals during the zeolite synthesis. To prepare bimetallic catalysts a combination of these methods was used. The {gamma}-Al{sub 2}O{sub 3} was impregnated with different metals by the incipient wetness technique and by adsorption. Activity measurements showed that the ZSM-5 based catalysts were more active than the {gamma}-Al{sub 2}O{sub 3} based catalysts. The highest conversion was obtained over a ZSM-5 catalyst prepared by introduction of Pd during synthesis of the zeolite and subsequently ion-exchanged with copper. (author)

  3. Selective catalytic reduction of nitric oxide by ethylene over metal-modified ZSM-5- and {gamma}-Al{sub 2}O{sub 3}-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Eraenen, K.; Kumar, N.; Lindfors, L.E. [Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry

    1996-12-31

    Metal-modified ZSM-5 and {gamma}-Al{sub 2}O{sub 3} catalysts were tested in reduction of nitric oxide by ethylene. Different metals were introduced into the ZSM-5 catalyst by ion-exchange and by introduction of metals during the zeolite synthesis. To prepare bimetallic catalysts a combination of these methods was used. The {gamma}-Al{sub 2}O{sub 3} was impregnated with different metals by the incipient wetness technique and by adsorption. Activity measurements showed that the ZSM-5 based catalysts were more active than the {gamma}-Al{sub 2}O{sub 3} based catalysts. The highest conversion was obtained over a ZSM-5 catalyst prepared by introduction of Pd during synthesis of the zeolite and subsequently ion-exchanged with copper. (author)

  4. Effect of Metal Addition and Silica/Alumina Ratio of Zeolite on the Ethanol-to-Aromatics by Using Metal Supported ZSM-5 Catalyst

    International Nuclear Information System (INIS)

    Kim, Han-Gyu; Yang, Yoon-Cheol; Jeong, Kwang-Eun; Kim, Tae-Wan; Jeong, Soon-Yong; Kim, Chul-Ung; Jhung, Sung Hwa; Lee, Kwan-Young

    2013-01-01

    The catalytic conversion of ethanol to aromatic compounds ETA was studied over ZSM-5 heterogeneous catalysts. The effect of reaction temperature, weight hourly space velocity (WHSV), and addition of water and methanol, which are the potential impurities of bio-ethanol, on the catalytic performance was investigated in a fixed bed reactor. Commercial ZSM-5 catalysts having different Si/Al 2 ratios of 23 to 280 and modified ZSM-5 catalysts by addition of metal (Zn, La, Cu, and Ga) were used for the activity and stability tests in ETA reaction. The catalysts were characterized with ammonia temperature programmed desorption (NH3-TPD) and nitrogen adsorption-desorption techniques. The results of catalytic performance revealed that the optimal Si/Al 2 ratio of ZSM-5 is about 50-80 and the selectivity to aromatic compounds decreases in the order of Zn/La > Zn > La > Cu > Ga for the modified ZSM-5 catalysts. Among these catalysts from the ETA reaction, Zn-La/ZSM-5 showed the best catalytic performance for the ETA reaction. The selectivity to aromatic compounds was 72% initially and 56% after 30 h over the catalysts at reaction temperature of 437 .deg. C and WHSV of 0.8 h −1

  5. Co-conversion of Ethane and Methanol into Higher Hydrocarbons over Ga/H-ZSM-5, Mo/H-ZSM-5 and Ga-Mo/H-ZSM-5

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie; Rovik, Anne; Christensen, Claus H.

    2009-01-01

    Ethane and methanol are converted simultaneously over Ga/H-ZSM-5, Mo/H-ZSM-5 and Ga-Mo/H-ZSM-5 to produce light olefins and aromatics. The presence of methanol in the reactant stream is intended to facilitate activation of ethane following literature reports on co-conversion of methane and methan...... and in the carbonaceous compounds deposited on the catalysts. This indicates that both reactants take part in the formation of the hydrocarbon pool, which is the origin of all products....

  6. Waste crab shell derived CaO impregnated Na-ZSM-5 as a solid base catalyst for the transesterification of neem oil into biodiesel

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi Shankar

    2017-11-01

    Full Text Available Activated calcium oxide extracted from crab shell impregnated on Na-ZSM-5 has been investigated. Crab shells were collected, powdered and calcined at 900 °C, and CaO was impregnated on Na-ZSM-5 and calcined at 550 °C for 10 h. The CaO/Na-ZSM-5 was characterized by X-ray diffraction, scanning electron microscopy and BET surface area. The prepared catalyst was tested for its catalytic activity by transesterifing neem oil into biodiesel in the presence of methanol. The influence of various parameters including reaction time, temperature, methanol to oil ratio, catalyst concentration and dosage were also investigated. Produced biodiesel have also been tested using proton NMR spectroscopy. Biodiesel yield as 95% has been achieved with 15% CaO impregnated on Na-ZSM-5 at 75 °C. The optimum transesterification reaction conditions were identified as follows: reaction temperature, 75 °C; reaction time, 6 h; methanol-to-neem oil molar ratio, 12:1; catalyst dosage, 0.2 g; and catalyst concentration, 15%. Based on the above study, it can be concluded that the calcium oxide impregnated Na-ZSM-5 can be a potential catalyst for biodiesel production.

  7. Effect of Zn/ZSM-5 and FePO4 Catalysts on Cellulose Pyrolysis

    Directory of Open Access Journals (Sweden)

    Haian Xia

    2015-01-01

    Full Text Available A series of Zn/ZSM-5 catalysts with different Zn contents and FePO4 were used to pyrolyze cellulose to produce value added chemicals. The nature of these catalysts was characterized by ammonia-temperature programmed desorption (NH3-TPD, IR spectroscopy of pyridine adsorption, and X-ray diffraction (XRD techniques. Noncatalytic and catalytic pyrolytic behaviors of cellulose were studied by thermogravimetric (TG technique. The pyrolytic liquid products, that is, the biooils, were analyzed by gas chromatography-mass spectrometry (GC-MS. The major components of the biooils are anhydrosugars such as levoglucosan (LGA, 1,6-anhydro-β-D-glucofuranose (AGF, levoglucosenone (LGO, 1,6-anhydro-3,4-dideoxy-β-D-pyranosen-2-one, and 1,4:3,6-dianhydro-α-D-glucopyranose (DGP, as well as furan derivatives, alcohols, and so forth. Zn/ZSM-5 samples with Brønsted and Lewis acid sites and the FePO4 catalyst with Lewis acid sites were found to have a significant effect on the pyrolytic behaviors of cellulose and product distribution. These results show that Brønsted and Lewis acid sites modified remarkably components of the biooil, which could promote the production of furan compounds and LGO. On the basis of the findings, a model was proposed to describe the pyrolysis pathways of cellulose catalyzed by the solid acid catalysts.

  8. Catalytic Efficiency of Titanium Dioxide (TiO2) and Zeolite ZSM-5 Catalysts in the in-situ Epoxidation of Palm Olein

    Science.gov (United States)

    Yunus, M. Z. Mohd; Jamaludin, S. K.; Abd. Karim, S. F.; Gani, A. Abd; Sauki, A.

    2018-05-01

    Titanium dioxide and zeolite ZSM-5 are the commonly used heterogeneous catalysts in many chemical reactions. They have several advantages such as low cost and environmental friendly. In this study, titanium dioxide and zeolite ZSM-5 act as catalyst in the in-situ epoxidation of palm olein. Epoxidation of palm olein was carried out by using in-situ generated performic acid to produce epoxidized palm olein in a semi-batch reactor at different temperatures (45°C and 60°C) and agitation speed of 400 rpm. The effects of both catalysts are studied to compare their efficiency in catalyzing the in-situ epoxidation. Epoxidized palm olein was analyzed by using percent of relative conversion to oxirane (RCO%) and fourier transform infrared spectroscopy (FTIR). Surface area of the catalysts used were then characterized by using BET. The results indicated that titanium dioxide is a better catalyst in the in-situ epoxidation of palm olein since it provides higher RCO% compared to Zeolite ZSM-5 at 45°C.

  9. Transalkylation of ethyl benzene with triethylbenzene over ZSM-5 zeolite catalyst

    KAUST Repository

    Akhtar, M. Naseem

    2010-09-01

    Transalkylation of 1,3,5-triethylbenzene (TEB) with ethylbenzene (EB) has been studied over ZSM-5 zeolite using a riser simulator reactor with respect to optimizing DEB yield. The reaction temperature was varied from 350 to 500°C with contact time ranging from 3 to 15s to report on the effect of reaction conditions on TEB conversion, DEB selectivity and isomerization of TEB. The transalkylation of TEB with EB was compared with the reactions of pure 1,3,5-TEB and EB (disproportionation, isomerization and cracking). A synergistic effect was observed on the conversion of 1,3,5-TEB and DEB yield. The 1,3,5-TEB conversion increased from 40% to 50% with simultaneous increase in the DEB selectivity from 17% to 36% in transalkylation reaction (EB+1,3,5-TEB) as compared with the reaction of pure 1,3,5-TEB. It was found that pure 1,3,5-TEB underwent cracking reaction to produce DEB and EB. The isomerization of 1,3,5-TEB was more active at low temperature while cracking was more active at high temperature. The temperature of 350°C was observed as the optimum for production of maximum amount of DEB. Kinetic parameters for the disappearance of 1,3,5-TEB during its transformation reaction via cracking and isomerization pathways were calculated using the catalyst activity decay function based on time-on-stream (TOS). The apparent activation energies decrease in order E secondary cracking>E primary racking>E isomerization for ZSM-5 catalysts. © 2010 Elsevier B.V.

  10. Construction of Bifunctional Co/H-ZSM-5 Catalysts for the Hydrodeoxygenation of Stearic Acid to Diesel-range Alkanes.

    Science.gov (United States)

    Wu, Guangjun; Zhang, Nan; Dai, Weili; Guan, Naijia; Li, Landong

    2018-04-27

    Bifunctional Co/H-ZSM-5 zeolites were prepared by surface organometallic chemistry grafting route, namely by the stoichiometric reaction between cobaltocene and the Brønsted acid sites in zeolites, and applied to the model reaction of stearic acid catalytic hydrodeoxygenation. Cobalt species existed in the form of isolated Co2+ ions at exchange positions after grafting, transformed to CoO species on the surface of zeolite and stabilized inside zeolite channels upon calcination in air, and finally reduced to metallic cobalt species of homogeneous clusters of ca. 1.5 nm by hydrogen. During this process, the Brønsted acid sites of H-ZSM-5 zeolites could be preserved with acid strength slightly reduced. The as-prepared bifunctional catalyst exhibited a ~16 times higher activity in stearic acid hydrodeoxygenation (2.11 gSAgcat-1h-1) than the reference catalyst (0.13 gSAgcat-1h-1) prepared by solid-state ion exchange, and a high C18/C17 ratio of ~24 was achieved as well. The remarkable hydrodeoxygenation performance of bifunctional Co/H-ZSM-5 could be explained from the effective synergy between the uniformed metallic cobalt clusters and the Brønsted acid sites in H-ZSM-5 zeolite. The simplified reaction network and kinetics of stearic acid hydrodeoxygenation catalyzed by the as-prepared bifunctional Co/H-ZSM-5 zeolites were also investigated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The conversion of biomass to light olefins on Fe-modified ZSM-5 catalyst: Effect of pyrolysis parameters.

    Science.gov (United States)

    Zhang, Shihong; Yang, Mingfa; Shao, Jingai; Yang, Haiping; Zeng, Kuo; Chen, Yingquan; Luo, Jun; Agblevor, Foster A; Chen, Hanping

    2018-07-01

    Light olefins are the key building blocks for the petrochemical industry. In this study, the effects of in-situ and ex-situ process, temperature, Fe loading, catalyst to feed ratio and gas flow rate on the olefins carbon yield and selectivity were explored. The results showed that Fe-modified ZSM-5 catalyst increased the olefins yield significantly, and the ex-situ process was much better than in-situ. With the increasing of temperature, Fe-loading amount, catalyst to feed ratio, and gas flow rate, the carbon yields of light olefins were firstly increased and further decreased. The maximum carbon yield of light olefins (6.98% C-mol) was obtained at the pyrolysis temperature of 600°C, catalyst to feed ratio of 2, gas flow rate of 100ml/min, and 3wt% Fe/ZSM-5 for cellulose. The selectivity of C 2 H 4 was more than 60% for all feedstock, and the total light olefins followed the decreasing order of cellulose, corn stalk, hemicelluloses and lignin. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Nano ZSM-5 type ferrisilicates as novel catalysts for ethylbenzene dehydrogenation in the presence of N 2O

    Science.gov (United States)

    Khatamian, M.; Khandar, A. A.; Haghighi, M.; Ghadiri, M.

    2011-11-01

    Nanosized ZSM-5 type ferrisilicates were successfully prepared using hydrothermal process. Several parameters including gel initiative compositions (Na+ or K+ alkali system), SiO2/Fe2O3 molar ratios and hydrothermal temperature were systematically investigated. The samples were characterized by XRD, TEM, SEM-EDS, BET surface area and ICP techniques. It was found that surface areas and the total pore volume increase with increasing in the SiO2/Fe2O3 molar ratio at Na-FZ ferrisilicates. The catalytic performance of the synthesized catalysts was evaluated in ethylbenzene dehydrogenation to styrene in the presence of N2O or steam at temperatures ranging from 400 °C to 660 °C under atmospheric pressure. The effects of gel initiative compositions, SiO2/Fe2O3 molar ratio as well as the hydrothermal synthesis temperature on the catalytic performance of these catalysts have been addressed. It was shown that styrene yield significantly influenced by altering in the SiO2/Fe2O3 ratio but was not greatly influenced by changes in hydrothermal synthesis temperatures. The comparison between performance of potassium and sodium containing catalysts was shown that the one with potassium has higher yield and selectivity toward styrene production at an optimum temperature of 610 °C.

  13. Catalytic conversion of 11C-labeled methanol over Cs-ZSM-5 zeolite

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Kumar, N.; Salmi, T.; Murzin, D.Yu.

    2004-01-01

    Reaction mechanism of the conversion of 11 C labeled methanol over basic Cs-ZSM-5 zeolite catalyst was investigated and the reaction products obtained were compared with that of H-ZSM-5 acidic catalyst. The catalytic experiments were carried out by passing 11 C-labeled methanol with He as a carrier gas over Cs-ZSM-5 packed in a micro reactor. After adsorption of the radio methanol, the catalyst was heated up to 330 deg C. The products of the catalytic conversion of the 11 C-labeled methanol were analyzed by radio-gas chromatography (gas chromatograph with thermal conductivity detector on-line coupled with a radioactivity detector). (N.T.)

  14. Ultrasound assisted dispersion of different amount of Ni over ZSM-5 used as nanostructured catalyst for hydrogen production via CO2 reforming of methane

    International Nuclear Information System (INIS)

    Vafaeian, Yaser; Haghighi, Mohammad; Aghamohammadi, Sogand

    2013-01-01

    Graphical abstract: A series of Ni/ZSM-5 nanocatalysts with different amount of Ni were prepared via ultrasound assisted method and characterized with XRD, FESEM, TEM, BET and FTIR techniques. The research deals with catalyst development for dry reforming of methane with the aim of reaching the most stable catalyst specifically over nano-sized catalysts. About more than 99% of Ni particles size is less than 100 nm for the sample prepared with 8% Ni, which is essential to the relative suppression of the carbon formation on catalysts. Catalyst prepared with 8% Ni content showed superior activity in process expected due to its better catalytic properties. - Highlights: • Using ZSM-5 zeolite in dry reforming of methane. • Employing ultrasound energy in synthesis of Ni/ZSM-5 nanocatalyst. • Enhancement of Ni particles size to meet desired catalyst at lower amount of Ni loading. • Dry reforming of methane over Ni/ZSM-5 nanocatalyst with different Ni-loading. • Superior activity of Ni/ZSM-5 nanocatalyst synthesized with 8% Ni content. - Abstract: Carbon dioxide reforming of methane is an interesting route for synthesis gas production especially over nanostructured catalysts. The present research deals with nanocatalyst development by sonochemical method for dry reforming of methane with the aim of reaching the most efficient nanocatalyst. Effect of Ni metal content, one of the most significant variables, on the properties of the ZSM-5 supported nanocatalysts was taken into account. The Ni/ZSM-5 nanocatalysts were prepared via assisted traditional impregnation method via ultrasound irradiation and characterized with XRD, FESEM, TEM, BET and FTIR techniques. Comparison of XRD patterns implies that the peaks related to NiO become sharper by increasing metal content over the support. In the case of nanocatalysts with lower metal content (3% and 8%), the beneficial influence of ultrasound assisted procedure become more pronounced and the observed reduction in

  15. Aromatic hydrocarbon production via eucalyptus urophylla pyrolysis over several metal modified ZSM-5 catalysts – an analysis by py-GC/MS

    Science.gov (United States)

    Metal modified HZSM-5 catalysts were prepared by ion exchange of NH4ZSM-5 (SIO2/Al2O3 = 23) using gallium, molybdenum, nickel and zinc, and their combinations thereof. The prepared catalysts were used to evaluate catalytic pyrolysis for the conversion of Eucalyptus urophylla to fuels and chemicals, ...

  16. Catalytic reduction of NO and N20 for CO on Co-ZSM-5

    International Nuclear Information System (INIS)

    Rios, Luis Alberto; Aristizabal, Gladys Liliana; Ruiz, Julio Fernando; Montes Consuelo

    1996-01-01

    Several catalysts with the help of ZSM-5 with Co were tested in the catalytic reduction of NO and N2O using CO like agent reducer and in presence of variable quantities of O2 The cobalt incorporated in the zeolite ZSM-5 for the methods of ionic exchange, impregnation and substitution. ZSM-5 exchanged with Co presented the highest conversions of NO (80% to 5OO oC), in presence of 3000 ppm of O2; When adding 25.700 ppm of O2 the conversion it diminished notably, that which shows an effect inhibitor of the O2. The substituted catalysts and impregnated they were less active for the reduction of the NO. With all the catalysts conversions of 70-90% were achieved for the N2O; Additionally, marked deactivation of the catalyst was not presented with the time

  17. Hollow ZSM-5 encapsulated Pt nanoparticles for selective catalytic reduction of NO by hydrogen

    Science.gov (United States)

    Hong, Zhe; Wang, Zhong; Chen, Dan; Sun, Qiang; Li, Xuebing

    2018-05-01

    Pt nanoparticles were successfully encapsulated in hollow ZSM-5 single crystals by tetrapropylammonium hydroxide (TPAOH) hydrothermal treatment with an "dissolution-recrystallization" process. The prepared Pt/hollow ZSM-5 (Pt/h-ZSM-5re) sample exhibited the best activity and a maximum NO conversion of 84% can be achieved at 90 °C with N2 selectivity of 92% (GHSV = 50,000 h-1). Meanwhile, Pt/h-ZSM-5re catalyst exhibited excellent SO2, H2O resistance and durability, which was related to the stabilization of Pt active sites by hollow structure during H2-SCR. It was found that the increase of NO2 concentration in the feed gas mixture led to an activity decline. In addition, the H2-SCR reaction routes over Pt/hollow ZSM-5 catalyst at different temperature were investigated.

  18. Pyrolysis of soybean oil with H-ZSM5 (Proton-exchange of Zeolite Socony Mobil 5) and MCM41 (Mobil Composition of Matter No. 41) catalysts in a fixed-bed reactor

    International Nuclear Information System (INIS)

    Ngo, Thanh-An; Kim, Jinsoo; Kim, Sun Kuk; Kim, Seung-Soo

    2010-01-01

    Soybean oil was pyrolyzed with various catalysts in a fixed-bed reactor under nitrogen flow at 420 and 450 o C. The H-ZSM5 catalysts (molar ratio SiO 2 /Al 2 O 3 = 28, 40, and 180) and 2 wt% (Ga, Al or Cu) impregnated MCM41 catalysts were used in order to investigate the effect of catalysts during the pyrolysis process. The gas products in all experiments were mainly methane, ethane and propylene. The liquid products in the presence of H-ZSM5 catalysts were mainly aromatic components while those with metal/MCM41 catalysts were a mixture of alkanes, alkenes, alkadienes, aromatic and carboxylic acids. The highest coke yield of 4.4 wt% was obtained with Ga/MCM41 catalyst at the pyrolysis temperature of 420 o C. The effect of catalysts on product yield and composition was systematically investigated.

  19. Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes

    International Nuclear Information System (INIS)

    Lopez, A.; Marco, I. de; Caballero, B.M.; Adrados, A.; Laresgoiti, M.F.

    2011-01-01

    Highlights: → Pyrolysis transforms plastic wastes in valuable liquids and gases useful as fuels or source of chemicals. → The use of ZSM-5 zeolite in pyrolysis favours the production of gases and of lighter and more aromatic liquids. → ZSM-5 zeolite is almost completely deactivated after one plastics pyrolysis experiment. → ZSM-5 zeolite used in plastic wastes pyrolysis can be regenerated by burning the deposited coke in an air stream. → Regenerated ZSM-5 recovers its activity and produces liquids and gases equivalent to those obtained with fresh catalyst. - Abstract: In this work, a study of the regeneration and reuse of ZSM-5 zeolite in the pyrolysis of a plastic mixture has been carried out in a semi-batch reactor at 440 deg. C. The results have been compared with those obtained with fresh-catalyst and in non-catalytic experiments with the same conditions. The use of fresh catalyst produces a significant change in both the pyrolysis yields and the properties of the liquids and gases obtained. Gases more rich in C3-C4 and H 2 are produced, as well as lower quantities of aromatic liquids if compared with those obtained in thermal decomposition. The authors have proved that after one pyrolysis experiment the zeolite loses quite a lot of its activity, which is reflected in both the yields and the products quality; however, this deactivation was found to be reversible since after regeneration heating at 550 deg. C in oxygen atmosphere, this catalyst recovered its initial activity, generating similar products and in equivalent proportions as those obtained with fresh catalyst.

  20. Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5.

    Science.gov (United States)

    Zhang, Huiyan; Luo, Mengmeng; Xiao, Rui; Shao, Shanshan; Jin, Baosheng; Xiao, Guomin; Zhao, Ming; Liang, Junyu

    2014-03-01

    Chemical liquid deposition (CLD) with KH550, TEOS and methyl silicone oil as the modifiers was used to modify ZSM-5 and deposit its external acid sites. The characteristics of modified catalysts were tested by catalytic conversion of biomass pyrolysis-derived compounds. The effects of different modifying conditions (deposited amount, temperature, and time) on the product yields and selectivities were investigated. The results show KH550 modified ZSM-5 (deposited amount of 4%, temperature of 20°C and time of 6h) produced the maximum yields of aromatics (24.5%) and olefins (16.5%), which are much higher than that obtained with original ZSM-5 catalyst (18.8% aromatics and 9.8% olefins). The coke yield decreased from 44.1% with original ZSM-5 to 26.7% with KH550 modified ZSM-5. The selectivities of low-molecule-weight hydrocarbons (ethylene and benzene) decreased, while that of higher molecule-weight hydrocarbons (propylene, butylene, toluene, and naphthalene) increased comparing with original ZSM-5. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Influence of oxalate ligand functionalization on Co/ZSM-5 activity in Fischer Tropsch synthesis and hydrodeoxygenation of oleic acid into hydrocarbon fuels.

    Science.gov (United States)

    Ayodele, Olumide Bolarinwa

    2017-08-30

    Achieving high degree of active metal dispersions at the highest possible metal loading and high reducibility of the metal remains a challenge in Fischer Tropsch synthesis (FTS) as well as in hydrogeoxygenation (HDO).This study therefore reports the influence of oxalic acid (OxA) functionalization on the metal dispersion, reducibility and activity of Co supported ZSM-5 catalyst in FTS and HDO of oleic acid into paraffin biofuel. The Brunauer-Emmett-Teller (BET) results showed that cobalt oxalate supported ZSM-5 catalyst (CoOx/ZSM-5) synthesized from the incorporation of freshly prepared cobalt oxalate complex into ZSM-5 displayed increase in surface area, pore volume and average pore size while the nonfunctionalized cobalt supported on ZSM-5 (Co/ZSM-5) catalyst showed reduction in those properties. Furthermore, both XRD and XPS confirmed the presence of Co° formed from the decomposition of CoOx during calcination of CoOx/ZSM-5 under inert atmosphere. The HRTEM showed that Co species average particle sizes were smaller in CoOx/ZSM-5 than in Co/ZSM-5, and in addition, CoOx/ZSM-5 shows a clear higher degree of active metal dispersion. The FTS result showed that at CO conversion over Co/ZSM-5 and CoOx/ZSM-5 catalysts were 74.28% and 94.23% and their selectivity to C 5+ HC production were 63.15% and 75.4%, respectively at 4 h TOS. The HDO result also showed that the CoOx/ZSM-5 has higher OA conversion of 92% compared to 59% over Co/ZSM-5. In addition CoOx/ZSM-5 showed higher HDO and isomerization activities compared to Co/ZSM-5.

  2. Synthesis of ZSM-5 on the Surface of Foam Type Porous SiC Support

    International Nuclear Information System (INIS)

    Jung, Eunjin; Lee, Yoon Joo; Won, Ji Yeon; Kim, Younghee; Kim, Soo Ryong; Shin, Dong-Geun; Kwon, Woo Teck; Lee, Hyun Jae

    2015-01-01

    ZSM-5 crystals grew by hydrothermal synthesis method on the surface of foam type porous silicon carbide ceramics which fabricated by polymer replica method. Oxide layer was developed on the surface of the porous silicon carbide ceramics to induce growth of ZSM-5 from the surface. In this study, hydrothermal synthesis was carried out for 7 h at 150 .deg. C using TEOS, Al(NO 3 )•9H 2 O and TPAOH as raw materials in the presence of the porous silicon carbide ceramics. X-ray Powder Diffraction (XRD) and Scanning Electron Microscope (SEM) analyses were confirmed 1-3 μm sized ZSM-5 crystals have grown on the surface of porous silicon carbide ceramics. BET data shows that small pores about 10Å size drastically enhanced and surface area increased from 0.83 m 2 /g to 30.75 m 2 /g after ZSM-5 synthesis on the surface of foam type porous silicon carbide ceramics.

  3. The Effect of Mesoporous H-ZSM-5 Crystallinity as a CaO Support on the Transesterification of Used Cooking Oil

    Directory of Open Access Journals (Sweden)

    Amalia Putri Purnamasari

    2017-10-01

    Full Text Available Transesterification of used cooking oil was carried out over calcium oxide supported on mesoporous H-ZSM-5 prepared from kaolin as solid base catalysts. Solid basic catalysts investigated in this study were characterized by XRD, FTIR spectroscopy, and N2 adsorption-desorption techniques. The XRD pattern showed peaks corresponding to the CaO and mesoporous ZSM-5 in the sample. The peak intensity of the CaO increased as CaO loading in ZSM-5 was increased. The characterization based on FTIR spectroscopy revealed that CaO/H-ZSM-5 solids have functional groups characteristics of both CaO and mesoporous H-ZSM-5 which appeared in the band at around  550 cm-1 and 480 cm-1. The isotherm of N2 adsorption-desorption of CaO/H-ZSM-5 indicated the type IV isotherm with the presence of hysteresis loop. For the catalytic activity, the biodiesel yield using catalyst of 10 % CaO/HZSM-5 (100 %, 30 % CaO/HZSM-5 (100 %, 50 % CaO/HZSM-5 (100 % were 24.34, 27.37, and 29.73 %, respectively. It also related with the basic active site, when loading CaO increased, the basic active site also increased. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 8th March 2017; Accepted: 9th March 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Purnamasari, A.P., Sari, M.E.F., Kusumaningtyas, D.T., Suprapto, S., Hamid, A., Prasetyoko, D. (2017. The Effect of Mesoporous H-ZSM-5 Crystallinity as a CaO Support on the Transesterification of Used Cooking Oil. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3: 329-336 (doi:10.9767/bcrec.12.3.802.329-336

  4. Photodegradation of Methyl Green by Nickel-Dimethylglyoxime/ZSM-5 Zeolite as a Heterogeneous Catalyst

    Directory of Open Access Journals (Sweden)

    Alireza Nezamzadeh-Ejhieh

    2013-01-01

    Full Text Available Ni-DMG/ZSM-5 zeolite was prepared by ion exchange and complexation procedures. FT-IR, XRD, SEM, TG, and DTG methods were used for characterization of the raw and modified samples. The prepared composite was used as a catalyst in the photodegradation process of an aqueous solution methyl green (MG dye under UV irradiation. The effect of key operating parameters such as catalyst dosage, temperature, the initial concentration of the dye, and pH of the samples was studied on the degradation extent of the dye. UV-Vis spectrophotometric measurements were performed for determination of the decolorization and mineralization extents. The optimal operation parameters were found as follows: , temperature of 60°C, 0.6 g L−1 of the catalyst, and 40 ppm of the dye concentration. The Ni-DMG particles out of zeolite framework did not show significant degradation efficiency. The degradation process obeys the first-order kinetic.

  5. Synthesis of ZSM-5 and Co-ZSM-5 starting from inorganic systems

    International Nuclear Information System (INIS)

    Zapata N, Mauren; Montes Consuelo; Villa Aida Luz

    1995-01-01

    ZSM-5 was obtained in a completely inorganic system. Besides, several experiments were carried out to introduce Co+2 in the Framework of inorganic ZSM-5. The addition of a cobalt source to the precursor gel increased the time to obtain ZSM-5 crystals compared to the gel without a cobalt source. Furthermore, thermal stability over 500 was lower in Co-ZSM-5. Chemical analysis suggests that some cobalt was in the channels, since it was removed by ion exchange

  6. Incorporation of metals (Pt-Ni-Ru) in the zeolite ZSM-5 through ion exchange competitive: synthesis and characterization

    International Nuclear Information System (INIS)

    Barbosa, A.S.; Rodrigues, M.G.F.

    2012-01-01

    Zeolites are very important materials due to their high specific surface area. Moreover, they are suitable for use as catalyst support. Noble metals supported on zeolites have been widely used as catalysts in the petrochemical industry. This paper was prepared and characterized, a powder aiming its use in heterogeneous catalysis. Support was used as ZSM-5 and the method of incorporation of the metals (Ru-PtNi) was competitive ion exchange. The materials (ZSM-5 and Pt-Ni-Ru/ZSM-5) were characterized by spectrophotometry Energy Dispersive X-ray (EDX), X-Ray Diffraction (XRD) and nitrogen physisorption (BET method). Based on the results of X-ray diffraction, it is possible to demonstrate the preservation of the structure of zeolite ZSM-5 after the competitive ion Exchange with metals (Ru-Pt-Ni) and calcination. The dispersion of metals on ZSM-5 did not change the textural characteristics of the zeolite. (author)

  7. Active sites in Fe/ZSM-5 for nitrous oxide decomposition and benzene hydroxylation with nitrous oxide

    NARCIS (Netherlands)

    Sun, K.; Xia, H.; Feng, Z.; Santen, van R.A.; Hensen, E.J.M.; Li, Can

    2008-01-01

    The effect of the iron content and the pretreatment conditions of Fe/ZSM-5 catalysts on the Fe speciation and the catalytic activities in nitrous oxide decomposition and benzene hydroxylation with nitrous oxide has been investigated. Iron-containing ZSM-5 zeolites with varying iron content (Fe/Al =

  8. Effect of Steam Deactivation Severity of ZSM-5 Additives on LPG Olefins Production in the FCC Process.

    Science.gov (United States)

    Gusev, Andrey A; Psarras, Antonios C; Triantafyllidis, Konstantinos S; Lappas, Angelos A; Diddams, Paul A

    2017-10-21

    ZSM-5-containing catalytic additives are widely used in oil refineries to boost light olefin production and improve gasoline octanes in the Fluid Catalytic Cracking (FCC) process. Under the hydrothermal conditions present in the FCC regenerator (typically >700 °C and >8% steam), FCC catalysts and additives are subject to deactivation. Zeolites (e.g., Rare Earth USY in the base catalyst and ZSM-5 in Olefins boosting additives) are prone to dealumination and partial structural collapse, thereby losing activity, micropore surface area, and undergoing changes in selectivity. Fresh catalyst and additives are added at appropriate respective levels to the FCC unit on a daily basis to maintain overall targeted steady-state (equilibrated) activity and selectivity. To mimic this process under accelerated laboratory conditions, a commercial P/ZSM-5 additive was hydrothermally equilibrated via a steaming process at two temperatures: 788 °C and 815 °C to simulate moderate and more severe equilibration industrial conditions, respectively. n -Dodecane was used as probe molecule and feed for micro-activity cracking testing at 560 °C to determine the activity and product selectivity of fresh and equilibrated P-doped ZSM-5 additives. The fresh/calcined P/ZSM-5 additive was very active in C 12 cracking while steaming limited its activity, i.e., at catalyst-to-feed (C/F) ratio of 1, about 70% and 30% conversion was obtained with the fresh and steamed additives, respectively. A greater activity drop was observed upon increasing the hydrothermal deactivation severity due to gradual decrease of total acidity and microporosity of the additives. However, this change in severity did not result in any selectivity changes for the LPG (liquefied petroleum gas) olefins as the nature (Brønsted-to-Lewis ratio) of the acid/active sites was not significantly altered upon steaming. Steam deactivation of ZSM-5 had also no significant effect on aromatics formation which was enhanced at higher

  9. Effect of Steam Deactivation Severity of ZSM-5 Additives on LPG Olefins Production in the FCC Process

    Directory of Open Access Journals (Sweden)

    Andrey A. Gusev

    2017-10-01

    Full Text Available ZSM-5-containing catalytic additives are widely used in oil refineries to boost light olefin production and improve gasoline octanes in the Fluid Catalytic Cracking (FCC process. Under the hydrothermal conditions present in the FCC regenerator (typically >700 °C and >8% steam, FCC catalysts and additives are subject to deactivation. Zeolites (e.g., Rare Earth USY in the base catalyst and ZSM-5 in Olefins boosting additives are prone to dealumination and partial structural collapse, thereby losing activity, micropore surface area, and undergoing changes in selectivity. Fresh catalyst and additives are added at appropriate respective levels to the FCC unit on a daily basis to maintain overall targeted steady-state (equilibrated activity and selectivity. To mimic this process under accelerated laboratory conditions, a commercial P/ZSM-5 additive was hydrothermally equilibrated via a steaming process at two temperatures: 788 °C and 815 °C to simulate moderate and more severe equilibration industrial conditions, respectively. n-Dodecane was used as probe molecule and feed for micro-activity cracking testing at 560 °C to determine the activity and product selectivity of fresh and equilibrated P-doped ZSM-5 additives. The fresh/calcined P/ZSM-5 additive was very active in C12 cracking while steaming limited its activity, i.e., at catalyst-to-feed (C/F ratio of 1, about 70% and 30% conversion was obtained with the fresh and steamed additives, respectively. A greater activity drop was observed upon increasing the hydrothermal deactivation severity due to gradual decrease of total acidity and microporosity of the additives. However, this change in severity did not result in any selectivity changes for the LPG (liquefied petroleum gas olefins as the nature (Brønsted-to-Lewis ratio of the acid/active sites was not significantly altered upon steaming. Steam deactivation of ZSM-5 had also no significant effect on aromatics formation which was enhanced at

  10. Hydrogen production by steam reforming of bio-oil aqueous fraction over Co-Fe/ZSM-5

    Science.gov (United States)

    Chen, Mingqiang; Wang, Yishuang; Liang, Tian; Yang, Zhonglian

    2018-02-01

    A series of Co-Fe/ZSM-5 catalysts were prepared by impregnation method and their catalytic performance under steam reforming bio-oil aqueous fraction (SRBAF). The as-prepared catalysts were characterized by XRD, BET, and SEM. The characterization results revealed the Co-Fe alloy phase was formed in Co0.5Fe0.5/ZSM-5 catalyst, and this catalyst exhibited unique pore volume (0.28 cm3/g) and pore size (8.4 nm). The results of experiment demonstrated the addition of Fe species could significantly increase C conversion and H2 yield, and the formation of Co-Fe alloy effectively inhibited methanation reaction and improved water-gas shift (WGS) reaction. The highest H2 yield (81%) and C conversion (85%) was obtained at the following reaction conditions: 2.5 g of C0.5F0.5/Z catalyst, T = 700 °C, S/C = 10-14,.feed flow rate was 10.0 gbio-oil/h, N2 flow rate was 0.16 L/min.

  11. A MAS NMR and DRIFT study of the Ga species in Ga/H-ZSM5 catalysts and their effect on propane ammoxidation

    NARCIS (Netherlands)

    Pal, P.; Quartararo, J.; Hamid, abd S.B.; Derouane, E.G.; Védrine, J.C.; Magusin, P.C.M.M.; Anderson, B.G.

    2005-01-01

    71Ga, 27Al and 29Si MAS-NMR and DRIFT spectroscopies were used to characterize the state of gallium in Ga/H-ZSM5 catalysts tested for their ability to catalyse the ammoxidation of propane. Ga-species were observed in two different possible environments: octahedrally-coordinated gallium in small

  12. Upgrading of bio-oil derived from tobacco using ferrierite, ZSM-5 and Co-Mo/Al2 O3 catalysts

    Directory of Open Access Journals (Sweden)

    Sawitree Mulika

    2015-03-01

    Full Text Available This research aims to investigate bio-oil yield of tobacco leave by pyrolysis at 450-550o C. The bio-oil was upgraded by ferrierite, ZSM-5, Al2 O3 , Co-Mo/Al2 O3 and Mo2 C catalysts. Pyrolysis was carried out in a semi-batch reactor with a space velocity of 1.7 h-1 under nitrogen atmosphere. The highest liquid yield of 47.1% was observed at 500o C with the high heating value of 36.3 MJ/kg oil (organic phase. Furthermore, char and gas yields were 36.7 and 16.2%, respectively. As a result, the high heating values of the bio-oils catalyzed at 500o C by ferrierite, ZSM-5, Al2 O3 , Mo2 C and Co-Mo/Al2 O3 were 22.5, 24.7, 26.1, 35.8 and 36.8 MJ/kg oil (organic phase, respectively.

  13. Bidimensional ZSM-5 zeolites probed as catalysts for polyethylene cracking

    Czech Academy of Sciences Publication Activity Database

    Peral, A.; Escola, J. M.; Serrano, D. P.; Přech, Jan; Ochoa-Hernández, Cristina; Čejka, Jiří

    2016-01-01

    Roč. 6, č. 8 (2016), s. 2754-2765 ISSN 2044-4753 R&D Projects: GA ČR(CZ) GAP106/12/0189 Institutional support: RVO:61388955 Keywords : PILLARED MOLECULAR -SIEVE * NANOCRYSTALLINE ZSM-5 * PROTOZEOLITIC UNITS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.773, year: 2016

  14. Synthesis of ZSM-5 zeolite from coal fly ash and rice husk: characterization and application for partial oxidation of methane to methanol

    Science.gov (United States)

    Krisnandi, Y. K.; Yanti, F. M.; Murti, S. D. S.

    2017-04-01

    Indonesian fly ash (SiO2/Al2O3 mole ratio = 3.59) was used together with rice husk (SiO2 92%) as raw material for mesoporous ZSM-5 zeolite synthesis. Prior being used, coal fly ash and rice husk were subjected to pre-treatment in order to extract silicate (SiO4 4-) and aluminate (AlO4 5-) and to remove the impurities. Then the ZSM-5 zeolite were synthesized through hydrothermal treatment using two types of templates (TPAOH and PDDA). The as-synthesized ZSM-5 was characterized using FTIR, XRD, SEM-EDX, and BET. The result of FTIR showed peaks at 1250-950 cm-1 (v asymetric T-O), 820-650 cm-1 (v symetric T-O), and at 650-500 cm-1 confirming the presence of the five number ring of the pentasil structure. The result of XRD showed the appearance of certain peaks in the position 2 theta between 7-9° and 22-25° indicative of ZSM-5 structure, but also showed the pattern of low intensity magnetite and hematite. The SEM image showed the rough surface of hexagonal crystals from ZSM-5 structure, indicative of mesoporosity in the structure. EDX result showed Si/Al ratio of 20, while surface area analysis gave SA of 43.16. The ZSM-5 zeolites then was modified with cobalt oxide through impregnation method. The catalytic activity as heterogeneous catalysts in partial oxidation of methane was tested. The result showed that hence the catalytic activity of ZSM-5 and Co/ZSM-5 from fly ash and rice husk were still inferior compared to the pro-analysis sourced-counterpart, they were potential to be used as catalyst in the partial oxidation of methane to methanol.

  15. Deactivation of Zeolite Catalyst H-ZSM-5 during Conversion of Methanol to Gasoline: Operando Time- and Space-Resolved X-ray Diffraction.

    Science.gov (United States)

    Rojo-Gama, Daniel; Mentel, Lukasz; Kalantzopoulos, Georgios N; Pappas, Dimitrios K; Dovgaliuk, Iurii; Olsbye, Unni; Lillerud, Karl Petter; Beato, Pablo; Lundegaard, Lars F; Wragg, David S; Svelle, Stian

    2018-03-15

    The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.

  16. Effects of different level addition of zeolite ZSM-5 additive on quality and composition of the dry gas, LPG (Liquefied Petroleum Gas) and gasoline, produced in FCC (Fluid Catalytic Cracking); Efeito dos diferentes niveis de adicao de aditivos de ZSM-5 na qualidade e composicao do gas combustivel, GLP e gasolina produzidos em FCC

    Energy Technology Data Exchange (ETDEWEB)

    Bastiani, Raquel; Pimenta, Ricardo D.M.; Almeida, Marlon B.B.; Lau, Lam Y. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The effects of the addition of different level of ZSM-5 additives on different FCC catalysts formulations have been studied on laboratory scale FST (Fluidized Simulation Test). The main objective of the present work is to perform a qualitative identification of the main parameters of FCC catalyst which affect the ZSM-5 additives performance concerning quality and composition of Dry Gas, LPG and Gasoline. The product composition of each test was analyzed by PIANO groups separated by carbon number. The effect of ZSM-5 on products composition was evaluated. The results showed that the ZSM-5 additive cracks gasoline range olefins and isoparaffins into Dry Gas and LPG, favoring the formation of ethylene, propylene and butylenes, while the absolute yield of gasoline aromatics changes little. The aromatics fraction in gasoline, MON and RON numbers in gasoline increase. The ZSM-5 effectiveness is negatively affected by high levels of rare earth on FCC catalyst (RE-USY). Higher hydrogen transfer provides lower olefins (higher than C6) formation, which are the most reactive species for ZSM-5 cracking. (author)

  17. Crystal dimension of ZSM-5 influences on para selective disproportionation of ethylbenzene.

    Science.gov (United States)

    Hariharan, Srinivasan; Palanichamy, Muthaiahpillai

    2014-03-01

    Crystal size and crystal dimensions are vital role in shape selective feature. Para selective disproportionation of EthylBenzene (Dip-EB) was investigated over ZSM-5 synthesized in acidic medium. The catalysts were prepared by hydrothermal process with various Si/Al ratios (50, 75 and 100) using fluoride ion precursor. This fluoride ion precursor dissolves the ZSM-5 nutrients below it neutral pH between 4 and 6. The synthesized material was subjected into various physico chemical characterizations such as XRD, SEM, TGA and BET analyses. The XRD patterns showed high crystalline nature and their resulting SEM images were also indicate thin prismatic crystals of large dimension compared with alkaline medium synthesized one. The BET results earned good textural property. Catalytic activity of vapor phase Dip-EB was carried out between 523 and 673 K. As their result, diethylbenzene (DEB) isomers were obtained, but para selective Diethylbenzene (p-DEB) was observed higher than others. The high selectivity towards p-DEB was due to large crystal dimension of ZSM-5 catalysts synthesized in fluoride medium. Hence it is good commercial application for petrochemical feed stock production.

  18. Organosilane with gemini-type structure as the mesoporogen for synthesis of hierarchical porous ZSM-5 zeolite

    KAUST Repository

    Zhu, Haibo

    2016-02-08

    A new kind of organosilane (1,6-bis (diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double hydrolysable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveals information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratios, which confirms this organosilane has high flexibility of using as template for the synthesis of hierarchical porous zeolite.

  19. Organosilane with gemini-type structure as the mesoporogen for synthesis of hierarchical porous ZSM-5 zeolite

    KAUST Repository

    Zhu, Haibo; Abou-Hamad, Edy; Chen, Yin; Saih, Youssef; Liu, Weibing; Basset, Jean-Marie; Samal, Akshaya Kumar

    2016-01-01

    A new kind of organosilane (1,6-bis (diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double hydrolysable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveals information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratios, which confirms this organosilane has high flexibility of using as template for the synthesis of hierarchical porous zeolite.

  20. Selective catalytic reduction of NO{sub x} to nitrogen over Co-Pt/ZSM-5: Part A. Characterization and kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Maisuls, S.E.; Seshan, K.; Feast, S.; Lercher, J.A. [Laboratory for Catalytic Processes and Materials, Faculty of Chemical Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2001-01-01

    The selective catalytic reduction of NO by propene in the presence of excess oxygen has been studied over catalysts based on Co-Pt supported on ZSM-5. Pure Pt based catalysts are highly active, but produce large amounts of N{sub 2}O. Bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1wt.%) show a synergistic effect by combining high stability and activity of Pt catalysts with the high N{sub 2} selectivity of Co catalysts. The lower selectivity to N{sub 2}O is attributed to its selective conversion over Co. The catalysts also showed high water and sulfur tolerance above 350C.

  1. Optimization of catalytic glycerol steam reforming to light olefins using Cu/ZSM-5 catalyst

    International Nuclear Information System (INIS)

    Zakaria, Z.Y.; Amin, N.A.S.; Linnekoski, J.

    2014-01-01

    Highlights: • Glycerol steam reforming to light olefin using Cu/ZSM-5 process was optimized. • Response surface methodology and multi-objective genetic algorithm were employed. • Second order polynomial model produced adequately fitted experimental data. • Thermodynamic study inferred high temperature requirement for ethylene formation. • Turn-over-frequency at optimized responses is higher than the non-optimized process. - Abstract: Response surface methodology (RSM) and multi-objective genetic algorithm was employed to optimize the process parameters for catalytic conversion of glycerol, a byproduct from biodiesel production, to light olefins using Cu/ZSM-5 catalyst. The effects of operating temperature, weight hourly space velocity (WHSV) and glycerol concentration on light olefins selectivity and yield were observed. Experimental results revealed the data adequately fitted into a second-order polynomial model. The linear temperature and quadratic WHSV terms gave significant effect on both responses. Optimization of both the responses indicated that temperature favouring high light olefin formation lied beyond the experimental design range. The trend in the temperature profile concurred commensurately with the thermodynamic analysis. Multi-objective genetic algorithm was performed to attain a single set of processing parameters that could produce both the highest light olefin selectivity and yield. The turn-over-frequency (TOF) of the optimized responses demonstrated a slightly higher value than the one which was not optimized. Combination of RSM, multi-objective response and thermodynamic is useful to determine the process optimal operating conditions for industrial applications

  2. The Fabrication of Ga2O3/ZSM-5 Hollow Fibers for Efficient Catalytic Conversion of n-Butane into Light Olefins and Aromatics

    Directory of Open Access Journals (Sweden)

    Jing Han

    2016-01-01

    Full Text Available In this study, the dehydrogenation component of Ga2O3 was introduced into ZSM-5 nanocrystals to prepare Ga2O3/ZSM-5 hollow fiber-based bifunctional catalysts. The physicochemical features of as-prepared catalysts were characterized by means of XRD, BET, SEM, STEM, NH3-TPD, etc., and their performances for the catalytic conversion of n-butane to produce light olefins and aromatics were investigated. The results indicated that a very small amount of gallium can cause a marked enhancement in the catalytic activity of ZSM-5 because of the synergistic effect of the dehydrogenation and aromatization properties of Ga2O3 and the cracking function of ZSM-5. Compared with Ga2O3/ZSM-5 nanoparticles, the unique hierarchical macro-meso-microporosity of the as-prepared hollow fibers can effectively enlarge the bifunctionality by enhancing the accessibility of active sites and the diffusion. Consequently, Ga2O3/ZSM-5 hollow fibers show excellent catalytic conversion of n-butane, with the highest yield of light olefins plus aromatics at 600 °C by 87.6%, which is 56.3%, 24.6%, and 13.3% higher than that of ZSM-5, ZSM-5 zeolite fibers, and Ga2O3/ZSM-5, respectively.

  3. Utilization of biomass: Conversion of model compounds to hydrocarbons over zeolite H-ZSM-5

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie; Holm, Martin Spangsberg

    2011-01-01

    Zeolite catalyzed deoxygenation of small oxygenates present in bio-oil or selected as model compounds was performed under Methanol-to-Hydrocarbons (MTH) like reaction conditions using H-ZSM-5 as the catalyst. Co-feeding of the oxygenates with methanol generally decreases catalyst lifetime due...

  4. Transalkylation of ethyl benzene with triethylbenzene over ZSM-5 zeolite catalyst

    KAUST Repository

    Akhtar, M. Naseem; Tukur, Nasiru M.; Al-Yassir, Nabil; Al-Khattaf, Sulaiman; Čejka, Jiří

    2010-01-01

    Transalkylation of 1,3,5-triethylbenzene (TEB) with ethylbenzene (EB) has been studied over ZSM-5 zeolite using a riser simulator reactor with respect to optimizing DEB yield. The reaction temperature was varied from 350 to 500°C with contact time

  5. Characteristics of supported nano-TiO2/ZSM-5/silica gel (SNTZS): Photocatalytic degradation of phenol

    International Nuclear Information System (INIS)

    Zainudin, Nor Fauziah; Abdullah, Ahmad Zuhairi; Mohamed, Abdul Rahman

    2010-01-01

    Photocatalytic degradation of phenol was investigated using the supported nano-TiO 2 /ZSM-5/silica gel (SNTZS) as a photocatalyst in a batch reactor. The prepared photocatalyst was characterized using XRD, TEM, FT-IR and BET surface area analysis. The synthesized photocatalyst composition was developed using nano-TiO 2 as the photoactive component and zeolite (ZSM-5) as the adsorbents, all supported on silica gel using colloidal silica gel binder. The optimum formulation of SNTZS catalyst was observed to be (nano-TiO 2 :ZSM-5:silica gel:colloidal silica gel = 1:0.6:0.6:1) which giving about 90% degradation of 50 mg/L phenol solution in 180 min. The SNTZS exhibited higher photocatalytic activity than that of the commercial Degussa P25 which only gave 67% degradation. Its high photocatalytic activity was due to its large specific surface area (275.7 m 2 /g), small particle size (8.1 nm), high crystalline quality of the synthesized catalyst and low electron-hole pairs recombination rate as ZSM-5 adsorbent was used. The SNTZS photocatalyst synthesized in this study also has been proven to have an excellent adhesion and reusability.

  6. TUNGSTOPHOSPHORIC ACID HETEROGENIZED ONTO NH4ZSM5 AS AN EFFICIENT AND RECYCLABLE CATALYST FOR THE PHOTOCATALYTIC DEGRADATION OF DYES

    Directory of Open Access Journals (Sweden)

    Candelaria Leal Marchena

    2015-05-01

    Full Text Available Materials based on tungstophosphoric acid (TPA immobilized on NH4ZSM5 zeolite were prepared by wet impregnation of the zeolite matrix with TPA aqueous solutions. Their concentration was varied in order to obtain TPA contents of 5%, 10%, 20%, and 30% w/w in the solid. The materials were characterized by N2 adsorption-desorption isotherms, XRD, FT-IR, 31P MAS-NMR, TGA-DSC, DRS-UV-Vis, and the acidic behavior was studied by potentiometric titration with n-butylamine. The BET surface area (SBET decreased when the TPA content was raised as a result of zeolite pore blocking. The X-ray diffraction patterns of the solids modified with TPA only presented the characteristic peaks of NH4ZSM5 zeolites, and an additional set of peaks assigned to the presence of (NH43PW12O40. According to the Fourier transform infrared and 31P magic angle spinning-nuclear magnetic resonance spectra, the main species present in the samples was the [PW12O40]3- anion, which was partially transformed into the [P2W21O71]6- anion during the synthesis and drying steps. The thermal stability of the NH4ZSM5TPA materials was similar to that of their parent zeolites. Moreover, the samples with the highest TPA content exhibited band gap energy values similar to those reported for TiO2. The immobilization of TPA on NH4ZSM5 zeolite allowed the obtention of catalysts with high photocatalytic activity in the degradation of methyl orange dye (MO in water, at 25 ºC. These can be reused at least three times without any significant decrease in degree of degradation.

  7. Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite.

    Science.gov (United States)

    Gao, Hongling; Liu, Haitang; Pang, Bo; Yu, Guang; Du, Jian; Zhang, Yuedong; Wang, Haisong; Mu, Xindong

    2014-11-01

    This study aimed to produce furfural from waste aqueous hemicellulose solution of a hardwood kraft-based dissolving pulp production processing in a green method. The maximum furfural yield of 82.4% and the xylose conversion of 96.8% were achieved at 463K, 1.0g ZSM-5, 1.05g NaCl and organic solvent-to-aqueous phase ratio of 30:15 (V/V) for 3h. The furfural yield was just 51.5% when the same concentration of pure xylose solution was used. Under the optimized condition, furfural yield was still up to 67.1% even after the fifth reused of catalyst. Catalyst recycling study showed that ZSM-5 has a certain stability and can be efficiently reused. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Characteristics of supported nano-TiO{sub 2}/ZSM-5/silica gel (SNTZS): Photocatalytic degradation of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Zainudin, Nor Fauziah; Abdullah, Ahmad Zuhairi [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@eng.usm.my [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang (Malaysia)

    2010-02-15

    Photocatalytic degradation of phenol was investigated using the supported nano-TiO{sub 2}/ZSM-5/silica gel (SNTZS) as a photocatalyst in a batch reactor. The prepared photocatalyst was characterized using XRD, TEM, FT-IR and BET surface area analysis. The synthesized photocatalyst composition was developed using nano-TiO{sub 2} as the photoactive component and zeolite (ZSM-5) as the adsorbents, all supported on silica gel using colloidal silica gel binder. The optimum formulation of SNTZS catalyst was observed to be (nano-TiO{sub 2}:ZSM-5:silica gel:colloidal silica gel = 1:0.6:0.6:1) which giving about 90% degradation of 50 mg/L phenol solution in 180 min. The SNTZS exhibited higher photocatalytic activity than that of the commercial Degussa P25 which only gave 67% degradation. Its high photocatalytic activity was due to its large specific surface area (275.7 m{sup 2}/g), small particle size (8.1 nm), high crystalline quality of the synthesized catalyst and low electron-hole pairs recombination rate as ZSM-5 adsorbent was used. The SNTZS photocatalyst synthesized in this study also has been proven to have an excellent adhesion and reusability.

  9. Investigatons on the local structure of AG+/ZSM-5 catalysts and their photocatalytic reactivities for the decomposition of N2O at 298 κ

    International Nuclear Information System (INIS)

    Matsuoka, Masaya; Ju, Woo-Sung; Yamashita, Hiromi; Anpo, Masakazu

    2001-01-01

    Ag + /ZSM-5 catalysts were prepared by an ion-exchange method and UV-irradiation of the catalysts in the presence of N 2 O led to the photo-catalytic decomposition of N 2 O into N 2 and O 2 at 298 κ. Investigations on the effective wavelength of irradiated UV-light for the reaction as well as the in-situ characterization of the catalysts by means of XAFS, UV-Vis, photoluminescence and FT-IR spectroscopies revealed that the photoexcitation of the Ag + -N 2 O complexes formed between gaseous N 2 O and the isolated Ag + ions play a significant role in this reaction. (au)

  10. A Mesopore-Dependent Catalytic Cracking of n-Hexane Over Mesoporous Nanostructured ZSM-5.

    Science.gov (United States)

    Qamar, M; Ahmed, M I; Qamaruddin, M; Asif, M; Sanhoob, M; Muraza, O; Khan, M Y

    2018-08-01

    Herein, pore size, crystalinity, and Si/Al ratio of mesoporous ZSM-5 (MFI) nanocrystals was controlled by synthesis parameters, such as surfactant concentration ([3-(trimethoxysilyl)propyl] hexa-decyl dimethyl ammonium chloride), sodium hydroxide concentrations, synthesis temperature and time. The morphology, surface structure and composition of the MFI particles was systematically investigated. More notably, the mesopore-dependent catalytic activity of ZSM-5 was evaluated by studying the cracking of n-hexane. The findings suggest the porosity has pronounced impact on the catalytic activity, selectivity and stability of ZSM-5 nanocrystals. Critical surface attributes such as nature of acid sites (Brønsted and Lewis), concentration, and strength are obtained by the infrared study of adsorbed probe molecules (pyridine) and the temperature programmed desorption. In spite of being weaker in Si/Al ratio or acidic strength, mesoporous catalysts showed more stable and efficient cracking of n-hexane suggesting that acidity seems not the predominant factor operative in the activity, selectivity and stability.

  11. Use of Zeolite ZSM-5 for Loading and Release of 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Ruba A. Al-Thawabeia

    2015-01-01

    Full Text Available Samples of zeolite ZSM-5 have been synthesized in both the sodium form (ZSM-5 and the acid activated form (H-ZSM-5. In addition, each of these two forms was prepared in the two molar SiO2/Al2O3 ratios of 169 and 15. All samples of these ZSM-5 derivatives were characterized by X-ray diffraction (XRD, nitrogen adsorption-desorption isotherms, thermal gravimetric analysis (TGA, X-ray fluorescence (XRF, and scanning electron microscopy (SEM. The samples were successfully loaded with the anticancer drug 5-fluorouracil (5-FU with loading capacities varying from 22% (for the sodium form having the lower molar SiO2/Al2O3 ratio of 15, ZSM-5-(15 to 43% (for the corresponding acid form, H-ZSM-5-(15. Percent release of the drug-loaded ZSM-5 samples into simulated body fluid (SBF was measured at pH 7.4 and 37°C. The results showed a slight variation in the % release within the range 84–93%, while the first-order rate constant (k varied from 2.2 h−1 for ZSM-5-(15 to 3.9 h−1 for H-ZSM-5-(15. It was interesting to note that at the higher molar SiO2/Al2O3 ratios of 169, both the sodium form, ZSM-5-(169, and the acid form, H-ZSM-5-(169, exhibit an intermediate efficiency in either % loading (38% or first-order kinetic release constant (k = 2.9 h−1.

  12. The study of methanol transformation over Cu-modified ZSM-5, Beta zeolite and MCM-41 mesoporous silica using 11C-radioisotope labeling

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.

    2004-01-01

    Complete text of publication follows. The copper-containing zeolites and mesoporous silica, among other metals, are suitable for dehydrogenation of methanol. The Cu transition metal determines the route of methanol conversion on supports of ZSM-5 and Beta zeolite as well as MCM-41 mesoporous silica. The catalysis mechanism and the catalytic property are concluded from the composition of methanol derivates over Cu-modified catalysts. The Cu ion-exchanged ZSM-5 and Beta zeolite and MCM-41 mesoporous silica were synthesized and characterized using X-ray power diffraction, scanning electron microscope, nitrogen and pyridine adsorption, X-ray fluorescency and FTIR spectroscopy. The 11 C-radioactive labeling method ( 11 C radioisotope, T 1/2 = 20 min, is a gamma emitter by annihilation of its positron) is suitable for following the process of 11 C-methanol con- version i.e. adsorption, desorption and catalytic transformation as well as for investigation of small amounts of molecules over catalysts by very sensitive radioactivity detectors.The 11 C radioisotope was produced at cyclotron and the 11 C-methanol was synthesized by a classical radiochemical method. After catalysis the 11 C-radioactive and non radioactive volatile products were identified by radiogas chromatography hereby radiolabeled compound and -derivates were distinguished from other participant natural, nonradioactive carbon compounds. Along radioactive products dimethyl ether and small hydrocarbons products were formed by Bronsted acid sites of catalysts while formaldehyde and small methyl formate were formed by Cu metal over bifunctional Cu-ZSM-5, Cu-Beta zeolite and mesoporous Cu-MCM-41 silica at 240 deg C. The detection of methoxy methanol and dimethoxy methane confirmed the simultaneous presence of acid and basic sites of catalysts. At higher temperature (400 deg C) the CO and CO 2 final products were dominated. In our previous works, methanol conversion to hydrocarbons was observed by dehydration

  13. The conversion of dimethyl ether over Pt/H-ZSM5. A bifunctional catalyzed reaction

    NARCIS (Netherlands)

    Engelen, C.W.R.; Wolthuizen, J.P.; Hooff, van J.H.C.; Imelik, B.; Naccache, C.; Coudurier, G.

    1985-01-01

    At low temperatures dimethylether mixed with hydrogen reacts over a platinum loaded H-ZSM5 catalyst selectivity to methane. Two successive steps can be distinguished; first the acid-catalyzed formation of a trimethyloxoniumion, followed by a metal-catalyzed hydrogenation to methane. Experiments with

  14. Studies of N{sub 2}0 adsorption and decomposition on Fe-ZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Benjamin R.; Reimer, Jeffrey A.; Bell, Alexis T.

    2002-03-08

    The interactions of N2O with H-ZSM-5 and Fe-ZSM-5 have been investigated using infrared spectroscopy and temperature-programmed reaction. Fe-ZSM-5 samples with Fe/Al ratios of 0.17 and 0.33 were prepared by solid-state exchange. It was determined that most of the iron in the samples of Fe-ZSM-5 is in the form of isolated cations, which have exchanged with Bronsted acid H+ in H-ZSM-5. The infrared spectrum of N2O adsorbed on H-ZSM-5 at 298 K exhibits bands at 2226 and 1308 cm-1 associated with vibrations of the N-N and N-O bonds, respectively. The positions of these bands relative to those seen in the gas phase suggest that N2O adsorbs through the nitrogen end of the molecule. The heat of N2O adsorption in H-ZSM-5 is estimated to be 5 kcal/mol. In the case of Fe-ZSM-5, additional infrared bands are observed at 2282 and 1344 cm-1 due to the interactions of N2O with the iron cations. Here too, the directions of the shifts in the vibrational features relative to those for gas-phase N2O suggest that the molecule adsorbs through its nitrogen end. The heat of adsorption of N2O on the Fe sites is estimated to be 16 kcal/mol. The extent of N2O adsorption on Fe depends on the oxidation state of Fe. The degree of N2O adsorption is higher following pretreatment of the sample in He or CO at 773 K, than following pretreatment in O2 or N2O at the same temperature. Temperature-programmed decomposition of N2O was performed on the Fe-ZSM-5 samples and revealed that N2O decomposes stoichiometrically to N2 and O2. A higher activity was observed if the catalysts were pretreated in He than if they were pretreated in N2O. For the He-pretreated samples, the activation energy for N2O decomposition was estimated to be 42 kcal/mol and the preexponential factor of the rate coefficient for this process was found to increase with Fe/Al ratio. This trend was attributed to the increasing auto reducibility of Fe3+ cations to Fe2+ cations with increasing Fe/Al ratio.

