WorldWideScience

Sample records for zr-based bulk amorphousmetal

  1. Oxidation behaviour of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang, Bin

    2011-01-01

    The Zr-based bulk metallic glasses, developed since the late 1980's, have very interesting mechanical properties, which can be considered for many applications including working under oxidizing atmosphere conditions at high temperatures. It is therefore interesting to study their oxidation resistance and to characterize the oxide scale formed on alloys surface. The fundamental objective of this thesis is to enhance the understanding of the role of various thermodynamic and chemistry parameters on the oxidation behaviour of the Zr-based bulk metallic glasses at high temperature under dry air, to determine the residual stresses in the oxide layer, in comparison with their crystalline alloys with the same chemical composition after an annealing treatment. The oxidation kinetics of these glasses and the crystalline structure of oxide scale ZrO 2 depend on the temperature and the oxidation duration: for short periods of oxidation or at a temperature below Tg, the kinetics follows a parabolic law, whereas, if the sample is oxidized at T ≥ Tg, the kinetics can be divided into two parts. The crystalline counterparts are oxidized by a parabolic rule whatever the temperature; for long oxidation duration at a temperature close to Tg, the kinetics becomes more complex because of the crystallisation of the glasses during the oxidation tests. Also the crystalline structure of the oxide layers depends on the oxidation temperature: the oxide layer consists only in tetragonal Zirconia at T ≤ Tg, while monoclinic Zirconia was formed at higher temperature. The mechanism of the formation of the oxide scale is due to both the interior diffusion of Oxygen ions and the external diffusion of Zirconium ions. However the diffusion of Zirconium ions slows gradually during the crystallisation process of the glass matrix. When the crystallisation is completed, the formation of Zirconia is controlled by only the internal diffusion of oxygen ions. The corresponding residual stresses

  2. Welding of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Elahi, M.

    2010-01-01

    Recently, many bulk metallic glass (BMG) materials with high specific strength, hardness and superior corrosion resistance have been developed and the maximum thickness of some Zr-based BMGs have reached several tenths of millimeters. Nevertheless, homogeneous glassy BMGs are not thick enough to be used for structural applications. In order to extend the engineering applications of BMG materials, BMG welding technologies needed to be developed. Specifically, the welding technologies of dissimilar materials such as BMG materials to crystalline alloys are to be developed. The functional use of the specific properties of each material in dissimilar material combination provides flexible design possibilities for products. In this project electron beam welding is employed to join BMG with BMG of different composition as well as with different crystalline materials (i.e. Hastealoy C-276, Inconel-625 and pure Ti metal). Defects free weld joint was achieved in BMG-BMG welding. Some cracks were produced in melt zone of BMG-Ti and BMG-Hastealoy C-276 welding while at joint they fuse properly with BMG. Inconel-625 could not properly weld with BMG. In all cases, hardness of melt zone was found to be higher than the base metals and the heat affected zone (HAZ). (author)

  3. Preparation and characterization of Zr-based bulk metallic glasses in form of plate

    International Nuclear Information System (INIS)

    Pilarczyk, Wirginia

    2014-01-01

    Highlights: • Zr-based BMGs in form of plate was successful produced by die pressure casting method. • Many techniques have been used to characterize the structure of Zr 55 Cu 30 Ni 5 Al 10 alloy. • The calculated GFA parameters show that the alloy exhibits satisfactory GFA. • The studies reveal that tested as-cast Zr-based alloy is in amorphous state. - Abstract: Zr-based bulk metallic glasses present an interesting combination of physical, chemical and mechanical properties. During the last decade, intensive progress has been made and a number of applications have been suggested for these materials. In order to successfully apply these materials, it is necessary to accurately characterize their structure, thermal stability and other properties accurately. The aim of the presented work is the manufacturing, examination of the structure of selected Zr-based bulk metallic alloys and confirmation of an amorphous structure using X-ray analysis, microscopic observation and thermal analysis. In this work, the Zr-based bulk metallic glasses in form of plate was successful produced by die pressure casting method. Designed scientific station for casting zirconium based amorphous alloys in the form of plates and rods with selected dimensions is in our university a comprehensive method for achieving amorphous materials which enables us to maintain repeatability of as-cast samples with the amorphous structure and the assumed dimensions range. The diffraction pattern and exothermic reaction as well as the fracture surface morphology reveal that studied as-cast Zr-based alloy is in amorphous state. The calculated GFA parameters show that the alloy exhibits satisfactory glass-forming ability in form of studied plate. These obtained values can suggest that studied alloys are suitable materials for further planned practical application at welding process. The success of Zr-based bulk metallic glasses production in form of plate with obtained sizes is important for future

  4. Study of oxidation behaviour of Zr-based bulk amorphous alloy Zr 65 ...

    Indian Academy of Sciences (India)

    The oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 has been studied in air environment at various temperatures in the temperature range 591–684 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy in the amorphous phase obeys the parabolic rate law for oxidation ...

  5. Preparation and characterization of Zr-based bulk metallic glasses in form of plate

    Energy Technology Data Exchange (ETDEWEB)

    Pilarczyk, Wirginia, E-mail: wirginia.pilarczyk@polsl.pl

    2014-12-05

    Highlights: • Zr-based BMGs in form of plate was successful produced by die pressure casting method. • Many techniques have been used to characterize the structure of Zr{sub 55}Cu{sub 30}Ni{sub 5}Al{sub 10} alloy. • The calculated GFA parameters show that the alloy exhibits satisfactory GFA. • The studies reveal that tested as-cast Zr-based alloy is in amorphous state. - Abstract: Zr-based bulk metallic glasses present an interesting combination of physical, chemical and mechanical properties. During the last decade, intensive progress has been made and a number of applications have been suggested for these materials. In order to successfully apply these materials, it is necessary to accurately characterize their structure, thermal stability and other properties accurately. The aim of the presented work is the manufacturing, examination of the structure of selected Zr-based bulk metallic alloys and confirmation of an amorphous structure using X-ray analysis, microscopic observation and thermal analysis. In this work, the Zr-based bulk metallic glasses in form of plate was successful produced by die pressure casting method. Designed scientific station for casting zirconium based amorphous alloys in the form of plates and rods with selected dimensions is in our university a comprehensive method for achieving amorphous materials which enables us to maintain repeatability of as-cast samples with the amorphous structure and the assumed dimensions range. The diffraction pattern and exothermic reaction as well as the fracture surface morphology reveal that studied as-cast Zr-based alloy is in amorphous state. The calculated GFA parameters show that the alloy exhibits satisfactory glass-forming ability in form of studied plate. These obtained values can suggest that studied alloys are suitable materials for further planned practical application at welding process. The success of Zr-based bulk metallic glasses production in form of plate with obtained sizes is

  6. Influence of air and vacuum environment on fatigue behavior of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang, G.Y.; Liaw, P.K.; Yokoyama, Y.; Peter, W.H.; Yang, B.; Freels, M.; Buchanan, R.A.; Liu, C.T.; Brooks, C.R.

    2007-01-01

    High-cycle fatigue (HCF) experiments in air and vacuum at room temperature were conducted on zirconium (Zr)-based bulk-metallic glasses (BMGs): Zr 50 Cu 40 Al 10 , Zr 50 Cu 30 Al 10 Ni 10 , and Zr 50 Cu 37 Al 10 Pd 3 in atomic percent. The fatigue-endurance limit of Zr 50 Cu 37 Al 10 Pd 3 was found to be significantly greater than those of Zr 50 Cu 40 Al 10 and Zr 50 Cu 30 Al 10 Ni 10 , which indicates that the inclusions of Pd and the resulting nano structures improve the fatigue resistances of the Zr-based BMGs. The fatigue lives in vacuum and air were generally found to be comparable

  7. A multi-component Zr alloy with comparable strength and Higher plasticity than Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Liang, S.X.; Yin, L.X.; Ma, M.Z.; Jing, R.; Yu, P.F.; Zhang, Y.F.; Wang, B.A.; Liu, R.P.

    2013-01-01

    Zirconium (Zr)-based bulk metallic glass possesses the highest potential as a structural material among metallic glasses. Although Zr-based bulk metallic glass exhibits extremely high strength, its potential application has been restricted by a number of issues, such as fragility, small size, difficult fabrication into different shapes and poisonous beryllium content, among others. In this paper, a Zr-based crystal alloy with comparable strength and higher plasticity than Zr-based bulk metallic glass is presented. The proposed Zr-based alloy has a tensile strength greater than 1600 MPa. That value is comparable to the 1500 MPa to 2000 MPa strength of Zr-based bulk metallic glasses (BMGs). The ductility in terms of elongation reached 6.2%; at the same time, the 1400 MPa tensile strength was retained. This phenomenon is not possible for Zr-based BMGs. XRD results show that the proposed ultrahigh-strength Zr-based crystal alloy has two-phase structures: an hcp-structured α phase and a bcc-structured β phase. The forged specimen exhibits a typical basket-weave microstructure, which is characterised by the interlaced plate α phase separated from the β phase matrix. Fine, short bar-shaped α phases precipitated along the original β grain boundary together with ultrafine dot-shaped α phases that presented inside the original β grain when the ageing temperature was between 500 °C and 525 °C. As the ageing temperature increased, the dot-shaped α phase grew into plate shapes, decreasing the material's strength and increasing its plasticity. The ultrafine dot-shaped and short bar-shaped α phases in the original β phase matrix are the main strengthening mechanisms of the ultrahigh-strength Zr-based crystal alloy.

  8. Bulk and microscale compressive behavior of a Zr-based metallic glass

    International Nuclear Information System (INIS)

    Lai, Y.H.; Lee, C.J.; Cheng, Y.T.; Chou, H.S.; Chen, H.M.; Du, X.H.; Chang, C.I.; Huang, J.C.; Jian, S.R.; Jang, J.S.C.; Nieh, T.G.

    2008-01-01

    Micropillars with diameters of 3.8, 1 and 0.7 μm were fabricated from a two-phase Zr-based metallic glass using focus ion beam (FIB), and then tested in compression at strain rates from 1 x 10 -4 to 1 x 10 -2 s -1 . The apparent yield strength of the micropillars ranges from 1992 to 2972 MPa, or 25-86% increase over that of the bulk specimens. This strength increase can be rationalized by the Weibull statistics for brittle materials

  9. Biocompatibility study on Ni-free Ti-based and Zr-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.H. [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Wong, P.C. [Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan (China); Chang, S.F. [Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan (China); Tsai, P.H. [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Jang, J.S.C., E-mail: jscjang@ncu.edu.tw [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan (China); Huang, J.C. [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan (China)

    2017-06-01

    Safety and reliability are crucial issues for medical instruments and implants. In the past few decays, bulk metallic glasses (BMGs) have drawn attentions due to their superior mechanical properties, good corrosion resistance, antibacterial and good biocompatibility. However, most Zr-based and Ti-based BMGs contain Ni as an important element which is prone to human allergy problem. In this study, the Ni-free Ti-based and Zr-based BMGs, Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14}, and Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8}, were selected for systematical evaluation of their biocompatibility. Several biocompatibility tests, co-cultural with L929 murine fibroblast cell line, were carried out on these two BMGs, as well as the comparison samples of Ti6Al4V and pure Cu. The results in terms of cellular adhesion, cytotoxicity, and metallic ion release affection reveal that the Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14} BMG and Ti6Al4V exhibit the optimum biocompatibility; cells still being attached on the petri dish with good adhesion and exhibiting the spindle shape after direct contact test. Furthermore, the Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14} BMG showed very low Cu ion release level, in agreement with the MTT results. Based on the current findings, it is believed that Ni-free Ti-based BMG can act as an ideal candidate for medical implant. - Highlight: • Ni-free bulk metallic glass is promising material for medical implants. • Ni-free Ti-based BMG presents similar cellular adhesion as Ti6Al4V. • Ni-free Ti-based BMG shows less cytotoxicity, and metallic ion release than Ti6Al4V.

  10. Hot Embossing of Zr-Based Bulk Metallic Glass Micropart Using Stacked Silicon Dies

    Directory of Open Access Journals (Sweden)

    Zhijing Zhu

    2015-01-01

    Full Text Available We demonstrated hot embossing of Zr65Cu17.5Ni10Al7.5 bulk metallic glass micropart using stacked silicon dies. Finite element simulation was carried out, suggesting that it could reduce the stress below 400 MPa in the silicon dies and enhance the durability of the brittle silicon dies when using varying load mode (100 N for 60 s and then 400 N for 60 s compared with using constant load mode (200 N for 120 s. A micropart with good appearance was fabricated under the varying load, and no silicon die failure was observed, in agreement with the simulation. The amorphous state of the micropart was confirmed by differential scanning calorimeter and X-ray diffraction, and the nanohardness and Young’s modulus were validated close to those of the as-cast BMG rods by nanoindentation tests. The results proved that it was feasible to adopt the varying load mode to fabricate three-dimensional Zr-based bulk metallic glass microparts by hot embossing process.

  11. Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Cheng, Sirui; Wang, Chunju; Ma, Mingzhen; Shan, Debin; Guo, Bin

    2016-01-01

    In the Zr_4_1_._2Ti_1_3_._8Cu_1_2_._5Ni_1_0Be_2_2_._5 (Vit1) alloy undergoing high temperature deformation, its thermal properties and microstructure are quite different from those in the annealing alloy. In order to research the coupled effect of temperature and plastic strain on microstructural evolution of Zr-based amorphous, uniaxial compression test of Vit1 alloy with good amorphous nature has been performed, and then the structural state and thermal properties of Vit1 alloy after thermal deformation and isothermal annealing in the supercooled liquid region were investigated. It is revealed that the deformed specimens possess higher characteristic temperature and lower enthalpy change of microstructural relaxation. In addition, the smaller inter-atomic distance and higher order degree of atomic arrangement can be observed in those deformed Vit1 alloy. That can be deduced that thermal deformation is in favor of the microstructural evolution from a metastable amorphous state to stable crystallization state, because plastic strain promotes the annihilation of free volume and provide excess driving force of atomic diffusion. However, upon increasing the ambient temperature, the influence of plastic deformation on microstructure gradually decreased owing to the decreasing proportion of the plastic deformation-induced annihilation of free volume during the whole thermal deformation process. - Highlights: • The deformed specimens possess closer microstructure and higher characteristic temperatures. • The order degree of microstructures in deformed specimens is higher than that in annealed specimens. • Thermal deformation accelerates the microstructural evolution of Zr-based BMGs. • The influence of thermal deformation on microstructure decreases with the temperature increasing.

  12. Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Sirui [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Chunju [Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Mingzhen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Shan, Debin, E-mail: shandebin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Bin [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2016-08-15

    In the Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} (Vit1) alloy undergoing high temperature deformation, its thermal properties and microstructure are quite different from those in the annealing alloy. In order to research the coupled effect of temperature and plastic strain on microstructural evolution of Zr-based amorphous, uniaxial compression test of Vit1 alloy with good amorphous nature has been performed, and then the structural state and thermal properties of Vit1 alloy after thermal deformation and isothermal annealing in the supercooled liquid region were investigated. It is revealed that the deformed specimens possess higher characteristic temperature and lower enthalpy change of microstructural relaxation. In addition, the smaller inter-atomic distance and higher order degree of atomic arrangement can be observed in those deformed Vit1 alloy. That can be deduced that thermal deformation is in favor of the microstructural evolution from a metastable amorphous state to stable crystallization state, because plastic strain promotes the annihilation of free volume and provide excess driving force of atomic diffusion. However, upon increasing the ambient temperature, the influence of plastic deformation on microstructure gradually decreased owing to the decreasing proportion of the plastic deformation-induced annihilation of free volume during the whole thermal deformation process. - Highlights: • The deformed specimens possess closer microstructure and higher characteristic temperatures. • The order degree of microstructures in deformed specimens is higher than that in annealed specimens. • Thermal deformation accelerates the microstructural evolution of Zr-based BMGs. • The influence of thermal deformation on microstructure decreases with the temperature increasing.

  13. Laser Shock Peening on Zr-based Bulk Metallic Glass and Its Effect on Plasticity: Experiment and Modeling

    Science.gov (United States)

    Cao, Yunfeng; Xie, Xie; Antonaglia, James; Winiarski, Bartlomiej; Wang, Gongyao; Shin, Yung C.; Withers, Philip J.; Dahmen, Karin A.; Liaw, Peter K.

    2015-05-01

    The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and good wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via the micro-slot cutting method, and then predict them using a three-dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analyses of serrated flows reveal plentiful and useful information of the underlying deformation process. Our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.

  14. The effect of nanocrystallization and free volume on the room temperature plasticity of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Mondal, K.; Ohkubo, T.; Toyama, T.; Nagai, Y.; Hasegawa, M.; Hono, K.

    2008-01-01

    To understand the mechanism of the room temperature plasticity of bulk metallic glasses (BMGs), microstructure observations, density measurements and positron annihilation studies were carried out for Zr-based BMGs cast at various temperatures and post-annealed under different conditions. We found that higher casting temperatures cause partial crystallization, which enhance the plasticity as long as the volume fraction of the crystalline phase is low. However, a similar nanocrystalline microstructure produced by post-annealing often leads to a large loss of plasticity, while certain conditions enhance the plasticity. Based on density measurements and positron annihilation lifetime spectroscopy, we conclude that the relative contribution of free volume and nanocrystallization is important for acquiring plasticity in metallic glasses

  15. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    based bulk metallic glass (BMG) and its in situ BMG matrix composites with diameter of 3 mm were fabricated by conventional Cu-mould casting method and ... The composites showed lower friction coefficient and wear rate than the pure BMG.

  16. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    based bulk metallic glasses; in situ composites; ductile phase; wear behaviours. 1. Introduction ... crystalline alloys [2], which led to an abnormal phenomenon that the wear ... of BMGs does not follow the empirical Archard's wear equa- tion which ...

  17. Degradation of Zr-based bulk metallic glasses used in load-bearing implants: A tribocorrosion appraisal.

    Science.gov (United States)

    Zhao, Guo-Hua; Aune, Ragnhild E; Mao, Huahai; Espallargas, Nuria

    2016-07-01

    Owing to the amorphous structure, Bulk Metallic Glasses (BMGs) have been demonstrating attractive properties for potential biomedical applications. In the present work, the degradation mechanisms of Zr-based BMGs with nominal compositions Zr55Cu30Ni5Al10 and Zr65Cu18Ni7Al10 as potential load-bearing implant material were investigated in a tribocorrosion environment. The composition-dependent micro-mechanical and tribological properties of the two BMGs were evaluated prior to the tribocorrosion tests. The sample Zr65-BMG with a higher Zr content exhibited increased plasticity but relatively reduced wear resistance during the ball-on-disc tests. Both BMGs experienced abrasive wear after the dry wear test under the load of 2N. The cross-sectional subsurface structure of the wear track was examined by Focused Ion Beam (FIB). The electrochemical properties of the BMGs in simulated body fluid were evaluated by means of potentiodynamic polarization and X-ray Photoelectron Spectroscopy (XPS). The spontaneous passivation of Zr-based BMGs in Phosphate Buffer Saline solution was mainly attributed to the highly concentrated zirconium cation (Zr(4+)) in the passive film. The tribocorrosion performance of the BMGs was investigated using a reciprocating tribometer equipped with an electrochemical cell. The more passive nature of the Zr65-BMG had consequently a negative influence on its tribocorrosion resistance, which induced the wear-accelerated corrosion and eventually speeded-up the degradation process. It has been revealed the galvanic coupling was established between the depassivated wear track and the surrounding passive area, which is the main degradation mechanism for the passive Zr65-BMG subjected to the tribocorrosion environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Fabricating Zr-Based Bulk Metallic Glass Microcomponent by Suction Casting Using Silicon Micromold

    Directory of Open Access Journals (Sweden)

    Zhijing Zhu

    2014-08-01

    Full Text Available A suction casting process for fabricating Zr55Cu30Al10Ni5 bulk metallic glass microcomponent using silicon micromold has been studied. A complicated BMG microgear with 50 μm in module has been cast successfully. Observed by scanning electron microscopy and laser scanning confocal microscopy, we find that the cast microgear duplicates the silicon micromold including the microstructure on the surface. The amorphous state of the microgear is confirmed by transmission election microscopy. The nanoindentation hardness and elasticity modulus of the microgear reach 6.5 GPa and 94.5 GPa. The simulation and experimental results prove that the suction casting process with the silicon micromold is a promising one-step method to fabricate bulk metallic glass microcomponents with high performance for applications in microelectromechanical system.

  19. On the anelasticity and strain induced structural changes in a Zr-based bulk metallic glass

    International Nuclear Information System (INIS)

    Caron, A.; Louzguine-Luzguin, D. V.; Kawashima, A.; Inoue, A.; Fecht, H.-J.

    2011-01-01

    We report on the anelastic behavior of a cyclically loaded Zr 62.5 Fe 5 Cu 22.5 Al 10 bulk metallic glass well below its yield strength. The dynamic mechanical behavior of the glass is discussed on the basis of its structural and thermodynamic properties before and after tests. We show how the kinetically frozen anelastic deformation accumulates at room temperature and causes a structural relaxation and densification of the glass and further leads to its partial crystallization.

  20. Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghyun [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)], E-mail: joindoc@kumamoto-u.ac.jp; Kawamura, Y. [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)

    2007-04-15

    We successfully welded 3 mm thick Zr{sub 41}Be{sub 23}Ti{sub 14}Cu{sub 12}Ni{sub 10} bulk metallic glass plate to Ti metal by electron beam welding with a beam irradiated 0.4 mm on the BMG side of the interface. There was no crystallization or defects in the weld because changes in the chemical composition of the weld metal were prevented. Bending showed that the welded sample had a higher strength than the Ti base metal. The interface had a 10 {mu}m thick interdiffusion layer of Zr and Ti.

  1. Development of friction welding process of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Shin, Hyung Seop; Jeong, Young Jin; Kim, Ki Hyun

    2004-01-01

    Bulk Metallic Glasses(BMG) with good mechanical properties have problems that engineering application fields have been limited because of limitation of the alloy size. In order to solving this problem, the friction welding of BMG has been tried using the superplastic-like deformation behavior under the supercooled liquid region. The apparatus for friction welding test was designed and constructed using pneumatic cylinder and gripper based on a conventional lathe. Friction welding have been tried to combination of same BMG alloy and crystalline alloys. The results of welding test were evaluated by X-ray diffraction, measurement of hardness and mechanical properties test. In order to obtain the optimized welding test conditions the temperature of friction interface was measured using Infrared thermal imager

  2. Free volume model: High-temperature deformation of a Zr-based bulk metallic glass

    International Nuclear Information System (INIS)

    Bletry, M.; Guyot, P.; Blandin, J.J.; Soubeyroux, J.L.

    2006-01-01

    The homogeneous deformation of a zirconium-based bulk metallic glass is investigated in the glass transition region. Compression tests at different temperatures and strain rates have been conducted. The mechanical behavior is analyzed in the framework of the free volume model, taking into account the dependence of the flow defect concentration on deformation. The activation volume is evaluated and allows one to gather the viscosity data (for the different strain rates and temperatures) on a unique master curve. It is also shown that, due to the relation between flow defect concentration and free volume, it is not possible to deduce the equilibrium flow defect concentration directly from mechanical measurements. However, if this parameter is arbitrarily chosen, mechanical measurements give access to the other parameters of the model, these parameters for the alloy under investigation being of the same order of magnitude as those for other metallic glasses

  3. Dynamic strength behavior of a Zr-based bulk metallic glass under shock loading

    International Nuclear Information System (INIS)

    Yu Yu-Ying; Xi Feng; Dai Cheng-Da; Cai Ling-Cang; Tan Ye; Li Xue-Mei; Wu Qiang; Tan Hua

    2015-01-01

    Dynamic strength behavior of Zr 51 Ti 5 Ni 10 Cu 25 Al 9 bulk metallic glass (BMG) up to 66 GPa was investigated in a series of plate impact shock-release and shock-reload experiments. Particle velocity profiles measured at the sample/LiF window interface were used to estimate the shear stress, shear modulus, and yield stress in shocked BMG. Beyond confirming the previously reported strain-softening of shear stress during the shock loading process for BMGs, it is also shown that the softened Zr-BMG still has a high shear modulus and can support large yield stress when released or reloaded from the shocked state, and both the shear modulus and the yield stress appear as strain-hardening behaviors. The work provides a much clearer picture of the strength behavior of BMGs under shock loading, which is useful to comprehensively understand the plastic deformation mechanisms of BMGs. (paper)

  4. Corrosion fatigue studies on a bulk glassy Zr-based alloy under three-point bending

    Science.gov (United States)

    Grell, Daniel; Wilkin, Yannic; Gostin, Petre F.; Gebert, Annett; Kerscher, Eberhard

    2016-12-01

    Corrosion fatigue (CF) tests were carried out on bulk glassy Zr52.5Cu17.9Al10Ni14.6Ti5 (Vitreloy 105) samples under load-controlled three-point bending conditions with a load ratio of R = 0.1 in 0.01 M Na2SO4 + 0.01 M NaCl electrolyte. During cyclic testing, the bar-shaped specimens were polarized in situ at constant potentials and the current was monitored. Three different anodic potentials within the interval between the pitting potential EP and the repassivation potential ER, and three different load amplitudes were applied. In some cases, in situ microscopic observations revealed the formation of black corrosion products in the vicinity of the crack tip during anodic polarization. Fractographic analysis revealed a clear distinction between two modes of crack growth characterized by smooth dissolution induced regions on the one hand and slim fast fracture areas on the other hand. Both alternating features contributed to a broad striated corrosion fatigue fracture surface. Moreover, further fatigue tests were carried out under free corrosion conditions yielding additional information on crack initiation and crack propagation period by means of the open circuit potential (OCP) changes. Thereby, a slight increase in OCP was detected after rupture of the passive layer due to bare metal exposed to the electrolyte. The electrochemical response increased continuously according to stable crack propagation until fracture occurred. Finally, the fracture surfaces of the corrosion fatigue samples were investigated by energy dispersive X-ray with the objective of analyzing the elemental distribution after anodic dissolution. Interestingly, anodic polarization at a near repassivation potential of -50 mV vs. SCE (Saturated Calomel Electrode, E = 0.241 V vs. SHE, Standard Hydrogen Electrode) led to favorable effects on the fatigue lifetime. In conclusion, all results are conflated to a corrosion fatigue model for bulk glassy Vitreloy 105 under anodic polarization in chloride

  5. Characteristic of improved fatigue performance for Zr-based bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Qiao, J.W.; Huang, E.W.; Wang, G.Y.; Yang, H.J.; Liang, W.; Zhang, Y.; Liaw, P.K.

    2013-01-01

    Zr 58.5 Ti 14.3 Nb 5.2 Cu 6.1 Ni 4.9 Be 11.0 bulk metallic glass matrix composites exhibit improved four-point-bending fatigue endurance with a fatigue limit of 567 MPa, compared to that under the tension–tension fatigue, due to the high-volume-fractioned dendrites, which can effectively blunt the fatigue-induced cracks. Illuminated by high-energy synchrotron X-ray at 200 and 100 K, the corresponding diffraction peaks, such as (110), (200), and (211) shift rightward to small lattice spacings, compared to those at 298 K. However, the peak widths at 100 K and 200 K are almost identical to that of room temperature. Since an identical fatigue specimen was measured under room temperature, 200 K, and 100 K, the invariant of the peak widths reveal the fact of the irreversible microstructure developments induced by fatigue. Even if the fatigue fracture stress is distinguishingly lower than the yielding strength, the deformation of dendrites locally prevails, evidenced by the occurrence of dislocations

  6. Homogeneous viscous flow behavior of a Cu–Zr based bulk metallic glass composites

    International Nuclear Information System (INIS)

    Zhang, X.Y.; Yuan, Z.Z.; Feng, X.L.; Cui, L.Z.; Li, D.X.

    2015-01-01

    In this paper, Cu 40 Zr 44 Ag 8 Al 8 bulk metallic glass composites (BMGCs) consisting of various volume fraction of nanocrystals embedded in the amorphous matrix was synthesized by controlled annealing treatment of an as-cast BMGCs. The high temperature compression behaviors of the BMGCs were characterized in the supercooled liquid region. Results show that the flow stresses keep increasing after an initial decrease with extension of the annealing time. With annealing the values of activation volume V act is determined to be increasing from 283.6216 Ǻ 3 to 305.553 Ǻ 3 , suggesting that the jump of atoms is a cooperative process during the high-temperature deformation. Flow behavior of the BMGCs annealed for less than 8 min transform from Newtonian to non-Newtonian dependant on the stain rate and can be successively fitted by the visco-plasticity model. Fitting results indicate that deformation behaviors of these samples are governed by homogeneous flow of the amorphous matrix and indeed determined by the viscosities in the Newtonian flow stage. However, the BMGCs annealed for 8 min exhibit a non-Newtonian flow over the entire compression process and fail to be fitted by the visco-plasticity model. Micrographs of the sample reflect an impinged structure, indicating that high temperature deformation behavior of the BMGCs with high volume fractions of particles is indeed controlled by that of a backbone of particles

  7. Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses.

    Science.gov (United States)

    Liu, L; Qiu, C L; Chen, Q; Chan, K C; Zhang, S M

    2008-07-01

    Two Ni-free bulk metallic glasses (BMGs) of Zr(60)Nb(5)Cu(22.5)Pd(5)Al(7.5) and Zr(60)Nb(5)Cu(20)Fe(5)Al(10) were successfully prepared by arc-melting and copper mold casting. The thermal stability and crystallization were studied using differential scanning calorimetry. It demonstrates that the two BMGs exhibit very good glass forming ability with a wide supercooled liquid region. A multi-step process of crystallization with a preferential formation of quasicrystals occurred in both BMGs under continuous heating. The deformation behavior of the two BMGs was investigated using quasi-static compression testing. It reveals that the BMGs exhibit not only superior strength but also an extended plasticity. Corrosion behaviors of the BMGs were investigated in phosphate buffered solution by electrochemical polarization. The result shows that the two BMGs exhibit excellent corrosion resistance characterized by low corrosion current densities and wide passive regions. X-ray photoelectron spectroscopy analysis revealed that the passive film formed after anodic polarization was highly enriched in zirconium, niobium, and aluminum oxides. This is attributed to the excellent corrosion resistance. Additionally, the potential cytotoxicity of the two Ni-free BMGs was evaluated through cell culture for 1 week followed by 3-(4,5-Dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide assay and SEM observation. The results indicate that the two Ni-free BMGs exhibit as good biocompatibility as Ti-6Al-4V alloy, and thus show a promising potential for biomedical applications. (c) 2007 Wiley Periodicals, Inc.

  8. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: compositional optimization for potential biomedical applications.

    Science.gov (United States)

    Hua, Nengbin; Huang, Lu; Chen, Wenzhe; He, Wei; Zhang, Tao

    2014-11-01

    The present study designs and prepares Ni-free Zr60+xTi2.5Al10Fe12.5-xCu10Ag5 (at.%, x=0, 2.5, 5) bulk metallic glasses (BMGs) by copper mold casting for potential biomedical application. The effects of Zr content on the in vitro biocompatibility of the Zr-based BMGs are evaluated by investigating mechanical properties, bio-corrosion behavior, and cellular responses. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high notch toughness. Electrochemical measurements demonstrate that the Zr-based BMGs are corrosion resistant in a phosphate buffered saline solution. The bio-corrosion resistance of BMGs is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. Regular cell responses of mouse MC3T3-E1 cells, including cell adhesion and proliferation, are observed on the Zr-Ti-Al-Fe-Cu-Ag BMGs, which reveals their general biosafety. The high-Zr-based BMGs exhibit a higher cell proliferation activity in comparison with that of pure Zr and Ti-6Al-4V alloy. The effects of Zr content on the in vitro biocompatibility can be used to guide the future design of biocompatible Zr-based BMGs. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, D.Q. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Jiao, W.T. [College of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhang, Y.F. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Vocational and Technical College of Building Materials, Qinhuangdao 066004 (China); Wang, B.A.; Li, J.; Zhang, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Ma, M.Z., E-mail: mz550509@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-03-05

    Highlights: • Hardness of dendrite of TiZr-based BMGMCs increases. • Strong work-hardening behavior is obtained after solid solution strengthening. • Lattice distortions of dendrite suffering from rapid cooling are detected. - Abstract: A series of TiZr-based bulk metallic glass matrix composites (BMGMCs) with distinguished mechanical properties are successfully fabricated by adding different volume fractions of Ta (Ti{sub 38.8}Zr{sub 28.8}Cu{sub 6.2}Be{sub 16.2}Nb{sub 10} as the basic composition, denoted as Ta{sub 0.0}–Ta{sub 8.0}). Along with the growth of precipitated phase, typical dendritic morphology is fully developed in the TiZr-based BMGMCs of Ta{sub 8.0}. Energy-dispersive spectrometry analysis of the dendrites and glass matrix indicates that the metallic elements of Nb and Ta should preferentially form solid solution into dendrites. The chaotic structure of high-temperature precipitate phase is trapped down by the rapid cooling of the copper-mould. The detected lattice distortions in the dendrites are attributed to the strong solid solution strengthening of the metallic elements of Ti, Zr, Nb, and Ta. These lattice distortions increase the resistance of the dislocation motion and pin the dislocations, thus the strength and hardness of dendrite increase. Dendrites create a strong barrier for the shear band propagation and generate multiple shear bands after solid solution strengthening, thereby providing the TiZr-based BMGMCs with greatly improved capacity to sustain plastic deformation and resistance to brittle fracture. Thus, the TiZr-based BMGMCs possess distinguished work-hardening capability. Among these TiZr-based BMGMCs, the sample Ta{sub 0.5} possesses the largest plastic strain (ε{sub p}) at 20.3% and ultimate strength (σ{sub max}) of 2613 MPa during compressive loading. In addition, the sample of Ta{sub 0.5} exhibits work-hardening up to an ultrahigh tensile strength of 1680 MPa during the tensile process, and then progressively

  10. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: Compositional optimization for potential biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Nengbin, E-mail: flower1982cn@126.com [Department of Materials Science and Engineering, Fujian University of Technology, 350118 Fuzhou (China); Department of Materials Science and Engineering, Fuzhou University, 350116 Fuzhou (China); Huang, Lu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2100 (United States); Chen, Wenzhe [Department of Materials Science and Engineering, Fujian University of Technology, 350118 Fuzhou (China); Department of Materials Science and Engineering, Fuzhou University, 350116 Fuzhou (China); He, Wei [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2100 (United States); Department of Mechanical, Aerospace and Biomedical Engineering, The University of Tennessee, Knoxville, TN 37996-2200 (United States); Zhang, Tao [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, 100191 Beijing (China)

    2014-11-01

    The present study designs and prepares Ni-free Zr{sub 60+x}Ti{sub 2.5}Al{sub 10}Fe{sub 12.5−x}Cu{sub 10}Ag{sub 5} (at.%, x = 0, 2.5, 5) bulk metallic glasses (BMGs) by copper mold casting for potential biomedical application. The effects of Zr content on the in vitro biocompatibility of the Zr-based BMGs are evaluated by investigating mechanical properties, bio-corrosion behavior, and cellular responses. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high notch toughness. Electrochemical measurements demonstrate that the Zr-based BMGs are corrosion resistant in a phosphate buffered saline solution. The bio-corrosion resistance of BMGs is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. Regular cell responses of mouse MC3T3-E1 cells, including cell adhesion and proliferation, are observed on the Zr–Ti–Al–Fe–Cu–Ag BMGs, which reveals their general biosafety. The high-Zr-based BMGs exhibit a higher cell proliferation activity in comparison with that of pure Zr and Ti-6Al-4V alloy. The effects of Zr content on the in vitro biocompatibility can be used to guide the future design of biocompatible Zr-based BMGs. - Highlights: • Ni-free Zr{sub 60+x}Ti{sub 2.5}Al{sub 10}Fe{sub 12.5−x}Cu{sub 10}Ag{sub 5} (at.%, x = 0, 2.5, 5) BMGs were fabricated. • Plasticity and notch toughness of BMGs are enhanced by high-Zr-content. • The high-Zr-based BMGs exhibit excellent bio-corrosion resistance in PBS solution. • The biosafety of BMGs is revealed by regular cell adhesion and proliferation. • High-Zr-bearing BMGs are favorable for potential applications as biomaterials.