  15. BIOFUEL PRODUCTION FROM PALM OLEIN BY CATALYTIC CRACKING PROCESS USING ZSM-5 CATALYST

    Directory of Open Access Journals (Sweden)

    Rondang Tambun

    2017-06-01

    Full Text Available The depletion of fossil energy reserves raises the potential in the development of renewable fuels from vegetable oils. Indonesia is the largest palm oil producer in the world, where palm oil can be converted into biofuels such as biogasoline, kerosene and biodiesel. These biofuels are environmentally friendly and free of the content of nitrogen and sulfur through catalytic cracking process. In this research, palm olein is used as feedstock using catalytic cracking process. ZSM-5 is used as a catalyst, which has a surface area of 425 m2/g and Si/Al ratio of 50. Variables varied are the operating temperature of 375 oC - 450 °C and reaction time of 60 minutes - 150 minutes. The result shows that the highest yield of liquid product is 84.82%. This yield is obtained at a temperature of 400 °C and reaction time of 120 minutes. The yield of the liquid product in the operating conditions consisting of C6-C12 amounted to 19.47 %, C14-C16 amounted to 16.56 % and the C18-C28 amounted to 48.80 %.

  16. Zeolite-based SCR catalysts and their use in diesel engine emission treatment

    Science.gov (United States)

    Narula, Chaitanya K; Yang, Xiaofan

    2015-03-24

    A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al.sup.+3, wherein the catalyst decreases NO.sub.x emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu--Fe-ZSM5, Cu--La-ZSM-5, Fe--Cu--La-ZSM5, Cu--Sc-ZSM-5, and Cu--In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.

  17. Multinuclear MAS NMR studies on coked zeolites H-ZSM-5

    International Nuclear Information System (INIS)

    Ernst, H.; Freude, D.; Hunger, M.; Pfeifer, H.

    1991-01-01

    During the cracking process carbonaceous materials are deposited on the outer or inner surface of the catalyst. These deposits are in many cases the main cause of catalyst deactivation. Magic angle spinning (MAS) NMR investigations and catalytic n-hexane cracking were carried out on H-ZSM-5 zeolites after a mild hydrothermal de-alumination. By 13 C CP MAS NMR it could be shown that the enhanced catalytic activity does not enhance the coke formation and that the chemical nature of these deposits is essentially aromatic. From 1 H MAS NMR studies performed on shallow-bed activated sealed samples and 27 Al and 29 Si MAS NMR on rehydrated samples it follows that for high coke concentrations the catalyst deactivation is caused mainly by blocking of Broensted acid sites. (author). 27 refs.; 3 figs.; 2 tabs

  18. Photocatalytic Oxidation of NO over Composites of Titanium Dioxide and Zeolite ZSM-5

    Directory of Open Access Journals (Sweden)

    Akram Tawari

    2016-02-01

    Full Text Available Composites of TiO2 (Hombikat, P25, sol-gel synthesis and zeolite ZSM-5 (nSi/nAl = 55 with mass fractions from 25/75 to 75/25 were prepared by mechanical mixing, solid-state dispersion and sol-gel synthesis. Characterization of the composites by X-ray diffraction (XRD, N2-sorption, scanning electron microscopy (SEM, and UV-Vis spectroscopy show that mechanical mixing and solid-state dispersion lead to comparable textural properties of the composites. A homogeneous distribution and intimate contact of small TiO2 particles on the crystal surface of zeolite ZSM-5 were achieved by sol-gel synthesis. The composites were studied in the photocatalytic oxidation (PCO of NO in a flatbed reactor under continuous flow according to ISO 22197-1. The highest NO conversion of 41% at an NO2 selectivity as low as 19% stable for 24 h on-stream was reached over the TiO2/ZSM-5 composite from sol-gel synthesis with equal amounts of the two components after calcination at 523 K. The higher activity and stability for complete NO oxidation than for pure TiO2 from sol-gel synthesis, Hombikat, or P25 is attributed to the adsorptive properties of the zeolite ZSM-5 in the composite catalyst. Increasing the calcination temperature up to 823 K leads to larger TiO2 particles and a lower photocatalytic activity.

  19. Influence of metal coating methods on the activity of bimetal-containing zeolite catalysts of Co, Pd-ZSM-5 in carbon monoxide oxidation

    Science.gov (United States)

    Oleksenko, L. P.; Lutsenko, L. V.; Yatsimirskii, V. K.

    2011-07-01

    It has been established that catalytic activity in the CO oxidation of bimetal-containing zeolite Co,Pd-systems based on ZSM-5 and obtained via ion exchange and impregnation at different orders of the introduction of metal cations is higher than that of monometal-containing systems Co-ZSM-5 and Pd—ZSM-5. Through TPD of NH3, it was determined that coordination-unsaturated bicationic associates are formed in Co,Pd/ZSM-5 zeolites obtained by ion exchange. It was found that the activity of bimetal-containing systems depends on the relation of the active components.

  20. Selective reduction of nitric oxide over Cu/ZSM-5: The role of oxygen in suppressing catalyst deactivation by carbonaceous deposits

    Energy Technology Data Exchange (ETDEWEB)

    d' Itri, Julie L; Sachtler, Wolfgang M.H. [V.N. Ipatieff Laboratory, Center for Catalysis and Surface Science, Departments of Chemical Engineering and Chemistry, Northwestern University, Evanston, IL (United States)

    1993-06-15

    The role of oxygen in the selective reduction of nitrogen monoxide by either propane or propene over 'excessively' ion-exchanged Cu/ZSM-5 has been studied. In a wide temperature region and in the absence of additives such as steam, propane is a more effective reductant than propene; with propane and in the presence of oxygen reduction of nitric oxide to nitrogen approaches 100% above 600 K. The difference in effectiveness is due to the different degree of catalyst deactivation by carbonaceous deposits: more carbonaceous material is deposited from propene than from propane. Temperature-programmed oxidation shows that above 600 K the rate of oxidation of carbonaceous deposits by oxygen is significant. The amount of such carbonaceous deposits is, therefore, lower when catalytic tests above 600 K are done in the presence of oxygen. At very high temperatures, the in situ volatilization of the deposits by reaction with oxygen keeps the catalyst surface clean in the steady state of nitric oxide reduction.

  1. CALCULATION OF CATALYTIC REACTIVITY FOR PREPARING DICHLORODIMETHYLSILANE UTILIZING PRE- AND POST-MODIFIED 24T AlCl3/ZSM-5

    Directory of Open Access Journals (Sweden)

    Wenyuan Xu

    Full Text Available Dichlorodimethylsilane is the most important raw material for the preparation of organic silicon materials. Currently, the preparation of dichlorodimethylsilane is mainly based on disproportionation method. This method can turn wastes (by-products into treasures but the mechanism is still indeterminate. In this study, MP2/6-311++G (3df, 2pd basis set was used to study the mechanism of the disproportionation for producing dichlorodimethylsilane. Dichlorodimethylsilane is catalyzed by 24T cluster AlCl3/ZSM-5 catalyst and modified by (AlCl2+, and (BCl2+. The calculation results show that the rate-determining step is the reaction of the catalyst with trimethylchlorosilane . The activation energy of the rate-determining step of main reaction is: 393.83, 427.73, and 527.61 kJ mol-1, respectively. The structure analysis, activation energy analysis and LOL analysis for different catalysts all show that the catalytic effect of unmodified AlCl3/ZSM-5 is better.

  2. Hierarchical ZSM-5 zeolite:Synthesis and catalytic applications%多级孔道ZSM-5分子筛的合成及其催化应用

    Institute of Scientific and Technical Information of China (English)

    崔生航; 张君涛; 申志兵

    2015-01-01

    Due to high shape selectivity of microporous zeolite and the excellent mass transport of the mesoporous material,the hierarchical ZSM-5 zeolite has potential applications in catalytic field. The synthesis methods and application progress of hierarchical ZSM-5 zeolite in recent years are reviewed in this paper. Various approaches of hierarchical ZSM-5 zeolite synthesis were introduced,including post-treatment method,hard templating method and soft templating method. In addition,the catalytic applications of the as-synthesized zeolites were discussed. It was demonstrated that the reaction conversion and selectivity of target products were improved due to the excellent mass transport and appropriate acidity of the hierarchical ZSM-5 zeolite. This paper also forecasted the development of the hierarchical ZSM-5 zeolite in chemical industry. It was pointed out that the development of facile, economic and green routes towards the synthesis of hierarchical ZSM-5 zeolite would be a challenge in modern industrial catalysis. Research should focus on the mechanism of the mesopore formation,the development of the hierarchical ZSM-5 monolith zeolite as well as the supported hierarchical ZSM-5 zeolites.%多级孔道ZSM-5分子筛具有微孔沸石分子筛良好的择形催化性能和介孔材料优异的传质扩散性能,在催化领域显示出良好的应用前景.本文综述了近年来多级孔道 ZSM-5 分子筛的研究进展,重点介绍了多级孔道ZSM-5 分子筛的不同合成方法,包括后处理法、硬模板法和软模板法等,同时介绍了不同方法得到的多级孔道ZSM-5分子筛在催化反应中的应用,分析表明多级孔道ZSM-5分子筛以其良好的扩散性能和适宜的酸性提高了反应转化率和目标产物选择性.最后对多级孔道ZSM-5分子筛的发展方向进行了展望,指出研发简单、经济和环保的新合成路线是多级孔道ZSM-5分子筛发展中的重大挑战,深入研究多级孔道分子筛中介孔的形成机理和开发具有多级孔道整体式催化剂以及负载型多级孔道ZSM

  3. A green route to methyl acrylate and acrylic acid by an aldol condensation reaction over H-ZSM-35 zeolite catalysts.

    Science.gov (United States)

    Ma, Zhanling; Ma, Xiangang; Liu, Hongchao; He, Yanli; Zhu, Wenliang; Guo, Xinwen; Liu, Zhongmin

    2017-08-10

    A one-step aldol condensation reaction to produce MA and AA is a green and promising strategy. Here, the aldol condensation reaction was first conducted with DMM and MAc over different types of zeolite catalysts. The H-ZSM-35 zeolite demonstrates excellent catalytic performance with a DMM conversion of 100% and a MA + AA selectivity of up to 86.2% and superior regeneration ability, with great potential for industrial operation.

  4. Oxidative desulfurization of thiophene on TiO2/ZSM-12 zeolite

    OpenAIRE

    Santos,Marília Ramalho Figueiredo dos; Pedrosa,Anne Michelle Garrido; Souza,Marcelo José Barros de

    2016-01-01

    In this work the hydrothermal synthesis of ZSM-12 zeolite was performed, varying the MTEACl/SiO2 ratio, where the synthesis temperature was 140 ºC and the crystallization time was 144 hours. The catalysts were characterized by XRD, FTIR and TG. TiO2/ZSM-12 catalysts were used with titanium ions concentrations of 5, 10 and 15%. The oxidative desulfurization (ODS) reactions were performed using a model mixture containing n-heptane as solvent and thiophene as sulfur compound, H2O2 as an oxidizin...

  5. Kinetics of toluene alkylation with methanol catalyzed by pure and hybridized HZSM-5 catalysts

    KAUST Repository

    Alabi, Wahab

    2012-07-01

    A kinetic study of toluene alkylation with methanol was performed over pure HZSM-5, mordenite/ZSM-5 (hybrid of mordenite and HZSM-5), and ZM13 (composite mixture of HZSM-5 and MCM-41 at pH 13). Experimental runs were conducted using a batch fluidized bed reactor at temperatures of 300, 350 and 400 °C and reaction times of 3, 5, 7, 10, 13, 15 and 20. s. The rate of toluene methylation and toluene disproportionation were studied on the three catalysts (toluene alkylation is usually accompanied by toluene disproportionation on acid catalyst). Based on the results obtained, a simplified power law kinetic model consisting of three reactions was developed to estimate the activation energies of toluene methylation and disproportionation simultaneously. Coke formation on catalysts was accounted for using both reaction time and reactant conversion decay functions. All parameters were estimated based on quasi-steady state approximation. Estimated kinetic parameters were in good agreement with experimental results. The order of alkylation ability of the catalysts was found to be ZM13 > HZSM-5 > mordenite/ZSM-5, while the reverse is for toluene disproportionation (mordenite/ZSM-5 > HZSM-5 > ZM13). Thus, alkylation of toluene is most favorable on ZM13 due to combined effect of mesoporosity induced through its synthetic route and acid content. Toluene/MeOH molar ratio of 1:1 was most suitable for toluene alkylation reaction. © 2012 Elsevier B.V.

  6. Conversion of methanol to hydrocarbons over conventional and mesoporous H-ZSM-5 and H-Ga-MFI: Major differences in deactivation behavior

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie; Højholt, Karen Thrane; Holm, Martin Spangsberg

    2012-01-01

    . In the methanol-to-hydrocarbons (MTH) process, H-ZSM-5 is subjected to coke formation leading to catalyst deactivation. Here we show that when the gallium containing zeotypes are employed in the MTH process, only insignificant amounts of coke are present in the deactivated catalysts, indicating distinct...... (hydrolysis) of the Ga&sbnd;O bonds in the zeolite structure rather than coke deposition....

  7. STUDY OF EPOXIDE DECYCLISATION OF CARYOPHYLENE OXIDE WITH SYNTHETIC ZEOLITE AS CATALYSTS

    Directory of Open Access Journals (Sweden)

    Winarto Haryadi

    2010-06-01

    Full Text Available The reaction of epoxide ring opening of caryophillene oxide has been done using zeolite H-Y, H-sodalit, and H-ZSM-5 as catalysts. The reactions were done in two types, there were in dioxane solvent at temperature of 110 oC and without solvent at temperature of 175 oC. The catalyst weight was 10 % from caryophillene oxide weight, and the time of reaction was four hours. The product of reaction was analyzed using GC, FTIR, and GC-MS. The reactions of caryophillene oxide in dioxane solvent with the three kinds of zeolites did not give any targeted product. Whereas, the reactions without solvent gave three main products, there was one compound with one group of secondary hidroxyl (secondary alcohol, and two compounds of ketone from caryophillene. The reaction product of caryophillene oxide obtained without using solvent with the three type of catalysts were then compared. Conversion of three main products produced by H-ZSM-5 catalyst, H-sodalit catalyst and H-Y catalyst were 82.11 %, 54.92 % and 38.53 % respectively. For that reason, the transformation of caryophillene oxide using H-ZSM-5 catalyst was considered to be the best selective product. The alcohol product was resulted from reaction between caryophillene oxide and Bronsted acid, and  the ketone products was resulted from the reaction with Lewis acid in zeolite.   Keywords: Epoxide ring opening, HY, H-sodalit and HZSM-5

  8. High Yield of Liquid Range Olefins Obtained by Converting i-Propanol over Zeolite H-ZSM-5

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie; Shunmugavel, Saravanamurugan; Hruby, S.L.

    2009-01-01

    Methanol, ethanol, and i-propanol were converted under methanol-to-gasoline (MTH)-like conditions (400 degrees C, 1-20 bar) over zeolite H-ZSM-5. For methanol and ethanol, the catalyst lifetimes and conversion capacities are comparable, but when i-propanol is used as the reactant, the catalyst...... lifetime is increased dramatically. In fact, the total conversion capacity (calculated as the total amount of alcohol converted before deactivation in g(alcohol)/g(zeolite)) is more than 25 times higher for i-propanol compared to the lower alcohols. Furthermore, when i-propanol is used as the reactant...

  9. Hexane cracking over steamed phosphated zeolite H-ZSM-5 : Promotional effect on catalyst performance and stability

    NARCIS (Netherlands)

    Van Der Bij, Hendrik E.; Meirer, Florian; Kalirai, Samanbir; Wang, Jian; Weckhuysen, Bert M.

    2014-01-01

    The nature behind the promotional effect of phosphorus on the catalytic performance and hydrothermal stability of zeolite H-ZSM-5 has been studied using a combination of 27Al and 31P MAS NMR spectroscopy, soft X-ray absorption tomography and n-hexane catalytic cracking, complemented with NH3

  10. Synthesis and characterization of ZSM-5 and calcined kaolin evaluation using the content of structure-directing

    International Nuclear Information System (INIS)

    Rodrigues, J.J.; Silva, V.J. da; Rodrigues, M.G.F.

    2012-01-01

    This study aims to evaluate the effect of the structure-directing content, tetrapropylammonium bromide, on the structural and morphological characteristics of ZSM-5 zeolite obtained using calcined kaolin as silicon and aluminum. The samples were characterized by XRD, EDX, SEM and Physics Adsorption N 2 . Trough X ray diffraction patterns was possible to observed the formation of the structure of ZSM-5 with intense peaks and well-defined characteristic of crystalline. The micrographs showed that the samples consist of agglomerates and/or aggregates of particles characteristic of the MFI structure typical of ZSM-5 zeolite. And through the adsorption-desorption isotherms physical N2 was possible to observe that the samples show hysteresis type I typical of microporous materials with specific surface areas of 218 and 222 m 2 /g. Therefore, the use of calcined kaolin to obtain ZSM-5 zeolite was effective. (author)

  11. Elastic behavior of MFI-type zeolites: Compressibility of H-ZSM-5 in penetrating and non-penetrating media

    International Nuclear Information System (INIS)

    Quartieri, Simona; Montagna, Gabriele; Arletti, Rossella; Vezzalini, Giovanna

    2011-01-01

    The elastic behavior of H-ZSM-5 was investigated by in-situ synchrotron X-ray powder diffraction, using both silicone oil (s.o.) and (16:3:1) methanol:ethanol:water (m.e.w.) as 'non-penetrating' and 'penetrating' pressure transmitting media, respectively. From P amb to 6.2 GPa the volume reduction observed in s.o. is 16.6%. This testifies that H-ZSM-5 is one of the most flexible microporous materials up to now compressed in s.o. Volume reduction observed in m.e.w. up to 7.6 GPa is 14.6%. A strong increase in the total electron number of the extraframework system, due to the penetration of water/alcohol molecules in the pores, is observed in m.e.w. This effect is the largest up to now observed in zeolites undergoing this phenomenon without cell volume expansion. The higher compressibility in s.o. than in m.e.w. can be ascribed to the penetration of the extra-water/alcohol molecules, which stiffen the structure and contrast the channel deformations. - Graphical abstract: High-pressure behavior of H-ZSM-5 compressed in (16:3:1) methanol:ethanol:water: (a) projection of the structure along the [0 1 0] direction at P amb , 2 GPa and after pressure release to original ambient conditions (P amb (rev)), and (b) P-dependence of the extraframework content expressed as total number of electrons (gray square represents the number of the extraframework electrons at P amb after decompression). Highlights: → X-ray powder diffraction study of H-ZSM-5 compressibility. → H-ZSM-5 is one of the softest porous material compressed in silicon oil. → Penetration of additional water/alcohol molecules upon compression in m.e.w. → Extra molecules contribute to stiffen the structure and to contrast HP effects.

  12. Synthesis and characterization of ZSM-12 type zeolytic catalysts by using different aluminium sources in the petroleum industry; Sintese e caracterizacao de catalisadores zeoliticos do tipo ZSM-12 utilizando diferentes fontes de aluminio na industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Marilia R.F.S.; Jesus, Daniela B.; Souza, Marcelo J.B. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Engenharia Quimica; Santos, Consuelo D.; Machado, Sanny W.M.; Pedrosa, Anne M. Garrido [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Quimica

    2010-12-15

    The main objective was to synthesize and characterize ZSM-12 zeolites from different sources of aluminium, using hydrothermal method and characterize the catalysts synthesized by X-ray diffractions, thermal analysis and infrared absorption spectroscopy. The X-ray diffractogram showed the formation of zeolites of the family pantasil crystalline. Thermogravimetric curves and FTIR spectra were utilized by monitoring the removal of template and by monitoring the maintenance of zeolite structure. (author)

  13. Hierarchical ZSM-5 Zeolite: Synthesis and Application in Oil Refinery%多级孔ZSM-5分子筛的制备及其在炼油领域中的应用

    Institute of Scientific and Technical Information of China (English)

    郑步梅; 方向晨; 郭蓉; 王振宇

    2017-01-01

    The hierarchical ZSM-5 zeolite integrates the merits of both microporous zeolite and mesoporous materi al.It possesses not only adjustable acidity and high hydrothermal stability,but also excellent diffusivity.Consequently,the hierarchical ZSM-5 zeolite has a wide application prospect in catalytic fields.The research progress of hierarchical ZSM-5 zeolite was reviewed,with the main focus on the synthesis strategies including post-treatment method,hard-templating method and soft-templating method.Meanwhile the applications of hierarchical ZSM-5 zeolite in oil refining field were introduced.Finally,the development trends of hierarchical ZSM-5 are prospected.%多级孔ZSM-5分子筛结合了微孔分子筛可调变的酸性、良好的水热稳定性以及介孔材料优异的传质扩散性能,在催化领域有着广阔的应用前景.我们综述了近年来多级孔ZSM-5分子筛的研究进展,重点概述了多级孔ZSM-5分子筛的不同制备方法,包括后处理法、硬模板法和软模板法等,同时介绍了多级孔ZSM-5分子筛在炼油领域的应用研究,并在上述基础上对多级孔ZSM-5分子筛的研究趋势进行了展望.

  14. Performance of modified H-ZSM-5 zeolite for dehydration of methanol to dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Hassanpour, Samaneh; Taghizadeh, Majid [Department of chemical engineering, Babol University of Technology, P.O. Box 484, 4714871167 Babol (Iran); Yaripour, Fereydoon [Catalyst Research Group, Petrochemical Research and Technology Company, National Petrochemical Company, Tehran (Iran)

    2010-10-15

    The conversion of methanol to dimethyl ether was carried out over various commercial zeolites and modified H-ZSM-5 catalysts to evaluate their catalytic performance. A series of commercially available zeolite samples were used for vapor-phase dehydration of methanol to DME. Catalyst screening tests were performed in a fixed-bed reactor under the same operating conditions (T = 300 S, P = 16 barg, WHSV = 3.8 h{sup -1}). It was found that all the H-form zeolite catalysts in this study were active and selective for DME synthesis. According to the experimental results MDHC-1 catalyst exhibited the highest activity in dehydration of methanol. After finding the most active catalyst, the H-MFI90 zeolite was modified with Na content varying from 0 to 120 mol%, via wet-impregnation method to further improve its selectivity. All of catalysts were characterized by BET, XRD, NH{sub 3}-TPD, ICP, TGA, SEM, FT-IR and TPH techniques. It was found that these materials affected activity of MDHC-1 zeolite by changing its acidity. Ultimately, among all the catalysts studied, Na{sub 100}-modified H-MFI90 zeolite exhibited optimum activity, selectivity and stability at methanol dehydration reaction. (author)

  15. Synthesis of novel perfluoroalkylglucosides on zeolite and non-zeolite catalysts.

    Science.gov (United States)

    Nowicki, Janusz; Mokrzycki, Łukasz; Sulikowski, Bogdan

    2015-04-08

    Perfluoroalkylglucosides comprise a very important class of fluorine-containing surfactants. These compounds can be synthesized by using the Fisher reaction, starting directly from glucose and the required perfluoroalcohols. We wish to report on the use of zeolite catalysts of different structure and composition for the synthesis of perfluoroalkylglucosides when using glucose and 1-octafluoropentanol as substrates. Zeolites of different pore architecture have been chosen (ZSM-5, ZSM-12, MCM-22 and Beta). Zeolites were characterized by XRD, nitrogen sorption, scanning electron microscopy (SEM) and solid-state 27Al MAS NMR spectroscopy. The activity of the zeolite catalysts in the glycosidation reaction was studied in a batch reactor at 100 °C below atmospheric pressure. The performance of zeolites was compared to other catalysts, an ion-exchange resin (Purolite) and a montmorillonite-type layered aluminosilicate. The catalytic performance of zeolite Beta was the highest among the zeolites studied and the results were comparable to those obtained over Purolite and montmorillonite type catalysts.

  16. Comparative study of the methane and methanol mass transfer in the mesoporous H-ZSM-5/alumina extruded pellet

    Science.gov (United States)

    Zhokh, Alexey A.; Strizhak, Peter E.

    2018-07-01

    H-ZSM-5/alumina catalyst pellet was prepared using extrusion method. The as-prepared mesoporous material was characterized using nitrogen adsorption, IR, XRD, and TEM methods. Transport of methane and methanol in the obtained H-ZSM-5/alumina extruded grain was studied. We demonstrate that the methanol transport may be described by the time-fractional diffusion equation in a fairly good manner. The measured value of the fractional order of the time-fractional derivative reveals the fast super-diffusive regime of the methanol transport in the mesoporous solid. Contrary, the methane transport has been found to follow a standard diffusion and described by the second Fick's law. These findings show that mass transfer kinetics is characterized by the order of the temporal derivative. The latter is a unique property of the individual porous media and the diffusing agent.

  17. Comparative study of the methane and methanol mass transfer in the mesoporous H-ZSM-5/alumina extruded pellet

    Science.gov (United States)

    Zhokh, Alexey A.; Strizhak, Peter E.

    2018-01-01

    H-ZSM-5/alumina catalyst pellet was prepared using extrusion method. The as-prepared mesoporous material was characterized using nitrogen adsorption, IR, XRD, and TEM methods. Transport of methane and methanol in the obtained H-ZSM-5/alumina extruded grain was studied. We demonstrate that the methanol transport may be described by the time-fractional diffusion equation in a fairly good manner. The measured value of the fractional order of the time-fractional derivative reveals the fast super-diffusive regime of the methanol transport in the mesoporous solid. Contrary, the methane transport has been found to follow a standard diffusion and described by the second Fick's law. These findings show that mass transfer kinetics is characterized by the order of the temporal derivative. The latter is a unique property of the individual porous media and the diffusing agent.

  18. Characteristics of Heavy Metals Adsorption Cu, Pb and Cd Using Synthetics Zeolite Zsm-5

    OpenAIRE

    Priyadi,; Iskandar,; Suwardi,; Mukti, Rino Rakhmata

    2015-01-01

    It is generally known that zeolite has potential for heavy metal adsorption. The objectives of this study were to synthesize and characterize zeolite ZSM-5 and to figure out the adsorption capacity of zeolite ZSM-5 for heavy metals of Cu2+, Pb2+ and Cd2+. Characterization of zeolite ZSM-5 included some variables i.e. crystal structure (XRD), morphology (SEM), specific surface area and total pore volume (N2 physisorption). Adsorption capacity of zeolite ZSM-5 was analysed using a batch system...

  19. Synthesis, structural characterization, and catalytic properties of tungsten-exchanged H-ZSM5

    International Nuclear Information System (INIS)

    Ding, Weiping; Meitzner, George D.; Marler, David O.; Iglesia, Enrique

    2001-01-01

    W-exchanged H-ZSM5 was prepared by sublimation of WCl6 at 673 K followed by hydrolysis of exchanged WClx species at 523 K. D2 exchange with residual OH groups showed that each W initially replaced about two zeolitic protons for W/Al ratios of 0.29 and 0.44, consistent with the formation of (WO2)2+ containing W6+ species bridging two cation exchange sites. As temperatures reached973 K during D2-OH exchange, these species reduced to (WO2)+ with the concurrent formation of one OD group. CH4 conversion turnover rates (per W) and C2-C1 2 selectivities are very similar to those observed on a Mo/H-ZSM5 sample with similar cation exchange level. As in the case of Mo/H-ZSM5, WOx/H-ZSM5 precursors are initially inactive in CH4 reactions, but they activate during induction with the concurrent evolution of CO, H2O, and an excess amount of H2. The reduction and carburization processes occurring during CH4 reactions and the structure of the exchanged WOx precursors was probed using in situ X-ray absorption spectroscopy (XAS). XAS studies confirmed the isolated initial nature of the exchanged WOx precursors after hydrolysis and dehydration and the formation of WCx clusters 0.6 nm in diameter during CH4 reactions at 973 K. The structural and catalytic resemblance between W- and Mo-exchanged H-ZSM5 is not unexpected, in view of chemical similarities between oxides or carbides of Mo and W. The synthesis of exchanged WOx precursors and their subsequent carburization during CH4 reactions, however, are more difficult than the corresponding processes for the MoOx counterparts. This may account for previous reports of lower CH4 reaction rates and aromatics selectivities on W/H-ZSM5 compared with those observed on Mo/H-ZSM5 and with those reported here for rigorously exchanged W/H-ZSM5

  20. Nonlinear upconversion based infrared spectroscopy on ZSM-5 zeolite

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Beato, Pablo; Tidemand-Lichtenberg, Peter

    2017-01-01

    We present a spectroscopic measurement of zeolite ZSM-5 in the mid-IR following the methanol attachment to active sites at 200 °C. The spectra are measured using nonlinear frequency upconversion to the near-IR spectral region.......We present a spectroscopic measurement of zeolite ZSM-5 in the mid-IR following the methanol attachment to active sites at 200 °C. The spectra are measured using nonlinear frequency upconversion to the near-IR spectral region....

  1. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.

  2. Investigation into the Catalytic Activity of Microporous and Mesoporous Catalysts in the Pyrolysis of Waste Polyethylene and Polypropylene Mixture

    Directory of Open Access Journals (Sweden)

    Kaixin Li

    2016-06-01

    Full Text Available Catalytic pyrolysis behavior of synthesized microporous catalysts (conventional Zeolite Socony Mobil–5 (C-ZSM-5, highly uniform nanocrystalline ZSM-5 (HUN-ZSM-5 and β-zeolite, Mesoporous catalysts (highly hydrothermally stable Al-MCM-41 with accessible void defects (Al-MCM-41(hhs, Kanemite-derived folded silica (KFS-16B and well-ordered Al-SBA-15 (Al-SBA-15(wo were studied with waste polyethylene (PE and polypropylene (PP mixture which are the main constituents in municipal solid waste. All the catalysts were characterized by Brunauer-Emmett-Teller (BET, X-ray powder diffraction (XRD, and NH3-temperature programmed desorption (TPD. The results demonstrated that microporous catalysts exhibited high yields of gas products and high selectivity for aromatics and alkene, whereas the mesoporous catalysts showed high yields of liquid products with considerable amounts of aliphatic compounds. The differences between the microporous and mesoporous catalysts could be attributed to their characteristic acidic and textural properties. A significant amount of C2–C4 gases were produced from both types of catalysts. The composition of the liquid and gas products from catalytic pyrolysis is similar to petroleum-derived fuels. In other words, products of catalytic pyrolysis of plastic waste can be potential alternatives to the petroleum-derived fuels.

  3. Transformation of South African coal fly ash into ZSM-5 zeolite and its application as an MTO catalyst

    CSIR Research Space (South Africa)

    Missengue, RNM

    2017-01-01

    Full Text Available This study presents a way of using South African coal fly ash by extracting metals such as Al and Fe with concentrated sulphuric acid, and then using the solid residue as a feedstock for the synthesis of ZSM-5 zeolite. The percentage of aluminium...

  4. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    Science.gov (United States)

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Characterization structural and morphology ZSM-5 zeolite by hydrothermal synthesis

    International Nuclear Information System (INIS)

    Silva, V.J.; Crispim, A.C.; Queiroz, M.B.; Laborde, H.M.; Rodrigues, M.G.F.; Menezes, R.R.

    2009-01-01

    Solid acids are catalytic materials commonly used in the chemical industry. Among these zeolites are the most important business processes including water treatment, gas separation, and cracking long hydrocarbon chains to produce high octane gasoline. Its synthesis, characterization and applications have been widely studied. The objective this study was to synthesize the ZSM-5 zeolite for future use in separation processes and catalysis. The zeolite ZSM-5 was prepared by hydrothermal synthesis at 170°C, using silica, deionized water and the director of structures (TPABr - tetrapropylammonium bromide). The materials were characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and semiquantitative chemical analysis by X ray fluorescence (XRF). According to the XRD was possible to observe the formation of ZSM-5 zeolite, with peaks intense and well defined. The SEM showed the formation of individual particles, clean, rounded shapes. (author)

  6. Synthesis and catalytic performance of ZSM-5/MCM-41 composite molecular sieve from palygorskite

    Science.gov (United States)

    Jiang, Jinlong; Wu, Mei; Yang, Yong; Duanmu, Chuansong; Chen, Jing; Gu, Xu

    2017-10-01

    ZSM-5/MCM-41 composite molecular sieve has been hydrothermally synthesized through a two-step crystallization process using palygorskite (PAL) as silicon and aluminum source. The products were characterized by various means and their catalytic properties for acetalization of cyclohexanone and esterification of acetic acid and n-butanol were also investigated. In the first step ZSM-5 zeolite could be formed from the acid-treated PAL after hydrothermal treatment using tetrapropylammonium bromide as template. XRD patterns, N2 adsorption and desorption data, and TEM images show that the composite obtained in the secondary step had a well-ordered mesoporous MCM-41 phase and a microporous ZSM-5 zeolite phase. Compared with ZSM-5, ZSM-5/MCM-41 composite possessed more total acid amount, weak acid sites and large pore structure due to the formation of MCM-41 and exhibited higher catalytic activity for the acetalization and esterification reaction.

  7. Experimental study on desorption characteristics of SAPO-34 and ZSM-5 zeolite

    Science.gov (United States)

    Yuan, Z. X.; Zhang, X.; Wang, W. C.; Du, C. X.; Liu, Z. B.; Chen, Y. C.

    2018-03-01

    The dynamic characteristics of SAPO-34 and ZSM-5 zeolite in the desorption process have been experimentally studied with the gravimetric method. The weight change of the test sample was recorded continually for different conditions of temperature and pressure. The curve of the desorption degree with the temperature and the pressure was obtained and discussed. With the intrinsic different micro-structure, the two zeolites showed distinguished characteristics of the desorption. In contrast to an S-shaped desorption curve of the SAPO-34, the ZSM-5 showed an exponential desorption curve. In comparison, the desorption characteristics of the ZSM-5 were better than that of the SAPO-34 in the temperature range of 40 °C 90 °C. Nevertheless, the effect of the pressure on the desorption degree was stronger for the SAPO-34 than for the ZSM-5. Further analysis revealed that the desorption speed was affected more strongly by the temperature than by the pressure.

  8. Fluidized bed catalytic pyrolysis of eucalyptus over hzsm-5: effect of acid density and gallium modification on catalyst deactivation

    Science.gov (United States)

    Catalytic fast pyrolysis of eucalyptus wood was performed on a continuous laboratory scale fluidized bed fast pyrolysis system. Catalytic activity was monitored from use of fresh catalyst up to a cumulative biomass to catalyst ratio (B/C) of 4/1 over extruded pellets of three different ZSM-5 catalys...

  9. Thermochemical properties of copper forms of zeolite ZSM5 containing dimethylethylenediamine

    International Nuclear Information System (INIS)

    Cuvanova, S.; Rehakova, M.; Finocchiaro, P.; Pollicino, A.; Bastl, Z.; Nagyova, S.; Fajnor, V.S.

    2007-01-01

    Synthetic zeolite ZSM5 and its copper forms containing N,N-dimethylethylenediamine (dmen) have been investigated by CHN, energy dispersive spectroscopy (EDS) analysis, X-ray powder diffractometry, X-ray photoelectron spectroscopy and continuous waves hydrogen nuclear magnetic resonance (CW 1 H NMR) spectroscopy. Thermal properties have been studied by methods of thermal analysis-TG, DTA and DTG in the temperature range 20-1000 deg. C in air atmosphere. Mass spectroscopy method was used for the study of the released gas products of thermal decomposition. The results of thermal analyses of two zeolitic samples Cu-ZSM5 and Cu(dmen) x ZSM5 (x depends on the mode of preparation) demonstrated their different thermal properties. The main part of the decomposition process of the samples Cu(dmen) x ZSM5 occurs at considerably higher temperatures than the boiling point of dimethylethylenediamine, proving strong bond and irreversibility of dmen-zeolite interaction. According to the results of mass spectroscopy the decomposition process in inert atmosphere is characterized by the development of a large spectrum of products with atomic mass from 18 to 447 atomic mass units as a consequence of the catalytic effect of the silicate surface

  10. Síntese da zeólita ZSM-5 e suas propriedades estruturais após troca iônica com cobre Synthesis of the ZSM-5 zeolite and its structural properties after copper ion-exchange

    Directory of Open Access Journals (Sweden)

    E. L. Foletto

    2000-12-01

    Full Text Available A zeólita ZSM-5 foi sintetizada utilizando sílica "Aerosil-Degussa -- 380 m²/g" como fonte de silício, em substituição ao trisilicato de sódio, que é normalmente utilizado na síntese dessa zeólita. Subseqüentemente, foi incorporado cobre à ZSM-5 através do método convencional de troca iônica. Técnicas de difração de raios X, microscopia eletrônica de varredura, área superficial e análise elementar por absorção atômica foram utilizadas para verificar a formação da zeólita sintetizada e suas propriedades após troca com cobre. Os resultados mostraram que houve a formação da ZSM-5 nas condições de síntese empregadas e que a amostra modificada pelo processo de troca manteve as propriedades da zeólita original.The ZSM-5 zeolite was synthesized using silica "Aerosil-Degussa -- 380 m²/g" as silicon source, in substitution to the sodium trisilicate, which is usually employed in the zeolite synthesis. Subsequently, the copper was incorporated to ZSM-5 by conventional ion-exchange method. X-ray diffraction, scanning electron microscopy, surface area and elemental analysis by atomic absorption have been used to verify ZSM-5 formation and its properties after copper exchange. The results presented ZSM-5 formation in the employed synthesis conditions. The ion-exchanged sample conserved the original ZSM-5 properties.

  11. Fe-BEA Zeolite Catalysts for NH3-SCR of NOx

    DEFF Research Database (Denmark)

    Frey, Anne Mette; Mert, Selcuk; Due-Hansen, Johannes

    2009-01-01

    Iron-containing zeolites are known to be promising catalysts for the NH3-SCR reaction. Here, we will investigate the catalytic activity of iron-based BEA catalysts, which was found to exhibit improved activities compared to previously described iron-containing zeolite catalysts, such as ZSM-5...... and ZSM-12. Series of Fe-BEA zeolite catalysts were prepared using a range of different preparation methods. Furthermore, we found that an iron concentration around 3 wt% on BEA showed a small optimum in SCR activity compared to the other iron loadings studied....

  12. Radioactive (14C) tracer studies of methanol conversion over a Ni-ZSM-5 zeolite

    International Nuclear Information System (INIS)

    Hwu, F.S.; Hightower, J.W.

    1983-01-01

    Secondary reactions have been identified in the overall conversion of methanol to hydrocarbons over a Ni-ZSM-5 catalyst. The major conclusions are: (1) The alkylation of light olefins with methanol or methyl ether is one pathway for the formation of larger olefins with one more carbon atom. (2) Paraffins are produced primarily by hydrogen transfer to the corresponding olefin. (3) Except for minor cracking reactions, paraffins with no more than 7 carbon atoms, are final stable products; isomerization among paraffin isomers does not take place at 368 0 C. (4) Light olefins, e.g. ethylene, propylene, and butenes, are reactive intermediates for aromatics formation. (5) Aromatic compounds may also be produced by methanol- methyl ether-alkylation of benzene and subsequent alkylated benezenes. 2 figures, 3 tables

  13. Catalytic Cracking of Triglyceride-Rich Biomass toward Lower Olefins over a Nano-ZSM-5/SBA-15 Analog Composite

    Directory of Open Access Journals (Sweden)

    Xuan Hoan Vu

    2015-10-01

    Full Text Available The catalytic cracking of triglyceride-rich biomass toward C2–C4 olefins was evaluated over a hierarchically textured nano-ZSM-5/SBA-15 analog composite (ZSC-24 under fluid catalytic cracking (FCC conditions. The experiments were performed on a fully automated Single-Receiver Short-Contact-Time Microactivity Test unit (SR-SCT-MAT, Grace Davison at 550 °C and different catalyst-to-oil mass ratios (0–1.2 g∙g−1. The ZSC-24 catalyst is very effective for transformation of triglycerides to valuable hydrocarbons, particularly lower olefins. The selectivity to C2–C4 olefins is remarkably high (>90% throughout the investigated catalyst-to-oil ratio range. The superior catalytic performance of the ZSC-24 catalyst can be attributed to the combination of its medium acid site amount and improved molecular transport provided by the bimodal pore system, which effectively suppresses the secondary reactions of primarily formed lower olefins.

  14. Conversion of straight-run gas-condensate benzenes into high- octane gasolines based on modified ZSM-5 zeolites

    International Nuclear Information System (INIS)

    Erofeev, V; Reschetilowski, V; Khomajakov, I; Egorova, L; Volgina, T; Tatarkina, A

    2014-01-01

    This paper describes the conversion of straight-run benzene of gas condensate into high-octane gasoline based on zeolite catalyst ZSM-5, modified in binary system oxide- based Sn (III) and Bi (III). It was defined that the introduction of the binary system oxide-based Sn(III) and Bi (III) into the basic zeolite results in the 2-fold increase of its catalytic activity.High-octane gasoline converted from straight-run benzene is characterized by a low benzol content in comparison to the high-octane benzenes produced during the catalytic reforming

  15. An operando optical fiber UV–vis spectroscopic study of the catalytic decomposition of NO and N2O over Cu-ZSM-5

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Groothaert, M.H.; Lievens, K.; Leeman, H.; Schoonheydt, R.A.

    2003-01-01

    The role of the bis(μ-oxo)dicopper core, i.e., [Cu2(μ-O)2]2+, in the decomposition of NO and N2O by the Cu-ZSM-5 zeolite has been studied with combined operando UV–vis monitoring of the catalyst and on-line GC analysis. An optical fiber was mounted on the outer surface of the quartz wall of the

  16. CONVERSION OF (±-CITRONELLAL AND ITS DERIVATIVES TO (--MENTHOL USING BIFUNCTIONAL NICKEL ZEOLITE CATALYSTS

    Directory of Open Access Journals (Sweden)

    Indri Badria Adilina

    2015-06-01

    Full Text Available (±-Citronellal and its derivatives were converted to (--menthol by a one-pot reaction system using zeolite based nickel catalysts. The catalysts were prepared by immobilization of nickel on natural zeolite (NZ or synthetic zeolite (ZSM-5 by a simple cation exchange method. Calcination and hydrogen treatment procedures were able to significantly increase the surface area and pore volume of NZ based catalysts whereas negligible changes in the properties were observed for that of ZSM-5. Catalytic reactions were carried out at 70ºC by stirring the mixture in the air for cyclization of (±-citronellal to (±-isopulegol followed by hydrogenation towards the desired (--menthol at 2 Mpa of H2 pressure. The Ni/NZ catalyst was able to convert a (±-citronellal derivative yielding 9% (--menthol (36% selectivity with conversion up to 24%, whereas Ni/ZSM5 catalyst directly converted 65% (±-citronellal to give 4% menthol (6% selectivity. These zeolite based catalysts are therefore potential materials for the conversion of biomass feed stock to value-added chemicals.

  17. Study of (Fe/HZM-5) catalyst be used in the Fischer-Tropsch synthesis: preparation and characterization; Estudo do catalisador (Fe/HZSM-5) a ser utilizado na sintese de Fischer-Tropsch: preparacao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Arthur C. [Universidade Estadual do Maranhao (UEMA0), MA (Brazil); Sousa, Bianca V. de; Lima, Wellington S.; Rodrigues, Meiry G.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia Quimica

    2008-07-01

    In this work it was developed an iron catalyst supported on the ZSM-5 zeolite to be used in the Fischer-Tropsch Synthesis (FTS). The NH{sub 4}{sup +}ZSM-5 zeolitic support was submitted to the wet impregnation, using the 0.1 M of the Fe(NO{sub 3}){sub 3}.9H{sub 2}O solution to obtain the Fe/NH{sub 4}{sup +}ZSM-5 sample in the content of iron 5% wt. After, the material was submitted for the drying process and in the following, for the calcination one, obtaining the Fe/HZSM-5 form. The EDS characterization analyses showed that in the Fe/HZSM-5 sample the iron is in the Fe{sub 2}O{sub 3} form and that the impregnation and calcination processes did not cause significant exchanges in the zeolitic support framework. The results of the N{sub 2} physical adsorption of the 5% Fe/HZSM-5 showed the presence of the micropores and mesopores. From these results, the obtained material (5% Fe/HZSM-5) presents a great potential to be used like a catalyst in the FTS. (author)

  18. Adsorption of carbon monoxide on Ag(I)-ZSM-5 zeolite: An ab initio density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Zhenzhen [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Yu Yangxin, E-mail: yangxyu@mail.tsinghua.edu.cn [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Mi Jianguo [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Significant difference in adsorption energy is found for CO adsorbed on different Ag{sup +}-exchange sites. Black-Right-Pointing-Pointer Energetically stable sites in Ag-ZSM-5 are found. Black-Right-Pointing-Pointer Introduction of the two Al atoms to the site of Ag-ZSM-5 results in a reduction of CO adsorption energy. Black-Right-Pointing-Pointer Comparison of CO adsorption energy on the corresponding charge-exchange sites of Ag-ZSM-5 and Cu-ZSM-5 is made. - Abstract: Adsorption of carbon monoxide on different Ag{sup +}-exchange sites of Ag-ZSM-5 zeolite has been investigated using density functional theory. The coordination and local geometry of the Ag{sup +} ion in Ag-ZSM-5 as well as adsorption structures and energies of CO adsorbed on these sites are explored extensively. The structure of Ag{sup +}-exchange sites, location of the Al atom on the T site, and number of the Al atoms contained in the sites are considered in the theoretical calculations. The calculated results show that the Ag-O coordination number of two is strongly preferred before and after CO adsorption. The Ag-O bond lengths are in a broad range of 2.2-2.9 Angstrom-Sign , and the Ag-C bond lengths for CO adsorbed on Ag-ZSM-5 zeolite are calculated to be 2.0-2.2 Angstrom-Sign . Both Ag-O and Ag-C bond lengths for CO-Ag-ZSM-5 complex are longer than those for CO-Cu-ZSM-5 complex. The calculated adsorption energy of CO adsorbed on the I2 sites is between 28.5 and 29.6 kcal/mol, and that on the Z5, Z6, M5 and M6 sites containing one Al atom on the T position is between 11.3 and 18.9 kcal/mol whereas the calculated adsorption energy of CO adsorbed on the M7 site containing one Al atom is 19.9 kcal/mol. The introduction of the two Al atoms to the Ag{sup +}-exchange site results in a reduction of CO adsorption energy. In general, the adsorption energy of CO on Ag-ZSM-5 is lower than that on Cu-ZSM-5. The predicted coordination of the Ag{sup +} ion, bond lengths

  19. 1 - Aromatization of n-hexane and natural gasoline over ZSM-5 zeolite, 2- Wet catalytic oxidation of phenol on fixed bed of active carbon; 1 - Aromatisation de n-hexane et d'essence sur zeolithe ZSM-5, 2 - Oxydation catalytique en voie humide du phenol sur charbon actif

    Energy Technology Data Exchange (ETDEWEB)

    Suwanprasop, S.

    2005-04-15

    I - The production of aromatic hydrocarbons from n-hexane and natural gasoline over Pd loaded ZSM-5 zeolite in a tubular reactor was achieved under the suitable conditions at 400 deg. C, and 0.4 ml/min reactant feeding rate, employing ZSM-5 (0.5% Pd content) as a catalyst. Under these conditions, n-hexane and natural gasoline conversions were found to be 99.7% and 94.3%, respectively (with respective aromatic selectivity of 92.3% and 92.6%). II - Wet catalytic air oxidation of phenol over a commercial active carbon was studied in a three phase fixed bed reactor under mild temperature and oxygen partial pressure. Exit phenol concentration, COD, and intermediates were analysed. Oxidation of phenol was significantly improved when increasing operating temperature, oxygen partial pressure, and liquid space time, while up or down flow modes had only marginal effect. A complete model involving intrinsic kinetics and all mass transfer limitations gave convenient reactor simulation. (author)

  20. Study on the Synthesis and Characterization of Nano Silver Loaded ZSM-5 Zeolite for Bacterial Elimination.

    Science.gov (United States)

    Nam, Le Thi Hoai; Vinh, Tran Quang; Loan, Nguyen Thi Thanh; Nhiem, Nguyen Thi; Trang, Nguyen Thi Thu; Tan, Nguyen Minh; Radnik, Jörg

    2015-09-01

    The synthesis of nano silver coated ZSM-5 zeolite (Ag/ZSM-5) by ion exchange method combined with anaerobic thermal treatment and its bacterial elimination performance were studied. The various Ag content of different samples was analysed by atomic absorption spectroscopy method. The Ag/ZSM-5 sample with 0.251 wt% Ag (denoted as ZAg3) was characterized by using atomic absorption spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and pulsed CO chemisorption methods. The results showed that silver nanoparticles with a small nano-size of 2-3 nm were formed and distributed on the surface of ZSM-5 zeolite with a dispersion value of 59%. The samples denoted as ZAg1, ZAg2, ZAg3, ZAg4 correspond to a Ag content of 0.064; 0.128; 0.251; 0.253 wt% Ag. In the evaluation series, after 10 min of contact time between bacterial and Ag/ZSM-5, over 99% of E.coli (initial concentration was 10(6) cfu/ml) could be eliminated by Ag/ZSM-5 with the Ag content of at least 0.251 wt% (ZAg3). In addition, over 99% of Coliform (initial concentration was 10(5) cfu/ml) could be eliminated by Ag/ZSM-5 with Ag content of at least 0.128 wt% (ZAg2). In a further evaluation series varying the contact time, ZAg3 sample could eliminate over 99% and 100% of Ecoli after 10 min and 60 min, respectively (initial concentrations of both E.coli and Coliform were 10(5) cfu/ml). In addition, it could eliminate 100% of Coliform in only 10 min of contact time.

  1. Incorporation of Titanium into H-ZSM-5 Zeolite via Chemical Vapor Deposition: Effect of Steam Treatment

    International Nuclear Information System (INIS)

    Xu, Cheng Hua; Jin, Tai Huan; Jhung, Sung Hwa; Hwang, Jin Soo; Chang, Jong San; Qiu, Fa Li; Park, Sang Eon

    2004-01-01

    Ti-ZSM-5 prepared by secondary synthesis, from the reaction of H-ZSM-5 with vapor phase TiCl 4 , was characterized with several physicochemical techniques including FT-IR and UV/VIS-DRS. It was found that zeolite structure, surface area and pore volume did not change, and the framework aluminum could not be replaced by titanium atom during the secondary synthesis of Ti-ZSM-5. The incorporation of titanium into the framework might be due to reaction of TiCl 4 with the silanol groups associated with defects or surface sites. The formation of extra-framework titanium could not be avoided, unless the samples were further treated by water vapor at 550 .deg. C or higher temperature. High temperature steam treatment of Ti-ZSM-5 prepared by chemical vapor deposition with TiCl 4 was efficient to prevent the formation of non-framework titanium species. Ti-ZSM-5 zeolites prepared in this work contained only framework titanium species and exhibited improved catalytic property close to TS-1 prepared by hydrothermal synthesis

  2. Incorporation of Titanium into H-ZSM-5 Zeolite via Chemical Vapor Deposition: Effect of Steam Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Cheng Hua; Jin, Tai Huan; Jhung, Sung Hwa; Hwang, Jin Soo [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Chang, Jong San; Qiu, Fa Li [Chinese Academy of Sciences(CAS), Chengdu (China); Park, Sang Eon [Inha University, Incheon (Korea, Republic of)

    2004-05-15

    Ti-ZSM-5 prepared by secondary synthesis, from the reaction of H-ZSM-5 with vapor phase TiCl{sub 4}, was characterized with several physicochemical techniques including FT-IR and UV/VIS-DRS. It was found that zeolite structure, surface area and pore volume did not change, and the framework aluminum could not be replaced by titanium atom during the secondary synthesis of Ti-ZSM-5. The incorporation of titanium into the framework might be due to reaction of TiCl{sub 4} with the silanol groups associated with defects or surface sites. The formation of extra-framework titanium could not be avoided, unless the samples were further treated by water vapor at 550 .deg. C or higher temperature. High temperature steam treatment of Ti-ZSM-5 prepared by chemical vapor deposition with TiCl{sub 4} was efficient to prevent the formation of non-framework titanium species. Ti-ZSM-5 zeolites prepared in this work contained only framework titanium species and exhibited improved catalytic property close to TS-1 prepared by hydrothermal synthesis.

  3. Catalytic transformation of methyl benzenes over zeolite catalysts

    KAUST Repository

    Al-Khattaf, S.

    2011-02-01

    Catalytic transformation of three methyl benzenes (toluene, m-xylene, and 1,2,4-trimethyl benzene) has been investigated over ZSM-5, TNU-9, mordenite and SSZ-33 catalysts in a novel riser simulator at different operating conditions. Catalytic experiments were carried out in the temperature range of 300-400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction conditions on the isomerization to disproportionation product ratio, distribution of trimethylbenzene (TMB) isomers, and p-xylene/o-xylene ratios are reported. The sequence of reactivity of the three alkyl benzenes depends upon the pore structure of zeolites. The zeolite structure controls primarily the diffusion of reactants and products while the acidity of these zeolites is of a secondary importance. In the case of medium pore zeolites, the order of conversion was m-xylene > 1,2,4-TMB > toluene. Over large pore zeolites the order of reactivity was 1,2,4-TMB > m-xylene > toluene for SSZ-33 catalyst, and m-xylene ∼ 1,2,4-TMB > toluene over mordenite. Significant effect of pore size between ZSM-5 and TNU-9 was observed; although TNU-9 is also 3D 10-ring channel system, its slightly larger pores compared with ZSM-5 provide sufficient reaction space to behave like large-pore zeolites in transformation of aromatic hydrocarbons. We have also carried out kinetic studies for these reactions and activation energies for all three reactants over all zeolite catalysts under study have been calculated. © 2011 Elsevier B.V.

  4. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  5. Generación de mesoporosidad en zeolitas ZSM-5 sintetizadas en medio inorgánico

    Directory of Open Access Journals (Sweden)

    Carmen M. López

    2011-10-01

    Full Text Available In this work we presented a study over the generation of mesoporosity in ZSM-5 zeolites with ratio Si/Al of 10 and 35 synthesized in inorganic medium. A mesoporous phase with hexagonal arrangement that coexists with the zeolite ZSM-5 remnant, was obtained after alkaline treatment of zeolite followed by hydrothermal treatment in the presence of CTAB surfactant micelles. The acidity and catalytic activity of the zeolite ZSM-5 with higher relation Si/Al were kept after the treatment, whereas a notable decrease of these properties was obtained for the zeolite with minor relation Si/Al

  6. Aromatic Transformations Over Mesoporous ZSM-5: Advantages and Disadvantages

    Czech Academy of Sciences Publication Activity Database

    Musilová, Zuzana; Žilková, Naděžda; Park, S.-E.; Čejka, Jiří

    2010-01-01

    Roč. 53, 19-20 (2010), s. 1457-1469 ISSN 1022-5528 Institutional research plan: CEZ:AV0Z40400503 Keywords : mesoporous ZSM-5 * alkylation * disproportionation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.359, year: 2010

  7. NO Reactions Over Ir-Based Catalysts in the Presence of O2

    Directory of Open Access Journals (Sweden)

    Mingxin Guo

    2011-01-01

    Full Text Available The behaviour of a series of Ir-based catalysts supported on SiO2, ZSM-5 and γ-Al2O3 with various Ir loadings prepared by impregnation method was conducted by temperature programmed reaction (TPR technique. The result implies that NO is oxidized to NO2 while simultaneously being reduced to N2 or N2O in the NO reactions over iridium catalysts. The surface active phase over iridium catalysts that promote the NO reactions is IrO2. The catalytic activity increases with the increase of the Ir loading and support materials have a little effect on the catalytic activity. When the loading is less than 0.1%, the catalytic activity was found to be dependent on the nature of support materials and in order: Ir/ZSM-5>Ir/γ-Al2O3>Ir/SiO2. When the loading is higher than 0.1%, the catalytic activity for NO oxidation is in order: Ir/ZSM-5>Ir/SiO2>Ir/γ -Al2O3, which is correlated with Ir dispersion on the surface of support materials and the catalytic activity for NO reduction is in sequence: Ir/γ -Al2O3>Ir/SiO2>Ir/ZSM-5, which is attributed to the adsorbed-dissociation of NO2. Compared to Pt/γ-Al2O3, Ir/γ-Al2O3 catalyst is more benefit for the NO reduction.

  8. Occluded cobalt species over ZSM-5 matrix: Design, preparation, characterization and magnetic behavior

    International Nuclear Information System (INIS)

    Pierella, Liliana B.; Saux, Clara; Bertorello, Hector R.; Bercoff, Paula G.; Botta, Pablo M.; Rivas, J.

    2008-01-01

    Co-containing molecular sieves with MFI structure was synthesized by the hydrothermal crystallization method and cobalt was incorporated in it by wet impregnation at different percentages. Thermal post-treatments were applied to Co-ZSM-5: calcination and reduction. X ray diffraction (XRD) and FTIR studies confirmed crystallinity, structure and orthorhombic symmetry of the obtained samples (Co-ZSM-5 calcined and Co-ZSM-5 reduced). The XRD, Raman spectroscopy, SEM and TPR techniques for the calcined samples showed the presence of Co 3 O 4 which diminished in the reduced samples and Co 0 appeared. The magnetic behavior of the materials was evaluated by magnetization (M) variation with applied magnetic field (H) at different temperatures. Low magnetization is observed in the calcined samples while high values are attained in the reduced samples, due to the presence of metallic Co

  9. Determining the efficiency of ZSM-5 zeolite impregnated with nanoparticles of titanium dioxide in the photocatalytic removal of styrene vapors

    Directory of Open Access Journals (Sweden)

    Mojtaba Nakhaei pour

    2017-03-01

    Full Text Available Introduction: Styrene monomer is a volatile organic compound that has many applications particularly in plastic, rubber and paint industries. According to the harmful effects of these compounds on human and environment, reducing and controling of them seem necessary. Therefore, in this study removal of styrene was investigated using photocatalytic process of titanium dioxide nanoparticles stabilized on ZSM-5. Methods: After stabilization of titanium dioxide nanoparticles on ZSM-5 zeolite, BET, SEM and XRD analysis were used to determine the characteristics of nanoparticles. Experiments were conducted at ambient temperature in laboratory scale. Concentration of produced styrene in the experiments was 50 and 300 ppm, and input flow rate was 1 l/min. Results: images and spectra obtained through XRD and SEM-EDAX showed that  nano-catalysts are well- stabilized. The results showed that by increasing of input concentration of styrene from 50 to 300 ppm, photocatalytic removal efficiency are reduced. Also, adsorption capacity of the catalyst bed in concentrations of 50 and 300 ppm was calculated 16.3 and19.4 mg/gr of adsorbent respectively. Conclusion: The results show that the use of hybrid bed can increase the removal efficiency of contaminants. And due to low cost of application of these systems compared to conventional methods, it is recommended that more comprehensive studies to be done regarding the optimization of the parameters affecting the process of photocatalytic removal.

  10. Metal oxide blended ZSM-5 nanocomposites as ethanol sensors

    Indian Academy of Sciences (India)

    Framework of ZSM-5 structure consists of intersecting ... ges quality monitoring, environmental monitoring, indoor air quality and .... metric stretching vibrations of Si–O group [22]. ..... [17] Cheng Y, Liao R H, Li J S, Sun X Y and Wang L J 2008.

  11. Shear-thickening behavior of Fe-ZSM5 zeolite slurry and its removal with alumina/boehmites

    Science.gov (United States)

    Liu, Xiao-guang; Li, Yan; Xue, Wen-dong; Sun, Jia-lin; Tang, Qian

    2018-06-01

    A cryogenic scanning electron microscopy (cryo-SEM) technique was used to explore the shear-thickening behavior of Fe-ZSM5 zeolite pastes and to discover its underlying mechanism. Bare Fe-ZSM5 zeolite samples were found to contain agglomerations, which may break the flow of the pastes and cause shear-thickening behaviors. However, the shear-thickening behaviors can be eliminated by the addition of halloysite and various boehmites because of improved particle packing. Furthermore, compared with pure Fe-ZSM5 zeolite samples and its composite samples with halloysite, the samples with boehmite (Pural SB or Disperal) additions exhibited network structures in their cryo-SEM images; these structures could facilitate the storage and release of flow water, smooth paste flow, and avoid shear-thickening. By contrast, another boehmite (Versal 250) formed agglomerations rather than network structures after being added to the Fe-ZSM5 zeolite paste and resulted in shear-thickening behavior. Consequently, the results suggest that these network structures play key roles in eliminating the shear-thickening behavior.

  12. Synthesis of hierarchical porous materials with ZSM-5 structures via template-free sol–gel method

    Directory of Open Access Journals (Sweden)

    Wei Han et al

    2007-01-01

    Full Text Available Interests are focused on preparation of hierarchical porous materials with zeolite structures by using soft or rigid templates in order to solve diffusion and mass transfer limitations resulting from the small pore sizes of zeolites. Here we develop a convenient template-free sol–gel method to synthesize hierarchical porous materials with ZSM-5 structures. This method involves hydrothermal recrystallization of the xerogel converted from uniform ZSM-5 sol by a vacuum drying process. By utilizing this method we can manipulate the size of zeolite nanocrystals as building units of porous structures based on controlling temperature of recrystallization, consequently obtain hierarchical porous materials with different intercrystalline pore sizes and ZSM-5 structures.

  13. Effect of high-temperature treatment on Fe/ZSM-5 prepared by chemical vapor deposition of FeCl3. II. Nitrous oxide decomposition, selective oxidation of benzene to phenol, and selective reduction of nitric oxide by isobutane

    NARCIS (Netherlands)

    Zhu, Q.; Teeffelen, van R.M.; Santen, van R.A.; Hensen, E.J.M.

    2004-01-01

    The catalytic performance (nitrous oxide decomposition, hydroxylation of benzene to phenol with nitrous oxide, and selective reduction of nitric oxide by i-butane) was evaluated for a set of HZSM-5 and sublimed Fe/ZSM-5 catalysts, which have been extensively characterized in an earlier contribution

  14. Radioisotope tracer study of co-reactions of methanol with ethanol using 11C-labelled methanol over alumina and H-ZSM-5

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Kumar, N.; Salmi, T.; Murzin, D.Yu

    2005-01-01

    Complete text of publication follows. The transformation of methanol has been investigated over alumina and H-ZSM-5 in our previous experiments by 11 C-radioisotope tracing. The main product in methanol conversion over alumina was dimethyl ether due to Lewis acid sites while over H-ZSM-5 mostly hydrocarbons were formed due to both Lewis and Brrnsted acid sites. With increasing temperature first the ethanol was dehydrated to diethyl ether followed by ethene formation over alumina and H-ZSM-5. In this work, 11 C-labelled methanol as radioisotope tracer was added to non-radioactive methanol for investigation of co-reaction with non-radioactive ethanol over alumina and H- ZSM-5. The 11 C-methanol tracer was used to distinguish the methanol derivates and co-reaction derivates of methanol with ethanol against non-radioactive ethanol derivates. The yield of methyl ethyl ether as mixed ether and the influence of ethanol for the yields of C 1 -C 5 hydrocarbons were studied as a function of reaction temperature and contact time. The 11 C-methanol was formed by a radiochemical process from 11 CO 2 produced at cyclotron. The mixture of methanol and ethanol was added to 11 C-methanol and injected to the catalyst. The catalysis was carried out in a glass tube fixed-bed reactor after its pretreatment. The derivates were analyzed by radio-gas chromatography (gas chromatograph with thermal conductivity detector coupled on-line with a radioactivity detector). The comparative analysis of yields of radioactive and non-radioactive products as a function of reaction temperature gives information about the reaction pathways. Over alumina the yields of dimethyl ether and methyl ethyl ether (co-product) as radioactive and diethyl ether with ethene as non-radioactive main products were monitored as a function of reaction temperature and reaction time in the range of 513-593 K. Alongside ethanol derivates the ethene turns into main product in contrast with methyl ethyl ether and diethyl

  15. Cu-ZSM-5 zeolite highly active in reduction of NO with decane - Effect of zeolite structural parameters on the catalyst performance

    Czech Academy of Sciences Publication Activity Database

    Čapek, Libor; Dědeček, Jiří; Wichterlová, Blanka; Cider, L.; Jobson, E.; Tokarová, V.