  11. A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro human vascular cell response.

    Science.gov (United States)

    Huang, Lu; Pu, Chao; Fisher, Richard K; Mountain, Deidra J H; Gao, Yanfei; Liaw, Peter K; Zhang, Wei; He, Wei

    2015-10-01

    Despite the prevalent use of crystalline alloys in current vascular stent technology, new biomaterials are being actively sought after to improve stent performance. In this study, we demonstrated the potential of a Zr-Al-Fe-Cu bulk metallic glass (BMG) to serve as a candidate stent material. The mechanical properties of the Zr-based BMG, determined under both static and cyclic loadings, were characterized by high strength, which would allow for the design of thinner stent struts to improve stent biocompatibility. Finite element analysis further complemented the experimental results and revealed that a stent made of the Zr-based BMG was more compliant with the beats of a blood vessel, compared with medical 316L stainless steel. The Zr-based BMG was found to be corrosion resistant in a simulated body environment, owing to the presence of a highly stable ZrO2-rich surface passive film. Application-specific biocompatibility studies were conducted using human aortic endothelial cells and smooth muscle cells. The Zr-Al-Fe-Cu BMG was found to support stronger adhesion and faster coverage of endothelial cells and slower growth of smooth muscle cells than 316L stainless steel. These results suggest that the Zr-based BMG could promote re-endothelialization and potentially lower the risk of restenosis, which are critical to improve vascular stent implantation integration. In general, findings in this study raised the curtain for the potential application of BMGs as future candidates for stent applications. Vascular stents are medical devices typically used to restore the lumen of narrowed or clogged blood vessel. Despite the clinical success of metallic materials in stent-assisted angioplasty, post-surgery complications persist due to the mechanical failures, corrosion, and in-stent restenosis of current stents. To overcome these hurdles, strategies including new designs and surface functionalization have been exercised. In addition, the development of new materials with

  12. Clarification on shear transformation zone size and its correlation with plasticity for Zr-based bulk metallic glass in different structural states

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Q.; Huang, L. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Huang, P., E-mail: huangping@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Xu, K.W. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, F., E-mail: wangfei@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures Xi' an Jiaotong University, Xi' an 710049 (China); Lu, T.J. [State Key Laboratory for Strength and Vibration of Mechanical Structures Xi' an Jiaotong University, Xi' an 710049 (China); MOE Key Laboratory for Multifunctional Materials and Structures Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-11-20

    To clarify the real size of shear transformation zone (STZ) and its correlation with the plasticity of metallic glass, STZ sizes of a Zr-based bulk metallic glass (BMG) in three different structural states (as-cast, annealed and confining annealed) were examined using both rate-change and statistical methods upon nanoindentation. STZ sizes (less than 24 atoms) obtained by the statistical method approached the real STZ size of very few atoms, and showed no correlation with BMG plasticity. In sharp contrast, STZ sizes (hundreds of atoms) obtained by the rate-change method not only were much larger than the real STZ size but also exhibited a positive correlation with BMG plasticity. These discrepancies were discussed in terms of the structural evolution of BMGs upon nanoindentation.

  13. Influence of friction on the residual morphology, the penetration load and the residual stress distribution of a Zr-based bulk metallic glass

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2013-04-01

    Full Text Available In this paper, friction between the Cube-Corner indenter and the sample surface of a Zr-based bulk metallic glass (BMG was analyzed and discussed by the experimental method, the theoretical method and the finite element simulation. Linear residua are observed on the surface of the indenter for the first time, which gives the direct evidence that strong interaction processes exist between the indenter surface and the sample surface because of strong friction and local high contact press. A simplified model was developed to correct the penetration load with the consideration of friction. Effects of friction on the penetration load-depth curves, plastic flow, surface deformation and residual stress distribution of the sample with different friction coefficients were investigated by the finite element simulation.

  14. The structural properties of Zr-based bulk metallic glasses subjected to high pressure torsion at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Boltynjuk, E. V., E-mail: boltynjuk@gmail.com; Ubyivovk, E. V.; Kshumanev, A. M. [Saint Petersburg State University, 28 Universitetskiy pr., Saint Petersburg, 198504 (Russian Federation); Gunderov, D. V.; Lukianov, A. V. [Ufa State Aviation Technical University, K. Marks 12, Ufa, 450000 (Russian Federation); Bednarz, A. [Faculty of Mechanical Engineering and Aeronautics, Department of Aircraft and Aircraft Engines, Rzeszow University of Technology, Al. Powstancow Warszawy 8, 35-959 Rzeszow (Poland); Valiev, R. Z. [Saint Petersburg State University, 28 Universitetskiy pr., Saint Petersburg, 198504 (Russian Federation); Ufa State Aviation Technical University, K. Marks 12, Ufa, 450000 (Russian Federation)

    2016-06-17

    The structural properties of a Zr{sub 62}Cu{sub 22}Al{sub 10}Fe{sub 5}Dy{sub 1} bulk metallic glasses were investigated. Cylindrical rods of the Zr{sub 62}Cu{sub 22}Al{sub 10}Fe{sub 5}Dy{sub 1} BMG were subjected to high pressure torsion at temperatures of 20°C and 150°C. X-ray diffraction, transmission electron microscopy were used to determine peculiarities of the modified structure. Analysis of fracture surfaces, nanohardness measurements were conducted to investigate the influence of structural changes on mechanical behavior of processed samples.

  15. The structural properties of Zr-based bulk metallic glasses subjected to high pressure torsion at different temperatures

    International Nuclear Information System (INIS)

    Boltynjuk, E. V.; Ubyivovk, E. V.; Kshumanev, A. M.; Gunderov, D. V.; Lukianov, A. V.; Bednarz, A.; Valiev, R. Z.

    2016-01-01

    The structural properties of a Zr_6_2Cu_2_2Al_1_0Fe_5Dy_1 bulk metallic glasses were investigated. Cylindrical rods of the Zr_6_2Cu_2_2Al_1_0Fe_5Dy_1 BMG were subjected to high pressure torsion at temperatures of 20°C and 150°C. X-ray diffraction, transmission electron microscopy were used to determine peculiarities of the modified structure. Analysis of fracture surfaces, nanohardness measurements were conducted to investigate the influence of structural changes on mechanical behavior of processed samples.

  16. Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ke; Fan, Xinhui; Li, Bing; Li, Yanhong; Wang, Xin; Xu, Xuanxuan [Xi' an Technological Univ. (China). School of Material and Chemical Engineering

    2017-08-15

    In this paper, a systematic study of crystallization kinetics and deformation behavior is presented for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} bulk metallic glass in the supercooled liquid region. Crystallization results showed that the activation energy for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} was calculated using the Arrhenius equation in isothermal mode and the Kissinger-Akahira-Sunose method in non-isothermal mode. The activation energy was quite high compared with other bulk metallic glasses. Based on isothermal transformation kinetics described by the Johson-Mehl-Avrami model, the average Avrami exponent of about 3.05 implies a mainly diffusion controlled three-dimensional growth with an increasing nucleation rate during the crystallization. For warm deformation, the results showed that deformation behavior, composed of homogeneous and inhomogeneous deformation, is strongly dependent on strain rate and temperature. The homogeneous deformation transformed from non-Newtonian flow to Newtonian flow with a decrease in strain rate and an increase in temperature. It was found that the crystallization during high temperature deformation is induced by heating. The appropriate working temperature/strain rate combination for the alloy forming, without in-situ crystallization, was deduced by constructing an empirical deformation map. The optimum process condition for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} can be expressed as T∝733 K and ∝ ε 10{sup -3} s{sup -1}.

  17. Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A., E-mail: ainouebmg@yahoo.co.jp [International Institute of Green Materials, Josai International University, Togane 283-8555 (Japan); School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Department of Physics, King Abdulaziz University, Jeddah 22254 (Saudi Arabia); Wang, Z.; Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Han, Y. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Kong, F.L. [International Institute of Green Materials, Josai International University, Togane 283-8555 (Japan); Shalaan, E.; Al-Marzouki, F. [Department of Physics, King Abdulaziz University, Jeddah 22254 (Saudi Arabia)

    2015-07-25

    Highlights: • A multicomponent Zr{sub 55}Al{sub 10}Fe{sub 6}Co{sub 6}Ni{sub 6}Cu{sub 6}Pd{sub 6}Ag{sub 5} bulk glassy alloy was formed. • The high-order multiplication suppression of the decrease in mechanical strength. • The BGAs show good corrosion resistance and slow growth rate of primary precipitates. - Abstract: We examined the formation, thermal stability, mechanical properties and corrosion behavior of a multicomponent Zr{sub 55}Al{sub 10}Fe{sub 6}Co{sub 6}Ni{sub 6}Cu{sub 6}Pd{sub 6}Ag{sub 5} bulk glassy alloy, with the aim of clarifying the effect of high-order multiplication of the number of components on their properties. The bulk glassy alloy rods of 2 and 6 mm in diameter were formed by suction casting even at the low total content of typical glass-forming 3-d late transition metals like Co, Ni and Cu. The Vickers hardness is different in the center region and in the outer surface region. The difference seems to reflect the relaxation level of glassy structure. The Young’s modulus and the compressive fracture strength are nearly the same for the base Zr{sub 55}Al{sub 10}Ni{sub 5}Cu{sub 30} alloy in spite of the existence of immiscible atomic pairs. Moreover, the multicomponent alloy exhibits better corrosion resistance than that for the base alloy. The glassy phase changes to a supercooled liquid state at 720 K and then starts to crystallize at 754 K with a single exothermic peak, in contrast to the appearance of a wide supercooled liquid region for the base alloy. The primary crystalline phase precipitates with very short incubation time and very low growth rate, which are different from those for the base alloy. The extremely low growth rate of the crystallites is presumably due to the reduction of diffusivity of late transition metal elements resulting from multiplication. Thus, the high-order multiplication has the features of (1) the maintenance of high glass-forming ability even at the lower Co, Ni and Cu content and in the absence of

  18. Hierarchical surface patterning of Ni- and Be-free Ti- and Zr-based bulk metallic glasses by thermoplastic net-shaping

    Energy Technology Data Exchange (ETDEWEB)

    Sarac, Baran, E-mail: b.sarac@ifw-dresden.de [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (ÖAW), Jahnstrasse 12, A-8700 Leoben (Austria); Bera, Supriya [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Balakin, Sascha [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); ETH Zurich, Department of Materials, Metal physics und Technology, Vladimir-Prelog-Weg 4, HCI J 492, 8093 Zürich (Switzerland); Stoica, Mihai [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Politehnica University of Timisoara, P-ta Victoriei 2, RO-300006 Timisoara (Romania); Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstrasse 28, 01277, Dresden (Germany); Calin, Mariana, E-mail: m.calin@ifw-dresden.de [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Eckert, Jürgen [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (ÖAW), Jahnstrasse 12, A-8700 Leoben (Austria); Department Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, A-8700 Leoben (Austria)

    2017-04-01

    In order to establish a strong cell-material interaction, the surface topography of the implant material plays an important role. This contribution aims to analyze the formation kinetics of nickel and beryllium-free Ti- and Zr-based Bulk Metallic Glasses (BMGs) with potential biomedical applications. The surface patterning of the BMGs is achieved by thermoplastic net-shaping (TPN) into anisotropically etched cavities of silicon chips. The forming kinetics of the BMG alloys is assessed by thermal and mechanical measurements to determine the most suitable processing temperature and time, and load applied. Array of pyramidal micropatterns with a tip resolution down to 50 nm is achievable for the Zr-BMG, where the generated hierarchical features are crucial for surface functionalization, acting as topographic cues for cell attachment. The unique processability and intrinsic properties of this new class of amorphous alloys make them competitive with the conventional biomaterials. - Highlights: • Micro to nano-scale hierarchical surface patterns achieved by TPN of BMGs • Ni- and Be-free Zr-/Ti-BMGs with different GFA compared in terms of flow kinetics • Correlation between filling depths of Zr- and Ti-BMGs best described by formability • Multi-scale hierarchical patterning envisaged to facilitate BMG-cell interaction.

  19. Effect of MoSi2 Content on Dry Sliding Tribological Properties of Zr-Based Bulk Metallic Glass Composites

    Science.gov (United States)

    Liu, Longfei; Yang, Jun

    2017-12-01

    Zr55Cu30Al10Ni5 bulk metallic glass and its composites were prepared by suction casting into a copper mold. The effect of MoSi2 content on the tribological behavior of Zr55Cu30Al10Ni5 BMG was studied by using a high-speed reciprocating friction and wear tester. The results indicate that the friction coefficient and wear resistance of the BMGs can be improved by a certain amount of crystalline phase induced by MoSi2 content from 1 to 3% and deteriorated with MoSi2 content of 4%. The wear mechanism of both the metallic glass and its composite is abrasive wear. The mechanism of crystalline phase-dependent tribological properties of the composite was discussed based on the wear track and mechanical properties in the present work. The wear behavior of Zr55Cu30Al10Ni5 BMG and its composite indicates that a good combination of the toughness and the hardness can make the composite be well wear resistant.

  20. Microstructural evolution and homogeneous viscous flow behavior of a Cu–Zr based bulk metallic glass composites

    International Nuclear Information System (INIS)

    Zhang, X.Y.; Yuan, Z.Z.; Li, D.X.

    2014-01-01

    Highlights: • Stress–strain behaviors of the BMGCs are strain rate and temperature dependent. • Micro-crystals are compressed to concave polygon in shape and align in line. • Nano-crystals nuclear and aggregate during high temperature deformation. • Deformation behavior is governed by homogeneous flow of the amorphous matrix. - Abstract: The high temperature compression behavior of Cu 40 Zr 44 Ag 8 Al 8 rods with 6 mm in diameter was investigated and compared with the literature data. Microstructure of the as-cast rods were characterized by X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscope in the composites state with microscale Al 3 Zr particles embedded in the amorphous matrix. Deformation results show that the stress–strain behaviors of the bulk metallic glass composites (BMGCs) are strain rate and temperature dependent. In addition, SEM observations reveal that the initially spherical and randomly distributed microscale particles in the amorphous matrix deform to concave polygon in shape and align perpendicular to the load direction during the compression. Meanwhile nano-crystals precipitate continuously from the matrix and aggregate during deformation. Rheological analysis show that the BMGCs exhibit a transition from Newtonian to non-Newtonian in flow behavior dependent on the stain rate. Particles in the amorphous matrix have reinforcement effect on the BMGCs, but the deformation behavior is still dominated by the homogeneous flow of the amorphous matrix phase

  1. Dynamic behaviors of a Zr-based bulk metallic glass under ramp wave and shock wave loading

    Directory of Open Access Journals (Sweden)

    Binqiang Luo

    2015-06-01

    Full Text Available Dynamic behaviors of Zr51Ti5Ni10Cu25Al9 bulk metallic glass were investigated using electric gun and magnetically driven isentropic compression device which provide shock and ramp wave loading respectively. Double-wave structure was observed under shock compression while three-wave structure was observed under ramp compression in 0 ∼ 18GPa. The HEL of Zr51Ti5Ni10Cu25Al9 is 8.97 ± 0.61GPa and IEL is 8.8 ± 0.3GPa, respectively. Strength of Zr51Ti5Ni10Cu25Al9 estimated from HEL is 5.0 ± 0.3GPa while the strength estimated from IEL is 3.6 ± 0.1GPa. Shock wave velocity versus particle velocity curve of Zr51Ti5Ni10Cu25Al9 under shock compression appears to be bilinear and a kink appears at about 18GPa. The Lagrangian sound speed versus particle velocity curve of Zr51Ti5Ni10Cu25Al9 under ramp wave compression exhibits two discontinuances and are divided to three regions: elastic, plastic-I and plastic-II. The first jump-down occurs at elastic-plastic transition and the second appears at about 17GPa. In elastic and plastic-I regions, Lagrangian sound speed increases linearly with particle velocity, respectively. Characteristic response of sound speed in plastic-I region disagree with shock result in the same pressure region(7GPa ∼ 18GPa, but is consistent with shock result at higher pressure(18-110GPa.

  2. Characterization of the surface film on Zr-based bulk metallic glass using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM)

    International Nuclear Information System (INIS)

    Tan Ming; Liu Qiao; Zhang Nian; Hu Huiqin; Li Biao; Kang Xianjie

    2011-01-01

    Highlights: → In this study, we have made four interesting observations. → First, the composition of Al metal ions in the film of the as-cast metallic glass (41%) is much higher than the nominal Al composition of the alloy (9.5%). → We suggest that this should be attributed to the preferential oxidation of Al atoms. → Second, the composition of Al ions in the film of the immersed metallic glass decreases significantly, indicating that the toxic Al oxide and Al ions in the film are dissolved into the solutions during immersion. → Third, the concentration of Cl - ions has no significant effect on the compositions of metal ions in the film. → Fourth, the composition of Zr ions dominates in the film of the immersed metallic glass, indicating that the ZrO 2 oxide in the film is very hard to get corroded in the corrosive solutions. - Abstract: Using XPS, we have for the first time studied the release of metal ions in the film of the Zr-based bulk metallic glass to the corrosive solutions during immersing. The composition of Al ions in the film of the as-cast metallic glass (41%) is substantially higher than the nominal Al composition of the alloy (9.5%). We proposed that the enriched Al ions can be attributed to the preferential oxidation of Al atoms. After immersing in the NaCl- and HCl-solution, the composition of Al ions in the films decreases from 41% to 28.09% and 21.76%, respectively. This indicates that some of the Al ions in the film are dissolved into the solution during immersion. The composition changes of metal ions in the film of the immersed alloys relative to those of the as-cast metallic glass were discussed using the point defect model. SEM was also used to examine the surface morphology of the samples. No pit corrosion was observed in the SEM images of the immersed metal glass.

  3. Glass formation and crystallization in Zr based alloys

    International Nuclear Information System (INIS)

    Dey, G. K.

    2011-01-01

    Metallic glasses have come in to prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. Though these have been produced for the last four decades, the necessity of rapid solidification at cooling rates of 10 5 K/sec or higher for their production, have restricted their geometry to thin ribbons and prevented their application to many areas despite their excellent properties. It has been shown in recent investigations that, many Zr base multicomponent alloys can be obtained in glassy state by cooling at much lower rate typically 10 2 to 10 3 K/sec. This has enabled production of these alloys in the glassy stat in bulk. By now, bulk metallic glasses have been produced in Mg, Ln, Zr, Fe, Pd-Cu, Pd-Fe, Ti and Ni- based alloys. Production of these glasses in bulk has opened avenue for their application in many areas where their excellent mechanical properties an corrosion resistance can be exploited. The transformation of the amorphous phase in these alloys to one or more crystalline phases, is an interesting phase transformation and can lead to formation of crystals in a variety of morphologies and a wide range of crystal sizes, including nanometer size crystals or nanocrystals. The bulk amorphous alloys exhibit higher fracture stress, combined with higher hardness and lower young's modulus than those of any crystalline alloy. The Zr- and Ti-based bulk amorphous alloy exhibit high bending and flexural strength values which are typically 2.0 to 2.5 time higher than those for crystalline counterparts. The composites of bulk metallic glass containing crystalline phases have been found to have special properties. This has been demonstrated in the case of composites of bulk metallic glass and tungsten wires wit the glass forming the matrix. Such a composite has a very high impact strength and is especially suitable for application as an armour penetrator in various types of shells used

  4. Zr-based conversion coatings for multi-metal substrates

    NARCIS (Netherlands)

    Cerezo Palacios, J.M.

    2015-01-01

    In this PhD work, a new surface treatment based on the application of Zr-based conversion coatings by immersion in a Cu containing Zr-based conversion solution was investigated as a replacement of the traditional phosphating process for the automotive industry. Nowadays most of the cars are made of

  5. Stability and electronic structure of Zr-based ternary metallic glasses and relevant compounds

    International Nuclear Information System (INIS)

    Hasegawa, M.; Soda, K.; Sato, H.; Suzuki, T.; Taketomi, T.; Takeuchi, T.; Kato, H.; Mizutani, U.

    2007-01-01

    The electronic structure of the Zr-based metallic glasses has been investigated by theoretical and experimental approaches. One approach is band calculations of the Zr 2 Ni (Zr 66.7 Ni 33.3 ) compound to investigate the electronic structure of the Zr 66.7 Ni 33.3 metallic glass (ΔT x = 0 K) of which the local atomic structure is similar to that of the Zr 2 Ni compound. The other is photoemission spectroscopy of the Zr 50 Cu 35 Al 15 bulk metallic glass (BMG) (ΔT x = 69 K). Here ΔT x = T x - T g where T x and T g are crystallization and glass transition temperature, respectively. Both results and previous ones on the Zr 55 Cu 30 Ni 5 Al 10 BMG indicate that there is a pseudogap at the Fermi level in the electronic structure of these Zr-based metallic glasses, independent of the value of the ΔT x . This implies that the pseudogap at the Fermi level is one of the factors that stabilize the glass phase of Zr-based metallic glasses

  6. Zirconium based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dey, G.K.; Neogy, S.; Savalia, R.T.; Tewari, R.; Srivastava, D.; Banerjee, S.

    2006-01-01

    Metallic glasses have come into prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. In this study, bulk glasses have been obtained in Zr based multicomponent alloy by induction melting these alloys in silica crucibles and casting these in form of rods 3 and 6 mm in diameter in a copper mould

  7. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Wong, F; Ji, X; Day, S D; Branagan, D J; Marshall, M C; Meacham, B E; Buffa, E J; Blue, C A; Rivard, J K; Beardsley, M B; Weaver, D T; Aprigliano, L F; Kohler, L; Bayles, R; Lemieux, E J; Wolejsza, T M; Martin, F J; Yang, N; Lucadamo, G; Perepezko, J H; Hildal, K; Kaufman, L; Heuer, A H; Ernst, F; Michal, G M; Kahn, H; Lavernia, E J

    2004-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an ''integral drip shield'' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  8. Micro-arc oxidation of Ti-15Zr-based alloys for osseointegrative implants

    International Nuclear Information System (INIS)

    Correa, Diego Rafael Nespeque; Rocha, Luis Augusto; Doi, Hisashi; Tsutsumi, Yusuke; Hanawa, Takao

    2016-01-01

    Full text: Micro-arc oxidation (MAO) is well-known as low-cost coating technique which can produce porous structure in valve metals [1]. Studies have indicated that MAOcoatings are suitable for improve biofunctionalization of Ti-based implants by bioactive ions incorporation in the oxide layer [2]. This work aims to evaluate the characteristics of the MAO-coating in recent developed biomedical Ti-15Zr-based alloys in order to use as osseointegrative implants. Ti-15Zr-xMo (x = 0, 5, 10 and 15 % wt.) alloys were produced by argon arc-melting and molded in a centrifugal casting machine. MAO treatment were performed in disks (ϕ 8 mm x 1.5 mm), at room temperature, with a 304 stainless steel plate as counter electrode. Electrolyte was composed by 0.15 M calcium acetate and 0.10 M calcium glycerophosphate. The electrodes were connected to a DC power supply, and applied a density current of 311 A/m 2 , for 10 min, with voltages of 300, 350 and 400 V. Morphology, thickness, composition and crystal structure of the oxide layer were evaluated by SEM, XRF and XRD techniques. A typical porous layer was produced in all surfaces, being the porosity, porous size and thickness increased with the voltage. The composition of the oxide layer indicated Ca and P incorporation, being the concentration increased with the voltage applied. The XRD patterns do not exhibited peaks from oxides compounds, but only peaks from bulk-Ti phases. The results showed that the bioactive coatings were successfully growth in the Ti-15Zr-based alloys, being suitable for osseointegrative implants. References: [1] Hanawa, T. Japanese dental Science Review 46, 93-101, 2010; [2] Tsutsumi, Y. et al. Metals 6, 76-85, 2016. (author)

  9. Micro-arc oxidation of Ti-15Zr-based alloys for osseointegrative implants

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diego Rafael Nespeque; Rocha, Luis Augusto [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil); Doi, Hisashi; Tsutsumi, Yusuke; Hanawa, Takao [Tokyo Medical and Dental University (Japan)

    2016-07-01

    Full text: Micro-arc oxidation (MAO) is well-known as low-cost coating technique which can produce porous structure in valve metals [1]. Studies have indicated that MAOcoatings are suitable for improve biofunctionalization of Ti-based implants by bioactive ions incorporation in the oxide layer [2]. This work aims to evaluate the characteristics of the MAO-coating in recent developed biomedical Ti-15Zr-based alloys in order to use as osseointegrative implants. Ti-15Zr-xMo (x = 0, 5, 10 and 15 % wt.) alloys were produced by argon arc-melting and molded in a centrifugal casting machine. MAO treatment were performed in disks (ϕ 8 mm x 1.5 mm), at room temperature, with a 304 stainless steel plate as counter electrode. Electrolyte was composed by 0.15 M calcium acetate and 0.10 M calcium glycerophosphate. The electrodes were connected to a DC power supply, and applied a density current of 311 A/m{sup 2}, for 10 min, with voltages of 300, 350 and 400 V. Morphology, thickness, composition and crystal structure of the oxide layer were evaluated by SEM, XRF and XRD techniques. A typical porous layer was produced in all surfaces, being the porosity, porous size and thickness increased with the voltage. The composition of the oxide layer indicated Ca and P incorporation, being the concentration increased with the voltage applied. The XRD patterns do not exhibited peaks from oxides compounds, but only peaks from bulk-Ti phases. The results showed that the bioactive coatings were successfully growth in the Ti-15Zr-based alloys, being suitable for osseointegrative implants. References: [1] Hanawa, T. Japanese dental Science Review 46, 93-101, 2010; [2] Tsutsumi, Y. et al. Metals 6, 76-85, 2016. (author)

  10. Electrochemical characterization of Zr-based thin film metallic glass in hydrochloric aqueous solution

    International Nuclear Information System (INIS)

    Chuang, Ching-Yen; Liao, Yi-Chia; Lee, Jyh-Wei; Li, Chia-Lin; Chu, Jinn P.; Duh, Jenq-Gong

    2013-01-01

    Recently thin film metallic glass represents a class of promising engineering materials for structural applications. In this work, the Zr-based thin film metallic glass (TFMG) was fabricated on the Si and AISI 420 substrates using a Zr–Cu–Ni–Al alloy and pure Zr metal targets by a pulsed DC magnetron sputtering system. The chemical compositions, crystalline structures, microstructures and corrosion behavior in hydrochloric (HCl) aqueous solutions of Zr-based TFMGs were investigated. The results showed that the surface morphologies of Zr-based TFMG were very smooth. A compact and dense structure without columnar structure was observed. The amorphous structure of Zr-based TFMG was characterized by the X-ray diffractometer and transmission electron microscopy analyses. After the potentiodynamic polarization test, the better corrosion resistance was achieved for the Zr-based TFMG coated AISI 420 in 1 mM HCl aqueous solution. Based on the surface morphologies and chemical analysis results of the corroded surfaces, the pitting, crevice corrosion and filiform corrosion were found. The corrosion mechanisms of the Zr-based TFMG were discussed in this work. - Highlights: ► Zr-based thin film metallic glass with amorphous structure. ► Better corrosion resistance of Zr-based thin film metallic glass observed. ► Pitting, crevice and filiform corrosion reactions revealed. ► The Cu-rich corrosion products found in the pit. ► Nanowire and flaky corrosion products formed adjacent to the filiform corrosion path

  11. Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses

    OpenAIRE

    Kim, C. Paul; Suh, Jin-Yoo; Wiest, Aaron; Lind, Mary Laura; Conner, R. Dale; Johnson, William L.

    2009-01-01

    Three new compositional variants of the Zr–Ti–Be–LTM (late transition metal) family of metallic glasses are discussed. Thermal stability, ΔT = T_x−T_g, was increased from 82 °C for Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) (Viterloy 1) to 141 °C for Zr_(44)Ti_(11)Cu_(20)Be_(25). It is found that fracture toughness is the most distinguishing parameter characterizing the alloys in contrast to other mechanical properties. Quaternary alloys consistently had fracture toughness values exceeding 8...

  12. High Pressure Study of a Zr-Based Bulk Metallic Glass and its Composite

    National Research Council Canada - National Science Library

    Halevy, Itzhak

    2004-01-01

    .... Although the PDF method of strain measurement in amorphous alloys offers lower resolution compared to the analysis of Bragg reflections from crystalline materials, the PDF technique yields valuable...

  13. Corrosion-fatigue studies of the Zr-based Vitreloy 105 bulk metallic glass

    International Nuclear Information System (INIS)

    Horton Jr, Joe A.; Morrison, M.L.; Buchanan, R.A.; Liaw, Peter K.; Green, B.A.; Wang, G.Y.

    2007-01-01

    The purpose of this study was to characterize the stress-life behavior of the Vitreloy 105 BMG alloy in the four-point bending configuration in a 0.6 M. NaCl electrolyte. At high stress amplitudes, the corrosion-fatigue life was similar to the fatigue lives observed in air. The environment became increasingly detrimental with decreases in stress, and the corrosion-fatigue endurance limit decreased to about 50 MPa, an 88% decrease relative to testing in air. Similar to the tests conducted in air, oxide particles were found on the fracture surfaces but did not appear to significantly affect the corrosion-fatigue lives. However, wear and the resultant corrosion at the outer loading pins resulted in crack initiation in most of the samples. Thus, these results are considered conservative estimates of the corrosion-fatigue behavior of this BMG alloy. Monitoring of the samples and the open-circuit potentials revealed that the onset of significant crack growth occurred at an average of 92% of the total fatigue life. The mechanism of corrosion-fatigue degradation was found to be anodic dissolution

  14. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  15. Spheroidization behavior of dendritic b.c.c. phase in Zr-based モ-phase composite

    Directory of Open Access Journals (Sweden)

    Sun Guoyuan

    2013-03-01

    Full Text Available The spheroidization behavior of the dendritic b.c.c. phase dispersed in a bulk metallic glass (BMG matrix was investigated through applying semi-solid isothermal processing and a subsequent rapid quenching procedure to a Zr-based モ-phase composite. The Zr-based composite with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 was prefabricated by a water-cooled copper mold-casting method and characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. The results show that the composite consists of a glassy matrix and uniformly distributed fine dendrites of the モ-Zr solid solution with the body-centered-cubic (b.c.c. structure. Based on the differential scanning calorimeter (DSC examination results, and in view of the b.c.c. モ-Zr to h.c.p. メ-Zr phase transition temperature, a semi-solid holding temperature of 900 ìC was determined. After reheating the prefabricated composite to the semi-solid temperature, followed by an isothermal holding process at this temperature for 5 min, and then quenching the semi-solid mixture into iced-water; the two-phase microstructure composed of a BMG matrix and uniformly dispersed spherical b.c.c. モ-Zr particles with a high degree of sphericity was achieved. The present spheroidization transition is a thermodynamically autonomic behavior, and essentially a diffusion process controlled by kinetic factors; and the formation of the BMG matrix should be attributed to the rapid quenching of the semi-solid mixture as well as the large glass-forming ability of the remaining melt in the semi-solid mixture.

  16. Time-temperature-transformation diagram of Zr-based Zr-Al-Cu-Ni metallic glasses

    International Nuclear Information System (INIS)

    Goh, T.T.; Li, Y.; Ng, S.C.

    1996-01-01

    The critical cooling rates R c for glass formation in four Zr-based Zr-Al-Cu-Ni alloys were determined using techniques developed by Uhlmann based on theories of homogeneous nucleation, crystal growth and transformation kinetics. It involves the construction of a time-temperature-transformation curve which requires the knowledge of the viscosity-temperature curve of the alloys. Two types of viscosity-temperature expressions, namely Andrade expression and Doolittle expression, were used to model the viscosity of the Zr-based alloys and the choice of the viscosity-temperature expression which gives the best estimate of the calculated time-temperature-transformation curve is discussed. (author)

  17. Laser cladding of Zr-based coating on AZ91D magnesium alloy for ...

    Indian Academy of Sciences (India)

    3Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, ... To improve the wear and corrosion resistance of AZ91D magnesium alloy, Zr-based coating made of ... process that lead to inflammatory cascades which reduce bio- ... tions regarding their application as protective films on load- ... Experimental.

  18. Indication of liquid-liquid phase transition in CuZr-based melts

    DEFF Research Database (Denmark)

    Zhou, C.; Hu, L.N.; Sun, Q.J.

    2013-01-01

    We study the dynamic behavior of CuZr-based melts well above the liquidus temperature. The results show a discontinuous change in viscosity during cooling, which is attributed to an underlying liquid-liquid phase transition (LLPT) in these melts. The LLPT is further verified by thermodynamic...

  19. Bulk glass formation and crystallization in zirconium based bulk metallic glass forming alloys

    International Nuclear Information System (INIS)

    Savalia, R.T.; Neogy, S.; Dey, G.K.; Banerjee, S.

    2002-01-01

    The microstructures of Zr based metallic glasses produced in bulk form have been described in the as-cast condition and after crystallization. Various microscopic techniques have been used to characterize the microstructures. The microstructure in the as-cast condition was found to contain isolated crystals and crystalline aggregates embedded in the amorphous matrix. Quenched-in nuclei of crystalline phases were found to be present in fully amorphous regions. These glasses after crystallization gave rise to nanocrystalline solids. (author)

  20. Influence of ejection temperature on structure and glass transition behavior for Zr-based rapidly quenched disordered alloys

    International Nuclear Information System (INIS)

    Wang, X.H.; Inoue, A.; Kong, F.L.; Zhu, S.L.; Stoica, M.; Kaban, I.; Chang, C.T.; Shalaan, E.; Al-Marzouki, F.; Eckert, J.

    2016-01-01

    We examined the influence of ejection liquid temperature (T el ) on the structure, thermal stability and crystallization of Zr−Al−Ni−Cu ribbons prepared by the melt-spinning technique. The increase in T el was found to cause the formation of an oxide phase on the ribbon surface, more loose atomic configurations, the absence of glass transition (GT) and supercooled liquid (SL) region, and the rise of crystallization temperature. The changes in the GT and SL region occur reversibly by controlling the T el . Neither the change in alloy composition except oxygen nor the difference in crystallized phases is seen. Their hardness increases significantly by the disappearance of GT and SL region. The reversible changes in the appearance and disappearance of GT and SL region was found for different Zr-based glassy ribbons, being independent of alloy compositions. The disappearance is presumably due to the change in atomic configurations from high-coordinated to less-coordinated atomic packing in the melt-spun ribbons by freezing high-temperature liquid. The observed phenomenon of the reversible changes provides a novel opportunity for deep understanding of mutual correlations among liquid structure, GT, stability of SL and bulk glass-forming ability for metallic alloys.

  1. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2007-12-04

    . The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. These amorphous alloys appear to maintain their corrosion resistance up to the glass transition temperature. Visionary research is proposed to extend the application of corrosion-resistant iron-based amorphous metal coatings, and variants of these coatings, to protection of the Nation's transportation infrastructure. Specific objectives of the proposed work are: (1) fabrication of appropriate test samples for evaluation of concept; (2) collection of production and test data for coated steel reinforcement bars, enabling systematic comparison of various coating options, based upon performance and economic considerations; and (3) construction and testing of concrete structures with coated steel reinforcement bars, thereby demonstrating the value of amorphous-metal coatings. The benefits of ceramic coatings as thermal barriers will also be addressed.

  2. Glass-Forming Ability and Early Crystallization Kinetics of Novel Cu-Zr-Al-Co Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Xiaoliang Han

    2016-09-01

    Full Text Available In recent years, CuZr-based bulk metallic glass (BMG composites ductilized by a shape memory B2 CuZr phase have attracted great attention owing to their outstanding mechanical properties. However, the B2 CuZr phase for most CuZr-based glass-forming compositions is only stable at very high temperatures, leading to the uncontrollable formation of B2 crystals during quenching. In this work, by introducing Co (i.e., 4, 5, and 6 at. % and 10 at. % Al into CuZr-based alloys, the relatively good glass-forming ability (GFA of CuZr-based alloys still can be achieved. Meanwhile, the B2 phase can be successfully stabilized to lower temperatures than the final temperatures of crystallization upon heating CuZr-based BMGs. Unlike previous reported CuZr-based BMGs, the primary crystallization products upon heating are mainly B2 CuZr crystals but not CuZr2 and Cu10Zr7 crystals. Furthermore, the primary precipitates during solidification are still dominated by B2 crystals, whose percolation threshold is detected to lie between 10 ± 2 vol. % and 31 ± 2 vol. %. The crystallization kinetics underlying the precipitation of B2 crystals was also investigated. Our results show that the present glass-forming composites are promising candidates for the fabrication of ductile CuZr-based BMG composites.

  3. Scratch Behaviors of Cr-Coated Zr-Based Fuel Claddings for Accident-Tolerant Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ho; Kim, Il-Hyun; Kim, Hyun-Gil; Kim, Hyung-Kyu; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    As the progression of Fukushima accident is worsened by the runaway reaction at a high temperature above 1200 .deg. C, it is essential to ensure the stabilities of coating layers on conventional Zr-based alloys during normal operations as well as severe accident conditions. This is because the failures of coating layer result in galvanic corrosion phenomenon by potential difference between coating layer and Zr alloy. Also, it is possible to damage the coating layer during handling and manufacturing process by contacting structural components of a fuel assembly. So, adhesion strength is one of the key factors determining the reliability of the coating layer on conventional Zr-based alloy. In this study, two kinds of Cr-coated Zr-based claddings were prepared using arc ion plating (AIP) and direct laser (DL) coating methods. The objective is to evaluate the scratch deformation behaviors of each coating layers on Zr alloys. Large area spallation below normal load of about 15 N appeared to be the predominant mode of failure in the AIP coating during scratch test. However, no tensile crack were found in entire stroke length. In DL coating, small plastic deformation and grooving behavior are more dominant scratching results. It was observed that the change of the slope of the COF curve did not coincide with the failure of coating layer.

  4. A High Strain-Rate Investigation of a Zr-Based Bulk Metallic Glass and an HTPB Polymer Composite

    Science.gov (United States)

    2011-03-01

    The second order partial differential equation, 2 2 2 0 02 2 2 0 0 1 , where Eu u c x c t        , (2.1) governs the displacement, u, due...Liquidmetal, Inc. These plates were determined to be fully amorphous based on differential scanning calorimetry and X-ray diffraction in previous...Cambridge University Press, Cambridge, UK. 50 9. Pochhammer L. (1876) Uber Fortplanzungsgeschwindigkeiten kleiner Schwingungen in einem

  5. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang [Keio University, Department of Mechanical Engineering, Faculty of Science and Technology, Yokohama (Japan)

    2016-10-15

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN. (orig.)

  6. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Science.gov (United States)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang

    2016-10-01

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN.

  7. Thermodynamic and structural basis for electrochemical response of Cu–Zr based metallic glass

    International Nuclear Information System (INIS)

    Zhang, Chunzhi; Qiu, Nannan; Kong, Lingliang; Yang, Xiaodan; Li, Huiping

    2015-01-01

    Highlights: • Thermodynamic and structural basis for electrochemical response were proposed. • La improves the corrosion resistance by inhibition of the selective dissolution. • Corrosion of the MG responses well with thermodynamic and structural parameters. - Abstract: Cu–Zr based metallic glasses were prepared by hyperquenching strategy to explore the thermodynamic and structural basis for electrochemical response. The thermodynamic parameters and the local atomic structure were obtained. Corrosion resistance in seawater was investigated via potentiodynamic polarization curve. The results indicate that increasing thermodynamic parameter values improves the corrosion resistance. The topological instability represented by the nearest neighbor atomic distance yields same tendency as the corrosion resistance with La addition

  8. Ni-free Zr-Cu-Al-Nb-Pd bulk metallic glasses with different Zr/Cu ratios for biomedical applications.

    Science.gov (United States)

    Huang, Lu; Yokoyama, Yoshihiko; Wu, Wei; Liaw, Peter K; Pang, Shujie; Inoue, Akihisa; Zhang, Tao; He, Wei

    2012-08-01

    Zr-based bulk metallic glasses (BMGs) possess attractive properties for prospective biomedical applications. The present study designs Ni-free Zr-Cu-Al-Nb-Pd BMGs and investigates their in vitro biocompatibility by studying mechanical properties, bio-corrosion resistance, and cellular responses. The Ti-6Al-4V alloy is used as a reference material. It is found that the Zr-based BMGs exhibit good mechanical properties, including high strengths above 1600 MPa, high hardness over 4700 MPa, and low elastic moduli of 85-90 GPa. The Zr-based BMGs are corrosion resistant in a simulated body environment, as revealed by wide passive regions, low passive current densities, and high pitting overpotentials. The formation of ZrO(2)-rich surface passive films of the Zr-based BMGs contributes to their high corrosion resistance, whereas their pitting corrosion in the phosphate buffered saline solution can be attributed to the sensitivity of the ZrO(2) films to the chloride ion. The general biosafety of the Zr-based BMGs is revealed by normal cell adhesions and cell morphologies. Moreover, the Zr/Cu content ratio in the alloy composition affects the biocompatibility of the Zr-based BMGs, by increasing their corrosion resistance and surface wettability with the increase of the Zr/Cu ratio. Effects of Zr/Cu ratios can be used to guide the future design of biocompatible Zr-based BMGs. Copyright © 2012 Wiley Periodicals, Inc.

  9. Synthesis and devitrification of high glass-forming ability bulk metallic glasses.

    OpenAIRE

    Huang, Hong.

    2007-01-01

    In this thesis, literature on the production, microstructures and properties of bulk metallic glasses (BMG) has been reviewed with particular reference to glass forming ability (GFA) and alloys of the Fe-Zr-B and Zr-based BMG systems. The experimental procedures used in the research are presented and the results for the amorphous Fe80Zr12B8 ribbon and the Zr57Ti5Al10Cu20Ni8, Zr57Nb5Al10Cu20Ni8, Zr53Nb2Al8Cu30Ni7 BMGs are given and discussed. Wedge-shaped ingots of the Zr-based BMGs were produ...

  10. Diffusion of hydrogen interstitials in Zr based AB2 and mischmetal based AB5 alloys

    International Nuclear Information System (INIS)

    Mani, N; Ravi, N; Ramaprabhu, S

    2005-01-01

    The Zr based AB 2 alloys ZrMnFe 0.5 Ni 0.5 , ZrMnFe 0.5 Co 0.5 and mischmetal (Mm) based AB 5 alloy MmNi 3.5 Al 0.5 Fe 0.5 Co 0.5 have been prepared and characterized by means of powder x-ray diffractograms. The hydrogen absorption kinetics of these alloys have been studied in the temperature and pressure ranges 450-650 0 C and 10-100 mbar respectively with a maximum H to host alloy formula unit ratio of 0.01, using a pressure reduction technique. The diffusion coefficient of the hydrogen interstitials has been determined from hydrogen absorption kinetics experiments. The dependence of the diffusion coefficient on the alloy content has been discussed. For Mm based MmNi 3.5 Al 0.5 Fe 0.5 Co 0.5 alloy, the diffusion coefficient is about an order of magnitude higher than that of the Zr based alloys

  11. Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism

    International Nuclear Information System (INIS)

    Lostak, Thomas; Maljusch, Artjom; Klink, Björn; Krebs, Stefan; Kimpel, Matthias; Flock, Jörg; Schulz, Stephan; Schuhmann, Wolfgang

    2014-01-01

    Zr-based conversion layers are considered as environmentally friendly alternatives replacing trication phosphatation in the automotive industry. Based on excellent electronic barrier properties they provide an effective corrosion protection of the metallic substrate. In this work, thin protective layers were grown on novel Zn-Al-Mg alloy coated steel sheets by increasing the local pH-value at the sample surface leading to deposition of a Zr-based conversion layer. For this purpose Zn-Al-Mg alloy (ZM) coated steel sheets were treated in an aqueous model conversion solution containing well-defined amounts of hexafluorozirconic acid (H 2 ZrF 6 ) and characterized after different immersion times with SKPFM and field emission SEM (FE-SEM)/EDX techniques. A deposition mechanism of Zr-based conversion coatings on microstructural heterogeneous Zn-Al-Mg alloy surfaces was proposed

  12. Direct observation of shear–induced nanocrystal attachment and coalescence in CuZr-based metallic glasses: TEM investigation

    International Nuclear Information System (INIS)

    Hajlaoui, K.; Alrasheedi, Nashmi H.; Yavari, A.R.

    2016-01-01

    In-situ tensile straining tests were performed in a transmission electron microscope (TEM) to analyse the deformation processes in CuZr-based metallic glasses and to directly observe the phase transformation occurrence. We report evidence of shear induced coalescence of nanocrystals in the vicinity of deformed regions. Nanocrystals grow in shear bands, come into contact, being attached and progressively coalesce under applied shear stress. - Highlights: • In-situ tensile straining test in TEM was investigated on CuZr-Based metallic glass. • Strain induces nanocrystallization and subsequent attachment and coalescence of nanocrystals. • The coalescence of nanocrystals compensates strain softening in metallic glasses.

  13. Development and reactivity tests of Ce-Zr-based Claus catalysts for coal gas cleanup

    Energy Technology Data Exchange (ETDEWEB)

    No-Kuk Park; Dong Cheul Han; Gi Bo Han; Si Ok Ryu; Tae Jin Lee; Ki Jun Yoon [Yeungnam University, Gyeongbuk (Republic of Korea). National Research Laboratory, School of Chemical Engineering and Technology

    2007-09-15

    Claus reaction (2H{sub 2}S + SO{sub 2} {leftrightarrow} 3/nS{sub n} + 2H{sub 2}O) was used to clean the gasified coal gas and the reactivity of several metal oxide-based catalysts on Claus reaction was investigated at various operating conditions. In order to convert H{sub 2}S contained in the gasified coal gas to elemental sulfur during Claus reaction, the catalysts having the high activity under the highly reducing condition with the moisture should be developed. CeO{sub 2}, ZrO{sub 2}, and Ce{sub 1-x}Zr{sub x}O{sub 2} catalysts were prepared for Claus reaction and their reactivity changes due to the existence of the reducing gases and H{sub 2}O in the fuel gas was investigated in this study. The Ce-based catalysts shows that their activity was deteriorated by the reduction of the catalyst due to the reducing gases at higher than 220{sup o}C. Meanwhile, the effect of the reducing gases on the catalytic activity was not considerable at low temperature. The activities of all three catalysts were degraded on the condition that the moisture existed in the test gas. Specifically, the Ce-based catalysts were remarkably deactivated by their sulfation. The Ce-Zr-based catalyst had a high catalytic activity when the reducing gases and the moisture co-existed in the simulated fuel gas. The deactivation of the Ce-Zr-based catalyst was not observed in this study. The lattice oxygen of the Ce-based catalyst was used for the oxidation of H{sub 2}S and the lattice oxygen vacancy on the catalyst was contributed to the reduction of SO{sub 2}. ZrO{sub 2} added to the Ce-Zr-based catalyst improved the redox properties of the catalyst in Claus reaction by increasing the mobility of the lattice oxygen of CeO{sub 2}. 21 refs., 14 figs.

  14. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO and DOE OCRWM Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  15. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  16. Correlation between local structure and stability of supercooled liquid state in Zr-based metallic glasses

    International Nuclear Information System (INIS)

    Saida, Junji; Imafuku, Muneyuki; Sato, Shigeo; Sanada, Takashi; Matsubara, Eiichiro; Inoue, Akihisa

    2007-01-01

    The correlation between the local structure and stability of supercooled liquid state is investigated in the Zr 70 (Ni, Cu) 30 binary and Zr 70 Al 10 (Ni, Cu) 20 (numbers indicate at.%) ternary metallic glasses. The Zr 70 Ni 30 binary amorphous alloy with a low stability of supercooled liquid state has a tetragonal Zr 2 Ni-like local structure around Ni atom. Meanwhile, the Zr 70 Cu 30 binary metallic glass has a different local structure of tetragonal Zr 2 Cu, where we suggest the icosahedral local structure by the quasicrystallization behavior in addition of a very small amount of noble metals. The effect of Al addition on the local structure in the Zr-Ni alloy is also examined. We have investigated that the dominant local structure changes in the icosahedral-like structure from the tetragonal Zr 2 Ni-like local structure by the Al substitution with Ni accompanying with the significant stabilization of supercooled liquid state. It is concluded that the formation of icosahedral local structure contributes to the enhancement of stability of supercooled liquid state in the Zr-based alloys

  17. Immobilization of silver nanoparticles in Zr-based MOFs: induction of apoptosis in cancer cells

    Science.gov (United States)

    Han, Congcong; Yang, Jian; Gu, Jinlou

    2018-03-01

    Silver nanoparticles (AgNPs) are a potential class of nanomaterial for antibiosis and chemotherapeutic effects against human carcinoma cells. However, the DNA-damaging ability of free AgNPs pose the critical issues in their biomedical applications. Herein, we demonstrated a facile method to capture Ag+ ions and reduce them into active AgNPs within Zr-based metal-organic frameworks (MOFs) of UiO-66 with a mild reductant of DMF (AgNPs@UiO-66(DMF)). The average diameters of UiO-66 carriers and AgNPs were facilely controlled to be 140 and 10 nm, respectively. The obtained UiO-66 nanocarriers exhibited excellent biocompatibility and could be effectively endocytosed by cancer cells. Additionally, the AgNPs@UiO-66(DMF) could rapidly release Ag+ ions and efficiently inhibit the growth of cancer cells. The half maximal inhibitory concentration (IC50) values of the encapsulated AgNPs were calculated to be 2.7 and 2.45 μg mL-1 for SMMC-7721 and HeLa cells, respectively, which were much lower than those of free AgNPs in the reported works. Therefore, the developed AgNPs@UiO-66(DMF) not only maintained the therapeutic effect against cancer cells but also reduced the dosage of free AgNPs in chemotherapy treatment. [Figure not available: see fulltext.

  18. Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass

    International Nuclear Information System (INIS)

    Ma Fengxu; Yang Jianjun; Xiaonong Zhu; Liang Chunyong; Wang Hongshui

    2010-01-01

    Surface morphological evolution of Zr-based metallic glass ablated by femtosecond lasers is investigated in atmosphere condition. Three types of permanent ring structures with micro-level spacing are observed for different laser shots and fluences. In the case of low laser fluences, the generation of annular patterns with nonthermal features is observed on the rippled structure with the subwavelength scale, and the ring spacing shows a decrease tendency from the center to the margin. While in the case of high laser fluences, the concentric rings formation within the laser spot is found to have evident molten traces and display the increasing ring spacing along the radial direction. Moreover, when the laser shots accumulation becomes large, the above two types of ring microstructures begin to develop into the common ablation craters. Analysis and discussion suggests that the stress-induced condensation of ablation vapors and the frozen thermocapillary waves on the molten surfaces should be responsible for the formation of two different types of concentric ring structures, respectively. Eventually, a processing window for each resulting surface microstructure type is obtained experimentally and indicates the possibility to control the morphological transitions among different types.

  19. Influence of alkali metal hydroxides on corrosion of Zr-base alloys

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan

    1996-01-01

    The influence of group-1 alkali hydroxides on different Zr-based alloys have been carried out in static autoclaves at 350 deg C in pressurized water, conditioned in low(0.32 mmol), medium(4.3 mmol) and high(31.5 mmol) equimolar concentration of Li-, Na-, K-, Rb- and Cs-hydroxide. Two types of alloys have been investigated: Zr-Sn-(TRM, Transition metal) and Zr-Sn-Nb-(TRM, Transition metal). From the experiments the cation could be identified as the responsible species for corrosion of Zr alloy in alkalized water. The radius of the cation governs the accelerated corrosion in the pre-transition region of Zr alloy. Incorporation of alkali cation into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significant lower effect for the other bases. Nb containing alloys showed lower corrosion resistance than Zr-Sn-TRM alloys in all alkali solutions. Both types of alloys were corroded significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behavior in the different alkali environments and taking into account the tendency to accelerate the corrosion of Zr alloys, CsOH and KOH are possible alternate alkali for PWR (Pressurized Water Reactor) application. (author)

  20. Sub-micrometer-scale patterning on Zr-based metallic glass using focused ion beam irradiation and chemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Kawasegi, Noritaka [Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Morita, Noboru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Yamada, Shigeru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Takano, Noboru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Oyama, Tatsuo [Department of Mechanical and Intellectual Systems Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Ashida, Kiwamu [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Momota, Sadao [Department of Intelligent Mechanical Systems Engineering, Kochi University of Technology, 185 Tosayamada, Kochi 782-8502 (Japan); Taniguchi, Jun [Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Miyamoto, Iwao [Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Ofune, Hitoshi [YKK Corporation, 200 Yoshida, Kurobe, Toyama 938-8601 (Japan)

    2007-09-19

    This report describes a method of sub-micrometer-scale rapid patterning on a Zr-based metallic glass surface using a combination of focused ion beam irradiation and wet chemical etching. We found that a Zr-based metallic glass surface irradiated with Ga{sup +} ions could be selectively etched; a concave structure with a width and depth of several tens to hundreds of nanometers rapidly formed in the irradiated area. Moreover, we determined that the etching was enhanced by the presence of Ga{sup +} ions rather than a change in the crystal structure, and the structure could be fabricated while the substrate remained amorphous. The shape of the structure was principally a function of the dose and the etch time.

  1. Electrochemical properties of the passive film on bulk Zr–Fe–Cr intermetallic fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yakui [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xing, Shupei; Ma, Wen [School of Materials Science and Engineering, Inner Mongolia University of Technology, Huhhot 010051 (China)

    2016-12-01

    Highlights: • SPS was employed to prepare Zr-based intermetallics which were commonly existed in zircaloy. • Zr-based intermetallics act as cathode when they embedded in zirconium matrix. • The passive films on surface of intermetallics behaved as n-type semiconductors. • Carrier concentration of Zr(Fe{sub 3}Cr){sub 2} was much lower than that of other intermetallics. - Abstract: Although Zr-based second phase particles (SPPs) are important factors influencing corrosion resistance of zircaloy cladding materials, the corrosion behavior of SPPs has not been investigated by means of electrochemical method so far. In order to clarify the role of SPPs commonly existed in zircaloy, bulk Zr-based intermetallics were firstly fabricated by spark plasma sintering (SPS) at temperatures 1373 K and an applied pressure of 60 MPa in this work. Both the natural passive film on surface and oxidation behavior of intermetallic has been investigated in this work. X-ray diffraction (XRD) pattern showed that as-prepared intermetallic of crystal structure belongs to Laves phase with AB{sub 2} type. Electrochemical measurement of passive film on surface of bulk Zr-based intermetallic exhibited significant difference with that of zirconium. Potentiodynamic measurements results revealed that intermetallic exhibited higher corrosion potential and lower corrosion current density than that of pure zirconium, implying that Zr-based second phase will act as cathode when they are included in zirconium matrix. Meanwhile, significant improvement of Zr–Fe–Cr intermetallic on the water chemistry corrosion resistance was demonstrated comparing with Zr–Fe and Zr–Cr binary intermetallics.

  2. Thermo-chemical properties and electrical resistivity of Zr-based arsenide chalcogenides

    Directory of Open Access Journals (Sweden)

    A. Schlechte, R. Niewa, M. Schmidt, G. Auffermann, Yu. Prots, W. Schnelle, D. Gnida, T. Cichorek, F. Steglich and R. Kniep

    2007-01-01

    Full Text Available Ternary phases in the systems Zr–As–Se and Zr–As–Te were studied using single crystals of ZrAs1.40(1Se0.50(1 and ZrAs1.60(2Te0.40(1 (PbFCl-type of structure, space group P4/nmm as well as ZrAs0.70(1Se1.30(1 and ZrAs0.75(1Te1.25(1 (NbPS-type of structure, space group Immm. The characterization covers chemical compositions, crystal structures, homogeneity ranges and electrical resistivities. At 1223 K, the Te-containing phases can be described with the general formula ZrAsxTe2−x, with 1.53(1≤x≤1.65(1 (As-rich and 0.58(1≤x≤0.75(1 (Te-rich. Both phases are located directly on the tie-line between ZrAs2 and ZrTe2, with no indication for any deviation. Similar is true for the Se-rich phase ZrAsxSe2−x with 0.70(1≤x≤0.75(1. However, the compositional range of the respective As-rich phase ZrAsx−ySe2−x (0.03(1≤y≤0.10(1; 1.42(1≤x≤1.70(1 is not located on the tie-line ZrAs2–ZrSe2, and exhibits a triangular region of existence with intrinsic deviation of the composition towards lower non-metal contents. Except for ZrAs0.75Se1.25, from the homogeneity range of the Se-rich phase, all compounds under investigation show metallic characteristics of electrical resistivity at temperatures >20 K. Related uranium and thorium arsenide selenides display a typical magnetic field-independent rise of the resistivity towards lower temperatures, which has been explained by a non-magnetic Kondo effect. However, a similar observation has been made for ZrAs1.40Se0.50, which, among the Zr-based arsenide chalcogenides, is the only system with a large concentration of intrinsic defects in the anionic substructure.

  3. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.

    2009-01-01

    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  4. Calculations of hydrogen diffusivity in Zr-based alloys: Influence of alloying elements and effect of stress

    International Nuclear Information System (INIS)

    Yu, J.; Jiang, C.; Zhang, Y.

    2017-01-01

    This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is found that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.

  5. Calculations of hydrogen diffusivity in Zr-based alloys: Influence of alloying elements and effect of stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is found that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.

  6. Mapping strain fields induced in Zr-based bulk metallic glasses during in-situ nanoindentation by X-ray nanodiffraction

    Czech Academy of Sciences Publication Activity Database

    Gamcová, J.; Mohanty, G.; Michalik, Štefan; Wehrs, J.; Bednarčík, J.; Krywka, C.; Breguet, J.M.; Michler, J.; Franz, H.

    2016-01-01

    Roč. 108, č. 3 (2016), 1-4, č. článku 031907. ISSN 0003-6951 R&D Projects: GA MŠk EE2.3.30.0057 Grant - others:OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057; AVČR(CZ) M100101221 Institutional support: RVO:68378271 Keywords : X-ray diffraction * hardness * elasticity * nanotechnology * amorphous metals Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.411, year: 2016

  7. Metastability and thermophysical properties of metallic bulk glass forming alloys

    International Nuclear Information System (INIS)

    Wunderlich, R.K.; Fecht, H.J.

    1998-01-01

    The absence of crystallization over a wide time/temperature window can be used to produce bulk metallic glass by relatively slow cooling of the melt. For a number of alloys, including several multicomponent Zr-based alloys, the relevant thermodynamic and thermomechanical properties of the metastable glassy and undercooled liquid states have been measured below and above the glass transition temperature. These measurements include specific heat, viscosity, volume, and elastic properties as a function of temperature. As a result, it becomes obvious that the maximum undercooling for these alloys is given by an isentropic condition before an enthalpic or isochoric instability is reached. Alternatively, these glasses can also be produced by mechanical alloying, thus replacing the thermal disorder by static disorder and resulting in the same thermodynamic glass state. During heating through the undercooled liquid, a nanoscale phase separation occurs for most glasses as a precursor of crystallization

  8. Effects of Boron-Incorporation in a V-Containing Zr-Based AB2 Metal Hydride Alloy

    Directory of Open Access Journals (Sweden)

    Shiuan Chang

    2017-11-01

    Full Text Available In this study, boron, a metalloid element commonly used in semiconductor applications, was added in a V-containing Zr-based AB2 metal hydride alloy. In general, as the boron content in the alloy increased, the high-rate dischargeability, surface exchange current, and double-layer capacitance first decreased and then increased whereas charge-transfer resistance and dot product of charge-transfer resistance and double-layer capacitance changed in the opposite direction. Electrochemical and gaseous phase characteristics of two boron-containing alloys, with the same boron content detected by the inductively coupled plasma optical emission spectrometer, showed significant variations in performances due to the difference in phase abundance of a newly formed tetragonal V3B2 phase. This new phase contributes to the increases in electrochemical high-rate dischargeability, surface exchange current, charge-transfer resistances at room, and low temperatures. However, the V3B2 phase does not contribute to the hydrogen storage capacities in either gaseous phase and electrochemical environment.

  9. Bulk oil clauses

    International Nuclear Information System (INIS)

    Gough, N.

    1993-01-01

    The Institute Bulk Oil Clauses produced by the London market and the American SP-13c Clauses are examined in detail in this article. The duration and perils covered are discussed, and exclusions, adjustment clause 15 of the Institute Bulk Oil Clauses, Institute War Clauses (Cargo), and Institute Strikes Clauses (Bulk Oil) are outlined. (UK)

  10. Cavitation instability in bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    Dai L.H.

    2015-01-01

    Full Text Available Recent experiments have shown that fracture surfaces of bulk metallic glasses (BMGs usually exhibit an intriguing nanoscale corrugation like fractographic feature mediated by nanoscale void formation. We attribute the onset of this nanoscale corrugation to TTZs (tension transformation zones mediated cavitation. In our recent study, the spall experiments of Zr-based BMG using a single-stage light gas gun were performed. To uncover the mechanisms of the spallation damage nucleation and evolution, the samples were designed to be subjected to dynamic tensile loadings of identical amplitude but with different durations by making use of the multi-stress pulse and the double-flyer techniques. It is clearly revealed that the macroscopic spall fracture in BMGs originates from the nucleation, growth and coalescence of micro-voids. Then, a microvoid nucleation model of BMGs based on free volume theory is proposed, which indicates that the nucleation of microvoids at the early stage of spallation in BMGs is resulted from diffusion and coalescence of free volume. Furthermore, a theoretical model of void growth in BMGs undergoing remote dynamic hydrostatic tension is developed. The critical condition of cavitation instability is obtained. It is found that dynamic void growth in BMGs can be well controlled by a dimensionless inertial number characterizing the competition between intrinsic and extrinsic time scales. To unveil the atomic-level mechanism of cavitation, a systematic molecular dynamics (MD simulation of spallation behaviour of a binary metallic glass with different impact velocities was performed. It is found that micro-void nucleation is determined TTZs while the growth is controlled by shear transformation zones (STZs at atomic scale.

  11. The effect of surface pre-conditioning treatments on the local composition of Zr-based conversion coatings formed on aluminium alloys

    Science.gov (United States)

    Cerezo, J.; Vandendael, I.; Posner, R.; de Wit, J. H. W.; Mol, J. M. C.; Terryn, H.

    2016-03-01

    This study investigates the effect of different alkaline, acidic and thermal pre-conditioning treatments applied to different Al alloy surfaces. The obtained results are compared to the characteristics of Zr-based conversion coatings that were subsequently generated on top of these substrates. Focus is laid on typical elemental distributions on the sample surfaces, in particular on the amount of precipitated functional additives such as Cu species that are present in the substrate matrix as well as in the conversion bath solutions. To this aim, Field Emission Auger Electron spectra, depth profiles and surface maps with superior local resolution were acquired and compared to scanning electron microscopy images of the sample. The results show how de-alloying processes, which occur at and around intermetallic particles in the Al matrix during typical industrial alkaline or acidic cleaning procedures, provide a significant source of crystallization cores for any following coating processes. This is in particular due for Cu-species, as the resulting local Cu structures on the surface strongly affect the film formation and compositions of state-of-the-art Zr-based films. The findings are highly relevant for industrial treatments of aluminium surfaces, especially for those that undergo corrosion protection and painting process steps prior to usage.

  12. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, M.; He, Y.R.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  13. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  14. High-energy X-ray measurements of structural anisotropy and excess free volume in a homogenously deformed Zr-based metallic glass

    International Nuclear Information System (INIS)

    Ott, R.T.; Kramer, M.J.; Besser, M.F.; Sordelet, D.J.

    2006-01-01

    We have used high-energy X-ray scattering to measure the structural anisotropy and excess free volume in a homogeneously deformed Zr-based metallic glass alloy. The scattering results show that bond length anisotropy is present in the samples following isothermal tensile creep deformation. The average atomic bond length in the direction parallel to the tensile loading axis is larger than that in the direction normal to the loading axis. The magnitude of the bond length anisotropy is found to be dependent on the gradient of macroscopic plastic strain along the gauge length. Furthermore, the scattering results show that the excess free volume also increases with increasing macroscopic plastic strain. Results from differential scanning calorimetry analysis of free volume variations along the gauge length of the creep samples are consistent with results from the X-ray scattering experiments

  15. Superductile bulk metallic glass

    International Nuclear Information System (INIS)

    Yao, K.F.; Ruan, F.; Yang, Y.Q.; Chen, N.

    2006-01-01

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<2%) at room temperature. We report a newly developed Pd-Si binary bulk metallic glass, which exhibits a uniform plastic deformation and a large plastic engineering strain of 82% and a plastic true strain of 170%, together with initial strain hardening, slight strain softening and final strain hardening characteristics. The uniform shear deformation and the ultrahigh plasticity are mainly attributed to strain hardening, which results from the nanoscale inhomogeneity due to liquid phase separation. The formed nanoscale inhomogeneity will hinder, deflect, and bifurcate the propagation of shear bands

  16. Auctioning Bulk Mobile Messages

    NARCIS (Netherlands)

    S. Meij (Simon); L-F. Pau (Louis-François); H.W.G.M. van Heck (Eric)

    2003-01-01

    textabstractThe search for enablers of continued growth of SMS traffic, as well as the take-off of the more diversified MMS message contents, open up for enterprises the potential of bulk use of mobile messaging , instead of essentially one-by-one use. In parallel, such enterprises or value added

  17. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...

  18. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  19. Characterisation of bulk solids

    Energy Technology Data Exchange (ETDEWEB)

    D. McGlinchey [Glasgow Caledonian University, Glasgow (United Kingdom). Centre for Industrial Bulk Solids Handling

    2005-07-01

    Handling of powders and bulk solids is a critical industrial technology across a broad spectrum of industries, including minerals processing. With contributions from leading authors in their respective fields, this book provides the reader with a sound understanding of the techniques, importance and application of particulate materials characterisation. It covers the fundamental characteristics of individual particles and bulk particulate materials, and includes discussion of a wide range of measurement techniques, and the use of material characteristics in design and industrial practice. Contents: Characterising particle properties; Powder mechanics and rheology; Characterisation for hopper and stockpile design; Fluidization behaviour; Characterisation for pneumatic conveyor design; Explosiblility; 'Designer' particle characteristics; Current industrial practice; and Future trends. 130 ills.

  20. Micromegas in a bulk

    International Nuclear Information System (INIS)

    Giomataris, I.; De Oliveira, R.; Andriamonje, S.; Aune, S.; Charpak, G.; Colas, P.; Fanourakis, G.; Ferrer, E.; Giganon, A.; Rebourgeard, Ph.; Salin, P.

    2006-01-01

    In this paper, we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the Printed Circuit Board (PCB) technology is employed to produce the entire sensitive detector. Such a fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it attractive for several applications ranging from particle physics and astrophysics to medicine

  1. Bulk metallic glasses and high entropy alloys for reprocessing applications

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Jayaraj, J.

    2016-01-01

    Recent breakthroughs in materials engineering have generated complex alloys that retain a glassy state in bulk form (bulk metallic glasses or BMGs) via ingot casting. High corrosion resistance is expected for BMGs (amorphous) as they are free from defects associated with the crystalline state such as grain boundaries, dislocations and stacking faults. Compared with conventional alloys containing one or two principal elements, the recently developed HEAs are usually composed of five or more elements with equimolar or near equimolar elemental fractions, which forms single solid solution phase. These HEAs exhibit excellent microstructural stability with better mechanical, wear and corrosion resistance properties as they are essentially single phase. Reprocessing of spent fuel from the fast breeder reactor involves the use of high concentration of (11.5 M) nitric acid under boiling conditions for the dissolution of the fuel. Conventional AISI type 304LSS and nitric acid grade 304L stainless steel would undergo inter-granular corrosion under these conditions and cannot be used for the fabrication of dissolver vessel. Currently titanium is used and zirconium alloys are proposed for future dissolver applications. Thus searching for newer materials with higher corrosion resistance suggests metallic glasses and HEAs for critical components of the dissolver application. Several Zr-based glassy alloys with different microstructural states and Ni-Nb based glassy alloys and TiZrHfNbTa HEA were cast and characterized for microstructure and corrosion resistance in nitric acid medium. From these studies, factors such as the corrosive environment (nitric acid, chloride and fluoride), and the presence of passivating elements in the alloy were emphasized for better corrosion resistance of BMGs and HEA. Attempts were also made to prepare coatings of Zr-and Ni-based glassy alloys on 304LSS by laser based deposition technique and their corrosion properties were evaluated. (author)

  2. Potentiodynamic polarization studies of bulk amorphous alloy Zr57Cu15.4Ni12.6Al10Nb5 and Zr59Cu20Ni8Al10Ti3 in aqueous HNO3 media

    International Nuclear Information System (INIS)

    Sharma, Poonam; Dhawan, Anil; Jayraj, J.; Kamachi Mudali, U.

    2013-01-01

    The potentiodynamic polarization studies were carried out on Zr based bulk amorphous alloy Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 in solutions of 1 M, 6 M and 11.5 M HNO 3 aqueous media at room temperature. As received specimens of Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 (5 mm diameter rod) and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 (3 mm diameter rod) were polished with SiC paper before testing them for potentiodynamic polarization studies. The amorphous nature of the specimens was checked by X-ray diffraction. The bulk amorphous alloy Zr 59 Cu 20 Ni 8 Al 10 Ti 3 shows the better corrosion resistance than Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy in the aqueous HNO 3 media as the value of the corrosion current density (I corr ) for Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy were found to be more than Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy in aqueous HNO 3 media. The improved corrosion resistance of Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy is possibly due to the presence of Ti and formation of TiO 2 during anodic oxidation. Both Zr based bulk amorphous alloys shows wider passive range at lower concentration of nitric acid and the passive region gets narrowed down with the increase in concentration. A comparison of data obtained from both the Zr-based bulk amorphous alloys is made and results are discussed in the paper. (author)

  3. Effect of the metallic glass volume fraction on the mechanical properties of Zr-based metallic glass reinforced with porous W composite

    International Nuclear Information System (INIS)

    Zhang, X.Q.; Wang, L.; Xue, Y.F.; Cheng, X.W.; Wang, Y.D.; Nie, Z.H.; Zhang, H.F.; Fu, H.M.; Ma, L.L.; Ren, Y.

    2013-01-01

    The mechanical properties of both as-cast and as-extruded Zr-based metallic glass reinforced with tungsten composites with 33, 28, and 21 vol. % of metallic glass were investigated under quasi-static compression at strain rates from 10 −4 s −1 to 10 −1 s −1 . These two types of composites exhibited a strain rate sensitivity exponent that increased with the increase of the tungsten volume fraction. Compared to the composites with 33 and 21 vol. % of the metallic glass, the two types of composites with 28 vol. % of the metallic glass phase exhibited superior fracture energies. The in-situ compression test on the as-cast composites using high-energy synchrotron X-ray diffraction (HEXRD) revealed that the yield stress of the tungsten phase increased with a decrease in the metallic glass volume fraction. The as-cast composite with 28 vol. % of the metallic glass exhibited relatively great mechanical properties compared to the composites that contained 33 and 21 vol. % of the metallic glass. This result was attributed to the great coupling of the load distribution between the two phases and the high lattice strain in the tungsten phase.