    2005-01-01

    Roč. 60, 3-4 (2005), s. 147-153 ISSN 0926-3373 R&D Projects: GA ČR GD203/03/H140; GA AV ČR 1ET400400413 Grant - others:European Union(XE) GR5D-CT2001-00595 Institutional research plan: CEZ:AV0Z40400503 Keywords : Cu-ZSM-5 * NO reduction * SCR-NOx * lean burn conditions * decane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.809, year: 2005

  16. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Maisuls, S.E.

    2000-01-01

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  17. Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating

    Czech Academy of Sciences Publication Activity Database

    Koo, J.-B.; Jiang, N.; Saravanamurugan, S.; Voláková, Martina; Musilová, Zuzana; Čejka, Jiří; Park, S.-E.

    2010-01-01

    Roč. 276, č. 2 (2010), s. 327-334 ISSN 0021-9517 Institutional research plan: CEZ:AV0Z40400503 Keywords : mesoporous ZSM-5 * template * microwave irradiation * carbon Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.415, year: 2010

  18. Fabrication of novel chitosan/PAN/magnetic ZSM-5 zeolite coated sponges for absorption of oil from water surfaces.

    Science.gov (United States)

    Samadi, Saman; Yazd, Shabnam Sharif; Abdoli, Hossein; Jafari, Pooya; Aliabadi, Majid

    2017-12-01

    In the present study, the chitosan (bottom layer)/polyacrylonitrile (top layer, PAN) nanofibers were coated on the sponge surface. The synthesized magnetic Fe 3 O 4 - ZSM-5 nanozeolites have been loaded into the chitosan/PAN nanofibers to increase the performance of nanofibers toward absorption of lubricating oil, motor oil and pump oil from water surfaces. Scanning electron microscope (SEM), Transmission electron microscope (TEM) and X-ray diffraction (XRD) analysis were used to characterize the synthesized nanozeolites. The morphology and wettability of nanofibers were determined using SEM and water contact angle tests. The influence of Fe 3 O 4 - ZSM-5 nanozeolite content and chitosan/PAN/Fe 3 O 4 - ZSM-5 nanofiber thickness was evaluated on the potential of sponges for oils absorption. The maximum capacity of the chitosan/PAN/Fe 3 O 4 - ZSM-5 nanofibers coated sponges for absorption of motor oil, lubricating oil and pump oil was found to be 99.4, 95.3 and 88.1g/g, in Fe 3 O 4 - ZSM-5 2wt.% and nanofiber thickness of 12μm (chitosan layer of 2μm and PAN layer of 10μm). The reusability of nanofibrous sponges showed that the hydrophobic chitosan/PAN/Fe 3 O 4 - ZSM-5 nanofibers coated sponges can be easily reused in water-oil separation for many cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Thermogravimetry of alpha, omega-diaminoalkanes used in synthesizing zsm-5

    CSIR Research Space (South Africa)

    Howden, MG

    1993-04-01

    Full Text Available Thermogravimetry was determined on a series of alpha, omega-diaminoalkanes, in which the alkane chain contained from three to eight carbon atoms that were located in zeolite ZSM-5 during synthesis. Of the series, 1, 6-diaminohexane functions best...

  20. Hierarchical ZSM-5 zeolite catalysts for the selective oxidation of benzene

    NARCIS (Netherlands)

    Koekkoek, A.J.J.

    2011-01-01

    Zeolites are widely used as catalysts, especially in oil refining and the petrochemical industries. Nowadays the cracking of heavy oil feeds as well as the processing of larger (bio)molecules demands for improved catalysts that can overcome the pore size constraints and diffusion limitations of the

  1. Enhanced catalytic performance for light-olefins production from chloromethane over hierarchical porous ZSM-5 zeolite synthesized by a growth-inhibition strategy

    Science.gov (United States)

    Liu, Qing; Wen, Dafen; Yang, Yanran; Fei, Zhaoyang; Zhang, Zhuxiu; Chen, Xian; Tang, Jihai; Cui, Mifen; Qiao, Xu

    2018-03-01

    Hierarchical porous ZSM-5 (HP-ZSM-5) zeolites were synthesized by hydrothermal crystallization method adding triethoxyvinylsilane as the growth-inhibitor at different hydrothermal crystallized temperatures. The properties of the obtained samples were characterized by XRD, SEM, N2-sorption, uptake of ethylene, 27Al MAS NMR, NH3-TPD, and Py-IR. It was found that the mesopore was introduced and the acidity was adjusted over HP-ZSM-5 samples successfully. The hydrothermal crystallized temperature had an important influence on the porous structure and surface properties. The catalytic performance for chloromethane to light-olefins (CMTO) were also investigated. Compared with ZSM-5 samples, HP-ZSM-5 samples exhibited enhanced stability and increased selectivity of light-olefins for CMTO reaction because of the introduction of the abundant mesopore and appropriate acidity. The lifetime (the duration of chloromethane conversion >98%) and selectivity of light-olefins reached 115 h and 69.3%, respectively.

  2. Heterobimetallic Zeolite, InV-ZSM-5, Enables Efficient Conversion of Biomass Derived Ethanol to Renewable Hydrocarbons.

    Science.gov (United States)

    Narula, Chaitanya K; Li, Zhenglong; Casbeer, Erik M; Geiger, Robert A; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V; Davison, Brian H

    2015-11-03

    Direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10-15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.

  3. Zeolite-zeolite composite composed of Y zeolite and single-crystal-like ZSM-5 zeolite: Fabricated by a process like “big fish swallowing little one”

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meng; Li, Peng [Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Zheng, Jiajun, E-mail: zhengjiajun@tyut.edu.cn [Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Yujian [SINOPEC Research Institute of Petroleum Processing, Beijing, 100083 (China); Kong, Qinglan [Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Tian, Huiping [SINOPEC Research Institute of Petroleum Processing, Beijing, 100083 (China); Li, Ruifeng, E-mail: rfli@tyut.edu.cn [Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-06-15

    Zeolite-zeolite composite composed of Y and ZSM-5 zeolite was prepared using depolymerized Y as partial nutrients for the growth of ZSM-5. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), FT-IR, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption measurement and Thermogravimetric analysis (TG). Chemical equilibrium at the solution-crystal interface was changed because of the partially depolymerized Y zeolite, the conditions necessary for the growth of ZSM-5 were therefore obtained. ZSM-5 zeolite crystals nucleated and grew on the interface, and Y zeolite crystals were then gradually swallowed by the growing single-crystal-like ZSM-5. - Graphical abstract: Y zeolite crystals in the hydrothermal system were partially depolymerized and an ambience in favor of the formation of ZSM-5 was formed, and ZSM-5 zeolite crystals nucleated and grew up on the external surfaces of Y zeolite crystals. As a consequence, Y zeolite crystals were swallowed by single-crystal-like ZSM-5. - Highlights: • Zeolite composite is composed by Y zeolite and single-crystal-like ZSM-5. • A composite material formed by a process like “big fish swallowing little one”. • Ratio of two zeolites in the as-synthesized sample can be adjusted.

  4. One-Step Synthesis of Hierarchical ZSM-5 Using Cetyltrimethylammonium as Mesoporogen and Structure-Directing Agent

    OpenAIRE

    Meng, Lingqian; Mezari, Brahim; Goesten, Maarten G.; Hensen, Emiel J. M.

    2017-01-01

    Hierarchical ZSM-5 zeolite is hydrothermally synthesized in a single step with cetyltrimethylammonium (CTA) hydroxide acting as mesoporogen and structure-directing agent. Essential to this synthesis is the replacement of NaOH with KOH. An in-depth solid-state NMR study reveals that, after early electrostatic interaction between condensed silica and the head group of CTA, ZSM-5 crystallizes around the structure-directing agent. The crucial aspect of using KOH instead of NaOH lies in the faster...

  5. Influence of the Zeolite ZSM-5 on Catalytic Pyrolysis of Biomass via TG-FTIR

    Directory of Open Access Journals (Sweden)

    Ze Wang

    2015-06-01

    Full Text Available Bio-oil from the pyrolysis of biomass is an important renewable source for liquid fuel. However, the application of bio-oil has been severely restricted due to its high viscosity, acidity, and low heating value. Thus, it has been necessary to upgrade bio-oil for automobile fuel via catalytic deoxygenation reactions. Herein, the effects of the zeolite ZSM-5 on the pyrolysis of four biomass materials (corn cob, corn straw, pine powder, and cellulose were investigated via TG-FTIR (thermogravimetric analyzer coupled with a Fourier transform infrared spectrometer to better understand the working mechanism of ZSM-5. The contents of the products of H2O, CO, CO2, and the C-O, C=O, and OH groups evolved with increasing pyrolytic temperature were monitored by FTIR. It was found that the relative contents of the C-O and C=O groups were decreased under the catalysis of ZSM-5, while the formations of CO, H2O, and the OH containing compounds were promoted. To explain the regulations, reaction routes were speculated and the catalytic conversion mechanisms were deduced.

  6. Small-angle neutron scattering studies of the template-mediated crystallization of ZSM-5 type zeolite

    International Nuclear Information System (INIS)

    Iton, L.E.; Brun, T.O.; Epperson, J.E.

    1988-03-01

    Small-angle neutron scattering is a useful new approach to the study of zeolite crystallization from aluminosilicate gels and the action of template molecules. It has been applied to gels for synthesis of zeolite ZSM-5 using tetrapropylammonium ions as templates where the scattering length densities of the gel particles and their texture were determined using contrast variation methods. Gels formulated from soluble silicate incorporate template molecules promptly into an amorphous ''embryonic'' structure and crystallization ensues via a solid hydrogel transformation mechanism. Gels formulated from colloidal silica show different scattering behavior, and a liquid phase transport mechanism is inferred. 8 refs., 4 figs., 2 tabs

  7. Adsorption Device Based on a Langatate Crystal Microbalance for High Temperature High Pressure Gas Adsorption in Zeolite H-ZSM-5.

    Science.gov (United States)

    Ding, Wenjin; Baracchini, Giulia; Klumpp, Michael; Schwieger, Wilhelm; Dittmeyer, Roland

    2016-08-25

    We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example.

  8. Catalytic transformation of methyl benzenes over zeolite catalysts

    KAUST Repository

    Al-Khattaf, S.; Akhtar, M. N.; Odedairo, T.; Aitani, A.; Tukur, N. M.; Kubů, M.; Musilová -Pavlačková , Z.; Čejka, J.

    2011-01-01

    experiments were carried out in the temperature range of 300-400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction

  9. Synthesized TiO{sub 2}/ZSM-5 composites used for the photocatalytic degradation of azo dye: Intermediates, reaction pathway, mechanism and bio-toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kefu; Hu, Xin-Yan [College of the Environment and Ecology, Xiamen University, Xiamen (China); Chen, Bor-Yann; Hsueh, Chung-Chuan [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan, Taiwan (China); Zhang, Qian [Department of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China); Wang, Jiajie; Lin, Yu-Jung [College of the Environment and Ecology, Xiamen University, Xiamen (China); Chang, Chang-Tang, E-mail: ctchang73222@gmail.com [Department of Environmental Engineering, National I-Lan University, I-Lan, Taiwan (China)

    2016-10-15

    Highlights: • The major photo-catalytic degradation pathway of azo-dye was elaborated according to the identification of by-products from GC–MS and IC analysis. • Comparative assessment on characteristics of abiotic and biotic dye decolorization was analyzed. • EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to determine the main active oxidative species in the system. • The toxicity effects of degradation intermediates of Reactive Black 5 (RB5) on the cellular respiratory activity were assessed. - Abstract: In this study, a one-step solid dispersion method was used to synthesize titanium dioxide (TiO{sub 2})/Zeolite Socony Mobil-5 (ZSM-5) composites with substantially reduced time and energy consumption. A degradation efficiency of more than 95% was achieved within 10 min using 50% PTZ (synthesized TiO{sub 2}/ZSM-5 composites with TiO{sub 2} contents of 50 wt% loaded on ZSM-5) at pH 7 and 25 °C. The possible degradation pathway of azo-dye Reactive Black 5 (RB5) was investigated using gas chromatography–mass spectrometry and ion chromatography (IC). The bonds between the N atoms and naphthalene groups are likely attacked first and cleaved by hydroxyl radicals, ultimately resulting in the decolorization and mineralization of the azo dye. A comparative assessment of the characteristics of abiotic and biotic dye decolorization was completed. In addition, the toxicity effects of the degradation intermediates of azo-dye RB5 on cellular respiratory activity were analyzed. The bio-toxicity results showed that the decay rate constants of CO{sub 2} production from the azo-dye RB5 samples at different degradation times increased initially and subsequently decreased, indicating that intermediates of higher toxicity could adhere to the catalyst surface and gradually destroyed by further photocatalytic oxidation. Additionally, EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system

  10. Hydrogen/Denterium exchange during n.butane conversion on H-ZSM-5

    NARCIS (Netherlands)

    Narbeshuber, T.; Narbeshuber, Thomas F.; Stockenhuber, Michael; Brait, Axel; Brait, A.; Seshan, Kulathuiyer; Lercher, J.A.

    1996-01-01

    Steady-state isotope tracer studies and isotope transient response experiments ofn-butane conversion on H-ZSM-5 (Si/Al = 35) were carried out between 673 and 823 K. Among the three main reactions, the rate of H/D-exchange is at least one order of magnitude higher compared to the rates of cracking or

  11. Infrared spectra and stability of CO and H2O sorption over Ag-exchanged ZSM-5 zeolite: DFT study

    International Nuclear Information System (INIS)

    Jiang Shujun; Huang Shiping; Tu Weixia; Zhu Jiqin

    2009-01-01

    The infrared spectra and stability of CO and H 2 O sorption over Ag-exchanged ZSM-5 zeolite were investigated by using density function theory (DFT). The changes of NBO charge show that the electron transfers from CO molecule to the Ag + cation to form an σ-bond, and it accompanies by the back donation of d-electrons from Ag + cation to the CO (π*) orbital as one and two CO molecules are adsorbed on Ag-ZSM-5. The free energy changes ΔG, -5.55 kcal/mol and 6.52 kcal/mol for one and two CO molecules, illustrate that the Ag + (CO) 2 complex is unstable at the room temperature. The vibration frequency of C-O stretching of one CO molecule bonded to Ag + ion at 2211 cm -1 is in good agreement with the experimental results. The calculated C-O symmetric and antisymmetric stretching frequencies in the Ag + (CO) 2 complex shift to 2231 cm -1 and 2205 cm -1 when the second CO molecule is adsorbed. The calculated C-O stretching frequency in CO-Ag-ZSM-5-H 2 O complex shifts to 2199 cm -1 , the symmetric and antisymmetric O-H stretching frequencies are 3390 cm -1 and 3869 cm -1 , respectively. The Gibbs free energy change (ΔG H 2 O ) is -6.58 kcal/mol as a H 2 O molecule is adsorbed on CO-Ag-ZSM-5 complex at 298 K. The results show that CO-Ag-ZSM-5-H 2 O complex is more stable at room temperature

  12. Desilication of ZSM-5 zeolites for mesoporosity development using microwave irradiation

    International Nuclear Information System (INIS)

    Hasan, Zubair; Jun, Jong Won; Kim, Chul-Ung; Jeong, Kwang-Eun; Jeong, Soon-Yong; Jhung, Sung Hwa

    2015-01-01

    Highlights: • Microwaves have beneficial effects on desilication of zeolites. • Produced mesopores with microwaves have narrow pore-size distribution. • Advantages and disadvantages of various desilicating agents were also reported. - Abstract: Mesoporous ZSM-5 zeolite was obtained by desilication in alkaline solutions with microwave (MW) and conventional electric (CE) heating under hydrothermal conditions. Both methods were effective in the production of mesoporous zeolites; however, MW was more efficient than CE as it led to well-defined mesopores with relatively small sizes and a narrow size distribution within a short treatment time. Moreover, the mesoporous ZSM-5 obtained through this method was effective in producing less bulky products from an acid-catalyzed reaction, specifically the butylation of phenol. Finally, various bases were found to have advantages and disadvantages in desilication. NaOH was the most reactive; however, macroporosity could develop easily under a severe condition. Ammonia water was weakly reactive; however, it could be used to precisely control the pore architecture, and no ion exchange is needed for acid catalysis. Organic amines such as ethylenediamine can also be used in desilication

  13. Elaboration of y-fanjasite catalysts containing radioactive elements such as uranyl ion in order to obtain aromatic solvents and heavy amines

    International Nuclear Information System (INIS)

    Nibou, D.

    1990-06-01

    The present work has shown the possibility of ammonia alkylation by n-octanol-l in gaseous phase, in presence of zeolitic catalysts. These catalysts are Y faujasitic types being used in waste water demineralization containing radioactive elements such as uranyl ion. This ion gives to the Y faujasite similar activity and selectivity as those of catalysts containing rare earths or transition metals. Toluene disproportionation has permitted to test beforehand catalysts destined to ammonia alkylation and to compare their mechanism. We have also proved the possibility to produce heavy amines such as tertiary amines which are used as uranium extractant agent. Some zeolites such as ZSM-5, beta, X, A, analcime, HS and Y faujasite type are prepared by hydrothermal synthesis method and characterized by some analysis techniques

  14. Experimental investigation of attrition resistance of zeolite catalysts in two particle gas-solid-solid fluidization system

    International Nuclear Information System (INIS)

    Nawaz, Z.; Ziaoping, T.; Shu, Q.; Wei, F.; Naveed, S.

    2010-01-01

    In the study of mechanical degradation of 34 ZSM-5 and SAPO catalysts, using the gas jet attrition - ASTM standard fluidized bed test (D-5757), the effect of particle size and its quantitative analysis in co-fluidization environment was investigated on the air jet index (AJI) basis. In gas-solid-solid fluidized bed reactors (GSS-FBR), two different sized particles were fluidized under isothermal conditions. In case of ZSM-5 and SAPO-34, significant attrition resistance was observed, which was attributed to small pore size and specific structural strength of the mobile framework image (MFI) and chabasite (CHA) structures, respectively. The optimum AJI for SAPO-34 and ZSM-5 (of particle size 0.2 mm) in GSS-fluidization system was observed to be 0.0118 and 0.0062, respectively. In co-fluidization, deviations from Gwyn relationship were observed due to change in impact of collision. Therefore, zeolites are recommended as suitable catalysts or catalytic supports (for doping of expensive metals) and for commercial use in GSS-FBR. (author)

  15. Aluminium distribution in ZSM-5 revisited: The role of Al–Al interactions

    International Nuclear Information System (INIS)

    Ruiz-Salvador, A. Rabdel; Grau-Crespo, Ricardo; Gray, Aileen E.; Lewis, Dewi W.

    2013-01-01

    We present a theoretical study of the distribution of Al atoms in zeolite ZSM-5 with Si/Al=47, where we focus on the role of Al–Al interactions rather than on the energetics of Al/Si substitutions at individual sites. Using interatomic potential methods, we evaluate the energies of the full set of symmetrically independent configurations of Al siting in a Si 94 Al 2 O 192 cell. The equilibrium Al distribution is determined by the interplay of two factors: the energetics of the Al/Si substitution at an individual site, which tends to populate particular T sites (e.g., the T14 site), and the Al–Al interaction, which at this Si/Al maximises Al–Al distances in general agreement with Dempsey’s rule. However, it is found that the interaction energy changes approximately as the inverse of the square of the distance between the two Al atoms, rather than the inverse of the distance expected if this were merely charge repulsion. Moreover, we find that the anisotropic nature of the framework density plays an important role in determining the magnitude of the interactions, which are not simply dependent on Al–Al distances. - Graphical abstract: Role of Al–Al interactions in high silica ZSM-5 is shown to be anisotropic in nature and not dependent solely on Coulombic interactions. Highlights: ► Si–Al distribution in ZSM-5 is revisited, stressing the role of the Al–Al interaction. ► Coulomb interactions are not the key factors controlling the Al siting. ► Anisotropy of the framework is identified as a source of departure from Dempsey’s rule.

  16. Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine

    Energy Technology Data Exchange (ETDEWEB)

    Santos, S.C.G. [Federal University of Sergipe, Materials Science and Engineering Postgraduate Program P" 2CEM, São Cristovão/SE (Brazil); Pedrosa, A.M.Garrido [Federal University of Sergipe, Departament of Chemistry (DQI), São Cristovão/SE (Brazil); Souza, M.J.B., E-mail: mjbsufs@gmail.com [Federal University of Sergipe, Department of Chemical Engineering (DEQ), Av. Marechal Rondon S/N, 49100-000, São Cristovão/SE (Brazil); Cecilia, J.A.; Rodríguez-Castellón, E. [University of Málaga, Department of Inorganic Chemistry, Crystallography and Mineralogy, Faculty of Sciences, 29071, Málaga (Spain)

    2015-10-15

    Highlights: • Synthesis of the micro-mesoporous composite materials of ZSM-12/MCM-48 type. • Application of these adsorbents in the carbon dioxide adsorption. • Effects of the contents of zeolite and amino group in the material surface on the CO{sub 2} capture efficiency. - Abstract: In this study ZSM-12/MCM-48 adsorbents have been synthesized at three ZSM-12 content, and also were functionalizated with amine groups by grafting. All the adsorbents synthesized were evaluated for CO{sub 2} capture. The X-ray diffraction analysis of the ZSM-12/MCM-48 composite showed the main characteristic peaks of ZSM-12 and MCM-48, and after the functionalization, the structure of MCM-48 on the composite impregnated was affected due amine presence. For the composites without amine, the ZSM-12 content was the factor determining in the adsorption capacity of CO{sub 2} and for the composites with amine the amount of amine was that influenced in the adsorption capacity.

  17. Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine

    International Nuclear Information System (INIS)

    2CEM, São Cristovão/SE (Brazil))" data-affiliation=" (Federal University of Sergipe, Materials Science and Engineering Postgraduate Program P2CEM, São Cristovão/SE (Brazil))" >Santos, S.C.G.; Pedrosa, A.M.Garrido; Souza, M.J.B.; Cecilia, J.A.; Rodríguez-Castellón, E.

    2015-01-01

    Highlights: • Synthesis of the micro-mesoporous composite materials of ZSM-12/MCM-48 type. • Application of these adsorbents in the carbon dioxide adsorption. • Effects of the contents of zeolite and amino group in the material surface on the CO 2 capture efficiency. - Abstract: In this study ZSM-12/MCM-48 adsorbents have been synthesized at three ZSM-12 content, and also were functionalizated with amine groups by grafting. All the adsorbents synthesized were evaluated for CO 2 capture. The X-ray diffraction analysis of the ZSM-12/MCM-48 composite showed the main characteristic peaks of ZSM-12 and MCM-48, and after the functionalization, the structure of MCM-48 on the composite impregnated was affected due amine presence. For the composites without amine, the ZSM-12 content was the factor determining in the adsorption capacity of CO 2 and for the composites with amine the amount of amine was that influenced in the adsorption capacity

  18. The effect of the pore structure of medium-pore zeolites on the dehydroisomerization of n-butane: A comparison of Pt-FER, Pt-TON and Pt-ZSM5

    NARCIS (Netherlands)

    Pirngruber, G.D.; Zinck, O.P.E.; Seshan, Kulathuiyer; Lercher, J.A.

    2000-01-01

    The catalytic dehydroisomerization of n-butane over Pt–ZSM5, Pt–TON, and Pt–FER was investigated. Pt–ZSM5 showed the highest yield and selectivity to isobutene. Most of the by-products of Pt–ZSM5 were formed by oligomerization/cracking of butene, while acid-catalyzed cracking and metal-catalyzed

  19. In-situ catalytic upgrading of biomass pyrolysis vapor: Using a cascade system of various catalysts in a multi-zone fixed bed reactor

    International Nuclear Information System (INIS)

    Asadieraghi, Masoud; Wan Daud, Wan Mohd Ashri

    2015-01-01

    Highlights: • A cascade system of different catalysts exhibited the best performance to produce high quality bio-oil. • Meso-HZSM-5, Ga (1 wt.%)/meso-HZSM-5 and Cu (5 wt.%)/SiO 2 were employed in a cascade system. • The incorporation of the appropriate gallium amount to meso-HZSM-5 enhanced the aromatics selectivity. • Meso-HZSM-5 indicated a very good activity in bio-oil upgrading. - Abstract: The in-situ catalytic upgrading of palm kernel shell (PKS) fast pyrolysis vapors was performed over each individual meso-H-ZSM-5, Ga/meso-HZSM-5 and Cu/SiO 2 catalyst or a cascade system of them in a multi-zone fixed bed reactor. The effects of mesoporosity creation into the parent H-ZSM-5 catalyst and also gallium incorporation into mesoporous H-ZSM-5 on the produced bio-oil chemical composition and distribution were studied. Key upgrading reactions for different oxygenated compounds in pyrolysis oil (small oxygenates, lignin derived and sugar derived components), including aldol condensation, alkylation, hydrogenation, aromatization, and deoxygenation were discussed. The catalysts were characterized using SEM, XRF, XRD, N 2 adsorption and NH 3 -TPD methods. Furthermore, the produced bio-oils (catalytic and non-catalytic) were analyzed using GC–MS, FTIR, CHNS/O elemental analyzer and Karl Fischer titration. Production of the upgraded bio-oil with lower content of oxygenated compound was the main objective of this investigation. Among different catalysts, meso-H-ZSM-5 zeolite demonstrated a very good activity in aromatization and deoxygenation during the upgrading of pyrolytic vapors, although it decreased the bio-oil yield (32.6 wt.%). The gallium incorporation into the meso-HZSM-5 zeolite increased the bio-oil yield from 32.6 wt.% (meso-HZSM-5) to 35.8 wt.% (using 1.0 wt.% Ga). Furthermore, the aromatics selectivity was enhanced when the appropriate amount of gallium (1.0 wt.%) was introduced. A cascade system of various catalysts comprising meso-HZSM-5, Ga (1

  20. Preparation, characterization and antimicrobial property of ag+- nano Chitosan/ZSM-5: novel Hybrid Biocomposites

    Directory of Open Access Journals (Sweden)

    Maasoumeh Khatamiana

    2016-10-01

    Full Text Available Objective(s: Binary hybrids of chitosan-zeolite have many interesting applications in separation and bacteriostatic activity. Materials and Methods: Template free ZSM-5 zeolite was synthesized by hydrothermal method, physical hydrogels of nano chitosan in the colloidal domain were obtained in the absence of toxic organic solvent and then nano chitosan/ZSM-5 hybrid composites with nano chitosan contents of 0.35%, 3.5%, 35% wt.% were prepared. The as prepared hybrid composites were ion-exchanged with Ag cations. Results: XRD and FT-IR results revealed a good crystalinity of as synthesized template frees ZSM-5 with BET surface area of 307 m2g-1. Presence of chitosan in composites was confirmed by XRD patterns and FT-IR spectroscopic analysis, the chitosan content in composite was obtained with TG analysis. SEM analysis of composites shows that chitosan particles were dispersed within the nanometer scale. The antimicrobial activity of different samples was investigated and the results showed that the Ag+-exchanged samples have the highest antibacterial properties. Cancer cell line A549 cell line were cultured in designated medium treated with Ag+-exchanged samples at the concentration of 0.01 to 0.5 mg/ml. After 24 and 48 hours incubation, the efficacy of Ag+-exchanged samples to treat cancer cell lines were measured by means of cell viability test via MTT assay. Concentrations of 0.05 and 0.1 mg/ml of Ag+-exchanged samples induced a very low toxicity. Conclusion: These hybrid composite materials have potential applications on tissue engineering and antimicrobial food packaging.

  1. Comparative Study Between Ethylbenzene Disproportionation Reaction and its Ethylation Reaction with Ethanol over ZSM-5

    KAUST Repository

    Tukur, N. M.

    2009-06-23

    Ethylation of ethylbenzene with ethanol has been studied over ZSM-5 catalyst in a riser simulator that mimics the operation of a fluidized-bed reactor. The feed molar ratio of ethylbenzene:ethanol is 1:1. The study was carried out at 350, 400, 450, and 500°C for reaction times of 3, 5, 7, 10, 13, and 15 s. Comparisons are made between the results of the ethylbenzene ethylation reaction with that of ethylbenzene disproportionation reaction earlier reported. The effect of reaction conditions on ethylbenzene reactivity, p-diethylbenzene selectivity, total diethylbenzene (DEB) isomers selectivity, p-DEB-to-m-DEB ratio, benzene-to-DEB molar ratio, and benzene selectivity, are reported. Benzene selectivity is about 10 times more in the EB disproportion reaction as compared to its ethylation reaction with ethanol at 350°C. In addition, the results showed a p-DEB/m-DEB ratio for the EB ethylation reaction varying between 1.2-1.7, which is greater than the equilibrium values. Increase in temperature shifts the alkylation/dealkylation equilibrium towards dealkylation, thereby decreasing conversion and selectivity to DEB. © Springer Science+Business Media, LLC 2009.

  2. Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios.

    Science.gov (United States)

    Fu, Donglong; Schmidt, Joel E; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M

    2017-09-04

    Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al 3+ usually disrupts the orientation of zeolite films. Herein, using structure-directing agents with hydroxy groups, we demonstrate a new method to prepare highly b-oriented zeolite ZSM-5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro-(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X-ray diffraction, and show Al 3+ framework incorporation and illustrate the differences between misoriented and b-oriented films. The methanol-to-hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro-spectroscopy with on-line mass spectrometry, showing that the b-oriented zeolite ZSM-5 films are active and stable under realistic process conditions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Ion exchange in ZSM-5 zeolite

    International Nuclear Information System (INIS)

    Matthews, D.P.; Rees, L.V.C.

    1986-01-01

    The ion exchange properties of Na-ZSM5 have been studied using a number of univalent and divalent cations at 25degC and 65degC. All the univalent cations studied achieved 100 per cent exchange. The thermodynamic affinity sequence Cs > Rb=NH 4 =H 3 O>K>Na>Li was found at both temperatures for a sample with Si/Al=39. Standard enthalpies of exchange ΔH o were calculated using the van't' Hoff isochore and standard entropies of exchange were then calculated from ΔH o and ΔG o . Multivalent cations were unable to achieve 100 per cent exchange. The maximum exchange was found to increase through the series Ca 2+ cations ( 57 Fe enriched) on dehydration and rehydration following sorption and desorption of ethanol. At least 3 sites for Fe 2+ were observed in the dehydrated zeolite. (author)

  4. Thermochemical properties of copper forms of zeolite ZSM5 containing dimethylethylenediamine

    Czech Academy of Sciences Publication Activity Database

    Čuvanová, S.; Reháková, M.; Finocchiaro, P.; Pollicino, A.; Bastl, Zdeněk; Nagyová, S.; Fajnor, V. Š.

    2007-01-01

    Roč. 452, č. 1 (2007), s. 13-19 ISSN 0040-6031 R&D Projects: GA AV ČR 1ET400400413 Grant - others:GA SR(SK) 1/1385/04; GA SR(SK) 1/1373/04 Institutional research plan: CEZ:AV0Z40400503 Keywords : ZSM-5 * dimethylethylenediamine * copper * thermal analysis * XPS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.562, year: 2007

  5. [Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].

    Science.gov (United States)

    Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin

    2013-12-01

    Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.

  6. Electron beam irradiation effect on nanostructured molecular sieve catalysts

    International Nuclear Information System (INIS)

    Yuan Zhongyong; Zhou Wuzong; Parvulescu, Viorica; Su Baolian

    2003-01-01

    Electron impact can induce chemical changes on particle surfaces of zeolites and molecular sieve catalysts. Some experimental observations of electron irradiation effect on molecular sieve catalysts are presented, e.g., electron-beam-induced growth of bare silver nanowires from zeolite crystallites, formation of vesicles in calcium phosphate, migration of microdomains in iron-oxide doped mesoporous silicas, structural transformation from mesostructured MCM-41 to microporous ZSM-5, etc. The formation mechanisms of the surface structures are discussed

  7. Pyrolysis of polyethylene terephthalate containing real waste plastics using Ni loaded zeolite catalysts

    Science.gov (United States)

    Al-asadi, M.; Miskolczi, N.

    2018-05-01

    In this work the pyrolysis of polyethylene terephthalate (PET) containing real waste plastic was investigated using different Ni loaded catalysts: Ni/ZSM-5, Ni/y-zeolite, Ni/β-zeolite and Ni/natural zeolite (clinoptilolite). Raw materials were pyrolyzed in a horizontal tubular reactor between 600 and 900°C using 10% of catalysts. It was found, that both temperature increasing and catalysts presence can increase the gas yields, however owing to gasification reactions, the pyrolysis oil yield decreased with increasing temperature. Ni/y-zeolite catalyst had the most benefit in gas yield increasing at low temperature; however Ni/ZSM-5 showed advanced property in gas yield increasing at high temperature. Gases contained hydrogen, carbon oxides and hydrocarbons, which composition was significantly affected by catalysts. Ni loaded zeolites favoured to the formation of hydrogen and branched hydrocarbons; furthermore the concentrations of both CO and CO2 were also increased as function of elevated temperature. That phenomenon was attributed to the further decomposition of PET, especially to the side chain scission reactions. Owing to the Boudouard reaction, the ratio of CO2/CO can increased with temperature. Pyrolysis oils were the mixtures of n-saturated, n-unsaturated, branched, oxygen free aromatics and oxygenated hydrocarbons. Temperature increasing has a significant effect to the aromatization and isomerization reactions, while the catalysts can efficiently decreased the concentration of oxygen containing compounds.

  8. Conversion of South African coal fly ash into high-purity ZSM-5 zeolite without additional source of silica or alumina and its application as a methanol-to-olefins catalyst

    CSIR Research Space (South Africa)

    Missengue, RNM

    2018-03-01

    Full Text Available Characteristics of ZSM-5 synthesized from H2SO4-treated coal fly ash and fused coal fly ash extracts are compared in this study. In the synthesis process, fused coal fly ash extract (without an additional silica source) was used in the synthesis...

  9. Adsorption of butyl acetate in air over silver-loaded Y and ZSM-5 zeolites: experimental and modelling studies.

    Science.gov (United States)

    Bhatia, Subhash; Abdullah, Ahmad Zuhairi; Wong, Cheng Teng

    2009-04-15

    Adsorption behaviours of butyl acetate in air have been studied over silver-loaded Y (Si/Al=40) and ZSM-5 (Si/Al=140) zeolites. The silver metal was loaded into the zeolites by ion exchange (IE) and impregnation (IM) methods. The adsorption study was mainly conducted at a gas hourly space velocity (GHSV) of 13,000 h(-1) with the organic concentration of 1000 ppm while the desorption step was carried out at a GHSV of 5000 h(-1). The impregnated silver-loaded adsorbents showed lower uptake capacity and shorter breakthrough time by about 10 min, attributed to changes in the pore characteristics and available surface for adsorption. Silver exchanged Y (AgY(IE)) with lower hydrophobicity showed higher uptake capacity of up to 35%, longer adsorbent service time and easier desorption compared to AgZSM-5(IE). The presence of water vapour in the feed suppressed the butyl acetate adsorption of AgY(IE) by 42% due to the competitive adsorption of water on the surface and the effect was more pronounced at lower GHSV. Conversely, the adsorption capacity of AgZSM-5(IE) was minimally affected, attributed to the higher hydrophobicity of the material. A mathematical model is proposed to simulate the adsorption behaviour of butyl acetate over AgY(IE) and AgZSM-5(IE). The model parameters were successfully evaluated and used to accurately predict the breakthrough curves under various process conditions with root square mean errors of between 0.05 and 0.07.

  10. Influence of crystallite size and shape of zeolite ZSM-22 on its activity and selectivity in the catalytic cracking of n-octane

    Energy Technology Data Exchange (ETDEWEB)

    Bager, F.; Ernst, S. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    2013-11-01

    Light olefins belong to the major building blocks for the petrochemical industry, particularly for the production of polymers. It has become necessary to increase the production of light olefins specifically in the case for propene with so called 'on-purpose propene' technologies. One possible route is to increase the amount of propene that can be obtained from Fluid Catalytic Cracking (FCC) by optimizing the catalyst through introducing new additives, which offer a high selectivity to propene. Zeolite ZSM-22 samples with different crystallite sizes and morphologies have been synthesized via hydrothermal syntheses and characterized by powder X-Ray diffraction, nitrogen physisorption, atomic absorption spectroscopy, scanning electron microscopy and solid-state NMR spectroscopy. The zeolites in the Broensted-acid form have been tested as catalysts in the catalytic cracking of n-octane as a model hydrocarbon. Clear influences of the crystallite size on the deactivation behavior have been observed. Larger crystals of zeolite ZSM-22 produce an increased amount of coke deposits resulting in a faster deactivation of the catalyst. The experimental results suggest that there is probably some influence of pore diffusion on the catalytic activity of the ZSM-22 sample with the large crystallite size. However a noticeable influence on the general product distribution could not be observed. (orig.)

  11. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide.

    Science.gov (United States)

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush; Mohamed, Abdul Rahman Bin

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO 2 , and Al 2 O 3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir-Hinshelwood or Eley-Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH 3 catalyst are suggested.

  12. Catalytic Flash Pyrolysis of Biomass Using Different Types of Zeolite and Online Vapor Fractionation

    KAUST Repository

    Imran, Ali; Bramer, Eddy; Seshan, Kulathuiyer; Brem, Gerrit

    2016-01-01

    -staged condensation of the pyrolysis vapor. Zeolite-based catalysts are investigated to study the effect of varying acidities of faujasite Y zeolites, zeolite structures (ZSM5), different catalyst to biomass ratios and different catalytic pyrolysis temperatures. Low

  13. Thermo-Catalytic Pyrolysis of Waste Plastics from End of Life Vehicle

    Directory of Open Access Journals (Sweden)

    Miskolczi Norbert

    2016-01-01

    Full Text Available Pyrolysis of waste plastics is widely used recycling method. Owing to the end-of-life vehicles regulations, 95% of passenger cars and vehicles must reused/recovered after the dismantling. Pyrolysis of waste polyethylene and polypropylene obtained from end-of-life vehicles was investigated in a continuously stirred batch reactor using 500 and 600°C temperatures. To ensure the pyrolysis reactions the tested catalysts (5% of ZSM-5, HZSM-5, Ni-ZSM-5 and Fe-ZSM-5 were added directly to the mixtures of raw materials. Products of pyrolysis were separated into gases, pyrolysis oil and heavy oil, which was further analyzed by gas-chromatography, Fourier transformed infrared spectroscopy and other standardized methods. Based on the results it was concluded, that the catalysts significantly increase the yields of volatile products, and modify their composition. Especially the alkane/alkene ratio, the methane concentration and the concentration of branched hydrocarbon could be affected by the applied catalysts. Ni-ZSM-5 catalyst had the highest activity in methane production, while HZSM-5 catalyst proved effective in isomerization reactions. Using H-ZSM-5, Ni-ZSM-5, and Fe-ZSM-5 catalyst notably decreased average molecular weight of pyrolysis oils and significantly higher aromatic content was observed.

  14. Silver-promoted catalyst for removal of nitrogen oxides from emission of diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, K.; Tsujimura, K. [New ACE Institute Co., Ltd., Ibaraki (Japan); Shinoda, K.; Kato, T. [Mitsui Mining and Smelting Co., Ltd. Ageo, Saitama (Japan)

    1996-02-29

    Removal of NO{sub x} from diesel exhaust gas using C{sub 3}H{sub 6}, CH{sub 3}OH or (CH{sub 3}){sub 2}O as a reducing agent was investigated on Ag/Al{sub 2}O{sub 3}, Ag/ZSM-5 and Ag/mordenite catalysts over a wide range of temperatures. Among them, (CH{sub 3}){sub 2}O was found to be suitable for the elimination of NO{sub x} over Ag/mordenite catalyst at the relatively low temperature of 200C to 350C. CH{sub 3}OH was suitable over Ag/Al{sub 2}O{sub 3} catalyst from 350C to 450C while the Ag/mordenite catalyst using (CH{sub 3}){sub 2}O was superior to the Ag/Al{sub 2}O{sub 3} catalyst using CH{sub 3}OH with respect to the temperature range. The Ag/ZSM-5 catalyst had a poor elimination ability when compared with Ag/Al{sub 2}O{sub 3} and Ag/mordenite catalysts. The effects of Ag on mordenite and Al{sub 2}O{sub 3} were also investigated. It was found that Ag improved the removal of NO{sub x} in the higher range of temperatures with mordenite, while Ag improved the removal of NO{sub x} in the lower temperature range with Al{sub 2}O{sub 3}. It was concluded that Ag/mordenite catalyst using (CH{sub 3}){sub 2}O as a reducing agent has a good ability for NO{sub x} removal over a wide range of temperatures

  15. On the location, strength and accessibility of Brønsted acid sites in hierarchical ZSM-5 particles

    DEFF Research Database (Denmark)

    Tzoulaki, Despina; Jentys, Andreas; Pérez-Ramírez, Javier

    2012-01-01

    Microporous and mesoporous (hierarchical) ZSM-5 samples, prepared by desilication, dealumination and templating with carbon nanoparticles have been characterized by adsorbing benzene, cyclohexane and 1,3,5-trimethylbenzene (mesitylene) to probe the location, the strength and the accessibility...

  16. A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass: effect of catalyst temperature, pressure and catalyst ageing time on product characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pindoria, R.V.; Megaritis, A.; Herod, A.A.; Kandiyoti, R. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    1998-12-01

    This investigation involved the hydropyrolysis of biomass (eucalyptus globulus) and the immediate catalytic hydrocracking of pyrolytic oils in the second stage of the reactor. The effects of temperature, pressure and the catalyst ageing time on the final product tar have been studied using the catalyst Zeolite H-ZSM5. The catalytically hydrocracked tar/oil products were characterised and compared with the hydropyrolysis product from the first stage of the reactor to determine the effect of catalytic hydrocracking. The carbon deposition on the catalyst has been examined using thermogravimetric analysis. The tar yields after catalytic hydrocracking decreased with increasing pressure and temperature of the cracking stage. The tar yields at 10 bar pressure were greater than those at 40 bar pressure. The fresh zeolite catalyst trapped more than 40% of the product from the hydropyrolysis stage and TGA evidence indicated that this was not as carbon deposition but as volatiles trapped in the zeolite matrix. Reuse of the catalyst resulted in little more uptake of volatiles; however, extended use of the catalyst did not result in increased yields of liquid products but in increased production of light volatiles or gas. The H-ZSM5 catalyst appeared to act as a more active cracking catalyst rather than to promote hydrogenation or deoxygenation of the liquids produced in the hydropyrolysis stage. Characterisation of the liquids by SEC and UV fluorescence indicated that structural changes were relatively minor despite the significant changes in yields of liquids with process conditions. Available reaction routes do not appear to allow specific deoxygenation pathways to predominate without disintegration of parent molecules to lighter volatiles, under the conditions used here. 41 refs., 10 figs., 4 tabs.

  17. Solution-mediated growth of NBA-ZSM-5 crystals retarded by gel entrapment

    Science.gov (United States)

    Aguilar-Mamani, Wilson; Akhtar, Farid; Hedlund, Jonas; Mouzon, Johanne

    2018-04-01

    The synthesis of flat tablet-shaped ZSM-5 crystals from a gel using metakaolin as aluminosilicate source and n-butyl amine as structure directing agent was investigated. The evolution inside the solid phase was characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetry and mass spectrometry. A kinetic study indicated that the nucleation of the majority crystals occurred concurrently with the formation of the gel upon heating the starting liquid suspension. Microstructural evidences undeniably showed that the gel precipitated on ZSM-5 crystals and mineral impurities originating from kaolin. As a result, crystal growth was retarded by gel entrapment, as indicated by the configuration and morphology of the embedded crystals. The results presented herein are harmonized with a solution-mediated nucleation and growth mechanism. Our observations differ from the autocatalytic model that suggests that the nuclei rest inside the gel until released when the gel is consumed. Our results show instead that it is crystals that formed in an early stage before entrapment inside the gel that rest inside the gel until exposed at the gel surface. These results illustrate the limitation of the classical method used in the field to determine nucleation profiles when the crystals become trapped inside the gel.

  18. Location of Framework Al Atoms in the Channels of ZSM-5: Effect of the (Hydrothermal) Synthesis

    Czech Academy of Sciences Publication Activity Database

    Pashková, Veronika; Sklenák, Štěpán; Klein, Petr; Urbanová, Martina; Dědeček, Jiří

    2016-01-01

    Roč. 22, č. 12 (2016), s. 3937-3941 ISSN 1521-3765 R&D Projects: GA ČR GA15-13876S Institutional support: RVO:61388955 Keywords : ZSM-5 * synthesis * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry

  19. Effect of ZSM-5 on the production of reformulated gasoline. Comparison between FCC pilot plant and commercial results

    International Nuclear Information System (INIS)

    Lappas, A.A.; Iatridis, D.; Vasalos, I.A.; Phyxogios, G.

    1999-01-01

    One of the more interesting ways for production of light olefins and for minimization of Gasoline olefins is the use of catalytic additives in the FCC (fluid catalytic cracking) inventory. The most widely used additive for the FCC process is the ZSM-5 which is a shape selective zeolite. When this additive is added to FCC units, it boosts the yields of LPG's olefins at the expense of gasoline, while increasing gasoline RON. The addition of ZSM-5 offers a great flexibility to a refinery since, in a relatively simple and cheap way, it can increase the RON and produces higher yields of light olefins. For all the above reasons the last years more studies are carried out in order to investigate the effect of this additive. In study presented in this paper, main emphasis was given, for the investigation of the effect of ZSM- 5 addition on FCC product distribution and especially on gasoline olefins. Moreover, in the previous literature works the ZSM-5 influences were examined using mainly fixed bed reactors. In the present study the investigation was carried out in a FCC pilot plant. The additive was also added in a commercial FCC unit of a Greek refinery (Hellenic Aspropyrgos Refinery - HAR) and thus comparison results of commercial and pilot plant test are also presented. The above study is part of a research collaboration which exists the last 10 years between the laboratory of Environmental Fuels and hydrocarbons of Chemical Process Engineering Research Institute (LEFH/CPERI) and the main Greek refineries (HEL.PETROLEUM, Motor Oil Hellas Refinery). The target of this research collaboration is i) the development of technology for the production of reformulated fuels and hydrocarbons and ii) to assist the Greek refineries to face the new regulations for environmental friendly fuels

  20. Facile synthesis of hierarchical nanocrystalline ZSM-5 zeolite under mild conditions and its catalytic performance.

    Science.gov (United States)

    Ni, Youming; Sun, Aiming; Wu, Xiaoling; Hai, Guoliang; Hu, Jianglin; Li, Tao; Li, Guangxing

    2011-09-15

    Hierarchical nanocrystalline ZSM-5 zeolite (NZ5) was synthesized at 100 °C under atmospheric pressure using methylamine as a mineralizing agent. The crystallization process of NZ5 was characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), and infrared spectroscopy (FTIR). The results of contrastive experiments showed that evaporation of the solvent promoted the aggregation of primary particles, and the addition of methylamine accelerated the crystallization process. The NZ5 aggregate consisted of 20 nm individual particles, as shown in scanning electron microscope (SEM). The lattice fringes in the transmission electron microscope (TEM) images and the XRD results indicated that individual particles of NZ5 were highly crystalline. N(2) adsorption-desorption isotherms showed that NZ5 had high BET surface areas with mesopores having a mean diameter of about 9 nm. NZ5 exhibited a long lifetime, a stable and high yield of liquid hydrocarbons, and a high anti-coking performance in methanol-to-hydrocarbons reaction. Catalytic testing and TGA results showed that the lifetime of NZ5 was about ten times longer than that of micro-sized ZSM-5 zeolite (MZ5), and the average coking rate with NZ5 was one fifth over that of MZ5. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Nafion®/H-ZSM-5 composite membranes with superior performance for direct methanol fuel cells

    NARCIS (Netherlands)

    Yildirim, M.H.; Curos, Anna Roca; Motuzas, Julius; Motuzas, J.; Julbe, Anne; Stamatialis, Dimitrios; Wessling, Matthias

    2009-01-01

    Solution cast composite direct methanol fuel cell membranes (DEZ) based on DE2020 Nafion® dispersion and in-house prepared H-ZSM-5 zeolites with different Si/Al ratios were prepared and thoroughly characterized for direct methanol fuel cell (DMFC) applications. All composite membranes have indeed

  2. Preparation of 13X from Waste Quartz and Photocatalytic Reaction of Methyl Orange on TiO2/ZSM-5, 13X and Y-Zeolite.

    Science.gov (United States)

    Wang, Jia-Jie; Jing, You-Hai; Ouyang, Tong; Chang, Chang-Tang

    2015-08-01

    TiO2 photocatalytic reactions not only remove a variety of organic pollutants via complete mineralization, but also destroy the bacterial cell wall and cell membrane, thus playing an important bactericidal role. However, the post-filtration procedures to separate nanometer-levels of TiO2 and the gradual inactivity of photocatalyst during continuous use are defects that limit its application. In this case, we propose loading TiO2 on zeolite for easy separation and 13X is considered as a promising one. In our study, 13X-zeolite was prepared by a hydrothermal method and the source of Si was extracted from waste quartz sand. For comparison, commercial zeolite with different microporous and mesoporous diameters (ZSM-5 and Y-zeolites) were also used as TiO2 supports. The pore size of the three kinds of zeolites are as follows: Y-zeolite > 13X > ZSM-5. Different TiO2 loading content over ZSM-5, 13X and Y-zeolite were prepared by the sol-gel method. XRD, FTIR, BET, UV-vis, TGA and SEM were used for investigation of material characteristics. In addition, the efficiencies of mineralization and photodegradation were studied in this paper. The effects of the loading ratio of TiO2 over zeolites, initial pH, and concentration on photocatalytic performance are investigated. The relationship between best loading content of TiO2 and pore size of the zeolite was studied. The possible roles of the ZSM-5, 13X-zeolites and Y-zeolites support on the reactions and the possible mechanisms of effects were also explored. The best loading content of TiO2 over ZSM-5, 13X and Y-zeolite was found to be 50 wt%, 12.5 wt% and 7 wt%, respectively. The optimum pH condition is 3 with TiO2 over ZSM-5, 13X-zeolites and Y-zeolites. The results showed that the degradation and mineralization efficiency of 12.5 wt%GT13X (TiO2 over 13X) after 90 min irradiation reached 57.9% and 22.0%, which was better than that of 7 wt%GTYZ (TiO2 over Y-zeolites) while much lower than that of 50 wt%GTZ (TiO2 over ZSM-5

  3. Catalytic properties of extraframework iron-containing species in ZSM-5 for N2O decomposition

    NARCIS (Netherlands)

    Li, G.; Pidko, E.A.; Filot, I.A.W.; Santen, van R.A.; Li, Can; Hensen, E.J.M.

    2013-01-01

    The reactivity of mononuclear and binuclear iron-containing complexes in ZSM-5 zeolite for catalytic N2O decomposition has been investigated by periodic DFT calculations and microkinetic modeling. On mononuclear sites, the activation of a first N2O molecule is favorable. The rate of catalytic N2O

  4. DFT calculations on N2O decomposition by binuclear Fe complexes in Fe/ZSM-5

    NARCIS (Netherlands)

    Yakovlev, A.L.; Zhidomirov, G.M.; Santen, van R.A.

    2001-01-01

    N2O decomposition catalyzed by oxidized Fe clusters localized in the micropores of Fe/ZSM-5 has been studied using the DFT approach and a binuclear cluster model of the active site. Three different reaction routes were found, depending on temperature and water pressure. The results show that below

  5. Hydrothermally Stable Fe–W–Ti SCR Catalysts Prepared by Deposition–Precipitation

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Mossin, Susanne

    2014-01-01

    Fe/TiO2 based catalysts were prepared by incipient wetness impregnation and deposition–precipitation (DP). The catalysts were characterized by activity measurements, N2 physisorption, X-ray powder diffraction, electron paramagnetic resonance spectroscopy, energy dispersive X-ray spectroscopy, H2......-temperature programmed reduction and NH3-temperature programmed desorption. The 3 wt% Fe–10 wt% WO3/TiO2 (3Fe–10WTi-DP) catalyst prepared by DP using ammonium carbamate as a precipitating agent was found to be the most active and hydrothermally stable with 11 vol% H2O in air at 650 °C for 3 h....... The hydrothermal stability of the catalyst can be attributed to the retained crystal structure, and mild change in acidic and redox properties of the catalyst. Furthermore, hydrothermal stability of the 3Fe–10WTi-DP catalyst is competitive with that of 3Fe–ZSM-5 and much better than 3V2O5–10WO3–TiO2 catalysts...

  6. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chao; Ren, Yanqun [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641 (China); Gou, Jinsheng [College Material Science and Technology, Beijing Forestry University, Key Laboratory of Wooden Material Science and Application, Ministry of Education, 35 Tsinghua East Road, Haidian District, Beijing 100083 (China); Liu, Baoyu [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641 (China); Xi, Hongxia, E-mail: cehxxi@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641 (China)

    2017-01-15

    Highlights: • A mesostructured MFI zeolite was synthesized via dual-functional surfactant approach. • Mass transport was investigated by applying zero length column technique. • The catalyst exhibited excellent catalytic activity and long lifetime. • Gaussian DFT was employed to study the role of surfactant in crystallization process. - Abstract: A mesostructured ZSM-5 zeolite with multilamellar structure was successfully synthesized by employing a tetra-headgroup rigid bolaform quaternary ammonium surfactant. It was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), nitrogen adsorption/desorption isotherms, amines temperature programmed desorption (amines-TPD), and computer simulation. These results indicated that the dual-functional amphiphilic surfactants play a critical role for directing the multilamellar structure with high mesoporosity. The mass transport and catalytic performances of the zeolite were investigated by zero length column (ZLC) technique and aldol condensation reactions to evaluate the structure-property relationship. These results clearly indicated that the mass transport of selected molecules in hierarchical zeolite can be accelerated by introducing mesoporous structure with mesostructure with reduced diffusion length and an overall enhanced resistance against deactivation in reactions involving large molecules. Furthermore, the dual-functional surfactant approach of making hierarchical zeolite with MFI nanosheets framework would open up new opportunities for design and synthesis of hierarchical zeolites with controllable mesoporous structures.

  7. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances

    International Nuclear Information System (INIS)

    Li, Chao; Ren, Yanqun; Gou, Jinsheng; Liu, Baoyu; Xi, Hongxia

    2017-01-01

    Highlights: • A mesostructured MFI zeolite was synthesized via dual-functional surfactant approach. • Mass transport was investigated by applying zero length column technique. • The catalyst exhibited excellent catalytic activity and long lifetime. • Gaussian DFT was employed to study the role of surfactant in crystallization process. - Abstract: A mesostructured ZSM-5 zeolite with multilamellar structure was successfully synthesized by employing a tetra-headgroup rigid bolaform quaternary ammonium surfactant. It was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), nitrogen adsorption/desorption isotherms, amines temperature programmed desorption (amines-TPD), and computer simulation. These results indicated that the dual-functional amphiphilic surfactants play a critical role for directing the multilamellar structure with high mesoporosity. The mass transport and catalytic performances of the zeolite were investigated by zero length column (ZLC) technique and aldol condensation reactions to evaluate the structure-property relationship. These results clearly indicated that the mass transport of selected molecules in hierarchical zeolite can be accelerated by introducing mesoporous structure with mesostructure with reduced diffusion length and an overall enhanced resistance against deactivation in reactions involving large molecules. Furthermore, the dual-functional surfactant approach of making hierarchical zeolite with MFI nanosheets framework would open up new opportunities for design and synthesis of hierarchical zeolites with controllable mesoporous structures.

  8. Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming

    Science.gov (United States)

    Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.

    2018-04-01

    Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.

  9. Photoionization and Electron Transfer of Biphenyl within the Channels of Al-ZSM-5 Zeolites.

    Science.gov (United States)

    Gener, Isabelle; Buntinx, Guy; Brémard, Claude

    1999-06-14

    Evidence of the photogenerated long-lived biphenyl radical and a trapped electron in the void space of aluminated nonacidic ZSM-5 zeolites has been obtained from the time-resolved UV/Vis absorption, Raman scattering, and EPR spectra. The restoration of the ground states implicates the existence of long-lived positive holes in the framework. © 1999 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  10. Co2+ Ions as Probes of Al Distribution in the Framework of Zeolites. ZSM-5 Study

    Czech Academy of Sciences Publication Activity Database

    Dědeček, Jiří; Kaucký, Dalibor; Wichterlová, Blanka; Gonsiorová, O.

    2002-01-01

    Roč. 4, - (2002), s. 5406-5413 ISSN 1463-9076 R&D Projects: GA MŠk OC D15.20 Institutional research plan: CEZ:AV0Z4040901 Keywords : Al distribution in zeolites * ZSM-5 * Vis spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.838, year: 2002

  11. N2O decomposition over Fe/ZSM-5: reversible generation of highly active cationic Fe species

    NARCIS (Netherlands)

    Zhu, Q.; Hensen, E.J.M.; Mojet, B.L.; Wolput, van J.H.M.C.; Santen, van R.A.

    2002-01-01

    Fe-oxide species in Fe/ZSM-5 (prepared by chemical vapor deposition of FeCl3)-active in N2O decomposition-react with zeolite protons during high temperature calcination to give highly active cationic Fe species, this transformation being reversible upon exposure to water vapor at lower temperature

  12. Reduction of Nitrogen Oxides using zeolite catalysts exchanged with cobalt

    International Nuclear Information System (INIS)

    Garcia M, E.A.; Bustamante L, F.; Montes de C, C.

    1999-01-01

    The Selective Catalytic Reduction (SCR) of NOx by methane in excess oxygen was studied over several zeolite catalysts; namely cobalt loaded mordenite, ferrierite, SM-5 and the corresponding acid forms. When NO2 predominated n the NOx mixture the acid forms showed the highest N2 formation rates under dry conditions. Mordenite supported catalysts were the most active ones followed by ferrierite and ZSM-5. The most active Co-Mordenite catalyst was tested using a NOx mixture, containing mostly NO, under dry conditions and in the presence of water and SO2. The addition of 8 % water to the reaction mixture lead to a reversible deactivation, mainly at low temperatures. When the reaction mixture contained 60 ppm SO2, the N2 formation rate decreased about a half likely due to SO2 poisoning

  13. Enhancement of Treatment Efficiency of Recalcitrant Wastewater Containing Textile Dyes Using a Newly Developed Iron Zeolite Socony Mobil-5 Heterogeneous Catalyst

    Science.gov (United States)

    Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2015-01-01

    Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption. PMID:26517827

  14. Enhancement of Treatment Efficiency of Recalcitrant Wastewater Containing Textile Dyes Using a Newly Developed Iron Zeolite Socony Mobil-5 Heterogeneous Catalyst.

    Science.gov (United States)

    Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2015-01-01

    Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption.

  15. Catalyst for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  16. Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene

    Czech Academy of Sciences Publication Activity Database

    Sazama, Petr; Dědeček, Jiří; Gábová, Vendula; Wichterlová, Blanka; Spoto, G.; Bordiga, S.

    2008-01-01

    Roč. 254, č. 2 (2008), s. 180-189 ISSN 0021-9517 R&D Projects: GA AV ČR IAA4040308; GA AV ČR KAN100400702 Institutional research plan: CEZ:AV0Z40400503 Keywords : H-ZSM-5 * Al destribution * catalytic cracking * zeolite acidity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.167, year: 2008

  17. Cyclic Acetalization of Furfural on Porous Aluminosilicate Acid Catalysts

    Directory of Open Access Journals (Sweden)

    Hartati Hartati

    2016-12-01

    Full Text Available Porous aluminosilicate materials included microporous and mesoporous ZSM-5, hierarchical aluminosilicates, and mesoporous aluminosilicate were tested for acetalization of furfural (furan-2-carbaldehyde with propylene glycol. The existing synthesis methods for aluminosilicate and ZSM-5 were modified to produce aluminosilicate material with hierarchical porous structure. Catalytic activity in acetalization of furfural by propylene glycol were conducted by refluxed of the mixture of furfural, propylene glycol and catalyst, using toluene as solvent and nitrobenzene as internal standard, at 106 °C for 4 h. The result showed that a combination of two structure directing agents, tetrapropylammonium hydroxide (TPAOH and cetyltrimethylammonium bromide (CTAB and modification of catalytic crystallization produced an active aluminosilicate framework that provides a wide access for a bulky reactants and strong acid sites to catalyze the reaction. The pore structure and the strength of the Brønsted acid sites were crucial for the high conversion of furfural to produce a cyclic acetal.

  18. Mechanistic insights into aqueous phase propanol dehydration in H-ZSM-5 zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Donghai [Pacific Northwest National Laboratory, Physical and Computational Sciences Directorate & Institute for Integrated Catalysis, Richland WA 99352; Lercher, Johannes A. [Pacific Northwest National Laboratory, Physical and Computational Sciences Directorate & Institute for Integrated Catalysis, Richland WA 99352; Dept. of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 Garching 85748 Germany

    2016-10-06

    Aqueous phase dehydration of 1-propanol over H-ZSM-5 zeolite was investigated using density functional theory (DFT) calculations. The water molecules in the zeolite pores prefer to aggregate via the hydrogen bonding network and be protonated at the Brønsted acidic sites (BAS). Two typical configurations, i.e., dispersed and clustered, of water molecules were identified by ab initio molecular dynamics simulation of the mimicking aqueous phase H-ZSM-5 zeolite unit cell with 20 water molecules per unit cell. DFT calculated Gibbs free energies suggest that the dimeric propanol-propanol, the propanol-water complex, and the trimeric propanol-propanol-water are formed at high propanol concentrations, which provide a kinetically feasible dehydration reaction channel of 1-propanol to propene. However, calculation results also indicate that the propanol dehydration via the unimolecular mechanism becomes kinetically discouraged due to the enhanced stability of the protonated dimeric propanol and the protonated water cluster acting as the BAS site for alcohol dehydration reaction. This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.

  19. Probing the porosity of cocrystallized MCM-49/ZSM-35 zeolites by hyperpolarized 129Xe NMR.

    Science.gov (United States)

    Liu, Yong; Zhang, Weiping; Xie, Sujuan; Xu, Longya; Han, Xiuwen; Bao, Xinhe

    2008-01-31

    One- and two-dimensional 129Xe NMR spectroscopy has been employed to study the porosity of cocrystallized MCM-49/ZSM-35 zeolites under the continuous flow of hyperpolarized xenon gas. It is found by variable-temperature experiments that Xe atoms can be adsorbed in different domains of MCM-49/ZSM-35 cocrystallized zeolites and the mechanically mixed counterparts. The exchange of Xe atoms in different types of pores is very fast at ambient temperatures. Even at very low temperature two-dimensional exchange spectra (EXSY) show that Xe atoms still undergo much faster exchange between MCM-49 and ZSM-35 analogues in the cocrystallized zeolites than in the mechanical mixture. This demonstrates that the MCM-49 and ZSM-35 analogues in cocrystallized zeolites may be stacked much closer than in the physical mixture, and some parts of intergrowth may be formed due to the partially similar basic structure of MCM-49 and ZSM-35.