  4. The Effect of Cerium Ions on the Structure, Porosity and Electrochemical Properties of Si/Zr-Based Hybrid Sol-Gel Coatings Deposited on Aluminum

    Directory of Open Access Journals (Sweden)

    Peter Rodič

    2018-04-01

    Full Text Available This study was focused on the synthesis and characterization of Si/Zr-based hybrid sol-gel coatings with and without the addition of cerium(III ions. The coatings were deposited on aluminum aiming to act as an effective and ecologically harmless alternative to toxic chromate coatings. The chemical composition, structure, thermal properties and porosity of the non-doped and Ce-doped coatings containing various Zr contents were examined by Raman spectroscopy and photothermal beam deflection spectroscopy. The corrosion properties of the coated aluminum substrates were studied using AC and DC electrochemical methods in 0.1 M NaCl electrolyte solution. Barrier and protecting properties of the coatings were monitored upon long-term immersion in chloride solution using electrochemical impedance spectroscopy. The effect of cerium ions was two-fold: on the formation of a more condensed Si−O−Zr network structure and on the formation of Ce-based deposits, which diminish the rate of cathodic reaction at the coating/metal interface. These effects acted synergistically and resulted in the creation of the coatings with effective barrier and active corrosion protection.

  5. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  6. Bulk muscles, loose cables.

    Science.gov (United States)

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-10-17

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. 2014 BMJ Publishing Group Ltd.

  7. Improvement of the thermoplastic formability of Zr65Cu17.5Ni10Al7.5 bulk metallic glass by minor addition of Erbium

    International Nuclear Information System (INIS)

    Hu, Q.; Zeng, X.R.; Fu, M.W.; Chen, S.S.; Jiang, J.

    2016-01-01

    The softness of Zr 65 Cu 17.5 Ni 10 Al 7.5 bulk metallic glass (BMG) in the super-cooled liquid range (SCLR) is obviously improved by minor addition of 2% Er, which makes (Zr 65 Cu 17.5 Ni 10 Al 7.5 ) 98 Er 2 (Zr65Er2) to be a very formable Be-free Zr-based BMG. It is found the lower glass transition temperature of Zr65Er2 has an important contribution to the improvement of formability, which is contrary to the general understanding that the larger fragility and wider super-cooled liquid region (SCLR) are the major reasons for better thermoplastic formability. This finding is well explained by using the linear simplification of the SCLR in Angell plot. Zr65Er2 also has lower crystallization temperature and melting temperature, which is believed to be related to the formation of short-range ordering with lower transition energy rather than the composition shift to near eutectic. The above results help understand the effect of minor addition of rare-earth to the formability of Zr-based bulk metallic glasses.

  8. Effects of molybdenum content on the structure and mechanical properties of as-cast Ti-10Zr-based alloys for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wen-Fu, E-mail: fujiiwfho@yahoo.com.tw [Department of Materials Science and Engineering, Da-Yeh University, Changhua, Taiwan (China); Wu, Shih-Ching; Hsu, Shih-Kuang [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Li, Yu-Chi [Department of Materials Science and Engineering, Da-Yeh University, Changhua, Taiwan (China); Hsu, Hsueh-Chuan, E-mail: hchsu@ctust.edu.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China)

    2012-04-01

    The effects of molybdenum on the structure and mechanical properties of a Ti-10Zr-based system were studied with an emphasis on improving the strength/modulus ratio. Commercially pure titanium (c.p. Ti) was used as a control. As-cast Ti-10Zr and a series of Ti-10Zr-xMo (x = 1, 3, 5, 7.5, 10, 12.5, 15, 17.5 and 20 wt.%) alloys prepared using a commercial arc-melting vacuum pressure casting system were investigated. X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer. Three-point bending tests were performed to evaluate the mechanical properties of all specimens. The experimental results indicated that these alloys had different structures and mechanical properties when various amounts of Mo were added. The as-cast Ti-10Zr has a hexagonal {alpha} Prime phase, and when 1 wt.% Mo was introduced into the Ti-10Zr alloy, the structure remained essentially unchanged. However, with 3 or 5 wt.%, the martensitic {alpha} Double-Prime structure was found. When increased to 7.5 wt.% or greater, retention of the metastable {beta} phase began. The {omega} phase was observed only in the Ti-10Zr-7.5Mo alloy. Among all Ti-10Zr-xMo alloys, the {alpha} Double-Prime -phase Ti-10Zr-5Mo alloy had the lowest elastic modulus. It is noteworthy that all the Ti-10Zr and Ti-10Zr-xMo alloys had good ductility. In addition, the Ti-10Zr-5Mo and Ti-10Zr-12.5Mo alloys exhibited higher bending strength/modulus ratios at 20.1 and 20.4, respectively. Furthermore, the elastically recoverable angles of these two alloys (26.4 Degree-Sign and 24.6 Degree-Sign , respectively) were much greater than those of c.p. Ti (2.7 Degree-Sign ). Given the importance of these properties for implant materials, the low modulus, excellent elastic recovery capability and high strength/modulus ratio of {alpha} Double-Prime phase Ti-10Zr-5Mo and {beta} phase Ti-10Zr-12.5Mo alloys appear to make them promising candidates. - Highlights: Black-Right-Pointing-Pointer The effects of Mo on the structure

  9. Microfabricated Bulk Piezoelectric Transformers

    Science.gov (United States)

    Barham, Oliver M.

    Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0

  10. Developing bulk exchange spring magnets

    Science.gov (United States)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  11. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    Aourag, H.; Guittom, A.

    2009-01-01

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Modelling of bulk superconductor magnetization

    International Nuclear Information System (INIS)

    Ainslie, M D; Fujishiro, H

    2015-01-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB 2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet–superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed. (topical review)

  13. On the kinetic and thermodynamic fragility of the Pt{sub 60}Cu{sub 16}Co{sub 2}P{sub 22} and Pt{sub 57.3}Cu{sub 14.6}Ni{sub 5.3}P{sub 22.8} bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gallino, Isabella, E-mail: i.gallino@mx.uni-saarland.de [Saarland University, Department of Materials Science and Engineering, Campus C6.3, 66123 Saarbruecken (Germany); Gross, Oliver [Saarland University, Department of Materials Science and Engineering, Campus C6.3, 66123 Saarbruecken (Germany); Dalla Fontana, Giulia [Department of Chemistry IFM and NIS, University of Torino, V. Giuria 7, 10125 Torino (Italy); Evenson, Zach; Busch, Ralf [Saarland University, Department of Materials Science and Engineering, Campus C6.3, 66123 Saarbruecken (Germany)

    2014-12-05

    Highlights: • The studied Pt–Cu–(Ni,Co)–P glasses are more fragile than Zr-based alloys. • They show large increases in the C{sub p} at T{sub g} and small barriers for cooperative rearrangements of atoms. • They have fragility parameters among the lowest reported for BMG systems (D{sup *} = 10–12). • They crystallize into a state that melts with distinctly high entropy of fusion. • The microscopic origin of their fragility seems different than that for Zr- and Pd-based BMGs. - Abstract: The investigations in this study focus on bulk metallic glass (BMG) alloy families based on noble metals like Pt, which are more kinetically fragile than Zr-based BMG systems. Thermophysical properties have been investigated by calorimetry and thermal mechanical analyses for the determination of the specific heat capacity and viscosity, respectively. For the Pt{sub 60}Cu{sub 16}Co{sub 2}P{sub 22} and Pt{sub 57.3}Cu{sub 14.6}Ni{sub 5.3}P{sub 22.8} BMG compositions consistent Vogel–Fulcher–Tammann (VFT) fits of the viscosity measurements are established, and the temperature dependence of the configurational entropy is calculated from thermodynamic data. Fits to the Adam–Gibbs equation are performed using this configurational entropy change. Their fragile nature is compared to that of Zr-based alloys in terms of structural considerations.

  14. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  15. Improvement of the thermoplastic formability of Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5} bulk metallic glass by minor addition of Erbium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q. [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zeng, X.R., E-mail: zengxier@szu.edu.cn [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); JANUS Precision Components Co., LTD., Dongguan 523000 (China); Fu, M.W., E-mail: mmmwfu@polyu.edu.hk [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Chen, S.S. [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Jiang, J. [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China)

    2016-12-01

    The softness of Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5} bulk metallic glass (BMG) in the super-cooled liquid range (SCLR) is obviously improved by minor addition of 2% Er, which makes (Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5}){sub 98}Er{sub 2} (Zr65Er2) to be a very formable Be-free Zr-based BMG. It is found the lower glass transition temperature of Zr65Er2 has an important contribution to the improvement of formability, which is contrary to the general understanding that the larger fragility and wider super-cooled liquid region (SCLR) are the major reasons for better thermoplastic formability. This finding is well explained by using the linear simplification of the SCLR in Angell plot. Zr65Er2 also has lower crystallization temperature and melting temperature, which is believed to be related to the formation of short-range ordering with lower transition energy rather than the composition shift to near eutectic. The above results help understand the effect of minor addition of rare-earth to the formability of Zr-based bulk metallic glasses.

  16. Evaluation of Ni-free Zr–Cu–Fe–Al bulk metallic glass for biomedical implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui [Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Zhang, Wei [School of Materials Science and Engineering, Dalian University of Technology, Dalian (China); Kai, Wu [Institute of Materials Engineering, National Taiwan Ocean University, Keelung, Taiwan (China); Liaw, Peter K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN (United States); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, Taipei City Hospital, Taipei, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2014-02-15

    Highlights: ► A Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} bulk metallic glass (BMG) with 50 GPa elastic modulus was used. ► This Ni-free Zr-based BMG had lower metal ion release rate than the commercial Ti. ► This Ni-free Zr-based BMG had better proteins adsorption than the commercial Ti. ► This Ni-free Zr-based BMG has a high potential for biomedical implant applications. -- Abstract: This study was conducted to investigate the surface characteristics, including the chemical composition, metal ion release, protein adsorption, and cell adhesion, of a Ni-free Zr-based (Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10}) bulk metallic glass (BMG) with low elastic modulus for biomedical implant applications. X-ray photoelectron spectroscopy was used to identify the surface chemical composition and the protein (albumin and fibronectin) adsorption of the specimen. The metal ions released from the specimen in simulated blood plasma and artificial saliva solutions were measured using an inductively coupled plasma-mass spectrometer. The cell adhesion, in terms of the morphology, focal adhesion complex, and skeletal arrangement, of human bone marrow mesenchymal stem cells was evaluated using scanning electron microscope observations and immunofluorescent staining. For comparison purposes, the above-mentioned tests were also carried out on the widely used biomedical metal, Ti. The results showed that the main component on the outermost surface of the amorphous Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG was ZrO{sub 2} with small amounts of Cu, Al, and Fe oxides. The released metal ions from Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG were well below the critical concentrations that cause negative biological effects. The Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG had a greater adsorption capacity for albumin and fibronectin than that of commercial biomedical Ti. The Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG surface showed an attached cell number similar

  17. Bulk viscosity and cosmological evolution

    International Nuclear Information System (INIS)

    Beesham, A.

    1996-01-01

    In a recent interesting paper, Pimentel and Diaz-Rivera (Nuovo Cimento B, 109(1994) 1317) have derived several solutions with bulk viscosity in homogeneous and isotropic cosmological models. They also discussed the properties of these solutions. In this paper the authors relate the solutions of Pimentel and Diaz-Rivera by simple transformations to previous solutions published in the literature, showing that all the solutions can be derived from the known existing ones. Drawbacks to these approaches of studying bulk viscosity are pointed out, and better approaches indicated

  18. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  19. Bulk viscosity of molecular fluids

    Science.gov (United States)

    Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.

    2018-05-01

    The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.

  20. Feasibility of using bulk metallic glass for self-expandable stent applications.

    Science.gov (United States)

    Praveen Kumar, Gideon; Jafary-Zadeh, Mehdi; Tavakoli, Rouhollah; Cui, Fangsen

    2017-10-01

    Self-expandable stents are widely used to restore blood flow in a diseased artery segment by keeping the artery open after angioplasty. Despite the prevalent use of conventional crystalline metallic alloys, for example, nitinol, to construct self-expandable stents, new biomaterials such as bulk metallic glasses (BMGs) are being actively pursued to improve stent performance. Here, we conducted a series of analyses including finite element analysis and molecular dynamics simulations to investigate the feasibility of using a prototypical Zr-based BMG for self-expandable stent applications. We model stent crimping of several designs for different percutaneous applications. Our results indicate that BMG-based stents with diamond-shaped crowns suffer from severe localization of plastic deformation and abrupt failure during crimping. As a possible solution, we further illustrate that such abrupt failure could be avoided in BMG-based stents without diamond shape crowns. This work would open a new horizon for a quest toward exploiting superior mechanical and functional properties of metallic glasses to design future stents. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1874-1882, 2017. © 2016 Wiley Periodicals, Inc.

  1. A combined arc-melting and tilt-casting furnace for the manufacture of high-purity bulk metallic glass materials.

    Science.gov (United States)

    Soinila, E; Pihlajamäki, T; Bossuyt, S; Hänninen, H

    2011-07-01

    An arc-melting furnace which includes a tilt-casting facility was designed and built, for the purpose of producing bulk metallic glass specimens. Tilt-casting was chosen because reportedly, in combination with high-purity processing, it produces the best fatigue endurance in Zr-based bulk metallic glasses. Incorporating the alloying and casting facilities in a single piece of equipment reduces the amount of laboratory space and capital investment needed. Eliminating the sample transfer step from the production process also saves time and reduces sample contamination. This is important because the glass forming ability in many alloy systems, such as Zr-based glass-forming alloys, deteriorates rapidly with increasing oxygen content of the specimen. The challenge was to create a versatile instrument, in which high purity conditions can be maintained throughout the process, even when melting alloys with high affinity for oxygen. Therefore, the design provides a high-vacuum chamber to be filled with a low-oxygen inert atmosphere, and takes special care to keep the system hermetically sealed throughout the process. In particular, movements of the arc-melting electrode and sample manipulator arm are accommodated by deformable metal bellows, rather than sliding O-ring seals, and the whole furnace is tilted for tilt-casting. This performance of the furnace is demonstrated by alloying and casting Zr(55)Cu(30)Al(10)Ni(5) directly into rods up to ø 10 mm which are verified to be amorphous by x-ray diffraction and differential scanning calorimetry, and to exhibit locally ductile fracture at liquid nitrogen temperature.

  2. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  3. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  4. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  5. Microhardness of bulk-fill composite materials

    OpenAIRE

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-01-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fil (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and ...

  6. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  7. Bulk handling benefits from ICT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    The efficiency and accuracy of bulk handling is being improved by the range of management information systems and services available today. As part of the program to extend Richards Bay Coal Terminal, Siemens is installing a manufacturing execution system which coordinates and monitors all movements of raw materials. The article also reports recent developments by AXSMarine, SunGuard Energy, Fuelworx and Railworx in providing integrated tools for tracking, managing and optimising solid/liquid fuels and rail car maintenance activities. QMASTOR Ltd. has secured a contract with Anglo Coal Australia to provide its Pit to Port.net{reg_sign} and iFuse{reg_sign} software systems across all their Australians sites, to include pit-to-product stockpile management. 2 figs.

  8. Bulk analysis using nuclear techniques

    International Nuclear Information System (INIS)

    Borsaru, M.; Holmes, R.J.; Mathew, P.J.

    1983-01-01

    Bulk analysis techniques developed for the mining industry are reviewed. Using penetrating neutron and #betta#-radiations, measurements are obtained directly from a large volume of sample (3-30 kg) #betta#-techniques were used to determine the grade of iron ore and to detect shale on conveyor belts. Thermal neutron irradiation was developed for the simultaneous determination of iron and aluminium in iron ore on a conveyor belt. Thermal-neutron activation analysis includes the determination of alumina in bauxite, and manganese and alumina in manganese ore. Fast neutron activation analysis is used to determine silicon in iron ores, and alumina and silica in bauxite. Fast and thermal neutron activation has been used to determine the soil in shredded sugar cane. (U.K.)

  9. A study on the development of hypo-stoichiometric Zr-based hydrogen storage alloys with ultra-high capacity for anode material of Ni/MH secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.-M.; Lee, H.; Kim, J.-H.; Lee, P.S.; Lee, J.-Y. [Korea Advanced Inst. of Science and Technology, Taejon (Korea). Dept. of Materials Science and Engineering

    2000-08-10

    Some hypo-stoichiometric Zr-based Laves phase alloys were prepared and studied from a viewpoint of discharge capacity for electrochemical application. After careful alloy design of ZrMn{sub 2}-based hydrogen storage alloys through changing their stoichiometry while substituting or adding some alloying elements, the Zr(Mn{sub 0.2}V{sub 0.2}Ni{sub 0.6}){sub 1.8} alloy reveals relatively good properties with regard to hydrogen storage capacity, hydrogen equilibrium pressure and electrochemical discharge capacity. In order to improve the discharge capacity and rate-capability, Zr is partially replaced by Ti. The discharge capacity of Zr{sub 1-x}Ti{sub x}(Mn{sub 0.2}V{sub 0.2}Ni{sub 0.6}){sub 1.8} (x=0.0, 0.2, 0.3, 0.4, 0.6) alloy electrodes at 30 C reaches a maximum value and decreases as the Ti fraction increases. In view of electrochemical and thermodynamic characteristics, the occurrence of a maximal phenomenon of the electrochemical discharge capacity of the alloy is attributed to a competition between decreasing hydrogen storage capacity and increasing rate-capability with Ti fraction. However, as the Ti fraction increases, the discharge capacity decreases drastically with repeated electrochemical cycling. Judging from the analysis of surface composition by Auger electron spectroscopy (AES), the rapid degradation with increasing Ti fraction in Zr-based alloy is ascribed to the fast growth of the oxygen-penetrated layer with cycling. Therefore, it is assured that the stoichiometry and Ti fraction should be optimized to obtain a good cycle life of the electrode maintaining high discharge capacity. On the basis of above results, the hydrogen storage capacity of the alloy with optimized composition (Zr{sub 0.65}Ti{sub 0.35}(Mn{sub 0.3}V{sub 0.14}Cr{sub 0.11}Ni{sub 0.65}){sub 1.76}) is about 1.68 wt% under 10 atm of equilibrium hydrogen pressure. (orig.)

  10. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  11. Longitudinal and bulk viscosities of expanded rubidium

    International Nuclear Information System (INIS)

    Zaheri, Ali Hossein Mohammad; Srivastava, Sunita; Tankeshwar, K

    2003-01-01

    First three non-vanishing sum rules for the bulk and longitudinal stress auto-correlation functions have been evaluated for liquid Rb at six thermodynamic states along the liquid-vapour coexistence curve. The Mori memory function formalism and the frequency sum rules have been used to calculate bulk and longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity to shear viscosity have been compared with experimental and other theoretical predictions wherever available. The values of the bulk viscosity have been found to be more than the corresponding values of the shear viscosity for all six thermodynamic states investigated here

  12. Nanopatterned Bulk Metallic Glass Biosensors.

    Science.gov (United States)

    Kinser, Emily R; Padmanabhan, Jagannath; Yu, Roy; Corona, Sydney L; Li, Jinyang; Vaddiraju, Sagar; Legassey, Allen; Loye, Ayomiposi; Balestrini, Jenna; Solly, Dawson A; Schroers, Jan; Taylor, André D; Papadimitrakopoulos, Fotios; Herzog, Raimund I; Kyriakides, Themis R

    2017-12-22

    Nanopatterning as a surface area enhancement method has the potential to increase signal and sensitivity of biosensors. Platinum-based bulk metallic glass (Pt-BMG) is a biocompatible material with electrical properties conducive for biosensor electrode applications, which can be processed in air at comparably low temperatures to produce nonrandom topography at the nanoscale. Work presented here employs nanopatterned Pt-BMG electrodes functionalized with glucose oxidase enzyme to explore the impact of nonrandom and highly reproducible nanoscale surface area enhancement on glucose biosensor performance. Electrochemical measurements including cyclic voltammetry (CV) and amperometric voltammetry (AV) were completed to compare the performance of 200 nm Pt-BMG electrodes vs Flat Pt-BMG control electrodes. Glucose dosing response was studied in a range of 2 mM to 10 mM. Effective current density dynamic range for the 200 nm Pt-BMG was 10-12 times greater than that of the Flat BMG control. Nanopatterned electrode sensitivity was measured to be 3.28 μA/cm 2 /mM, which was also an order of magnitude greater than the flat electrode. These results suggest that nonrandom nanotopography is a scalable and customizable engineering tool which can be integrated with Pt-BMGs to produce biocompatible biosensors with enhanced signal and sensitivity.

  13. Aspects of silicon bulk lifetimes

    Science.gov (United States)

    Landsberg, P. T.

    1985-01-01

    The best lifetimes attained for bulk crytalline silicon as a function of doping concentrations are analyzed. It is assumed that the dopants which set the Fermi level do not contribute to the recombination traffic which is due to the unknown defect. This defect is assumed to have two charge states: neutral and negative, the neutral defect concentration is frozen-in at some temperature T sub f. The higher doping concentrations should include the band-band Auger effect by using a generalization of the Shockley-Read-Hall (SRH) mechanism. The generalization of the SRH mechanism is discussed. This formulation gives a straightforward procedure for incorporating both band-band and band-trap Auger effects in the SRH procedure. Two related questions arise in this context: (1) it may sometimes be useful to write the steady-state occupation probability of the traps implied by SRH procedure in a form which approximates to the Fermi-Dirac distribution; and (2) the effect on the SRH mechanism of spreading N sub t levels at one energy uniformly over a range of energies is discussed.

  14. Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites

    Science.gov (United States)

    Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.

    2016-01-01

    The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315

  15. 27 CFR 20.191 - Bulk articles.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of this...

  16. On the bulk viscosity of relativistic matter

    International Nuclear Information System (INIS)

    Canuto, V.; Hsieh, S.-H.

    1978-01-01

    An expression for the bulk viscosity coefficient in terms of the trace of the hydrodynamic energy-stress tensor is derived from the Kubo formula. This, along with a field-theoretic model of an interacting system of scalar particles, suggests that at high temperatures the bulk viscosity tends to zero, contrary to the often quoted resuls of Iso, Mori and Namiki. (author)

  17. Bulk-viscosity-driven asymmetric inflationary universe

    International Nuclear Information System (INIS)

    Waga, I.; Lima, J.A.S.; Portugal, R.

    1987-01-01

    A primordial net bosinic charge is introduced in the context of the bulk-viscosity-driven inflationary models. The analysis is carried through a macroscopic point of view in the framework of the causal thermodynamic theory. The conditions for having exponetial and generalized inflation are obtained. A phenomenological expression for the bulk viscosity coefficient is also derived. (author) [pt

  18. Short-to-Medium-Range Order and Atomic Packing in Zr48Cu36Ag8Al8 Bulk Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yong Xu

    2016-10-01

    Full Text Available Due to its excellent glass-forming ability (GFA, the Zr48Cu36Al8Ag8 bulk metallic glass (BMG is of great importance in glass transition investigations and new materials development. However, due to the lack of detailed structural information, the local structure and atomic packing of this alloy is still unknown. In this work, synchrotron measurement and reverse Monte Carlo simulation are performed on the atomic configuration of a Zr-based bulk metallic glass. The local structure is characterized in terms of bond pairs and Voronoi tessellation. It is found that there are mainly two types of bond pairs in the configuration, as the body-centered cubic (bcc-type and icosahedral (ico-type bond pairs. On the other hand, the main polyhedra in the configuration are icosahedra and the bcc structure. That is, the bcc-type bond pairs, together with the ico-type bond pairs, form the bcc polyhedra, introducing the distortion in bcc clusters in short range. However, in the medium range, the atoms formed linear or planar structures, other than the tridimensional clusters. That is, the medium-range order in glass is of 1D or 2D structure, suggesting the imperfect ordered packing feature.

  19. Bulk viscosity in holographic Lifshitz hydrodynamics

    International Nuclear Information System (INIS)

    Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron

    2014-01-01

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent

  20. Bulk Leisure--Problem or Blessing?

    Science.gov (United States)

    Beland, Robert M.

    1983-01-01

    With an increasing number of the nation's work force experiencing "bulk leisure" time because of new work scheduling procedures, parks and recreation offices are encouraged to examine their program scheduling and content. (JM)

  1. Technical specifications for the bulk shielding reactor

    International Nuclear Information System (INIS)

    1986-05-01

    This report provides information concerning the technical specifications for the Bulk Shielding Reactor. Areas covered include: safety limits and limiting safety settings; limiting conditions for operation; surveillance requirements; design features; administrative controls; and monitoring of airborne effluents. 10 refs

  2. Force measurements for levitated bulk superconductors

    International Nuclear Information System (INIS)

    Tachi, Y.; Sawa, K.; Iwasa, Y.; Nagashima, K.; Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M.

    2000-01-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  3. Force measurements for levitated bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, Y. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan). E-mail: tachi at istec.or.jp; Uemura, N. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan); Sawa, K. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); Iwasa, Y. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); Nagashima, K. [Railway Technical Research Institute, Hikari-cho, Kokubunji-shi, Tokyo (Japan); Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M. [ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan)

    2000-06-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  4. ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI

    Directory of Open Access Journals (Sweden)

    Azizul Khakim

    2015-10-01

    Full Text Available ABSTRAK ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI. Bulk shielding merupakan fasilitas yang terintegrasi dengan reaktor Kartini yang berfungsi sebagai penyimpanan sementara bahan bakar bekas. Fasilitas ini merupakan fasilitas yang termasuk dalam struktur, sistem dan komponen (SSK yang penting bagi keselamatan. Salah satu fungsi keselamatan dari sistem penanganan dan penyimpanan bahan bakar adalah mencegah kecelakaan kekritisan yang tak terkendali dan membatasi naiknya temperatur bahan bakar. Analisis keselamatan paling kurang harus mencakup analisis keselamatan dari sisi neutronik dan termo hidrolik Bulk shielding. Analisis termo hidrolik ditujukan untuk memastikan perpindahan panas dan proses pendinginan bahan bakar bekas berjalan baik dan tidak terjadi akumulasi panas yang mengancam integritas bahan bakar. Code tervalidasi PARET/ANL digunakan untuk analisis pendinginan dengan mode konveksi alam. Hasil perhitungan menunjukkan bahwa mode pendinginan konvekasi alam cukup memadai dalam mendinginkan panas sisa tanpa mengakibatkan kenaikan temperatur bahan bakar yang signifikan. Kata kunci: Bulk shielding, bahan bakar bekas, konveksi alam, PARET.   ABSTRACT THERMAL HYDRAULIC SAFETY ANALYSIS OF BULK SHIELDING KARTINI REACTOR. Bulk shielding is an integrated facility to Kartini reactor which is used for temporary spent fuels storage. The facility is one of the structures, systems and components (SSCs important to safety. Among the safety functions of fuel handling and storage are to prevent any uncontrolable criticality accidents and to limit the fuel temperature increase. Safety analyses should, at least, cover neutronic and thermal hydraulic calculations of the bulk shielding. Thermal hydraulic analyses were intended to ensure that heat removal and the process of the spent fuels cooling takes place adequately and no heat accumulation that challenges the fuel integrity. Validated code, PARET/ANL was used for analysing the

  5. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  6. Module 13: Bulk Packaging Shipments by Highway

    International Nuclear Information System (INIS)

    Przybylski, J.L.

    1994-07-01

    The Hazardous Materials Modular Training Program provides participating United States Department of Energy (DOE) sites with a basic, yet comprehensive, hazardous materials transportation training program for use onsite. This program may be used to assist individual program entities to satisfy the general awareness, safety training, and function specific training requirements addressed in Code of Federal Regulation (CFR), Title 49, Part 172, Subpart H -- ''Training.'' Module 13 -- Bulk Packaging Shipments by Highway is a supplement to the Basic Hazardous Materials Workshop. Module 13 -- Bulk Packaging Shipments by Highway focuses on bulk shipments of hazardous materials by highway mode, which have additional or unique requirements beyond those addressed in the ten module core program. Attendance in this course of instruction should be limited to those individuals with work experience in transporting hazardous materials utilizing bulk packagings and who have completed the Basic Hazardous Materials Workshop or an equivalent. Participants will become familiar with the rules and regulations governing the transportation by highway of hazardous materials in bulk packagings and will demonstrate the application of these requirements through work projects and examination

  7. Formation, thermal stability and mechanical properties of bulk glassy alloys with a diameter of 20 mm in Zr-(Ti,Nb)-Al-Ni-Cu system

    International Nuclear Information System (INIS)

    Inoue, A.; Zhang, Q.S.; Zhang, W.; Yubuta, K.; Son, K.S.; Wang, X.M.

    2009-01-01

    Bulk glassy alloy rods with a diameter of 20 mm were produced for Zr 61 Ti 2 Nb 2 Al 7.5 Ni 10 Cu 17.5 and Zr 60 Ti 2 Nb 2 Al 7.5 Ni 10 Cu 18.5 by a tilt casting method. The replacement of Zr by a small amount of Ti and Nb caused a distinct increase in the maximum diameter from 16 mm for Zr 65 Al 7.5 Ni 10 Cu 17.5 to 20 mm, accompanying the decrease in liquidus temperature and the increase in reduced glass transition temperature. The primary precipitation phase from supercooled liquid also shows a distinct change, i.e., from coexistent Zr 2 Cu, Zr 2 Ni and Zr 6 NiAl 2 phases for the 65%Zr alloy to an icosahedral phase for the 61%Zr and 60%Zr alloys. These results allow us to presume that the enhancement of the glass-forming ability is due to an increase in the stability of supercooled liquid against crystallization caused by the development of icosahedral short-range ordered atomic configurations. The 60%Zr specimens taken from the central and near-surface regions in the transverse cross section at the site which is 15 mm away from the bottom surface of the cast glassy rod with a diameter of 20 mm exhibit good mechanical properties under a compressive deformation mode, i.e., Young's modulus of 81 GPa, large elastic strain of 0.02, high yield strength of 1610 MPa and distinct plastic strain of 0.012. Besides, a number of shear bands are observed along the maximum shear stress plane on the peripheral surface near the final fracture site. The finding of producing the large scale Zr-based bulk glassy alloys exhibiting reliable mechanical properties is encouraging for future advancement of bulk glassy alloys as a new type of functional material. (author)

  8. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  9. Bulk-memory processor for data acquisition

    International Nuclear Information System (INIS)

    Nelson, R.O.; McMillan, D.E.; Sunier, J.W.; Meier, M.; Poore, R.V.

    1981-01-01

    To meet the diverse needs and data rate requirements at the Van de Graaff and Weapons Neutron Research (WNR) facilities, a bulk memory system has been implemented which includes a fast and flexible processor. This bulk memory processor (BMP) utilizes bit slice and microcode techniques and features a 24 bit wide internal architecture allowing direct addressing of up to 16 megawords of memory and histogramming up to 16 million counts per channel without overflow. The BMP is interfaced to the MOSTEK MK 8000 bulk memory system and to the standard MODCOMP computer I/O bus. Coding for the BMP both at the microcode level and with macro instructions is supported. The generalized data acquisition system has been extended to support the BMP in a manner transparent to the user

  10. Micro benchtop optics by bulk silicon micromachining

    Science.gov (United States)

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  11. Holographic bulk reconstruction with α' corrections

    Science.gov (United States)

    Roy, Shubho R.; Sarkar, Debajyoti

    2017-10-01

    We outline a holographic recipe to reconstruct α' corrections to anti-de Sitter (AdS) (quantum) gravity from an underlying CFT in the strictly planar limit (N →∞ ). Assuming that the boundary CFT can be solved in principle to all orders of the 't Hooft coupling λ , for scalar primary operators, the λ-1 expansion of the conformal dimensions can be mapped to higher curvature corrections of the dual bulk scalar field action. Furthermore, for the metric perturbations in the bulk, the AdS /CFT operator-field isomorphism forces these corrections to be of the Lovelock type. We demonstrate this by reconstructing the coefficient of the leading Lovelock correction, also known as the Gauss-Bonnet term in a bulk AdS gravity action using the expression of stress-tensor two-point function up to subleading order in λ-1.

  12. Big bang nucleosynthesis constraints on bulk neutrinos

    International Nuclear Information System (INIS)

    Goh, H.S.; Mohapatra, R.N.

    2002-01-01

    We examine the constraints imposed by the requirement of successful nucleosynthesis on models with one large extra hidden space dimension and a single bulk neutrino residing in this dimension. We solve the Boltzmann kinetic equation for the thermal distribution of the Kaluza-Klein modes and evaluate their contribution to the energy density at the big bang nucleosynthesis epoch to constrain the size of the extra dimension R -1 ≡μ and the parameter sin 2 2θ which characterizes the mixing between the active and bulk neutrinos

  13. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  14. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Habing, D.H.

    1979-01-01

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  15. 46 CFR 148.04-23 - Unslaked lime in bulk.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Unslaked lime in bulk. 148.04-23 Section 148.04-23... HAZARDOUS MATERIALS IN BULK Special Additional Requirements for Certain Material § 148.04-23 Unslaked lime in bulk. (a) Unslaked lime in bulk must be transported in unmanned, all steel, double-hulled barges...

  16. 33 CFR 127.313 - Bulk storage.

    Science.gov (United States)

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The operator...: (1) LNG. (2) LPG. (3) Vessel fuel. (4) Oily waste from vessels. (5) Solvents, lubricants, paints, and...

  17. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of

  18. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  19. Longitudinal bulk a coustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    Design, fabrication and characterization, in terms of mass sensitivity, is presented for a polycrystalline silicon longitudinal bulk acoustic cantilever. The device is operated in air at 51 MHz, resulting in a mass sensitivity of 100 HZ/fg (1 fg = 10{su−15 g). The initial characterization is cond...

  20. Bulk viscosity in 2SC quark matter

    International Nuclear Information System (INIS)

    Alford, Mark G; Schmitt, Andreas

    2007-01-01

    The bulk viscosity of three-flavour colour-superconducting quark matter originating from the nonleptonic process u + s ↔ u + d is computed. It is assumed that up and down quarks form Cooper pairs while the strange quark remains unpaired (2SC phase). A general derivation of the rate of strangeness production is presented, involving contributions from a multitude of different subprocesses, including subprocesses that involve different numbers of gapped quarks as well as creation and annihilation of particles in the condensate. The rate is then used to compute the bulk viscosity as a function of the temperature, for an external oscillation frequency typical of a compact star r-mode. We find that, for temperatures far below the critical temperature T c for 2SC pairing, the bulk viscosity of colour-superconducting quark matter is suppressed relative to that of unpaired quark matter, but for T ∼> T c /30 the colour-superconducting quark matter has a higher bulk viscosity. This is potentially relevant for the suppression of r-mode instabilities early in the life of a compact star

  1. Combating wear in bulk solids handling plants

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    A total of five papers presented at a seminar on problems of wear caused by abrasive effects of materials in bulk handling. Topics of papers cover the designer viewpoint, practical experience from the steel, coal, cement and quarry industries to create an awareness of possible solutions.

  2. THE OPTIMIZATION OF PLUSH YARNS BULKING PROCESS

    Directory of Open Access Journals (Sweden)

    VINEREANU Adam

    2014-05-01

    Full Text Available This paper presents the experiments that were conducted on the installation of continuous bulking and thermofixing “SUPERBA” type TVP-2S for optimization of the plush yarns bulking process. There were considered plush yarns Nm 6.5/2, made of the fibrous blend of 50% indigenous wool sort 41 and 50% PES. In the first stage, it performs a thermal treatment with a turboprevaporizer at a temperature lower than thermofixing temperature, at atmospheric pressure, such that the plush yarns - deposed in a freely state on a belt conveyor - are uniformly bulking and contracting. It was followed the mathematical modeling procedure, working with a factorial program, rotatable central composite type, and two independent variables. After analyzing the parameters that have a direct influence on the bulking degree, there were selected the pre-vaporization temperature (coded x1,oC and the velocity of belt inside pre-vaporizer (coded x 2, m/min. As for the dependent variable, it was chosen the plush yarn diameter (coded y, mm. There were found the coordinates of the optimal point, and then this pair of values was verified in practice. These coordinates are: x1optim= 90oC and x 2optim= 6.5 m/min. The conclusion is that the goal was accomplished: it was obtained a good cover degree f or double-plush carpets by reducing the number of tufts per unit surface.

  3. Characteristics of bulk liquid undercooling and crystallization ...

    Indian Academy of Sciences (India)

    Characteristics of bulk liquid undercooling and crystallization behaviors ... cooling rate is fixed, the change of undercooling depends on the melt processing tem- ... solidification and a deep knowledge of undercooling of ... evolution, to obtain the information for the nucleation and ..... When cooling rate is fixed, the change.

  4. A stereoscopic look into the bulk

    Energy Technology Data Exchange (ETDEWEB)

    Czech, Bartłomiej; Lamprou, Lampros; McCandlish, Samuel; Mosk, Benjamin [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Sully, James [Theory Group, SLAC National Accelerator LaboratoryMenlo Park, CA 94025 (United States)

    2016-07-26

    We present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphism-invariant bulk operators. The CFT operators of interest are the “OPE blocks,” contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimal surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space — the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow for conceptually clean and technically simple derivations of many results known in the literature, including linearized Einstein’s equations and the relation between conformal blocks and geodesic Witten diagrams.

  5. Bulk viscous cosmology in early Universe

    Indian Academy of Sciences (India)

    The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein's field equations are solved by using `gamma-law' equation of state = ( - 1)ρ, where the adiabatic parameter gamma () depends on the scale factor of the model.

  6. Failure by fracture in bulk metal forming

    DEFF Research Database (Denmark)

    Silva, C.M.A.; Alves, Luis M.; Nielsen, Chris Valentin

    2015-01-01

    This paper revisits formability in bulk metal forming in the light of fundamental concepts of plasticity,ductile damage and crack opening modes. It proposes a new test to appraise the accuracy, reliability and validity of fracture loci associated with crack opening by tension and out-of-plane shear...

  7. Hexaferrite multiferroics: from bulk to thick films

    Science.gov (United States)

    Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.

    2018-03-01

    We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.

  8. Integration of bulk piezoelectric materials into microsystems

    Science.gov (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with integration of a 50-80% efficient power management IC, which incorporates a supply-independent bias circuitry, an active diode for low-dropout rectification, a bias-flip system for higher efficiency, and a trickle battery charger. The overall system does not require a pre-charged battery, and has power consumption of <1microW in active-mode (measured) and <5pA in sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.

  9. The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid.

    Science.gov (United States)

    Qiu, C L; Liu, L; Sun, M; Zhang, S M

    2005-12-15

    Bulk metallic glasses (BMGs) of Zr(65 - x)Nb(x)- Cu(17.5)Ni(10)Al(7.5) with Nb = 0, 2, and 5 at % were prepared by copper mold casting. Compression tests reveal that the two BMGs containing Nb exhibited superior strength and plasticity to the base alloy. The corrosion behavior of the alloys obtained was investigated in artificial body fluid by electrochemical measurements. It was found that the addition of Nb significantly enhanced the corrosion resistance of the Zr-based BMG, as indicated by a remarkable increase in corrosion potential and pitting potential. XPS analysis revealed that the passive film formed after anodic polarization was enriched in aluminum oxide and depleted in phosphate ions for the BMGs containing Nb, which accounts for the improvement of corrosion resistance. On the other hand, metal-ion release of different BMGs were determined in PPb (ng/mL) level with inductively coupled plasma mass spectrometry (ICP-MS) after being immersed in artificial body fluid at 37 degrees C for 20 days. It was found that the addition of Nb considerably reduced the ion release of all kinds of metals of the base system. This is probably attributed to the promoting effect of Nb on a rapid formation of highly protective film.

  10. Bulk solitary waves in elastic solids

    Science.gov (United States)

    Samsonov, A. M.; Dreiden, G. V.; Semenova, I. V.; Shvartz, A. G.

    2015-10-01

    A short and object oriented conspectus of bulk solitary wave theory, numerical simulations and real experiments in condensed matter is given. Upon a brief description of the soliton history and development we focus on bulk solitary waves of strain, also known as waves of density and, sometimes, as elastic and/or acoustic solitons. We consider the problem of nonlinear bulk wave generation and detection in basic structural elements, rods, plates and shells, that are exhaustively studied and widely used in physics and engineering. However, it is mostly valid for linear elasticity, whereas dynamic nonlinear theory of these elements is still far from being completed. In order to show how the nonlinear waves can be used in various applications, we studied the solitary elastic wave propagation along lengthy wave guides, and remarkably small attenuation of elastic solitons was proven in physical experiments. Both theory and generation for strain soliton in a shell, however, remained unsolved problems until recently, and we consider in more details the nonlinear bulk wave propagation in a shell. We studied an axially symmetric deformation of an infinite nonlinearly elastic cylindrical shell without torsion. The problem for bulk longitudinal waves is shown to be reducible to the one equation, if a relation between transversal displacement and the longitudinal strain is found. It is found that both the 1+1D and even the 1+2D problems for long travelling waves in nonlinear solids can be reduced to the Weierstrass equation for elliptic functions, which provide the solitary wave solutions as appropriate limits. We show that the accuracy in the boundary conditions on free lateral surfaces is of crucial importance for solution, derive the only equation for longitudinal nonlinear strain wave and show, that the equation has, amongst others, a bidirectional solitary wave solution, which lead us to successful physical experiments. We observed first the compression solitary wave in the

  11. Fluctuation effects in bulk polymer phase behavior

    International Nuclear Information System (INIS)

    Bates, F.S.; Rosedale, J.H.; Stepanek, P.; Lodge, T.P.; Wiltzius, P.; Hjelm R, Jr.; Fredrickson, G.H.

    1990-01-01

    Bulk polymer-polymer, and block copolymer, phase behaviors have traditionally been interpreted using mean-field theories. Recent small-angle neutron scattering (SANS) studies of critical phenomena in model binary polymer mixtures confirm that non-mean-field behavior is restricted to a narrow range of temperatures near the critical point, in close agreement with the Ginzburg criterion. In contrast, strong derivations from mean-field behavior are evident in SANS and rheological measurements on model block copolymers more than 50C above the order-disorder transition (ODT), which can be attributed to sizeable composition fluctuations. Such fluctuation effects undermine the mean-field assumption, conventionally applied to bulk polymers, and result in qualitative changes in phase behavior, such as the elimination of a thermodynamic stability limit in these materials. The influence of fluctuation effects on block copolymer and binary mixture phase behavior is compared and contrasted in this presentation

  12. Nuclear Matter Bulk Parameter Scales and Correlations

    International Nuclear Information System (INIS)

    Santos, B. M.; Delfino, A.; Dutra, M.; Lourenço, O.

    2015-01-01

    We study the arising of correlations among some isovector bulk parameters in nonrelativistic and relativistic hadronic mean-field models. For the former, we investigate correlations in the nonrelativistic (NR) limit of relativistic point-coupling models. We provide analytical correlations, for the NR limit model, between the symmetry energy and its derivatives, namely, the symmetry energy slope, curvature, skewness and fourth order derivative, discussing the conditions in which they are linear ones. We also show that some correlations presented in the NR limit model are reproduced for relativistic models presenting cubic and quartic self-interactions in its scalar field. As a direct application of such linear correlations, we remark its association with possible crossing points in the density dependence of the linearly correlated bulk parameter. (author)

  13. Structural determinants in the bulk heterojunction.

    Science.gov (United States)

    Acocella, Angela; Höfinger, Siegfried; Haunschmid, Ernst; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Yasui, Masato; Zerbetto, Francesco

    2018-02-21

    Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.

  14. ANFO bulk loading in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gajjar, A.

    1987-08-01

    With India's total coal production projected to increase from 152 to 237 million tons by 1990, net additional production from new mines must be more because of substantial depletion in existing mines. This article discusses the best possible application of explosive techniques in open-cast coal mines to economize production cost. The most energy-efficient and safest explosive is ANFO (ammonium nitrate, fuel oil); however, manual charging by INFO is not possible. Therefore, the solution is the application of bulk-loading systems of ANFO for giant mining operations. Cost of blasting per ton of coal production in India is in the range of Rs 25. Thus, the author suggests it will be the responsibility of mining engineers to see that the ANFO based bulk-loading system is implemented and the cost of production per ton reduced to Rs 19.50.

  15. Nonlinear AC susceptibility, surface and bulk shielding

    Science.gov (United States)

    van der Beek, C. J.; Indenbom, M. V.; D'Anna, G.; Benoit, W.

    1996-02-01

    We calculate the nonlinear AC response of a thin superconducting strip in perpendicular field, shielded by an edge current due to the geometrical barrier. A comparison with the results for infinite samples in parallel field, screened by a surface barrier, and with those for screening by a bulk current in the critical state, shows that the AC response due to a barrier has general features that are independent of geometry, and that are significantly different from those for screening by a bulk current in the critical state. By consequence, the nonlinear (global) AC susceptibility can be used to determine the origin of magnetic irreversibility. A comparison with experiments on a Bi 2Sr 2CaCu 2O 8+δ crystal shows that in this material, the low-frequency AC screening at high temperature is mainly due to the screening by an edge current, and that this is the unique source of the nonlinear magnetic response at temperatures above 40 K.

  16. Multilayer Integrated Film Bulk Acoustic Resonators

    CERN Document Server

    Zhang, Yafei

    2013-01-01

    Multilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.

  17. Internal shear cracking in bulk metal forming

    DEFF Research Database (Denmark)

    Christiansen, Peter; Nielsen, Chris Valentin; Bay, Niels Oluf

    2017-01-01

    This paper presents an uncoupled ductile damage criterion for modelling the opening and propagation of internal shear cracks in bulk metal forming. The criterion is built upon the original work on the motion of a hole subjected to shear with superimposed tensile stress triaxiality and its overall...... performance is evaluated by means of side-pressing formability tests in Aluminium AA2007-T6 subjected to different levels of pre-strain. Results show that the new proposed criterionis able to combine simplicity with efficiency for predicting the onset of fracture and the crack propagation path for the entire...... cracking to internal cracks formed undert hree-dimensional states of stress that are typical of bulk metal forming....

  18. Induction detection of concealed bulk banknotes

    International Nuclear Information System (INIS)

    Fuller, Christopher; Chen, Antao

    2011-01-01

    Bulk cash smuggling is a serious issue that has grown in volume in recent years. By building on the magnetic characteristics of paper currency, induction sensing is found to be capable of quickly detecting large masses of banknotes. The results show that this method is effective in detecting bulk cash through concealing materials such as plastics, cardboards, fabrics and aluminum foil. The significant difference in the observed phase between the received signals caused by conducting materials and ferrite compounds, found in banknotes, provides a good indication that this process can overcome the interference by metal objects in a real sensing application. This identification strategy has the potential to not only detect the presence of banknotes, but also the number, while still eliminating false positives caused by metal objects

  19. Induction detection of concealed bulk banknotes

    Science.gov (United States)

    Fuller, Christopher; Chen, Antao

    2012-06-01

    The smuggling of bulk cash across borders is a serious issue that has increased in recent years. In an effort to curb the illegal transport of large numbers of paper bills, a detection scheme has been developed, based on the magnetic characteristics of bank notes. The results show that volumes of paper currency can be detected through common concealing materials such as plastics, cardboard, and fabrics making it a possible potential addition to border security methods. The detection scheme holds the potential of also reducing or eliminating false positives caused by metallic materials found in the vicinity, by observing the stark difference in received signals caused by metal and currency. The detection scheme holds the potential to detect for both the presence and number of concealed bulk notes, while maintaining the ability to reduce false positives caused by metal objects.

  20. Bulk viscous cosmology with causal transport theory

    International Nuclear Information System (INIS)

    Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried

    2011-01-01

    We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDM case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10 −11 || cb 2 ∼ −8

  1. Raman characterization of bulk ferromagnetic nanostructured graphite

    International Nuclear Information System (INIS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  2. Depositing bulk or micro-scale electrodes

    Science.gov (United States)

    Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.

    2016-11-01

    Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.

  3. Theory of thermal expansivity and bulk modulus

    International Nuclear Information System (INIS)

    Kumar, Munish

    2005-01-01

    The expression for thermal expansivity and bulk modulus, claimed by Shanker et al. to be new [Physica B 233 (1977) 78; 245 (1998) 190; J. Phys. Chem. Solids 59 (1998) 197] are compared with the theory of high pressure-high temperature reported by Kumar and coworkers. It is concluded that the Shanker formulation and the relations based on this are equal to the approach of Kumar et al. up to second order

  4. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A bulk viscosity driven inflationary model

    International Nuclear Information System (INIS)

    Waga, I.; Falcao, R.C.; Chanda, R.

    1985-01-01

    Bulk viscosity associated with the production of heavy particles during the GUT phase transition can lead to exponential or 'generalized' inflation. The condition of inflation proposed is independent of the details of the phase transition and remains unaltered in presence of a cosmological constant. Such mechanism avoids the extreme supercooling and reheating needed in the usual inflationary models. The standard baryongenesis mechanism can be maintained. (Author) [pt

  6. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J; Choi, J

    2007-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials

  7. Evidence for Bulk Ripplocations in Layered Solids

    Science.gov (United States)

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-09-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation-best described as an atomic scale ripple-was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain.

  8. Accelerating universes driven by bulk particles

    International Nuclear Information System (INIS)

    Brito, F.A.; Cruz, F.F.; Oliveira, J.F.N.

    2005-01-01

    We consider our universe as a 3d domain wall embedded in a 5d dimensional Minkowski space-time. We address the problem of inflation and late time acceleration driven by bulk particles colliding with the 3d domain wall. The expansion of our universe is mainly related to these bulk particles. Since our universe tends to be permeated by a large number of isolated structures, as temperature diminishes with the expansion, we model our universe with a 3d domain wall with increasing internal structures. These structures could be unstable 2d domain walls evolving to fermi-balls which are candidates to cold dark matter. The momentum transfer of bulk particles colliding with the 3d domain wall is related to the reflection coefficient. We show a nontrivial dependence of the reflection coefficient with the number of internal dark matter structures inside the 3d domain wall. As the population of such structures increases the velocity of the domain wall expansion also increases. The expansion is exponential at early times and polynomial at late times. We connect this picture with string/M-theory by considering BPS 3d domain walls with structures which can appear through the bosonic sector of a five-dimensional supergravity theory

  9. Sodium Flux Growth of Bulk Gallium Nitride

    Science.gov (United States)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of GaN from the sodium-gallium melt. Different stages of N2 pressure decay were identified and linked to

  10. Transfer points of belt conveyors operating with unfavorable bulk

    Energy Technology Data Exchange (ETDEWEB)

    Goehring, H [Technische Universitaet, Dresden (German Democratic Republic)

    1989-06-01

    Describes design of belt conveyor chutes that transfer bulk of surface mines from one conveyor to another. Conveyor belt velocity is a significant parameter. Unfavorable chute design may lead to bulk flow congestion, bulk velocity losses etc. The bulk flow process is analyzed, bulk flow velocities, belt inclinations and bulk feeding from 2 conveyors into one chute are taken into account. Conventional chutes have parabolic belt impact walls. An improved version with divided impact walls is proposed that maintains a relatively high bulk velocity, reduces friction at chute walls and decreases wear and dirt build-up. Design of the improved chute is explained. It is built to adapt to existing structures without major modifications. The angle between 2 belt conveyors can be up to 90 degrees, the best bulk transfer is noted at conveyor angles below 60 degrees. Various graphs and schemes are provided. 6 refs.

  11. Brane Lorentz symmetry from Lorentz breaking in the bulk

    Energy Technology Data Exchange (ETDEWEB)

    Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal); Carvalho, C [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal)

    2007-05-15

    We propose the mechanism of spontaneous symmetry breaking of a bulk vector field as a way to generate the selection of bulk dimensions invisible to the standard model confined to the brane. By assigning a nonvanishing vacuum value to the vector field, a direction is singled out in the bulk vacuum, thus breaking the bulk Lorentz symmetry. We present the condition for induced Lorentz symmetry on the brane, as phenomenologically required.

  12. Posterior bulk-filled resin composite restorations.

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    up to 4mm as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using...... Class II, 4 SDR-CeramX mono+ and 6 CeramXmono+-only restorations. The main reasons for failurewere tooth fracture (6) and secondary caries (4). The annual failure rate (AFR) for all restorations (Class I and II) was for the bulk-filled-1.1% and for the resin composite-only restorations 1...

  13. Characterization and bulk properties of oxides

    International Nuclear Information System (INIS)

    Sonder, E.; Connolly, T.F.

    1979-06-01

    The bulk properties of oxides are divided into two classes, intrinsic properties which depend solely on the identity of the material, and extrinsic ones, which differ for different samples of the same compound. Sources of tabulated numerical values of intrinsic properties are given and modern developments in information storage and retrieval are discussed. Extrinsic properties are shown to depend on defects and trace impurities in the samples. Techniques of trace impurity analysis are discussed and realistic limits of detection and accuracies are given for routine analyses

  14. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  15. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  16. Improving the bulk data transfer experience

    Energy Technology Data Exchange (ETDEWEB)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  17. Forming of bulk metallic glass microcomponents

    DEFF Research Database (Denmark)

    Wert, John A.; Thomsen, Christian; Jensen, Rune Debel

    2009-01-01

    The present article considers forward extrusion, closed-die forging and backward extrusion processes for fabrication of individual microcomponents from two bulk metallic glass (BMG) compositions: Mg60Cu30Y10 and Zr44Cu40Ag8Al8. Two types of tooling were used in the present work: relatively massive...... die sets characteristic of cold forming operations for crystalline metals and lightweight die sets adapted to the special characteristics of BMGs. In addition to demonstrating that microcomponents of several geometries can be readily fabricated from BMGs, rheological properties are combined...

  18. Thulium-based bulk metallic glass

    International Nuclear Information System (INIS)

    Yu, H. B.; Yu, P.; Wang, W. H.; Bai, H. Y.

    2008-01-01

    We report the formation and properties of a thulium-based bulk metallic glass (BMG). Compared with other known rare-earth (RE) based BMGs, Tm-based BMGs show features of excellent glass formation ability, considerable higher elastic modulus, smaller Poisson's ratio, high mechanical strength, and intrinsic brittleness. The reasons for the different properties between the Tm-based and other RE-based BMGs are discussed. It is expected that the Tm-based glasses with the unique properties are appropriate candidates for studying some important issues in BMGs

  19. Bulk monitoring and segregation of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Beddow, H.; Adsley, I.; Pearman, I.; Sweeney, A.; Davies, M., E-mail: helen.beddow@nuvia.co.uk [Nuvia Limited, Harwell Oxford, Didcot, Oxfordshire (United Kingdom)

    2014-07-01

    Several sites in the UK are contaminated by radioactive legacy wastes. These include; radium luminising sites and more recently the oil, and (potentially) fracking industries; sites contaminated from thorium gas mantle factories; old nuclear research sites; nuclear power sites, and the Sellafield reprocessing site. Nuvia has developed a suite of technologies to map the location of and to recover and process wastes during remedial operations. The main method for delineating contaminated areas in-situ is by use of the Groundhog system, whilst bulk monitoring methods employ the Gamma Excavation Monitor, the High Resolution Assay Monitor, and the Conveyor Active Particle System. (author)

  20. Bulk monitoring and segregation of radioactive wastes

    International Nuclear Information System (INIS)

    Beddow, H.; Adsley, I.; Pearman, I.; Sweeney, A.; Davies, M.

    2014-01-01

    Several sites in the UK are contaminated by radioactive legacy wastes. These include; radium luminising sites and more recently the oil, and (potentially) fracking industries; sites contaminated from thorium gas mantle factories; old nuclear research sites; nuclear power sites, and the Sellafield reprocessing site. Nuvia has developed a suite of technologies to map the location of and to recover and process wastes during remedial operations. The main method for delineating contaminated areas in-situ is by use of the Groundhog system, whilst bulk monitoring methods employ the Gamma Excavation Monitor, the High Resolution Assay Monitor, and the Conveyor Active Particle System. (author)

  1. Fundamental study of bulk power HVDC transmission

    International Nuclear Information System (INIS)

    1981-01-01

    Study on the HVDC power transmission have been conducted since 1956. Shinshinano-Frequency Changer had been operated at first on 1977, as our home product, and Hokkaido-Honshu DC transmission also realized at 1979. Research and Development of the bulk power HVDC have been promoted by the UHV transmission special committee in our Institute from 1980. This paper is a comprehensive report published in the parts of operating control, insulation of DC line and countermeasure of fault current, and interferences in order to contribute for planning, design and operating of the UHV DC transmission in future. (author)

  2. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  3. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole

    2000-01-01

    are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...... isotropic three-dimensional three-phase composites with cylindrical inclusions of arbitrary cross-sections (plane strain problem) or transversely isotropic thin plates (plane stress or bending of plates problems). (C) 2000 Elsevier Science Ltd. All rights reserved....

  4. 7 CFR 58.313 - Print and bulk packaging rooms.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Print and bulk packaging rooms. 58.313 Section 58.313 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....313 Print and bulk packaging rooms. Rooms used for packaging print or bulk butter and related products...

  5. 19 CFR 151.24 - Unlading facilities for bulk sugar.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...

  6. Enhancement of surface magnetism due to bulk bond dilution

    International Nuclear Information System (INIS)

    Tsallis, C.; Sarmento, E.F.; Albuquerque, E.L. de

    1985-01-01

    Within a renormalization group scheme, the phase diagram of a semi-infinite simple cubic Ising ferromagnet is discussed, with arbitrary surface and bulk coupling constants, and including possible dilution of the bulk bonds. It is obtained that dilution makes easier the appearance of surface magnetism in the absence of bulk magnetism. (Author) [pt

  7. Use of containers to carry bulk and break bulk commodities and its impact on gulf region ports and international trade.

    Science.gov (United States)

    2014-08-01

    The University of New Orleans Transportation Institute was tasked by the Louisiana Transportation Research Center (LTRC) in mid-2012 to assess the use of containers to transport bulk and break bulk commodities and to determine what their impact would...

  8. Elastic properties of superconducting bulk metallic glasses

    International Nuclear Information System (INIS)

    Hempel, Marius

    2015-01-01

    Within the framework of this thesis the elastic properties of a superconducting bulk metallic glass between 10 mK and 300 K were first investigated. In order to measure the entire temperature range, in particular the low temperature part, new experimental techniques were developed. Using an inductive readout scheme for a double paddle oscillator it was possible to determine the internal friction and the relative change of sound velocity of bulk metallic glasses with high precision. This allowed for a detailed comparison of the data with different models. The analysis focuses on the low temperature regime where the properties of glassy materials are governed by atomic tunneling systems as described by the tunneling model. The influence of conduction electrons in the normal conducting state and quasiparticles in the superconducting state of the glass were accounted for in the theoretical description, resulting in a good agreement over a large temperature range between measured data and prediction of the tunneling model. This allowed for a direct determination of the coupling constant between electrons and tunneling systems. In the vicinity of the transition temperature Tc the data can only be described if a modified distribution function of the tunneling parameters is applied.

  9. Boundary-bulk relation in topological orders

    Directory of Open Access Journals (Sweden)

    Liang Kong

    2017-09-01

    Full Text Available In this paper, we study the relation between an anomaly-free n+1D topological order, which are often called n+1D topological order in physics literature, and its nD gapped boundary phases. We argue that the n+1D bulk anomaly-free topological order for a given nD gapped boundary phase is unique. This uniqueness defines the notion of the “bulk” for a given gapped boundary phase. In this paper, we show that the n+1D “bulk” phase is given by the “center” of the nD boundary phase. In other words, the geometric notion of the “bulk” corresponds precisely to the algebraic notion of the “center”. We achieve this by first introducing the notion of a morphism between two (potentially anomalous topological orders of the same dimension, then proving that the notion of the “bulk” satisfies the same universal property as that of the “center” of an algebra in mathematics, i.e. “bulk = center”. The entire argument does not require us to know the precise mathematical description of a (potentially anomalous topological order. This result leads to concrete physical predictions.

  10. Bulk delivery of explosives offers positive advantages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-01

    The bulk delivery of precisely-formulated explosives directly to the shothole is a safe, secure and cost effective way of bringing rock to the quarry floor. This article describes several of the latest generation of Anfo trucks. The typical Anfo truck carries ammonium nitrate and fuel oil in bulk, together with several other mix constituents, including an emulsifying agent. These are designed to form the basis of a range of emulsion-type explosives. In effect, these are water in oil emulsions where the water phase consists of droplets of a saturated solution of the oxidizing material suspended in oil. The formulations may be further tailored to the shothole requirements by the addition of oils or waxes, which can alter the viscosity of the explosive. The precise and programmable controls which determine the exact quantities of materials delivered to the mixer mean that the explosive mixtures can be tailored exactly to the requirements of the blasting operation, be it the amount of rock to be dislodged, the geological conditions, or the state of the shothole - either wet or dry. 4 systems are described in detail. 3 figs.

  11. Perovskite oxides: Oxygen electrocatalysis and bulk structure

    Science.gov (United States)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest

    1987-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  12. 78 FR 72841 - List of Bulk Drug Substances That May Be Used in Pharmacy Compounding; Bulk Drug Substances That...

    Science.gov (United States)

    2013-12-04

    .... FDA-2013-N-1525] List of Bulk Drug Substances That May Be Used in Pharmacy Compounding; Bulk Drug... proposed rule to list bulk drug substances used in pharmacy compounding and preparing to develop a list of... Formulary monograph, if a monograph exists, and the United States Pharmacopoeia chapter on pharmacy...

  13. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...

  14. Thermal characterization of semiconducting polymer bulk heterojunctions

    Science.gov (United States)

    Remy, Roddel A.

    Polymer semiconductors are intriguing due to their potential use in flexible electronics. Poly (3-hexylthiophene) (P3HT)--a very common polymer in this field--is semicrystalline and it is known that crystalline P3HT has a higher hole mobility than amorphous P3HT. Quantifying each fraction in the bulk and thin film states is therefore crucial to understanding its performance in transistor and other applications. In polymer solar cells, it acts as an electron donor and is typically mixed with the nanoparticle-like molecule, phenyl-C61-butyric acid methyl ester (PCBM)--an electron acceptor--in a thin film morphology termed a bulk heterojunction (BHJ). The structural hierarchy within the bulk heterojunction is complicated and its characterization, with a focus on P3HT morphology, is the topic of this dissertation. Calorimetry can play an important role in the elucidation of P3HT morphology with quantitative analysis of the crystalline and amorphous fractions present in the material. This was demonstrated by employing differential scanning calorimetry (DSC) to obtain the enthalpy of fusion of 100% crystalline P3HT (42.9 J/g) using oligomeric P3HT measurements. The more sensitive temperature modulated DSC (TMDSC) was then used to examine the glass transition of P3HT and the crystalline, mobile amorphous and rigid amorphous phases were quantified. The presence of these phases can play a large role in understanding the charge transfer process in polymer semiconductors. BHJ thin films of 50 wt.% PCBM were then analyzed and a polymer crystallinity of 30% was found after thermal annealing from initially non-crystalline polymer material. With assistance from previously acquired small angle neutron scattering data, a thorough analysis of the entire BHJ morphology was accomplished. A surprisingly large rigid amorphous polymer phase is present in the BHJ which could be located at the P3HT/PCBM interface, affecting charge transfer. Finally, interlayer diffusion of PCBM was

  15. Radiation effects in bulk and nanostructured silicon

    Energy Technology Data Exchange (ETDEWEB)

    Holmstrom, E.

    2012-07-01

    Understanding radiation effects in silicon (Si) is of great technological importance. The material, being the basis of modern semiconductor electronics and photonics, is subjected to radiation already at the processing stage, and in many applications throughout the lifetime of the manufactured component. Despite decades of research, many fundamental questions on the subject are still not satisfactorily answered, and new ones arise constantly as device fabrication shifts towards the nanoscale. In this study, methods of computational physics are harnessed to tackle basic questions on the radiation response of bulk and nanostructured Si systems, as well as to explain atomic-scale phenomena underlying existing experimental results. Empirical potentials and quantum mechanical models are coupled with molecular dynamics simulations to model the response of Si to irradiation and to characterize the created crystal damage. The threshold displacement energy, i.e., the smallest recoil energy required to create a lattice defect, is determined in Si bulk and nanowires, in the latter system also as a function of mechanical strain. It is found that commonly used values for this quantity are drastically underestimated. Strain on the nanowire causes the threshold energy to drop, with an effect on defect production that is significantly higher than in an another nanostructure with similar dimensions, the carbon nanotube. Simulating ion irradiation of Si nanowires reveals that the large surface area to volume ratio of the nanostructure causes up to a three-fold enhancement in defect production as compared to bulk Si. Amorphous defect clusters created by energetic neutron bombardment are predicted, on the basis of their electronic structure and abundance, to cause a deleterious phenomenon called type inversion in Si strip detectors in high-energy physics experiments. The thinning of Si lamellae using a focused ion beam is studied in conjunction with experiment to unravel the cause for

  16. Transformation of bulk alloys to oxide nanowires

    Science.gov (United States)

    Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2017-01-01

    One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes.

  17. Organic hybrid planar-nanocrystalline bulk heterojunctions

    Science.gov (United States)

    Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ

    2011-03-01

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  18. Bulk nanoscale materials in steel products

    International Nuclear Information System (INIS)

    Chehab, B; Wang, X; Masse, J-P; Zurob, H; Embury, D; Bouaziz, O

    2010-01-01

    Although a number of nanoscale metallic materials exhibit interesting mechanical properties the fabrication paths are often complex and difficult to apply to bulk structural materials. However a number of steels which exhibit combinations of plasticity and phase transitions can be deformed to produce ultra high strength levels in the range 1 to 3 GPa. The resultant high stored energy and complex microstructures allow new nanoscale structures to be produced by combinations of recovery and recrystallisation. The resultant structures exhibit totally new combinations of strength and ductility to be achieved. In specific cases this also enables both the nature of the grain boundary structure and the spatial variation in structure to be controlled. In this presentation both the detailed microstructural features and their relation to the strength, work-hardening capacity and ductility will be discussed for a number of martensitic and austenitic steels.

  19. Tuneable film bulk acoustic wave resonators

    CERN Document Server

    Gevorgian, Spartak Sh; Vorobiev, Andrei K

    2013-01-01

    To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high.  Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the softwa...

  20. Criticality in Bulk Metallic Glass Constituent Elements

    Science.gov (United States)

    Mota, Rodrigo Miguel Ojeda; Graedel, T. E.; Pekarskaya, Evgenia; Schroers, Jan

    2017-11-01

    Bulk metallic glasses (BMGs), which readily form amorphous phases during solidification, are increasingly being used in first applications of watch components, electronic casings, and sporting goods. The compositions of BMGs typically include four to six elements. Various political and geological factors have recently led to supply disruptions for several metals, including some present in BMG compositions. In this work, we assess the "criticality" of 22 technologically interesting BMG compositions, compare the results with those for three common engineering alloy groups, and derive recommendations for BMG composition choices from a criticality perspective. The criticality of BMGs is found to be generally much higher compared with those for the established engineering alloys. Therefore, criticality concerns should also be considered in the choice between existing and developing novel BMGs.

  1. Solid state properties from bulk to nano

    CERN Document Server

    Dresselhaus, Mildred; Cronin, Stephen; Gomes Souza Filho, Antonio

    2018-01-01

    This book fills a gap between many of the basic solid state physics and materials science books that are currently available. It is written for a mixed audience of electrical engineering and applied physics students who have some knowledge of elementary undergraduate quantum mechanics and statistical mechanics. This book, based on a successful course taught at MIT, is divided pedagogically into three parts: (I) Electronic Structure, (II) Transport Properties, and (III) Optical Properties. Each topic is explained in the context of bulk materials and then extended to low-dimensional materials where applicable. Problem sets review the content of each chapter to help students to understand the material described in each of the chapters more deeply and to prepare them to master the next chapters.

  2. A route to transparent bulk metals

    KAUST Repository

    Schwingenschlögl, Udo

    2012-07-23

    Hypothetical compounds based on a sapphire host are investigated with respect to their structural as well as electronic features. The results are obtained by electronic structure calculations within density functional theory and the generalized gradient approximation. A quarter of the Al atoms in Al 2O 3 is replaced by a 4d transition metal M ion, with d 0 to d 9 electronic configuration. We perform structure optimizations for all the compounds and analyze the electronic states. Due to the sizeable band gap of the Al 2O 3 host, we can identify promising candidates for transparent bulk metals. We explain the mechanisms leading to this combination of materials properties. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mechanical reliability of bulk high Tc superconductors

    International Nuclear Information System (INIS)

    Freiman, S.W.

    1990-01-01

    Most prospective applications for high T c superconductors in bulk form, e.g. magnets, motors, will require appreciable mechanical strength. Work at NIST [National Institute of Standards and Technology] has begun to address issues related to mechanical reliability. For example, recent studies on Ba-Y-Cu-O have shown that the intrinsic crack growth resistance, K IC , of crystals of this material is even smaller than was first reported, less than that of window glass, and is sensitive to moisture. Processing conditions, particularly sintering and annealing atmosphere, have been shown to have a major influence on microstructure and internal stresses in the material. Large internal stresses result from the tetragonal to orthorhombic phase transformation as well as the thermal expansion anisotropy in the grains of the ceramic. Because stress relief is absent, microcracks form which have a profound influence on strength

  4. On bulk viscosity and moduli decay

    International Nuclear Information System (INIS)

    Laine, Mikko

    2010-01-01

    This pedagogically intended lecture, one of four under the header 'Basics of thermal QCD', reviews an interesting relationship, originally pointed out by Boedeker, that exists between the bulk viscosity of Yang-Mills theory (of possible relevance to the hydrodynamics of heavy ion collision experiments) and the decay rate of scalar fields coupled very weakly to a heat bath (appearing in some particle physics inspired cosmological scenarios). This topic serves, furthermore, as a platform on which a number of generic thermal field theory concepts are illustrated. The other three lectures (on the QCD equation of state and the rates of elastic as well as inelastic processes experienced by heavy quarks) are recapitulated in brief encyclopedic form. (author)

  5. Bulk disk resonator based ultrasensitive mass sensor

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Davis, Zachary James

    2009-01-01

    range. The sensor has been characterized in terms of sensitivity both for distributed mass detection, performing six consecutive depositions of e-beam evaporated Au, and localized mass detection, depositing approximately 7.5 pg of Pt/Ga/C three times consecutively with a Focused Ion Beam system......In the framework of developing an innovative label-free sensor for multiarrayed biodetection applications, we present a novel bulk resonator based mass sensor. The sensor is a polysilicon disk which shows a Q-factor of 6400 in air at 68.8 MHz, resulting in mass resolutions down in the femtogram....... The sensor has an extremely high distributed mass to frequency shift sensitivity of 60104 Hzcm2/¿g and shows a localized mass to frequency sensitivity up to 4405 Hz/pg with a localized mass resolution down to 15 fg. The device has been fabricated with a new microfabrication process that uses only two...

  6. Locality, bulk equations of motion and the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Kabat, Daniel [Department of Physics and Astronomy, Lehman College, City University of New York,250 Bedford Park Blvd. W, Bronx NY 10468 (United States); Lifschytz, Gilad [Department of Mathematics, Faculty of Natural Science, University of Haifa,199 Aba Khoushy Ave., Haifa 31905 (Israel)

    2016-10-18

    We develop an approach to construct local bulk operators in a CFT to order 1/N{sup 2}. Since 4-point functions are not fixed by conformal invariance we use the OPE to categorize possible forms for a bulk operator. Using previous results on 3-point functions we construct a local bulk operator in each OPE channel. We then impose the condition that the bulk operators constructed in different channels agree, and hence give rise to a well-defined bulk operator. We refer to this condition as the “bulk bootstrap.” We argue and explicitly show in some examples that the bulk bootstrap leads to some of the same results as the regular conformal bootstrap. In fact the bulk bootstrap provides an easier way to determine some CFT data, since it does not require knowing the form of the conformal blocks. This analysis clarifies previous results on the relation between bulk locality and the bootstrap for theories with a 1/N expansion, and it identifies a simple and direct way in which OPE coefficients and anomalous dimensions determine the bulk equations of motion to order 1/N{sup 2}.