  20. Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios

    NARCIS (Netherlands)

    Fu, Donglong|info:eu-repo/dai/nl/412516918; Schmidt, Joel E.|info:eu-repo/dai/nl/413333736; Ristanovic, Zoran|info:eu-repo/dai/nl/328233005; Chowdhury, Abhishek Dutta|info:eu-repo/dai/nl/412438003; Meirer, Florian; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2017-01-01

    Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al3+ usually disrupts the orientation of zeolite films.

  1. Encapsulation of ferro- and ferricyanide complexes inside ZSM-5 zeolite synthesized from rice straw: Implications for synthesis of Prussian blue pigment

    International Nuclear Information System (INIS)

    Ali, Ibraheem O.; Salama, Tarek M.; Thabet, Mohamed S.; El-Nasser, Karam S.; Hassan, Ali M.

    2013-01-01

    Encapsulation of [Fe(CN) 6 ] 4− and [Fe(CN) 6 ] 3− complexes in the intracrystalline pores of ZSM-5 zeolite, Fe II L/Z and Fe III L/Z respectively, by the zeolite synthesis method was reported. The modified zeolites were characterized by powder XRD, FT-IR and UV–vis spectroscopy. The nitrogen adsorption isotherms allow for the evaluation of pore structure of the complex-modified zeolites, whereas the thermal analysis (TGA/DTA) measurements provide insight into the decomposition products of the immobilized complexes. The modified zeolites exhibited smaller pore volumes and surface areas as compared with those of unpromoted ZSM-5, suggesting the inclusion of iron cyanides inside the interconnecting channels of ZSM-5. While the ferricyanide complex enhanced the formation of highly crystalline zeolite, the ferrocyanide one resulted in a lesser effect. The electronic spectra of the colloidal species developed when Fe III L/Z brought in contact with an aqueous solution of [Fe(CN) 6 ] 3− exhibit absorptions attributed to CN − → iron charge-transfer. New bands at 294 and 319 nm due to d–d transitions of Fe III tetrahedral monomeric moieties were emitted concurrently under successive adsorption of [Fe(CN) 6 ] aq 3− over Fe III L/Z, along with a broad band at 555 nm assigned to polymeric [Fe II –C–N–Fe III ] of Prussian blue (PB). The FT-IR spectra of Fe III/II L/Z devoted to the adsorption of an aqueous solution of [Fe(CN) 6 ] 3− showed a band at 2092 cm −1 assigned to the C–N stretch in the Fe II –CN–Fe III linkages. The vibrations attributable to Fe–O–Si bonding along with hydrocarbon and nitroprusside appeared only in the spectrum of Fe III L/Z, thus was found to be strong evidence for the mutual interaction between [Fe(CN) 6 ] 3− and the latter sample. - Highlights: • We synthesized ferrous and ferric cyanide complexes inside ZSM-5 zeolite. • The decomposition of the encapsulated complexes occurred at high temperatures.

  2. Cryogenic adsorption of low-concentration hydrogen on charcoal, 5A molecular sieve, sodalite, ZSM-5 and Wessalith DAY

    International Nuclear Information System (INIS)

    Willms, R.S.

    1993-01-01

    The separation of low-concentration hydrogen isotopes from helium is a processing step that is required for ceramic lithium breeding blanket processing. Cryogenic adsorption is one method of effecting this separation. In this study live adsorbents were considered for this purpose: charcoal, 5A molecular sieve, UOP S-115, ZSM-5 and Wessalith DAY. The first two adsorbents exhibit good equilibrium loadings and are shown to be quite effective at adsorbing low-concentration hydrogen isotopes. The latter three adsorbents display considerably lower equilibrium loadings. This study concludes that by using either charcoal or 5A molecular sieve, cryogenic adsorption would be an effective means of separating hydrogen isotopes from helium

  3. Recovery of the heavy elements by NaY AND NaZSM-5 sorbant materials

    International Nuclear Information System (INIS)

    Nibou, D.; Lebail, S.

    1997-04-01

    Porous sorbants as zeolites have a several applications in differents fiels: industrial gas purification, catalysis, transformation hydrocarbures prosesses and exchange ions. The hiogh capacity to exchange their cations with those of aqueous solutions was known (1). Since the accession of synthetic zeolites, these silicates have invaded the market and the firstindustrial applications were in exchange field. Studies at Battelle Northwest in Rchland, Washington have shown that zeolites may be used in treatment of radioactive wastes (2). The used method for storing the isotopes is based on selective removal by ion exchange. Clinoptilolite, zeolite (modernite), NaA, and AW-500 have been used. In this context, the present work deals with the recovery of heavy metals like lead and uranium using some microporous materials. The obtained results show that NaY faujasite and NaZSM-5 of the FAU- and MFI-type structure respectively are very effective in removing these elements from waste water

  4. Location of Framework Al Atoms in the Channels of ZSM-5: Effect of the (Hydrothermal) Synthesis.

    Science.gov (United States)

    Pashkova, Veronika; Sklenak, Stepan; Klein, Petr; Urbanova, Martina; Dědeček, Jiří

    2016-03-14

    (27) Al 3Q MAS NMR and UV/Vis spectroscopy with bare Co(II) ions as probes of Al pairs in the zeolite framework were employed to analyze the location of framework Al atoms in the channel system of zeolite ZSM-5. Furthermore, the effect of Na(+) ions together with tetrapropylammonium cation (TPA(+)) in the ZSM-5 synthesis gel on the location of Al in the channel system was investigated. Zeolites prepared using exclusively TPA(+) as a structure-directing agent (i.e., in the absence of Na(+) ions) led to 55-90% of Al atoms located at the channel intersection, regardless the presence or absence of Al pairs [Al-O-(Si-O)2 -Al sequences in one ring] in the zeolite framework. The presence of Na(+) ions in the synthesis gel did not modify the Al location at the channel intersection (55-95% of Al atoms) and led only to changes in i) the distribution of framework Al atoms between Al pairs (decrease) and single isolated Al atoms (increase), and ii) the siting of Al in distinguishable framework tetrahedral sites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Catalyst and method for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C [Los Alamos, NM

    2008-05-27

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  6. Hydronium-Ion-Catalyzed Elimination Pathways of Substituted Cyclohexanols in Zeolite H-ZSM5

    Energy Technology Data Exchange (ETDEWEB)

    Hintermeier, Peter H. [Department; Eckstein, Sebastian [Department; Mei, Donghai [Institute; Olarte, Mariefel V. [Institute; Camaioni, Donald M. [Institute; Baráth, Eszter [Department; Lercher, Johannes A. [Department; Institute

    2017-10-02

    Hydronium ions in the pores of zeolite H-ZSM5 show high catalytic activity in the elimination of water from cyclohexanol in aqueous phase. Substitution induces subtle changes in rates and reaction pathways, which are concluded to be related to steric effects. Exploring the reaction pathways of 2-, 3-, and 4-methylcyclohexanol (2-McyOH, 3-McyOH, and 4-McyOH), 2- and 4-ethylcyclohexanol (2-EcyOH and 4-EcyOH), 2-n-propylcyclohexanol (2-PcyOH), and cyclohexanol (CyOH) it is shown that the E2 character increases with closer positioning of the alkyl and hydroxyl groups. Thus, 4-McyOH dehydration proceeds via an E1-type elimination, while cis-2-McyOH preferentially reacts via an E2 pathway. The entropy of activation decreased with increasing alkyl chain length (ca. 20 J mol-1 K-1 per CH2 unit) for 2-substituted alcohols, which is concluded to result from constraints influencing the configurational entropy of the transition states.

  7. Encapsulation of ferro- and ferricyanide complexes inside ZSM-5 zeolite synthesized from rice straw: Implications for synthesis of Prussian blue pigment

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ibraheem O.; Salama, Tarek M., E-mail: tm_salama@yahoo.com; Thabet, Mohamed S.; El-Nasser, Karam S.; Hassan, Ali M.

    2013-06-15

    Encapsulation of [Fe(CN){sub 6}]{sup 4−} and [Fe(CN){sub 6}]{sup 3−} complexes in the intracrystalline pores of ZSM-5 zeolite, Fe{sup II}L/Z and Fe{sup III}L/Z respectively, by the zeolite synthesis method was reported. The modified zeolites were characterized by powder XRD, FT-IR and UV–vis spectroscopy. The nitrogen adsorption isotherms allow for the evaluation of pore structure of the complex-modified zeolites, whereas the thermal analysis (TGA/DTA) measurements provide insight into the decomposition products of the immobilized complexes. The modified zeolites exhibited smaller pore volumes and surface areas as compared with those of unpromoted ZSM-5, suggesting the inclusion of iron cyanides inside the interconnecting channels of ZSM-5. While the ferricyanide complex enhanced the formation of highly crystalline zeolite, the ferrocyanide one resulted in a lesser effect. The electronic spectra of the colloidal species developed when Fe{sup III}L/Z brought in contact with an aqueous solution of [Fe(CN){sub 6}]{sup 3−} exhibit absorptions attributed to CN{sup −} → iron charge-transfer. New bands at 294 and 319 nm due to d–d transitions of Fe{sup III} tetrahedral monomeric moieties were emitted concurrently under successive adsorption of [Fe(CN){sub 6}]{sub aq}{sup 3−} over Fe{sup III}L/Z, along with a broad band at 555 nm assigned to polymeric [Fe{sup II}–C–N–Fe{sup III}] of Prussian blue (PB). The FT-IR spectra of Fe{sup III/II}L/Z devoted to the adsorption of an aqueous solution of [Fe(CN){sub 6}]{sup 3−} showed a band at 2092 cm{sup −1} assigned to the C–N stretch in the Fe{sup II}–CN–Fe{sup III} linkages. The vibrations attributable to Fe–O–Si bonding along with hydrocarbon and nitroprusside appeared only in the spectrum of Fe{sup III}L/Z, thus was found to be strong evidence for the mutual interaction between [Fe(CN){sub 6}]{sup 3−} and the latter sample. - Highlights: • We synthesized ferrous and ferric cyanide

  8. Syngas Conversion to Gasoline-Range Hydrocarbons over Pd/ZnO/Al2O3 and ZSM-5 Composite Catalyst System

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A.; Lizarazo Adarme, Jair A.; Lebarbier, Vanessa MC; Gray, Michel J.; White, James F.; King, David L.; Palo, Daniel R.

    2014-07-01

    A composite Pd/ZnO/Al2O3-HZSM-5 (Si/Al=40) catalytic system was evaluated for the synthesis of gasoline-range hydrocarbons directly from synthesis gas. Bifunctional catalyst comprising PdZn metal and acid sites present the required catalytically active sites necessary for the methanol synthesis, methanol dehydration, and methanol-to-gasoline reactions. This system provides a unique catalytic pathway for the production of liquid hydrocarbons directly from syngas. However, selectivity control is difficult and poses many challenges. The composite catalytic system was evaluated under various process conditions. Investigated were the effects of temperature (310-375oC), pressure (300-1000 psig), time-on-stream (50 hrs), and gas-hour space velocity (740-2970 hr-1), using a H2/CO molar syngas ratio of 2.0. By operating at the lower end of the temperature range investigated, liquid hydrocarbon formation was favored, as was decreased amounts of undesirable light hydrocarbons. However, lower operating temperatures also facilitated undesirable CO2 formation via the water-gas shift reaction. Higher operating pressures slightly favored liquid synthesis. Operating at relatively low pressures (e.g. 300 psig) was made possible, whereas for methanol synthesis alone higher pressure are usually required to achieve similar conversion levels (e.g. 1000 psig). Thermodynamic constraints on methanol synthesis are eased by pushing the equilibrium through hydrocarbon formation. Catalytic performance was also evaluated by altering Pd and Zn composition of the Pd/ZnO/Al2O3 catalyst. Of the catalysts and conditions tested, selectivity toward liquid hydrocarbon was highest when using a 5% Pd metal loading and Pd/Zn molar ratio of 0.25 and mixed with HZMS-5, operating at 310oC and 300 psig, CO conversion was 43 % and selectivity (carbon weight basis) to hydrocarbons was 49 wt. %. Of the hydrocarbon fraction, 44wt. % was in the C5-C12 liquid product range and consisted primarily of aromatic

  9. Breaking the Fischer–Tropsch synthesis selectivity : Direct conversion of syngas to gasoline over hierarchical Co/H-ZSM-5 catalysts

    NARCIS (Netherlands)

    Sartipi, S.; Parashar, K.; Makkee, M.; Gascon, J.; Kapteijn, F.

    2012-01-01

    We report the combination of Fischer–Tropsch catalyst with acid functionality in one single catalyst particle. The resulting bifunctional catalyst is capable of producing gasoline range hydrocarbons from synthesis gas in one catalytic step with outstanding activities and selectivities.

  10. Proton proximity – New key parameter controlling adsorption, desorption and activity in propene oligomerization over H-ZSM-5 zeolites

    Czech Academy of Sciences Publication Activity Database

    Bernauer, Milan; Tabor, Edyta; Pashková, Veronika; Kaucký, Dalibor; Sobalík, Zdeněk; Wichterlová, Blanka; Dědeček, Jiří

    2016-01-01

    Roč. 344, DEC 2016 (2016), s. 157-172 ISSN 0021-9517 R&D Projects: GA ČR GA15-13876S; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388955 Keywords : ZSM-5 * Al siting * Single Al Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.844, year: 2016

  11. Bonding of Co Ions in ZSM-5, Ferrierite, and Mordenite: An X-ray Absorption, UV-Vis and IR Study

    Czech Academy of Sciences Publication Activity Database

    Drozdová, L.; Prins, R.; Dědeček, Jiří; Sobalík, Zdeněk; Wichterlová, Blanka

    2002-01-01

    Roč. 106, č. 9 (2002), s. 2240-2248 ISSN 1089-5647 R&D Projects: GA ČR GA104/00/0640 Institutional research plan: CEZ:AV0Z4040901 Keywords : ZSM-5 * Co(II)ions * Vis spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.611, year: 2002

  12. The Catalytic Conversion of Thiophenes over Large H-ZSM-5 Crystals: An X-Ray, UV/Vis, and Fluorescence Microspectroscopic Study

    NARCIS (Netherlands)

    Kox, M.H.F.; Mijovilovich, A.E.; S ättler, J.J.H.B.; Stavitski, I.; Weckhuysen, B.M.

    2013-01-01

    X-ray absorption, UV/Vis, and fluorescence microspectroscopy have been used to characterize the catalytic conversion of thiophene derivatives within the micropores of an individual H-ZSM-5 zeolite crystal. Space-resolved information into the Si/ Al ratios and sulfur content was provided by X-ray

  13. Effects of Coke Deposits on the Catalytic Performance of Large Zeolite H-ZSM-5 Crystals during Alcohol-to-Hydrocarbons Reactions as Investigated by a Combination of Optical Spectroscopy and Microscopy

    DEFF Research Database (Denmark)

    Nordvang, Emily Catherine; Borodina, Elena; Ruiz-Martínez, Javier

    2015-01-01

    The catalytic activity of large zeolite H-ZSM-5 crystals in methanol (MTO) and ethanol-to-olefins (ETO) conversions was investigated and, using operando UV/Vis measurements, the catalytic activity and deactivation was correlated with the formation of coke. These findings were related to in situ...... single crystal UV/Vis and confocal fluorescence micro-spectroscopy, allowing the observation of the spatiotemporal formation of intermediates and coke species during the MTO and ETO conversions. It was observed that rapid deactivation at elevated temperatures was due to the fast formation of aromatics...... at the periphery of the H-ZSM-5 crystals, which are transformed into more poly-aromatic coke species at the external surface, preventing the diffusion of reactants and products into and out of the H-ZSM-5 crystal. Furthermore, we were able to correlate the operando UV/Vis spectroscopy results observed during...

  14. Hydrogen cyanide formation in selective catalytic reduction of nitrogen oxides over Cu/ZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, F; Koeppel, R; Baiker, A [Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, Zurich, (Switzerland)

    1994-01-06

    Hydrogen cyanide is formed over Cu/ZSM-5 during the selective catalytic reduction of NO[sub x] by either propylene or ethylene in the temperature range 450-600 K. Under the reaction conditions used (reactant feed: 973 ppm NO, 907 ppm propene or 1448 ppm ethylene, 2% oxygen, W/F=0.1 g s cm[sup -3]), the concentration of hydrogen cyanide reaches 20, respectively, 30 ppm, depending on whether ethylene or propene are used as hydrocarbons. In addition, significant N[sub 2]O formation is observed at temperatures lower than 700 K, independent of the hydrocarbon used

  15. Highly selective oxidation of styrene to benzaldehyde over a tailor-made cobalt oxide encapsulated zeolite catalyst.

    Science.gov (United States)

    Liu, Jiangyong; Wang, Zihao; Jian, Panming; Jian, Ruiqi

    2018-05-01

    A tailor-made catalyst with cobalt oxide particles encapsulated into ZSM-5 zeolites (Co 3 O 4 @HZSM-5) was prepared via a hydrothermal method with the conventional impregnated Co 3 O 4 /SiO 2 catalyst as the precursor and Si source. Various characterization results show that the Co 3 O 4 @HZSM-5 catalyst has well-organized structure with Co 3 O 4 particles compatibly encapsulated in the zeolite crystals. The Co 3 O 4 @HZSM-5 catalyst was employed as an efficient catalyst for the selective oxidation of styrene to benzaldehyde with hydrogen peroxide as a green and economic oxidant. The effect of various reaction conditions including reaction time, reaction temperature, different kinds of solvents, styrene/H 2 O 2 molar ratio and catalyst dosage on the catalytic performance were systematically investigated. Under the optimized reaction condition, the yield of benzaldehyde can achieve 78.9% with 96.8% styrene conversion and 81.5% benzaldehyde selectivity. Such an excellent catalytic performance can be attributed to the synergistic effect between the confined reaction environment and the proper acidic property. In addition, the reaction mechanism with Co 3 O 4 @HZSM-5 as the catalyst for the selective oxidation of styrene to benzaldehyde was reasonably proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Influence of zeolite structure on the activity and durability of Co-Pd-zeolite catalysts in the reduction of NOx with methane

    International Nuclear Information System (INIS)

    Pieterse, J.A.Z.; Van den Brink, R.W.; Booneveld, S.; De Bruijn, F.A.

    2003-01-01

    Selective catalytic reduction of NO with CH 4 was studied over ZSM-5, MOR, FER and BEA zeolite-based cobalt (Co) and palladium (Pd) catalysts in the presence of oxygen and water. As compared to other catalytic systems reported in literature for CH 4 -SCR in the presence of water, zeolite supported Co-Pd combination catalysts are very active and selective. The most active catalysts, based on MOR and ZSM-5, are characterised by well-dispersed Pd ions in the zeolite that activate methane. Wet ion exchange is a good method to achieve high dispersion of Pd provided that it is carried out in a competitive manner. The presence of cobalt (Co 3 O 4 , Co-oxo ions) boosts SCR activity by oxidising NO to NO 2 . The activity of the zeolite-based Co-Pd combination catalysts decreases with prolonged times on stream. The severity of the deactivation was found to be different for different zeolite topologies. The characterisation and evaluation of freshly calcined catalysts and spent catalysts show two things that occur during reaction: (1) zeolite solvated metal cations disappear in favour of (inactive) metal oxides and presumably larger metal entities, i.e. loss of dispersion; (2) loss of crystallinity affiliated with steam-dealumination and the concomitant formation of extra-framework aluminium (EFAL) in the presence of water. Both phenomena strongly depend on the (reaction) temperature. The deactivation of Co-Pd-zeolite resembles the deactivation of Pd-zeolite. Hence, future research could encompass the stabilisation of Pd (cations) in the zeolite pores by exploring additives other than cobalt. For this, detailed understanding on the siting of Pd in zeolites is important

  17. Síntesis de Zeolitas del tipo ZSM y su utilización en la producción de Hidrocarburos aromáticos a partir de Metanol

    Directory of Open Access Journals (Sweden)

    Jorge Bonilla

    2009-10-01

    Full Text Available Se sintetizaron las zeolitas ZSM-5 H *, ZSM- 8H * y ZSM-11H * y se utilizaron como catalizadores en la conversión de metanol a hidrocarburos y agua. La zeolita ZSM-5 presentó los mejores rendimientos de conversión a productos de punto de ebullición similares a los de la gasolina y en su mayoría aromáticos.

  18. Filter bag De-NOx system with powder type catalysts at low temperature

    International Nuclear Information System (INIS)

    Kim, Byung-Hwan; Kim, Jeong-Heon; Kang, Pil-Sun; Yoo, Seung-Kwan; Yoon, Kyoon-Duk

    2010-01-01

    Combustion of carbon source materials (MSW, RDF, sludge, coal etc.) leads to the emission of harmful gaseous pollutants such as SO x , NO x , mercury, particulate matter, and dioxins etc. In particular, the emission of nitrogen oxides (NO x ) from the solid waste incinerator remains a serious air pollution problem. The previous research concerns have focused mainly on NO x reduction of stationary sources at high temperature SCR or SNCR process. Selective catalytic reduction (SCR) with NH 3 is the most widespread system used to control NO x emissions. However, this process suffers from several disadvantages due to the use of thermo fragile honeycomb type module and high temperature (about 300 degree Celsius) operation which consumes additional heating energy. To overcome this hurdle, filter bag De-NO x system with powder type catalysts at low temperature (less than 200 degree Celsius) has been under investigation in recent years and looks interesting because neither additional heat nor honeycomb type modules are required. Filter bag and powder type catalysts are cheap and effective materials to remove NO x at low temperature. In this study, the selective catalytic reduction of NO x was carried out on a filter support reactor with 300 mesh powder type catalysts at low temperature. The experiments were performed by powder type MnO x and V 2 O 5 / TiO 2 catalyst at low temperature ranging between 130 and 250 degree Celsius. Also, the effect of SO 2 and H 2 O on the NO conversion was investigated under our test conditions. The powder type catalysts were characterized by X-ray photoelectron spectrum (XPS) for measuring the state of oxygen on the catalyst surface and X-ray diffraction (XRD). It was observed that NO conversion of the powder type V 2 O 5 / TiO 2 catalyst was 85 % at 200 degree Celsius under presence of oxygen and that of MnO x was 50 % at the same condition. From these results, the powder type V 2 O 5 / TiO 2 catalyst showed an excellent performance on the

  19. Characterization of ZSM-5 modified with niobium pentoxide: the study of thiophene adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Rodrigo M.; Barros, Ivoneide de C.L., E-mail: ibarros@ufam.edu.br [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Inst. de Ciencias Exatas; Dias, Jose A.; Dias, Silvia C.L. [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Quimica

    2013-01-15

    ZSM-5 adsorbents impregnated with Nb{sub 2}O{sub 5} were applied in the sulfur removal in the form of thiophene, refractory substance of difficult removal of liquid fuels. For this purpose, a model fuel containing iso-octane contaminated with thiophene in concentrations of 877.5 to 1155 ppmw was prepared. The samples were characterized by X-ray diffractometry (XRD), Fourier transform infrared (FTIR) and Fourier transform-Raman (FT-Raman) spectroscopies for confirmation of the adsorbents, being prioritized the adsorption study with that containing 5 wt.% of niobium pentoxide, because it showed a greater capacity for removal of thiophene. The best results of adsorption were achieved at 353 K, a longer time to reach equilibrium was observed. Under these conditions, the best kinetic fitting was achieved using the equation of pseudo-second order, demonstrating the domain of the phenomenon of chemisorption. While under lower temperatures, the diffusion model presented a better approximation of the experimental results. Also, the increasing of temperature did enhance spontaneous processes. (author)

  20. A simple and efficient approach for synthesis of 1,4-dihydro-pyridines using nano-crystalline solid acid catalyst

    Directory of Open Access Journals (Sweden)

    A. Moatari

    2013-09-01

    Full Text Available A simple highly versatile and efficient synthesis of various 1,4-dihydropyridines in the condensation of aromatic aldehydes with β-dicarbonyl compounds and ammonium acetate in the presence of nano-sulfated zirconia, nano-structured ZnO, nano-γ-alumina and nano-ZSM-5 zeolites, as catalyst in the ethanol at moderate temperature is presented. The advantages of method are short reaction times and milder conditions and easy work-up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency.DOI: http://dx.doi.org/10.4314/bcse.v27i3.12

  1. Modeling methanol transfer in the mesoporous catalyst for the methanol-to-olefins reaction by the time-fractional diffusion equation

    Science.gov (United States)

    Zhokh, Alexey A.; Strizhak, Peter E.

    2018-04-01

    The solutions of the time-fractional diffusion equation for the short and long times are obtained via an application of the asymptotic Green's functions. The derived solutions are applied to analysis of the methanol mass transfer through H-ZSM-5/alumina catalyst grain. It is demonstrated that the methanol transport in the catalysts pores may be described by the obtained solutions in a fairly good manner. The measured fractional exponent is equal to 1.20 ± 0.02 and reveals the super-diffusive regime of the methanol mass transfer. The presence of the anomalous transport may be caused by geometrical restrictions and the adsorption process on the internal surface of the catalyst grain's pores.

  2. X-ray absorption spectroscopic studies on novel microporous copper containing catalytic systems

    International Nuclear Information System (INIS)

    Bhargava, Suresh K.; Akolekar, Deepak B.; Foran, Garry

    2006-01-01

    Novel copper metal modified microporous aluminosilicate and aluminophosphate catalysts with the high phase purity were synthesized and characterized. CuK-edge XAS measurements were carried out over a series of copper containing SAPO-34 and ZSM-5 catalysts. EXAFS technique was used to obtain specific climacteric information related to the copper atomic distances, coordination and near neighbour environments. EXAFS studies indicated the presence of different of Cu species on ZSM-5/SAPO34 catalysts

  3. Catalytic and Noncatalytic Conversion of Methane to Olefins and Synthesis Gas in an AC Parallel Plate Discharge Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Khodagholi

    2013-01-01

    Full Text Available Direct conversion of methane to ethylene, acetylene, and synthesis gas at ambient pressure and temperature in a parallel plate discharge reactor was investigated. The experiments were carried out using a quartz reactor of outer diameter of 9 millimeter and a driving force of ac current of 50 Hz. The input power to the reactor to establish a stable gas discharge varied from 9.6 to maximum 15.3 watts (w. The effects of ZSM5, Fe–ZSM5, and Ni–ZSM5 catalysts combined with corona discharge for conversion of methane to more valued products have been addressed. It was found that in presence or absence of a catalyst in gas discharge reactor, the rate of methane and oxygen conversion increased upon higher input power supplied to the reactor. The effect of Fe–ZSM5 catalyst combined with gas discharge plasma yields C2 hydrocarbons up to 21.9%, which is the highest productions of C2 hydrocarbons in this work. The effect of combined Ni–ZSM5 and gas discharge plasma was mainly production of synthesis gas. The advantage of introducing ZSM5 to the plasma zone was increase in synthesis gas and acetylene production. The highest energy efficiency was 0.22 mmol/kJ, which belongs to lower rate of energy injection to the reactor.

  4. ESTUDIO SOBRE LA INFLUENCIA DE LA INCORPORACIÓN DE CATIÓN METÁLICO EN LA ACTIVIDAD CATALÍTICA Y COMPORTAMIENTO MAGNÉTICO DE ZEOLITAS ZSM-5

    Directory of Open Access Journals (Sweden)

    Clara Saux

    2011-01-01

    Full Text Available Se sintetizaron zeolitas ZSM-5 con relación molar Si/Al 17 por el método hidrotérmico, las que fueron modificadas con cobalto y cromo por la técnica de impregnación por vía húmeda en un 3 % p/p del metal. Los resultados obtenidos por DRX, indican que la incorporación de ambos metales de transición no altera la estructura, ni la cristalinidad de la matriz original. Se detecta la presencia de especies Co3O4 para Co-ZSM-5 y Cr2O3 para el caso de Cr-ZSM-5. De las medidas de magnetización a temperatura ambiente se observa el efecto de los metales de transición sobre el comportamiento netamente diamagnético de la matriz zeolítica con la aparición de ciclos de histéresis que no saturan por presentar una componente paramagnética. Ambos materiales fueron probados como catalizadores para la reacción de oxidación selectiva de estireno con peróxido de hidrógeno, presentando buenos resultados en actividad con una elevada selectividad (superior al 70 % hacia benzaldehído.

  5. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.|info:eu-repo/dai/nl/304824283; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region

  6. Low pressure catalytic co-conversion of biogenic waste (rapeseed cake) and vegetable oil.

    Science.gov (United States)

    Giannakopoulou, Kanellina; Lukas, Michael; Vasiliev, Aleksey; Brunner, Christoph; Schnitzer, Hans

    2010-05-01

    Zeolite catalysts of three types (H-ZSM-5, Fe-ZSM-5 and H-Beta) were tested in the catalytic co-conversion of rapeseed cake and safflower oil into bio-fuel. This low pressure process was carried out at the temperatures of 350 and 400 degrees Celsius. The yields and compositions of the product mixtures depended on the catalyst nature and the process temperatures. The produced organic phases consisted mainly of hydrocarbons, fatty acids and nitriles. This mixture possessed improved characteristics (e.g. heating value, water content, density, viscosity, pH) compared with the bio-oils, making possible its application as a bio-fuel. The most effective catalyst, providing the highest yield of organic liquid phase, was the highly acidic/wide-pore H-Beta zeolite. The products obtained on this catalyst demonstrated the highest degree of deoxygenation and the higher HHV (Higher Heating Value). The aqueous liquid phase contained water-soluble carboxylic acids, phenols and heterocyclic compounds. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. The potential of medium-pore zeolites for improved propene yields from catalytic cracking

    Energy Technology Data Exchange (ETDEWEB)

    Bager, F.; Salas, N.; Ernst, S. [Technische Univ. Kaiserslautern (Germany). Dept. of Chemistry, Chemical Technology

    2011-07-01

    The medium-pore zeolites ZSM-5 (MFI), ZSM-22 (TON), ZSM-23 (MTT), and EU-1 (EUO) were synthesized under hydrothermal conditions and modified by ion exchange to obtain the Broensted-acid forms. The activity and selectivity of these catalysts in catalytic cracking of a model compound, viz. n-octane, was studied in a fixed-bed flow-type reactor. The catalytic results clearly reflect the differences in the pore architectures of the tested zeolites on n-octane conversion and on the product selectivities. Over the zeolites with one-dimensional pore systems and without large intracrystalline cavities, a remarkable increase of the contribution of the monomolecular cracking mechanism could be observed as compared to the standard catalyst zeolite ZSM-5. This is indicated by a high selectivity for unsaturated products and, hence, increasing yields of propene. Large cavities in the pore system, viz. in the case of zeolite EU-1, increase the conversion in particular at lower temperatures. However, the large cavities also favor the formation of large transition states required for the classical bimolecular cracking mechanism, resulting in decreased selectivities for unsaturated products, increased selectivities for aromatics formation and faster deactivation. (orig.)

  8. FTIR study of the relation between extra-framework aluminum species and the adsorbed molecular water, and its effect on the acidity in ZSM-5 steamed zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Isernia, Luis Fioravanti, E-mail: luis.isernia@gmail.com [Laboratorio de Tamices Moleculares, Universidad de Oriente - UO, Maturin, Monagas (Venezuela, Bolivarian Republic of)

    2013-11-01

    The infrared spectroscopy study of zeolite samples, obtained by steam treatment at 560-960 Degree-Sign C of the ZSM-5 catalyst (framework Si/Al ratio of 13), suggests an association between adsorbed molecular water and extra-framework aluminum hydroxyls generated after treatment. Moreover, infrared spectroscopy of adsorbed pyridine shows the reduction of the densities of Broensted and Lewis sites, when treatment temperature rises, with contradicts the frequently accepted mechanism of the transformation of two bridged Si-OH-Al groups for each Lewis site generated. The gradual conversion of the octahedral extra-framework aluminum (Lewis-associated) in polymeric species with low acidity is the most probable cause of this behavior. On the other hand, the apparent decline of the acid Broensted strength, with the increase in the temperature of the hydrothermal treatment, has two possible causes: a) the decreasing accessibility, of the pyridine molecular probe to bridged Si-OH-Al groups with the strongest Broensted acidity, inside the channels, and b) the gradual transformation of these groups into extra framework species of weak acidity. (author)

  9. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    International Nuclear Information System (INIS)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O_3 catalytic oxidation. • O_3 byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O_3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O_3 catalytic decomposition and utilization. Benzene and O_3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O_3 was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  10. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haibao, E-mail: seabao8@gmail.com [School of Environmental Science and Engineering, Sun Yat-Sen University (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University) (China); Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo [School of Environmental Science and Engineering, Sun Yat-Sen University (China)

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O{sub 3} catalytic oxidation. • O{sub 3} byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O{sub 3}, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O{sub 3} catalytic decomposition and utilization. Benzene and O{sub 3} removal efficiency reached as high as 97% and 100% after 360 min, respectively. O{sub 3} was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  11. Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and In Situ X-Ray Ptychography

    DEFF Research Database (Denmark)

    Baier, Sina; Damsgaard, Christian Danvad; Klumpp, Michael

    2017-01-01

    When using bifunctional core@shell catalysts, the stability of both the shell and core-shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesi...

  12. Mesoporous ZSM-5 Zeolites in Acid Catalysis: Top-Down vs. Bottom-Up Approach

    Directory of Open Access Journals (Sweden)

    Pit Losch

    2017-07-01

    Full Text Available A top-down desilication of Al-rich ZSM-5 zeolites and a bottom-up mesopores creating method were evaluated in this study. Three liquid–solid and one gas–solid heterogeneously-catalysed reactions were chosen to establish relationships between zeolites textural properties and their catalytic behavior in acid-catalysed model reactions that are influenced by shape selectivity: Diels-Alder cyclization between isoprene and methylacrylate, Methanol-to-Olefins (MTO reaction, chlorination of iodobenzene with trichloroisocyanuric acid (TCCA, and Friedel-Crafts acylation of anisole by carboxylic acids with differing sizes. It is found amongst others that no optimal mesoporosity for all the different reactions can be easily obtained, but depending on the chosen application, a specific treatment has to be set to achieve high activity/selectivity and stability.

  13. O-alkylation of disodium salt of diethyl 3,4-dihydroxythiophene-2,5-dicarboxylate with 1,2-dichloroethane catalyzed by ionic type phase transfer catalyst and potassium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Huasheng; Yin, Hengbo; Wang, Aili; Shen, Jun; Yan, Xiaobo; Liu, Yumin; Zhang, Changhua [Jiangsu University, Zhenjiang (China)

    2014-01-15

    Diethyl 3,4-ethylenedioxy thiophene-2,5-dicarboxylate was efficiently synthesized via the O-alkylation of disodium salt of diethyl 3,4-dihydroxy thiophene-2,5-dicarboxylate with 1,2-dichloroethane over ionic type phase transfer catalysts, such as tetrabutyl ammonium bromide and benzyl triethyl ammonium chloride. The ionic type phase transfer catalysts showed higher catalytic activities than the nonionic type phase transfer catalysts, such as triethylamine, pyridine, 18-crown-6, and polyethylene glycol 400/600, in the O-alkylation reaction. The conversion of the disodium salt of more than 97% and the selectivity of diethyl 3,4-ethylenedioxy thiophene-2,5-dicarboxylate of more than 98% were achieved when the O-alkylation reaction was synergistically catalyzed by tetrabutyl ammonium bromide and potassium iodide.

  14. Dehydroisomerization of n-butane over Pt-ZSMMMm5(I): effect of the metal loading and acid site concentration

    NARCIS (Netherlands)

    Pirngruber, G.D.; Seshan, Kulathuiyer; Lercher, J.A.

    1999-01-01

    The dehydroisomerization of n-butane to isobutene over Pt–ZSM5 catalysts with a high Si/Al ratio was studied. The catalytic activity increases with increasing metal loading. Butenes formed via dehydrogenation over the metallic particles are converted to isobutene over the Brønsted acid sites. The

  15. Pyrolysis and catalytic pyrolysis as a recycling method of waste CDs originating from polycarbonate and HIPS

    Energy Technology Data Exchange (ETDEWEB)

    Antonakou, E.V. [Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kalogiannis, K.G.; Stephanidis, S.D. [Chemical Process Engineering Research Institute, 57001 Thermi, Thessaloniki (Greece); Triantafyllidis, K.S. [Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chemical Process Engineering Research Institute, 57001 Thermi, Thessaloniki (Greece); Lappas, A.A. [Chemical Process Engineering Research Institute, 57001 Thermi, Thessaloniki (Greece); Achilias, D.S., E-mail: axilias@chem.auth.gr [Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-12-15

    Highlights: • Thermal and catalytic pyrolysis is a powerful method for recycling of WEEEs. • Liquid products obtained from the pyrolysis of PC or HIPS found in waste CDs are very different. • Mainly phenols are obtained from pyrolysis PC based wastes while aromatics from HIPS. • Use of MgO catalyst increases the amount of phenols from CD recycling compared to ZSM-5. • Use of MgO or ZSM-5 catalysts reduces the amount of styrene recovered from HIPS. - Abstract: Pyrolysis appears to be a promising recycling process since it could convert the disposed polymers to hydrocarbon based fuels or various useful chemicals. In the current study, two model polymers found in WEEEs, namely polycarbonate (PC) and high impact polystyrene (HIPS) and their counterparts found in waste commercial Compact Discs (CDs) were pyrolysed in a bench scale reactor. Both, thermal pyrolysis and pyrolysis in the presence of two catalytic materials (basic MgO and acidic ZSM-5 zeolite) was performed for all four types of polymers. Results have shown significant recovery of the monomers and valuable chemicals (phenols in the case of PC and aromatic hydrocarbons in the case of HIPS), while catalysts seem to decrease the selectivity towards the monomers and enhance the selectivity towards other desirable compounds.

  16. Catalytic Flash Pyrolysis of Biomass Using Different Types of Zeolite and Online Vapor Fractionation

    KAUST Repository

    Imran, Ali

    2016-03-11

    Bio-oil produced from conventional flash pyrolysis has poor quality and requires expensive upgrading before it can be used as a transportation fuel. In this work, a high quality bio-oil has been produced using a novel approach where flash pyrolysis, catalysis and fractionation of pyrolysis vapors using two stage condensation are combined in a single process unit. A bench scale unit of 1 kg/h feedstock capacity is used for catalytic pyrolysis in an entrained down-flow reactor system equipped with two-staged condensation of the pyrolysis vapor. Zeolite-based catalysts are investigated to study the effect of varying acidities of faujasite Y zeolites, zeolite structures (ZSM5), different catalyst to biomass ratios and different catalytic pyrolysis temperatures. Low catalyst/biomass ratios did not show any significant improvements in the bio-oil quality, while high catalyst/biomass ratios showed an effective deoxygenation of the bio-oil. The application of zeolites decreased the organic liquid yield due to the increased production of non-condensables, primarily hydrocarbons. The catalytically produced bio-oil was less viscous and zeolites were effective at cracking heavy molecular weight compounds in the bio-oil. Acidic zeolites, H-Y and H-ZSM5, increased the desirable chemical compounds in the bio-oil such as phenols, furans and hydrocarbon, and reduced the undesired compounds such as acids. On the other hand reducing the acidity of zeolites reduced some of the undesired compounds in the bio-oil such as ketones and aldehydes. The performance of H-Y was superior to that of the rest of zeolites studied: bio-oil of high chemical and calorific value was produced with a high organic liquid yield and low oxygen content. H-ZSM5 was a close competitor to H-Y in performance but with a lower yield of bio-oil. Online fractionation of catalytic pyrolysis vapors was employed by controlling the condenser temperature and proved to be a successful process parameter to tailor the

  17. Preparação do sistema Fe2O3/ZSM-5 para uso como catalisador na reação foto-Fenton

    Directory of Open Access Journals (Sweden)

    J. S. de Oliveira

    Full Text Available Resumo Este trabalho objetivou a preparação da zeólita ZSM-5 suportada com nanopartículas de óxido de ferro para uso como catalisador na degradação de um poluente orgânico em solução aquosa a partir do processo foto-Fenton. A zeólita foi preparada usando gel nucleante como indutor de formação da estrutura tipo MFI. Nanopartículas de óxido de ferro foram suportadas sobre a zeólita através da técnica de impregnação incipiente. Além disso, nanopartículas de óxido de ferro foram preparadas para fins de comparação entre as atividades catalíticas na reação foto-Fenton. Os materiais produzidos foram caracterizados por difração de raios X, microscopia eletrônica de varredura e análise de adsorção/dessorção de nitrogênio. Os resultados revelaram a formação do sistema Fe2O3/ZSM-5 com propriedades intrínsecas que resultaram em satisfatória atividade catalítica, sendo superior ao óxido de ferro. Além disso, esse sistema apresentou excelente atividade e estabilidade após três ciclos de reuso. O material Fe2O3/ZSM-5 produzido neste trabalho apresenta-se como um catalisador promissor para uso na reação foto-Fenton para a degradação de poluentes orgânicos em soluções aquosas.

  18. Coke formation during the methanol-to-olefin conversion: in situ microspectroscopy on individual H-ZSM-5 crystals with different Brønsted acidity

    NARCIS (Netherlands)

    Mores, D.; Kornatowski, J.; Olsbye, U.; Weckhuysen, B.M.

    2011-01-01

    Coke formation during the methanol-to-olefin (MTO) conversion has been studied at the single-particle level with in situ UV/Vis and confocal fluorescence microscopy. For this purpose, large H-ZSM-5 crystals differing in their Si/Al molar ratio have been investigated. During MTO, performed at 623 and

  19. The direct hydroxylation of benzene to phenol catalyzed by Fe-ZSM-5 zeolite : a DFT and hybrid MP2:DFT calculation

    NARCIS (Netherlands)

    Yang, Z.; Yang, G.; Liu, X.; Han, Xiuwen

    2013-01-01

    The title reactions over Fe-III and Fe-II-ZSM-5 zeolites are divided into seven and six steps, wherein the M06L:B3LYP energy barriers of N2O decomposition to form active site, benzene activation to form C-O bond and proton transfer to form phenol are equal to 37.0, 13.7, 17.2 and 33.7, 3.0, 19.1

  20. Formation of undesired by-products in deNO{sub x} catalysis by hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, Frank; Koeppel, Rene A; Baiker, Alfons [Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1995-11-20

    The catalytic performance of Cu/ZSM-5 and {gamma}-alumina in the selective catalytic reduction of nitrogen oxides by alkenes in excess oxygen and the formation of potentially harmful by-products such as hydrogen cyanide, cyanic acid, ammonia, nitrous oxide and carbon monoxide have been studied by means of FT-IR-gas phase analysis. Over Cu/ZSM-5 the reduction activity was strongly influenced by the type of hydrocarbon, while there was no significant difference when starting from NO or NO{sub 2}. In contrast, with {gamma}-alumina NO{sub 2} was reduced more efficiently than NO with both reductants. Water addition strongly suppressed the catalytic activity of {gamma}-alumina. Regarding the formation of undesired by-products, substantial amounts of carbon monoxide were observed in all experiments, independently of the feed composition. The type of catalyst, the use of either NO or NO{sub 2}, the alkene used as a reductant and water strongly influenced the formation of other by-products. With alumina ethene showed a lower tendency to form HCN as compared to propene and water addition further suppressed by-product formation. This contrasts the findings with Cu/ZSM-5, where HCN production was not significantly altered by the presence of water. On this catalyst HNCO was found additionally for dry feeds, whereas ammonia appeared in the presence of water in the same temperature range. Under special feed gas compositions further by-products, formaldehyde and hydrocarbons, were found over Cu/ZSM-5, whereas none of these compounds were observed over {gamma}-alumina

  1. Intermediate Product Regulation in Tandem Solid Catalysts with Multimodal Porosity for High-Yield Synthetic Fuel Production.

    Science.gov (United States)

    Duyckaerts, Nicolas; Bartsch, Mathias; Trotuş, Ioan-Teodor; Pfänder, Norbert; Lorke, Axel; Schüth, Ferdi; Prieto, Gonzalo

    2017-09-11

    Tandem catalysis is an attractive strategy to intensify chemical technologies. However, simultaneous control over the individual and concerted catalyst performances poses a challenge. We demonstrate that enhanced pore transport within a Co/Al 2 O 3 Fischer-Tropsch (FT) catalyst with hierarchical porosity enables its tandem integration with a Pt/ZSM-5 zeolitic hydrotreating catalyst in a spatially distant fashion that allows for catalyst-specific temperature adjustment. Nevertheless, this system resembles the case of close active-site proximity by mitigating secondary reactions of primary FT α-olefin products. This approach enables the combination of in situ dewaxing with a minimum production of gaseous hydrocarbons (18 wt %) and an up to twofold higher (50 wt %) selectivity to middle distillates compared to tandem pairs based on benchmark mesoporous FT catalysts. An overall 80 % selectivity to liquid hydrocarbons from syngas is attained in one step, attesting to the potential of this strategy for increasing the carbon efficiency in intensified gas-to-liquid technologies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William [Univ. of Notre Dame, IN (United States)

    2014-12-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  3. Session 4: Combinatorial research of methane catalytic decomposition on supported nitride catalysts for CO-free hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Jianghan, Shen; Hua, Wang; Zhongmin, Liu; Hongchao, Liu [Natural Gas Utilization and Applied Catalysis Lab., Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian P. R. (China)

    2004-07-01

    CO-free Hydrogen production is needed for proton exchange membrane fuel cells (PEMs) because CO strongly poisons the anode-electrocatalysts. Methane directly catalytic decomposition is an attractive way to produce CO-free hydrogen for the large abundance of methane and its high H/C ratio. It is more effective to employ high-throughput screening (HTS) technology in heterogeneous catalysis. In this paper, a combinatorial multi-stream reaction system with online multi-stream mass spectrometer screening (MSMSS) detection technique was applied to study the decomposition of methane over supported MoN{sub x}O{sub y} catalysts (supports = Al{sub 2}O{sub 3}, SiO{sub 2}, SBA-15, ZSM-5,13X, and NaY), which is a catalyst system seldom reported recently. (authors)

  4. Radical cations of quadricyclane and norbornadiene in polar ZSM-5 matrices: Radical cation photochemical transformations without photons

    International Nuclear Information System (INIS)

    Barnabas, M.V.; Trifunac, A.D.

    1994-01-01

    Radical cations of quadricyclane (Q) and norbornadiene (NBD) are produced by γ-radiolysis in zeolites. In polar ZSM-5, only one radical cation is initially observed below 100K. Increasing the temperature above 200K gives rise to the cyclopentadiene radical cation. Higher temperatures (>360K) give rise to the cyclopenten-4-yl radical. The observation of cyclopentadiene radical cation implies the occurrence of the reverse Diels-Alder reaction. This is a thermally forbidden, photochemically allowed, process, which is made possible by the interaction of the polar zeolite matrix sites with parent NBD and Q radical cations

  5. Preparação e caracterização de compósitos poliméricos baseados em amido termoplástico e materiais de alta área superficial: zeólita ZSM-5 e sílica coloidal Preparation and characterization of polymeric composites based on thermoplastic starch and high surface area materials: ZSM-5 zeolite and colloidal silica

    Directory of Open Access Journals (Sweden)

    Fábio Plotegher

    2013-01-01

    Full Text Available Foram produzidas amostras de amido termoplástico (TPS reforçadas com materiais de alta área superficial, com o intuito de verificar a variação nas propriedades do polímero, com especial enfoque na sua permeabilidade a vapor d'água. Foram utilizadas como carga a sílica coloidal (área superficial de 122,7 m²/g e uma zeólita do tipo ZSM-5, produzida em laboratório (área superficial de 261,3 m²/g, em teores de 2 a 10% em massa. Os resultados demonstraram que a adição de ambos os materiais melhorou as propriedades mecânicas do TPS, embora nos maiores teores houve redução da qualidade das interfaces e dessas propriedades, principalmente para a ZSM-5. Em todos os casos a introdução da carga inorgânica reduziu a permeabilidade ao vapor d'água em até 20% quando comparada à permeabilidade do TPS, porém a melhor dispersão da sílica coloidal na matriz permitiu as maiores reduções, apesar da área superficial inferior.Compositions of thermoplastic starch (TPS reinforced by high surface area materials were produced, intending to study the variation in polymer properties, focusing on the permeability to water vapor. Colloidal silica (surface area 122.7 m²/g and a ZSM-5 zeolite (surface area 261.3 m²/g were used, in loadings from 2 to 10% weight. The results demonstrated that the addition of both materials was favorable to the TPS mechanical properties, however in higher loadings the quality of polymer interfaces and these properties were negatively affected, especially for ZSM-5. In all the cases the inorganic particles reduced the permeability to water vapor in levels below 20% when compared to pure TPS, although the best dispersion of colloidal silica determined better reductions, despite its lower surface area.

  6. A MAS NMR and DRIFT study of the Ga species in Ga/H-ZSM5 catalysts and their effect on propane ammoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Pal, P. [Indian Inst. of Petroleum, Dehradun (India). Catalysis Division; Quartararo, J. [Liverpool Univ., Liverpool (United Kingdom). Leverhulme Centre for Innovative Catalysis, Dept. of Chemistry; Abd Hamid, S.B. [Malaya Univ., Postgraduate School, Bangunan (Malaysia); Derouane, E.G. [Algarve Univ., Faro (Portugal). Faculdade de Ciencias e Tecnologia; Vedrine, J.C. [Laboratoire de Physico-Chimie des Surface, Paris (France). Faculdade de Ciencias e Tecnologia; Magusin, P.C.M.M.; Anderson, B.G. [Eindhoven Univ. of Technology, Eindhoven (Netherlands). Schuit Institute of Catalysis

    2005-07-01

    This paper presents the results of a study that sought information about the nature and environment of the gallium (Ga) species in Ga/H-ZSM5 zeolites following H{sub 2}-O{sub 2} redox treatments applied during their activation by use of magic-angle spinning (MAS) {sup 71}Ga, {sup 27}Al, and {sup 29}Si NMR spectroscopy (Ga coordination) complemented by diffuse reflectance FT IR (DRIFT) spectroscopy (Bronsted acidity). This information was then correlated with their catalytic behavior for the ammoxidation of propane. Ga species were observed in several environments: octahedrally coordinated gallium in small Ga{sub 2}O{sub 3} particles at the external surface of the zeolite crystals; octahedrally coordinated gallium in GaO(OH) or related species; and tetrahedrally coordinated gallium in cationic-exchange positions inside the zeolite. Redox (H{sub 2}-O{sub 2}) cycles promote the migration of gallium from the GaO(OH) or Ga{sub 2}O{sub 3} species at the external surface of the zeolite crystals to cationic-exchange sites within the zeolite channels. It was concluded that the redox treatment had a beneficial effect on its catalytic performance for the ammoxidation of propane, which occurs via a bifunctional mechanism. The main product was acetonitrile at high gallium and aluminium contents. It was suggested that higher yields in acrylonitrile could be obtained through Ga-modified zeolites with a higher gallium and lower aluminium content. 22 refs., 1 tab., 6 figs.

  7. Aromatization of alkanes over Pt promoted conventional and mesoporous gallosilicates of MEL zeolite

    KAUST Repository

    Akhtar, M. N.; Al-Yassir, N.; Al-Khattaf, S.; Čejka, Jiří

    2012-01-01

    Aromatization of hexane and propane was investigated over Pt promoted mesoporous gallium-containing HZSM-11 with controlled mesoporosity generated by desilication. Prepared catalysts were characterized by nitrogen adsorption, X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared of chemisorbed pyridine, and NH 3 temperature programmed desorption confirming the development of intracrystalline mesoporosity of Ga-containing HZSM-11. The catalytic activities, which were compared in the aromatization of n-hexane and propane, increased upon desilication. The aromatization of n-hexane decreased in the following order, Pt/mesoporous GaZSM-11 Pt/conventional GaZSM-11 mesoporous GaZSM-11 > conventional GaZSM-11. Hexane conversion reached 70.1% over mesoporous Pt/GaZSM-11 with Si/Ga of 61, as compared with 29.6 and 24.9% for corresponding mesoporous and conventional GaZSM-11 (Si/Ga = 94), respectively, for experiments at liquid hour space velocity of 3.6 h -1, and 540 °C. Comparison of BTX (benzene-toluene-xylene) selectivity at the conversion level of ∼21.0% revealed that Pt/mesoporous GaZSM-11 is more selective than corresponding mesoporous and conventional GaZSM-11. The BTX selectivity over Pt/mesoporous GaZSM-11 (Si/Ga = 94), which showed strong dependence on the conversion, reached 28.2%, whereas over corresponding mesoporous and conventional GaZSM-11catalysts reached 19.1% and 5.5%, respectively. A higher conversion and better selectivity can be attributed to the improved accessibility to the active extra-framework Ga species owing to the generation of mesopores inside the zeolite particles and shortening the contact time. It is worth mentioning that the prepared catalysts exhibited quite low activity in propane aromatization but exhibiting similar trends as for hexane aromatization. © 2011 Elsevier B.V. All rights reserved.

  8. Stability and activity of doped transition metal zeolites in the hydrothermal processing

    Directory of Open Access Journals (Sweden)

    Thomas François Robin

    2015-12-01

    Full Text Available This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper and iron in under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered as a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds which have an impact on the physical and chemical propriety of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts but their stability and activity under hydrothermal conditions is not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350 °C. Catalysts have been characterised before and after treatment using XRD, BET physisorption and STEM microscopy. Metal leaching was determined by analysis of the water phase following hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5 for example molybdenum improves the crystallinity of the zeolite. In general, metal doped zeolites were relatively stable under subcritical water. Activity of the catalysts for processing lipids, protein and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella and P. ellipsoidea. The catalysts exhibited greater activity towards converting lipids for example MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  9. Stability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing

    International Nuclear Information System (INIS)

    Robin, Thomas François; Ross, Andrew B.; Lea-Langton, Amanda R.; Jones, Jenny M.

    2015-01-01

    This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper, and iron under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion-exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds that have an impact on the physical and chemical properties of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts, but their stability and activity under hydrothermal conditions are not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350°C. Catalysts have been characterized before and after treatment using X-ray diffraction, BET physisorption, and scanning transmission electronic microscopy. Metal leaching was determined by the analysis of the water phase following the hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5, for example, molybdenum improves the crystallinity of the zeolite. In general, metal-doped zeolites were relatively stable in subcritical water. The activity of the catalysts for processing lipids, protein, and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella, and Pseudochoricystis ellipsoidea. The catalysts exhibited greater activity toward converting lipids, for example, MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  10. Stability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Robin, Thomas François, E-mail: thomas.cognac@gmail.com; Ross, Andrew B.; Lea-Langton, Amanda R.; Jones, Jenny M. [School of Chemical and Process Engineering, University of Leeds, Leeds (United Kingdom)

    2015-12-14

    This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper, and iron under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion-exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds that have an impact on the physical and chemical properties of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts, but their stability and activity under hydrothermal conditions are not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350°C. Catalysts have been characterized before and after treatment using X-ray diffraction, BET physisorption, and scanning transmission electronic microscopy. Metal leaching was determined by the analysis of the water phase following the hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5, for example, molybdenum improves the crystallinity of the zeolite. In general, metal-doped zeolites were relatively stable in subcritical water. The activity of the catalysts for processing lipids, protein, and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella, and Pseudochoricystis ellipsoidea. The catalysts exhibited greater activity toward converting lipids, for example, MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  11. Decomposição do NO sobre Cu suportado em zeólitas

    Directory of Open Access Journals (Sweden)

    Oliveira Andréa Marins de

    2004-01-01

    Full Text Available Direct decomposition of NO on copper supported on zeolite catalysts such as MCM-22 and Beta was compared with that on the thoroughly studied Cu-ZSM-5. The catalysts were prepared by ion-exchange in basic media. They were characterized by atomic absorption, surface area, nitrogen adsorption at 77K, X-ray diffraction and temperature programmed reduction. The products of the reaction were analyzed by Fourier transform infrared spectroscopy using a gas cell. Catalytic activity tests indicated that zeolite catalysts, like Beta and MCM-22, lead to NO conversion values comparable to ZSM-5.

  12. Catalytic hydrolysis of Metil Teret Botil Eter in under ground contaminated water

    International Nuclear Information System (INIS)

    Nikpey, A.; Mortazavi, B.; Asilian, H.; Khavanin, A.; Rezaee, A.; Soleimanian, A.; Kazemian, H.

    2005-01-01

    The behavior of ZSM-5 and Mordenite catalyst in the hydrolysis at room temperature of methyl tert-butyl ether was studied with reference to the possibility of its conversion to more biodegradable products in underground water contaminated by methyl tert-butyl ether. Hydrolysis products were determined using a gas chromatograph equipped with a flame ionization detector. The results indicate that acid ZSM-5 catalyst are effective in both adsorption and hydrolysis of methyl tert-butyl ether and may be applied for both in situ underground water remediation and as protection barrier for wells or leaking tanks. However, acid mordenite catalyst completely inactive

  13. Synthesis and characterization of mesoporous ZSM-5 core-shell particles for improved catalytic properties

    DEFF Research Database (Denmark)

    Kustova, Marina; Holm, Martin Spangsberg; Christensen, Claus H.

    2008-01-01

    samples were tested in the MTG reaction, and the results showed that both the shell-coated and the desilicated zeolites are significantly more resistant to coke formation. These results are ascribed to the effect of the removal of structural defects rather than to an improvement of the diffusion......HZSM-5 is a unique catalyst for the conversion of methanol, dimethyl ether and other oxygenates into gasoline. During this process, catalyst deactivation by coking requires frequent regeneration and the improvement of catalyst life time is one of the challenges in catalyst development...

  14. Theoretical evidence of the observed kinetic order dependence on temperature during the N(2)O decomposition over Fe-ZSM-5.

    Science.gov (United States)

    Guesmi, Hazar; Berthomieu, Dorothee; Bromley, Bryan; Coq, Bernard; Kiwi-Minsker, Lioubov

    2010-03-28

    The characterization of Fe/ZSM5 zeolite materials, the nature of Fe-sites active in N(2)O direct decomposition, as well as the rate limiting step are still a matter of debate. The mechanism of N(2)O decomposition on the binuclear oxo-hydroxo bridged extraframework iron core site [Fe(II)(mu-O)(mu-OH)Fe(II)](+) inside the ZSM-5 zeolite has been studied by combining theoretical and experimental approaches. The overall calculated path of N(2)O decomposition involves the oxidation of binuclear Fe(II) core sites by N(2)O (atomic alpha-oxygen formation) and the recombination of two surface alpha-oxygen atoms leading to the formation of molecular oxygen. Rate parameters computed using standard statistical mechanics and transition state theory reveal that elementary catalytic steps involved into N(2)O decomposition are strongly dependent on the temperature. This theoretical result was compared to the experimentally observed steady state kinetics of the N(2)O decomposition and temperature-programmed desorption (TPD) experiments. A switch of the reaction order with respect to N(2)O pressure from zero to one occurs at around 800 K suggesting a change of the rate determining step from the alpha-oxygen recombination to alpha-oxygen formation. The TPD results on the molecular oxygen desorption confirmed the mechanism proposed.

  15. Co-Aromatization of Methane with Olefins: The Role of Inner Pore and External Surface Catalytic Sites

    Energy Technology Data Exchange (ETDEWEB)

    Yung, Matthew M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); He, Peng [University of Calgary; Jarvis, Jack [University of Calgary; Meng, Shijun [University of Calgary; Wang, Aiguo [University of Calgary; Kou, Shiyu [University of Calgary; Gatip, Richard [University of Calgary; Liu, Lijia [Soochow University; Song, Hua [University of Calgary

    2018-04-22

    The co-aromatization of methane with olefins is investigated using Ag-Ga/HZSM-5 as the catalyst at 400 degrees C. The presence of methane has a pronounced effect on the product distribution in terms of increased average carbon number and substitution index and decreased aromatic carbon fraction compared with its N2 environment counterpart. The participation of methane during the co-aromatization over the Ag-Ga/HZSM-5 catalyst diminishes as the co-fed olefin feedstock molecule becomes larger, from 1-hexene to 1-octene and 1-decene, in diameter. The effect of suppressed methane participation with larger olefinic molecules is not as significant when Ag-Ga/HY is employed as the catalyst, which might be attributed to the larger pore size of HY that gives more room to hold olefin and methane molecules within the inner pores and reduces the diffusion limitation of olefin molecules. The effect of olefin feedstock on the methane participation during the co-aromatization over Ag-Ga/HZSM-5 is experimentally evidenced by 13C and 2D NMR. The incorporation of the methane carbon atoms into the phenyl ring of product molecules is reduced significantly with larger co-fed olefins, whereas its incorporation into the substitution groups of the formed aromatic molecules is not notably affected, suggesting that the methane participation in the phenyl ring formation might preferably occur within inner pores, while its incorporation into substitution groups may mainly take place on external catalytic sites. This hypothesis is well supported by the product selectivity obtained over Ag-Ga/HZSM-5 catalysts prepared using conventional ZSM-5, ZSM-5 with the external catalytic sites deactivated, nanosize ZSM-5, ZSM-5 with a micro/meso pore structure and ZSM-5 with the inner pores blocked, and further confirmed by the isotopic labeling studies.

  16. Approach to photocatalysis at the molecular level. Design of photocatalysts, detection of intermediate species, and reaction mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Anpo, Masakazu [Department of Applied Chemistry, University of Osaka Prefecture, Gakuen-cho, Sakai, Osaka (Japan)

    1995-08-01

    The characterization of the Cu{sup +}/ZSM-5 catalysts prepared via reduction of ion-exchanged Cu{sup 2+}/ZSM-5 samples and highly dispersed Ti-oxide catalysts anchored on Vycor glass has been undertaken by in-situ photoluminescence, EPR, XAFS (XANES and FT-EXAFS), and FT-IR spectroscopy. UV-irradiation of the Cu{sup +}/ZSM-5 catalyst in the presence of NO leads to the direct photocatalytic decomposition of NO into N{sub 2} and O{sub 2} at normal temperatures. UV-irradiation of the highly dispersed anchored Ti-oxide catalyst in the presence of CO{sub 2} and H{sub 2}O also leads to the evolution of CH{sub 4}, CO, and CH{sub 3}OH at normal temperatures. The clarification of the coordination structure of the active surface sites and the direct detection of the reaction precursors and intermediate species in these photocatalytic systems contributed significantly in characterizing the molecular scale reaction mechanisms. Based on these results, the design of highly concentrated and efficient photocatalysts has successfully been achieved by application of the sol-gel method

  17. Spatial Distribution of Zeolite ZSM-5 within Catalyst Bodies Affects Selectivity and Stability of Methanol-to-Hydrocarbons Conversion

    NARCIS (Netherlands)

    Castaño, P.; Ruiz-Martinez, J.; Epelde, E.; Gayubo, A.G.; Weckhuysen, B.M.

    2013-01-01

    Solid acids, such as zeolites, are used as catalyst materials in a wide variety of important crude oil refinery, bulk chemical synthesis, and green processes. Examples include fluid catalytic cracking (FCC),[1] methanol-to-hydrocarbons (MTH) conversion,[ 2] plastic waste valorization,[3] and biomass

  18. Mordenite - Type Zeolite SCR Catalysts with Iron or Copper

    DEFF Research Database (Denmark)

    2012-01-01

    Cu/mordenite catalysts were found to be highly active for the SCR of NO with NH3 and exhibited high resistance to alkali poisoning. Redox and acidic properties of Cu/mordenite were well preserved after poisoning with potassium unlike that of vanadium catalysts. Fe-mordenite catalysts also reveale...... to be essential requirements for the high alkali resistance. Mordenite-type zeolite based catalysts could therefore be attractive alternatives to conventional SCR catalysts for biomass fired power plant flue gas treatment....

  19. NMR evidence of metal-support interaction in syngas conversion catalyst Co-TiO2

    International Nuclear Information System (INIS)

    Murty, A.N.; Seamster, M.; Thorpe, A.N.; Obermyer, R.T.; Rao, V.U.S.

    1990-01-01

    To examine the relation between catalytic and magnetic properties, the zero-field NMR spectra and hysteresis loops of cobalt supported on silica, alumina, magnesia, titania, and ZSM-5 with and without the promoter thoria were investigated. Cobalt was incorporated on the support by simple physical admixture of precipitated cobalt and support, and by aqueous impregnation technique. Our studies indicate that the particle sizes are consistently lower in the presence of thoria. Of all the catalysts examined, the Co/Th/TiO 2 catalyst exhibits a high saturation magnetization value---about 20% higher than pure cobalt. In addition, the NMR spectrum of the aqueous impregnation Co/TiO 2 catalyst is distinctly different from the rest. All the NMR lines are shifted to a higher frequency by about 4 MHz. These two features---enhancement of the magnetic moment of cobalt atoms and increases in the hyperfine field at the Co nucleus---clearly indicate that there occurs strong metal-support interaction between cobalt and titania support. The higher hydrocarbon yields observed by the earlier investigators with Co/TiO 2 catalysts might be related to this phenomenon

  20. Light alkane (mixed feed selective dehydrogenation using bi-metallic zeolite supported catalyst

    Directory of Open Access Journals (Sweden)

    Zeeshan Nawaz

    2009-12-01

    Full Text Available Light alkanes are the important intermediates of many refinery processes and their catalytic dehydrogenation gives corresponding alkenes. The aim behind this experimentation is to investigate reaction behavior of mixed alkanes during direct catalytic dehydrogenation and emphasis has been given to enhance propene. Bi-metallic zeolite supported catalyst Pt-Sn/ZSM-5 was prepared by sequentional impregnation method and characterized by BET, EDS and XRD. Direct dehydrogenation reaction is highly endothermic and its conversion is thermodynamically limited. Results showed that the increase in temperature increases the conversion to some extent but there is no overall effect on selectivity of propene. Increase in time-on-stream (TOS remarkably improves propene selectivity at the expense of lower conversion. The performances of bi-metallic zeolite based catalyst largely affected by coke deposition. The presence of butane and ethane adversely affected propane conversion. Optimum propene selectivity is about 48 %, obtained at 600 oC and time-on-stream 10 h.

  1. Synthesis of Nd-doped ZSM-5 and its application to treating slightly polluted water

    Directory of Open Access Journals (Sweden)

    Mang Lu

    2018-03-01

    Full Text Available In this study, ZSM-5 zeolite was synthesized using diatomaceous mud as the raw material, and then doped with different amounts of Nd2O3. The orthogonal experiments were performed to investigate the influence of Nd:Si molar ratio, zeolite dosage, contact time, solution pH and temperature on the removal of humic acid (HA. The removal of HA was comprehensively evaluated by chemical oxygen demand (COD, UV254 and UV410 of the solution. The results demonstrate that solution pH and zeolite dosage are the two most important factors influencing HA adsorption. The optimum experimental conditions were determined to be: 35 °C, Nd:Si molar ratio of 1:100, 2.0 g/L zeolite, pH 4 and 50 min contact time. Under these conditions, the removal efficiencies of UV254, UV410 and COD are 82.70%, 76.00% and 82.10%, respectively, corresponding to a comprehensive removal of 81.02%.

  2. Selective catalytic oxidation of NO as a process stage in NOx separation from power plant and production systems off-gases. Catalyst development and reaction kinetics. Final report. Die selektive katalytische Oxidation des NO als Prozess-Stufe bei der Stickoxidabscheidung aus Abgasen von Kraftwerken und Produktionsanlagen. Katalysatorentwicklung und Reaktionskinetik. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G.; Seifert, J.

    1989-06-01

    The research project was to investigate the heterogeneously catalyzed oxidation of NO in flue gas using 1. metal oxide catalysts (commonly on a MnO{sub 2} basis), 2. ZSM5 zeolites (pentasil), and 3. noble metal catalysts. Apart from the reaction kinetics, also the activity and resistance to typical catalyst poisons (SO{sub 2}, HCl, HF, heavy metals) were investigated. A fully automatic, computer-controlled experimental apparatus was developed which apart from the analysis of reaction products permitted also dynamic experiments with time constants in the seconds range and experiments with cyclic variation of concentration, temperature, and time of residue. (RB).

  3. Assessing the acid properties of desilicated ZSM-5 by FTIR using CO and 2,4,6-trimethylpyridine (collidine) as molecular probes

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Svelle, S.; Joensen, F.

    2009-01-01

    Lewis acid sites were generated, presumably from dislodged framework aluminium. Collidine, which is too bulky to enter the micropore system of ZSM-5, could access Lewis acidity, suggesting that these sites were predominantly generated on the external surface or in the newly created mesopores....... Additionally, by first saturating the zeolite surface with collidine and subsequently adsorbing CO, we show that barely any Lewis acidity was uncoordinated post-collidine saturation while the Bronsted acidity continuously was protected behind the micropore system. It is hypothesized from the present study...

  4. Study on antimony oxide self-assembled inside HZSM-5

    International Nuclear Information System (INIS)

    Li Bin; Li Shijie; Wang Yingxia; Li Neng; Liu Xiyao; Lin Bingxiong

    2005-01-01

    Sb/ZSM-5 was obtained by solid-state reaction with the mixture of Sb 2 O 3 and zeolite HZSM-5 under a dry nitrogen flow at 773K. Characterization of the treated zeolite was undertaken with XRD, 27 Al MAS NMR, BET, TGA and FT-IR. The results revealed that part of the antimony oxides migrated into the channels of zeolite, and decreased the Bronsted acid sites in Sb/ZSM-5 remarkably. The other part of antimony oxides together with the amorphous alumino-silicate in the products distributed on the external surface of zeolite ZSM-5 and modified it, while the framework of ZSM-5 in crystal phase was retained. The structure of occluded antimony oxide inside the channels of ZSM-5 was studied by XRD Rietveld method. The result showed that their structure can be described as a chain of non-perfect [Sb 5 O 5 (H 2 O) 2 ] n 5n+ , which is parallel to the straight channel of ZSM-5. There is about 0.6 [Sb 5 O 5 (H 2 O) 2 ] 5+ unit in every cell of the ZSM-5 on an average

  5. Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative dehydrogenation with N2O and N2O decomposition

    Czech Academy of Sciences Publication Activity Database

    Sazama, Petr; Sathu, Naveen Kumar; Tabor, Edyta; Wichterlová, Blanka; Sklenák, Štěpán; Sobalík, Zdeněk

    2013-01-01

    Roč. 299, MAR 2013 (2013), s. 188-203 ISSN 0021-9517 R&D Projects: GA ČR GAP106/11/0624; GA ČR GA203/09/1627 Institutional support: RVO:61388955 Keywords : Fe-ZSM-5 zeolite * Structure of Fe species * Steamed Fe-zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.073, year: 2013

  6. Mechanistic studies on the transformation of ethanol into ethene over Fe-ZSM-5 zeolite.

    Science.gov (United States)

    Maihom, Thana; Khongpracha, Pipat; Sirijaraensre, Jakkapan; Limtrakul, Jumras

    2013-01-14

    Ethanol, through the utilization of bioethanol as a chemical resource, has received considerable industrial attention as it provides an alternative route to produce more valuable hydrocarbons. Using a density functional theory approach incorporating the M06-L functional, which includes dispersion interactions, a large 34T nanocluster model of Fe-ZSM-5 zeolite in which T is a Si or Al atom is employed to examine both the stepwise and concerted mechanisms of the transformation of ethanol into ethene. For the stepwise mechanism, ethanol dehydration commences from the first hydrogen abstraction of the ethanol OH group to form the ethoxide-hydroxide intermediate with a low activation energy of 17.7 kcal mol(-1). Consequently, the ethoxide-hydroxide intermediate is decomposed into ethene through hydrogen abstraction from the ethoxide methyl carbon to either the OH group of hydroxide or the oxygen of the ethoxide group with high activation energies of 64.8 and 63.5 kcal mol(-1), respectively. For the concerted mechanism, ethanol transformation into the ethene product occurs in a single step without intermediate formation, with an activation energy of 32.9 kcal mol(-1). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hydrogen output from radiolytic split of water in the presence of some zeolites

    International Nuclear Information System (INIS)

    Cecal, A.; Colisnic, D.; Popa, K.; Paraschivescu, A.; Bilba, N.

    2002-01-01

    Radiolytic decomposition of water under the action of gamma rays in the presence of some zeolites such as ZSM-5, SAPO-5 and MOR was studied. The irradiation was performed using a gamma 60 Co source at an activity of 3 . 10 4 Ci and dose rate 8.3 KGy/h. The stable products of radiolysis as well as the other chemical species were identified by mass spectrometry. The calculated radiochemical yield decreased in order: H-ZSM-5 > Na-ZSM-5 > H-SAPO-5 > MOR and was higher in the presence of these catalysts than in their absence

  8. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat Widayat

    2012-12-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20. [Keywords:  catalyst; ethanol conversion; dehydration process; yield of diethyl ether; natural zeolite].

  9. Catalytic activity of bimetal-containing Co,Pd systems in the oxidation of carbon monoxide

    Science.gov (United States)

    Oleksenko, L. P.; Lutsenko, L. V.

    2013-02-01

    The catalytic activity of low-percentage Co,Pd systems on ZSM-5, ERI, SiO2, and Al2O3 supports in the oxidation of CO was studied. The activity of bimetal-containing catalysts was shown to depend on the nature of the catalyst and the amount and ratio of their active components. According to the results of thermoprogrammed reduction with H2 (H2 TPR) and X-ray photoelectron spectroscopy (XPS) data, the metals are distributed as isolated cations or Coδ+-O-Pdδ+ clusters with cobalt and palladium cations surrounded by off-lattice oxygen in Co,Pd systems. The 0.8% Co,0.5% Pd-ZSM-5 bimetal catalysts were found to be more active due to the presence of clusters.

  10. Investigation of thermodynamic parameters of cetyl pyridinium bromide sorption onto ZSM-5 and natural clinoptilolite

    International Nuclear Information System (INIS)

    Ghiaci, M.; Kia, R.; Kalbasi, R.J.

    2004-01-01

    A study was undertaken to determine the influence of temperature and surfactant concentration on the adsorption of cetyl pyridinium bromide on two ZSM-5 zeolites, and on natural clinoptilolite. The effect of temperature on adsorption and thermodynamic properties was investigated by making measurements at (297, 303, 307, 313) K. The results show that the calculated curves from the general isotherm equation can represent the experimental data very well up to T=313 K. Based on the calculation of the thermodynamics of adsorption, it is evident that the principle contribution to the ΔG compfn hm of negative value is the large positive value of ΔS compfn hm (36 to 52 J · mol -1 ), whereas ΔH compfn hm is positive and in the range of 1 to 7 kJ · mol -1 . Therefore, similar to the micellisation in bulk solution, the second step of surfactant adsorption is an entropy-driven process

  11. An alternative preparation method for ion exchanged catalysts: Solid state redox reaction

    DEFF Research Database (Denmark)

    Schneider, E.; Hagen, A.; Grunwaldt, J.-D.

    2004-01-01

    A new method for modifying zeolites with zinc is proposed. The solid state redox reaction between metallic zinc and ZSM-5 zeolites with different Si/Al ratios was investigated by temperature programmed hydrogen evolution (TPHE), X-ray absorption near edge structure (XANES) and diffuse reflectance...... infrared Fourier transform spectroscopy (DRIFTS). The evolution of hydrogen was detected at temperatures above 620 K. The source of hydrogen was the solid state redox reaction of the metal with protons of the support. The samples exhibit catalytic activity in ethane aromatization indicating that zinc...... should be located at the same sites as in catalysts prepared by conventional methods. Combination of XANES and catalytic activity point to zinc being mainly present in tetrahedral geometry under reaction conditions....

  12. Method for liquid catalytic cracking with double rising pipe

    Energy Technology Data Exchange (ETDEWEB)

    Demmel, E J; Owen, H

    1975-01-23

    The invention deals with a method to crack hydrocarbon charges where the charge is introduced into a reaction zone together with a catalyst mass containing two components. One of these consists of a zeolite component, the catalyst mass is removed from the reaction products, the hydrocarbons removed from the reaction zone, the converted hydrocarbon charge separated off and the unconverted hydrocarbon charge introduced into a second reaction zone together with a catalyst mass. This mass contains two cracking components one of which consists of one of the zeolite components identified as zeolite of the ZSM-5 type.

  13. Hidroxilación de fenol con catalizadores ZSM-5 modificado con cobre

    Directory of Open Access Journals (Sweden)

    César Augusto Caro

    2005-01-01

    Full Text Available Se sintetizaron varios catalizadores Cu-ZSM-5 con diferentes relaciones Si/Al y Si/Cu. Usando metilamina o hidróxido de sodio como agente mineralizante. Los catalizadores se caracterizaron por DRX, IR, análisis BET, UV-VIS y análisis elemental. El desempeño catalítico de los catalizadores sintetizados se evaluó en la hidroxilación de fenol con H2O2. Se encontró que la relación catecol (CAT/(hidroquinona (HQ + p-benzoquinona (PBQ aumentó con el contenido de agua, presentó un máximo cuando la relación en peso de agua/fenol fue de 53/1 y se favoreció a altas temperaturas, con el aumento del contenido de aluminio o con la disminución en el contenido de catalizador. El contenido de cobre no fue un factor determinante para la conversión ni para la selectividad en la hidroxilación de fenol. La producción de la p-benzoquinona (PBQ, producto de oxidación de la hidroquinona, fue mínimo cuando se usaron las siguientes condiciones: 80 ºC, fenol: 1 mmol, relación molar fenol/H2O2 de 3/1, catalizador: 20 mg, agua: 5 g, tiempo de reacción: 4 h.

  14. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat

    2013-01-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20.

  15. Catalytic dehydration of ethanol to ethylene over HMOR HZSM-5 modified with copper and iron

    Directory of Open Access Journals (Sweden)

    José Luis Agudelo

    2005-09-01

    Full Text Available Catalytic dehydration of ethanol to ethylene on HMOR (Si/Al = 6.5, HZSM-5 (Si/Al = 29, Cu-HZSM-5 (Si/Al = 98 and Fe-HZSM-5 (Si/Al = 151 was studied at atmospheric pressure and 120oC - 300ºC. ZSM-5 supported catalysts were active at temperatures over 260ºC, achieving more than 60% conversion. Ethylene was predominantly produced as a dehydration product. Incorporating Cu did not significantly improve catalytic activity compared to HZSM-5. H-MOR was very active at low temperatures but deactivated rapidly at 240ºC, most probably due to coke formation.

  16. Effects of Coke Deposits on the Catalytic Performance of Large Zeolite H-ZSM-5 Crystals during Alcohol-to-Hydrocarbon Reactions as Investigated by a Combination of Optical Spectroscopy and Microscopy

    NARCIS (Netherlands)

    Nordvang, Emily C.; Borodina, Elena; Ruiz-Martinez, Javier; Fehrmann, Rasmus; Weckhuysen, Bert M.

    2015-01-01

    The catalytic activity of large zeolite H-ZSM-5 crystals in methanol (MTO) and ethanol-to-olefins (ETO) conversions was investigated and, using operando UV/Vis measurements, the catalytic activity and deactivation was correlated with the formation of coke. These findings were related to in situ

  17. Catalytic pyrolysis of Tetraselmis and Isochrysis microalgae by nickel ceria based catalysts for hydrocarbon production

    International Nuclear Information System (INIS)

    Aysu, Tevfik; Abd Rahman, Nur Adilah; Sanna, Aimaro

    2016-01-01

    The catalytic pyrolysis of Tetraselmis sp. and Isochrysis sp. was carried out over ceria based catalysts in a fixed bed reactor. There was a clear effect of the catalysts on the product yields and quality, with the catalysts able to recover a large fraction of the starting microalgae energy (67–77%) in the bio-oils. Bio-oil yield was found to be higher in presence of Ni–Ce/Al_2O_3 and Ni–Ce/ZrO_2 (26 wt.%). The produced bio-oils had HHVs (higher heating values) of 34–35 MJ/kg and suffered strong deoxygenation, with O level decreased from 40–41% in the starting microalgae to 9–15%. Also, 15–20% N removal was obtained using the ceria based catalysts. The oxygen contents in the bio-oils were remarkably lower than those previously obtained using ZSM-5 (25%) and other species without catalyst (17–24%). "1H NMR and GC–MS analysis showed that the bio-oils were enriched in aliphatics and depleted in N-compounds and water using the ceria based catalysts. - Highlights: • Nickel-ceria based catalysts were evaluated for the in-situ conversion of Tetraselmis and Isochrysis microalgae. • Catalysts recovered 72–77% of the starting microalgae energy in bio-oils. • Bio-oils suffered strong deoxygenation, with O level decreased from 40–41% in the starting microalgae to 9–15%. • Bio-oils were enriched in aliphatics and depleted in N-compounds.

  18. OSU-6: A Highly Efficient, Metal-Free, Heterogeneous Catalyst for the Click Synthesis of 5-Benzyl and 5-Aryl-1H-tetrazoles

    Directory of Open Access Journals (Sweden)

    Baskar Nammalwar

    2015-12-01

    Full Text Available OSU-6, an MCM-41 type hexagonal mesoporous silica with mild Brönsted acid properties, has been used as an efficient, metal-free, heterogeneous catalyst for the click synthesis of 5-benzyl and 5-aryl-1H-tetrazoles from nitriles in DMF at 90 °C. This catalyst offers advantages including ease of operation, milder conditions, high yields, and reusability. Studies are presented that demonstrate the robust nature of the catalyst under the optimized reaction conditions. OSU-6 promotes the 1,3-dipolar addition of azides to nitriles without significant degradation or clogging of the nanoporous structure. The catalyst can be reused up to five times without a significant reduction in yield, and it does not require treatment with acid between reactions.

  19. Local structure of Pb2 ion catalysts anchored within zeolite cavities and their photo-catalytic reactivity for the elimination of N2O

    International Nuclear Information System (INIS)

    Ju, Woo-Sung; Matsuoka, Masaya; Yamashita, Hiromi; Anpo, Masakazu

    2001-01-01

    The Pb 2+ /ZSM-5 catalyst was prepared by an ion-exchange method and its photo-catalytic activity for the decomposition of N 2 O under UV irradiation was investigated. In-situ UV-Vis absorption spectroscopy and XAFS (XANES and FT-EXAFS) investigations revealed that the Pb 2+ ions exist in a highly dispersed state within the pores of the zeolites. UV irradiation of the catalysts in the presence of N 2 O led to the photo-catalytic decomposition of N 2 O into N 2 at temperatures as low as 298κ. The effective wavelength of the irradiated UV light indicated that the excited state of the Pb 2+ ions included within the zeolite cavities plays a significant role in the photo-catalytic decomposition of N 2 O molecules. (au)

  20. Adsorption of Water and Ethanol in MFI-Type Zeolites

    KAUST Repository

    Zhang, Ke

    2012-06-12

    Water and ethanol vapor adsorption phenomena are investigated systematically on a series of MFI-type zeolites: silicalite-1 samples synthesized via both alkaline (OH -) and fluoride (F -) routes, and ZSM-5 samples with different Si/Al ratios as well as different charge-balancing cations. Full isotherms (0.05-0.95 activity) over the range 25-55 °C are presented, and the lowest total water uptake ever reported in the literature is shown for silicalite-1 made via a fluoride-mediated route wherein internal silanol defects are significantly reduced. At a water activity level of 0.95 (35 °C), the total water uptake by silicalite-1 (F -) was found to be 0.263 mmol/g, which was only 12.6%, 9.8%, and 3.3% of the capacity for silicalite-1 (OH -), H-ZSM-5 (Si/Al:140), and H-ZSM-5 (Si/Al:15), respectively, under the same conditions. While water adsorption shows distinct isotherms for different MFI-type zeolites due to the difference in the concentration, distribution, and types of hydrophilic sites, the ethanol adsorption isotherms present relatively comparable results because of the overall organophilic nature of the zeolite framework. Due to the dramatic differences in the sorption behavior with the different sorbate-sorbent pairs, different models are applied to correlate and analyze the sorption isotherms. An adsorption potential theory was used to fit the water adsorption isotherms on all MFI-type zeolite adsorbents studied. The Langmuir model and Sircar\\'s model are applied to describe ethanol adsorption on silicalite-1 and ZSM-5 samples, respectively. An ideal ethanol/water adsorption selectivity (α) was estimated for the fluoride-mediated silicalite-1. At 35 °C, α was estimated to be 36 for a 5 mol % ethanol solution in water increasing to 53 at an ethanol concentration of 1 mol %. The adsorption data demonstrate that silicalite-1 made via the fluoride-mediated route is a promising candidate for ethanol extraction from dilute ethanol-water solutions. © 2012

  1. Linkage isomerism of carbonyl coordination complexes formed upon CO adsorption on the zeolite Li-ZSM-5: variable-temperature FTIR studies

    Science.gov (United States)

    Otero Areán, C.; Rodríguez Delgado, M.; Manoilova, O. V.; Turnes Palomino, G.; Tsyganenko, A. A.; Garrone, E.

    2002-08-01

    Carbon monoxide adsorbed at a low-temperature on the zeolite Li-ZSM-5 forms Li +⋯CO and Li +⋯(CO) 2 species characterized by C-O stretching bands at 2195 and 2187 cm-1, respectively. These C-bonded carbonyls are in a temperature-dependent equilibrium with Li +⋯OC and CO⋯Li +⋯CO species having O-bonded CO. By means of variable-temperature FTIR spectroscopy, the enthalpy change involved in the corresponding isomerization process was found to be ΔH°=7.8 kJ mol-1 for the monocarbonyl and ΔH°=5.1 kJ mol-1 for the dicarbonyl. Therefore, although C-bonded species were always found to show a higher cation-CO interaction energy than O-bonded species, the difference is smaller in the case of dicarbonyls.

  2. Selective Production of Aromatics from 2-Octanol on Zinc Ion-Exchanged MFI Zeolite Catalysts

    Directory of Open Access Journals (Sweden)

    Masakazu Iwamoto

    2015-12-01

    Full Text Available The aromatization of 2-octanol derived from castor oil as a byproduct in the formation of sebacic acid was investigated on various zeolite catalysts. Zn ion-exchanged MFI (ZSM-5 zeolites with small silica/alumina ratios and zinc contents of 0.5 to 2.0 wt. % were determined to exhibit good and stable activity for the reaction at 623 to 823 K. The yield of aromatics was 62% at 773 K and the space velocity 350 to 1400 h−1. The temperature and contact time dependences of the product distributions indicated the reaction pathways of 2-octanol→dehydration to 2-octene→decomposition to C5 and C3 compounds→further decomposition to small alkanes and alkenes→aromatization with dehydrogenation. Alcohols with carbon numbers of 5 to 8 exhibited similar distributions of products compared to 2-octanol, while corresponding carbonyl compounds demonstrated different reactivity.

  3. Ethylbenzene dehydrogenation over Mg3Fe0.5−xCoxAl0.5 catalysts derived from hydrotalcites: Comparison with Mg3Fe0.5−yNiyAl0.5 catalysts

    KAUST Repository

    Atanda, Luqman A.; Balasamy, Rabindran J.; Khurshid, Alam; Al-Ali, Ali A S; Sagata, Kunimasa; Asamoto, Makiko; Yahiro, Hidenori; Nomura, Kiyoshi; Sano, Tsuneji; Takehira, Katsuomi; Al-Khattaf, Sulaiman S.

    2011-01-01

    A series of Mg3Fe0.5-xCoxAl0.5 (x = 0-0.5) catalysts were prepared from hydrotalcite precursors and their activities in the dehydrogenation of ethylbenzene were compared with those of a series of Mg3Fe0.5-yNiyAl0.5 (y = 0-0.5) catalysts also derived

  4. Re/HZSM-5: a new catalyst for ethane aromatization with improved stability

    DEFF Research Database (Denmark)

    Krogh, Anne; Hansen, Thomas W.; Christensen, Claus Hviid

    2003-01-01

    Rhenium-impregnated HZSM-5 is found to be a promising catalyst for ethane aromatization. The Re–HZSM-5 catalyst deactivates significantly slower than well-known ethane aromatization Zn–HZSM-5 catalyst. Product selectivities for the two catalysts are similar, indicating that the shape selectivity...

  5. Characterization by Sem, EDS and micro-Raman of the influence of the molar ratio SiO{sub 2}/Al{sub 2}O{sub 3} and reduction temperature on the system CuZSM5; Caracterizacion por SEM, EDS y micro-Raman de la influencia de la relacion molar SiO{sub 2}/Al{sub 2}O{sub 3} y temperatura de reduccion sobre el sistema CuZSM5

    Energy Technology Data Exchange (ETDEWEB)

    Chavez R, F. [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, 07738 Mexico D. F. (Mexico); Rodriguez I, I. [Universidad de la Habana, Instituto de Ciencia y Tecnologia de Materiales, Zapata y G. s/n, 10400 La Habana (Cuba); Petranovskii, V., E-mail: fchavez@esfm.ipn.mx [UNAM, Centro de Nanociencias y Nanotecnologia, Apdo. Postal 14, 22800 Ensenada, Baja California (Mexico)

    2014-07-01

    The morphological and spectroscopic changes caused by reduction of ion-exchanged CuZSM5 samples with SiO{sub 2}/Al{sub 2}O{sub 3} molar ratios (MR) of 30 and 70 in H{sub 2} flow at 150 and 350 grades C are discussed. the nominal copper loading was of 1% by weight. Scanning electron microscopy of CuZSM5 sample set showed that the treatment in reducing atmosphere at 350 grades C produces particle agglomeration and smoother surface texture that treatment at 150 grades C, this effect was more pronounced for the sample with MR 30. Furthermore, the particles corresponding to the sample with MR 30 are of irregular shape and have rough texture (cubic or rectangular crystals, protrusions) while the particles of the sample with MR 70 are in the majority of spherical smooth texture (leaf-shaped crystals/platelet, reclining). Energy Dispersive X-ray spectroscopy elemental analysis reveals a heterogeneous distribution of copper as well other elements in each sample. The micro-Raman spectroscopy shows some changes in the vibrational modes for the studied samples. (Author)

  6. One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Lee, How-Ming; Huang, Men-Han

    2012-01-01

    Highlights: ► A bifunctional catalyst for DME synthesis is prepared using a coprecipitation method. ► The DME synthesis from syngas at a high space velocity of is investigated. ► The reaction is dominated by chemical kinetics at lower reaction temperatures. ► Thermodynamic equilibrium governs the reaction at higher temperatures. ► 0.2 g of ZSM5 is sufficient to be blended with 1 g of the catalyst for DME synthesis. -- Abstract: Dimethyl ether (DME) has been considered as a potential hydrogen carrier used in fuel cells; it can also be consumed as a diesel substitute or chemicals. To develop the technique of DME synthesis, a bifunctional Cu–ZnO–Al 2 O 3 /ZSM5 catalyst is prepared using a coprecipitation method. The reaction characteristics of DME synthesis from syngas at a high space velocity of 15,000 mL (g cat h) −1 are investigated and the effects of reaction temperature, pressure, CO 2 concentration and ZSM5 amount on the synthesis are taken into account. The results suggest that an increase in CO 2 concentration in the feed gas substantially decreases the DME formation. The optimum reaction temperature always occurs at 225 °C, regardless of what the pressure is. It is thus recognized that the DME synthesis is governed by two different mechanisms when the reaction temperature varies. At lower reaction temperatures ( 225 °C). For the CO 2 content of 5 vol.% and the pressure of 40 atm, the maximum DME yield is 1.89 g (g cat h) −1 . It is also found that 0.2 g of ZSM5 is sufficient to be blended with 1 g of the catalyst for DME synthesis.

  7. Characterization by Sem, EDS and micro-Raman of the influence of the molar ratio SiO2/Al2O3 and reduction temperature on the system CuZSM5

    International Nuclear Information System (INIS)

    Chavez R, F.; Rodriguez I, I.; Petranovskii, V.

    2014-01-01

    The morphological and spectroscopic changes caused by reduction of ion-exchanged CuZSM5 samples with SiO 2 /Al 2 O 3 molar ratios (MR) of 30 and 70 in H 2 flow at 150 and 350 grades C are discussed. the nominal copper loading was of 1% by weight. Scanning electron microscopy of CuZSM5 sample set showed that the treatment in reducing atmosphere at 350 grades C produces particle agglomeration and smoother surface texture that treatment at 150 grades C, this effect was more pronounced for the sample with MR 30. Furthermore, the particles corresponding to the sample with MR 30 are of irregular shape and have rough texture (cubic or rectangular crystals, protrusions) while the particles of the sample with MR 70 are in the majority of spherical smooth texture (leaf-shaped crystals/platelet, reclining). Energy Dispersive X-ray spectroscopy elemental analysis reveals a heterogeneous distribution of copper as well other elements in each sample. The micro-Raman spectroscopy shows some changes in the vibrational modes for the studied samples. (Author)

  8. Tailoring of the structure of Fe-cationic species in Fe-ZSM-5 by distribution of Al atoms in the framework for N2O decomposition and NH3-SCR-NOx

    Czech Academy of Sciences Publication Activity Database

    Sazama, Petr; Wichterlová, Blanka; Tabor, Edyta; Šťastný, Petr; Sathu, Naveen Kumar; Sobalík, Zdeněk; Dědeček, Jiří; Sklenák, Štěpán; Klein, Petr; Vondrová, Alena

    2014-01-01

    Roč. 312, APR 2014 (2014), s. 123-138 ISSN 0021-9517 R&D Projects: GA ČR GAP106/11/0624; GA TA ČR TA01021377 Institutional support: RVO:61388955 Keywords : Fe-ZSM-5 zeolite * Structure of Fe species * Fe(III)-oxo species Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.921, year: 2014

  9. Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran over Heterogeneous Iron Catalysts.

    Science.gov (United States)

    Li, Jiang; Liu, Jun-Ling; Liu, He-Yang; Xu, Guang-Yue; Zhang, Jun-Jie; Liu, Jia-Xing; Zhou, Guang-Lin; Li, Qin; Xu, Zhi-Hao; Fu, Yao

    2017-04-10

    This work provided the first example of selective hydrodeoxygenation of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) over heterogeneous Fe catalysts. A catalyst prepared by the pyrolysis of an Fe-phenanthroline complex on activated carbon at 800 °C was demonstrated to be the most active heterogeneous Fe catalyst. Under the optimal reaction conditions, complete conversion of HMF was achieved with 86.2 % selectivity to DMF. The reaction pathway was investigated thoroughly, and the hydrogenation of the C=O bond in HMF was demonstrated to be the rate-determining step during the hydrodeoxygenation, which could be accelerated greatly by using alcohol solvents as additional H-donors. The excellent stability of the Fe catalyst, which was probably a result of the well-preserved active species and the pore structure of the Fe catalyst in the presence of H 2 , was demonstrated in batch and continuous flow fixed-bed reactors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Choline-based biodegradable ionic liquid catalyst for Mannich-type

    Indian Academy of Sciences (India)

    Choline-based biodegradable ionic liquid catalyst for Mannich-type reaction ... Abstract. A three-component Mannich-type reaction of aromatic aldehydes, ketones, and amines was catalyzed by a novel ... Journal of Chemical Sciences | News.

  11. A Cu/Al-MCM-41 mesoporous molecular sieve: application in the abatement of no in exhaust gases

    Directory of Open Access Journals (Sweden)

    M. S. Batista

    2005-09-01

    Full Text Available Propane oxidation and reduction of NO to N2 with propane under oxidative conditions on a Cu-Al-MCM-41 mesoporous molecular sieve and Cu-ZSM-5 zeolites were studied. Both types of catalysts were prepared by ion exchange in aqueous solutions of copper acetate and characterised by X-ray diffraction (XRD, nitrogen sorption measurement, diffuse reflectance ultra-violet spectroscopy (DRS-UV, diffuse reflectance infra-red Fourier transform spectroscopy (DRIFTS of the adsorption of CO on Cu+ and temperature-programmed reduction with hydrogen (H2-TPR. The NO reduction was performed between 200 and 500 ºC using a GHSV = 42,000 h-1. H2-TPR data showed that in the prepared Cu-Al-MCM-41 all the Cu atoms are on the surface of the mesopores as highly dispersed CuO, which results in a decrease in specific surface area and in mesopore volume. H2-TPR together with DRIFTS data provided evidence that in Cu/ZSM-5 catalysts, Cu atoms are found as two different Cu2+ cations: Cualpha2+ and Cubeta2+, which are located on charge compensation sites, and their thermo-redox properties were different from those of Cu atoms in Cu-Al-MCM-41. The specific activity of the Cu2+ exchangeable cations in Cu-ZSM-5, irrespective of their nature, was much greater than that of the Cu2+ in Cu-Al-MCM-41, where they are found as CuO.

  12. Temperature-Induced Desorption of Methyl tert-Butyl Ether Confined on ZSM-5: An In Situ Synchrotron XRD Powder Diffraction Study

    Directory of Open Access Journals (Sweden)

    Elisa Rodeghero

    2017-02-01

    Full Text Available The temperature-induced desorption of methyl tert-butyl ether (MTBE from aqueous solutions onto hydrophobic ZSM-5 was studied by in situ synchrotron powder diffraction and chromatographic techniques. This kind of information is crucial for designing and optimizing the regeneration treatment of such zeolite. The evolution of the structural features monitored by full profile Rietveld refinements revealed that a monoclinic (P21/n to orthorhombic (Pnma phase transition occurred at about 100 °C. The MTBE desorption process caused a remarkable change in the unit-cell parameters. Complete MTBE desorption was achieved upon heating at about 250 °C. Rietveld analysis demonstrated that the desorption process occurred without any significant zeolite crystallinity loss, but with slight deformations in the channel apertures.

  13. Decomposição catalítica de óleo de soja em presença de diferentes zeólitas

    Directory of Open Access Journals (Sweden)

    Santos Frances R.

    1998-01-01

    Full Text Available The catalytic decomposition of soybean oil was studied in a fix bed reactor at 673 and 773 K and using amorphous silica-alumina and the zeolites USY, H-Mordenite and H-ZSM-5 as catalysts. Both the selectivity and the catalytic activity were determined by studying the product composition resulting from the chemical reactions. Physicochemical characteristics of the catalysts were obtained by X-ray fluorescence, Fourier Transform infrared spectroscopy, 29Si and 27Al Nuclear Magnetic Ressonance and textural analysis. The zeolites USY and H-ZSM-5, showing higher Brönsted acidity, yielded products with higher concentration in aromatic hydrocarbons, whereas with both H-Mordenite and amorphous silica-alumina the main products were paraffins.

  14. Adsorption of Water and Ethanol in MFI-Type Zeolites

    KAUST Repository

    Zhang, Ke; Lively, Ryan P.; Noel, James D.; Dose, Michelle E.; McCool, Benjamin A.; Chance, Ronald R.; Koros, William J.

    2012-01-01

    Water and ethanol vapor adsorption phenomena are investigated systematically on a series of MFI-type zeolites: silicalite-1 samples synthesized via both alkaline (OH -) and fluoride (F -) routes, and ZSM-5 samples with different Si/Al ratios as well

  15. Catalytic Reduction of NO and NOx Content in Tobacco Smoke

    Directory of Open Access Journals (Sweden)

    Cvetkovic N

    2014-12-01

    Full Text Available In order to reduce the nitric oxide (NO and nitrogen oxides (NO content in mainstream tobacco smoke, a new class of catalyst based on Cu-ZSM-5 zeolite has been synthesized. The effectiveness of the new catalyst (degree of reduction and specific catalytic ability was tested both by adding Cu-ZSM-5 zeolite directly to the tobacco blend and by addition to the filter. We have determined that adding the catalyst to the tobacco blend does not cause any changes in the physical, chemical or organoleptic properties of the cigarette blend. But, the addition reduces the yield of nitrogen oxides while having no influence on nicotine and “tar” content in the tobacco smoke of the modified blend. The catalyst addition increases the static burning rate (SBR. The changes in the quantity of NO and NOmay be explained by changes in burning conditions due to the increase of Oobtained from catalytic degradation of NO and NO, and adsorptive and diffusive properties of the catalyst. The changes in mainstream smoke analytes are also given on a puff-by-puff basis.

  16. Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Riisager, Anders

    2012-01-01

    Sulfonic acid functionalised SBA-15 (SO3H-SBA-15), sulfated zirconia and beta, Y, ZSM-5 and mordenite zeolite catalysts have been applied for the dehydration of sugars to ethyl levulinate and ethyl-D-glucopyranoside (EDGP) using ethanol as solvent and reactant. The SO3H-SBA-15 catalyst showed...

  17. Topo synthesis in the presence of microporous materials

    International Nuclear Information System (INIS)

    Meddour, L.; Hamidi, A.; Boudjellah-Nahnah, N.

    1997-02-01

    In the present work, we have done an amelioration of TOPO synthesis based on the PC13, with introducing the differents microporous materials in the synthesis mixture. The catalysts used are the Faujasite Y,ZSM-5, SAPO-11. From the results of this work, we estabilished that some catalyst are performed

  18. Ethylbenzene dehydrogenation over Mg3Fe0.5−xCoxAl0.5 catalysts derived from hydrotalcites: Comparison with Mg3Fe0.5−yNiyAl0.5 catalysts

    KAUST Repository

    Atanda, Luqman A.

    2011-04-01

    A series of Mg3Fe0.5-xCoxAl0.5 (x = 0-0.5) catalysts were prepared from hydrotalcite precursors and their activities in the dehydrogenation of ethylbenzene were compared with those of a series of Mg3Fe0.5-yNiyAl0.5 (y = 0-0.5) catalysts also derived from hydrotalcite. The hydrotalcites prepared by co-precipitation were calcined at 550 °C to the mixed oxides with a high surface area of 150-240m2gcat-1; they were composed of Mg(Fe,Me,Al)O periclase and Mg(Me)(Fe,Al)2O4 spinel (Me = Co or Ni). Bimetallic Fe3+-Co2+ system showed a synergy, i.e., an increase in the activity, whereas Fe3+-Ni2+ bimetallic system showed no synergy. The high styrene yield was obtained on Mg 3Fe0.1Co0.4Al0.5; however, a large substitution of Fe3+ with Co2+ caused a decrease in styrene selectivity along with coking on the catalysts, due to an isolation of CoOx on the catalyst surface. The highest yield as well as the highest selectivity for styrene production was obtained at x = 0.25 at time on stream of 30 min. The coprecipitation at pH = 10.0 and the composition of Mg3Fe0.25Co0.25Al0.5 were the best for preparing the active catalyst. This is partly due to the formation of a good hydrotalcite structure. On this catalyst, the active Fe3+ species was reduced at a low temperature by the Fe3+-Co2+ bimetal formation, leading to a high activity. Simultaneously, the amount of reducible Fe3+ was the smallest, resulting in a high stability of the active Fe3+ species. It is likely that the dehydrogenation was catalyzed by the reduction-oxidation between Fe3+ and Fe2+ and that Co2+ assisted the reduction-oxidation by forming Fe 3+-Co2+ (1/1) bimetallic active species. © 2011 Elsevier B.V. All rights reserved.

  19. A nanostructural study of Raney-type nickel catalysts

    NARCIS (Netherlands)

    Devred, F.

    2004-01-01

    Raney-type nickel catalysts have been applied in commercial hydrogenation reactions for decades. They are relatively cheap and have proven to be very efficient in hydrogenation. The preparation process is relatively simple, but it appears that many parameters have an influence on the performance of

  20. Structure-activity relations for Ni-containing zeolites during NO reduction. II. Role of the chemical state of Ni

    NARCIS (Netherlands)

    Mosqueda Jimenez, B.I.; Jentys, A.; Seshan, Kulathuiyer; Lercher, J.A.

    2003-01-01

    The influence of the metal in Ni-containing zeolites used as catalysts for the reduction of NO with propane and propene was studied. In the fresh catalysts, Ni is located in ion exchange positions for Ni/MOR, Ni/ZSM-5, and Ni/MCM-22. The formation of carbonaceous deposits, the removal of Al from

  1. On the impact of olefins and aromatics in the methanol-to-hydrocarbon conversion over H-ZSM-5 catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.; Mueller, S.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen, Garching (Germany). Dept. of Chemistry

    2012-07-01

    Methanol-to-hydrocarbons processes using HZSM-5 archetype acidic zeolites or zeotype SAPO-34 catalysts are regarded as a vital suite of conversion technologies to bypass petroleum-based routes for the production of specific fuels and petrochemical commodities. Special significance of the methanol chemistry originates from its versatility enabling selective transformations towards various products. Industry demonstrated successfully implementations of Methanol-To-Gasoline, Methanol-To-Olefin, and Methanol-To-Propylene processes, although the typical single-pass selectivity remained limited and recycling is necessary. Considerable fundamental research efforts both from experimental and computational sides contributed to unravel the underlying complex reaction mechanism. The indirect hydrocarbon pool mechanism, in which Broensted acid sites combined with adsorbed light olefins or lower methylbenzenes act as active centers, is generally accepted to explain the formation of light olefins. As olefin and aromatics populated catalytic sites show different reactivity in terms of activity and selectivity to ethylene or propylene, one could envision optimizing the product distribution by suitable co-feeding of specific hydrocarbons. The present work addresses three questions with an experimental study conducted under realistic MTP operation conditions: (1) How are ethylene and propylene formed at molecular level? (2) Which reaction pathway leads to the formation of undesired hydrogen transfer products? (3) Does olefin or aromatics co-feeding change the selectivity to ethylene or propylene? Xylenes and various olefins were co-fed with methanol to achieve a detailed understanding of the reaction mechanism over acidic HZSM-5 zeolites. Results suggest, that an olefin homologation/cracking route (olefin cycle) accounts for the autocatalytic (-like) nature and the majority of methanol consumption rather than the route involving aromatic intermediates (aromatics cycle). Co

  2. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.

    2012-01-10

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro/mesoporous material was used to understand the effect of the presence of mesopores on these reactions. Various characterisation techniques, that is, XRD, SEM, TGA, FT-IR and nitrogen sorption measurements were applied for complete characterisation of the catalysts. Catalytic tests using CREC riser simulator showed that the micro/mesoporous composite catalyst exhibited higher catalytic activity as compared with the conventional microporous ZSM-5 and HY zeolite for transformation of m-xylene and for the catalytic cracking of TIPB, respectively. The outstanding catalytic reactivity of m-xylene and TIPB molecules were mainly attributed to the easier access of active sites provided by the mesopores. Apparent activation energies for the disappearance of m-xylene and TIPB over all catalysts were found to decrease in the order: EBCM>EZSM-5 and EBCM>EHY, respectively. © 2012 Canadian Society for Chemical Engineering.

  3. Catalytic hydrothermal liquefaction (HTL of biomass for bio-crude production using Ni/HZSM-5 catalysts

    Directory of Open Access Journals (Sweden)

    Shouyun Cheng

    2017-04-01

    Full Text Available Hydrothermal liquefaction (HTL is an effective method that can convert biomass into bio-crude, but direct use of bio-crude derived from biomass HTL remains a challenge due to the lower quality. In this study, bifunctional Ni/HZSM-5 catalysts and zinc hydrolysis were combined to produce upgraded bio-crude in an in-situ HTL process. The K2CO3 and HZSM-5 catalysts with different Ni loading ratios were tested. The effects of different catalysts on the yield and quality of bio-crude and gas were investigated. The results indicated that the catalysts improved bio-crude and gas yields, compared to pine sawdust liquefaction without catalyst. The catalysts reduced the contents of undesirable oxygenated compounds such as acids, ketones, phenols, alcohols and esters in bio-crude products while increased desirable hydrocarbons content. K2CO3 produced highest bio-crude yield and lowest solid residue yield among all catalysts. Compared to parent HZSM-5 catalyst, bifunctional Ni/HZSM-5 catalysts exhibited higher catalyst activity to improve quality of upgraded bio-crude due to its integration of cracking and hydrodeoxygenation reactions. 6%Ni/HZSM-5 catalyst produced the bio-crude with the highest hydrocarbons content at 11.02%. This catalyst can be a candidate for bio-crude production from biomass HTL.

  4. Effective Liquid-phase Nitration of Benzene Catalyzed by a Stable Solid Acid Catalyst: Silica Supported Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40}

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Shu-wen; Liu, Li-jun; Zhang, Qian; Wang, Liang-yin [Liaocheng University, Liaocheng (China)

    2012-04-15

    Silica supported Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40} catalyst was prepared through sol-gel method with ethyl silicate-40 as silicon resource and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen adsorption-desorption and potentiometric titration methods. The Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40} particles with Keggin-type structure well dispersed on the surface of silica, and the catalyst exhibited high surface area and acidity. The catalytic performance of the catalysts for benzene liquid-phase nitration was examined with 65% nitric acid as nitrating agent, and the effects of various parameters were tested, which including temperature, time and amount of catalyst, reactants ratio, especially the recycle of catalyst was emphasized. Benzene was effectively nitrated to mononitro-benzene with high conversion (95%) in optimized conditions. Most importantly, the supported catalyst was proved has excellent stability in the nitration progress, and there were no any other organic solvent and sulfuric acid were used in the reaction system, so the liquid-phase nitration of benzene that we developed was an eco-friendly and attractive alternative for the commercial technology

  5. The Hydrocarbon Pool in Ethanol-to-Gasoline over HZSM-5 Catalysts

    DEFF Research Database (Denmark)

    Johansson, Roger; Hruby, S.L.; Hansen, Jeppe Rass

    2009-01-01

    It is shown that the conversion of ethanol-to-gasoline over an HZSM-5 catalyst yields essentially the same product distribution as for methanol-to-gasoline performed over the same catalyst. Interestingly, there is a significant difference between the identity of the hydrocarbon molecules trapped...... inside the HZSM-5 catalyst when ethanol is used as a feed instead of methanol. In particular, the hydrocarbon pool contains a significant amount of ethylsubstituted aromatics when ethanol is used as feedstock, but there remains only methyl-substituted aromatics in the product slate....

  6. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    Energy Technology Data Exchange (ETDEWEB)

    Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey; Zhang, Guanghui; Gallagher, James R.; Hu, Bo; Cheah, Singfoong; Schaidle, Joshua A.; Ruddy, Daniel A.; Hensley, Jesse E.; Krause, Theodore R.; Curtiss, Larry A.; Miller, Jeffrey T.; Hock, Adam S.

    2016-01-01

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order to better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.

  7. Adsorption of parent nitrosamine on the nanocrystaline M-ZSM-5 ...

    Indian Academy of Sciences (India)

    interactions were predicted from adsorption of nitrosamine on the M-zeolite clusters. The comparison of inter- ... 1. Introduction. Approximately 60–90% of human cancers are ... catalysts that have been widely used in the adsorption of serious ...

  8. Upgrading pyrolysis bio-oil to biofuel over bifunctional Co-Zn/HZSM-5 catalyst in supercritical methanol

    International Nuclear Information System (INIS)

    Cheng, Shouyun; Wei, Lin; Julson, James; Muthukumarappan, Kasiviswanathan; Kharel, Parashu Ram

    2017-01-01

    Highlights: • Integration of Co-Zn/HZSM-5 and supercritical methanol was used for bio-oil hydrodeoxygenation. • Co-Zn/HZSM-5 exhibited higher effectiveness than Co/HZSM-5 or Zn/HZSM-5. • 15%Co5%Zn/HZSM-5 produced biofuel with the highest hydrocarbons content at 35.33%. • Loading of Co and/or Zn did not change crystalline structure of HZSM-5. • Hydrogenation and esterification are main reactions in bio-oil hydrodeoxygenation. - Abstract: The role of catalyst is essential in processes of upgrading biomass pyrolysis bio-oil into hydrocarbon biofuel. While the majority of heterogeneous catalytic processes are conducted in the presence of gas (nearly ideal) or liquid phase, a growing number of processes are utilizing supercritical fluids (SCFs) as reaction media. Although hydrodeoxygenation (HDO) is proven a promising process for pyrolysis bio-oil upgrading to hydrocarbon biofuel, catalyst efficiency remains a challenge. Integrating heterogeneous catalysts with SCFs in a bio-oil HDO process was investigated in this study. Bifunctional Co-Zn/HZSM-5 catalysts were firstly used to upgrade bio-oil to biofuel in supercritical methanol. The loading of Co and Zn did not change HZSM-5 crystalline structure. Physicochemical properties of biofuel produced by Co and/or Zn loaded HZSM-5 catalysts such as water content, total acid number, viscosity and higher heating value improved. Bimetallic Co-Zn/HZSM-5 catalysts showed enhanced reactions of decarboxylation and decarbonylation that resulted in higher yields of CO and CO 2 . Bimetallic Co-Zn/HZSM-5 catalysts were more effective for bio-oil HDO than monometallic Co/HZSM-5 or Zn/HZSM-5 catalyst , which was attributed to the synergistic effect of Co and Zn on HZSM-5 support. Bimetallic Co-Zn/HZSM-5 catalysts increased biofuel yields and hydrocarbons contents in biofuels in comparison with monometallic Co/HZSM-5 and Zn/HZSM-5 catalysts. 5%Co15%Zn/HZSM-5 catalyst generated the highest biofuel yield at 22.13 wt.%, and 15%Co5

  9. Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds.

    Science.gov (United States)

    Peng, Yuhan; Geng, Zhigang; Zhao, Songtao; Wang, Liangbing; Li, Hongliang; Wang, Xu; Zheng, Xusheng; Zhu, Junfa; Li, Zhenyu; Si, Rui; Zeng, Jie

    2018-06-13

    Single-atom catalysts exhibit high selectivity in hydrogenation due to their isolated active sites, which ensure uniform adsorption configurations of substrate molecules. Compared with the achievement in catalytic selectivity, there is still a long way to go in exploiting the catalytic activity of single-atom catalysts. Herein, we developed highly active and selective catalysts in selective hydrogenation by embedding Pt single atoms in the surface of Ni nanocrystals (denoted as Pt 1 /Ni nanocrystals). During the hydrogenation of 3-nitrostyrene, the TOF numbers based on surface Pt atoms of Pt 1 /Ni nanocrystals reached ∼1800 h -1 under 3 atm of H 2 at 40 °C, much higher than that of Pt single atoms supported on active carbon, TiO 2 , SiO 2 , and ZSM-5. Mechanistic studies reveal that the remarkable activity of Pt 1 /Ni nanocrystals derived from sufficient hydrogen supply because of spontaneous dissociation of H 2 on both Pt and Ni atoms as well as facile diffusion of H atoms on Pt 1 /Ni nanocrystals. Moreover, the ensemble composed of the Pt single atom and nearby Ni atoms in Pt 1 /Ni nanocrystals leads to the adsorption configuration of 3-nitrostyrene favorable for the activation of nitro groups, accounting for the high selectivity for 3-vinylaniline.

  10. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure

    Energy Technology Data Exchange (ETDEWEB)

    A. Aho; N. Kumar; K. Eranen; T. Salmi; M. Hupa; D.Yu. Murzin [Aabo Akademi University, Aabo/Turku (Finland). Process Chemistry Centre, Laboratory of Industrial Chemistry and Reaction Engineering

    2008-09-15

    Catalytic pyrolysis of biomass from pine wood was carried out in a fluidized bed reactor at 450{sup o}C. Different structures of acidic zeolite catalysts were used as bed material in the reactor. Proton forms of Beta, Y, ZSM-5, and Mordenite were tested as catalysts in the pyrolysis of pine, while quartz sand was used as a reference material in the non-catalytic pyrolysis experiments. The yield of the pyrolysis product phases was only slightly influenced by the structures, at the same time the chemical composition of the bio-oil was dependent on the structure of acidic zeolite catalysts. Ketones and phenols were the dominating groups of compounds in the bio-oil. The formation of ketones was higher over ZSM-5 and the amount of acids and alcohols lower than over the other bed materials tested. Mordenite and quartz sand produced smaller quantities of polyaromatic hydrocarbons than the other materials tested. It was possible to successfully regenerate the spent zeolites without changing the structure of the zeolite. 12 refs., 9 figs., 5 tabs.

  11. Oxidative Desulfurization of Dibenzothiophene Using Dawson Type Heteropoly Compounds/Tantalum as Catalyst

    Directory of Open Access Journals (Sweden)

    Risfidian Mohadi

    2016-03-01

    Full Text Available Catalyst (NH46[b-P2W18O62]/Ta has been synthesized by simple wet impregnation at 30-40 °C under atmospheric conditions using Dawson type polyoxometalate (NH46[b-P2W18O62] and tantalum. The catalyst was characterized by FTIR spectrophotometer, XRD, SEM, and N2 adsorption desorption methods. FTIR spectrum of (NH46[b-P2W18O62]/Ta showed that Dawson type polyoxometalate (NH46[b-P2W18O62] and Ta was successfully impregnated which was indicated by vibration spectrum at wavenumber of 900-1100 cm-1 for polyoxometalate and 550 cm-1 for Ta. The surface area of the (NH46[b-P2W18O62]/Ta after impregnation was higher than (NH46[b-P2W18O62]•nH2O and its morphology was found to be uniform. The catalytic activity of (NH46[b-P2W18O62]/Ta toward desulfurization of dibenzothiophene was three times higher than the original catalyst of (NH46[b-P2W18O62]•nH2O without impregnation. The catalytic regeneration test of catalyst (NH46[b-P2W18O62]/Ta showed that the catalytic activity for first regeneration of catalyst has similar catalytic activity with the fresh catalyst without loss of catalytic activity indicated by almost similar percent conversion.

  12. 3D-modelling of bifunctional core-shell catalysts for the production of fuels from biomass-based synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenjin; Lee, Seung Cheol; Li, Hui; Pfeifer, Peter; Dittmeyer, Roland [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Micro Process Engineering (IMVT)

    2013-09-01

    Until now, the main route for the production of DME from synthesis gas in industry is methanol synthesis on a metallic catalyst and subsequent dehydration of methanol on an acid catalyst (two-step process). A single-step process using bifunctional catalysts to perform the two steps simultaneously would be preferred e.g. due to thermodynamic considerations; but this is impeded by the higher volumetric heat release which may cause deactivation of the methanol synthesis catalyst function. Thus we propose to conduct the reaction in a microchannel reactor. However, in order to increase the productivity of the microchannel reactor and to lower the investment costs, we aim at a high selectivity and activity of the catalyst. The continuously removal of methanol by dehydration on an acidic ZSM-5 catalyst as shell improves the thermodynamic conditions of methanol synthesis in the CuO/ZnO/Al{sub 2}O{sub 3} core; thus, the synthesis gas conversion can be higher than that determined by the thermodynamics of pure methanol synthesis. The molecular sieving in the zeolite layer can further lead to higher selectivity of DME at milder reaction conditions. However, mass transport limitation of the synthesis gas to the catalyst core should not hinder the reaction, and therefore a more detailed investigation is required. In order to computer-aided optimize the catalyst structure and the operating conditions for core-shell catalysts, a simulation model should be developed to study the coupled reaction and transport processes in core-shell catalysts. In this simulation model the complicated interaction of diffusion and reaction in the zeolite layer (shell) must be detailed by a network model to describe its structure and the mechanisms effectively. In addition, suitable diffusion and kinetic models are required to describe the mass transport and reactions in the layer. Suitable networks, diffusion and kinetic models are discussed for 3D simulations in this contribution. (orig.)

  13. Bifunctional cobalt F-T catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.G.; Coughlin, P.K.; Yang, C.L.; Rabo, J.A.

    1986-03-01

    Results on the catalytic screening of Fischer-Tropsch catalysts containing shape selective components are reported. Catalysts consist of promoted cobalt intimately contacted with Union Carbide molecular sieves and were tested using a Berty type internally recycled reactor. Methods of preparation, promoters and shape selective components were varied and aimed at improving catalyst performance. Catalysts were developed demonstrating high C/sub 5/ + yields with high olefin content and low methane production while maintaining stability under both low and high H/sub 2/:CO ratio conditions.

  14. NOx Reduction Technology in Diesel Engine Exhaust by the Plasmatron

    International Nuclear Information System (INIS)

    Joa, Sang Beom

    2008-02-01

    completeness of the partial fuel oxidation reaction up to 100%. Nitrogen was found to be the most effective gas for the synthesis gas production by a plasmatron. The preliminary experiments of introducing the reformation products into a diesel engine resulted in ∼25% NOx cut in the exhaust gas flow. A simulation experiment with the pure hydrogen addition to the inlet of a diesel engine showed that both components of the synthesis gas H 2 and CO fed into the engine play significant role in cutting NOx content in the engine's emission. The selective catalytic reduction (SCR) with propylene and decane as reductants in the presence of excess air over (Fe, Co-Pt)/ZSM-5 catalyst was conducted to remove NOx from Diesel exhaust gases. The SO 2 effect and deactivation test over above catalyst were also executed. ZSM-5 supported Co, Pt, Fe mixed oxide catalyst showed about 80% of conversion in the presence of NO. However, the activity was decreased when the catalyst was wash coated onto the ceramic monolith. We found that the deNOx activity over the catalyst was strongly depended on the amount of reductant. Therefore, the amount reductant and how to feed the reductant into the system should be considered as important factors to remove NOx. In order to develop the high removal NOx activity at low temperature and maintain the stable activity at the real exhaust gases condition, metallosilicate and Pt/ZSM-5 catalysts have been used. In case of metallosilicate catalyst, the deNOx activity was low at the oxidation atmospheric condition. When the Pt was ion-exchanged with ZSM-5, the H-form of ZSM-5 catalyst showed high deNOx activity. The effect of reductant type on deNOx activity exhibited that the olefin system provided more higher activity than octane system. The methane conversion observed in the presence of NO and excess O 2 over alumina supported Pt catalyst. In order to improve the activity and durability, the Co metal ion was added. The result showed that the Co-Pt catalyst gave

  15. Investigation of sulfur-tolerant catalysts for selective synthesis of hydrocarbon liquids from coal-derived gases. Annual technical progress report, September 19, 1980-September 18, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, C.H.

    1981-10-31

    During the past contract year, considerable progress was made in characterization and activity/selectivity testing of iron and cobalt catalysts. Preparation of boride promoted cobalt and iron catalysts was refined and nearly completed. H/sub 2/ and CO adsorption and oxygen titration measurements were performed on a number of supported and unsupported catalysts, especially several boride promoted cobalt and iron catalysts. Activity/selectivity tests of 3 and 15% Fe/SiO/sub 2/ and Co/SiO/sub 2/ and of 6 borided cobalt and iron catalysts were completed. The product distributions for iron and cobalt boride catalysts are unusual and interesting. Boron promoted iron is more active and stable than iron/silica; cobalt boride has an unusually high selectivity for alcohols. Tests to determine effects of H/sub 2/S poisoning on activity/selectivity properties of 15% Co/SiO/sub 2/ indicate that a significant loss of activity occurs over a period of 24 to 28 h in the presence of 10 to 20 ppM H/sub 2/S. Product selectivity to liquids increased through a maximum during the gradual addition of sulfur. Reactant CO and H/sub 2/S interact partially to form COS which is less toxic than H/sub 2/S. H/sub 2/ and CO adsorption data were obtained for 3, 6 and 9% Co/ZSM-5 catalysts prepared and reactor tested by PETC. The unusual and interesting results suggest that metal-support interactions may have an important influence on reactant adsorption properties.

  16. Modelling of NO{sub x} emission factors from heavy and light-duty vehicles equipped with advanced aftertreatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.L.M., E-mail: monalisa@unifor.br [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Silva, C.M. [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Moreno-Tost, R. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Farias, T.L. [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Jimenez-Lopez, Antonio [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain)

    2011-08-15

    Highlights: {yields} Alternative SCR materials. {yields} Catalysts used in heavy-duty vehicles are based on V{sub 2}O{sub 5}-WO{sub 3}-TiO{sub 2}. {yields}Zeolites containing transition metal ions as catalysts for urea SCR has increased. {yields} FeZSM5 catalyst can be a possible candidate as far as pollutants regulation is considered. {yields} Regarding N{sub 2}O emissions mordenite based SCR do not emit this pollutant. - Abstract: NO{sub x} emission standards are becoming stringiest over the world especially for heavy-duty vehicles. To comply with current and future regulations some vehicle manufacturers are adopting exhaust aftertreatment systems known as Selective Catalytic Reduction (SCR). The catalysts are based on Vanadium (Va) and the reductant agent based on ammonia. However, Va is listed on the California Proposition 65 List as potentially causing cancer and alternatives are being studied. This paper presents a model based on neural networks that integrated with a road vehicle simulator allows to estimate NO{sub x} emission factors for different powertrain configurations, along different driving conditions, and covering commercial, zeolite and mordenite alternatives as the base monolith for SCR. The research included the experimental study of copper based and iron based zeolites (ZSM5 and Cuban natural mordenite). The response of NO{sub x} conversion efficiency was monitored in a laboratory for varying space velocity, oxygen, sulfur, water, NO{sub x} and SO{sub 2} emulating the conditions of a Diesel engine exhaust along a trip. The experimental data was used for training neural networks and obtaining a mathematical correlation between the outputs and inputs of the SCR system. The developed correlation was integrated with ADVISOR road vehicle simulator to obtain NO{sub x} emission factors and to test each SCR system installed on light-duty and heavy-duty vehicles for standardized driving cycles and real measured driving cycles. Despite having lower NO

  17. Direct upgrading of fast pyrolysis lignin vapor over the HZSM-5 catalyst

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jensen, Peter Arendt; Le, Duy M.

    2016-01-01

    is reduced from 27.6 wt%daf without a catalyst to 5.7 wt%daf (600 °C catalyst temperature). The energy recovery in the liquid organics is 8.7% (600 °C catalyst temperature), compared to the 33.0% energy recovery in the organic liquid from the non-catalytic run. Oxygen is removed from the pyrolysis vapor...