  7. Bulk temperature measurement in thermally striped pipe flows

    International Nuclear Information System (INIS)

    Lemure, N.; Olvera, J.R.; Ruggles, A.E.

    1995-12-01

    The hot leg flows in some Pressurized Water Reactor (PWR) designs have a temperature distribution across the pipe cross-section. This condition is often referred to as a thermally striped flow. Here, the bulk temperature measurement of pipe flows with thermal striping is explored. An experiment is conducted to examine the feasibility of using temperature measurements on the external surface of the pipe to estimate the bulk temperature of the flow. Simple mixing models are used to characterize the development of the temperature profile in the flow. Simple averaging techniques and Backward Propagating Neural Net are used to predict bulk temperature from the external temperature measurements. Accurate bulk temperatures can be predicted. However, some temperature distributions in the flow effectively mask the bulk temperature from the wall and cause significant error in the bulk temperature predicted using this technique

  8. A CFT perspective on gravitational dressing and bulk locality

    Energy Technology Data Exchange (ETDEWEB)

    Lewkowycz, Aitor; Turiaci, Gustavo J. [Physics Department, Princeton University,Princeton, NJ 08544 (United States); Verlinde, Herman [Physics Department, Princeton University,Princeton, NJ 08544 (United States); Princeton Center for Theoretical Science, Princeton University,Princeton, NJ 08544 (United States)

    2017-01-02

    We revisit the construction of local bulk operators in AdS/CFT with special focus on gravitational dressing and its consequences for bulk locality. Specializing to 2+1-dimensions, we investigate these issues via the proposed identification between bulk operators and cross-cap boundary states. We obtain explicit expressions for correlation functions of bulk fields with boundary stress tensor insertions, and find that they are free of non-local branch cuts but do have non-local poles. We recover the HKLL recipe for restoring bulk locality for interacting fields as the outcome of a natural CFT crossing condition. We show that, in a suitable gauge, the cross-cap states solve the bulk wave equation for general background geometries, and satisfy a conformal Ward identity analogous to a soft graviton theorem. Virasoro symmetry, the large N conformal bootstrap and the uniformization theorem all play a key role in our derivations.

  9. 75 FR 34573 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Science.gov (United States)

    2010-06-17

    ... reduced iron (DRI) as briquettes molded at a temperature of 650 [deg]C or higher that have a density of 5... temperature of 650 [deg]C or higher or had a density of 5.0 g/cm[sup3] or greater. In this proposed rule, we... bulk materials of Hazard Classes 4 through 9. c. One comment recommended that a DCM be required for...

  10. Curing characteristics of flowable and sculptable bulk-fill composites

    OpenAIRE

    Miletic, Vesna; Pongpruenska, Pong; De Munck, Jan; Brooks, Neil R; Van Meerbeek, Bart

    2016-01-01

    OBJECTIVES: The aim of this study was to determine and correlate the degree of conversion (DC) with Vickers hardness (VH) and translucency parameter (TP) with the depth of cure (DoC) of five bulk-fill composites. MATERIALS AND METHODS: Six specimens per group, consisting of Tetric EvoCeram Bulk Fill ("TEC Bulk," Ivoclar Vivadent), SonicFill (Kerr), SDR Smart Dentin Replacement ("SDR," Dentsply), Xenius base ("Xenius," StickTech; commercialized as EverX Posterior, GC), Filtek Bul...

  11. Theory of bulk-surface coupling in topological insulator films

    Science.gov (United States)

    Saha, Kush; Garate, Ion

    2014-12-01

    We present a quantitative microscopic theory of the disorder- and phonon-induced coupling between surface and bulk states in doped topological insulator films. We find a simple mathematical structure for the surface-to-bulk scattering matrix elements and confirm the importance of bulk-surface coupling in transport and photoemission experiments, assessing its dependence on temperature, carrier density, film thickness, and particle-hole asymmetry.

  12. Localization of bulk form fields on dilatonic domain walls

    International Nuclear Information System (INIS)

    Youm, Donam

    2001-06-01

    We study the localization properties of bulk form potentials on dilatonic domain walls. We find that bulk form potentials of any ranks can be localized as form potentials of the same ranks or one lower ranks, for any values of the dilaton coupling parameter. For large enough values of the dilaton coupling parameter, bulk form potentials of any ranks can be localized as form potentials of both the same ranks and one lower ranks. (author)

  13. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  14. Fault current limiter using bulk oxides superconductors

    International Nuclear Information System (INIS)

    Belmont, O.; Ferracci, P.; Porcar, L.; Barbut, J.M.; Tixador, P.; Noudem, J.G.; Bourgault, D.; Tournier, R.

    1998-01-01

    We study the limitation possibilities of bulk Bi high T c materials. For this we test these materials with AC or DC currents above their critical currents. We study particularly the evolution of the voltage with time or with current. The material, the value of the current and the time duration play important parts. For sintered Bi samples the voltage depends only on the current even for values much larger than the critical current. With textured samples the V(I) curves shows an hysteretic behaviour due to a warming up. The textured materials are more interesting than sintered ones in terms of required volume for the current limitation. In both cases the superconductors are in a dissipative state but not in the normal state. This state is nevertheless reached if the dissipated energy inside the sample is sufficient. We have tried to apply a magnetic field on the samples in order to trigger a more effective limitation. The voltage increases but with a limited effect for currents much higher (3-4 times) than the critical zero field current. We think that the dissipative state is due mainly to the grain boundaries which become resistive above the critical current. (orig.)

  15. Thermodynamic properties of bulk and confined water

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienza della Terra Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienza della Terra Università di Messina and CNISM, I-98168 Messina (Italy); Mallamace, Domenico [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, I-98166 Messina (Italy); Vasi, Sebastiano; Vasi, Cirino [IPCF-CNR, I-98166 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States)

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ≃ 225 K). The second, T{sup *} ∼ 315 ± 5 K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient α{sub P}(T, P) in the P–T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  16. Studies of bulk heterojunction solar cells

    Science.gov (United States)

    Cossel, Raquel; McIntyre, Max; Tzolov, Marian

    We are studying bulk heterojunction solar cells that were fabricated using a mixture of PCPDTBT and PCBM­C60. The impedance data of the cells in dark responded like a simple RC circuit. The value of the dielectric constant derived from these results is consistent with the values reported in the literature for these materials. We are showing that the parallel resistance in the equivalent circuit of linear lump elements can be interpreted using the DC current­voltage measurements. The impedance spectra under light illumination indicated the existence of additional polarization. This extra feature can be described by a model that includes a series RC circuit in parallel with the equivalent circuit for a device in dark. The physical interpretation of the additional polarization is based on photo­generated charges getting trapped in wells, which have a characteristic relaxation time corresponding to the observed break frequency in the impedance spectra. We have studied the influence of the anode and cathode interface on this phenomena, either by using different interface materials, or by depositing the metal electrode while the substate is heated.

  17. Bulk water freezing dynamics on superhydrophobic surfaces

    Science.gov (United States)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  18. Calcium Isotopic Composition of Bulk Silicate Earth

    Science.gov (United States)

    Kang, J.; Ionov, D. A.; Liu, F.; Zhang, C.; Zhang, Z.; Huang, F.

    2016-12-01

    Ca isotopes are used to study the accretion history of the Earth and terrestrial planets, but, Ca isotopic composition of the Bulk Silicate Earth (BSE) remains poorly constrained [1]. To better understand the Ca isotopic composition of BSE, we analyzed 22 well studied peridotite xenoliths from Tariat (Mongolia), Vitim (southern Siberia) and Udachnaya (Siberian Craton). These samples include both fertile and highly depleted garnet and spinel peridotites that show no or only minor post-melting metasomatism or alteration. Ca isotope measurements were done on a Triton-TIMS using double spike method at the Guangzhou Institute of Geochemistry, CAS. The data are reported as δ44/40Ca (relative to NIST SRM 915a). Results for geostandards are consistent with those from other laboratories. 2 standard deviations of SRM 915a analyses are 0.13‰ (n=48). δ44/40Ca of both and fertile and refractory peridotites range from 0.79 to 1.07‰ producing an average of 0.93±0.12‰ (2SD). This value defines the Ca isotopic composition of the BSE, which is consistent with the average δ44/40Ca of oceanic basalts ( 0.90‰)[2,3]. [1] Huang et al (2010) EPSL 292; [2] Valdes et al (2014) EPSL 394; [3]DePaolo (2004) RMG 55.

  19. Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding

    International Nuclear Information System (INIS)

    Wang, H.S.; Chen, H.G.; Jang, J.S.C.; Chiou, M.S.

    2010-01-01

    Research highlights: → A liquid cooling device (LCD) helps to produce a lower initial welding temperature. → A lower initial welding temperature leads to a faster welding thermal cycle (WTC). → A faster WTC produces a crystallization free weld for a laser welded Zr-based BMG. - Abstract: Using pre-selected welding parameters, a crystallization-free weld for (Zr 53 Cu 30 Ni 9 Al 8 )Si 0.5 bulk metallic glass (BMG) was successfully produced by adopting a Nd:YAG pulse laser in combination with a liquid cooling device (LCD). When a LCD was employed, a faster cooling rate and shorter retention time for the crystallization temperature interval were produced, thus, no crystallization was observed in the weld fusion zone (WFZ) or heat affected zone (HAZ). The hardness in those areas did not differ significantly in comparison to the parent material (PM). For the room temperature laser weld (LCD was not employed), HAZ crystallization seemed unavoidable, although no crystallization occurred within the WFZ. The major crystalline phase in the HAZ was identified as Zr 2 Cu. When the precipitates were greater in the crystallized area (i.e., HAZ), cracks were more likely to form, thus, hardness in the area was decreased.

  20. Bulk Vitrification Castable Refractory Block Protection Study

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Bagaasen, Larry M.; Beck, Andrew E.; Brouns, Thomas M.; Caldwell, Dustin D.; Elliott, Michael L.; Matyas, Josef; Minister, Kevin BC; Schweiger, Michael J.; Strachan, Denis M.; Tinsley, Bronnie P.; Hollenberg, Glenn W.

    2005-05-01

    Bulk vitrification (BV) was selected for a pilot-scale test and demonstration facility for supplemental treatment to accelerate the cleanup of low-activity waste (LAW) at the Hanford U.S. DOE Site. During engineering-scale (ES) tests, a small fraction of radioactive Tc (and Re, its nonradioactive surrogate) were transferred out of the LAW glass feed and molten LAW glass, and deposited on the surface and within the pores of the castable refractory block (CRB). Laboratory experiments were undertaken to understand the mechanisms of the transport Tc/Re into the CRB during vitrification and to evaluate various means of CRB protection against the deposition of leachable Tc/Re. The tests used Re as a chemical surrogate for Tc. The tests with the baseline CRB showed that the molten LAW penetrates into CRB pores before it converts to glass, leaving deposits of sulfates and chlorides when the nitrate components decompose. Na2O from the LAW reacts with the CRB to create a durable glass phase that may contain Tc/Re. Limited data from a single CRB sample taken from an ES experiment indicate that, while a fraction of Tc/Re is present in the CRB in a readily leachable form, most of the Tc/Re deposited in the refractory is retained in the form of a durable glass phase. In addition, the molten salts from the LAW, mainly sulfates, chlorides, and nitrates, begin to evaporate from BV feeds at temperatures below 800 C and condense on solid surfaces at temperatures below 530 C. Three approaches aimed at reducing or preventing the deposition of soluble Tc/Re within the CRB were proposed: metal lining, sealing the CRB surface with a glaze, and lining the CRB with ceramic tiles. Metal liners were deemed unsuitable because evaluations showed that they can cause unacceptable distortions of the electric field in the BV system. Sodium silicate and a low-alkali borosilicate glaze were selected for testing. The glazes slowed down molten salt condensate penetration, but did little to reduce the

  1. Xerophilic mycopopulations of teas in bulk

    Directory of Open Access Journals (Sweden)

    Škrinjar Marija M.

    2011-01-01

    Full Text Available d.o.o., Novi Sad AU Krunić Vesna J. AF EKOLd.o.o., Novi Sad KW teas % mould contamination % thermal treatment KR nema Other the water, tea is the most popular beverage in the world today. They are used for ages, in the beginning as refreshing drinks, and later more for their healing properties. Teas have been demonstrated to show antioxidative, anti-carcinogenic, and anti-microbial properties. Considering that the teas, during the production, are not treated with any temperature, there is high risk for contamination with different type of microorganisms, especially with moulds. Moulds are ubiquitously distributed in nature and their spores can be found in the atmosphere even at high altitudes and under favorable conditions of temperature and humidity, moulds grow on many commodities including cereals, oil seeds, nuts, herbs and spices. Most of them are potential producers of mycotoxins which present a real hazard to human health. The aim of this work was to investigate total mould count and to identify moulds isolated from teas in bulk, than from teas treated with hot, sterile, distilled water and from the tea filtrates. Tested teas were peppermint, sage, yarrow, black tea, bearberry, lemon balm, mixture of teas from Zlatibor. In teas in balk was observed high contamination with different kinds of moulds (1.84-4.55 cfu/g, such as Aspergillus awamori, A. lovaniensis, A niger, A. phoenicus, A. repens, A. restrictus, A. sydowii, A. versicolor, Eurotium amstelodami, E. chevalieri, E. herbariorum, Penicillium chrysogenum, and Scopulariopsis brevicaulis. The most frequent were species from Aspergillus and Eurotium genera. Thermal treatment with hot, sterile, distilled water reduced the number of fungal colonies. Aspergillus awamori was the most resistant and appeared in six samples of filtrates of tea, Aspergillus niger in one sample and Penicillium chrysogenum in one sample.

  2. High trapped fields in bulk YBCO superconductors

    Science.gov (United States)

    Fuchs, Günter; Gruss, Stefan; Krabbes, Gernot; Schätzle, Peter; Verges, Peter; Müller, Karl-Hartmut; Fink, Jörg; Schultz, Ludwig

    The trapped field properties of bulk melt-textured YBCO material were investigated at different temperatures. In the temperature range of liquid nitrogen, maximum trapped fields of 1.1 T were found at 77 K by doping of YBCO with small amounts of zinc. The improved pinning of zinc-doped YBa2Cu3O7-x (YBCO) results in a pronounced peak effect in the field dependence of the critical current density. the trapped field at lower temperatures increases due to the increasing critical current density, however, at temperatures around 50 K cracking of the material is observed which is exposed to considerably tensile stresses due to Lorentz forces. Very high trapped fields up to 14.4 T were achieved at 22.5 K for a YBCO disk pair by the addition of silver improving the tensile strength of YBCO and by using a bandage made of a steel tube. The steel tube produces a compressive stress on YBCO after cooling down from 300 K to the measuring temperature, which is due to the higher coeeficient of thermal expansion of steel compared with that of YBCO in the a,b plane. The application of superconducting permanent magnets with trapped fields of 10 T and more in superconducting bearings would allow to obtain very high levitation pressures up to 2500 N/cm2 which is two orders of magnitude higher than the levitation pressure achievable in superconducting bearings with conventional permanent magnets. The most important problem for the application of superconducting permanent magnets is the magnetizing procedure of the YBCO material. Results of magnetizing YBCO disks by using of pulsed magnetic fields will be presented.

  3. 7 CFR 58.211 - Packaging room for bulk products.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging room for bulk products. 58.211 Section 58... Service 1 Rooms and Compartments § 58.211 Packaging room for bulk products. A separate room or area shall... dust within the packaging room and where needed, a dust collector shall be provided and properly...

  4. Quantifying Dustiness, Specific Allergens, and Endotoxin in Bulk Soya Imports

    Directory of Open Access Journals (Sweden)

    Howard J. Mason

    2017-11-01

    Full Text Available Soya is an important bulk agricultural product often transported by sea as chipped beans and/or the bean husks after pelletisation. There are proven allergens in both forms. Bulk handling of soya imports can generate air pollution containing dust, allergens, and pyrogens, posing health risks to dockside workers and surrounding populations. Using an International Organization for Standardization (ISO standardised rotating drum dustiness test in seven imported soya bulks, we compared the generated levels of dust and two major soya allergens in three particle sizes related to respiratory health. Extractable levels of allergen and endotoxin from the bulks showed 30–60 fold differences, with levels of one allergen (hydrophobic seed protein and endotoxin higher in husk. The generated levels of dust and allergens in the three particle sizes also showed very wide variations between bulks, with aerolysed levels of allergen influenced by both the inherent dustiness and the extractable allergen in each bulk. Percentage allergen aerolysed from pelletized husk—often assumed to be of low dustiness—after transportation was not lower than that from chipped beans. Thus, not all soya bulks pose the same inhalation health risk and reinforces the importance of controlling dust generation from handling all soya bulk to as low as reasonably practicable.

  5. Bulk photovoltaic effect in an organi c polar crystal

    NARCIS (Netherlands)

    Vijayaraghavan, R.K.; Meskers, S.C.J.; Abdul Rahim, M.; Das, S.

    2014-01-01

    Organic polar crystals from the donor–acceptor substituted 1,4-diphenybutadiene 1 can generate a short-circuit photocurrent and a photovoltage upon illumination with near UV light. The photocurrent and photovoltage are attributed to a bulk photovoltaic effect. The bulk photovoltaic effect has been

  6. Calculation and design for SSRF's bulk shield

    Energy Technology Data Exchange (ETDEWEB)

    Fang, K.M. [Shanghai Institute of Applied Physics, Chinese Academy of Science (China)]. E-mail: fangkm@sinap.ac.cn; Xu, X.J. [Shanghai Institute of Applied Physics, Chinese Academy of Science (China); Cai, J.H. [Shanghai Institute of Applied Physics, Chinese Academy of Science (China)

    2006-12-15

    Shielding design objectives for the SSRF are chosen, assumptions for beam loss rates are given, the methods used on the APS by Moe are summarized and introduced to make calculation and design on bulk shield, the factor of skyshine is also considered, design thicknesses for SSRF's bulk shield are presented.

  7. Effect of Bulk and Interfacial Rheological Properties on Bubble Dissolution

    NARCIS (Netherlands)

    Kloek, W.; Vliet, van T.; Meinders, M.

    2001-01-01

    This paper describes theoretical calculations of the combined effect of bulk and interracial rheological properties on dissolution behavior of a bubble in an infinite medium at saturated conditions. Either bulk or interracial elasticity can stop the bubble dissolution process, and stability criteria

  8. Bulk density and porosity distributions in a compost pile

    NARCIS (Netherlands)

    Ginkel, van J.T.; Raats, P.A.C.; Haneghem, van I.A.

    1999-01-01

    This paper mainly deals with the description of the initial distribution of bulk density and porosity at the moment a compost pile is built or rebuilt. A relationship between bulk density and vertical position in a pile is deduced from theoretical and empirical considerations. Formulae to calculate

  9. Role of bulking agents in bladder exstrophyepispadias complexes ...

    African Journals Online (AJOL)

    Background: Role of pelvic osteotomy in surgical management of bladder exstrophy is controversial But pelvic rim closure importantly. Bulking agents have been used for perineal and pelvic dysfunction in adults. In this study, bladder extrophy repair was performed without pubic closure And bulking agent injections were ...

  10. Bulk and edge spin transport in topological magnon insulators

    NARCIS (Netherlands)

    Rückriegel, A.; Brataas, A.; Duine, R.A.

    2018-01-01

    We investigate the spin transport properties of a topological magnon insulator, a magnetic insulator characterized by topologically nontrivial bulk magnon bands and protected magnon edge modes located in the bulk band gaps. Employing the Landau-Lifshitz-Gilbert phenomenology, we calculate the spin

  11. Influence of bulk dielectric polarization upon PD transients

    DEFF Research Database (Denmark)

    Pedersen, Aage; Crichton, George C; McAllister, Iain Wilson

    1995-01-01

    associated with the actual space charge in the void, and one related to changes in the bulk polarization brought about by changes in the field external to the void due to this space charge. The magnitude of the induced charge and its components are discussed in relation to a heterogeneous bulk dielectric...

  12. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Science.gov (United States)

    2012-02-29

    .... Remediation Waste AGENCY: Environmental Protection Agency (EPA). ACTION: Request for Public Comment. SUMMARY... biphenyl (PCB) disposal regulations regarding PCB bulk product and PCB remediation waste. The proposed... regarding PCB bulk product and PCB remediation waste under regulations promulgated at 40 CFR part 761. The...

  13. Bulk viscosity of spin-one color superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sa' d, Basil A.

    2009-08-27

    The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)

  14. Renormalization group approach to causal bulk viscous cosmological models

    International Nuclear Information System (INIS)

    Belinchon, J A; Harko, T; Mak, M K

    2002-01-01

    The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor

  15. Bulk velocity extraction for nano-scale Newtonian flows

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenfei, E-mail: zwenfei@gmail.com [Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004 (China); Sun, Hongyu [Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004 (China)

    2012-04-16

    The conventional velocity extraction algorithm in MDS method has difficulty to determine the small flow velocity. This study proposes a new method to calculate the bulk velocity in nano-flows. Based on the Newton's law of viscosity, according to the calculated viscosities and shear stresses, the flow velocity can be obtained by numerical integration. This new method can overcome the difficulty existed in the conventional MDS method and improve the stability of the computational process. Numerical results show that this method is effective for the extraction of bulk velocity, no matter the bulk velocity is large or small. -- Highlights: ► Proposed a new method to calculate the bulk velocity in nano-flows. ► It is effective for the extraction of small bulk velocity. ► The accuracy, convergence and stability of the new method is good.

  16. Bulk velocity extraction for nano-scale Newtonian flows

    International Nuclear Information System (INIS)

    Zhang, Wenfei; Sun, Hongyu

    2012-01-01

    The conventional velocity extraction algorithm in MDS method has difficulty to determine the small flow velocity. This study proposes a new method to calculate the bulk velocity in nano-flows. Based on the Newton's law of viscosity, according to the calculated viscosities and shear stresses, the flow velocity can be obtained by numerical integration. This new method can overcome the difficulty existed in the conventional MDS method and improve the stability of the computational process. Numerical results show that this method is effective for the extraction of bulk velocity, no matter the bulk velocity is large or small. -- Highlights: ► Proposed a new method to calculate the bulk velocity in nano-flows. ► It is effective for the extraction of small bulk velocity. ► The accuracy, convergence and stability of the new method is good.

  17. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    International Nuclear Information System (INIS)

    Holmes, M J; Parker, N G; Povey, M J W

    2011-01-01

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 0 C. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  18. Bulk viscosity of spin-one color superconductors

    International Nuclear Information System (INIS)

    Sa'd, Basil A.

    2009-01-01

    The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)

  19. Carbon nanotubes grown on bulk materials and methods for fabrication

    Science.gov (United States)

    Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  20. Disinfection ultraviolet radiation bulk food products

    OpenAIRE

    Семенов, А. А.

    2014-01-01

    В работе представлены результаты обеззараживания сыпучих пищевых продуктов ультрафиолетовым излучением. Предложена технология бактерицидного обеззараживания сыпучих продуктов с размером частиц до 50 мкм. Проведены необходимые расчеты, связанные с дозой облучения, с временем пребывания частиц в зоне облучения и необходимой дозой инактивации в зависимости от вида бактерий. Considered the results of bulk food products disinfection by ultraviolet radiation. The technology bactericidal disinfec...

  1. Stability of bulk metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  2. Thermo-physical characterization of the Fe_6_7Mo_6Ni_3_._5Cr_3_._5P_1_2C_5_._5B_2_._5 bulk metallic glass forming alloy

    International Nuclear Information System (INIS)

    Bochtler, Benedikt; Gross, Oliver; Gallino, Isabella; Busch, Ralf

    2016-01-01

    The iron-phosphorus based bulk metallic glass forming alloy Fe_6_7Mo_6Ni_3_._5Cr_3_._5P_1_2C_5_._5B_2_._5 is characterized with respect to its thermophysical properties, crystallization and relaxation behavior, as well as its viscosity. The alloy provides a high critical casting thickness of 13 mm, thus allowing for the casting of amorphous parts with a considerable size. Calorimetric measurements reveal the characteristic transformation temperatures, transformation enthalpies, and the specific heat capacity. The analyses show that no stable supercooled liquid region exists upon heating. The specific heat capacity data are used to calculate the enthalpy, entropy, and Gibbs free energy differences between the crystalline and the supercooled liquid state. The crystallization behavior of amorphous samples upon heating is analyzed by differential scanning calorimetry and X-ray diffraction, and a time-temperature-transformation diagram is constructed. Dilatometry is used to determine the thermal expansion behavior. The equilibrium viscosity below the glass transition as well as volume relaxation behavior are measured by three-point beam bending and dilatometry, respectively, to assess the kinetic fragility. With a kinetic fragility parameter of D* = 21.3, the alloy displays a rather strong liquid behavior. Viscosity above the melting point is determined using electromagnetic levitation in microgravity on a reduced gravity aircraft in cooperation with the German Aerospace Center (DLR). These high-temperature viscosity data are compared with the low-temperature three-point beam bending measurements. The alloy displays a strong liquid behavior at low temperatures and a fragile behavior at high temperatures. These results are analogous to the ones observed in several Zr-based bulk metallic glass forming liquids, indicating a strong to fragile liquid-liquid transition in the undercooled liquid, which is obscured by crystallization.

  3. Bulk media assay using backscattered neutron spectrometry

    International Nuclear Information System (INIS)

    Csikai, J.

    2000-01-01

    This paper summarized a systematic study of bulk media assay using backscattered neutron spectrometry. The source-sample-detector geometry used for the measurements of leakage and elastically backscattered (EBS) spectra of neutrons is shown. Neutrons up to about 14 MeV were produced via 2 H (d,n) and 9 Be (d,n) reactions using different deuteron beam energies between 5 and 10 MeV at the MGC-20E cyclotron of ATOMKI (Debrecen). Neutron yields of the Pu-Be and 252 Cf sources were 5.25 x 10 6 n/s and 1.8 x 10 6 n/s, respectively. Flux density distributions of thermal and primary 14 MeV neutrons were measured for graphite, water and coal samples in various moderator (M)-sample (S)-reflector (R) geometries. Relative fractions and integrated yields of 252 Cf, Pu-Be and 14 MeV neutrons above the (n,n'γ) reaction thresholds for 12 C, 16 O and 28 Si isotopes vs sample thickness have also been determined. It was found that the integrated reaction rate vs sample thickness decreasing exponentially with different attenuation coefficients depending on the neutron spectrum and the composition of the sample. The spectra of neutrons from sources passing through slabs of water, graphite, sand, Al, Fe and Pb up to 20 cm in thickness have been measured by a PHRS system in the 1.2 to 1.5 MeV range. The leakage neutron spectra from a Pu-Be source placed in the center of 30 cm diameter sphere filled with water, paraffin oil, SiO 2 , zeolite and river sand were also measured. The measured spectra have been compared with the calculated results obtained by the three dimensional Monte-Carlo code MCNP-4A and point-wise cross sections from the ENDF/B-4, ENDF/B-6, ENDF/E-1, BROND-2 and JENDL-3.1 data files. New results were obtained for validation of different data libraries from a comparison on the measured and the calculated spectra. Some typical results for water, Al, sand and Fe are shown. A combination of the backscattered neutron spectrometry with the surface gauge used both for the

  4. Soft magnetic properties of bulk amorphous Co-based samples

    International Nuclear Information System (INIS)

    Fuezer, J.; Bednarcik, J.; Kollar, P.

    2006-01-01

    Ball milling of melt-spun ribbons and subsequent compaction of the resulting powders in the supercooled liquid region were used to prepare disc shaped bulk amorphous Co-based samples. The several bulk samples have been prepared by hot compaction with subsequent heat treatment (500 deg C - 575 deg C). The influence of the consolidation temperature and follow-up heat treatment on the magnetic properties of bulk samples was investigated. The final heat treatment leads to decrease of the coercivity to the value between the 7.5 to 9 A/m (Authors)

  5. Onset of bulk pinning in BSCCO single crystals

    Science.gov (United States)

    van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Li, T. W.; Benoit, W.

    1996-11-01

    The long growth defects often found in Bi2Sr2CaCu2O8, “single” crystals effectively weaken the geometrical barrier and lower the field of first flux penetration. This means that the intrinsic (bulk) magnetic properties can be more easily accessed using magnetic measurements. Thus, the onset of strong bulk flux pinning in the sample bulk is determined to lie at T ≈ 40 K, indepedent of whether the field strength is above or below the field of the second peak in the magnetisation.

  6. Bulk local states and crosscaps in holographic CFT

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yu [Department of Physics, Rikkyo University,Toshima, Tokyo 175-8501 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); Ooguri, Hirosi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Center for Mathematical Sciences and Applications andCenter for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)

    2016-10-17

    In a weakly coupled gravity theory in the anti-de Sitter space, local states in the bulk are linear superpositions of Ishibashi states for a crosscap in the dual conformal field theory. The superposition structure can be constrained either by the microscopic causality in the bulk gravity or the bootstrap condition in the boundary conformal field theory. We show, contrary to some expectation, that these two conditions are not compatible to each other in the weak gravity regime. We also present an evidence to show that bulk local states in three dimensions are not organized by the Virasoro symmetry.

  7. Can groundwater be successfully implemented as a bulk water ...

    African Journals Online (AJOL)

    that groundwater can be developed as a potential viable bulk-water supply source. This paper attempts .... fracturing, even when using conventional geophysical methods. Gneiss and/or ..... will start to be self-sufficient in about 2018 and 2019.

  8. Role of the antiferromagnetic bulk spins in exchange bias

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Ivan K. [Center for Advanced Nanoscience and Physics Department, University of California San Diego, La Jolla, CA 92093 (United States); Morales, Rafael, E-mail: rafael.morales@ehu.es [Department of Chemical-Physics & BCMaterials, University of the Basque Country UPV/EHU (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Batlle, Xavier [Departament Física Fonamental and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, c/ Martí i Franqués s/n, 08028 Barcelona, Catalonia (Spain); Nowak, Ulrich [Department of Physics, University of Konstanz, 78464 Konstanz (Germany); Güntherodt, Gernot [Physics Institute (IIA), RWTH Aachen University, Campus RWTH-Melaten, 52074 Aachen (Germany)

    2016-10-15

    This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.

  9. Bulk Nano-structured Materials for Turbomachinery Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort seeks to exploit some of the tremendous benefits that could be attained from a revolutionary new approach to grain refinement in bulk...

  10. Preparation of Nb thin films with bulk transition temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Peirce, L H [Florida State Univ., Tallahassee (USA). Dept. of Physics

    1984-08-01

    Thin films (1000-2000 A) of Nb were prepared with bulk transition temperatures (9.25 K) by evaporation from an electron gun. Necessary substrate temperatures, evaporation rates and H/sub 2/O pressures were determined.

  11. Role of the antiferromagnetic bulk spins in exchange bias

    International Nuclear Information System (INIS)

    Schuller, Ivan K.; Morales, Rafael; Batlle, Xavier; Nowak, Ulrich; Güntherodt, Gernot

    2016-01-01

    This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.

  12. Pseudopotentials for calculating the bulk and surface properties of solids

    International Nuclear Information System (INIS)

    Cohen, M.L.

    1983-01-01

    A survey is presented describing research in condensed matter physics using pseudopotentials to calculate electronic, structural, and vibrational properties of solids. Semiconductors are emphasized, and both bulk and surface calculations are discussed. (author) [pt

  13. Bulk metallic glass for low noise fluxgate, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The team of Prime Photonics, Virginia Tech, and Utron Kinetics propose to demonstrate a method for fabrication of a bulk, amorphous, cobalt-rich material that...

  14. Bulk and edge spin transport in topological magnon insulators

    Science.gov (United States)

    Rückriegel, Andreas; Brataas, Arne; Duine, Rembert A.

    2018-02-01

    We investigate the spin transport properties of a topological magnon insulator, a magnetic insulator characterized by topologically nontrivial bulk magnon bands and protected magnon edge modes located in the bulk band gaps. Employing the Landau-Lifshitz-Gilbert phenomenology, we calculate the spin current driven through a normal metal |topological magnon insulator |normal metal heterostructure by a spin accumulation imbalance between the metals, with and without random lattice defects. We show that bulk and edge transport are characterized by different length scales. This results in a characteristic system size where the magnon transport crosses over from being bulk dominated for small systems to edge dominated for larger systems. These findings are generic and relevant for topological transport in systems of nonconserved bosons.

  15. Concentration polarization, surface currents, and bulk advection in a microchannel

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder; Bruus, Henrik

    2014-01-01

    . A remarkable outcome of the investigations is the discovery of strong couplings between bulk advection and the surface current; without a surface current, bulk advection is strongly suppressed. The numerical simulations are supplemented by analytical models valid in the long channel limit as well...... as in the limit of negligible surface charge. By including the effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published analytical model of overlimiting current due to surface conduction....

  16. Bulk Extractor 1.4 User’s Manual

    Science.gov (United States)

    2013-08-01

    optimistically decompresses data in ZIP, GZIP, RAR, and Mi- crosoft’s Hibernation files. This has proven useful, for example, in recovering email...command line. Java 7 or above must be installed on the machine for the Bulk Extractor Viewer to run. Instructions on running bulk_extractor from the... Hibernation File Fragments (decompressed and processed, not carved) Subsection 4.6 winprefetch Windows Prefetch files, file fragments (processed

  17. Anisotropic cosmological models with bulk viscosity and particle ...

    Indian Academy of Sciences (India)

    4.1.3 Ideal gas. In the case of an ideal gas. = 0 and pc = 0. Then eq. (2) becomes. ˙η + 3ηH = 0. (69). Equation (69), on integration gives η = η1t. −3/n,. (70) where η1 is an integrating constant. Equation (69) is the expression for particle creation density. This model has only bulk viscosity and bulk viscous stress is obtained as.

  18. Factors that may compromise bulk water distribution reliability

    OpenAIRE

    2012-01-01

    D.Ing. This thesis considers water supply and divides the water supply environment into three categories; the macro water supply environment, the water supply scheme and the consumers. Each of the categories is briefly explored in terms of the factors that may influence it. Subsequently, some of the unique features of a bulk water distribution system are dealt with, as well as different approaches related to bulk water distribution system design and assessment. One of these approaches, the...

  19. Does boundary quantum mechanics imply quantum mechanics in the bulk?

    Science.gov (United States)

    Kabat, Daniel; Lifschytz, Gilad

    2018-03-01

    Perturbative bulk reconstruction in AdS/CFT starts by representing a free bulk field ϕ (0) as a smeared operator in the CFT. A series of 1 /N corrections must be added to ϕ (0) to represent an interacting bulk field ϕ. These corrections have been determined in the literature from several points of view. Here we develop a new perspective. We show that correlation functions involving ϕ (0) suffer from ambiguities due to analytic continuation. As a result ϕ (0) fails to be a well-defined linear operator in the CFT. This means bulk reconstruction can be understood as a procedure for building up well-defined operators in the CFT which thereby singles out the interacting field ϕ. We further propose that the difficulty with defining ϕ (0) as a linear operator can be re-interpreted as a breakdown of associativity. Presumably ϕ (0) can only be corrected to become an associative operator in perturbation theory. This suggests that quantum mechanics in the bulk is only valid in perturbation theory around a semiclassical bulk geometry.

  20. Bulk density calculations from prompt gamma ray yield

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Maslehuddin, M.