  18. Elastic behavior of MFI-type zeolites: 3 - Compressibility of silicalite and mutinaite

    Energy Technology Data Exchange (ETDEWEB)

    Quartieri, Simona, E-mail: squartieri@unime.it [Dipartimento di Scienze della Terra, Universita di Messina, Viale Ferdinando Stagno d' Alcontres 31, 98166 Messina S. Agata (Italy); Arletti, Rossella [Dipartimento di Scienze Mineralogiche e Petrologiche, Via Valperga Caluso 35, 10125 Torino (Italy); Vezzalini, Giovanna [Dipartimento di Scienze della Terra, Universita di Modena e Reggio Emilia, Via S. Eufemia 19, 41100 Modena (Italy); Di Renzo, Francesco [Institut Charles Gerhardt de Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, 8 rue Ecole Normale, 34296 Montpellier (France); Dmitriev, Vladimir [Swiss-Norwegian Beam Line at ESRF, BP220, 38043 Grenoble Cedex (France)

    2012-07-15

    We report the results of an in-situ synchrotron X-ray powder diffraction study - performed using silicone oil as 'non-penetrating' pressure transmitting medium - of the elastic behavior of three zeolites with MFI-type framework: the natural zeolite mutinaite and two silicalites (labeled A and B) synthesized under different conditions. While in mutinaite no symmetry change is observed as a function of pressure, a phase transition from monoclinic (P2{sub 1}/n) to orthorhombic (Pnma) symmetry occurs at about 1.0 GPa in the silicalite samples. This phase transition is irreversible upon decompression. The second order bulk moduli of silicalite A and silicalite B, calculated after the fulfillment of the phase transition, are: K{sub 0}=18.2(2) and K{sub 0}=14.3 (2) GPa, respectively. These values makes silicalite the most compressible zeolite among those up to now studied in silicone oil. The structural deformations induced by HP in silicalite A were investigated by means of complete Rietveld structural refinements, before and after the phase transition, at P{sub amb} and 0.9 GPa, respectively. The elastic behaviors of the three MFI-type zeolites here investigated were compared with those of Na-ZSM-5 and H-ZSM-5, studied in similar experimental conditions: the two silicalites - which are the phases with the highest Si/Al ratios and hence the lowest extraframework contents - show the highest compressibility. On the contrary, the most rigid material is mutinaite, which has a very complex extraframework composition characterized by a high number of cations and water molecules. - Graphical abstract: High-pressure behavior of silicalite compressed in silicone oil: projection of the structure along the [0 1 0] direction at Pamb(a), 0.9 GPa (b). (c) Comparison of the unit-cell volume variations as a function of pressure for mutinaite, H-ZSM5, Na-ZSM5, silicalite A, and silicalite B compressed in silicone oil. Highlights: Black-Right-Pointing-Pointer X-ray powder

  19. The role of zeolites in the deactivation of multifunctional fischer-tropsch synthesis catalysts: the interaction between HZSM-5 and Fe-based Ft-catalysts

    Directory of Open Access Journals (Sweden)

    P. C. Zonetti

    2013-12-01

    Full Text Available In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis.

  20. The role of zeolites in the deactivation of multifunctional Fischer-Tropsch Synthesis catalysts: the interaction between HZSM-5 and Fe-based FT-catalysts

    International Nuclear Information System (INIS)

    Zonetti, P.C.; Gaspar, A.B.; Mendes, F.M.T.; Appel, L.G.; Avillez, R. R. de; Sousa-Aguiar, E.F.

    2013-01-01

    In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis. (author)

  1. The role of zeolites in the deactivation of multifunctional Fischer-Tropsch Synthesis catalysts: the interaction between HZSM-5 and Fe-based FT-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zonetti, P.C.; Gaspar, A.B.; Mendes, F.M.T.; Appel, L.G., E-mail: lucia.appel@int.gov.br [Instituto Nacional de Tecnologia (INT/MCT), Rio de Janeiro, RJ (Brazil); Avillez, R. R. de [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil); Sousa-Aguiar, E.F. [Centro de Pesquisa Leopoldo Americo Miguez de Mello (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2013-10-15

    In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis. (author)

  2. Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles.

    Science.gov (United States)

    Cheng, Kang; Zhang, Lei; Kang, Jincan; Peng, Xiaobo; Zhang, Qinghong; Wang, Ye

    2015-01-26

    Bifunctional Fischer-Tropsch (FT) catalysts that couple uniform-sized Co nanoparticles for CO hydrogenation and mesoporous zeolites for hydrocracking/isomerization reactions were found to be promising for the direct production of gasoline-range (C5-11 ) hydrocarbons from syngas. The Brønsted acidity results in hydrocracking/isomerization of the heavier hydrocarbons formed on Co nanoparticles, while the mesoporosity contributes to suppressing the formation of lighter (C1-4 ) hydrocarbons. The selectivity for C5-11 hydrocarbons could reach about 70 % with a ratio of isoparaffins to n-paraffins of approximately 2.3 over this catalyst, and the former is markedly higher than the maximum value (ca. 45 %) expected from the Anderson-Schulz-Flory distribution. By using n-hexadecane as a model compound, it was clarified that both the acidity and mesoporosity play key roles in controlling the hydrocracking reactions and thus contribute to the improved product selectivity in FT synthesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The investigation of order–disorder transition process of ZSM-5 induced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Wang, Lianjun, E-mail: wanglj@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Jiang, Wan [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Lin, He, E-mail: linhe@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 239 Zhangheng Road, Pudong, Shanghai 200120 (China)

    2014-04-01

    Based on the amorphization of zeolites, an order–disorder transition method was used to prepare silica glass via Spark Plasma Sintering (SPS). In order to get a better understanding about the mechanism of amorphization induced by SPS, the intermediate products in this process were prepared and characterized by different characterization techniques. X-ray diffraction and High-energy synchrotron X-ray scattering show a gradual transformation from ordered crystal to glass. Local structural changes in glass network including Si–O bond length, O–Si–O bond angle, size of rings, coordination were detected by Infrared spectroscopy and {sup 29}Si magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. Topologically ordered, amorphous material with a different intermediate-range structure can be obtained by precise control of intermediate process which can be expected to optimize and design material. - Graphical abstract: Low-density, ordered zeolites collapse to the rigid amorphous glass through spark plasma sintering. The intermediate-range structure formed in the process of order–disorder transition may give rise to specific property. - Highlights: • Order–disorder transition process of ZSM-5 induced by spark plasma sintering was investigated using several methods including XRD, High-energy synchrotron X-ray scattering, SAXS, IR, NMR, ect. • Order–disorder transition induced by SPS was compared with TIA and PIA. • Three stages has been divided during the whole process. • The collapse temperature range which may give rise to intermediate-range structure has been located.

  4. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope......–energy dispersive X-ray spectroscopy (SEM–EDX) and NH3-temperature programmed desorption (NH3-TPD). 95% deactivation was observed for the V2O5–WO3–TiO2 catalyst, while the Cu–HZSM5 and Cu–HMOR catalysts deactivated only 58% and 48%, respectively, after 1200 h KCl exposure. SEM analysis of the KCl aerosol exposed...... catalysts revealed that the potassium salt not only deposited on the catalyst surface, but also penetrated into the catalyst wall. Thus, the K/M ratio (M = V or Cu) was high on V2O5–WO3–TiO2 catalyst and comparatively less on Cu–HZSM5 and Cu–HMOR catalysts. NH3-TPD revealed that the KCl exposed Cu–HZSM5...

  5. Elastic behavior of MFI-type zeolites: 3 – Compressibility of silicalite and mutinaite

    International Nuclear Information System (INIS)

    Quartieri, Simona; Arletti, Rossella; Vezzalini, Giovanna; Di Renzo, Francesco; Dmitriev, Vladimir

    2012-01-01

    We report the results of an in-situ synchrotron X-ray powder diffraction study – performed using silicone oil as “non-penetrating” pressure transmitting medium – of the elastic behavior of three zeolites with MFI-type framework: the natural zeolite mutinaite and two silicalites (labeled A and B) synthesized under different conditions. While in mutinaite no symmetry change is observed as a function of pressure, a phase transition from monoclinic (P2 1 /n) to orthorhombic (Pnma) symmetry occurs at about 1.0 GPa in the silicalite samples. This phase transition is irreversible upon decompression. The second order bulk moduli of silicalite A and silicalite B, calculated after the fulfillment of the phase transition, are: K 0 =18.2(2) and K 0 =14.3 (2) GPa, respectively. These values makes silicalite the most compressible zeolite among those up to now studied in silicone oil. The structural deformations induced by HP in silicalite A were investigated by means of complete Rietveld structural refinements, before and after the phase transition, at P amb and 0.9 GPa, respectively. The elastic behaviors of the three MFI-type zeolites here investigated were compared with those of Na-ZSM-5 and H-ZSM-5, studied in similar experimental conditions: the two silicalites – which are the phases with the highest Si/Al ratios and hence the lowest extraframework contents – show the highest compressibility. On the contrary, the most rigid material is mutinaite, which has a very complex extraframework composition characterized by a high number of cations and water molecules. - Graphical abstract: High-pressure behavior of silicalite compressed in silicone oil: projection of the structure along the [0 1 0] direction at Pamb(a), 0.9 GPa (b). (c) Comparison of the unit-cell volume variations as a function of pressure for mutinaite, H-ZSM5, Na-ZSM5, silicalite A, and silicalite B compressed in silicone oil. Highlights: ► X-ray powder diffraction study of silicalite and mutinaite

  6. Why Does Alkylation of the N–H Functionality within M/NH Bifunctional Noyori-Type Catalysts Lead to Turnover?

    International Nuclear Information System (INIS)

    Dub, Pavel; Gordon, John Cameron; Scott, Brian Lindley

    2017-01-01

    Molecular metal/NH bifunctional Noyori-type catalysts are remarkable in that they are among the most efficient artificial catalysts developed to date for the hydrogenation of carbonyl functionalities (loadings up to ~10 –5 mol %). In addition, these catalysts typically exhibit high C=O/C=C chemo- and enantioselectivities. This unique set of properties is traditionally associated with the operation of an unconventional mechanism for homogeneous catalysts in which the chelating ligand plays a key role in facilitating the catalytic reaction and enabling the aforementioned selectivities by delivering/accepting a proton (H + ) via its N–H bond cleavage/formation. A recently revised mechanism of the Noyori hydrogenation reaction (Dub, P. A. et al. J. Am. Chem. Soc. 2014, 136, 3505) suggests that the N–H bond is not cleaved but serves to stabilize the turnover-determining transition states (TDTSs) via strong N–H···O hydrogen-bonding interactions (HBIs). Here, the present paper shows that this is consistent with the largely ignored experimental fact that alkylation of the N–H functionality within M/NH bifunctional Noyori-type catalysts leads to detrimental catalytic activity. Finally, the purpose of this work is to demonstrate that decreasing the strength of this HBI, ultimately to the limit of its complete absence, are conditions under which the same alkylation may lead to beneficial catalytic activity.

  7. Towards a methanol economy: Zeolite catalyzed production of synthetic fuels

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie

    The main focus of this thesis is zeolite catalyzed conversion of oxygenates to hydrocarbon fuels and chemicals. Furthermore, conversion of ethane to higher hydrocarbons has also been studied. After a brief introduction to the concept of “the methanol economy” in the first chapter, the second...... a commercial H-ZSM-5 zeolite impregnated with gallium and/or molybdenum is described. The object was to investigate if the presence of methanol in the feed could enhance the conversion of ethane, but in all cases the opposite is observed; the presence of methanol actually suppresses the conversion of ethane...... various zeolite catalysts is studied in Chapter 4. When 2-propanol or 1-butanol is converted over H-ZSM-5, the total conversion capacities of the catalyst are more than 25 times higher than for conversion of methanol and ethanol. Furthermore, for conversion of C3+ alcohols, the selectivity shifts during...

  8. Organic template free synthesis of ZSM11 from kaolinite clay | Ajayi ...

    African Journals Online (AJOL)

    They were both subjected to beneficiation, calcinations, dealumination and the gels formed, had molar composition of 9Na2OX30SiO2XAl2O3X225H2O. The raw, intermediate and final products were fully characterized using XRD, XRF, BET and SEM/EDX. The prominent XRD peaks for ZSM11 were noticed for Kankara ...

  9. On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga1+ cations

    NARCIS (Netherlands)

    Kazansky, V.B.; Subbotina, I.R.; Rane, N.J.; Santen, van R.A.; Hensen, E.J.M.

    2005-01-01

    The activation of ethane over zinc- and gallium-modified HZSM-5 dehydrogenation catalysts was studied by diffuse reflectance infrared spectroscopy. Hydrocarbon activation on HZSM-5 modified by bivalent Zn and univalent Ga cations proceeds via two distinctly different mechanisms. The stronger

  10. IN SITU INFRARED STUDY OF CATALYTIC DECOMPOSITION OF NITRIC OXIDE (NO); FINAL

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The growing concerns for the environment and increasingly stringent standards for NO emission have presented a major challenge to control NO emissions from electric utility plants and automobiles. Catalytic decomposition of NO is the most attractive approach for the control of NO emission for its simplicity. Successful development of an effective catalyst for NO decomposition will greatly decrease the equipment and operation cost of NO control. Due to lack of understanding of the mechanism of NO decomposition, efforts on the search of an effective catalyst have been unsuccessful. Scientific development of an effective catalyst requires fundamental understanding of the nature of active site, the rate-limiting step, and an approach to prolong the life of the catalyst. The authors have investigated the feasibility of two novel approaches for improving catalyst activity and resistance to sintering. The first approach is the use of silanation to stabilize metal crystallites and supports for Cu-ZSM-5 and promoted Pt catalysts; the second is utilization of oxygen spillover and desorption to enhance NO decomposition activity. The silanation approach failed to stabilize Cu-ZSM-5 activity under hydrothermal condition. Silanation blocked the oxygen migration and inhibited oxygen desorption. Oxygen spillover was found to be an effective approach for promoting NO decomposition activity on Pt-based catalysts. Detailed mechanistic study revealed the oxygen inhibition in NO decomposition and reduction as the most critical issue in developing an effective catalytic approach for controlling NO emission

  11. V{sub 2}O{sub 5}-ZrO{sub 2} catalysts for the oxidative dehydrogenation of propane - influence of the niobium oxide doping

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, S.; Hallmeier, K.H.; Wendt, G. [Leipzig Univ. (Germany). Fakultaet fuer Chemie und Mineralogie; Lippold, G. [Leipzig Univ. (Germany). Fakultaet fuer Physik und Geowissenschaften

    1998-12-31

    The oxidative dehydrogenation (ODH) of light alkanes is an alternative way for the production of olefins. A wide variety of catalytic systems has been investigated. Vanadium oxide based catalysts were described in the literature as effective catalysts for the ODH of propane. The catalytic activity and selectivity depend on the kind of support material, the kind of dopants and the formation of complex metal oxide phases. In recent papers it was claimed that both orthovanadate and/or pyrovanadate species are selective for the ODH of propane. Niobia based materials were investigated as catalysts for acidic and selective oxidation type reactions. In the ODH of propane niobia exhibited a high selectivity to propene but the conversion of propane was low. V{sub 2}O{sub 5}-Nb{sub 2}O{sub 5} catalysts proved to be catalytically active and selective and showed no formation of oxygenates. In the present study the influence of the niobia dopant of the catalytic properties of V{sub 2}O{sub 5}-ZrO{sub 2} catalysts in the ODH of propane was examined. The structural and textural properties of the catalysts were investigated using several methods. (orig.)

  12. Influence of metal loading on hydrocracking of rapeseed oil using bifunctional micro-/mesoporous composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Gille, T.; Busse, O.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. of Industrial Chemistry

    2013-11-01

    Hydrocracking of rapeseed oil has been investigated in a fixed bed reactor under integral conditions. A synthesized micro-/mesoporous composite material Al-MCM-41/ZSM-5 modified by different metal loadings (NiMo, PtNiMo, Pt) was used as catalyst system. It could be demonstrated that the support material and their metal loading influence the product selectivity as well as the deactivation tendencies of the catalyst sample. (orig.)

  13. Metathesis of cardanol over ammonium tagged Hoveyda-Grubbs type catalyst supported on SBA-15

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Žilková, Naděžda; Kubů, Martin; Polášek, Miroslav; Zedník, J.

    2018-01-01

    Roč. 304, APR 2018 (2018), s. 127-134 ISSN 0920-5861 R&D Projects: GA ČR GA17-01440S Institutional support: RVO:61388955 Keywords : Cardanol * Flow chemistry * Hoveyda-Grubbs type catalyst * Immobilized catalyst Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.636, year: 2016

  14. Ethylene formation by dehydration of ethanol over medium pore zeolites

    Science.gov (United States)

    Gołąbek, Kinga; Tarach, Karolina A.; Filek, Urszula; Góra-Marek, Kinga

    2018-03-01

    In this work, the role of pore arrangement of 10-ring zeolites ZSM-5, TNU-9 and IM-5 on their catalytic properties in ethanol transformation were investigated. Among all the studied catalysts, the zeolite IM-5, characterized by limited 3-dimensionality, presented the highest conversion of ethanol and the highest yields of diethyl ether (DEE) and ethylene. The least active and selective to ethylene and C3 + products was zeolite TNU-9 with the largest cavities formed on the intersection of 10-ring channels. The catalysts varied, however, in lifetime, and their deactivation followed the order: IM-5 > TNU-9 > ZSM-5. The processes taking place in the microporous zeolite environment were tracked by IR spectroscopy and analysed by the 2D correlation analysis (2D COS) allowing for an insight into the nature of chemisorbed adducts and transition products of the reaction. The cage dimension was found as a decisive factor influencing the tendency for coke deposition, herein identified as polymethylated benzenes, mainly 1,2,4-trimethyl-benzene.

  15. Parametric study on catalytic cracking of LDPE to liquid fuel over ZSM-5 zeolite

    International Nuclear Information System (INIS)

    Wong, S.L.; Tuan Abdullah, T.A.; Ngadi, N.; Ahmad, A.; Inuwa, I.M.

    2016-01-01

    Highlights: • Catalytic cracking of low density polyethylene in fixed bed reactor was studied. • Full factorial design involving five parameters and two responses was used. • Regression models were developed for LDPE conversion and liquid product yield. • Liquid product at optimized run contained C4–C8 aliphatic compounds. • Alkyl radicals combine with minor amount of benzenes during cracking. - Abstract: Pyrolysis or cracking of plastic waste is considered as a potential solution to the environmental problems brought about by plastic waste, with the production of hydrocarbon fuel as a value added benefit. In order to explore the potentials of such process, parametric study have been conducted on the catalytic cracking of LDPE dissolved in benzene in a fixed bed reactor. The five factors studied were temperature (A), catalyst mass (B), feed flow rate (C), carrier gas flow rate (D), as well as concentration of LDPE solution (E), while the responses were LDPE conversion (Y_1) and liquid yield (Y_2). The parametric study showed that four out of five factors (A, B, C and D) have significant effects on Y_1 and Y_2. The optimum conditions that produced maximum responses for Y_1 and Y_2 simultaneously are 600 °C (A), 0.10 g catalyst (B), 1 ml/s LDPE solution (C), 80 ml/min N_2 flow (D). The numerical values for Y_1 and Y_2 were 98.6% and 99.5%, respectively. Analysis on products composition indicated that catalytic cracking of LDPE in fixed bed reaction generally produced high amount of aliphatic branched-chain compounds, together with moderate amount of cyclic compounds. Aromatization of LDPE cracking products is less due to the short retention time of the compounds on the catalysts bed.

  16. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Science.gov (United States)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O3 catalytic decomposition and utilization. Benzene and O3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O3 was catalytically decomposed, generating highly reactive oxidants such as rad OH and rad O for benzene oxidation.

  17. Catalytic oxidation of butyl acetate over silver-loaded zeolites

    International Nuclear Information System (INIS)

    Wong, Cheng Teng; Abdullah, Ahmad Zuhairi; Bhatia, Subhash

    2008-01-01

    The performance of silver-loaded zeolite (HY and HZSM-5) catalysts in the oxidation of butyl acetate as a model volatile organic compound (VOC) was studied. The objective was to find a catalyst with superior activity, selectivity towards deep oxidation product and stability. The catalyst activity was measured under excess oxygen condition in a packed bed reactor operated at gas hourly space velocity (GHSV) = 15,000-32,000 h -1 , reaction temperature between 150 and 500 deg. C and butyl acetate inlet concentration of 1000-4000 ppm. Both AgY and AgZSM-5 catalysts exhibited high activity in the oxidation of butyl acetate. Despite lower silver content, AgY showed better activity, attributed to better metal dispersion, surface characteristics and acidity, and its pore system. Total conversion of butyl acetate was achieved at above 400 deg. C. The oxidation of butyl acetate followed a simple power law model. The reaction orders, n and m were evaluated under differential mode by varying the VOC partial pressure between 0.004 and 0.018 atm and partial pressure of oxygen between 0.05 and 0.20 atm. The reaction rate was independent of oxygen concentration and single order with respect to VOC concentration. The activation energies were 19.78 kJ/mol for AgY and 32.26 kJ/mol for AgZSM-5, respectively

  18. Promotion of Nb2O5 on the wustite-based iron catalyst for ammonia synthesis

    International Nuclear Information System (INIS)

    Han, Wenfeng; Huang, Shiliang; Cheng, Tianhong; Tang, Haodong; Li, Ying; Liu, Huazhang

    2015-01-01

    Highlights: • Niobium enhances the reduction of wustite-based ammonia synthesis catalyst significantly. • Nb 2 O 5 inhibits the segregation or formation of solid solutions on the catalyst surface. • Nb 2 O 5 doping enhances the growth rates of [2 1 1] and [2 0 0] planes rather than their amounts. - Abstract: Niobium was selected and investigated as a potential promoter for wustite-based catalyst (WBC) for ammonia synthesis. Experiments on reduction performance, activity test and H 2 -TGA, in situ XRD as well as XPS were carried out to obtain the promotion effect and mechanism involved. Niobium as a promoter was confirmed to enhance the reduction of WBC significantly. This behavior is highly desired for industry in terms of catalyst regeneration and lesser pretreatment time for fabrication regardless the unimproved catalytic performance for Nb 2 O 5 -doped wustite-based catalyst (Nb-WBC). Possible reasons for these phenomena are discussed. It is suggested that Nb 2 O 5 is not favorable for the segregation or formation of solid solutions on the catalyst surface, which are difficult to be reduced. However, it seems that niobium does not promote the growth of [2 1 1] plane, which is active for ammonia synthesis.

  19. Organoactinides-new type of catalysts for carbon-silicon bond formation

    International Nuclear Information System (INIS)

    Dash, Aswini K.; Wang, Ji.Q.; Wang, Jiaxi; Gourevich, Ilya; Eisen, Moris S.

    2002-01-01

    Organoactinide complexes of the type Cp 2 * AnMe 2 (An=Th, U) have been found to be efficient catalysts for the hydrosilylation of terminal alkynes. The chemoselectivity and regiospecificity of the reactions depend strongly on the nature of the catalyst, the nature of the alkyne, the silane substituents, the ratio between the silane and alkyne, the solvent and the reaction temperature. The hydrosilylation reaction of the terminal alkynes with PhSiH 3 at room temperature produces the trans-vinylsilane as the major product along with the silylalkyne and the corresponding alkene. At higher temperatures the cis-vinylsilane and the double hydrosilylated alkene, in which the two silicon moieties are connected at the same carbon atom, are also obtained. Replacing the pentamethylcyclopentadienyl ligand by the bridge ligation [Me 2 SiCp'' 2 ] 2- 2[Li] + (Cp''=C 5 Me 4 ) affords the synthesis of ansa-Me 2 SiCp'' 2 ThBu 2 , which was found to react extremely fast for the hydrosilylation of terminal alkynes or alkenes with PhSiH 3 . Besides the rapidity of the processes using the bridge organoactinide, as compared to Cp * 2 ThMe 2 , the chemo- and regio-selectivity of the products were increased allowing the production of only the trans-vinylsilane and the 1-silylated alkane for the hydrosilylation of alkyne and alkene, respectively. (author)

  20. A solvent evaporation route towards fabrication of hierarchically porous ZSM-11 with highly accessible mesopores

    DEFF Research Database (Denmark)

    Song, Wen; Liu, Zhiting; Liu, Liping

    2015-01-01

    A route to generate hierarchically porous zeolite ZSM-11 has been paved via solvent evaporation induced self-assembly assisted by hexadecyltrimethoxysilane to produce a preformed dry gel, followed by its subsequent transformation into zeolite via steam-assisted-crystallization. The crystallization...

  1. Conversion of n-Butane to iso-Butene on Gallium/HZSM-5 Catalysts

    Directory of Open Access Journals (Sweden)

    S.M. Gheno

    2002-07-01

    Full Text Available The conversion of n-butane to iso-butene on gallium/HZSM-5 catalysts at 350ºC and WHSV=2.5h8-1 was studied. The catalysts were prepared by ion exchange from a Ga(NO32 solution and further submitted to calcination in air at 530ºC. TEM analysis with an EDAX detector and TPR-H2 data showed that after calcination the Ga species were present mainly as Ga2O3, which are reduced to Ga2O at temperatures near 610ºC. The specific acid activity (SAA of the catalysts increased with the increase in aluminum content in the zeolite, and for a fixed Si/Al ratio, the SAA increased with Ga content. Values for specific hydro/dehydrogenation activity (SH/DHA were significantly higher than those for SAA, indicating that the catalytic process is controlled by the kinetics on acid sites. Moreover, the production of iso-butene with a selectivity higher than 25% was a evidence that in gallium/HZSM-5-based catalysts the rate of the hydrogenation reaction is lower than that of the dehydrogenation reaction; this behavior confirmed the dehydrogenation nature of gallium species, thereby showing great promise for iso-butene production.

  2. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst.

    Science.gov (United States)

    Choi, Sung-Woo; Choi, Sang-Ki; Bae, Hun-Kyun

    2015-04-01

    A hybrid selective noncatalytic reduction/selective catalytic reduction (SNCR/SCR) system that uses two types of technology, low-temperature SCR process and SNCR process, was designed to develop nitrogen oxide (NOx) reduction technology. SCR was conducted with space velocity (SV)=2400 hr(-1) and hybrid SNCR/SCR with SV=6000 hr(-1), since the study focused on reducing the amount of catalyst and both achieved 98% NOx reduction efficiency. Characteristics of NOx reduction by NH3 were studied for low-temperature SCR system at 150 °C using Mn-V2O5/TiO2 catalyst. Mn-added V2O5/TiO2 catalyst was produced, and selective catalyst reduction of NOx by NH3 was experimented. NOx reduction rate according to added Mn content in Mn-V2O5/TiO2 catalyst was studied with varying conditions of reaction temperature, normalized stoichiometric ratio (NSR), SV, and O2 concentration. In the catalyst experiment according to V2O5 concentration, 1 wt.% V2O5 catalyst showed the highest NOx reduction rate: 98% reduction at temperature window of 200~250 °C. As a promoter of the V2O5 catalyst, 5 wt.% Mn was added, and the catalyst showed 47~90% higher efficiency even with low temperatures, 100~200 °C. Mn-V2O5/TiO2 catalyst, prepared by adding 5 wt.% Mn in V2O5/TiO2 catalyst, showed increments of catalyst activation at 150 °C as well as NOx reduction. Mn-V2O5/TiO2 catalyst showed 8% higher rate for NOx reduction compared with V2O5/TiO2 catalyst in 150 °C SCR. Thus, (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst was applied in SCR of hybrid SNCR/SCR system of low temperature at 150 °C. Low-temperature SCR hybrid SNCR/SCR (150 °C) system and hybrid SNCR/SCR (350 °C) showed 91~95% total reduction rate with conditions of SV=2400~6000 hr(-1) SCR and 850~1050 °C SNCR, NSR=1.5~2.0, and 5% O2. Hybrid SNCR/SCR (150 °C) system proved to be more effective than the hybrid SNCR/SCR (350 °C) system at low temperature. NOx control is very important, since they are the part of greenhouse gases as well as the

  3. Hoveyda–Grubbs first generation type catalyst immobilized on mesoporous molecular sieves

    Czech Academy of Sciences Publication Activity Database

    Pastva, Jakub; Čejka, Jiří; Žilková, Naděžda; Mestek, O.; Rangus, M.; Balcar, Hynek

    2013-01-01

    Roč. 378, NOV 2013 (2013), s. 184-192 ISSN 1381-1169 R&D Projects: GA AV ČR IAA400400805 Institutional support: RVO:61388955 Keywords : Hoveyda–Grubbs type catalysts * Olefin metathesis * Mesoporous molecular sieves Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2013

  4. Catalytic N{sub 2}O decomposition in a model tail gas from nitric acid plants; Decomposition catalytique du protoxyde d'azote dans un modele de gaz de queue produits par un atelier d'acide nitrique

    Energy Technology Data Exchange (ETDEWEB)

    Mul, G.; Xu, X.; Perez Ramirez, J.; Vaccaro, A.R.; Kapteijn, F.; Moulijn, J.A. [Delft University of Technology, Faculty of Chemical Technology and Materials Sciences, Delft (Netherlands)

    2001-07-01

    In this study direct catalytic decomposition of N{sub 2}O in simulated tail-gas from nitric acid plants, containing water, oxygen, NO{sub x}, was investigated. Three groups of catalysts were prepared: oxide-supported catalysts; zeolite-based catalysts; mixed oxides derived from hydrotalcites-like (HTLc) materials. The activity of these types of catalysts was tested in an advanced automated six-flow reactor system. Nobel metal (Ru, Rh) based catalysts, either supported on zeolites or ex-hydrotalcite compositions (Mg-Al or Co-Al mixed oxides), and Fe-ZSM-5 effectively decompose N{sub 2}O in tail-gas conditions at temperatures of about 400-450 deg C, typical for certain nitric acid plants. Catalysts active for tail gas temperatures of 230-250 deg C, typical for other nitric acid plants, were not found. This is mainly due to the dramatic negative effect of especially water and NO{sub x} on the conversion of N{sub 2}O. The negative effect of NO{sub x} observed for many catalysts might be related to the formation of surface nitrites and nitrates, blocking active sites for N{sub 2}O decomposition in the 200-300 deg C temperature range. (authors)

  5. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    Science.gov (United States)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real

  6. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition

    NARCIS (Netherlands)

    Jodin, Lucie; Dupuis, Anne-Claire; Rouvière, Emmanuelle; Reiss, Peter

    2006-01-01

    The preparation of the catalyst is one of the key parameters which governs the quality of carbon nanotubes (CNTs) grown by catalyzed chemical vapor deposition (CVD). We investigated the influence of three different procedures of catalyst preparation on the type and diameter of CNTs formed under

  7. Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios

    DEFF Research Database (Denmark)

    Giordanino, Filippo; Vennestrøm, Peter N. R.; Lundegaard, Lars Fahl

    2013-01-01

    concentration of reduced copper centres, i.e. isolated Cu+ ions located in different environments, able to form Cu+(N2), Cu+(CO)n (n = 1, 2, 3), and Cu+(NO)n (n = 1, 2) upon interaction with N2, CO and NO probe molecules, respectively. Low temperature FTIR, DRUV-Vis and EPR analysis on O2 activated samples...... an intense and finely structured d–d quadruplet, unique to Cu-SSZ-13, which is persistent under SCR conditions. This differs from the 22 700 cm−1 band of the mono(μ-oxo)dicopper species of the O2 activated Cu-ZSM-5, which disappears under SCR conditions. The EPR signal intensity sets Cu-β apart from...

  8. Degradation reaction of Diazo reactive black 5 dye with copper (II) sulfate catalyst in thermolysis treatment.

    Science.gov (United States)

    Lau, Yen-Yie; Wong, Yee-Shian; Ang, Tze-Zhang; Ong, Soon-An; Lutpi, Nabilah Aminah; Ho, Li-Ngee

    2018-03-01

    The theme of present research demonstrates performance of copper (II) sulfate (CuSO 4 ) as catalyst in thermolysis process to treat reactive black 5 (RB 5) dye. During thermolysis without presence of catalyst, heat was converted to thermal energy to break the enthalpy of chemical structure bonding and only 31.62% of color removal. With CuSO 4 support as auxiliary agent, the thermally cleaved molecular structure was further destabilized and reacted with CuSO 4 . Copper ions functioned to delocalize the coordination of π of the lone paired electron in azo bond, C=C bond of the sp 2 carbon to form C-C of the sp 3 amorphous carbon in benzene and naphthalene. Further, the radicals of unpaired electrons were stabilized and RB 5 was thermally decomposed to methyl group. Zeta potential measurement was carried out to analyze the mechanism of RB 5 degradation and measurement at 0 mV verified the critical chemical concentration (CCC) (0.7 g/L copper (II) sulfate), as the maximum 92.30% color removal. The presence of copper (II) sulfate catalyst has remarkably increase the RB 5 dye degradation as the degradation rate constant without catalyst, k 1 is 6.5224 whereas the degradation rate constant with catalyst, k 2 is 25.6810. This revealed the correlation of conversion of thermal energy from heat to break the chemical bond strength, subsequent fragmentation of RB 5 dye molecular mediated by copper (II) sulfate catalyst. The novel framework on thermolysis degradation of molecular structure of RB 5 with respect to the bond enthalpy and interfacial intermediates decomposition with catalyst reaction were determined.

  9. Hydrocracking of ethyl laurate on bifunctional micro-/mesoporous composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Adam, M.; Busse, O.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. for Industrial Chemistry

    2011-07-01

    Hydrocracking of ethyl laurate (dodecanoic acid ethyl ester) as a representative model compound of vegetable oil has been investigated in a fixed bed reactor under integral conditions. A synthesized micro-/mesoporous composite support material Al-MCM-41/ZSM-5 modified by different metal loadings (NiMo, NiW, PtNiW) was used as catalyst system. It could be demonstrated that the metal loading and reducibility influence product selectivity as well as deactivation behavior of catalyst samples. (orig.)

  10. Jet-Fuel Range Hydrocarbons from Biomass-Derived Sorbitol over Ni-HZSM-5/SBA-15 Catalyst

    Directory of Open Access Journals (Sweden)

    Yujing Weng

    2015-12-01

    Full Text Available Aromatics and cyclic-hydrocarbons are the significant components of jet fuel with high energy-density. However, conventional technologies for bio-fuel production cannot produce these products without further aromatization and isomerization. In this work, renewable liquid fuel with high content of aromatics and cyclic-hydrocarbons was obtained through aqueous catalytic conversion of biomass sorbitol over Ni-HZSM-5/SBA-15 catalyst. Texture characteristics of the catalyst were determined by physisorption of N2, which indicated its bimodal pore structures were microporous (HZSM-5, pore width: 0.56 nm and mesoporous (SBA-15, pore width: 8 nm. The surface acidity included weak and strong acid sites, predominantly Lewis type, and was further confirmed by the NH3-TPD and Py-IR analysis. The catalytic performances were tested in a fixed-bed reactor under the conditions of 593 K, WHSV of 0.75 h−1, GHSV of 2500 h−1 and 4.0 MPa of hydrogen pressure, whereby oil yield of 40.4 wt. % with aromatics and cyclic-hydrocarbons content of 80.0% was obtained.

  11. Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite

    NARCIS (Netherlands)

    Derouane, E.G.; Nagy, J.B.; Dejaifve, P.; Hooff, van J.H.C.; Spekman, B.P.A.; Védrine, J.C.; Naccache, C.

    1978-01-01

    13C nuclear magnetic resonance and vapor-phase chromatography have been used to investigate the conversions of methanol and ethanol to hydrocarbons on a synthetic zeolite of the type H-ZSM-5 as described by Mobil. Methanol is first dehydrated to dimethyl ether and ethylene. Then the reaction

  12. HZSM-5 Catalyst for Cracking Palm Oil to Gasoline: A Comparative Study with and without Impregnation

    Directory of Open Access Journals (Sweden)

    Achmad Roesyadi

    2013-03-01

    Full Text Available It is important to develop a renewable source of energy to overcome a limited source fossil energy. Palm oil is a potential alternative and environmental friendly energy resource in Indonesia due to high production capacity of this vegetable oil. The research studied effect of catalyst to selectivity of biofuel product from cracking of palm oil. The catalyst consisted of HZSM-5 catalyst with or without impregnation. The research was conducted in two steps, namely catalyst synthesized and catalytic cracking process. HZSM-5 was synthesized using Plank methods. The characterization of the synthesized catalysts used AAS (Atomic Absorption Spectroscopy and BET (Brunaueur Emmet Teller. The cracking was carried out in a fixed bed microreactor with diameter of 1 cm and length of 16 cm which was filled with 0.6 gram catalyst. The Zn/HZSM-5 catalyst was recommended for cracking palm oil for the high selectivity to gasoline. © 2013 BCREC UNDIP. All rights reserved.(Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 28th September 2012; Revised: 19th November 2012; Accepted: 20th December 2012[How to Cite: A. Roesyadi, D. Hariprajitno, N. Nurjannah, S.D. Savitri, (2013. HZSM-5 Catalyst for Cracking Palm Oil to Gasoline: A Comparative Study with and without Impregnation. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 185-190.(doi:10.9767/bcrec.7.3.4045.185-190][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4045.185-190 ] View in  |

  13. Sn-MCM-41 as Efficient Catalyst for the Conversion of Glucose into 5-Hydroxymethylfurfural in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Qing Xu

    2013-11-01

    Full Text Available Recently, much attention has been paid to the development of technologies that facilitate the conversion of biomass into platform chemicals such as 5-hydroxymethylfurfural (5-HMF. In this paper, a tin-containing silica molecular sieve (Sn-MCM-41 was found to act as a bifunctional heterogeneous catalyst for the efficient conversion of glucose into 5-HMF in ionic liquid. In the presence of [EMIM]Br, the yield of 5-HMF converted from glucose reached 70% at 110 °C after 4 h. During the reaction, the active center of the catalyst first catalyzed the isomerization of glucose into fructose and then the dehydration of fructose into 5-HMF. After the reaction, the heterogeneous catalyst Sn-MCM-41 could be easily recovered and reused without a significant loss in activity. The catalyst Sn-MCM-41 was also able to catalyze the conversion of fructose into 5-HMF at an 80% yield. Moreover, the low toxicity of the Sn-based catalyst makes the method a greener approach for the conversion of saccharides into 5-HMF.

  14. The improvement of gas-sensing properties of SnO2/zeolite-assembled composite

    Science.gov (United States)

    Sun, Yanhui; Wang, Jing; Li, Xiaogan; Du, Haiying; Huang, Qingpan

    2018-05-01

    SnO2-impregnated zeolite composites were used as gas-sensing materials to improve the sensitivity and selectivity of the metal oxide-based resistive-type gas sensors. Nanocrystalline MFI type zeolite (ZSM-5) was prepared by hydrothermal synthesis. Highly dispersive SnO2 nanoparticles were then successfully assembled on the surface of the ZSM-5 nanoparticles by using the impregnation methods. The SnO2 nanoparticles are nearly spherical with the particle size of 10 nm. An enhanced formaldehyde sensing of as-synthesized SnO2-ZSM-5-based sensor was observed whereas a suppression on the sensor response to other volatile organic vapors (VOCs) such as acetone, ethanol, and methanol was noticed. The possible reasons for this contrary observation were proposed to be related to the amount of the produced water vapor during the sensing reactions assisted by the ZSM-5 nanoparticles. This provides a possible new strategy to improve the selectivity of the gas sensors. The effect of the humidity on the sensor response to formaldehyde was investigated and it was found the higher humidity would decrease the sensor response. A coating layer of the ZSM-5 nanoparticles on top of the SnO2-ZSM-5-sensing film was thus applied to further improve the sensitivity and selectivity of the sensor through the strong adsorption ability to polar gases and the "filtering effect" by the pores of ZSM-5.

  15. Friedel-Crafts Alkylation of o-xylene over V2O5/ZrO2 Catalysts

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2012-01-01

    Full Text Available The present study has undertaken the Friedel-Crafts benzylation of aromatics over the V2O5/ZrO2 catalysts systems. Catalysts with different V2O5 content (0-15wt %) was prepared by wet impregnation method and characterized by XRD, BET surface area...

  16. Aerobic Oxidation of 5-(Hydroxymethyl)furfural in Ionic Liquids with Solid Ruthenium Hydroxide Catalysts

    DEFF Research Database (Denmark)

    Ståhlberg, Tim Johannes Bjarki; Eyjolfsdottir, Ester; Gorbanev, Yury

    2012-01-01

    The aerobic oxidation of 5-(hydroxymethyl)furfural was investigated over solid ruthenium hydroxide catalysts in ionic liquids at elevated temperatures and pressures. Several different catalyst supports were tested in combination with various ionic liquids. The best result was obtained in [EMIm...

  17. Effect of varied quantities of zeolite on the reduction of polycyclic ...

    African Journals Online (AJOL)

    This research was carried out to determine the possibility of total and selective reduction of polycyclic aromatic hydrocarbons (PAHs) content in cigarette smoke by applying different amounts of zeolite directly to the cigarette blend. Zeolite catalysts CuZSM-5 were applied in the form of suspension to the cut tobacco blend in ...

  18. Adsorção de CO2 em peneiras moleculares micro e mesoporosas

    Directory of Open Access Journals (Sweden)

    Thiago G. Oliveira

    2014-01-01

    Full Text Available Microporous molecular sieves of type Y, Beta, ZSM-5, ZSM-12 and ZSM-35, and mesoporous molecular sieves of type MCM-41 and MCM-48, and these sieves modified with triethanolamine and ethylenediamine were obtained and characterized by XRD, FTIR, TGA and nitrogen adsorption. The adsorption tests were performed by the gravimetric method under a stream of CO2 at ambient temperature and pressure. The adsorbents studied showed maximum adsorption capacity of carbon dioxide in the range of 13.1 to 85.5 mg of CO2 per gram of adsorbent.

  19. Development of industrial hydrogenating catalyst on rhenium base

    International Nuclear Information System (INIS)

    Chistyakova, G.A.; Bat', I.I.; Rebrova, V.V.

    1975-01-01

    Processes for forming rhenium catalysts on carbon carrier and their catalytic properties in nitrobenzene (NB) reduction were studied. Application of an ammonia preparation to the carbon surface produced impregnated carbon saturated at room temperature with a water solution of the ammonia preparation, taken in a volume equal to the volumetric capacity of the carbon. With one impregnation, 2% rhenium was taken up. Catalysts containing more than 5% rhenium were obtained by impregnating the carbon with heating and use of more concentrated solutions. Catalysts made in this way and dried at 100 0 C had the composition Re 2 OH/carbon/. The most active catalysts were those reduced at 200-250 0 C; higher temperatures, up to 300-500 0 C, decreased the activity. Study of the catalytic properties of the rhenium catalysts in a liquid phase reduction of NB showed that the specific activity of rhenium depends only slightly on the content of the active component in the catalyst and is close to the specific activity of palladium and considerably exceeds that of nickel. Study of the effect of the NB concentration and hydrogen pressure on the activity and stability of the 5% rhenium catalyst indicated that with NB concentrations from 50 to 10% the process takes place at an essentially constant rate; the order of the reaction was close to zero with an apparent activation energy of about 7000 cal/mole. At pressures of 15-200 atm the yield with the 5% catalyst was proportional to the hydrogen pressure. A big advantage of the rhenium catalysts in the reduction of NB is their high selectivity. With a higher activity than palladium and nickel catalysts, 5% rhenium catalyst produces a high operating capacity in a wide range of contact charges, which has considerable significance for industrial use in contact apparatus of the column type. Comparison of the costs of rhenium catalysts and granular carbon carrier with those of nickel, platinum, and palladium showed that 5% rhenium catalyst can

  20. Base adsorption calorimetry for characterising surface acidity: a comparison between pulse flow and conventional ''static'' techniques

    International Nuclear Information System (INIS)

    Felix, S.P.; Savill-Jowitt, C.; Brown, D.R.

    2005-01-01

    A pulsed flow adsorption microcalorimeter (pulse-FMC) has been developed by modifying a Setaram 111. It is tested in comparison with a conventional pulsed static adsorption microcalorimeter (pulse-SMC) for characterising surface acidity of solid acid catalysts. Small pulses of 1% ammonia in helium are delivered to an activated catalyst sample and its surface acidity is differentially profiled in terms of the molar enthalpy of ammonia adsorption (ΔH ads o ) using a combination of differential scanning calorimeter (DSC) and a downstream thermal conductivity detector (TCD). The pulsing action and its sequences are controlled by in-house developed software and the TCD output also is logged into a PC. Thus, the pulse-FMC is fully automated. Two sulfonated polystyrene resin-type catalysts, Amberlyst 15 and Amberlyst 35, a zeolite of the type H + -ZSM-5 (CT 410) and an acid activated clay (Fulcat 220) are characterised at appropriate temperatures using both the new technique and the conventional static base adsorption method. ΔH ads o versus surface coverage profiles of all the four catalysts obtained from both pulse-FMC and the conventional method are found to be comparable. Results are interpreted in terms of the extent to which NH 3 adsorption on the catalysts surface is under thermodynamic control in the two methods

  1. Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method.

    Science.gov (United States)

    Lazdovica, K; Liepina, L; Kampars, V

    2016-05-01

    Pyrolysis of wheat bran with or without catalysts was investigated using TGA-FTIR method in order to determine the influence of zeolite and noble metal catalysts on the evolution profile and relative yield of the volatile compounds. The addition of all catalysts decreased the volatile matter of wheat bran from 76.3% to 75.9%, 73.9%, 73.5%, 69.7% and increased the solid residue from 18.0% to 18.4%, 20.4%, 20.8%, 24.6% under the catalyst of ZSM-5, 5% Pd/C, MCM-41, and 5% Pt/C. Noble-metal catalysts had higher activity for deoxygenation of compounds containing carbonyl, carboxyl, and hydroxyl groups than zeolites. Degradation of nitrogen containing compounds atom proceeded better in presence of zeolites. Noble-metal catalysts promoted formation of aromatics and changed the profiles of evolved compounds whereas zeolites advanced formation of aliphatics and olefins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Análise quantitativa das zeólitas ferrierita, ZSM-5 e mordenita presentes em amostras sintetizadas

    Directory of Open Access Journals (Sweden)

    B. J. B. Silva

    2015-03-01

    Full Text Available Nos estudos de obtenção de materiais zeolíticos é comum a formação de misturas de fases cristalinas devido à estabilidade relativa destes materiais no meio reacional empregado na síntese. Desta forma, é extremamente importante quantificar as diversas fases presentes no sistema para otimizar os métodos de sínteses de uma determinada zeólita sem a presença de contaminantes. Especificamente, foi verificado que durante a síntese das zeólitas ZSM-5(MFI, mordenita (MOR e ferrierita (FER, em diversas condições experimentais, ocorreram a formação de misturas de fases binárias (FER+MOR e (FER+MFI, às vezes ternárias (FER+MOR+MFI. O propósito do trabalho foi a realização de várias misturas binárias em diversos percentuais destes materiais, a fim de se obter uma metodologia para quantificar a presença de cada uma das fases (FER, MOR e MFI em amostras sintetizadas sob diferentes condições experimentais. Com este objetivo, foram preparadas misturas físicas com diversos teores das fases MFI, MOR e FER, a partir de amostras altamente cristalinas de cada fase. Estas fases de composições conhecidas foram analisadas por difração de raios X para quantificar as áreas dos picos característicos de cada material, podendo-se assim obter uma relação de percentual de fase/área de cada componente da mistura.

  3. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst

    DEFF Research Database (Denmark)

    Kuld, Sebastian; Moses, Poul Georg; Sehested, Jens

    2014-01-01

    Methanol has recently attracted renewed interest because of its potential importance as a solar fuel. Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of ZnO as a pro......Methanol has recently attracted renewed interest because of its potential importance as a solar fuel. Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of Zn......O as a promoter for this type of catalyst is still under intense debate. Structural changes that are strongly dependent on the pretreatment method have now been observed for an industrial-type methanol synthesis catalyst. A combination of chemisorption, reaction, and spectroscopic techniques provides a consistent...

  4. Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions

    Directory of Open Access Journals (Sweden)

    Andrzej Tracz

    2015-10-01

    Full Text Available Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM and cross metathesis (CM reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities.

  5. Alkaline Ionic Liquid Modified Pd/C Catalyst as an Efficient Catalyst for Oxidation of 5-Hydroxymethylfurfural

    Directory of Open Access Journals (Sweden)

    Zou Bin

    2018-01-01

    Full Text Available Conversion of HMF into FDCA was carried out by a simple and green process based on alkaline ionic liquid (IL modified Pd/C catalyst (Pd/C-OH−. Alkaline ionic liquids were chosen to optimize Pd/C catalyst for special hydrophilicity and hydrophobicity, redox stability, and unique dissolving abilities for polar compounds. The Pd/C-OH− catalyst was successfully prepared and characterized by SEM, XRD, TG, FT-IR, and CO2-TPD technologies. Loading of alkaline ionic liquid on the surface of Pd/C was 2.54 mmol·g−1. The catalyst showed excellent catalytic activity in the HMF oxidation after optimization of reaction temperature, reaction time, catalyst amount, and solvent. Supported alkaline ionic liquid (IL could be a substitute and promotion for homogeneous base (NaOH. Under optimal reaction conditions, high HMF conversion of 100% and FDCA yield of 82.39% were achieved over Pd/C-OH− catalyst in water at 373 K for 24 h.

  6. Catalytic removal of phenol from gas streams by perovskite-type catalysts.

    Science.gov (United States)

    Chen, Dai Ling; Pan, Kuan Lun; Chang, Moo Been

    2017-06-01

    Three perovskite-type catalysts prepared by citric acid method are applied to remove phenol from gas streams with the total flow rate of 300mL/min, corresponding to a GHSV of 10,000/hr. LaMnO 3 catalyst is first prepared and further partially substituted with Sr and Cu to prepare La 0.8 Sr 0.2 MnO 3 and La 0.8 Sr 0.2 Mn 0.8 Cu 0.2 O 3 , and catalytic activities and fundamental characteristics of these three catalysts are compared. The results show that phenol removal efficiency achieved with La 0.8 Sr 0.2 Mn 0.8 Cu 0.2 O 3 reaches 100% with the operating temperature of 200°C and the rate of mineralization at 300°C is up to 100%, while the phenol removal efficiencies achieved with La 0.8 Sr 0.2 MnO 3 and LaMnO 3 are up to 100% with the operating temperature of 300°C and 400°C, respectively. X-ray photoelectron spectroscopy (XPS) analysis shows that the addition of Sr and Cu increases the lattice oxygen of La 0.8 Sr 0.2 Mn 0.8 Cu 0.2 O 3 , and further increases mobility or availability of lattice oxygen. The results indicate that La 0.8 Sr 0.2 Mn 0.8 Cu 0.2 O 3 has the best activity for phenol removal among three catalysts prepared and the catalytic activity of phenol oxidation is enhanced by the introduction of Sr and Cu into LaMnO 3 . Apparent activation energy of 48kJ/mol is calculated by Mars-Van Krevelen Model for phenol oxidation with La 0.8 Sr 0.2 Mn 0.8 Cu 0.2 O 3 as catalyst. Copyright © 2016. Published by Elsevier B.V.

  7. HZSM-5 Catalyst for Cracking Palm Oil to Gasoline: A Comparative Study with and without Impregnation

    OpenAIRE

    Achmad Roesyadi; Danawati Hariprajitno; Nurjannah Nurjannah; Santi Dyah Savitri

    2013-01-01

    It is important to develop a renewable source of energy to overcome a limited source fossil energy. Palm oil is a potential alternative and environmental friendly energy resource in Indonesia due to high production capacity of this vegetable oil. The research studied effect of catalyst to selectivity of biofuel product from cracking of palm oil. The catalyst consisted of HZSM-5 catalyst with or without impregnation. The research was conducted in two steps, namely catalyst synthesized and cata...

  8. Production of liquid alkanes by controlling reactivity of sorbitol hydrogenation with a Ni/HZSM-5 catalyst in water

    International Nuclear Information System (INIS)

    Zhang, Qing; Wang, Tiejun; Xu, Ying; Zhang, Qi; Ma, Longlong

    2014-01-01

    Graphical abstract: MCM-41-modified Ni/HZSM-5 catalyst was developed by impregnation method with high catalytic performance for sorbitol hydrogenation in water. Appropriate amount of MCM-41 addition can distinctly promote the improvement in the surface structure and modulation of acidic sites of the catalyst. The scission of C–O bond in the sorbitol molecule into liquid alkanes was easily carried out on the catalyst containing more Lewis acidic sites. - Highlights: • Ni/HZSM-5 promoted with MCM-41 is active for sorbitol hydrogenation to liquid alkanes. • Lewis acidic sites of Ni/HZSM-5 can be modulated by pure silica MCM-41. • MCM-41 added can distinctly decrease carbon deposition on the catalyst surface. - Abstract: Liquid fuels derived from renewable biomass are of great importance on the potential substitution for diminishing fossil fuels. The conversion of sorbitol (a product of biomass-derived glucose hydrogenation) into liquid alkanes such as pentane and hexane over the Ni/HZSM-5 catalysts with or without MCM-41 addition was investigated in the presence of hydrogen in water medium. The production distribution of sorbitol hydrogenation can be controlled by adjusting the acidity of the catalyst. The scission of C–C bond in the sorbitol molecule into light C 1 –C 4 alkanes was mainly carried out over Ni/HZSM-5 containing strong Brønsted acid sites, while C–O bond scission into heavier alkanes was dominated over the catalysts added by MCM-41 containing weak Lewis acid sites. The sorbitol conversion and total liquid alkanes selectivity were found to be 67.1% and 98.7% over 2%Ni/HZSM-5 modified by 40 wt% of MCM-41, whereas the corresponding value was 40% and 35.6% over 2%Ni/HZSM-5 in the absence of MCM-41. The effect of MCM-41 on the structure, acidity, and reducibility of Ni/HZSM-5 was investigated by using XRD, Py-IR, IR, and H 2 -TPR. Meanwhile, the resistance of carbon deposition over the catalyst modified by MCM-41 was studied by using TG

  9. Adsorção de CO2 em peneiras moleculares micro e mesoporosas

    OpenAIRE

    Oliveira, Thiago G.; Machado, Sanny W. M.; Santos, Silvia C. G.; Souza, Marcelo J. B.; Pedrosa, Anne M. Garrido

    2014-01-01

    Microporous molecular sieves of type Y, Beta, ZSM-5, ZSM-12 and ZSM-35, and mesoporous molecular sieves of type MCM-41 and MCM-48, and these sieves modified with triethanolamine and ethylenediamine were obtained and characterized by XRD, FTIR, TGA and nitrogen adsorption. The adsorption tests were performed by the gravimetric method under a stream of CO2 at ambient temperature and pressure. The adsorbents studied showed maximum adsorption capacity of carbon dioxide in the range of 13.1 to 85....

  10. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp.

    Science.gov (United States)

    Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Hassan, El Barbary; Dempster, Thomas A

    2018-03-01

    Upgrading of bio-oil obtained from hydrothermal liquefaction (HTL) of algae is necessary for it to be used as a fuel. In this study, bio-oil obtained from HTL of Nannochloropsis sp. was upgraded using five different catalysts (Ni/C, ZSM-5, Ni/ZSM-5, Ru/C and Pt/C) at 300 °C and 350 °C. The upgraded bio-oil yields were higher at 300 °C; however, higher quality upgraded bio-oils were obtained at 350 °C. Ni/C gave the maximum upgraded bio-oil yield (61 wt%) at 350 °C. However, noble metal catalysts (Ru/C and Pt/C) gave the better upgraded bio-oils in terms of acidity, heating values, and nitrogen values. The higher heating value of the upgraded bio-oils ranged from 40 to 44 MJ/kg, and the nitrogen content decreased from 5.37 to 1.29 wt%. Most of the upgraded bio-oils (35-40 wt%) were in the diesel range. The major components present in the gaseous products were CH 4 , CO, CO 2 and lower alkanes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 by using Nb2O5 nano catalyst

    Directory of Open Access Journals (Sweden)

    Gunvant H. Sonawane

    2016-09-01

    Full Text Available The ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 accompanied by Nb2O5 nano catalysts were studied. The structure and morphology of synthesized Nb2O5 nano catalyst was investigated using scanning election microscopy (SEM, Electron dispersive X-ray spectroscopy (EDS and X-ray diffraction (XRD.The effects of various experimental parameters such as the Basic Red-2 concentration, catalyst dose, pH and addition of H2O2 on the ultrasonic, photocatalytic and sonophotocatalytic degradation were investigated. Photocatalytic and sonophotocatalytic degradation of Basic Red-2 was strongly affected by initial dye concentration, catalyst dose, H2O2 addition and pH. Basic pH (pH-10 was favored for the ultrasonic (US, photocatalytic (UV + Nb2O5 and sonophotocatalytic (US + UV + Nb2O5 degradation of Basic Red-2 by using Nb2O5 nano catalyst. The ultrasonic degradation of Basic Red-2 was enhanced by the addition of photocatalyst. Then, the effect of Nb2O5 dose on photocatalytic and sonophotocatalytic degradation were studied, and it was found that increase in catalyst dose increase in the percentage degradation of Basic Red-2. In addition, the effects of H2O2 on ultrasonic, photolytic, photocatalytic and sonophotocatalytic degradation was also investigated, and it was found that H2O2 enhances the % degradation of Basic Red-2. The possible mechanism of ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 reported by LC-MS shows generation of different degradation products

  12. Characteristics of mordenite-type zeolite catalysts deactivated by SO{sub 2} for the reduction of NO with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.H.; Nam, I.S.; Kim, Y.G. [Pohang Univ. of Science and Technology/Research Inst. of Industrial Science and Technology, Pohang (Korea, Republic of)

    1998-10-25

    The deactivation of mordenite-type zeolite catalysts for the selective reduction of NO by hydrocarbons in the presence of SO{sub 2} was examined in a packed-bed flow reactor system. The physicochemical properties of the deactivated catalysts by SO{sub 2} were extensively characterized by TGA, TPSR, XPS, Raman, XANES, the measurements of surface area and elemental analysis. Not only the surface area and sulfur content of the deactivated catalysts, but their TGA and TPSR patterns strongly suggest the formation of a sulfur species as a deactivating agent on the catalyst surface. It is also observed that the sulfur species exists in the form of sulfate (SO{sub 4}{sup 2{minus}}) by XPS and Raman. It mainly causes the loss of NO removal activity of the catalysts. The sulfate species formed on the deactivated catalysts by SO{sub 2} did not significantly alter the chemical environment of the copper ions contained in the zeolite catalysts such as CuHM and CuNZA. It does not exist in the form of cupric sulfate pentahydrate on the catalyst surface as revealed by Cu K-edge absorption spectra of the catalysts.

  13. 1,3-Dibromo-5,5-dimethylhydantoin: a versatile catalyst for synthesis of 3,3-bis(indolyloxindoles

    Directory of Open Access Journals (Sweden)

    Seyyedeh Fatemeh Hojati

    2013-10-01

    Full Text Available A condensation of various isatins with indole derivatives has been carried out in the presence of 1,3-dibromo-5,5-dimethylhydantoin (DBDMH as catalyst at 50 °C in ethanol in order to form 3,3-bis(indolyl oxindoles. The products were obtained within 20-90 min by 70-96% yields. The efficacy of the procedure has been confirmed by catalyzing the condensation reaction of pyrrole which was used as another sort of heterocycle with indole to obtain its corresponding 3,3-bis(2-pyrrolyloxinole. A plausible mechanism of the condensation based on DBDMH activating role has also been proposed. DBDMH is an effective, commercially available, insensitive to moisture and easily handling catalyst. Simple procedure, easy work-up, mild reaction conditions, high yields and short reaction times are the highlighted points of reported method.

  14. Physicochemical investigations of carbon nanofiber supported Cu/ZrO2 catalyst

    International Nuclear Information System (INIS)

    Din, Israf Ud; Shaharun, Maizatul S.; Subbarao, Duvvuri; Naeem, A.

    2014-01-01

    Zirconia-promoted copper/carbon nanofiber catalysts (Cu‐ZrO 2 /CNF) were prepared by the sequential deposition precipitation method. The Herringbone type of carbon nanofiber GNF-100 (Graphite nanofiber) was used as a catalyst support. Carbon nanofiber was oxidized to (CNF-O) with 5% and 65 % concentration of nitric acid (HNO 3 ). The CNF activated with 5% HNO 3 produced higher surface area which is 155 m 2 /g. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and N 2 adsorption-desorption. The results showed that increase of HNO 3 concentration reduced the surface area and porosity of the catalyst

  15. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors

    International Nuclear Information System (INIS)

    Zampieri, Alessandro; Mabande, Godwin T.P.; Selvam, Thangaraj; Schwieger, Wilhelm; Rudolph, Alexander; Hermann, Ralph; Sieber, Heino; Greil, Peter

    2006-01-01

    Biomorphic self-supporting MFI-type zeolite frameworks with hierarchical porosity and complex architecture were prepared using a 2-step (in-situ seeding and secondary crystal growth) hydrothermal synthesis in the presence of a biological template (Luffa sponge), employed as a macroscale sacrificial structure builder. The bio-inspired zeolitic replica inherited the complex spongy morphology and the intricate open-porous architecture of the biotemplate. Moreover, it exhibited reasonable mechanical stability in order to study the applicability of the biomorphic catalyst in a technical catalytic process. A bio-inspired catalytic reactor utilising the self-supporting ZSM-5 scaffold in monolithic configuration was developed in order to test the catalytic performance of the material

  16. Characterization of Cr/Bentonite and HZSM-5 Zeolite as Catalysts for Ethanol Conversion to Biogasoline

    Directory of Open Access Journals (Sweden)

    Robert Ronal Widjaya

    2012-04-01

    Full Text Available In this research it has been done characterization on Cr/Bentonit and Zeolit HZSM-5 catalysts for ethanol catalytic process to biogasoline (equal to gasoline. Cr/Bentonit has high acidity and resistant to a lot of moisture, so in addition to being able to processing feed which a lot of moisture (>15% from ethanol-water mixture, also it is not easy deactivated. Cr/Bentonit which is then used as the catalyst material on the process of ethanol conversion to be biogasoline and the result was compared with catalyst HZSM-5 zeolite. Several characterization methods: X-ray diffraction, Brunauer Emmett Teller (BET, thermogravimetry analysis (TGA, and catalyst activity tests using catalytic Muffler instrument and gas chromatography-mass spectrometry (GC-MS for product analysis were performed on both catalysts. From acidity measurement, it is known that acidity level of Cr/Bentonit is the highest and also from XRD result, it is known there is shift for 2theta in Cr/Bentonit, which indicates that Cr-pillar in the Bentonite can have interaction. It is also supported by BET data that shows the addition of specific surface are in Cr/Bentonite compared with natural Bentonite before pillarization. Futhermore catalyst activity test produced the results, analyzed by GC-MS, identified as butanol and also possibly formed hexanol, decane, dodecane, undecane, which are all included in gasoline range (C4 until C12.

  17. Biodiesel production in methyl esterification in the frying oil using catalyst Ni_0_,_5Zn_0_,_5Fe_2O_4 to produce biodiesel

    International Nuclear Information System (INIS)

    Vasconcelos, E.V.; Dantas, J.; Pereira, K.B.O.; Barros, A.B.; Moura, T.F.B.; Costa, A.C.F.M.

    2016-01-01

    The use of magnetic catalysts for biodiesel production has gaining prominence because of possibility about its recovery and its reuse, as well as, the reuse of materials that would be discarded in the environment. Thus, we propose to evaluate the efficiency of the catalyst Ni_0_,_5Zn_0_,_5Fe_2O_4 in methyl esterification in the frying oil to produce biodiesel. The catalyst was produced by combustion reaction using containers with different production capacity and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectrometry with Fourier transform (FTIR). The catalytic tests were conducted in a stainless steel reactor at 180°C/1h, 2% of catalyst, oil/ethanol ratio of 1:12. Regardless of the container production capacity it was verified the catalyst obtaining with the major phase formation of the inverse spinel and traces of segregated phases with an average crystallite size of 42.13, 32.07 and 36.93 nm. All catalysts showed satisfactory results with conversions of 74%, 77% and 71%. (author)

  18. Process for paraffin isomerization of a distillate range hydrocarbon feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N.Y.; Garwood, W.E.; McCullen, S.B.