    2006-01-01

    Full text: The gamma ray yield from a Prompt Gamma ray Neutron Activation Analysis (PGNAA) setup is a linear function of element concentration and neutron flux in a the sample with constant bulk density. If the sample bulk density varies as well, then the element concentration and the neutron flux has a nonlinear correlation with the gamma ray yield [1]. The measurement of gamma ray yield non-linearity from samples and a standard can be used to estimate the bulk density of the samples. In this study the prompt gamma ray yield from Blast Furnace Slag, Fly Ash, Silica Fumes and Superpozz cements samples have been measured as a function of their calcium and silicon concentration using KFUPM accelerator-based PGNAA setup [2]. Due to different bulk densities of the blended cement samples, the measured gamma ray yields have nonlinear correlation with calcium and silicon concentration of the samples. The non-linearity in the yield was observed to increase with gamma rays energy and element concentration. The bulk densities of the cement samples were calculated from ratio of gamma ray yield from blended cement and that from a Portland cement standard. The calculated bulk densities have good agreement with the published data. The result of this study will be presented

  1. Materials processing and machine applications of bulk HTS

    Science.gov (United States)

    Miki, M.; Felder, B.; Tsuzuki, K.; Xu, Y.; Deng, Z.; Izumi, M.; Hayakawa, H.; Morita, M.; Teshima, H.

    2010-12-01

    We report a refrigeration system for rotating machines associated with the enhancement of the trapped magnetic flux of bulk high-temperature superconductor (HTS) field poles. A novel cryogenic system was designed and fabricated. It is composed of a low-loss rotary joint connecting the rotor and a closed-cycle thermosiphon under a GM cryocooler using a refrigerant. Condensed neon gas was adopted as a suitable cryogen for the operation of HTS rotating machines with field poles composed of RE-Ba-Cu-O family materials, where RE is a rare-earth metal. Regarding the materials processing of the bulks HTS, thanks to the addition of magnetic particles to GdBa2Cu3O7 - d (Gd123) bulk superconductors an increase of more than 20% in the trapped magnetic flux density was achieved at liquid nitrogen temperature. Field-pole Gd123 bulks up to 46 mm in diameter were synthesized with the addition of Fe-B alloy magnetic particles and assembled into the synchronous machine rotor to be tested. Successful cooling of the magnetized rotor field poles down to 35 K and low-output-power rotating operation was achieved up to 720 rpm in the test machine with eight field-pole bulks. The present results show a substantial basis for making a prototype system of rotating machinery of applied HTS bulks.

  2. Materials processing and machine applications of bulk HTS

    Energy Technology Data Exchange (ETDEWEB)

    Miki, M; Felder, B; Tsuzuki, K; Xu, Y; Deng, Z; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H [Kitano Seiki Co. Ltd, 7-17-3, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Morita, M; Teshima, H, E-mail: d082025@kaiyodai.ac.j [Nippon Steel Co. Ltd, 20-1, Shintomi, Huttsu-shi, Chiba 293-8511 (Japan)

    2010-12-15

    We report a refrigeration system for rotating machines associated with the enhancement of the trapped magnetic flux of bulk high-temperature superconductor (HTS) field poles. A novel cryogenic system was designed and fabricated. It is composed of a low-loss rotary joint connecting the rotor and a closed-cycle thermosiphon under a GM cryocooler using a refrigerant. Condensed neon gas was adopted as a suitable cryogen for the operation of HTS rotating machines with field poles composed of RE-Ba-Cu-O family materials, where RE is a rare-earth metal. Regarding the materials processing of the bulks HTS, thanks to the addition of magnetic particles to GdBa{sub 2}Cu{sub 3}O{sub 7-d} (Gd123) bulk superconductors an increase of more than 20% in the trapped magnetic flux density was achieved at liquid nitrogen temperature. Field-pole Gd123 bulks up to 46 mm in diameter were synthesized with the addition of Fe-B alloy magnetic particles and assembled into the synchronous machine rotor to be tested. Successful cooling of the magnetized rotor field poles down to 35 K and low-output-power rotating operation was achieved up to 720 rpm in the test machine with eight field-pole bulks. The present results show a substantial basis for making a prototype system of rotating machinery of applied HTS bulks.

  3. Unified bulk-boundary correspondence for band insulators

    Science.gov (United States)

    Rhim, Jun-Won; Bardarson, Jens H.; Slager, Robert-Jan

    2018-03-01

    The bulk-boundary correspondence, a topic of intensive research interest over the past decades, is one of the quintessential ideas in the physics of topological quantum matter. Nevertheless, it has not been proven in all generality and has in certain scenarios even been shown to fail, depending on the boundary profiles of the terminated system. Here, we introduce bulk numbers that capture the exact number of in-gap modes, without any such subtleties in one spatial dimension. Similarly, based on these 1D bulk numbers, we define a new 2D winding number, which we call the pole winding number, that specifies the number of robust metallic surface bands in the gap as well as their topological character. The underlying general methodology relies on a simple continuous extrapolation from the bulk to the boundary, while tracking the evolution of Green's function's poles in the vicinity of the bulk band edges. As a main result we find that all the obtained numbers can be applied to the known insulating phases in a unified manner regardless of the specific symmetries. Additionally, from a computational point of view, these numbers can be effectively evaluated without any gauge fixing problems. In particular, we directly apply our bulk-boundary correspondence construction to various systems, including 1D examples without a traditional bulk-boundary correspondence, and predict the existence of boundary modes on various experimentally studied graphene edges, such as open boundaries and grain boundaries. Finally, we sketch the 3D generalization of the pole winding number by in the context of topological insulators.

  4. Longitudinal and bulk viscosities of Lennard-Jones fluids

    Science.gov (United States)

    Tankeshwar, K.; Pathak, K. N.; Ranganathan, S.

    1996-12-01

    Expressions for the longitudinal and bulk viscosities have been derived using Green Kubo formulae involving the time integral of the longitudinal and bulk stress autocorrelation functions. The time evolution of stress autocorrelation functions are determined using the Mori formalism and a memory function which is obtained from the Mori equation of motion. The memory function is of hyperbolic secant form and involves two parameters which are related to the microscopic sum rules of the respective autocorrelation function. We have derived expressions for the zeroth-, second-and fourth- order sum rules of the longitudinal and bulk stress autocorrelation functions. These involve static correlation functions up to four particles. The final expressions for these have been put in a form suitable for numerical calculations using low- order decoupling approximations. The numerical results have been obtained for the sum rules of longitudinal and bulk stress autocorrelation functions. These have been used to calculate the longitudinal and bulk viscosities and time evolution of the longitudinal stress autocorrelation function of the Lennard-Jones fluids over wide ranges of densities and temperatures. We have compared our results with the available computer simulation data and found reasonable agreement.

  5. Evaluation and remediation of bulk soap dispensers for biofilm.

    Science.gov (United States)

    Lorenz, Lindsey A; Ramsay, Bradley D; Goeres, Darla M; Fields, Matthew W; Zapka, Carrie A; Macinga, David R

    2012-01-01

    Recent studies evaluating bulk soap in public restroom soap dispensers have demonstrated up to 25% of open refillable bulk-soap dispensers were contaminated with ~ 6 log(10)(CFU ml(-1)) heterotrophic bacteria. In this study, plastic counter-mounted, plastic wall-mounted and stainless steel wall-mounted dispensers were analyzed for suspended and biofilm bacteria using total cell and viable plate counts. Independent of dispenser type or construction material, the bulk soap was contaminated with 4-7 log(10)(CFU ml(-1)) bacteria, while 4-6 log(10)(CFU cm(-2)) biofilm bacteria were isolated from the inside surfaces of the dispensers (n = 6). Dispenser remediation studies, including a 10 min soak with 5000 mg l(-1) sodium hypochlorite, were then conducted to determine the efficacy of cleaning and disinfectant procedures against established biofilms. The testing showed that contamination of the bulk soap returned to pre-test levels within 7-14 days. These results demonstrate biofilm is present in contaminated bulk-soap dispensers and remediation studies to clean and sanitize the dispensers are temporary.

  6. Development of a superconducting bulk magnet for NMR and MRI.

    Science.gov (United States)

    Nakamura, Takashi; Tamada, Daiki; Yanagi, Yousuke; Itoh, Yoshitaka; Nemoto, Takahiro; Utumi, Hiroaki; Kose, Katsumi

    2015-10-01

    A superconducting bulk magnet composed of six vertically stacked annular single-domain c-axis-oriented Eu-Ba-Cu-O crystals was energized to 4.74 T using a conventional superconducting magnet for high-resolution NMR spectroscopy. Shim coils, gradient coils, and radio frequency coils for high resolution NMR and MRI were installed in the 23 mm-diameter room-temperature bore of the bulk magnet. A 6.9 ppm peak-to-peak homogeneous region suitable for MRI was achieved in the central cylindrical region (6.2 mm diameter, 9.1 mm length) of the bulk magnet by using a single layer shim coil. A 21 Hz spectral resolution that can be used for high resolution NMR spectroscopy was obtained in the central cylindrical region (1.3 mm diameter, 4 mm length) of the bulk magnet by using a multichannel shim coil. A clear 3D MR image dataset of a chemically fixed mouse fetus with (50 μm)(3) voxel resolution was obtained in 5.5 h. We therefore concluded that the cryogen-free superconducting bulk magnet developed in this study is useful for high-resolution desktop NMR, MRI and mobile NMR device. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Large-scale HTS bulks for magnetic application

    Science.gov (United States)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  8. Mass production of bulk artificial nacre with excellent mechanical properties.

    Science.gov (United States)

    Gao, Huai-Ling; Chen, Si-Ming; Mao, Li-Bo; Song, Zhao-Qiang; Yao, Hong-Bin; Cölfen, Helmut; Luo, Xi-Sheng; Zhang, Fu; Pan, Zhao; Meng, Yu-Feng; Ni, Yong; Yu, Shu-Hong

    2017-08-18

    Various methods have been exploited to replicate nacre features into artificial structural materials with impressive structural and mechanical similarity. However, it is still very challenging to produce nacre-mimetics in three-dimensional bulk form, especially for further scale-up. Herein, we demonstrate that large-sized, three-dimensional bulk artificial nacre with comprehensive mimicry of the hierarchical structures and the toughening mechanisms of natural nacre can be facilely fabricated via a bottom-up assembly process based on laminating pre-fabricated two-dimensional nacre-mimetic films. By optimizing the hierarchical architecture from molecular level to macroscopic level, the mechanical performance of the artificial nacre is superior to that of natural nacre and many engineering materials. This bottom-up strategy has no size restriction or fundamental barrier for further scale-up, and can be easily extended to other material systems, opening an avenue for mass production of high-performance bulk nacre-mimetic structural materials in an efficient and cost-effective way for practical applications.Artificial materials that replicate the mechanical properties of nacre represent important structural materials, but are difficult to produce in bulk. Here, the authors exploit the bottom-up assembly of 2D nacre-mimetic films to fabricate 3D bulk artificial nacre with an optimized architecture and excellent mechanical properties.

  9. Bulk viscosity, interaction and the viability of phantom solutions

    Energy Technology Data Exchange (ETDEWEB)

    Leyva, Yoelsy; Sepulveda, Mirko [Universidad de Tarapaca, Departamento de Fisica, Facultad de Ciencias, Arica (Chile)

    2017-06-15

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) Universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with w < -1. From the different cases that we study, the only possible scenario, with bulk viscosity and interaction term, belongs to the quintessence region. In the latter case, we find bounds on the interaction parameter compatible with latest observational data. (orig.)

  10. Running with rugby balls: bulk renormalization of codimension-2 branes

    Science.gov (United States)

    Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.

    2013-01-01

    We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

  11. Bulk-edge correspondence in topological transport and pumping

    Science.gov (United States)

    Imura, Ken-Ichiro; Yoshimura, Yukinori; Fukui, Takahiro; Hatsugai, Yasuhiro

    2018-03-01

    The bulk-edge correspondence (BEC) refers to a one-to-one relation between the bulk and edge properties ubiquitous in topologically nontrivial systems. Depending on the setup, BEC manifests in different forms and govern the spectral and transport properties of topological insulators and semimetals. Although the topological pump is theoretically old, BEC in the pump has been established just recently [1] motivated by the state-of-the-art experiments using cold atoms [2, 3]. The center of mass (CM) of a system with boundaries shows a sequence of quantized jumps in the adiabatic limit associated with the edge states. Despite that the bulk is adiabatic, the edge is inevitably non-adiabatic in the experimental setup or in any numerical simulations. Still the pumped charge is quantized and carried by the bulk. Its quantization is guaranteed by a compensation between the bulk and edges. We show that in the presence of disorder the pumped charge continues to be quantized despite the appearance of non-quantized jumps.

  12. Delocalization of brane gravity by a bulk black hole

    International Nuclear Information System (INIS)

    Seahra, Sanjeev S; Clarkson, Chris; Maartens, Roy

    2005-01-01

    We investigate the analogue of the Randall-Sundrum braneworld in the case when the bulk contains a black hole. Instead of the static vacuum Minkowski brane of the RS model, we have an Einstein static vacuum brane. We find that the presence of the bulk black hole has a dramatic effect on the gravity that is felt by brane observers. In the RS model, the 5D graviton has a stable localized zero mode that reproduces 4D gravity on the brane at low energies. With a bulk black hole, there is no such solution-gravity is delocalized by the 5D horizon. However, the brane does support a discrete spectrum of metastable massive bound states, or quasinormal modes, as was recently shown to be the case in the RS scenario. These states should dominate the high frequency component of the bulk gravity wave spectrum on a cosmological brane. We expect our results to generalize to any bulk spacetime containing a Killing horizon. (letter to the editor)

  13. Color of bulk-fill composite resin restorative materials.

    Science.gov (United States)

    Barutcigil, Çağatay; Barutcigil, Kubilay; Özarslan, Mehmet Mustafa; Dündar, Ayşe; Yilmaz, Burak

    2018-03-01

    To evaluate the color stability of novel bulk-fill composite resins. Color measurements of a nanohybrid composite resin (Z550) and 3 bulk-fill composite resins (BLK, AFX, XTF; n = 45) were performed before polymerization. After polymerization, color measurements were repeated and specimens were immersed in distilled water or red wine, or coffee. Color change [CIEDE2000 (ΔE 00 )] was calculated after 24 h, 1 and 3 weeks. Data were analyzed with Kruskal-Wallis, Mann-Whitney U and Wilcoxon tests (α = 0.05). Color changes observed after polymerization were significant for all groups. Color changes observed in distilled water for Z550 and AFX were significant. Color changes after stored in red wine and coffee were significant for all groups. Bulk-fill composite resin color change increased over time for all groups in red wine and coffee (P composite resin and bulk-fill composite resins. AFX had the highest color change in distilled water. The color of tested bulk-fill composite resins significantly changed after immersion in beverages and over time. Color change observed with the nanohybrid composite resin after 1 week was stable. Clinicians should keep in mind that tested composite resins may change color when exposed to water and significantly change color immediately after they are polymerized. In addition, the color change continues over time should the patient is a coffee and/or red wine consumer. © 2017 Wiley Periodicals, Inc.

  14. Photocarrier dynamics in monolayer phosphorene and bulk black phosphorus.

    Science.gov (United States)

    Zereshki, Peymon; Wei, Yaqing; Ceballos, Frank; Bellus, Matthew Z; Lane, Samuel D; Pan, Shudi; Long, Run; Zhao, Hui

    2018-06-13

    We report a combined theoretical and experimental study on photocarrier dynamics in monolayer phosphorene and bulk black phosphorus. Samples of monolayer phosphorene and bulk black phosphorus were fabricated by mechanical exfoliation, identified according to their reflective contrasts, and protected by covering them with hexagonal boron nitride layers. Photocarrier dynamics in these samples was studied by an ultrafast pump-probe technique. The photocarrier lifetime of monolayer phosphorene was found to be about 700 ps, which is about 9 times longer than that of bulk black phosphorus. This trend was reproduced in our calculations based on ab initio nonadiabatic molecular dynamics combined with time-domain density functional theory in the Kohn-Sham representation, and can be attributed to the smaller bandgap and stronger nonadiabatic coupling in bulk. The transient absorption response was also found to be dependent on the sample orientation with respect to the pump polarization, which is consistent with the previously reported anisotropic absorption of phosphorene. In addition, an oscillating component of the differential reflection signal at early probe delays was observed in the bulk sample and was attributed to the layer-breathing phonon mode with an energy of about 1 meV and a decay time of about 1.35 ps. These results provide valuable information for application of monolayer phosphorene in optoelectronics.

  15. Brane big bang brought on by a bulk bubble

    International Nuclear Information System (INIS)

    Gen, Uchida; Ishibashi, Akihiro; Tanaka, Takahiro

    2002-01-01

    We propose an alternative inflationary universe scenario in the context of Randall-Sundrum braneworld cosmology. In this new scenario the existence of extra dimension(s) plays an essential role. First, the brane universe is initially in the inflationary phase driven by the effective cosmological constant induced by a small mismatch between the vacuum energy in the five-dimensional bulk and the brane tension. This mismatch arises since the bulk is initially in a false vacuum. Then, false vacuum decay occurs, nucleating a true vacuum bubble with negative energy inside the bulk. The nucleated bubble expands in the bulk and consequently hits the brane, causing a hot big-bang brane universe of the Randall-Sundrum type. Here, the termination of the inflationary phase is due to the change of the bulk vacuum energy. The bubble kinetic energy heats up the universe. As a simple realization, we propose a model in which we assume an interaction between the brane and the bubble. We derive the constraints on the model parameters taking into account the following requirements: solving the flatness problem, no force which prohibits the bubble from colliding with the brane, a sufficiently high reheating temperature for the standard nucleosynthesis to work, and the recovery of Newton's law up to 1 mm. We find that a fine-tuning is needed in order to satisfy the first and the second requirements simultaneously, although the other constraints are satisfied in a wide range of the model parameters

  16. Depth of cure of bulk-fill flowable composite resins.

    Science.gov (United States)

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  17. Efficient Bulk Operations on Dynamic R-Trees

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Hinrichs, Klaus; Vahrenhold, Jan

    2002-01-01

    In recent years there has been an upsurge of interest in spatial databases. A major issue is how to manipulate efficiently massive amounts of spatial data stored on disk in multidimensional spatial indexes (data structures). Construction of spatial indexes (bulk loading ) has been studied...... intensively in the database community. The continuous arrival of massive amounts of new data makes it important to update existing indexes (bulk updating ) efficiently. In this paper we present a simple, yet efficient, technique for performing bulk update and query operations on multidimensional indexes. We...... present our technique in terms of the so-called R-tree and its variants, as they have emerged as practically efficient indexing methods for spatial data. Our method uses ideas from the buffer tree lazy buffering technique and fully utilizes the available internal memory and the page size of the operating...

  18. Preparation of bulk superhard B-C-N nanocomposite compact

    Science.gov (United States)

    Zhao, Yusheng [Los Alamos, NM; He, Duanwei [Sichuan, CN

    2011-05-10

    Bulk, superhard, B--C--N nanocomposite compacts were prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture at a pressure in a range of from about 15 GPa to about 25 GPa, and sintering the pressurized encapsulated ball-milled mixture at a temperature in a range of from about 1800-2500 K. The product bulk, superhard, nanocomposite compacts were well sintered compacts with nanocrystalline grains of at least one high-pressure phase of B--C--N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compacts had a measured Vicker's hardness in a range of from about 41 GPa to about 68 GPa.

  19. On-line and bulk analysis for the resource industries

    International Nuclear Information System (INIS)

    Lim, C.S.; Sowerby, B.D.; Tickner, J.R.; Madsen, I.C.

    2001-01-01

    Nuclear techniques are the basis of many CSIRO on-line and bulk analysis systems that are now widely used in the mineral and energy industries. The continuous analysis and rapid response of these systems have led to improved control of mining, processing and blending operations. This paper reviews recent developments in neutron, gamma-ray and X-ray techniques for on-line and bulk analysis by CSIRO Minerals including neutron techniques for the on-conveyor belt determination of the composition of cement raw meal, the on-line analysis of composition in pyrometallurgical applications, the on-conveyor belt determination of ash in coal, and the rapid and accurate determination of gold in bulk laboratory samples. The paper also discusses a new gamma-ray technique for the on-line determination of ash in coal and the application of X-ray diffraction techniques for the on-line determination of mineralogy in the cement industry

  20. Polish model of electric energy market-bulk energy tariff

    International Nuclear Information System (INIS)

    Malysa, H.

    1994-01-01

    The key problem of electric energy supply industry reform is gradually launching a competitive wholesale generation market since 1994. In process of this transformation the important role plays bulk energy supply tariff in electricity transactions between Polish Power Grid Company and distribution and retail supply companies (distributors). Premises, factors and constrains having influence on shaping of the bulk energy supply tariff are presented. A brief outline of economic foundation for calculation of demand charges and energy rate is given. Particular attention has been paid to description of bulk energy supply tariff structure. The scope and manner of adjustment of this tariff to circumstances and constrains in the initial stage of the wholesale electric energy market have been described as well. (author). 8 refs

  1. Palladium diffusion into bulk copper via the (100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, E; Kellogg, G L [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Sun, J; Pohl, K [Department of Physics and Materials Science Program, University of New Hampshire, Durham, NH 03824 (United States)

    2009-08-05

    Using low-energy electron microscopy, we measure the diffusion of Pd into bulk Cu at the Cu(100) surface. Interdiffusion is tracked by measuring the dissolution of the Cu(100)-c(2 x 2)-Pd surface alloy during annealing (T>240 deg. C). The activation barrier for Pd diffusion from the surface alloy into the bulk is determined to be (1.8 +- 0.6) eV. During annealing, we observe the growth of a new layer of Cu near step edges. Under this new Cu layer, dilute Pd remaining near the surface develops a layered structure similar to the Cu{sub 3}Pd L 1{sub 2} bulk alloy phase.

  2. Temperature measurement of RE123 bulk superconductors on magnetizing process

    International Nuclear Information System (INIS)

    Yokoyama, K.; Kaneyama, M.; Oka, T.; Fujishiro, H.; Noto, K.

    2004-01-01

    We study on the magnetization behavior of to magnetize RE123 bulk superconductors to apply it as strong magnets. Through magnetizing process, the temperature of bulk superconductors is raised by pinning loss caused by the magnetic fluxes motion (e.g. flux jump of flux flow), and the trapped field is decreased. This paper presents the measurement of temperature changes of Sm123 bulk superconductors during the exciting process by iteratively magnetizing pulsed-field operation with reducing amplitudes (IMRA) method. Five thermocouples are put on the surface of Sm123 bulk superconductor of 46 mm in diameter. The temperatures at the center, on the growth sector boundary (GSB) line and in the sector region surrounded by GSB's line (inter-GSB region) are monitored. The temperature at a cold stage is also measured. A Hall sensor is attached near the center thermocouple to measure the trapped field. After a bulk superconductor is cooled by the GM type refrigerator until 40 K, iterative pulsed-fields of 2.32-5.42 T are applied by a magnetizing coil. When high magnetic field of 5.42 T is applied, a temperature of bulk superconductor reaches to 72.4 K and the magnetic field distribution has C form with which a part of circle is dented, and then, a trapped field is 2.28 T. When a lower magnetic field of 4.64 T is applied, a maximum temperature is 68.3 K and a trapped field is raised to 2.70 T, and moreover, the distribution becomes round shape like field-cooling method (FC). We showed clearly that heat generation by pinning loss was related to the mechanism of magnetic field capture

  3. Large-scale HTS bulks for magnetic application

    International Nuclear Information System (INIS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    Highlights: ► ATZ Company has constructed about 130 HTS magnet systems. ► Multi-seeded YBCO bulks joint the way for large-scale application. ► Levitation platforms demonstrate “superconductivity” to a great public audience (100 years anniversary). ► HTS magnetic bearings show forces up to 1 t. ► Modular HTS maglev vacuum cryostats are tested for train demonstrators in Brazil, China and Germany. -- Abstract: ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN 2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500–3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN 2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved

  4. Large-scale HTS bulks for magnetic application

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank N., E-mail: werfel@t-online.de [Adelwitz Technologiezentrum GmbH (ATZ), Rittergut Adelwitz 16, 04886 Arzberg-Adelwitz (Germany); Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter [Adelwitz Technologiezentrum GmbH (ATZ), Rittergut Adelwitz 16, 04886 Arzberg-Adelwitz (Germany)

    2013-01-15

    Highlights: ► ATZ Company has constructed about 130 HTS magnet systems. ► Multi-seeded YBCO bulks joint the way for large-scale application. ► Levitation platforms demonstrate “superconductivity” to a great public audience (100 years anniversary). ► HTS magnetic bearings show forces up to 1 t. ► Modular HTS maglev vacuum cryostats are tested for train demonstrators in Brazil, China and Germany. -- Abstract: ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN{sub 2} and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500–3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN{sub 2} allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  5. Bulk material engineering and procurement management of NPS

    International Nuclear Information System (INIS)

    Fu Sanhong; Fan Kai

    2005-01-01

    In a nuclear power project, bulk material is often not in an outstanding position, compared to equipment, yet bulk material is one of most difficult part in engineering and procurement management. If the schedule is not in good control, it will seriously hamper the progress of the whole project. The article explores bulk material engineering and procurement management of NPS, illustrated with tables and graphs. First, major difficult aspects of bulk material procurement are described. On one hand, bulk material is really bulky in kind. We must have detail information of manufacturers, manufacture duration, and take good control of bidding schedule. On the other hand, when an order is placed, we need to make clear everything in the procurement package, such as material types, delivery batches, quantity of each batch and delivery schedule, which is a tremendous work. Then, a schedule conflict is analyzed: when an order is placed, the detail type and quantity cannot be defined (since the construction design is not finished yet). To settle this conflict, the concept 'Requirement Schedule Curve' is brought forward, along with the calculation method. To get this curve, we need to make use of the technical data of the reference power station, along with the site construction schedule, to produce a site quantity requirement curve varying from time, for each type of material. Last, based on the 'Requirement Schedule Curve', we are able to build a unified database to control the engineering, procurement, manufacturing and delivery schedule, so as to procure precisely, manufacture on time, and optimize the storage. In this way, the accurate control of bulk material engineering and procurement schedule can be achieved. (authors)

  6. Genetic Variation among Staphylococcus aureus Strains from Norwegian Bulk Milk

    Science.gov (United States)

    Jørgensen, H. J.; Mørk, T.; Caugant, D. A.; Kearns, A.; Rørvik, L. M.

    2005-01-01

    Strains of Staphylococcus aureus obtained from bovine (n = 117) and caprine (n = 114) bulk milk were characterized and compared with S. aureus strains from raw-milk products (n = 27), bovine mastitis specimens (n = 9), and human blood cultures (n = 39). All isolates were typed by pulsed-field gel electrophoresis (PFGE). In addition, subsets of isolates were characterized using multilocus sequence typing (MLST), multiplex PCR (m-PCR) for genes encoding nine of the staphylococcal enterotoxins (SE), and the cloverleaf method for penicillin resistance. A variety of genotypes were observed, and greater genetic diversity was found among bovine than caprine bulk milk isolates. Certain genotypes, with a wide geographic distribution, were common to bovine and caprine bulk milk and may represent ruminant-specialized S. aureus. Isolates with genotypes indistinguishable from those of strains from ruminant mastitis were frequently found in bulk milk, and strains with genotypes indistinguishable from those from bulk milk were observed in raw-milk products. This indicates that S. aureus from infected udders may contaminate bulk milk and, subsequently, raw-milk products. Human blood culture isolates were diverse and differed from isolates from other sources. Genotyping by PFGE, MLST, and m-PCR for SE genes largely corresponded. In general, isolates with indistinguishable PFGE banding patterns had the same SE gene profile and isolates with identical SE gene profiles were placed together in PFGE clusters. Phylogenetic analyses agreed with the division of MLST sequence types into clonal complexes, and isolates within the same clonal complex had the same SE gene profile. Furthermore, isolates within PFGE clusters generally belonged to the same clonal complex. PMID:16332822

  7. Mechanisms of the anomalous Pockels effect in bulk water

    Science.gov (United States)

    Yukita, Shunpei; Suzuki, Yuto; Shiokawa, Naoyuki; Kobayashi, Takayoshi; Tokunaga, Eiji

    2018-04-01

    The "anomalous" Pockels effect is a phenomenon that a light beam passing between two electrodes in an aqueous electrolyte solution is deflected by an AC voltage applied between the electrodes: the deflection angle is proportional to the voltage such that the incident beam alternately changes its direction. This phenomenon, the Pockels effect in bulk water, apparently contradicts what is believed in nonlinear optics, i.e., macroscopic inversion symmetry should be broken for the second-order nonlinear optical effect to occur such as the first-order electro-optic effect, i.e., the Pockels effect. To clarify the underlying mechanism, the dependence of the effect on the electrode material is investigated to find that the Pockels coefficient with Pt electrodes is two orders of magnitude smaller than with indium tin oxide (ITO) electrodes. It is experimentally confirmed that the Pockels effect of interfacial water in the electric double layer (EDL) on these electrodes shows an electrode dependence similar to the effect in bulk water while the effects depend on the frequency of the AC voltage such that the interfacial signal decreases with frequency but the bulk signal increases with frequency up to 221 Hz. These experimental results lead to a conclusion that the beam deflection is caused by the refractive index gradient in the bulk water region, which is formed transiently by the Pockels effect of interfacial water in the EDL when an AC electric field is applied. The refractive index gradient is caused by the diffuse layer spreading into the bulk region to work as a breaking factor of inversion symmetry of bulk water due to its charge-biased ionic distribution. This mechanism does not contradict the principle of nonlinear optics.

  8. Properties of Bulk Sintered Silver As a Function of Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity

  9. Collapse of Incoherent Light Beams in Inertial Bulk Kerr Media

    DEFF Research Database (Denmark)

    Bang, Ole; Edmundson, Darran; Królikowski, Wieslaw

    1999-01-01

    We use the coherent density function theory to show that partially coherent beams are unstable and may collapse in inertial bulk Kerr media. The threshold power for collapse, and its dependence on the degree of coherence, is found analytically and checked-numerically. The internal dynamics of the...... of the walk-off modes is illustrated for collapsing and diffracting partially coherent beams.......We use the coherent density function theory to show that partially coherent beams are unstable and may collapse in inertial bulk Kerr media. The threshold power for collapse, and its dependence on the degree of coherence, is found analytically and checked-numerically. The internal dynamics...

  10. Reversible ultrafast melting in bulk CdSe

    International Nuclear Information System (INIS)

    Wu, Wenzhi; He, Feng; Wang, Yaguo

    2016-01-01

    In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm 2 , ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe

  11. Bulk Restoration for SDN-Based Transport Network

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2016-01-01

    Full Text Available We propose a bulk restoration scheme for software defined networking- (SDN- based transport network. To enhance the network survivability and improve the throughput, we allow disrupted flows to be recovered synchronously in dynamic order. In addition backup paths are scheduled globally by applying the principles of load balance. We model the bulk restoration problem using a mixed integer linear programming (MILP formulation. Then, a heuristic algorithm is devised. The proposed algorithm is verified by simulation and the results are analyzed comparing with sequential restoration schemes.

  12. Nuclear spin warm up in bulk n -GaAs

    Science.gov (United States)

    Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Jouault, B.; Korenev, V. L.; Kavokin, K. V.

    2016-08-01

    We show that the spin-lattice relaxation in n -type insulating GaAs is dramatically accelerated at low magnetic fields. The origin of this effect, which cannot be explained in terms of well-known diffusion-limited hyperfine relaxation, is found in the quadrupole relaxation, induced by fluctuating donor charges. Therefore, quadrupole relaxation, which governs low field nuclear spin relaxation in semiconductor quantum dots, but was so far supposed to be harmless to bulk nuclei spins in the absence of optical pumping, can be studied and harnessed in the much simpler model environment of n -GaAs bulk crystal.

  13. Bulk-mediated surface diffusion: non-Markovian desorption dynamics

    International Nuclear Information System (INIS)

    Revelli, Jorge A; Budde, Carlos E; Prato, Domingo; Wio, Horacio S

    2005-01-01

    Here we analyse the dynamics of adsorbed molecules within the bulk-mediated surface diffusion framework, when the particle's desorption mechanism is characterized by a non-Markovian process, while the particle's adsorption as well as its motion in the bulk is governed by Markovian dynamics. We study the diffusion of particles in both semi-infinite and finite cubic lattices, analysing the conditional probability to find the system on the reference absorptive plane as well as the surface dispersion as functions of time. The results are compared with known Markovian cases showing the differences that can be exploited to distinguish between Markovian and non-Markovian desorption mechanisms in experimental situations

  14. Physical factors controlling the ductility of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. [Central South University, China; Liu, Chain T [ORNL; Zhang, Z. [University of Tennessee, Knoxville (UTK); Keppens, V. [University of Tennessee, Knoxville (UTK)

    2008-01-01

    In order to identify key physical factor controlling the deformation and fracture behavior of bulk metallic glasses (BMGs), we compiled and analyzed the elastic moduli and compressive ductility for BMGs. In addition, new modulus data were generated in the critical ranges in order to facilitate the analysis. We have found that the intrinsic ductility of BMGs can be correlated with the bulk-to-shear modulus ratio B/G according to Pugh's [Philos. Mag. 45, 823 (1954) ] rule. In some individual BMG systems, for example, Fe based, the relationship seems to be very clear. The physical meaning of this correlation is discussed in terms of atomic bonding and connectivity.

  15. Low in reactor creep Zr-base alloy tubes

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Holt, R.A.

    1984-01-01

    This invention relates to zirconium alloy tubes especially for use in nuclear power reactors. More particularly it relates to quaternary 3.5 percent Sn, 1 percent Mo, 1 percent Nb, balance Zr alloy tubes which have been extruded, cold worked and heat treated to lower their dislocation density. In one embodiment the alloys are cold worked less than 5 percent and stress relieved to produce a low dislocation density and in another embodiment the alloys are cold worked up to about 50 percent and annealed to produce a very low dislocation density and also small equiaxed β grains

  16. Oxide characterization and hydrogen behaviors of Zr-based alloys

    International Nuclear Information System (INIS)

    Kim, Y. S.; Kim, D. J.; Kwon, S. H.; Lee, H. S.; Oh, S. J.; Yim, B. J.; Son, S. B.; Yun, S. P.

    2006-03-01

    The work scope and contents of the research are as follows : basic properties of zirconium alloys, hydrogen pick-up mechanism of zirconium alloy, effects of hydride on the corrosion behaviors of zirconium alloys, estimation on stress of oxide layer in the zirconium alloy, microstructure and characteristic of oxide in pre-hydrided zirconium alloys

  17. Welding of CuZr-based metallic glasses on air

    International Nuclear Information System (INIS)

    Batalha, W.; Gargarella, P.; Kiminami, C.S.

    2016-01-01

    Metallic glass alloys have been studied aiming at its exceptional mechanical properties. This alloys processing's requires high cooling rates, which diminishes the sample's size. There by welding these samples without the loss of amorphous structure is a good alternative. The DEMa group has developed a technique based on Joule effect heating. By applying pressure and electric current, reaching temperatures of super cold liquids (the temperature between crystallizing and vitric transition), the vitric metal has it’s viscosity reduced and sample binding occur. The objective of this paper was to weld samples of cylindrical geometry of 2 and 3 mm in diameter and 4 mm in length of the compositions Cu46Zr42Al7Y5 and (Cu47Zr45Al8)98Y2. The process was done using 2 copper electrodes under(over) argon flux. The samples were later analysed by microscopy, differential scanning calorimetry and X ray diffraction. The results showed that this kind of welding process is possible since crystal formation on the welding region did not occur and there were no faults like cracks or porosity. (author)

  18. Structural study of Zr-based metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, E. [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)]. E-mail: e.matsubara@materials.mbox.media.kyoto-u.ac.jp; Ichitsubo, T. [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Saida, J. [Center of Interdisciplinary Research, Tohoku University, Sendai 980-8578 (Japan); Kohara, S. [JASRI, SPring-8, Sayo-gun, Hyogo 679-5198 (Japan); Ohsumi, H. [JASRI, SPring-8, Sayo-gun, Hyogo 679-5198 (Japan)

    2007-05-31

    Structures of Zr{sub 70}Ni{sub 20}Al{sub 10}, Zr{sub 70}Cu{sub 20}Al{sub 10}, Zr{sub 70}Cu{sub 30} and Zr{sub 70}Ni{sub 30} amorphous alloys were analyzed by high-energy X-ray diffraction. The relatively stable Zr{sub 2}Cu amorphous alloy shows a local atom arrangement different from the Zr{sub 2}Cu crystalline phase. By contrast, the less stable Zr{sub 70}Ni{sub 30} amorphous alloy has a structure similar to Zr{sub 2}Ni. In the Zr{sub 70}Cu{sub 20}Al{sub 10} metallic glass, Zr-Al nearest neighbor pairs are introduced in the amorphous structure. In the Zr{sub 70}Ni{sub 20}Al{sub 10} metallic glass, the strong correlation between Zr-Ni pairs is drastically modified by the formation of Zr-Al pairs. The presence of Zr-Al pairs in the ternary alloys suppresses the crystallization and stabilizes the glassy state.