    1993-01-19

    Various catalytic processes have been proposed to isomerize n-paraffins so as to lower the pour point of distillate range hydrocarbon feedstocks. However, many available feedstocks contain nitrogen impurities which tend to poison conventional paraffin isomerization catalysts. A process has been developed to obviate or alleviate this problem. According to the invention, the paraffin-containing feedstock is contacted with a crystalline aluminosilicate zeolite catalyst having pore openings defined by a ratio of sorption of n-hexane to o-xylene of over 3 vol % and the ability to crack 3-methylpentane in preference to 2,3 dimethylbutane under defined conditions. The zeolite catalyst includes a Group VIII metal and has a zeolite SiO[sub 2]/Al[sub 2]O[sub 3] ratio of at least 20:1. The contacting is carried out at 199-454 C and a pressure of 100-1,000 psig, preferably 250-600 psig. The group of medium pore zeolites which can be used in the process of the invention includes ZSM-22, ZSM-23, and ZSM-35. The Group VIII metals used in the catalyst are preferably selected from Pt, Pd, Ir, Os, Rh, and Ru and the metal is preferably incorporated into the zeolite by ion exchange up to a metal content of preferably 0.1-3 wt %. Experiments are described to illustrate the invention. 1 tab.

  19. Hydrogen generation from bioethanol reforming: bench-scale unit performance with Cu/Nb2O5 catalyst

    International Nuclear Information System (INIS)

    Fernandes Machado, N.R.C.; Schmal, M.; Cantao, M.P.

    2003-01-01

    As an alternative route for hydrogen production, ethanol reforming was studied in a bench-scale unit using a 5%Cu/Nb 2 O 5 catalyst previously selected in a micro reactor. X-Ray Diffraction analysis has shown that this catalyst contains copper oxide in an amorphous form, or in particles smaller than 20 nm, while the Nb 2 O 5 is highly crystalline. Analysis of the calcinated catalyst by X-Ray Photoelectron Spectroscopy revealed that 35% of total copper was on the surface as Cu I (55%) or Cu II (45%). The catalyst presented a low surface area (35 m 2 /g), mainly from meso and macropores, as textural analysis revealed. Temperature Programmed Reduction showed a two-step reduction of Cu II to Cu, at 245 o C and 306 o C. It was also observed the reduction of 6% of Nb 2 O 5 . The reaction unit consisted of an integral reactor with 16 g of catalyst pellets, approximately 3 mm x 5 mm in size. Reaction temperature and feed rate were varied to optimize hydrogen production, with CO 2 as the main byproduct. Reagents (water and ethanol) in stoichiometric proportion were fed into an electric pre-heater and vaporized. An increase on reaction temperature from 300 o C to 400 o C has led to an increase in mean conversion from 17% to 35%. Ethene and ethyl ether were also detected as minor byproducts. (author)

  20. TRICHLOROETHYLENE SORPTION AND OXIDATION USING A DUAL FUNCTION SORBENT/CATALYST IN A FALLING FURNACE REACTOR

    Science.gov (United States)

    A dual function medium (Cr-ZSM-5), capable of physisorbing trichloroethylene (TCE) at ambient temperature and catalytically oxidizing it at elevated temperature (-350 degrees C) was utilized in a novel continuous falling furnace reactor system to store and periodically destroy t...

  1. Alkylation of toluene with isopropyl alcohol over SAPO-5 catalyst

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Isopropylation of toluene with isopropyl alcohol was studied over the large pore silicon alu- mino phosphate molecular sieves (SAPO-5) with varying Si content. Toluene conversion was found to increase with increase in the Si of the catalysts. The effect of temperature on yields of cymene was studied in the range ...

  2. A laboratory test setup for in situ measurements of the dielectric properties of catalyst powder samples under reaction conditions by microwave cavity perturbation: set up and initial tests.

    Science.gov (United States)

    Dietrich, Markus; Rauch, Dieter; Porch, Adrian; Moos, Ralf

    2014-09-10

    The catalytic behavior of zeolite catalysts for the ammonia-based selective catalytic reduction (SCR) of nitrogen oxides (NOX) depends strongly on the type of zeolite material. An essential precondition for SCR is a previous ammonia gas adsorption that occurs on acidic sites of the zeolite. In order to understand and develop SCR active materials, it is crucial to know the amount of sorbed ammonia under reaction conditions. To support classical temperature-programmed desorption (TPD) experiments, a correlation of the dielectric properties with the catalytic properties and the ammonia sorption under reaction conditions appears promising. In this work, a laboratory test setup, which enables direct measurements of the dielectric properties of catalytic powder samples under a defined gas atmosphere and temperature by microwave cavity perturbation, has been developed. Based on previous investigations and computational simulations, a resonator cavity and a heating system were designed, installed and characterized. The resonator cavity is designed to operate in its TM010 mode at 1.2 GHz. The first measurement of the ammonia loading of an H-ZSM-5 zeolite confirmed the operating performance of the test setup at constant temperatures of up to 300 °C. It showed how both real and imaginary parts of the relative complex permittivity are strongly correlated with the mass of stored ammonia.

  3. Phenomenological-based kinetics modelling of dehydrogenation of ethylbenzene to styrene over a Mg 3 Fe 0.25 Mn 0.25 Al 0.5 hydrotalcite catalyst

    KAUST Repository

    Hossain, Mohammad M.

    2012-05-18

    This communication reports a mechanism-based kinetics modelling for the dehydrogenation of ethylbenzene to styrene (ST) using Mg3Fe0.25Mn0.25Al0.5 catalyst. Physicochemical characterisation of the catalyst indicates that the presence of basic sites Mg2+O2- on the catalysts along with Fe3+ is responsible for the catalytic activity. The kinetics experiments are developed using a CREC Fluidised Riser Simulator. Based on the experimental observations and the possible mechanism of the various elementary steps, Langmuir-Hinshelwood type kinetics model are developed. To take into account of the possible catalyst deactivation a reactant conversion-based deactivation function is also introduced into the model. Parameters are estimated by fitting of the experimental data implemented in MATLAB. Results show that one site type Langmuir-Hinshelwood model appropriately describes the experimental data, with adequate statistical fitting indicators and also satisfied the thermodynamic restraints. The estimated heat of adsorptions of EB (64kJ/mole) is comparable to the values available in the literature. The activation energy for the formation of ST (85.5kJ/mole) found to be significantly lower than that of the cracking product benzene (136.6kJ/mole). These results are highly desirable in order to achieve high selectivity of the desired product ST. © 2012 Canadian Society for Chemical Engineering.

  4. Graphene layer encapsulated metal nanoparticles as a new type of non-precious metal catalysts for oxygen reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhong, Lijie; Jensen, Jens Oluf

    2016-01-01

    Cheap and efficient non-precious metal catalysts for oxygen reduction have been a focus of research in the field of low-temperature fuel cells. This review is devoted to a brief summary of the recent work on a new type of catalysts, i.e., the graphene layer encapsulated metal nanoparticles....... The discussion is focused on the synthesis, structure, mechanism, performance, and further research....

  5. Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Godiksen, Anita

    2016-01-01

    characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR, Raman, FTIR and EPR spectroscopy to investigate the properties of the catalysts. XRPD, Raman and FTIR showed that promotion with 15 wt.% HPA does not cause V2O5 to be present in crystalline form, also at a loading of 5 wt.% V2O5. Hence, use of HPAs does......The influence of varying the V2O5 content (3–6 wt.%) was studied for the selective catalytic reduction (SCR) of nitrogen oxides by ammonia on heteropoly acid (HPA)- and tungsten oxide (WO3)-promoted V2O5/TiO2 catalysts. The SCR activity and alkali deactivation resistance of HPA-promoted V2O5/TiO2...... catalysts was found to be much higher than for WO3-promoted catalysts. By increasing the vanadium content from 3 to 5 wt.% the catalysts displayed a two fold increase in activity at 225 °C and retained their initial activity after alkali doping at a molar K/V ratio of 0.181. Furthermore, the catalysts were...

  6. Polyphosphoric acid supported on Ni0.5Zn0.5Fe2O4 nanoparticles as a magnetically-recoverable green catalyst for the synthesis of pyranopyrazoles

    Directory of Open Access Journals (Sweden)

    Farid Moeinpour

    2017-05-01

    Full Text Available Polyphosphoric acid supported on silica coated Ni0.5Zn0.5Fe2O4 nanoparticles was found to be magnetically separable, highly efficient, eco-friendly, green and recyclable heterogeneous catalyst. This new catalyst at first was fully characterized by TEM, SEM, FTIR and XRD techniques and then catalytic activity of this catalyst was investigated in the synthesis of 5-cyano-1,4-dihydropyrano[2,3-c]pyrazoles. Also the Ni0.5Zn0.5Fe2O4 magnetic nanoparticle-supported polyphosphoric acid could be reused at least six times without significant loss of activity. It could be recovered easily by applying an external magnet.

  7. STUDY ON THE CONCENTRATION EFFECT OF Nb2O5-ZAA CATALYST TOWARDS TOTAL CONVERSION OF BIODIESEL IN TRANSESTERIFICATION OF WASTED COOKING OIL

    Directory of Open Access Journals (Sweden)

    Astuti Tri Padmaningsih

    2010-06-01

    Full Text Available Study on the concentration effect of Nb2O5-ZAA catalyst towards total conversion of biodiesel has been conducted. The natural zeolite (ZA was activated by dipping in NH4Cl solution and was calcined using N2 atmosphere at 500 °C for 5h to produce the ZAA sample. The Nb2O5-ZAA catalyst was made by mixing the activated natural zeolite (ZAA, Nb2O5 3 % (w/w and oxalic acid 10 % (w/w solution, until the paste was formed, followed by drying and calcining the catalyst for 3 h at 500 °C under N2 atmosphere. Catalyst characterizations were conducted by measuring acidity with NH3 gas using gravimetric method and porosimetric analysis using N2 gas adsorption based on the BET equation by surface area analyzer instrument. The Nb2O5-ZAA catalyst was then used as an acid catalyst in free fatty acid esterification reaction of wasted cooking oil in methanol medium with variation of catalyst concentration: 1.25%; 2.5%; 3.75% and 5% towards the weight of oil+methanol. The reaction was continued by transesterification of triglyceride in the used cooking oil using NaOH catalyst in methanol medium. For comparison, the esterification reaction using H2SO4 catalyst 1.25% towards the weight of oil+methanol has been conducted as well. Methyl ester (biodiesel product was analyzed using Gas Chromatography (GC and Gas Chromatography-Mass Spectrometry (GC-MS. The characters of biodiesel were analyzed using American Society for Testing and Materials (ASTM method. The results showed that modification of ZAA by impregning Nb2O5 3% (w/w increased the total catalyst acidity from 5.00 mmol/g to 5.65 mmol/g. The Nb2O5-ZAA catalyst has specific surface area of 60.61 m2/g, total pore volume of 37.62x10-3 cc/g and average pore radius of 12.41 Å. The Nb2O5-ZAA catalyst with concentration of 1.25%-5% produced higher total conversion of biodiesel than that of H2SO4 catalyst 1.25%. The Nb2O5-ZAA catalyst with concentration of 3.75% produced the highest total conversion of biodiesel, i

  8. Hydrocracking of Cerbera manghas Oil with Co-Ni/HZSM-5 as Double Promoted Catalyst

    Directory of Open Access Journals (Sweden)

    Lenny Marlinda

    2017-05-01

    Full Text Available The effect of various reaction temperature on the hydrocracking of Cerbera manghas oil to produce a paraffin-rich mixture of hydrocarbons with Co-Ni/HZSM-5 as doubled promoted catalyst were studied. The Co-Ni/HZSM-5 catalyst with various metal loading and metal ratio was prepared by incipient wetness impregnation. The catalysts were characterized by XRD, AAS, and N2 adsorption-desorption. Surface area, pore diameter, and pore volume of catalysts decreased with the increasing of metals loading. The hydrocracking process was conducted under hydrogen initial pressure in batch reactor equipped with a mechanical stirrer. The reaction was carried out at a temperature of 300-375 oC for 2 h.  Depending on the experimental condition, the reaction pressure changed between 10 bar and 15 bar.   Several parameters were used to evaluate biofuel produced, including oxygen removal, hydrocarbon composition and gasoline/kerosene/diesel yields. Biofuel was analyzed by Fourier Transform Infrared Spectroscopic (FTIR and gas chromatography-mass spectrometry (GC-MS. The composition of hydrocarbon compounds in liquid products was similar to the compounds in the gasoil sold in unit of Pertamina Gas Stations, namely pentadecane, hexadecane, heptadecane, octadecane, and nonadecane with different amounts for each biofuel produced at different reaction temperatures. However, isoparaffin compounds were not formed at all operating conditions. Pentadecane (n-C15 and heptadecane (n-C17 were the most abundant composition in gasoil when Co-Ni/HZSM-5 catalyst was used. Cerbera Manghas oil can be recommended as the source of non-edible vegetable oil to produce gasoil as an environmentally friendly transportation fuel. Copyright © 2017 BCREC Group. All rights reserved Received: 20th May 2016; Revised: 30th January 2017; Accepted: 10th February 2017 How to Cite: Marlinda, L., Al-Muttaqii, M., Gunardi, I., Roesyadi, A., Prajitno, D.H. (2017. Hydrocracking of Cerbera manghas Oil

  9. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    Full Text Available The necessity to remove organic pollutants from the industrial wastewater streams has forced the development of new technologies that can produce better results in terms of pollutant removal and process efficiency in combination with low investment and operating costs. One of the new emerging processes with a potential to fulfil these demands is catalytic wet peroxide oxidation, commonly known as the CWPO process. The oxidative effect of the hydrogen peroxide is intensified by the addition of a heterogeneous catalyst that can reduce the operating conditions to atmospheric pressure and temperatures below 383 K. Zeolites, among others, are especially appealing as catalysts for selective oxidation processes due to their unique characteristics such as shape selectivity, thermal and chemical stability, and benign effect on nature and the living world. In this work, catalytic activity, selectivity and stability of Cu/Y-5 zeolite in phenol oxidation with hydrogen peroxide was examined. Catalyst samples were prepared by ion exchange method of the protonic form of commercial zeolite. The catalysts were characterized with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and AAS elemental analysis, while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and in the temperature range from 323 to 353 K. The catalyst was prepared in powdered form and the mass fraction of the active metal component on the zeolite was 3.46 %. The initial concentration of phenol solution was equal to 0.01 mol dm−3 and the concentration of hydrogen peroxide ranged from 0.01 to 0.10 mol dm−3. The obtained experimental data was tested to a proposed kinetic model for phenol oxidation r = k1 cF cVP and hydrogen peroxide decomposition rHP = k2 cHP. The kinetic parameters were estimated using the Nelder

  10. Heteropoly acid promoted V2O5/TiO2 catalysts for NO abatement with ammonia in alkali containing flue gases

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2011-01-01

    V2O5/TiO2 and heteropoly acid promoted V2O5/TiO2 catalysts were prepared and characterized by N2 physisorption, XRPD and NH3-TPD. The influence of the calcination temperature from 400 to 700 1C on crystallinity and acidic properties was studied and compared with the activity for the selective...... catalytic reduction (SCR) of NO with ammonia. The SCR activity of heteropoly acid promoted catalysts was found to be much higher than for unpromoted catalysts. The stability of heteropoly acid promoted catalysts is dependent on calcination temperature and there is a gradual decrease in SCR activity...... and acidity with increase in calcination temperatures. Furthermore, the heteropoly acid promoted V2O5/TiO2 catalysts showed excellent alkali deactivation resistance and might therefore be alternative deNOx catalysts in biomass fired power plants....

  11. A Copper-Based Metal-Organic Framework as an Efficient and Reusable Heterogeneous Catalyst for Ullmann and Goldberg Type C–N Coupling Reactions

    Directory of Open Access Journals (Sweden)

    Wei Long

    2015-11-01

    Full Text Available A highly porous metal-organic framework (Cu-TDPAT, constructed from a paddle-wheel type dinuclear copper cluster and 2,4,6-tris(3,5-dicarboxylphenylamino-1,3,5-triazine (H6TDPAT, has been tested in Ullmann and Goldberg type C–N coupling reactions of a wide range of primary and secondary amines with halobenzenes, affording the corresponding N-arylation compounds in moderate to excellent yields. The Cu-TDPAT catalyst could be easily separated from the reaction mixtures by simple filtration, and could be reused at least five times without any significant degradation in catalytic activity.

  12. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes.

    Science.gov (United States)

    Shi, Jing; Wang, Yangdong; Yang, Weimin; Tang, Yi; Xie, Zaiku

    2015-12-21

    The kaleidoscopic applications of zeolite catalysts (zeo-catalysts) in petrochemical processes has been considered as one of the major accomplishments in recent decades. About twenty types of zeolite have been industrially applied so far, and their versatile porous architectures have contributed their most essential features to affect the catalytic efficiency. This review depicts the evolution of pore models in zeolite catalysts accompanied by the increase in industrial and environmental demands. The indispensable roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The zeolites and related industrial processes discussed range from the uni-modal micropore system of zeolite Y (12-ring micropore, 12-R) in fluid catalytic cracking (FCC), zeolite ZSM-5 (10-R) in xylene isomerization and SAPO-34 (8-R) in olefin production to the multi-modal micropore system of MCM-22 (10-R and 12-R pocket) in aromatic alkylation and the hierarchical pores in FCC and catalytic cracking of C4 olefins. The rational construction of pore models, especially hierarchical features, is highlighted with a careful classification from an industrial perspective accompanied by a detailed analysis of the theoretical mechanisms.

  13. Physicochemical investigations of carbon nanofiber supported Cu/ZrO{sub 2} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Din, Israf Ud, E-mail: drisraf@yahoo.com, E-mail: maizats@petronas.com.my; Shaharun, Maizatul S., E-mail: drisraf@yahoo.com, E-mail: maizats@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (Malaysia); Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS (Malaysia); Naeem, A., E-mail: naeeem64@yahoo.com [National Centre of Excellence in Physical Chemistry, University of Peshawar (Pakistan)

    2014-10-24

    Zirconia-promoted copper/carbon nanofiber catalysts (Cu‐ZrO{sub 2}/CNF) were prepared by the sequential deposition precipitation method. The Herringbone type of carbon nanofiber GNF-100 (Graphite nanofiber) was used as a catalyst support. Carbon nanofiber was oxidized to (CNF-O) with 5% and 65 % concentration of nitric acid (HNO{sub 3}). The CNF activated with 5% HNO{sub 3} produced higher surface area which is 155 m{sup 2}/g. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and N{sub 2} adsorption-desorption. The results showed that increase of HNO{sub 3} concentration reduced the surface area and porosity of the catalyst.

  14. Acrolein Production by Gas-Phase Glycerol Dehydration Using PO₄/Nb₂O5 Catalysts.

    Science.gov (United States)

    Lee, Kyu Am; Ryoo, HeeKyoung; Ma, Byung Chol; Kim, Youngchul

    2018-02-01

    In this study, modified niobium oxide were prepared to study the addictive effects on the catalytic performance for gas-phase glycerol dehydration. The catalysts were characterized by N2 adsorption/desorption, XRD, NH3-TPD, FT-IR. The amount of phosphoric acid was up to 50 wt% in niobium. As a result, the highest glycerol conversion was achieved over 20 wt% PO4/Nb2O5. It indicates that the optimal amount of phosphoric acid leads the catalyst to have appropriate acidity which is an important factor for gas-phase glycerol dehydration.

  15. Carbonaceous deposits on naptha reforming catalysts

    International Nuclear Information System (INIS)

    Redwan, D.S.

    1999-01-01

    Carbonaceous deposits on naphtha reforming catalysts play a decisive role in limiting process performance. The deposits negatively after catalyst activity, selectivity and the production cycle of a semi regenerative reformer. The magnitude of negative effect of those deposits is directly proportional to their amounts and complexity. Investigations on used reforming catalysts samples reveal that the amount and type (complexity of the chemical nature) of carbonaceous deposits are directly proportional to the catalysts life on stream and the severity of operating conditions. In addition, the combustibility behavior of carbonaceous deposits on the catalyst samples taken from different reformers are found to be different. Optimal carbon removal, for in situ catalyst regeneration, requires the specific conditions be developed, based on the results of well designed and properly performed investigations of the amount and type of carbonaceous deposits. (author)

  16. Oxygen-assisted conversion of propane over metal and metal oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Laate, Leiv

    2002-07-01

    An experimental set-up has been build and applied in activity/selectivity studies of the oxygen-assisted conversion of propane over metals and metal oxide catalysts. The apparatus has been used in order to achieve an improved understanding of the reactions between alkanes/alkenes and oxygen. Processes that have been studied arc the oxidative dehydrogenation of propane over a VMgO catalyst and the selective combustion of hydrogen in the presence of hydrocarbons over Pt-based catalysts and metal oxide catalysts. From the experiments, the following conclusions are drawn: A study of the oxidative dehydrogenation of propane over a vanadium-magnesium-oxide catalyst confirmed that the main problem with this system is the lack of selectivity due to complete combustion. Selectivity to propene up to about 60% was obtained at 10% conversion at 500{sup o}C, but the selectivity decreased with increasing conversion. No oxygenates were detected, the only by- products were CO and CO{sub 2}. The selectivity to propene is a strong function of the conversion of propane. The reaction rate of propane was found to be 1.0 {+-} 0.1 order in propane and 0.07 {+-} 0.02 order in oxygen. The kinetic results are in agreement with a Mars van Krevelen mechanism with the activation of the hydrocarbons as the slow step. The rate of propene oxidation to CO{sub 2} was studied and found to be significantly higher than that of propane. Another possible process involves the simultaneous equilibrium dehydrogenation of alkanes to alkenes and combustion of the hydrogen formed to shift the equilibrium dehydrogenation reaction further to the product alkenes. A study of the selective combustion of hydrogen in the presence of propane/propene was found to be possible under certain reaction conditions over some metal oxide catalysts. In{sub 2}O{sub 3}/SiO{sub 2}, unsupported Bi{sub 2}O{sub 3} and ZSM-5 show the ability to combust hydrogen in a gas mixture with propane and oxygen with good selectivity. Bi{sub 2

  17. Effect of Catalyst Pellet-Diameter and Basicity on Transesterification of Soybean Oil into Biodiesel using K2O/CaO-ZnO Catalyst over Hybrid Catalytic-Plasma Reactor

    Directory of Open Access Journals (Sweden)

    Istadi I.

    2018-01-01

    Full Text Available This research is aimed to study the effect of catalyst pellet-diameter and catalyst basicity on the transesterification process of soybean oil into biodiesel over a hybrid catalytic-plasma reactor. Various catalyst diameters (3, 5, and 7 mm were tested in this reaction system. Catalyst basicity was also examined by comparing fresh and used catalyst as well as with and without K2O promoter. All catalysts testing were performed in a hybrid plasma-catalytic reactor (dielectric barrier discharge – DBD type. From the results, the synergistic effects roles of the catalyst and the plasma in the transesterification process are important, in which the energetic electrons within plasma assist the reaction on the catalyst surface by an exciting bonded electron. The catalyst basicity was influenced by the composition of CaO on the catalyst as well as roles of the alkaline K2O promoter. Catalyst basicity is important in producing biodiesel with high performance. Yield of fatty acid alkyl ester (FAAE or biodiesel is slightly influenced by the catalyst diameter within the range of diameter studied.

  18. Cu-MCM-41 nanoparticles: An efficient catalyst for the synthesis of 5 ...

    Indian Academy of Sciences (India)

    To investigate reusability, the catalyst was recovered by simple filtration and reused for several cycles with consistent activity. Keywords. ... membranes. Another advantage of tetrazolic acids over carboxylic acids is that they are resistant to many bio- logical metabolic degradation pathways.3. Conventionally 5-substituted ...

  19. Uniformly active phase loaded selective catalytic reduction catalysts (V_2O_5/TNTs) with superior alkaline resistance performance

    International Nuclear Information System (INIS)

    Wang, Haiqiang; Wang, Penglu; Chen, Xiongbo; Wu, Zhongbiao

    2017-01-01

    Highlights: • VOSO_4 exhibited better synergistic effect with titanate nanotubes than NH_4VO_3. • Ion-exchange reaction occurs between VOSO_4 and titanate nanotubes. • Ion-exchange resulting in uniformly vanadium distribution on titanate nanotubes. • VOSO_4-based catalyst exhibited impressive SCR activity and alkaline resistance. - Abstract: In this work, protonated titanate nanotubes was performed as a potential useful support and different vanadium precursors (NH_4VO_3 and VOSO_4) were used to synthesize deNO_x catalysts. The results showed that VOSO_4 exhibited better synergistic effect with titanate nanotubes than NH_4VO_3, which was caused by the ion-exchange reaction. Then high loading content of vanadium, uniformly active phase distribution, better dispersion of vanadium, more acid sites, better V"5"+/V"4"+ redox cycles and superior oxygen mobility were achieved. Besides, VOSO_4-based titanate nanotubes catalysts also showed enhanced alkaline resistance than particles (P25) based catalysts. It was strongly associated with its abundant acid sites, large surface area, flexible redox cycles and oxygen transfer ability. For the loading on protonated titanate nanotubes, active metal with cation groups was better precursors than anion ones. V_2O_5/TNTs catalyst was a promising substitute for the commercial vanadium catalysts and the work conducted herein provided a useful idea to design uniformly active phase loaded catalyst.

  20. Deoxygenation of Palmitic and Lauric Acids over Pt/ZIF-67 Membrane/Zeolite 5A Bead Catalysts.

    Science.gov (United States)

    Yang, Liqiu; Carreon, Moises A

    2017-09-20

    The deoxygenation of palmitic and lauric acids over 0.5 wt % Pt/ZIF-67 membrane/zeolite 5A bead catalysts is demonstrated. Almost complete conversion (% deoxygenation of ≥95%) of these two fatty acids was observed over both fresh and recycled catalyst after a 2 h reaction time. The catalysts displayed high selectivity to pentadecane and undecane via decarboxylation reaction pathway even at low 0.5 wt % Pt loading. Selectivity to pentadecane and undecane as high as ∼92% and ∼94% was observed under CO 2 atmosphere when palmitic and lauric acids were used respectively as reactants. Depending on the reaction gas atmosphere, two distinctive reaction pathways were observed: decarboxylation and hydrodeoxygenation. Specifically, it was found that decarboxylation reaction pathway was more favorable in the presence of helium and CO 2 , while hydrodeoxygenation pathway strongly competed against the decarboxylation pathway when hydrogen was employed during the deoxygenation reactions. Esters were identified as the key reaction intermediates leading to decarboxylation and hydrodeoxygenation pathways.

  1. An anodic alumina supported Ni-Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol

    KAUST Repository

    Zhou, Lu

    2014-05-01

    An anodic alumina supported Ni-Pt bimetallic plate-type catalyst was prepared by a two-step impregnation method. The trace amount 0.08 wt% of Pt doping efficiently suppressed the nickel particle sintering and improved the nickel oxides reducibility. The prepared Ni-Pt catalyst showed excellent performance during steam reforming of methane, kerosene and ethanol under both 3000 h stationary and 500-time daily start-up and shut-down operation modes. Self-activation ability of this catalyst was evidenced, which was considered to be resulted from the hydrogen spillover effect over Ni-Pt alloy. In addition, an integrated combustion-reforming reactor was proposed in this study. However, the sintering of the alumina support is still a critical issue for the industrialization of Ni-Pt catalyst. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  2. Efficient Hydrogenolysis of Guaiacol over Highly Dispersed Ni/MCM-41 Catalyst Combined with HZSM-5

    Directory of Open Access Journals (Sweden)

    Songbai Qiu

    2016-09-01

    Full Text Available A series of MCM-41 supported Ni catalysts with high metal dispersion was successfully synthesized by simple co-impregnation using proper ethylene glycol (EG. The acquired Ni-based catalysts performed the outstanding hydrogenolysis activity of guaiacol. The effects of the synthesis parameters including drying temperature, calcination temperature, and metal loading on the physical properties of NiO nanoparticles were investigated through the use of X-ray diffraction (XRD. The drying temperature was found to significantly influence the particle sizes of NiO supported on MCM-41, but the calcination temperature and metal loading had less influence. Interestingly, the small particle size (≤3.3 nm and the high dispersion of NiO particles were also obtained for co-impregnation on the mixed support (MCM-41:HZSM-5 = 1:1, similar to that on the single MCM-41 support, leading to excellent hydrogenation activity at low temperature. The guaiacol conversion could reach 97.9% at 150 °C, and the catalytic activity was comparative with that of noble metal catalysts. The hydrodeoxygenation (HDO performance was also promoted by the introduction of acidic HZSM-5 zeolite and an 84.1% yield of cyclohexane at 240 °C was achieved. These findings demonstrate potential applications for the future in promoting and improving industrial catalyst performance.

  3. Electrical conductivity of uranium-antimony oxide catalysts

    International Nuclear Information System (INIS)

    Golunski, S.E.; Nevell, T.G.; Hucknall, D.J.

    1985-01-01

    The relative ionic and electronic contributions to the electrical conductivity of a uranium-antimony oxide catalyst and of USbO 5 have been determined from measurements of a.c. and d.c. conductance. Under inert atmospheres (390 to 775 K) conduction in the catalyst (predominantly USb 3 O 10 together with small proportions of Sb 2 O 4 and USbO 5 ) is associated with both electronic and effectively charged atomic point defects. Only electronic conduction occurs in USbO 5 . Under oxygen (10 to 70 kPa, 493 to 682 K) both materials are n-type semiconductors at higher temperatures, but at lower temperatures semiconducting behaviour varies with the pressure of oxygen. Heating USbO 5 in oxygen induces an ionic contribution to conductivity. Ionic conduction in the catalyst is eliminated by heating in hydrogen or propene at 470 K but is restored by heating in oxygen. It is suggested that both charged oxygen vacancies and interstitial oxide ions are involved in interactions of gaseous components with uranium-antimony oxides. With alkenes, interstitial oxide ions give rise to the products of selective partial oxidation. (author)

  4. Electrical conductivity of uranium-antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Golunski, S.E.; Nevell, T.G. (Portsmouth Polytechnic (UK)); Hucknall, D.J. (Southampton Univ. (UK). Dept. of Chemistry)

    1985-05-01

    The relative ionic and electronic contributions to the electrical conductivity of a uranium-antimony oxide catalyst and of USbO/sub 5/ have been determined from measurements of a.c. and d.c. conductance. Under inert atmospheres (390 to 775 K) conduction in the catalyst (predominantly USb/sub 3/O/sub 10/ together with small proportions of Sb/sub 2/O/sub 4/ and USbO/sub 5/) is associated with both electronic and effectively charged atomic point defects. Only electronic conduction occurs in USbO/sub 5/. Under oxygen (10 to 70 kPa, 493 to 682 K) both materials are n-type semiconductors at higher temperatures, but at lower temperatures semiconducting behaviour varies with the pressure of oxygen. Heating USbO/sub 5/ in oxygen induces an ionic contribution to conductivity. Ionic conduction in the catalyst is eliminated by heating in hydrogen or propene at 470 K but is restored by heating in oxygen. It is suggested that both charged oxygen vacancies and interstitial oxide ions are involved in interactions of gaseous components with uranium-antimony oxides. With alkenes, interstitial oxide ions give rise to the products of selective partial oxidation.

  5. Formation of hydrocarbon compounds during the hydrocracking of non-edible vegetable oils with cobalt-nickel supported on hierarchical HZSM-5 catalyst

    Science.gov (United States)

    Marlinda, L.; Al-Muttaqii, M.; Roesyadi, A.; Prajitno, D. H.

    2017-05-01

    The hierarchical Co-Ni/HZSM-5 catalyst with hierarchical pore structure was prepared by desilication and incipient wetness impregnation. Hydrocracking of non-edible vegetable oils at temperature of 400 °C, 20±5 bar for 2 h was performed in the presence of this type of catalyst under hydrogen initial pressure in pressured batch reactor. Non-edible vegetable oils, such as Reutealis trisperma (Blanco) airy shaw (sunan candlenut) and Hevea brasiliensis (rubber seed) were chosen to study the effect of the degree of saturation and lateral chain length on hydrocarbon compounds obtained through hydrocracking. Cerbera manghas oil was also tested for comparison because the composition of fatty acid was different with the other oils The hydrocracking test indicated that liquid product produced has a similar hydrocarbon compounds with petroleum diesel. The most abundant hydrocarbon is pentadecane (n-C15) and heptadecane (n-C17). The high aromatic compounds were found in liquid product produced in hydrocracking of Sunan candlenut oil.

  6. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  7. Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    Different acidic heterogeneous catalysts like alumina, aluminosilicate, zirconium phosphate, niobic acid, ion-exchange resin Amberlyst-15, and zeolite MOR have been studied in fructose dehydration to 5-hydroxymethylfurfural (HMF). The acidity of these materials was characterized using

  8. The selectivity of catalysts composed of V/sub 2/O/sub 5/ supported on ZrO/sub 2/-Y/sub 2/O/sub 3/ mixed oxides for methanol oxidation

    International Nuclear Information System (INIS)

    VanOmmen, J.G.; Gellings, P.J.; Ross, J.R.H.

    1988-01-01

    V/sub 2/O/sub 5/ monolayer catalysts were prepared on ZrO/sub 2/ and ZrO/sub 2/ doped with Y/sub 2/O/sub 3/ by two methods. The coverages obtained are only half a monolayer and did not depend on the preparation method or type of support. The selectivity for oxidation of methanol over these V/sub 2/O/sub 5/ catalysts changes from a predominance of formaldehyde to a predominance of methyl formate when the support is doped with Y/sub 2/C/sub 3/, independent of the amount of Y/sub 2/O/sub 3/

  9. A Laboratory Test Setup for in Situ Measurements of the Dielectric Properties of Catalyst Powder Samples under Reaction Conditions by Microwave Cavity Perturbation: Set up and Initial Tests

    Directory of Open Access Journals (Sweden)

    Markus Dietrich

    2014-09-01

    Full Text Available The catalytic behavior of zeolite catalysts for the ammonia-based selective catalytic reduction (SCR of nitrogen oxides (NOX depends strongly on the type of zeolite material. An essential precondition for SCR is a previous ammonia gas adsorption that occurs on acidic sites of the zeolite. In order to understand and develop SCR active materials, it is crucial to know the amount of sorbed ammonia under reaction conditions. To support classical temperature-programmed desorption (TPD experiments, a correlation of the dielectric properties with the catalytic properties and the ammonia sorption under reaction conditions appears promising. In this work, a laboratory test setup, which enables direct measurements of the dielectric properties of catalytic powder samples under a defined gas atmosphere and temperature by microwave cavity perturbation, has been developed. Based on previous investigations and computational simulations, a resonator cavity and a heating system were designed, installed and characterized. The resonator cavity is designed to operate in its TM010 mode at 1.2 GHz. The first measurement of the ammonia loading of an H-ZSM-5 zeolite confirmed the operating performance of the test setup at constant temperatures of up to 300 °C. It showed how both real and imaginary parts of the relative complex permittivity are strongly correlated with the mass of stored ammonia.

  10. Study of Pd-Au/MWCNTs formic acid electrooxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk, Anna; Borodzinski, Andrzej; Kedzierzawski, Piotr; Lesiak, Beata [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Stobinski, Leszek [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw (Poland); Koever, Laszlo; Toth, Jozsef [Institute of Nuclear Research, Hungarian Academy of Sciences (ATOMKI), P. O. Box 51, 4001 Debrecen (Hungary); Lin, Hong-Ming [Department of Materials Engineering, Tatung University, 40, Chungshan N. Rd., 3rd Sec, 104, Taipei (China)

    2010-12-15

    The Pd-Au multiwall carbon nanotubes (MWCNTs) supported catalyst exhibits higher power density in direct formic acid fuel cell (DFAFC) than similar Pd/MWCNTs catalyst. The Pd-Au/MWCNTs catalyst also exhibits higher activity and is more stable in electrooxidation reaction of formic acid during cyclic voltammetry (CV) measurements. After preparation by polyol method, the catalyst was subjected to two type of treatments: (I) annealing at 250 C in 100% of Ar, (II) reducing in 5% of H{sub 2} in Ar atmosphere at 200 C. It was observed that the catalyst after treatment I was completely inactive, whereas after treatment II exhibited high activity. In order to explain this effect the catalysts were characterized by electron spectroscopy methods. The higher initial catalytic activity of Pd-Au/MWCNTs catalyst than Pd/MWCNTs catalyst in reaction of formic acid electrooxidation was attributed to electronic effect of gold in Pd-Au solution, and larger content of small Au nanoparticles of 1 nm size. The catalytic inactivity of Pd-Au/MWCNTs catalysts annealed in argon is attributed to carbon amorphous overlayer covering of Pd oxide shell on the metallic nanoparticles. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.; Morandi, Bill; Grubbs, Robert H.

    2013-01-01

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  12. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  13. Formaldehyde formation in coupled oxidation of methane and methanol over V2O5 and MoO3 silica supported catalysts

    International Nuclear Information System (INIS)

    Lojewska, J.; Makowski, W.; Fajardo Farre, A.; Dziembaj, R.

    2003-01-01

    The effect of methanol on partial oxidation of methane has been studied on standard molybdena and vanadia catalysts supported on silica. Prior to catalytic tests the catalysts were characterized by BET, SEM/EDAX and TPR/O methods. Three types of catalytic tests were performed giving temperature and contact time dependence on the catalyst activity and selectivity: partial oxidations of methane, methanol and methane/methanol mixtures. The methanol showed an activating impact on the partial oxidation of methane over all used catalysts samples, but the strongest one over Mo 3 /SiO 2 . In the absence of CH 3 OH the only catalyst, which exhibited HCHO selectivity, was low loaded vanadia catalyst. It has been put forward that methanol may enhance formation of oxygen active species, prerequisites for activating methane molecules, through reducing vanadia cations and causing breakage of vanadium oxygen bonds. (author)

  14. Biodiesel production from soybean and Jatropha oils by magnetic CaFe2O4–Ca2Fe2O5-based catalyst

    International Nuclear Information System (INIS)

    Xue, Bao-jin; Luo, Jia; Zhang, Fan; Fang, Zhen

    2014-01-01

    Heterogeneous CaFe 2 O 4 –Ca 2 Fe 2 O 5 -based catalyst with weak magnetism was prepared by co-precipitation and calcination. It was characterized by various techniques including X-ray diffraction, X-ray photoelectron spectroscopy and temperature programmed desorption method. Its active components were identified as mainly Ca–Fe composite oxides such as CaFe 2 O 4 for transesterification. The magnetism was further strengthened by reducing its component of Fe 2 O 3 to Fe 3 O 4 –Fe under H 2 atmosphere for better magnetic separation. Both catalysts were used for the catalytic transesterification of soybean and Jatropha oils to biodiesel. The highest biodiesel yields for soybean oil of 85.4% and 83.5% were obtained over the weak and strong magnetic catalysts, respectively under the optimized conditions (373 K, 30 min, 15/1 methanol/oil molar ratio and 4 wt% catalyst). The catalysts could be recycled three times. Biodiesel production from pretreated Jatropha oil was tested with the magnetic CaFe 2 O 4 –Ca 2 Fe 2 O 5 –Fe 3 O 4 –Fe catalyst, and 78.2% biodiesel yield was obtained. The magnetic CaFe 2 O 4 –Ca 2 Fe 2 O 5 -based catalyst shows a potential application for the green production of biodiesel. - Highlights: • Magnetic catalyst was prepared by co-precipitation, calcination and reduction. • The catalyst was composed of CaFe 2 O 4 –Ca 2 Fe 2 O 5 –Fe 3 O 4 –Fe. • Biodiesel yields of 83.5% and 78.2% were achieved for soybean and Jatropha oils. • The catalyst was easily separated by a magnet and used for three cycles

  15. Adsorption of nicotine on different zeolite types, from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stošić Dušan K.

    2007-01-01

    Full Text Available The plant alkaloid, nicotine, is a strongly toxic heterocyclic compound: the lethal dose for an adult human being (40-60 mg is importantly lower in comparison with the other known poisons such as arsenic or strychni­ne. Cigarettes represent "the most toxic and addictive form of nicotine". Besides the negative effects of nicotine on public health produced by self-administration, recently another potentially very dangerous effect has been recognized: because of its miscibility with water, nicotine can be found in industrial wastewaters, and consequently, in groundwater. Therefore, the problem of nicotine removal from aqueous solutions has became an interesting topic. In this work, the removal of nicotine has been probed by adsorption on solid materials. Adsorption of nicotine on different zeolites (clinoptilolite, ZSM-5 and β zeolite and on activated carbon was investigated from aqueous solutions, at 298 K. The obtained results are presented as adsorption isotherms: the amount of adsorbed nicotine as a function of equilibrium concentration. These data were obtained from the residual amount of nicotine in the aqueous phase, by the use of UV spectroscopy. The highest amounts of adsorbed nicotine was found for activated carbon and p zeolite (~ mmol·g-1. The attempt to modify the adsorption properties of ZSM-5 zeolite has been also done: ZSM-5 was modified by ion-exchange with VIII group metal (Cu2+ and Fe3+. In addition, the adsorption of nicotine on ZSM-5 zeolite with different Si/Al ratios has been done. It has been noticed that ion-exchange did not improve the adsorption possibilities, while the adsorption was importantly lower in the case of higher silicon content in ZMS-5 structure. 13C NMR spectra were collected for suspensions formed of solid adsorbent and aqueous solution of nicotine; in this way, the part of nicotine molecule which is most probably connected with the adsorbent was recognized.

  16. The thermal properties of controllable diameter carbon nanotubes synthesized by using AB5 alloy of micrometer magnitude as catalyst

    International Nuclear Information System (INIS)

    Zhang Haiyan; Chen Yiming; Zeng Guoxun; Huang Huiping; Xie Zhiwei; Jie Xiaohua

    2007-01-01

    We have synthesized multi-wall carbon nanotubes by catalytic chemical vapour deposition (CCVD) method using an AB 5 hydrogen storage alloy with diameter ranging from 38 to 150 μm as a catalyst. The H 2 uptake capacity of the carbon nanotubes prepared using an AB 5 alloy as a catalyst is about 4 wt.% through to the pressure of 8 MPa at room temperature. Differential thermal analysis-thermogravimetric analysis (DTA-TGA) technique has been applied to investigate the effect of the diameters of the AB 5 alloy catalyst of micrometer magnitude and the technique conditions in the CCVD process on the thermal properties of carbon nanotubes. As the catalyst diameter increases from 38 to 150 μm, the average diameter of the prepared carbon nanotubes increases and the diameter distribution also enlarges. Electron microscope, Raman spectrum and thermal analysis all indicated that the catalyst sizes affect the diameter and the thermal properties of the carbon nanotubes. When the catalyst diameter increases, the initial weight loss temperature and the differential thermal peak temperature of the carbon nanotubes increases, which shows that the lager the diameter of the carbon nanotubes is, the higher the oxidation temperature, and the better the anti-oxidizablity. However, if the diameter of the catalyst is larger than 100 μm, the anti-oxidizablity does not rise anymore but tend to be invariableness. In the CCVD preparation process, the anti-oxidizability of the carbon nanotubes increases, when raising the ratio of the hydrogen gas in the reaction gas in our experimental range (4:1, 3:1, and 2:1, respectively)

  17. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    Science.gov (United States)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  18. Hydroprocessing catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.

    1992-08-01

    Co-Mo and Ni-Mo hydroprocessing catalysts were examined for their activity in removal of sulfur from thiophene in model compounds, and in the cracking and hydrocracking of cumene. Three types of support materials were examined: carbon, modified carbon, and carbon covered alumina. The objective of the study was to examine the correlation between catalyst activity in the hydrodenitrogenation of model compounds, and the resistance of the catalyst to nitrogen poisoning during use in the hydroprocessing of gas oils. The use of model compound testing provided information on the individual catalytic reactions promoted by those materials. Infrared spectroscopy was used to study surface species on the catalysts and to explain many of the trends in activity observed, revealing the role of fluoride and phosphorus as a secondary promoter. Testing of the catalysts in hydrotreating of gas oils allowed comparison of model compound results with those from a real feedstock. The gas oil was also spiked with a model nitrogen compound and the results from catalytic hydrotreating of this material were compared with those from unspiked material. A key finding was that the carbon supported catalysts were the most effective in treating high-nitrogen feeds. The very favorable deactivation properties of carbon and carbon-covered alumina supported catalysts make these promising from an industrial point of view where catalyst deactivation is a limiting factor. 171 refs., 25 figs., 43 tabs.

  19. H-ZSM-5 Zeolite Model Crystals: Structure-Diffusion-Activity Relationship in Methanol-to-Olefins Catalysis.

    Czech Academy of Sciences Publication Activity Database

    Losch, P.; Pinar, A.B.; Willinger, M.G.; Soukup, Karel; Chavan, S.; Vincent, B.; Pale, P.; Louis, B.

    2017-01-01

    Roč. 345, JAN 1 (2017), s. 11-23 ISSN 0021-9517 Grant - others:NRFL(LU) 5898454 Institutional support: RVO:67985858 Keywords : zeolite * methanol-to-olefins (MTO) * model catalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 6.844, year: 2016

  20. H-ZSM-5 Zeolite Model Crystals: Structure-Diffusion-Activity Relationship in Methanol-to-Olefins Catalysis.

    Czech Academy of Sciences Publication Activity Database

    Losch, P.; Pinar, A.B.; Willinger, M.G.; Soukup, Karel; Chavan, S.; Vincent, B.; Pale, P.; Louis, B.

    2017-01-01

    Roč. 345, JAN 1 (2017), s. 11-23 ISSN 0021-9517 Grant - others:NRFL(LU) 5898454 Institutional support: RVO:67985858 Keywords : zeolite * methanol -to-olefins (MTO) * model catalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 6.844, year: 2016

  1. The Potential of Fe-exchanged Y Zeolite as a Heterogeneous Fenton-type Catalyst for Oxidative Degradation of Reactive Dye in Water

    OpenAIRE

    Aleksić, M.; Koprivanac, N.; Lončarić Božić, A.; Kušić, H.

    2010-01-01

    The study aimed to investigate the potential of Fe-exchanged zeolites of Y-type as a catalyst in heterogeneous Fenton-type processes for the degradation of model organic pollutant, reactive azo dye C.I. Reactive Blue 137, in water. The research work was directed to investigate the influence of process variables, such as FeY catalyst dosage, Fenton reagent ratio, and initial operating pH on the efficiency of the treatment process. The performance of the studied heterogeneous process was compar...

  2. Influence of clay type on the performance of Ziegler-Natta catalyst for the synthesis of nanocomposites of PE and PP

    International Nuclear Information System (INIS)

    Almeida, Lidiane A.; Marques, Maria F.V.; Oliveira, Jaqueline S.

    2011-01-01

    Polymer nanocomposites present highly improved general properties in comparison with original polymer and their conventional composites. The mayor disadvantage in preparing these materials is the difficulty in the dispersion of the nanofillers in the polymer matrix. In the present work, the synthesis of bisupported (MgCl 2 /clay) catalyst was performed for obtaining polyethylene and polypropylene nanocomposites by in situ polymerization with the aim to achieve higher dispersion of the nanofillers in the polyolefin matrix. Moreover, the influence of ammonium salt (employed in the organophilization of the clay) on the fixation of the catalyst components and therefore, on the catalyst activity was evaluated. The catalysts were characterized by TGA, SEM, EDX, and XRD. Polymers were characterized by DSC, isotactic index through heptane extractables (HS), TGA, EDX, XRD, and optical microscopy (OM). The results showed that the type of clay modifier has a great influence on the catalyst performance. (author)

  3. Calorimetric and FTIR Studies of Acetonitrile on H-[Fe]ZSM-5 and H-[Al]ZSM-5

    Czech Academy of Sciences Publication Activity Database

    Kotrla, Josef; Kubelková, Ludmila; Lee, C. C.; Gorte, R. J.

    1998-01-01

    Roč. 102, č. 8 (1998), s. 1437-1443 ISSN 1089-5647 R&D Projects: GA MŠk OC D5.10 Institutional research plan: CEZ:A54/98:Z4-040-9-ii Keywords : adsorption of acetonitrile * neutral surface complex Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.385, year: 1998

  4. Selective catalytic reduction of NO{sub x} by olefins

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, F

    1997-12-31

    The removal of nitrogen oxides from the exhaust of lean-burn gasoline fuelled and diesel-fuelled engines, operating under net oxidizing conditions, has recently attracted considerable attention. In this work, three different catalytic systems (Al{sub 2}O{sub 3}, Cu/Al{sub 2}O{sub 3} and Cu/ZSM-5) are investigated for their suitability as catalysts for the selective reduction of nitrogen oxides by hydrocarbons in excess oxygen. Special emphasis is given to the formation of potentially harmful byproducts such as hydrogen cyanide (HCN), cyanic acid (HNCO), ammonia (NH{sub 3}) and nitrous oxide (N{sub 2}O). The effect of reaction temperature, nitrogen oxide (NO, NO{sub 2}), hydrocarbon (ethene, propene) and water on activity and the formation of byproducts is investigated. In situ FTIR spectroscopy and temperature-programmed surface reactions (TPSR) of absorbed species in different atmospheres were used to investigate the nature and reactivity of adsorbates formed under reaction conditions. The catalytic activity was strongly influenced by the presence of water in the feed. The effects of the other parameters were suppressed and the performance generally decreased, except when propene was used for the reduction of NO{sub x} over Cu/ZSM-5. Over Cu/ZSM-5 clearly higher conversion was obtained, when ethene was used as reducing agent, while there was no significant difference when starting from NO or NO{sub 2}. In contrast, with {gamma}-Al{sub 2}O{sub 3} NO{sub 2} was reduced more efficiently than NO with both reductants. The impregnation of {gamma}-Al{sub 2}O{sub 3} with copper led to an extensive loss of this performance. For dry feeds and with increasing CuO loading, the catalysts reached maximum activity at lower temperature and the maximum yield of nitrogen slightly decreased. (author) figs., tabs., refs.

  5. The role of Nb in rutile-type multi-component antimonates, catalysts for propane ammoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ballarini, N.; Cavani, F.; Cimini, M.; Trifiro, F. [Dip. Chimica Industriale e Materiali, INSTM, Research Unit of Bologna (Italy); Cornaro, U.; Ghisletti, D. [EniTecnologie SpA, San Donato Milanes (Italy); Catani, R. [Snamprogetti SpA, San Donato Milanese (Italy)

    2005-07-01

    Rutile-type Cr/V/Sb/Nb mixed oxides were prepared by coprecipitation from ethanolic solutions and calcination at 700 C. They were then tested as catalysts for the gas-phase ammoxidation of propane. The addition of increasing amounts of Nb to the rutile Cr/V antimonate led to a considerable increase of the selectivity to acrylonitrile, and to a lower selectivity to N{sub 2} derived from ammonia overoxidation. However, the effect was evident only when excess Sb was present with respect to the stoichiometric requirement for the formation of the rutile compound. Evidences were obtained for the development of rutile-type mixed Cr/V antimonate/niobate, in which the progressive increase of Nb concentration, due to the increased Nb loading, led to the segregation of Sb oxide, in the form of crystalline Sb{sub 2}O{sub 4}. The multi-component rutile was a highly defective structure, and contained excess Sb{sup 5+} and Nb{sup 5+} with respect to the stoichiometric composition. The excess Sb provided the active sites for allcylic ammoxidation on intermediate absorbed propylene. The concomitant presence of Nb in the lattice improved the efficiency of these sites, and was responsible for the better catalytic performance with respect to the Cr/V/Sb/O systems. (orig.)

  6. A novel approach of solid waste management via aromatization using multiphase catalytic pyrolysis of waste polyethylene.

    Science.gov (United States)

    Gaurh, Pramendra; Pramanik, Hiralal

    2018-01-01

    A new and innovative approach was adopted to increase the yield of aromatics like, benzene, toluene and xylene (BTX) in the catalytic pyrolysis of waste polyethylene (PE). The BTX content was significantly increased due to effective interaction between catalystZSM-5 and target molecules i.e., lower paraffins within the reactor. The thermal and catalytic pyrolysis both were performed in a specially designed semi-batch reactor at the temperature range of 500 °C-800 °C. Catalytic pyrolysis were performed in three different phases within the reactor batch by batch systematically, keeping the catalyst in A type- vapor phase, B type- liquid phase and C type- vapor and liquid phase (multiphase), respectively. Total aromatics (BTX) of 6.54 wt% was obtained for thermal pyrolysis at a temperature of 700 °C. In contrary, for the catalytic pyrolysis A, B and C types reactor arrangement, the aromatic (BTX) contents were progressively increased, nearly 6 times from 6.54 wt% (thermal pyrolysis) to 35.06 wt% for C-type/multiphase (liquid and vapor phase). The pyrolysis oil were characterized using GC-FID, FT-IR, ASTM distillation and carbon residue test to evaluate its end use and aromatic content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Solvent-Free Biginelli Reactions Catalyzed by Hierarchical Zeolite Utilizing a Ball Mill Technique: A Green Sustainable Process

    Directory of Open Access Journals (Sweden)

    Ameen Shahid

    2017-03-01

    Full Text Available A sustainable, green one-pot process for the synthesis of dihydropyrimidinones (DHPMs derivatives by a three-component reaction of β-ketoester derivatives, aldehyde and urea or thiourea over the alkali-treated H-ZSM-5 zeolite under ball-milling was developed. Isolation of the product with ethyl acetate shadowed by vanishing of solvent was applied. The hierachical zeolite catalyst (MFI27_6 showed high yield (86%–96% of DHPMs in a very short time (10–30 min. The recyclability of the catalyst for the subsequent reactions was examined in four subsequent runs. The catalyst was shown to be robust without a detectable reduction in catalytic activity, and high yields of products showed the efficient protocol of the Biginelli reactions.

  8. Novel metalloporphyrin catalysts for the oxidation of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, M.C.; Nenoff, T.M.; Shelnutt, J.A.

    1996-11-01

    Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented.

  9. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    Science.gov (United States)

    Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV; Haynes, Daniel [Morgantown, WV; Smith, Mark [Morgantown, WV; Spivey, James J [Baton Rouge, LA

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  10. HZSM-5 CATALYST FOR CRACKING PALM OIL TO BIODIESEL: A COMPARATIVE STUDY WITH AND WITHOUT PT AND PD IMPREGNATION

    Directory of Open Access Journals (Sweden)

    Agus Budianto

    2014-05-01

    Full Text Available The Needs of healthy environment and green energy poses a great demand for alternative energy. Biofuel is one of the alternative energy products that are environmentally friendly. Biofuel can be made from plant oils, especially palm oil. Cracking of palm oil into biofuel is constrained by the availability of catalysts. Moreover the available catalyst still gives a low yield. This research aims to study the effect of Pt and Pd impregnation into HZSM-5 catalyst on the catalytic properties. Another aim is to obtain the operating conditions of the catalytic cracking process of palm oil into biofuel which gives the highest yield and selectivity, especially for biodiesel and biogasoline fractions. Catalytic cracking process was carried out in a micro fixed bed reactor with diameter of 1 cm and length of 16 cm. The reactor was filled with a catalyst. The results of the study successfully prove that Pt and Pd impregnated into HZSM-5 catalyst can increase the yield and selectivity of biodiesel. Pd and Pt are highly recommended to increase the yield and selectivity of biodiesel.

  11. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    Science.gov (United States)

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. Copyright © 2016. Published by Elsevier B.V.

  12. The Role of Catalyst Properties on Methanol Oxidation over V{sub 2}O{sub 5}-TiO{sub 2} Using Ozone

    Energy Technology Data Exchange (ETDEWEB)

    Sahle-Demessie, Endalkachew [US EPA, Office of Research and Development, NRML (United States)], E-mail: sahle-demessie.endalkachew@epa.gov; Almquist, Catherine B. [Miami University, Paper Science and Chemical Engineering Department (United States); Sehker, Sridara Chandra [US EPA, Office of Research and Development, NRML (United States)

    2008-08-15

    Oxidation of methanol over V{sub 2}O{sub 5} catalysts supported on anatase TiO{sub 2} that were prepared using sol-gel formation and impregnation procedures were investigated. The effects of incorporating Mg in sol-gel to influence the properties of the catalyst were also studied. The process provides an alternative low temperature reaction pathway for reducing emissions of hazardous air pollutant (HAPs) such as methanol and total reduced sulfur compounds (TRS) from pulp and paper mills. The bulk and surface composition of the catalysts were determined by XRD and SEM-EDAX, respectively. The X-ray diffraction patterns of the vanadia-titania catalysts showed mainly the anatase phase of TiO{sub 2}. Temperature programmed desorption of methanol from the different catalyst showed that the {alpha} and {beta} peaks differ significantly with V content and addition of Mg. The combination of gas phase and surface reactions on the V/TiO{sub 2} catalysts reduced the amount of ozone required for high degradation of methanol to mainly CO{sub x} with small quantities of methyl formate. In the absence of ozone the catalysts showed very low activity. It is hypothesized that the ozone is directly influencing the V{sup 4+} and V{sup 5+} redox cycle of the catalyst. Oxidation of methanol is influenced by the operation variables and catalyst properties. The results of this study revealed that the V content has significant influence on the catalyst activity, and the optimum vanadia loading of about 6 wt%. Higher turnover frequencies were observed over sol-gel catalysts than with catalysts prepared by the impregnation method.

  13. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... catalyst. The results from the screening were experimentally verified for CO hydrogenation, CO2 hydrogenation, and simultaneous CO and CO2 hydrogenation by bimetallic Ni-Fe catalysts. These catalysts were found to be highly active and selective. The Co-Ni and Co-Fe systems were investigated for CO...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  14. Synthesis of efficient silica supported TiO_2/Ag_2O heterostructured catalyst with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Zelekew, Osman Ahmed; Kuo, Dong-Hau; Yassin, Jemal Mohammed; Ahmed, Kedir Ebrahim; Abdullah, Hairus

    2017-01-01

    Graphical abstract: Proposed charge separation mechanism and degradation of dye with photocatalyst under light irradiation. - Highlights: • n-type TiO_2 inside and p-type Ag_2O outside was designed. • The p–n junction formation built in an electric field. • The p–n junction facilitates the electrons and holes separation. • The degradation of dye becomes more effective with Ag_2O/TiO_2 catalyst. - Abstract: We develop the n-type TiO_2 coated on SiO_2 support abbreviated as SiO_2/TiO_2 (ST) followed by deposition of p-type Ag_2O nanoparticles outside for the purpose of photocatalytic degradation of organic pollutants. Different composite catalysts were prepared with changing the amount AgNO_3 (such as 0%, 5%, 10%, 20%, and 30%) and the composites were abbreviated as ST, STA-5, STA-10, STA-20, and STA-30, respectively. The composite catalysts were characterized with different techniques and tested for Rhodamine B (RhB) dye degradation under UV and visible light. Among the composite catalysts, the degradation efficiency of STA-20 was the highest and it degraded about 99% within 40 min under UV light-irradiation. However, the ST, STA-5, STA-10, and STA-30 composite catalysts could degrade about 21%, 47%, 58%, and 75% of the dye, respectively. Furthermore, the STA-5, STA-10, STA-20, and STA-30 composites were also tested and about 39%, 47%, 57%, and 42% of the dye, respectively, was degraded under visible light source. Hence, the formation of p–n junction heterostructure between n-type TiO_2 and p-type Ag_2O could enhance the degradation of RhB in both UV and visible light irradiation. It could be also potentially applicable photocatalyst for environmental remediation.

  15. Catalytic Performance of Zeolite-Supported Vanadia in the Aerobic Oxidation of 5-hydroxymethylfurfural to 2,5- diformylfuran

    DEFF Research Database (Denmark)

    Sádaba, Irantzu; Gorbanev, Yury; Kegnæs, Søren

    2013-01-01

    on the four different zeolite supports H-beta, H-Y, H-mordenite, and H-ZSM-5 with 1–10 wt% vanadia loading were prepared and characterized by nitrogen physisorption, X-ray powder diffraction, scanning electron  microscopy, ammonia temperature-programmed desorption, Raman spectroscopy and UV...

  16. Caracterização termogravimétrica e espectroscópica das propriedades ácidas da zeólita ZSM-22 Thermogravimetric and spectroscopic characterization of acidic properties of ZSM-22 zeolite

    Directory of Open Access Journals (Sweden)

    A. R. Loiola

    2010-07-01

    Full Text Available A acidez da estrutura da zeólita ZSM-22 foi determinada por análise térmica. A energia de ativação, calculada pelo método de Ozawa, envolveu uma energia de termodecomposição de 18,44 kJ.mol-1. O valor do fator pré-exponencial A foi de 2,2746. Suas propriedades texturais foram determinadas por análise de dessorção/adsorção de nitrogênio, cujos resultados indicaram a existência de microporosidade, com área de superfície de 257 m².g-1, volume de microporos de 0,041 cm³.g-1 e diâmetro de poros de 32,6 Å. Análises de luminescência, utilizando európio como sonda, sugerem que a acidez é distribuída uniformemente dentro da estrutura da zeólita.The acidity and stability of ZSM-22 zeolite structure have been studied by thermal analysis. The activation energy calculated by Ozawa method to the events related to thermodecomposition was 18.44 kJ.mol-1. The value of the pre-exponential factor A was 2.2746. Its textural properties have been determined by nitrogen adsorption desorption analysis, whose results indicated microporous properties, with surface area 257 m².g-1, micropore volume 0.041 cm³.g-1 and pore diameter 32.6 Å. Luminescence analyses, using europium as probe, suggest that the acidity is distributed uniformly within the zeolite structure.

  17. XPS/STM study of model bimetallic Pd–Au/HOPG catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bukhtiyarov, Andrey V., E-mail: avb@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Prosvirin, Igor P., E-mail: prosvirin@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bukhtiyarov, Valerii I., E-mail: vib@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation)

    2016-03-30

    Graphical abstract: - Highlights: • The model Pd–Au/HOPG catalysts preparation has been studied by XPS and STM. • Model “core–shell” type Pd–Au/HOPG catalysts with different Pd/Au ratios were prepared. • Heating of the “core–shell” Pd–Au/HOPG samples up to 400 °C leads to alloy formation. • Contribution of parameters controlling the properties of Pd–Au alloyed particles has been discussed. - Abstract: The preparation of model bimetallic Pd–Au/HOPG catalysts has been investigated using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) techniques. Initially, model “core–shell” type Pd–Au/HOPG catalysts with similar particle size distribution (5–8 nm), but with different densities of particle locations on the HOPG surface and Pd/Au atomic ratios are prepared. Further, their thermal stability is studied within a temperature range of 50–500 °C at UHV conditions. It has been shown that annealing the model catalysts at a temperature range of 300–400 °C leads to formation of Pd–Au alloyed particles. Enhancement of heating temperature up to 500 °C results in sintering of bimetallic nanoparticles. Contribution of different parameters controlling the properties of Pd–Au alloyed particles has been discussed.

  18. Methane activation on palladium and mercury loaded solid supports

    Energy Technology Data Exchange (ETDEWEB)

    Kataja, K; Huuska, M; Karinto, K; Maijanen, A; Reinikainen, M; Kiviaho, J; Hase, A [VTT Chemical Technology, Espoo (Finland)

    1997-12-31

    Methane activation by non-radical method and especially possibilities to heterogenize the homogeneous non-radical system of Periana et al. was studied. Varied loadings of Pd and Hg were ion exchanged to acidic ZSM-5 zeolites with two different Si/A1 ratios. Activation was tested in tubular flow reactor and the outcoming gas was analyzed with quadrupole mass spectrometer. Catalysts, fresh and used, were characterized by XRF and XRD spectroscopies. The methane activation was observed on tested catalysts. However, the activation was concluded to occur mainly through radical reaction and only to some extent by the expected non-radical mechanism. (author) (9 refs.)

  19. Methane activation on palladium and mercury loaded solid supports

    Energy Technology Data Exchange (ETDEWEB)

    Kataja, K.; Huuska, M.; Karinto, K.; Maijanen, A.; Reinikainen, M.; Kiviaho, J.; Hase, A. [VTT Chemical Technology, Espoo (Finland)

    1996-12-31

    Methane activation by non-radical method and especially possibilities to heterogenize the homogeneous non-radical system of Periana et al. was studied. Varied loadings of Pd and Hg were ion exchanged to acidic ZSM-5 zeolites with two different Si/A1 ratios. Activation was tested in tubular flow reactor and the outcoming gas was analyzed with quadrupole mass spectrometer. Catalysts, fresh and used, were characterized by XRF and XRD spectroscopies. The methane activation was observed on tested catalysts. However, the activation was concluded to occur mainly through radical reaction and only to some extent by the expected non-radical mechanism. (author) (9 refs.)

  20. Hydrodeoxygenation of Methyl Laurate over Ni Catalysts Supported on Hierarchical HZSM-5 Zeolite

    Directory of Open Access Journals (Sweden)

    Nana Li

    2017-12-01

    Full Text Available The hierarchical HZSM-5 zeolite was prepared successfully by a simple NaOH treatment method. The concentration of NaOH solution was carefully tuned to optimal the zeolite acidity and pore structure. Under NaOH treatment conditions, a large number of mesopores, which interconnected with the retained micropores, were created to facilitate mass transfer performance. There are very good correlations between the decline of the relative zeolite crystallinity and the loss of micropores volume. The Ni nanoclusters were uniformly confined in the mesopores of hierarchical HZSM-5 by the excessive impregnation method. The direct deoxygenation in N2 and hydrodeoxygenation in H2 of the methyl laurate were compared respectively over the Ni/HZSM-5 catalysts. In the N2 atmosphere, the deoxygenation rate of the methyl laurate on the Ni/HZSM-5 catalyst is relatively slow. In the presence of H2, the synergistic effect between the hydrogenation function of the metal and the acid function of the zeolite supports can make the deoxygenation level more obvious. The yield of hydrocarbon products gradually reached the maximum with the appropriate treatment concentration of 1M NaOH, which could be attributed to the improved mass transfer in the hierarchical HZSM-5 supports.

  1. Conversion of Syngas-Derived C2+ Mixed Oxygenates to C3-C5 Olefins over ZnxZryOz Mixed Oxides Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Colin D.; Lebarbier, Vanessa M.; Flake, Matthew D.; Ramasamy, Karthikeyan K.; Kovarik, Libor; Bowden, Mark E.; Onfroy, Thomas; Dagle, Robert A.

    2016-04-01

    In this study we report on a ZnxZryOz mixed oxide type catalyst capable of converting a syngas-derived C2+ mixed oxygenate feedstock to isobutene-rich olefins. Aqueous model feed comprising of ethanol, acetaldehyde, acetic acid, ethyl acetate, methanol, and propanol was used as representative liquid product derived from a Rh-based mixed oxygenate synthesis catalyst. Greater than 50% carbon yield to C3-C5 mixed olefins was demonstrated when operating at 400-450oC and 1 atm. In order to rationalize formation of the products observed feed components were individually evaluated. Major constituents of the feed mixture (ethanol, acetaldehyde, acetic acid, and ethyl acetate) were found to produce isobutene-rich olefins. C-C coupling was also demonstrated for propanol feedstock - a minor constituent of the mixed oxygenate feed - producing branched C6 olefins, revealing scalability to alcohols higher than ethanol following an analogous reaction pathway. Using ethanol and propanol feed mixtures, cross-coupling reactions produced mixtures of C4, C5, and C6 branched olefins. The presence of H2 in the feed was found to facilitate hydrogenation of the ketone intermediates, thus producing straight chain olefins as byproducts. While activity loss from coking is observed complete catalyst regeneration is achieved by employing mild oxidation. For conversion of the mixed oxygenate feed a Zr/Zn ratio of 2.5 and a reaction temperature of 450oC provides the best balance of stability, activity, and selectivity. X-ray diffraction and scanning transmission electron microscopy analysis reveals the presence of primarily cubic phase ZrO2 and a minor amount of the monoclinic phase, with ZnO being highly dispersed in the lattice. The presence of ZnO appears to stabilize the cubic phase resulting in less monoclinic phase as the ZnO concentration increases. Infrared spectroscopy shows the mixed oxide acid sites are characterized as primarily Lewis type acidity. The direct relationship between

  2. A facile approach for the synthesis of porous KTiNbO5 catalyst with ...

    Indian Academy of Sciences (India)

    2018-04-06

    Apr 6, 2018 ... School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, ... HTiNbO5, is widely used as a catalyst in organic reac- ... synthesized using a facile method and applied in the hydro-.

  3. Catalytic Cracking of Palm Oil Over Zeolite Catalysts: Statistical Approach

    Directory of Open Access Journals (Sweden)

    F. A. A. Twaiq and S. Bhatia

    2012-08-01

    Full Text Available The catalytic cracking of palm oil was conducted in a fixed bed micro-reactor over HZSM-5, zeolite ? and ultrastable Y (USY zeolite catalysts. The objective of the present investigation was to study the effect of cracking reaction variables such as temperature, weight hourly space velocity, catalyst pore size and type of palm oil feed of different molecular weight on the conversion, yield of hydrocarbons in gasoline boiling range and BTX aromatics in the organic liquid product.  Statistical Design of Experiment (DOE with 24 full factorial design was used in experimentation at the first stage.  The nonlinear model and Response Surface Methodology (RSM were utilized in the second stage of experimentation to obtain the optimum values of the variables for maximum yields of hydrocarbons in gasoline boiling range and aromatics.  The HZSM-5 showed the best performance amongst the three catalysts tested.  At 623 K and WHSV of 1 h-1, the highest experimental yields of gasoline and aromatics were 28.3 wt.% and 27 wt.%, respectively over the HZSM-5 catalyst.  For the same catalyst, the statistical model predicted that the optimum yield of gasoline was 28.1 wt.% at WHSV of 1.75 h-1 and 623 K.  The predicted optimum yield of gasoline was 25.5 wt.% at 623 K and WHSV of 1 h-1.KEY WORDS: Catalytic Cracking, Palm Oil, Zeolite, Design Of Experiment, Response Surface Methodology.

  4. The effect of diluting ruthenium by iron in RuxSey catalyst for oxygen reduction

    International Nuclear Information System (INIS)

    Delacote, Cyril; Lewera, Adam; Pisarek, Marcin; Kulesza, Pawel J.; Zelenay, Piotr; Alonso-Vante, Nicolas

    2010-01-01

    This study has focused on the synthesis of novel oxygen reduction reaction (ORR) chalcogenide catalysts, with Ru partially replaced by Fe in a cluster-type Ru x Se y . The catalysts were obtained by thermal decomposition of Ru 3 (CO) 12 and Fe(CO) 5 in the presence of Se. As indicated by the XPS data, the composition of catalyst nanoparticles depends on the solvent used (either p-xylene or dichlorobenzene). The presence of iron in synthesized catalysts has been confirmed by both EDAX and XPS. Voltammetric activation of the catalysts results in a partial removal of iron and unreacted selenium from the surface. The ORR performance of electrochemically pre-treated catalysts was evaluated using rotating disk and ring-disk electrodes in a sulfuric acid solution. No major change in the ORR mechanism relative to the Se/Ru catalyst has been observed with Fe-containing catalysts.

  5. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  6. Efficient room temperature oxidation of cyclohexane over highly active hetero-mixed WO3/V2O5 oxide catalyst

    CSIR Research Space (South Africa)

    Makgwane, PR

    2014-09-01

    Full Text Available catalytic activity to initiate the free-radical oxyfunctionalization of cyclohexane to afford up to 90% conversions within 6 h. The KA selectivity was found to depend on reaction time and the amount of catalyst. The WO(sub3)/V(sub2)O(sub5) catalyst...

  7. The Deoxygenation Pathways of Palmitic Acid into Hydrocarbons on Silica-Supported Ni12P5 and Ni2P Catalysts

    Directory of Open Access Journals (Sweden)

    Wenjun Zhou

    2018-04-01

    Full Text Available Pure Ni12P5/SiO2 and pure Ni2P/SiO2 catalysts were obtained by adjusting the Ni and P molar ratios, while Ni/SiO2 catalyst was prepared as a reference against which the deoxygenation pathways of palmitic acid were investigated. The catalysts were characterized by N2 adsorption, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, transmission election microscopy (TEM, infrared spectroscopy of pyridine adsorption (Py-IR, H2-adsorption and temperature-programmed desorption of hydrogen (H2-TPD. The crystallographic planes of Ni(111, Ni12P5(400, Ni2P(111 were found mainly exposed on the above three catalysts, respectively. It was found that the deoxygenation pathway of palmitic acid mainly proceeded via direct decarboxylation (DCO2 to form C15 on Ni/SiO2. In contrast, on the Ni12P5/SiO2 catalyst, there were two main competitive pathways producing C15 and C16, one of which mainly proceeded via the decarbonylation (DCO to form C15 accompanying water formation, and the other pathway produced C16 via the dehydration of hexadecanol intermediate, and the yield of C15 was approximately twofold that of C16. Over the Ni2P/SiO2 catalyst, two main deoxygenation pathways formed C15, one of which was mainly the DCO pathway and the other was dehydration accompanying the hexadecanal intermediate and then direct decarbonylation without water formation. The turn over frequency (TOF followed the order: Ni12P5/SiO2 > Ni/SiO2 > Ni2P/SiO2.

  8. Aqueous protocol for allylic arylation of cinnamyl acetates with sodium tetraphenylborate using Bedford-type palladacycle catalyst

    KAUST Repository

    Ghorpade, Seema Arun; Sawant, Dinesh N; Renn, Dominik; Zernickel, Anna; Du, Weiyuan; Sekar, Nethi; Eppinger, Jö rg

    2018-01-01

    Allylic arylation of cinnamyl acetates with sodium tetraphenylborate using 0.002 mol % of Bedford-type palladacycle catalyst is described. The developed methodology is applicable for wide range of cinnamyl acetates furnishing excellent yields up to 93%. Notably all reactions proceed smoothly under mild reaction conditions in water under air atmosphere.

  9. Aqueous protocol for allylic arylation of cinnamyl acetates with sodium tetraphenylborate using Bedford-type palladacycle catalyst

    KAUST Repository

    Ghorpade, Seema Arun

    2018-03-19

    Allylic arylation of cinnamyl acetates with sodium tetraphenylborate using 0.002 mol % of Bedford-type palladacycle catalyst is described. The developed methodology is applicable for wide range of cinnamyl acetates furnishing excellent yields up to 93%. Notably all reactions proceed smoothly under mild reaction conditions in water under air atmosphere.

  10. Direct conversion of glucose to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts

    DEFF Research Database (Denmark)

    Ståhlberg, Tim; Sørensen, Mathilde Grau; Riisager, Anders

    2010-01-01

    The direct conversion of glucose to 5-(hydroxymethyl)furfural (HMF) in ionic liquids with lanthanide catalysts was examined in search of a possibly more environmentally feasible process not involving chromium. The highest HMF yield was obtained with ytterbium chloride or triflate together...

  11. Oxygen-containing coke species in zeolite-catalyzed conversion of methanol to hydrocarbons

    KAUST Repository

    Liu, Zhaohui

    2016-10-06

    Zeolites are the most commonly used catalysts for methanol-to-hydrocarbon (MTH) conversion. Here, we identified two oxygen-containing compounds as coke species in zeolite catalysts after MTH reactions. We investigated the possible influences of the oxygen-containing compounds on coke formation, catalyst deactivation, product selectivity, and the induction period of the MTH reaction through a series of controlled experiments in which one of the identified compounds (2,3-dimethyl-2-cyclopenten-1-one) was co-fed with methanol over a zeolite H-ZSM-5 catalyst. Our results allow us to infer that once produced, the oxygen-containing compounds block the Brønsted acid sites by strong chemisorption and their rapid conversion to aromatics expedites the formation of coke and thus the deactivation of the catalyst. A minor effect of the production of such compounds during the MTH reaction is that the aromatic-based catalytic cycle can be slightly promoted to give higher selectivity to ethylene.

  12. Biodiesel fuel production from waste cooking oil using radiation-grafted fibrous catalysts

    Science.gov (United States)

    Ueki, Yuji; Saiki, Seiichi; Hoshina, Hiroyuki; Seko, Noriaki

    2018-02-01

    Waste cooking oil, which can be used as a raw material for biodiesel fuel (BDF), contains two kinds of oil components: triglycerides (TGs) and free fatty acids (FFAs). Therefore, both alkaline-type and acid-type catalysts are needed to produce BDF from waste cooking oil. In this study, an alkaline-type grafted fibrous catalyst bearing OH- ions was synthesized by radiation-induced emulsion grafting of 4-chloromethylstyrene onto a polyethylene-coated polypropylene (PE/PP) nonwoven fabric, amination with trimethylamine, and further treatment with NaOH. Furthermore, an acid-type catalyst bearing H+ ions was synthesized by radiation-induced emulsion grafting of ethyl p-styrenesulfonate onto a PE/PP nonwoven fabric, saponification with NaOH, and protonation with HNO3. The OH- and H+ densities of the grafted fibrous catalysts were controlled by the grafting yield. The maximum OH- and H+ densities of the catalysts were 3.6 mmol-OH-/g-catalyst and 3.4 mmol-H+/g-catalyst, respectively. The performances of the catalysts were evaluated in the batchwise transesterification of TGs and ethanol, and the batchwise esterification of FFAs and ethanol. In both cases, TGs and FFAs were gradually converted into BDF. The mixed oil and four actual waste cooking oils, which contained both TGs and FFAs, were completely converted into BDF by sequential catalytic reactions with the acid-type grafted fibrous catalyst and then the alkaline-type grafted fibrous catalyst.

  13. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction

    Science.gov (United States)

    Vij, Varun; Tiwari, Jitendra N.; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S.

    2016-02-01

    High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp2 carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm-2 at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production.

  14. A NEW TYPE OF HIGHLY-ACTIVE POLYMER-BOUND RHODIUM HYDROFORMYLATION CATALYST

    NARCIS (Netherlands)

    JONGSMA, T; KIMKES, P; CHALLA, G; VANLEEUWEN, PWNM

    1992-01-01

    A new route of attaching phosphites to a (co)polymer chain is described. These copolymers are used for the preparation of a rhodium phosphite hydroformylation catalyst. The catalytic activity of this polymer-bound system is identical to that of the low molecular weight analogue. The catalysts show a

  15. Optimal catalyst curves: Connecting density functional theory calculations with industrial reactor design and catalyst selection

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.

    2002-01-01

    For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...... the nitrogen binding energies of the optimal catalysts at different temperatures, pressures, and synthesis gas compositions. Using this concept together with the ability to prepare catalysts with desired binding energies it is possible to optimize the ammonia process. In this way a link between first...

  16. Uniformly active phase loaded selective catalytic reduction catalysts (V{sub 2}O{sub 5}/TNTs) with superior alkaline resistance performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiqiang; Wang, Penglu [Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, 310058 Hangzhou (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027 (China); Chen, Xiongbo [South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655 (China); Wu, Zhongbiao, E-mail: zbwu@zju.edu.cn [Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, 310058 Hangzhou (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027 (China)

    2017-02-15

    Highlights: • VOSO{sub 4} exhibited better synergistic effect with titanate nanotubes than NH{sub 4}VO{sub 3}. • Ion-exchange reaction occurs between VOSO{sub 4} and titanate nanotubes. • Ion-exchange resulting in uniformly vanadium distribution on titanate nanotubes. • VOSO{sub 4}-based catalyst exhibited impressive SCR activity and alkaline resistance. - Abstract: In this work, protonated titanate nanotubes was performed as a potential useful support and different vanadium precursors (NH{sub 4}VO{sub 3} and VOSO{sub 4}) were used to synthesize deNO{sub x} catalysts. The results showed that VOSO{sub 4} exhibited better synergistic effect with titanate nanotubes than NH{sub 4}VO{sub 3}, which was caused by the ion-exchange reaction. Then high loading content of vanadium, uniformly active phase distribution, better dispersion of vanadium, more acid sites, better V{sup 5+}/V{sup 4+} redox cycles and superior oxygen mobility were achieved. Besides, VOSO{sub 4}-based titanate nanotubes catalysts also showed enhanced alkaline resistance than particles (P25) based catalysts. It was strongly associated with its abundant acid sites, large surface area, flexible redox cycles and oxygen transfer ability. For the loading on protonated titanate nanotubes, active metal with cation groups was better precursors than anion ones. V{sub 2}O{sub 5}/TNTs catalyst was a promising substitute for the commercial vanadium catalysts and the work conducted herein provided a useful idea to design uniformly active phase loaded catalyst.

  17. Kinetics of toluene alkylation with methanol catalyzed by pure and hybridized HZSM-5 catalysts

    KAUST Repository

    Alabi, Wahab; Atanda, Luqman; Jermy, Rabindran; Al-Khattaf, Sulaiman

    2012-01-01

    fluidized bed reactor at temperatures of 300, 350 and 400 °C and reaction times of 3, 5, 7, 10, 13, 15 and 20. s. The rate of toluene methylation and toluene disproportionation were studied on the three catalysts (toluene alkylation is usually accompanied

  18. Synthesis of efficient silica supported TiO{sub 2}/Ag{sub 2}O heterostructured catalyst with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zelekew, Osman Ahmed; Kuo, Dong-Hau, E-mail: dhkuo@mail.ntust.edu.tw; Yassin, Jemal Mohammed; Ahmed, Kedir Ebrahim; Abdullah, Hairus

    2017-07-15

    Graphical abstract: Proposed charge separation mechanism and degradation of dye with photocatalyst under light irradiation. - Highlights: • n-type TiO{sub 2} inside and p-type Ag{sub 2}O outside was designed. • The p–n junction formation built in an electric field. • The p–n junction facilitates the electrons and holes separation. • The degradation of dye becomes more effective with Ag{sub 2}O/TiO{sub 2} catalyst. - Abstract: We develop the n-type TiO{sub 2} coated on SiO{sub 2} support abbreviated as SiO{sub 2}/TiO{sub 2} (ST) followed by deposition of p-type Ag{sub 2}O nanoparticles outside for the purpose of photocatalytic degradation of organic pollutants. Different composite catalysts were prepared with changing the amount AgNO{sub 3} (such as 0%, 5%, 10%, 20%, and 30%) and the composites were abbreviated as ST, STA-5, STA-10, STA-20, and STA-30, respectively. The composite catalysts were characterized with different techniques and tested for Rhodamine B (RhB) dye degradation under UV and visible light. Among the composite catalysts, the degradation efficiency of STA-20 was the highest and it degraded about 99% within 40 min under UV light-irradiation. However, the ST, STA-5, STA-10, and STA-30 composite catalysts could degrade about 21%, 47%, 58%, and 75% of the dye, respectively. Furthermore, the STA-5, STA-10, STA-20, and STA-30 composites were also tested and about 39%, 47%, 57%, and 42% of the dye, respectively, was degraded under visible light source. Hence, the formation of p–n junction heterostructure between n-type TiO{sub 2} and p-type Ag{sub 2}O could enhance the degradation of RhB in both UV and visible light irradiation. It could be also potentially applicable photocatalyst for environmental remediation.

  19. Coke formation on hydrodesulphurization catalysts. [Including effects of different promoters

    Energy Technology Data Exchange (ETDEWEB)

    Ternan, M.; Furimsky, E.; Parsons, B.I.

    1979-02-01

    The extent of coke formation was measured on a number of different hydrodesulfurization catalysts, primarily as a function of the catalyst chemical composition. Variations in the concentration of MoO/sub 3/ on the alumina, the type of catalyst promoter, the promoter/MoO/sub 3/ ratio, the presulfiding material and the reaction temperature were made. Increases in the reaction rate caused by either changes in the catalyst composition or by moderate changes in the reaction temperature were compared to the catalyst coke content. It was suggested that two types of coke were present on the catalyst, a reactive coke which is subsequently converted to reaction products and an unreactive coke which blocks catalytic sites.

  20. Catalyst Deactivation and Regeneration in Low Temperature Ethanol Steam Reforming with Rh/CeO2-ZrO2 Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Hyun-Seog; Platon, Alex; Wang, Yong; King, David L.

    2006-08-01

    Rh/CeO2-ZrO2 catalysts with various CeO2/ZrO2 ratios have been applied to H2 production from ethanol steam reforming at low temperatures. The catalysts all deactivated with time on stream (TOS) at 350 C. The addition of 0.5% K has a beneficial effect on catalyst stability, while 5% K has a negative effect on catalytic activity. The catalyst could be regenerated considerably even at ambient temperature and could recover its initial activity after regeneration above 200 C with 1% O2. The results are most consistent with catalyst deactivation due to carbonaceous deposition on the catalyst.

  1. The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO2/Zeolite Sensor

    Directory of Open Access Journals (Sweden)

    Yanhui Sun

    2018-01-01

    Full Text Available In order to improve the sensing properties of tin dioxide gas sensor, four kinds of different SiO2/Al2O3 ratio, different particle size of MFI type zeolites (ZSM-5 were coated on the SnO2 to prepared zeolite modified gas sensors, and the gas sensing properties were tested. The measurement results showed that the response values of ZSM-5 zeolite (SiO2/Al2O3 = 70, grain size 300 nm coated SnO2 gas sensors to formaldehyde vapor were increased, and the response to acetone decreased compared with that of SnO2 gas sensor, indicating an improved selectivity property. The other three ZSM-5 zeolites with SiO2/Al2O3 70, 150 and 470, respectively, and grain sizes all around 1 μm coated SnO2 sensors did not show much difference with SnO2 sensor for the response properties to both formaldehyde and acetone. The sensing mechanism of ZSM-5 modified sensors was briefly analyzed.

  2. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  3. Oxidative desulfurization of synthetic diesel using supported catalysts. Part 3. Support effect on vanadium-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cedeno-Caero, Luis; Gomez-Bernal, Hilda; Fraustro-Cuevas, Adriana; Guerra-Gomez, Hector D.; Cuevas-Garcia, Rogelio [UNICAT, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria 04510, Mexico D.F. (Mexico)

    2008-04-15

    Oxidesulfurization (ODS) of benzothiophenic compounds prevailing in diesel was conducted with hydrogen peroxide in presence of various catalysts, using a model diesel and actual diesel fuel. ODS activities of dibenzothiophenes (DBTs) in hexadecane for a series of V{sub 2}O{sub 5} catalysts supported on alumina, titania, ceria, niobia and silica, were evaluated. Results show that the oxidation activity of DBTs depends on the support used. It was observed that the sulfone yield is not proportional to textural properties or V content. For all catalysts, ODS of benzothiophene (BT), dibenzothiophene (DBT), 4-methyl dibenzothiophene (4-MDBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) decreased in the following order: DBT > 4-MDBT > 4,6-DMDBT > BT. This trend does not depend on the catalyst used or the textural properties of the catalysts and supports. In presence of indole ODS activities diminish, except with catalysts supported on alumina-titania mixed oxide, whereas with V{sub 2}O{sub 5}/TiO{sub 2} catalyst the performance is the highest. ODS of Mexican diesel fuel was carried out in presence of this catalyst and S level was diminished in about 99%. (author)

  4. Direct transformation of xylan-type hemicelluloses to furfural via SnCl₄ catalysts in aqueous and biphasic systems.

    Science.gov (United States)

    Wang, Wenju; Ren, Junli; Li, Huiling; Deng, Aojie; Sun, Runcang

    2015-05-01

    Direct catalytic transformation of xylan-type hemicelluloses to furfural in the aqueous system and the biphasic system were comparatively investigated under mild conditions. Screening of several promising chlorides for conversion of beech xylan in the aqueous system revealed the Lewis acid SnCl4 was the most effective catalyst. Comparing to the single aqueous system, the bio-based 2-methyltetrahydrofuran (2-MTHF)/H2O biphasic system was more conducive to the synthesis of furfural, in which the highest furfural yield of 78.1% was achieved by using SnCl4 as catalysts under the optimized reaction conditions (150°C, 120 min). Additionally, the influences of xylan-type hemicelluloses with different chemical and structural features from beech, corncob and bagasse on the furfural production were studied. It was found that furfural yield to some extent was determined by the xylose content in hemicelluloses and also had relationships with the molecular weight of hemicelluloses and the degree of crystallization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of particulates, heavy metals and acid gas on the removals of NO and PAHs by V2O5-WO3 catalysts in waste incineration system

    International Nuclear Information System (INIS)

    Chang, Feng-Yim; Chen, Jyh-Cherng; Wey, Ming-Yen; Tsai, Shih-An

    2009-01-01

    This study investigated the activities of prepared and commercial V 2 O 5 -WO 3 catalysts for simultaneous removals of NO and polycyclic aromatic hydrocarbons (PAHs) and the influences of particulates, heavy metals, SO 2 , and HCl on the performances of catalysts. The experiments were carried out in a laboratory-scale waste incineration system equipped with a catalyst reactor. The DREs of PAHs by prepared and commercial V 2 O 5 -WO 3 catalysts were 64% and 72%, respectively. Increasing the particulate concentrations in flue gas suppressed the DRE of PAHs, but increasing the carbon content on surface of catalysts promotes the NO conversions. The DRE of PAHs by the catalysts was significantly decreased by the increased concentrations of heavy metal Cd, but was promoted by high concentration of Pb. The influence level of SO 2 was higher than HCl on the performances of V 2 O 5 -WO 3 catalysts for PAHs removal, but was lower than HCl for NO removal. Prepared and commercial V 2 O 5 -WO 3 catalysts have similar trends on the effects of particulates, heavy metals, SO 2 , and HCl. The results of ESCA analysis reveal that the presences of these pollutants on the surface of catalysts did not change the chemical state of V and W.

  6. Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review

    Directory of Open Access Journals (Sweden)

    Hartati Hartati

    2013-06-01

    Full Text Available This paper reviews various types of heterogeneous acid-base catalysts for fragrances preparation. Catalytic activities of various types of heterogeneous acid and base catalysts in fragrances preparation, i.e. non-zeolitic, zeolitic, and mesoporous molecular sieves have been reported. Generally, heterogeneous acid catalysts are commonly used in fragrance synthesis as compared to heterogeneous base catalysts. Heteropoly acids and hydrotalcites type catalysts are widely used as heterogeneous acid and base catalysts, respectively. © 2013 BCREC UNDIP. All rights reservedReceived: 20th January 2013; Revised: 31st March 2013; Accepted: 1st April 2013[How to Cite: Hartati, H., Santoso, M., Triwahyono, S., Prasetyoko, D. (2013. Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 14-33. (doi:10.9767/bcrec.8.1.4394.14-33][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4394.14-33] | View in  |

  7. Zn-Mo/HZSM-5 Catalyst for Gasoil Range Hydrocarbon Production by Catalytic Hydrocracking of Ceiba pentandra oil

    Directory of Open Access Journals (Sweden)

    Yustia Wulandari Mirzayanti

    2018-01-01

    Full Text Available Biofuel from vegetable oil becomes one of the most suitable and logical alternatives to replace fossil fuel. The research focused on various metal ratio Zinc/Molybdenum/HZSM-5 (Zn-Mo/HZSM-5 catalyst to produce liquid hydrocarbon via catalytic hydrocracking of Ceiba penandra oil. The catalytic hydrocracking process has been applied in this study to crack Ceiba pentandra oil into a gasoil range hydrocarbon using Zn-Mo/HZSM-5 as a catalyst. The effect of various reaction temperature on the catalytic hydrocracking of Ceiba pentandra oil were studied. The Zn-Mo/HZSM-5 catalyst with metal ratio was prepared by incipient wetness impregnation method. This process used slurry pressure batch reactor with a mechanical stirrer. A series of experiments were carried out in the temperature range from 300-400 oC for 2 h at pressure between 10-15 bar. The conversion and selectivity were estimated. The liquid hydrocarbon product were identified to gasoline, kerosene, and gas oil. The results show that the use of Zn-Mo/HZSM-5 can produce gas oil as the most component in the product. Overall, the highest conversion and selectivity of gas oil range hydrocarbon was obtained when the ZnMo/HZSM-5 metal ratio was Zn(2.86 wt.%-Mo(5.32 wt.%/HZSM-5 and the name is Zn-Mo/HZSM-5_102. The highest conversion was obtained at 63.31 % and n-paraffin (gas oil range selectivity was obtained at 90.75 % at a temperature of 400 oC. Ceiba pentandra oil can be recommended as the source of inedible vegetable oil to produce gasoil as an environmentally friendly transportation fuel. Copyright © 2018 BCREC Group. All rights reserved Received: 8th September 2017; Revised: 9th September 2017; Accepted: 17th September 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Mirzayanti, Y.W., Kurniawansyah, F., Prajitno, D.H., Roesyadi, A. (2018. Zn-Mo/HZSM-5 Catalyst for Gasoil Range Hydrocarbon Production by Catalytic Hydrocracking of Ceiba pentandra

  8. Selective Aerobic Oxidation of 5-Hydroxymethylfurfural in Water Over Solid Ruthenium Hydroxide Catalysts with Magnesium-Based Supports

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    Solid catalyst systems comprised of ruthenium hydroxide supported on magnesium-based carrier materials (spinel, magnesium oxide and hydrotalcite) were investigated for the selective, aqueous aerobic oxidation of the biomass-derived chemical 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid...

  9. Leaching of vanadium from waste V2O5-WO3/TiO2 catalyst catalyzed by functional microorganisms.

    Science.gov (United States)

    Wang, Shuhua; Xie, Yaling; Yan, Weifu; Wu, Xuee; Wang, Chin-Tsan; Zhao, Feng

    2018-05-22

    Solid wastes are currently produced in large amounts. Although bioleaching of metals from solid wastes is an economical and sustainable technology, it has seldom been used to recycle metals from abandoned catalyst. In this study, the bioleaching of vanadium from V 2 O 5 -WO 3 /TiO 2 catalyst were comprehensively investigated through five methods: Oligotrophic way, Eutrophic way, S-mediated way, Fe-mediated way and Mixed way of S-mediated and Fe-mediated. The observed vanadium bioleaching effectiveness of the assayed methods was follows: S-mediated > Mixed > Oligotrophic > Eutrophic > Fe-mediated, which yielded the maximum bioleaching efficiencies of approximately 90%, 35%, 33%, 20% and 7%, respectively. The microbial community analysis suggested that the predominant genera Acidithiobacillus and Sulfobacillus from the S-mediated bioleaching way effectively catalyzed the vanadium leaching, which could have occurred through the indirect mechanism from the microbial oxidation of S 0 . In addition, the direct mechanism, involving direct electron transfer between the catalyst and the microorganisms that attached to the catalyst surface, should also help the vanadium to be leached more effectively. Therefore, this work provides guidance for future research and practical application on the treatment of waste V 2 O 5 -WO 3 /TiO 2 catalyst. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming

    NARCIS (Netherlands)

    Ristanovic, Zoran|info:eu-repo/dai/nl/328233005; Hofmann, Jan P.|info:eu-repo/dai/nl/355351110; De Cremer, Gert; Kubarev, Alexey V.; Rohnke, Marcus; Meirer, Florian; Hofkens, Johan; Roeffaers, Maarten B. J.; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2015-01-01

    Optimizing the number, distribution, and accessibility of Bronsted acid sites in zeolite-based catalysts is of a paramount importance to further improve their catalytic performance. However, it remains challenging to measure real-time changes in reactivity of single zeolite catalyst particles by

  11. Aerobic Oxidation of 5-(Hydroxymethyl)furfural Cyclic Acetal Enables Selective Furan-2,5-dicarboxylic Acid Formation with CeO2 -Supported Gold Catalyst.

    Science.gov (United States)

    Kim, Minjune; Su, Yaqiong; Fukuoka, Atsushi; Hensen, Emiel J M; Nakajima, Kiyotaka

    2018-05-14

    The utilization of 5-(hydroxymethyl)furfural (HMF) for the large-scale production of essential chemicals has been largely limited by the formation of solid humin as a byproduct, which prevents the operation of stepwise batch-type and continuous flow-type processes. The reaction of HMF with 1,3-propanediol produces an HMF acetal derivative that exhibits excellent thermal stability. Aerobic oxidation of the HMF acetal with a CeO 2 -supported Au catalyst and Na 2 CO 3 in water gives a 90-95 % yield of furan 2,5-dicarboxylic acid, an increasingly important commodity chemical for the biorenewables industry, from concentrated solutions (10-20 wt %) without humin formation. The six-membered acetal ring suppresses thermal decomposition and self-polymerization of HMF in concentrated solutions. Kinetic studies supported by DFT calculations identify two crucial steps in the reaction mechanism, that is, the partial hydrolysis of the acetal into 5-formyl-2-furan carboxylic acid involving OH - and Lewis acid sites on CeO 2 , and subsequent oxidative dehydrogenation of the in situ generated hemiacetal involving Au nanoparticles. These results represent a significant advance over the current state of the art, overcoming an inherent limitation of the oxidation of HMF to an important monomer for biopolymer production. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Preparation and Characterization of a Solid Acid Catalyst from Macro Fungi Residue for Methyl Palmitate Production

    Directory of Open Access Journals (Sweden)

    Min Wang

    2015-07-01

    Full Text Available During the process of fungal polysaccharide extraction for health care products and food factories, a large quantity of macro-fungi residues are produced, but most of the residues are abandoned and become environmental pollutants. A solid acid catalyst, prepared by sulfonating carbonized Phellinus igniarius residue, was shown to be an efficient and environmentally benign catalyst for the esterification of palmitate acid (PA and methanol. As a comparison, two types of common biomass catalysts, wheat straws and wood chips, were prepared. In this study, characterizations, including scanning electron microscopy, thermo-gravimetric analysis, Fourier transform infrared spectrometry, Brunauer-Emmett-Teller assays and elemental analysis, and reaction conditions for the synthesis of methyl palmitate (MP using solid acid catalysts were investigated. Experiments showed that the solid acid catalyst prepared from P. igniarius residue had a higher catalytic activity than the other two catalysts, and the highest yield of MP catalyzed by P. igniarius residue solid acid catalyst was 91.5% under the following optimum conditions: molar ratio of methanol/PA of 10:1, reaction temperature of 60 °C, mass ratio of catalyst/substrate of 2%, and a reaction time of 1.5 h. Thus, the use of this catalyst offers a method for producing MP.

  13. Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration.

    Science.gov (United States)

    Wang, Wenzheng; Wang, Honglei; Zhu, Tianle; Fan, Xing

    2015-07-15

    Ag/HZSM-5, Mn/HZSM-5, Ce/HZSM-5, Ag-Mn/HZSM-5 and Ce-Mn/HZSM-5 were prepared by impregnation method. Both their adsorption capacity and catalytic activity were investigated for the removal of gas phase low-concentration toluene by periodical operation of adsorption and non-thermal plasma regeneration. Results show that catalysts loaded with Ag (Ag/HZSM-5 and Ag-Mn/HZSM-5) had larger adsorption capacity for toluene than the other catalysts. And Ag-Mn/HZSM-5 displayed the best catalytic performance for both toluene oxidation by non-thermal plasma and byproducts suppression. On the other hand, the deactivated catalyst can be fully regenerated by calcining in air stream when its adsorption capacity and catalytic activity of the Ag-Mn/HZSM-5 catalyst was found to be decreased after 10 cycles of periodical adsorption and non-thermal regeneration. Copyright © 2015. Published by Elsevier B.V.

  14. Xenon capture on silver-loaded zeolites: characterization of very strong adsorption sites

    International Nuclear Information System (INIS)

    Daniel, Cecile; Elbaraoui, Adnane; Aguado, Sonia; Schuurman, Yves; Farrusseng, David; Springuel-Huet, Marie-Anne; Nossov, Andrei; Fontaine, Jean-Pierre; Topin, Sylvain; Taffary, Thomas; Deliere, Ludovic

    2013-01-01

    The number and strength of adsorption sites for Xe in silver-modified zeolites are estimated from isotherm measurements at various temperatures over a broad range of pressure (from 1 ppm to atmospheric pressure). Fully and partially exchanged silver zeolites were synthesized starting from Na-ZSM-5(25), Na-ZSM-5(40), Na-Beta, NaX, and NaY. We have discovered that silver-modified zeolites may present one or two distinct adsorption sites depending on the nature of the material and silver loadings. The strongest adsorption sites are characterized by isosteric heat of adsorption in the order of -40 to -50 kJ.mol -1 . For Pentasil-type zeolites, we observe a linear 2:1 correlation between the total amount of silver and the number of strong sites. The highest concentration of strong sites is found for fully silver exchanged ZSM-5 (5.7 * 10 -4 mol/g), which presents the largest silver content for Pentasil-type zeolite. The equilibrium constant of Ag-ZSM-5 at low pressure is about 50 times larger than that of AgX. Qualitative correlations were established between Xe adsorption isotherms and Xe NMR signals. We show that Xe NMR could be used as a quantitative method for the characterization of the strength and of the number of strong Xe adsorption sites on silver-exchanged zeolites. The numbers of strong adsorption sites responsible for the Xe adsorption at 10-1000 ppm can be determined by the length of the plateau observed at low Xe uptake. In practice, our findings give guidelines for the discovery and optimization of silver-loaded zeolites for the capture of Xe at ppm levels. It appears that the amount of silver is a key parameter. Silver-modified ZSM-5 shows adsorption capacities 2-3 orders of magnitude larger than currently applied adsorbents for atmospheric Xe capture. (authors)

  15. Roles of K2O on the CaO-ZnO Catalyst and Its Influence on Catalyst Basicity for Biodiesel Production

    Science.gov (United States)

    Buchori, Luqman; Istadi, I.; Purwanto; Marpaung, Louis Claudia; Safitri, Rahmatika Luthfiani

    2018-02-01

    This research aimed to study the effect of K2O impregnation on the basicity of the CaO-ZnO catalyst and its effect on biodiesel production. The effect of mole ratio of CaO to ZnO catalyst and %wt K2O were also studied. The mole ratio of CaO to ZnO catalyst was varied at 1:1, 1:1.5, 1:2, 1:3, and 3:1, while the %wt K2O was varied at 1, 3, and 5 %. The catalyst basicity was determined by titration method. The basicity of the catalyst increased after the CaO-ZnO catalyst was impregnated with K2O in all mole ratios of CaO-ZnO catalyst. The addition of K2O as a promoter also increase the basicity. The highest basicity was obtained at the CaO-ZnO mole ratio of 3:1 and 5%wt K2O. The tranesterification process was carried out in a batch reactor at a methanol to oil mole ratio of 15:1, a reaction temperature of 60°C, a reaction time of 4 h, and a catalyst loading of 5%wt oil. The FAME yields obtained were 41.33%. These results proved that K2O plays a role in enhancing the catalyst basicity. In addition, K2O also serves as a binding agent to improve the mechanical properties of the catalyst.

  16. The Effect of Acidic and Redox Properties of V2O5/CeO2-ZrO2 Catalysts in Selective Catalytic Reduction of NO by NH3

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Riisager, Anders; Fehrmann, Rasmus

    2009-01-01

    V2O5 supported ZrO2 and CeO2–ZrO2 catalysts were prepared and characterized by N2 physisorption, XRPD, TPR, and NH3-TPD methods. The influence of calcination temperature from 400 to 600 °C on crystallinity, acidic and redox properties were studied and compared with the catalytic activity...... in the selective catalytic reduction (SCR) of NO with ammonia. The surface area of the catalysts decreased gradually with increasing calcination temperature. The SCR activity of V2O5/ZrO2 catalysts was found to be related with the support crystallinity, whereas V2O5/CeO2–ZrO2 catalysts were also dependent...... on acidic and redox properties of the catalyst. The V2O5/CeO2–ZrO2 catalysts showed high activity and selectivity for reduction of NO with NH3....

  17. Methanol conversion to hydrocarbons using modified clinoptilolite catalysts. Investigation of catalyst lifetime and reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, G J; Themistocleous, T; Copperthwaite, R G

    1988-10-17

    A study of the deactivation and reactivation of modified clinoptilolite catalysts for methanol conversion to hydrocarbons is reported. Clinoptilolite catalysts, modified by either ammonium ion exchange or hydrochloric acid treatment, exhibit a short useful catalyst lifetime for this reaction (ca. 2-3 h) due to a high rate of coke deposition (3-5.10/sup -3/ g carbon/g catalyst/h). A comparative study of reactivation using oxygen, nitrous oxide and ozone/oxygen as oxidants indicated that nitrous oxide reactivation gives improved catalytic performance when compared to the activity and lifetime of the fresh catalyst. Both oxygen and ozone/oxygen were found to be ineffective for the reactivation of clinoptilolite. Initial studies of in situ on-line reactivation are also described. 3 figs., 15 refs., 4 tabs.

  18. Catalyst performance in magnetic esterification methyl soy oil

    International Nuclear Information System (INIS)

    Araujo, N.O.; Pereira, K R. de O.; Barros, A.B. de S.; Moura, T.F.B. de; Vilar, E.; Dantas, J.; Costa, A.C.F. de M.

    2016-01-01

    Growing concerns about the environment have encouraged the search for new fuels, including biodiesel, obtained from lipid sources that react with alcohol and catalyst. This aimed of this study to synthesize type catalyst (Ni-Zn)Fe_2O_4 and evaluate it in soy oil esterification. The catalyst was synthesized by combustion reaction and characterized by XRD, FTIR and BET. The esterification was carried out at high pressure reactor at 140°C for 1 hour with molar ratio of oil:alcohol 1:15 to 1 and 3% catalyst. From the XRD it was observed the formation of inverted spinel phase. FTIR revealed the presence of the vibrational bands 586, 1381, 1628, 2352, 2922, 3147 and 3457cm"-"1 and surface area 48m"2g"-"1, 10nm pore diameter and type IV isotherm, suggesting mesoporous material characteristic. The results indicate biodiesel conversion of 31.9% and 27.3% when using 1% and 3% catalyst, respectively. (author)

  19. Porous nitrogen-enriched carbonaceous material from marine waste: chitosan-derived layered CNX catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid

    Science.gov (United States)

    Chitosan derived porous layered nitrogen-enriched carbonaceous CNx catalyst (PLCNx) has been synthesized from marine waste and its use demonstrated in a metal-free heterogeneous selective oxidation of 5-hydroxymethyl-furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) using aeria...

  20. Zeolites shape up to modern catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Ramdas, S.; Millward, G.R.

    1983-01-01

    Small molecules, like methanol (CH/sub 3/OH) and ethanol (C/sub 2/H/sub 3/OH), as well as large ones, like hexadecane (C/sub 16/H/sub 34/), the glycerides that make up corn oil (average formula C/sub 57/H/sub 104/O/sub 6/) and jojoba oil, composed of linear esters of C/sub 20/ and C/sub 22/ unsaturated alcohols and acids (average formula C/sub 41/H/sub 78/O/sub 2/) and obtained from Simmondsia chinensis, are each converted by a catalyst known as ZSM-5 to essentially the same relatively narrow spectrum of intermediate-sized hydrocarbons. It so happens that this spectrum of hydrocarbons - containing aliphatics peaking at C/sub 3/ and C/sub 4/ and aromatics in the C/sub 6/ to C/sub 10/ range - corresponds closely to that which makes up petrol (gasoline). ZSM-5 thus enables good quality petrol, and many valuable raw materials such as benzene and toluene, to be produced from a number of non-petroleum raw materials, notable coal and biomass. Many other chemical conversions are also catalysed by this synthetic, silica-rich material ZSM-5, the efficacy of which depends partly upon its property of permitting only those reactants of appropriate size and flexibility to enter into, and to diffuse within, its network of crystal pores. Its efficacy also depends partly upon the fact that the only products formed are those small enough to be accommodated within, and capable of diffusing out of, the intracrystalline pores. The precise magnitude of the pores of molecular dimension, and especially of the cavities generated by intersecting pores, also imposes restrictions upon the size of the transition states through which reactant species must pass, thereby introducing a further constraint upon the otherwise numerous pathways of chemical change open, in principle, to the intermediates generated from the reactants inside the catalyst.

  1. Productions of palm oil bio diesel whit heterogeneous basic catalysts compared to conventional homogeneous catalysts

    International Nuclear Information System (INIS)

    Rios, Luis A; Franco C, Alexander; Zuleta S, Ernesto

    2009-01-01

    The conventional process to produce biodiesel involves the presence of homogeneous basic catalysts. However, these catalysts have disadvantages associated to the need of purification steps, which increase the cost of the final product and generate pollution problems caused by the effluents. This paper compares different homogeneous and heterogeneous catalysts for the biodiesel production from palm oil. For this, heterogeneous catalysts supported on alumina were prepared and characterized by nitrogen adsorption, scanning electron microscopy, energy dispersive X ray spectroscopy and X ray diffraction. Transesterification of palm oil with methanol was accomplished at 60 celsius degrade and one hour, varying methanol/oil ratio, the type of catalyst and its concentration. Yields of the reaction and purity of the so obtained biodiesel were evaluated. Comparing the catalysts performance, based on the amount, was found that sodium methoxide (CH 3 ONa) and potassium carbonate supported on alumina (K 2 CO 3 /Al 2 O 3 ) were the catalysts that give the higher purity of biodiesel (96.8 and 95.85% respectively). When was determined the active site quality, by dividing the performance by each mole of active sites, it was found that calcined Na 2 SO 4 /Al 2 O 3 has the most active sites.

  2. Novel synthesis of manganese and vanadium mixed oxide (V2O5/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    International Nuclear Information System (INIS)

    Mahdavi, Vahid; Soleimani, Shima

    2014-01-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V 2 O 5 /OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V 2 O 5 /OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V 2 O 5 /K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V 2 O 5 /K-OMS-2 catalyst. • V 2 O 5 /K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidation using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V 2 O 5 /K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V 2 O 5 species. Oxidation of various alcohols was studied in the liquid phase over the V 2 O 5 /K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H 2 O 2 as the oxidant. Activity of the V 2 O 5 /K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V 2 O 5 . The kinetic of benzyl alcohol oxidation using excess TBHP over V 2 O 5 /K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential and leaching were investigated

  3. Immobilization of molecular catalysts in supported ionic liquid phases.

    Science.gov (United States)

    Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk

    2010-09-28

    In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.

  4. Hydrogenation of fructose to 2,5-dimethyltetrahydrofuran using a sulfur poisoned Pt/C catalyst

    Science.gov (United States)

    In order to expand the number of biobased chemicals available, fructose has been hydrogenated to 2,5-dimethyltetrahydrofuran using a sulfided Pt/C catalyst. The reaction was carried out in a stirred reactor at 10.3 MPa H2 and 175°C which allowed a 10% fructose solution to be converted in about 2 h. ...

  5. Fischer-Tropsch Synthesis over Iron Manganese Catalysts: Effect of Preparation and Operating Conditions on Catalyst Performance

    Directory of Open Access Journals (Sweden)

    Ali A. Mirzaei

    2009-01-01

    molar basis which is the most active catalyst for the conversion of synthesis gas to light olefins. The effects of different promoters and supports with loading of optimum support on the catalytic performance of catalysts are also studied. It was found that the catalyst containing 50%Fe/50%Mn/5 wt.%Al2O3 is an optimum-modified catalyst. The catalytic performance of optimal catalyst has been studied in operation conditions such as a range of reaction temperatures, H2/CO molar feed ratios and a range of total pressures. Characterization of both precursors and calcined catalysts is carried out by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, BET specific surface area and thermal analysis methods such as TGA and DSC.

  6. Two Catalysts for Selective Oxidation of Contaminant Gases

    Science.gov (United States)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  7. Optimization of catalyst system reaps economic benefits

    International Nuclear Information System (INIS)

    Le Roy, C.F.; Hanshaw, M.J.; Fischer, S.M.; Malik, T.; Kooiman, R.R.

    1991-01-01

    Champlin Refining and Chemicals Inc. is learning to optimize its catalyst systems for hydrotreating Venezuelan gas oils through a program of research, pilot plant testing, and commercial unit operation. The economic results of this project have been evaluated, and the benefits are most evident in improvements in product yields and qualities. The project has involved six commercial test runs, to date (Runs 10-15), with a seventh run planned. A summary of the different types of catalyst systems used in the test runs, and the catalyst philosophy that developed is given. Runs 10 and 11 used standard CoMo and NiMo catalysts for heavy gas oils hydrotreating. These catalysts had small pore sizes and suffered high deactivation rates because of metals contamination. When it was discovered that metals contamination was a problem, catalyst options were reviewed

  8. Processes and applications of silicon carbide nanocomposite fibers

    International Nuclear Information System (INIS)

    Shin, D G; Cho, K Y; Riu, D H; Jin, E J

    2011-01-01

    Various types of SiC such as nanowires, thin films, foam, and continuous fibers have been developed since the early 1980s, and their applications have been expanded into several new applications, such as for gas-fueled radiation heater, diesel particulate filter (DPF), ceramic fiber separators and catalyst/catalyst supports include for the military, aerospace, automobile and electronics industries. For these new applications, high specific surface area is demanded and it has been tried by reducing the diameter of SiC fiber. Furthermore, functional nanocomposites show potentials in various harsh environmental applications. In this study, silicon carbide fiber was prepared through electrospinning of the polycarbosilane (PCS) with optimum molecular weight distribution which was synthesized by new method adopting solid acid catalyst such as ZSM-5 and γ-Al 2 O 3 . Functional elements such as aluminum, titanium, tungsten and palladium easily doped in the precursor fiber and remained in the SiC fiber after pyrolysis. The uniform SiC fibers were produced at the condition of spinning voltage over 20 kV from the PCS solution as the concentration of 1.3 g/ml in DMF/Toluene (3:7) and pyrolysis at 1200deg. C. Pyrolyzed products were processed into several interesting applications such as thermal batteries, hydrogen sensors and gas filters.

  9. Processes and applications of silicon carbide nanocomposite fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shin, D G; Cho, K Y; Riu, D H [Nanomaterials Team, Korea Institute of Ceramic Engineering and Technology, 233-5 Gasan-dong, Guemcheon-gu, Seoul 153-801 (Korea, Republic of); Jin, E J, E-mail: dhriu15@seoultech.ac.kr [Battelle-Korea Laborotary, Korea University, Anamdong, Seongbuk-gu, Seoul (Korea, Republic of)

    2011-10-29

    Various types of SiC such as nanowires, thin films, foam, and continuous fibers have been developed since the early 1980s, and their applications have been expanded into several new applications, such as for gas-fueled radiation heater, diesel particulate filter (DPF), ceramic fiber separators and catalyst/catalyst supports include for the military, aerospace, automobile and electronics industries. For these new applications, high specific surface area is demanded and it has been tried by reducing the diameter of SiC fiber. Furthermore, functional nanocomposites show potentials in various harsh environmental applications. In this study, silicon carbide fiber was prepared through electrospinning of the polycarbosilane (PCS) with optimum molecular weight distribution which was synthesized by new method adopting solid acid catalyst such as ZSM-5 and {gamma}-Al{sub 2}O{sub 3}. Functional elements such as aluminum, titanium, tungsten and palladium easily doped in the precursor fiber and remained in the SiC fiber after pyrolysis. The uniform SiC fibers were produced at the condition of spinning voltage over 20 kV from the PCS solution as the concentration of 1.3 g/ml in DMF/Toluene (3:7) and pyrolysis at 1200deg. C. Pyrolyzed products were processed into several interesting applications such as thermal batteries, hydrogen sensors and gas filters.

  10. Processes and applications of silicon carbide nanocomposite fibers

    Science.gov (United States)

    Shin, D. G.; Cho, K. Y.; Jin, E. J.; Riu, D. H.

    2011-10-01

    Various types of SiC such as nanowires, thin films, foam, and continuous fibers have been developed since the early 1980s, and their applications have been expanded into several new applications, such as for gas-fueled radiation heater, diesel particulate filter (DPF), ceramic fiber separators and catalyst/catalyst supports include for the military, aerospace, automobile and electronics industries. For these new applications, high specific surface area is demanded and it has been tried by reducing the diameter of SiC fiber. Furthermore, functional nanocomposites show potentials in various harsh environmental applications. In this study, silicon carbide fiber was prepared through electrospinning of the polycarbosilane (PCS) with optimum molecular weight distribution which was synthesized by new method adopting solid acid catalyst such as ZSM-5 and γ-Al2O3. Functional elements such as aluminum, titanium, tungsten and palladium easily doped in the precursor fiber and remained in the SiC fiber after pyrolysis. The uniform SiC fibers were produced at the condition of spinning voltage over 20 kV from the PCS solution as the concentration of 1.3 g/ml in DMF/Toluene (3:7) and pyrolysis at 1200°C. Pyrolyzed products were processed into several interesting applications such as thermal batteries, hydrogen sensors and gas filters.

  11. Theoretical modeling of structure and function of cathode catalyst layers in PEMFC

    International Nuclear Information System (INIS)

    Wang, Q.; Eikerling, M.; Song, D.; Liu, Z.

    2004-01-01

    'Full text:' In this work, we first investigate transport and reaction kinetics in single agglomerates of cathode catalyst layers in proton exchange fuel cells. Two types of spherical agglomerates are evaluated, which represent limiting structures that can be obtained by distinct synthetic procedures. One type consists of a mixture of carbon/catalyst particles and proton conducting perfluorosulfonated ionomer (PFSI). The other type consists of carbon/catalyst particles and water-filled pores. Performance of the former type is rationalized on the basis of the well-known Thiele-modulus. Characteristics of the latter type are studied using Nernst-Planck and Poisson equations. Aspects of current conversion, reactant and current distributions, and catalyst utilization are explored. In general, the PFSI-filled agglomerates exhibit more homogeneous distributions of reaction rates. Effectiveness factors for them are close to one. However, it was found that proton penetration depths in waterflooded agglomerates could be quite significant as well under certain conditions, resulting in unexpectedly high catalyst utilization. The effects of agglomerate radius and of boundary conditions at the agglomerate surface are studied. Moreover, using the same approach, we evaluate the performance of a flat PFSI-free catalyst layer with water-filled pore space. Compared with conventional composite catalyst layers impregnated with PFSI, the PFSI-free layer exhibits better performance and high Pt utilization for thicknesses less than 0.1 μm. The significance of these results for the optimization catalyst layers in view of operation conditions and synthesis methods is discussed. (author)

  12. Elucidation of Diels-Alder Reaction Network of 2,5-Dimethylfuran and Ethylene on HY Zeolite Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Do, Phuong T. M. [Univ. of Delaware, Newark, DE (United States); McAtee, Jesse R. [Univ. of Delaware, Newark, DE (United States); Watson, Donald A. [Univ. of Delaware, Newark, DE (United States); Lobo, Raul F. [Univ. of Delaware, Newark, DE (United States)

    2012-12-12

    The reaction of 2,5-dimethylfuran and ethylene to produce p-xylene represents a potentially important route for the conversion of biomass to high-value organic chemicals. Current preparation methods suffer from low selectivity and produce a number of byproducts. Using modern separation and analytical techniques, the structures of many of the byproducts produced in this reaction when HY zeolite is employed as a catalyst have been identified. From these data, a detailed reaction network is proposed, demonstrating that hydrolysis and electrophilic alkylation reactions compete with the desired Diels–Alder/dehydration sequence. This information will allow the rational identification of more selective catalysts and more selective reaction conditions.

  13. Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation

    Science.gov (United States)

    Xiao, Haiping; Chen, Yu; Qi, Cong; Ru, Yu

    2018-03-01

    This paper aims to study the effect of alkali metal sodium (Na) poisoning on the performance of the Selective Catalytic Reduction (SCR) catalyst. The result showed that Na2SO4 poisoning leads to a reduced denitration rate of the SCR catalyst and an increase in the SO3 generation rate. Na2O poisoning leads to a significant reduction in the denitration rate of the SCR catalyst and marginally improves the formation of SO3. The maximum of the SO3 generation rate for a Na2SO4-poisoned catalyst reached 1.35%, whereas it was only 0.85% for the SCR catalyst. When the SO2 was contained in flue gas, the denitration rate for the Na2O-poisoned catalyst clearly increased by more than 28%. However, the effect of SO2 on the Na2SO4-poisoned catalyst was very slight. The denitration rate of the SCR catalyst decreased with an increase in the Na content. The BET and XRD results showed that Na poisoning of the catalyst decreased the number of acid sites, the reducibility of the catalyst, the surface area, and pore volume. The H2-TPR and NH3-TPD results show that Na decreases the number of acid sites and the reducibility of the catalyst. The FT-IR and XPS results showed that Na2O poisoning led to the decrease of V5+dbnd O bonds and the consumptions of oxygen atoms. Na2SO4 poisoning can improve surface adsorbed oxygen, which was beneficial for the SO2-SO3 conversion reaction.

  14. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  15. Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites

    KAUST Repository

    Tian, Qiwei

    2016-02-05

    Direct synthesis of hierarchical zeolites currently relies on the use of surfactant-based templates to produce mesoporosity by the random stacking of 2D zeolite sheets or the agglomeration of tiny zeolite grains. The benefits of using nonsurfactant polymers as dual-function templates in the fabrication of hierarchical zeolites are demonstrated. First, the minimal intermolecular interactions of nonsurfactant polymers impose little interference on the crystallization of zeolites, favoring the formation of 3D continuous zeolite frameworks with a long-range order. Second, the mutual interpenetration of the polymer and the zeolite networks renders disordered but highly interconnected mesopores in zeolite crystals. These two factors allow for the synthesis of single-crystalline, mesoporous zeolites of varied compositions and framework types. A representative example, hierarchial aluminosilicate (meso-ZSM-5), has been carefully characterized. It has a unique branched fibrous structure, and far outperforms bulk aluminosilicate (ZSM-5) as a catalyst in two model reactions: conversion of methanol to aromatics and catalytic cracking of canola oil. Third, extra functional groups in the polymer template can be utilized to incorporate desired functionalities into hierarchical zeolites. Last and most importantly, polymer-based templates permit heterogeneous nucleation and growth of mesoporous zeolites on existing surfaces, forming a continuous zeolitic layer. In a proof-of-concept experiment, unprecedented core-shell-structured hierarchical zeolites are synthesized by coating mesoporous zeolites on the surfaces of bulk zeolites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Exceptionally Stable and Efficient Solid Supported Hoveyda-Type Catalyst

    Czech Academy of Sciences Publication Activity Database

    Skowerski, K.; Pastva, J.; Czarnocki, S. J.; Janošcová, Jana

    2015-01-01

    Roč. 19, č. 7 (2015), s. 872-877 ISSN 1083-6160 Institutional support: RVO:61388955 Keywords : OLEFIN-METATHESIS CATALYSTS * RING-CLOSING METATHESIS * N-HETEROCYCLIC CARBENES Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.922, year: 2015

  17. Effect of Solvent, Catalyst Type and Catalyst Activation on the Microwave Transformation of 2-Tert-butylphenol

    Czech Academy of Sciences Publication Activity Database

    Radoiu, M.; Hájek, Milan

    2002-01-01

    Roč. 186, 1-2 (2002), s. 121-126 ISSN 1381-1169 Institutional research plan: CEZ:AV0Z4072921 Keywords : microwaves * tert-butylphenols * catalyst activation Subject RIV: CC - Organic Chemistry Impact factor: 1.729, year: 2002

  18. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.

    Science.gov (United States)

    Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin

    2014-11-10

    A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2)  g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The effect of diluting ruthenium by iron in Ru{sub x}Se{sub y} catalyst for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Delacote, Cyril [Laboratory of Electrocatalysis, CNRS, University of Poitiers, F-86022 Poitiers Cedex (France); CEISAM, CNRS, University of Nantes, F-44322 Nantes Cedex 3 (France); Lewera, Adam [University of Warsaw, Department of Chemistry, ul. Pasteura 1, 02-093 Warsaw (Poland); Pisarek, Marcin [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland); Kulesza, Pawel J. [University of Warsaw, Department of Chemistry, ul. Pasteura 1, 02-093 Warsaw (Poland); Zelenay, Piotr [Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Alonso-Vante, Nicolas, E-mail: nicolas.alonso.vante@univ-poitiers.f [Laboratory of Electrocatalysis, CNRS, University of Poitiers, F-86022 Poitiers Cedex (France)

    2010-11-01

    This study has focused on the synthesis of novel oxygen reduction reaction (ORR) chalcogenide catalysts, with Ru partially replaced by Fe in a cluster-type Ru{sub x}Se{sub y}. The catalysts were obtained by thermal decomposition of Ru{sub 3}(CO){sub 12} and Fe(CO){sub 5} in the presence of Se. As indicated by the XPS data, the composition of catalyst nanoparticles depends on the solvent used (either p-xylene or dichlorobenzene). The presence of iron in synthesized catalysts has been confirmed by both EDAX and XPS. Voltammetric activation of the catalysts results in a partial removal of iron and unreacted selenium from the surface. The ORR performance of electrochemically pre-treated catalysts was evaluated using rotating disk and ring-disk electrodes in a sulfuric acid solution. No major change in the ORR mechanism relative to the Se/Ru catalyst has been observed with Fe-containing catalysts.

  20. MoO3/Al2O3 catalyst: Comparison of catalysts prepared by new slurry impregnation with molybdic acid with conventional samples

    International Nuclear Information System (INIS)

    Spojakina, A.; Kostova, N.; Vit, Z.; Zdrazil, M.

    2003-01-01

    Alumina-supported molybdena catalysts were prepared by conventional impregnation with (NH 4 ) 6 Mo 7 O 24 (CIM) and by a new slurry impregnation method (SIM). SIM is the reaction of alumina support with a slurry of MoO 3 in water. Two commercial supports were used and the commercial Mo 3 /Al 2 O 3 catalyst was included for comparison. Maximum amount of MoO 3 deposited by SIM was about 19-20 % MoO 3 with the surface area of the support of 260-280 m 2 g -1 and this corresponded to saturation monolayer of similar density as described in literature for CIM catalysts. At the ratios of MoO 3 to Al 2 O 3 in the impregnation slurry below saturation monolayer, the pH of the slurry was 3.5-6 (depending on loading) and chemical erosion of alumina is negligible. However, using the large excess of MoO 3 (35% MoO 3 ) the pH was 2.4-3.4 and chemical erosion of alumina occurred. Silica contained in alumina supports was partly extracted as soluble silicomolybdic anions during SIM. The catalysts were characterized by BET, IR, DRS (UV-vis and NIR), TPR and catalytic activity in hydrodesulfurization of thiophene. Calcination had no significant effect on the properties of SIM catalysts and this proved that calcination is not needed in that method. All catalysts exhibited features of high monolayer dispersion of molybdena and no significant difference in structure and catalytic properties was observed between SIM and CIM catalysts. This confirmed that SIM is a simple, clean and reliable method of preparation of monolayer type MoO 3 /Al 2 O 3 catalysts. (author)