  19. Structural study of Zr-based metallic glasses

    International Nuclear Information System (INIS)

    Matsubara, E.; Ichitsubo, T.; Saida, J.; Kohara, S.; Ohsumi, H.

    2007-01-01

    Structures of Zr 70 Ni 20 Al 10 , Zr 70 Cu 20 Al 10 , Zr 70 Cu 30 and Zr 70 Ni 30 amorphous alloys were analyzed by high-energy X-ray diffraction. The relatively stable Zr 2 Cu amorphous alloy shows a local atom arrangement different from the Zr 2 Cu crystalline phase. By contrast, the less stable Zr 70 Ni 30 amorphous alloy has a structure similar to Zr 2 Ni. In the Zr 70 Cu 20 Al 10 metallic glass, Zr-Al nearest neighbor pairs are introduced in the amorphous structure. In the Zr 70 Ni 20 Al 10 metallic glass, the strong correlation between Zr-Ni pairs is drastically modified by the formation of Zr-Al pairs. The presence of Zr-Al pairs in the ternary alloys suppresses the crystallization and stabilizes the glassy state

  20. 75 FR 72909 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Science.gov (United States)

    2010-11-26

    ... Bulk-Power System. See Rules Concerning Certification of the Electric Reliability Organization; and... Bulk-Power System in North America because it protects the reliability of the bulk electric system and... Electric Reliability Organization Definition of Bulk Electric System; Final Rule #0;#0;Federal Register...

  1. 29 CFR 794.131 - “Customer * * * engaged in bulk distribution”.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false âCustomer * * * engaged in bulk distributionâ. 794.131... Sales Made to Other Bulk Distributors § 794.131 “Customer * * * engaged in bulk distribution”. A sale to a customer of an enterprise engaged in the wholesale or bulk distribution of petroleum products will...

  2. Permanent magnet with MgB{sub 2} bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Akiyasu, E-mail: yamamoto@appchem.t.u-tokyo.ac.jp [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ishihara, Atsushi; Tomita, Masaru [Railway Technical Research Institute, 2-8-38 Hikari, Kokubunji, Tokyo 185-8540 (Japan); Kishio, Kohji [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  3. Cohesion and device reliability in organic bulk heterojunction photovoltaic cells

    KAUST Repository

    Brand, Vitali; Bruner, Christopher; Dauskardt, Reinhold H.

    2012-01-01

    that the phase separated bulk heterojunction layer is the weakest layer and report quantitative cohesion values which ranged from ∼1 to 20 J m -2. The effects of layer thickness, composition, and annealing treatments on layer cohesion are investigated. Using

  4. 27 CFR 24.301 - Bulk still wine record.

    Science.gov (United States)

    2010-04-01

    ... produces or receives still wine in bond, (including wine intended for use as distilling material or vinegar.... The bulk still wine record will contain the following: (a) The volume produced by fermentation in wine... fermentation, amelioration, sweetening, addition of spirits, blending; (d) The volume of wine used and produced...

  5. Modelling dust liberation in bulk material handling systems

    NARCIS (Netherlands)

    Derakhshani, S.M.

    2016-01-01

    Dust has negative effects on the environmental conditions, human health as well as industrial equipment and processes. In this thesis, the transfer point of a belt conveyor as a bulk material handling system with a very high potential place for dust liberation is studied. This study is conducted

  6. Electro-optical modeling of bulk heterojunction solar cells

    Science.gov (United States)

    Kirchartz, Thomas; Pieters, Bart E.; Taretto, Kurt; Rau, Uwe

    2008-11-01

    We introduce a model for charge separation in bulk heterojunction solar cells that combines exciton transport to the interface between donor and acceptor phases with the dissociation of the bound electron/hole pair. We implement this model into a standard semiconductor device simulator, thereby creating a convenient method to simulate the optical and electrical characteristics of a bulk heterojunction solar cell with a commercially available program. By taking into account different collection probabilities for the excitons in the polymer and the fullerene, we are able to reproduce absorptance, internal and external quantum efficiency, as well as current/voltage curves of bulk heterojunction solar cells. We further investigate the influence of mobilities of the free excitons as well as the mobilities of the free charge carriers on the performance of bulk heterojunction solar cells. We find that, in general, the highest efficiencies are achieved with the highest mobilities. However, an optimum finite mobility of free charge carriers can result from a large recombination velocity at the contacts. In contrast, Langevin-type of recombination cannot lead to finite optimum mobilities even though this mechanism has a strong dependence on the free carrier mobilities.

  7. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Wienk, M.M.; Kemerink, M.; Yang, X.N.; Janssen, R.A.J.

    2005-01-01

    Bulk heterojunction photovoltaic devices based on blends of a conjugated polymer poly[2-methoxy-5-(3‘,7‘-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as electron donor and crystalline ZnO nanoparticles (nc-ZnO) as electron acceptor have been studied. Composite nc-ZnO:MDMO-PPV films were cast

  8. Austenitic stainless steel bulk property considerations for fusion reactors

    International Nuclear Information System (INIS)

    Mattas, R.F.

    1979-04-01

    The bulk properties of annealed 304, 316, and 20% cold-worked 316 stainless steels are evaluated for the temperature and radiation conditions expected in a near-term fusion reactor. Of interest are the thermophysical properties, void swelling produced by neutron radiaion, and the tensile, creep, and fatigue properties before and after irradiation

  9. Unit-of-Use Versus Traditional Bulk Packaging

    Directory of Open Access Journals (Sweden)

    Tiffany So

    2012-01-01

    Full Text Available Background: The choice between unit-of-use versus traditional bulk packaging in the US has long been a continuous debate for drug manufacturers and pharmacies in order to have the most efficient and safest practices. Understanding the benefits of using unit-of-use packaging over bulk packaging by US drug manufacturers in terms of workflow efficiency, economical costs and medication safety in the pharmacy is sometimes challenging.Methods: A time-saving study comparing the time saved using unit-of-use packaging versus bulk packaging, was examined. Prices between unit-of-use versus bulk packages were compared by using the Red Book: Pharmacy’s Fundamental Reference. Other articles were reviewed on the topics of counterfeiting, safe labeling, and implementation of unit-of-use packaging. Lastly, a cost-saving study was reviewed showing how medication adherence, due to improved packaging, could be cost-effective for patients.Results: When examining time, costs, medication adherence, and counterfeiting arguments, unit-of-use packaging proved to be beneficial for patients in all these terms.

  10. Unit-of-Use Versus Traditional Bulk Packaging

    Directory of Open Access Journals (Sweden)

    Tiffany So

    2012-01-01

    Full Text Available Background: The choice between unit-of-use versus traditional bulk packaging in the US has long been a continuous debate for drug manufacturers and pharmacies in order to have the most efficient and safest practices. Understanding the benefits of using unit-of-use packaging over bulk packaging by US drug manufacturers in terms of workflow efficiency, economical costs and medication safety in the pharmacy is sometimes challenging. Methods: A time-saving study comparing the time saved using unit-of-use packaging versus bulk packaging, was examined. Prices between unit-of-use versus bulk packages were compared by using the Red Book: Pharmacy's Fundamental Reference. Other articles were reviewed on the topics of counterfeiting, safe labeling, and implementation of unit-of-use packaging. Lastly, a cost-saving study was reviewed showing how medication adherence, due to improved packaging, could be cost-effective for patients. Results: When examining time, costs, medication adherence, and counterfeiting arguments, unit-of-use packaging proved to be beneficial for patients in all these terms.   Type: Student Project

  11. Bulk and boundary critical behavior at Lifshitz points

    Indian Academy of Sciences (India)

    Lifshitz points are multicritical points at which a disordered phase, a homogeneous ordered phase, and a modulated ordered phase meet. Their bulk universality classes are described by natural generalizations of the standard 4 model. Analyzing these models systematically via modern field-theoretic renormalization ...

  12. Escape angles in bulk chi((2)) soliton interactions

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær; Bang, Ole; Sørensen, Mads Peter

    2002-01-01

    We develop a theory for nonplanar interaction between two identical type I spatial solitons propagating at opposite, but arbitrary transverse angles in quadratic nonlinear (or so-called chi((2))) bulk, media. We predict quantitatively the outwards escape angle, below which the solitons turn around...

  13. In situ Raman spectroscopy studies of bulk and surface metal

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Jehng, J.M.; Deo, G.; Guliants, V.V.; Benziger, J.B.

    1996-01-01

    Bulk V-P-O and model supported vanadia catalysts were investigated with in situ Raman spectroscopy during n-butane oxidation to maleic anhydride in order to determine the fundamental molecular structure-reactivity/selectivity insights that can be obtained from such experiments. The in situ Raman

  14. Bulk and track etching of PET studied by spectrophotometer

    International Nuclear Information System (INIS)

    Zhu, Z.Y.; Duan, J.L.; Maekawa, Y.; Koshikawa, H.; Yoshida, M.

    2004-01-01

    UV-VIS spectra of poly(ethylene terephthalate) (PET) solutions formed by etching PET in NaOH solution were analyzed with respect to the etching time. A linear relationship between absorptions centered at 4.45 and 5.11 eV with weight loss of PET in NaOH solution was established. The relation was applied to study the influence of UV light illumination on bulk etching of PET and to evaluate pore size of etched-through tracks. It is found that bulk etching of PET can be greatly enhanced by UV illumination in air in the wavelength range around 313 nm. A surface area of about 350 nm in thickness shows a 23 times increase in bulk-etching rate after illuminated for 6 h. The phenomenon is attributed to the oxygen-assisted photo-degradation through generating of new photo-unstable species. The enhancement in bulk etching was immediately reduced as the etching proceeds below the surface with an exponential decay constant of about 1.5 μm -1 . Etching of Xe ion irradiated PET films gives extra etching products with similar chemical structure as revealed by spectrophotometer measurements. Quantitative analysis of etching products from latent tracks implies that pores of about 14.6 nm in radius are formed after etching in 0.74 N NaOH at 40 deg. C for 35 min, which is in agreement with the conductometric measurement

  15. First principles study of lithium insertion in bulk silicon

    KAUST Repository

    Wan, Wenhui; Zhang, Qianfan; Cui, Yi; Wang, Enge

    2010-01-01

    Si is an important anode material for the next generation of Li ion batteries. Here the energetics and dynamics of Li atoms in bulk Si have been studied at different Li concentrations on the basis of first principles calculations. It is found

  16. Simulation and analysis of microwave heating while joining bulk ...

    African Journals Online (AJOL)

    ATHARVA

    Processing of bulk metallic materials using microwave energy is challenging. ... The distributed power and heat source were computed in a stationary, .... the heat transfer equation is used in order to get the temperature distributions and other system properties. ... equation (2) to obtain the distribution of the E and H fields.

  17. Free standing bulk metallic glass microcomponents: Tooling considerations

    DEFF Research Database (Denmark)

    Byrne, Cormac; Eldrup, Morten Mostgaard; Ohnuma, Masato

    2010-01-01

    Bulk metallic glasses have enormous potential for use in small-scale devices such as MEMS and biomedical components. Thermoplastic forging of free standing components poses challenges unlike those seen when forging crystalline materials. Central to these challenges is the simultaneous advantage/disadvantage...

  18. Microalgae for the production of bulk chemicals and biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.; Eppink, M.H.M.

    2010-01-01

    The feasibility of microalgae production for biodiesel was discussed. Although algae are not yet produced at large scale for bulk applications, there are opportunities to develop this process in a sustainable way. It remains unlikely, however, that the process will be developed for biodiesel as the

  19. Stratigraphy, sedimentology and bulk organic geochemistry of black ...

    Indian Academy of Sciences (India)

    Stratigraphy, sedimentology and bulk organic geochemistry of black shales from the Proterozoic. Vindhyan Supergroup (central India). S Banerjee1,∗. , S Dutta. 2. , S Paikaray. 1 and U Mann. 2. 1. Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India. 2. Forschungszentrum ...

  20. No evidence for bulk velocity from type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Huterer, Dragan; Shafer, Daniel L. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109 (United States); Schmidt, Fabian, E-mail: huterer@umich.edu, E-mail: dlshafer@umich.edu, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)

    2015-12-01

    We revisit the effect of peculiar velocities on low-redshift type Ia supernovae. Velocities introduce an additional guaranteed source of correlations between supernova magnitudes that should be considered in all analyses of nearby supernova samples but has largely been neglected in the past. Applying a likelihood analysis to the latest compilation of nearby supernovae, we find no evidence for the presence of these correlations, although, given the significant noise, the data is also consistent with the correlations predicted for the standard ΛCDM model. We then consider the dipolar component of the velocity correlations—the frequently studied ''bulk velocity''—and explicitly demonstrate that including the velocity correlations in the data covariance matrix is crucial for drawing correct and unambiguous conclusions about the bulk flow. In particular, current supernova data is consistent with no excess bulk flow on top of what is expected in ΛCDM and effectively captured by the covariance. We further clarify the nature of the apparent bulk flow that is inferred when the velocity covariance is ignored. We show that a significant fraction of this quantity is expected to be noise bias due to uncertainties in supernova magnitudes and not any physical peculiar motion.

  1. Effect of bulk modulus on performance of a hydrostatic transmission ...

    Indian Academy of Sciences (India)

    an induction motor, a fixed or variable displacement motor, and all required ... oped a linear relation between oil bulk modulus and pressure for a HST system. ..... Piotrowska A 2003 The control of the rotational speed of hydraulic engine in ...

  2. Induction linear accelerators with high-Tc bulk superconductor lenses

    International Nuclear Information System (INIS)

    Matsuzawa, Hidenori; Wada, Haruhisa; Mori, Satoshi; Yamamoto, Tadashi

    1991-01-01

    Solenoidal coils in a one-stage induction accelerator were replaced by a high-T c bulk superconductor lens (Supertron). The accelerator postaccelerated injected electron beams to ∼ 400 keV, ∼ 0.35 kA, and ∼ 10 ns of duration time. (author)

  3. The homogenisation of bulk material in blending piles.

    NARCIS (Netherlands)

    Gerstel, A.W.

    1979-01-01

    In this thesis the homogenisation of bulk material in three types of piles is dealt with. The homogenisation implies that the fluctuations of a material proprety in the input flow of the pile are transformed into output fluctuations, whereby the latter ones are evened out. Analyses are presented

  4. Organic carbon organic matter and bulk density relationships in arid ...

    African Journals Online (AJOL)

    Soil organic matter (SOM) and soil organic carbon (SOC) constitute usually a small portion of soil, but they are one of the most important components of ecosystems. Bulk density (dB or BD) value is necessary to convert organic carbon (OC) content per unit area. Relationships between SOM, SOC and BD were established ...

  5. Integrated analysis software for bulk power system stability

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Nagao, T; Takahashi, K [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1994-12-31

    This paper presents Central Research Inst.of Electric Power Industry - CRIEPI`s - own developed three softwares for bulk power network analysis and the user support system which arranges tremendous data necessary for these softwares with easy and high reliability. (author) 3 refs., 7 figs., 2 tabs.

  6. Determination of Tolterodine tartrate in bulk and formulation by ...

    African Journals Online (AJOL)

    Purpose: To develop a new simple, accurate, precise and fully validated extractive colorimetric method for the determination of tolterodine tartrate (TL) in bulk and in tablet dosage form, Method: A chloroform extractable orange red complex formed between the acid dye, tropaeolin OOO-1 and tolterodine in acid media is the ...

  7. Sink strengths of dislocations taking into account bulk recombination effects

    International Nuclear Information System (INIS)

    Steinbach, E.

    1988-01-01

    The applicability of the rate theory to describe radiation damage processes is closely associated with the calculation of the various sink strengths. In this connection the effect of bulk recombination is usually neglected, because of the complexity of the problem. For this reason we present in this paper, for the first time, by means of the rigorous elastic-field model of a dislocation embedded in a lossy continuum, analytic expressions for the diffusion flux of irradiation-induced point defects into a dislocation, taking into account the elastic interaction, additional sinks and higher order bulk recombination effects. The resulting self-consistent formulae for the dislocation sink strengths clearly demonstrate the importance of the bulk recombination for the micro-structures of irradiated materials. In conjunction with the Harwell computer code VS5 it became clear that this new dislocation bias also leads to a change in the macrostructural observables. The order of magnitude of this effect emphasizes that neglecting bulk recombination as a general principle is not justified

  8. Fatigue studies in compensated bulk lead zirconate titanate

    International Nuclear Information System (INIS)

    Verdier, Cyril; Morrison, Finlay D.; Lupascu, Doru C.; Scott, James F.

    2005-01-01

    Impedance analysis studies were carried out on compensated bulk lead zirconate titanate samples. Fatigue is concomitant with the onset of dielectric loss. This is shown to be dominantly due to an irreversibly modified near-surface layer that can be polished off. The highly compensated nature of these samples minimizes the role of oxygen vacancies

  9. The homogeneity of levitation force in single domain YBCO bulk

    International Nuclear Information System (INIS)

    Zhou Keran; Xu Kexi; Wu Xingda; Pan Pengjun

    2007-01-01

    The pellet homogeneity of levitation force versus the position in comparison to the seed or to the top surface has been studied in the entire volume of a single domain YBa 2 Cu 3 O 7-δ bulk sample processed by the top-seeded melt texturing growth (TSMTG). It is found that the levitation forces increase and peak at a depth of 3 mm from the top of the sample at liquid nitrogen temperature. In other words, the second disk has the largest levitation force density. The phenomenon can be interpreted by the interaction between the microcracks or pores produced by crystal growth and the oxygenation. We propose a model in which Y211 particles distribution leading to microcracks and pores reduces the effective induced shielding current loops (ISCL) and increases the perimeters of ISCL. This corresponds to a decrease in the grain size and results in greatly reduced levitation forces of the bottom of the bulk. From the research, we know that the density of the YBCO bulk is also an important parameter for the levitation properties. The result is very attractive and useful for the fundamental studies and fabrication of TSMTG YBa 2 Cu 3 O 7-δ bulk

  10. The homogeneity of levitation force in single domain YBCO bulk

    Science.gov (United States)

    Zhou, Keran; Xu, Ke-Xi; Wu, Xing-da; Pan, Peng-jun

    2007-11-01

    The pellet homogeneity of levitation force versus the position in comparison to the seed or to the top surface has been studied in the entire volume of a single domain YBa 2Cu 3O 7-δ bulk sample processed by the top-seeded melt texturing growth (TSMTG). It is found that the levitation forces increase and peak at a depth of 3 mm from the top of the sample at liquid nitrogen temperature. In other words, the second disk has the largest levitation force density. The phenomenon can be interpreted by the interaction between the microcracks or pores produced by crystal growth and the oxygenation. We propose a model in which Y211 particles distribution leading to microcracks and pores reduces the effective induced shielding current loops (ISCL) and increases the perimeters of ISCL. This corresponds to a decrease in the grain size and results in greatly reduced levitation forces of the bottom of the bulk. From the research, we know that the density of the YBCO bulk is also an important parameter for the levitation properties. The result is very attractive and useful for the fundamental studies and fabrication of TSMTG YBa 2Cu 3O 7-δ bulk.

  11. Estimating forest canopy bulk density using six indirect methods

    Science.gov (United States)

    Robert E. Keane; Elizabeth D. Reinhardt; Joe Scott; Kathy Gray; James Reardon

    2005-01-01

    Canopy bulk density (CBD) is an important crown characteristic needed to predict crown fire spread, yet it is difficult to measure in the field. Presented here is a comprehensive research effort to evaluate six indirect sampling techniques for estimating CBD. As reference data, detailed crown fuel biomass measurements were taken on each tree within fixed-area plots...

  12. Reflector stack optimization for Bulk Acoustic Wave resonators

    NARCIS (Netherlands)

    Jose, Sumy

    2011-01-01

    Thin-film bulk-acoustic-wave (BAW) devices are used for RF selectivity in mobile communication system and other wireless applications. Currently, the conventional RF filters are getting replaced by BAW filters in all major cell phone standards. In this thesis, we study solidly mounted BAW resonators

  13. Belt conveyors for bulk materials. 6th ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The 16 chapters are entitled: Belt conveyor general applications economics; Design considerations; Characteristics and conveyability of bulk materials; Capacities, belt widths and speeds; Belt conveyor idlers; Belt tension and power engineering; Belt selection; Pulleys and shafts; Curves; Steep angle conveying; Belt cleaners and accessories; Transfer points; Conveyor motor drives and controls; Operation, maintenance and safety; Belt takeups; and Emerging technologies. 6 apps.

  14. Femtosecond coherent emission from GaAs bulk microcavities

    Science.gov (United States)

    Gurioli, Massimo; Bogani, Franco; Ceccherini, Simone; Colocci, Marcello; Beltram, Fabio; Sorba, Lucia

    1999-02-01

    The emission from a λ/2 GaAs bulk microcavity resonantly excited by femtosecond pulses has been characterized by using an interferometric correlation technique. It is found that the emission is dominated by the coherent signal due to light elastically scattered by disorder, and that scattering is predominantly originated from the lower polariton branch.

  15. Anisotropic colloids: bulk phase behavior and equilibrium sedimentation

    NARCIS (Netherlands)

    Marechal, M.A.T.

    2009-01-01

    This thesis focuses on the phase behavior of anisotropically shaped (i.e. non-spherical) colloids using computer simulations. Only hard-core interactions between the colloids are taken into account to investigate the effects of shape alone. The bulk phase behavior of three different shapes of

  16. Multi-agent adaptive systems in dry bulk shipping

    NARCIS (Netherlands)

    Engelen, Steve; Dullaert, Wout; Vernimmen, Bert

    Investment decisions in dry bulk shipping form one of the most difficult managerial tasks due to the high degree of uncertainty and the cyclical nature of the market. Adequate information on ship prices is, therefore, crucial when justifying such decisions. This paper is the first to embed trading

  17. Contamination of YBCO bulk superconductors by samarium and ytterbium

    Czech Academy of Sciences Publication Activity Database

    Volochová, D.; Jurek, Karel; Radušovská, M.; Piovarči, S.; Antal, V.; Kováč, J.; Jirsa, Miloš; Diko, P.

    2014-01-01

    Roč. 496, JAN (2014), s. 14-17 ISSN 0921-4534 Institutional support: RVO:68378271 Keywords : YBCO bulk superconductors * critical temperature * critical current density * peak effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.942, year: 2014

  18. Estimating Soil Bulk Density and Total Nitrogen from Catchment ...

    African Journals Online (AJOL)

    Even though data on soil bulk density (BD) and total nitrogen (TN) are essential for planning modern farming techniques, their data availability is limited for many applications in the developing word. This study is designed to estimate BD and TN from soil properties, land-use systems, soil types and landforms in the ...

  19. Combining item and bulk material loss-detection uncertainties

    International Nuclear Information System (INIS)

    Eggers, R.F.

    1982-01-01

    Loss detection requirements, such as five formula kilograms with 99% probability of detection, which apply to the sum of losses from material in both item and bulk form, constitute a special problem for the nuclear material statistician. Requirements of this type are included in the Material Control and Accounting Reform Amendments described in the Advance Notice of Proposed Rule Making (Federal Register, 46(175):45144-46151). Attribute test sampling of items is the method used to detect gross defects in the inventory of items in a given control unit. Attribute sampling plans are designed to detect a loss of a specificed goal quantity of material with a given probability. In contrast to the methods and statistical models used for item loss detection, bulk material loss detection requires all the material entering and leaving a control unit to be measured and the calculation of a loss estimator that will be tested against an appropriate alarm threshold. The alarm threshold is determined from an estimate of the error inherent in the components of the loss estimator. In this paper a simple grahical method of evaluating the combined capabilities of bulk material loss detection methods and item attribute testing procedures will be described. Quantitative results will be given for several cases, indicating how a decrease in the precision of the item loss detection method tends to force an increase in the precision of the bulk loss detection procedure in order to meet the overall detection requirement. 4 figures

  20. Measurements of anomalous neutron transport in bulk graphite

    International Nuclear Information System (INIS)

    Bowman, C.D.; Smith, G.A.; Vogelaar, B.; Howell, C.R.; Bilpuch, E.G.; Tornow, W.

    2003-01-01

    The neutron absorption of bulk granular graphite has been measured in a classical exponential diffusion experiment. Our first measurements of April 2002 implementing both exponential decay and pulsed die-away experiments and using the TUNL pulsed accelerator at Duke University as a neutron source indicated a capture cross section for graphite a striking factor of three lower than the measured value for carbon of 3.4 millibarns. Therefore a new exponential experiment with an improved geometry enabling greater accuracy has been performed giving an apparent cross section for carbon in the form of bulk granular graphite of less than 0.5 millibarns. This result confirms our first result and is also consistent with less than one part per million of boron in our graphite. The bulk density of the graphite is 1.02 compared with the actual particle density of 1.60 indicating a packing fraction of 0.64 or a void fraction of 0.36. We suspect that the apparent suppression of absorption in bulk graphite may be associated with the strong coherent diffraction of neutrons that dominates neutron transport in graphite. Coherent diffraction has never been taken into account in graphite reactor design and no neutron transport code including general use codes such as MCNP incorporate diffraction effects even though diffraction dominates many practical thermal neutron transport problems. (orig.)

  1. Opportunities for shear energy scaling in bulk acoustic wave resonators

    NARCIS (Netherlands)

    Jose, Sumy; Hueting, Raymond Josephus Engelbart

    2014-01-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots

  2. Interpolymer Complexation: Comparisons of Bulk and Interfacial Structures

    NARCIS (Netherlands)

    Cattoz, Beatrice; de Vos, Wiebe Matthijs; Cosgrove, Terence; Crossman, Martin; Espidel, Youssef; Prescott, Stuart W.

    2015-01-01

    The interactions between the strong polyelectrolyte sodium poly(styrenesulfonate), NaPSS, and the neutral polymer poly(vinylpyrrolidone), PVP, were investigated in bulk and at the silica/solution interface using a combination of diffusion nuclear magnetic resonance spectroscopy (NMR), small-angle

  3. Soil water sensor response to bulk electrical conductivity

    Science.gov (United States)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  4. Large-scale Homogenization of Bulk Materials in Mammoth Silos

    NARCIS (Netherlands)

    Schott, D.L.

    2004-01-01

    This doctoral thesis concerns the large-scale homogenization of bulk materials in mammoth silos. The objective of this research was to determine the best stacking and reclaiming method for homogenization in mammoth silos. For this purpose a simulation program was developed to estimate the

  5. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  6. Microbial production of bulk chemicals: development of anaerobic processes

    NARCIS (Netherlands)

    Weusthuis, R.A.; Lamot, I.; Oost, van der J.; Sanders, J.P.M.

    2011-01-01

    nnovative fermentation processes are necessary for the cost-effective production of bulk chemicals from renewable resources. Current microbial processes are either anaerobic processes, with high yield and productivity, or less-efficient aerobic processes. Oxygen utilization plays an important role

  7. Bulk-plasmon contribution to the work function of metals

    International Nuclear Information System (INIS)

    Gutierrez, F A; DIaz-Valdes, J; Jouin, H

    2007-01-01

    By consideration of the Koopmans theorem expression for the work function of a metal, we find that the total height of the surface barrier potential equals the value of the bulk-plasmon energy of pure metals. As a consequence a simple formula for the work function is obtained which shows better agreement with the experimental data than the most complete existent theories

  8. Bulk Versus Edge in the Quantum Hall Effect

    OpenAIRE

    Kao, Y. -C.; Lee, D. -H.

    1996-01-01

    The manifestation of the bulk quantum Hall effect on edge is the chiral anomaly. The chiral anomaly {\\it is} the underlying principle of the ``edge approach'' of quantum Hall effect. In that approach, $\\sxy$ should not be taken as the conductance derived from the space-local current-current correlation function of the pure one-dimensional edge problem.

  9. Climate control of a bulk storage room for foodstuffs

    NARCIS (Netherlands)

    Mourik, van S.; Zwart, H.; Keesman, K.J.

    2006-01-01

    A storage room contains a bulk of agricultural products, such as potatoes, onions, fruits, etcetera. The products produce heat due to respiration, see for example [1, 2]. A ventilator blows cooled air around to keep the products at a steady temperature and prevent spoilage. The aim is to design a

  10. Postharvest quality of carrot cultivars, packaged and in bulk

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... presented the highest number of sprouts when stored in bulk (48.5%) and the largest number of carrots with radicels (54.7%). ... The carrot (Daucus carota L.), a plant of the family. Apiaceae ... widespread global consumption and large planted area. .... increased temperature and CO2 concentration and the.

  11. Should bulk cloudwater or fogwater samples obey Henry's law?

    Science.gov (United States)

    Pandis, Spyros N.; Seinfeld, John H.

    1991-06-01

    Mixing of droplets with different pH that are individually in Henry's law equilibrium with the surrounding atmosphere always results in a bulk mixture that is supersaturated with weak acids like S(IV) and HCOOH, and bases like NH3 with respect to the original atmosphere. High supersaturations result only when the pH of the bulk droplet mixture exceeds the pKa of the species, in which pH range large pH differences among droplets of different sizes lead to large deviations from Henry's law for the bulk mixture. The deviation is shown to depend on the ratio of the arithmetic mean to the harmonic mean of the hydrogen ion concentrations of the droplets with the liquid water content used as weighting factor in the calculation of the means. The theory developed can explain observed discrepancies from Henry's law in atmospheric samples and also other observed phenomena like the reported increase of pH values of bulk aqueous samples during storage.

  12. Bulk characterization of pharmaceutical powders by low-pressure compression

    DEFF Research Database (Denmark)

    Sørensen, A.H.; Sonnergaard, Jørn; Hovgaard, L.

    2005-01-01

    Low-pressure compression of pharmaceutical powders using small amounts of sample (50 mg) was evaluated as an alternative to traditional bulk powder characterization by tapping volumetry. Material parameters were extrapolated directly from the compression data and by fitting with the Walker...

  13. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M

    2003-07-15

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix.

  14. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    International Nuclear Information System (INIS)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M.

    2003-01-01

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix

  15. No evidence for bulk velocity from type Ia supernovae

    International Nuclear Information System (INIS)

    Huterer, Dragan; Shafer, Daniel L.; Schmidt, Fabian

    2015-01-01

    We revisit the effect of peculiar velocities on low-redshift type Ia supernovae. Velocities introduce an additional guaranteed source of correlations between supernova magnitudes that should be considered in all analyses of nearby supernova samples but has largely been neglected in the past. Applying a likelihood analysis to the latest compilation of nearby supernovae, we find no evidence for the presence of these correlations, although, given the significant noise, the data is also consistent with the correlations predicted for the standard ΛCDM model. We then consider the dipolar component of the velocity correlations—the frequently studied ''bulk velocity''—and explicitly demonstrate that including the velocity correlations in the data covariance matrix is crucial for drawing correct and unambiguous conclusions about the bulk flow. In particular, current supernova data is consistent with no excess bulk flow on top of what is expected in ΛCDM and effectively captured by the covariance. We further clarify the nature of the apparent bulk flow that is inferred when the velocity covariance is ignored. We show that a significant fraction of this quantity is expected to be noise bias due to uncertainties in supernova magnitudes and not any physical peculiar motion

  16. Measurements of anomalous neutron transport in bulk graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, C.D.; Smith, G.A. [ADNA Corp., Los Alamos, NM (United States); Vogelaar, B. [Virginia Tech., Blacksburg, VA (United States); Howell, C.R.; Bilpuch, E.G.; Tornow, W. [Triangle Univ. Nuclear Lab., Duke Univ., Durham, NC (United States)

    2003-07-01

    The neutron absorption of bulk granular graphite has been measured in a classical exponential diffusion experiment. Our first measurements of April 2002 implementing both exponential decay and pulsed die-away experiments and using the TUNL pulsed accelerator at Duke University as a neutron source indicated a capture cross section for graphite a striking factor of three lower than the measured value for carbon of 3.4 millibarns. Therefore a new exponential experiment with an improved geometry enabling greater accuracy has been performed giving an apparent cross section for carbon in the form of bulk granular graphite of less than 0.5 millibarns. This result confirms our first result and is also consistent with less than one part per million of boron in our graphite. The bulk density of the graphite is 1.02 compared with the actual particle density of 1.60 indicating a packing fraction of 0.64 or a void fraction of 0.36. We suspect that the apparent suppression of absorption in bulk graphite may be associated with the strong coherent diffraction of neutrons that dominates neutron transport in graphite. Coherent diffraction has never been taken into account in graphite reactor design and no neutron transport code including general use codes such as MCNP incorporate diffraction effects even though diffraction dominates many practical thermal neutron transport problems. (orig.)

  17. Essays on Port, Container, and Bulk Chemical Logistics Optimization

    NARCIS (Netherlands)

    E. van Asperen (Eelco)

    2009-01-01

    textabstractThe essays in this thesis are concerned with two main themes in port logistics. The first theme is the coordination of transport arrivals with the distribution processes and the use of storage facilities. We study this for both containerized and bulk chemical transport. The second theme

  18. Estimation of bulk transfer coefficient for latent heat flux (Ce)

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The bulk transfer coefficient for latent heat flux (Ce) has been estimated over the Arabian Sea from the moisture budget during the pre-monsoon season of 1988. The computations have been made over two regions (A: 0-8 degrees N: 60-68 degrees E: B: 0...

  19. Singularities and Entropy in Bulk Viscosity Dark Energy Model

    International Nuclear Information System (INIS)

    Meng Xinhe; Dou Xu

    2011-01-01

    In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ 0 + λ 1 (1 + z) n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. 52 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ΛCDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {r, s} as axes where the fixed point represents the ΛCDM model. The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling. (geophysics, astronomy, and astrophysics)

  20. Bulk viscous matter and recent acceleration of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Sasidharan, Athira; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2015-07-15

    We consider a cosmological model dominated by bulk viscous matter with a total bulk viscosity coefficient proportional to the velocity and acceleration of the expansion of the universe in such a way that ζ = ζ{sub 0} + ζ{sub 1}(a)/(a) + ζ{sub 2}(a)/(a). We show that there exist two limiting conditions in the bulk viscous coefficients (ζ{sub 0}, ζ{sub 1}, ζ{sub 2}) which correspond to a universe having a Big Bang at the origin, followed by an early decelerated epoch and then making a smooth transition into an accelerating epoch. We have constrained the model using the type Ia Supernovae data, evaluated the best estimated values of all the bulk viscous parameters and the Hubble parameter corresponding to the two limiting conditions. We found that even though the evolution of the cosmological parameters are in general different for the two limiting cases, they show identical behavior for the best estimated values of the parameters from both limiting conditions. A recent acceleration would occur if ζ{sub 0} + ζ{sub 1} > 1 for the first limiting conditions and if ζ{sub 0} + ζ{sub 1} < 1 for the second limiting conditions. The age of the universe predicted by this model is found to be less than that predicted from the oldest galactic globular clusters. The total bulk viscosity seems to be negative in the past and becomes positive when z ≤ 0.8. So the model violates the local second law of thermodynamics. However, the model satisfies the generalized second law of thermodynamics at the apparent horizon throughout the evolution of the universe. We also made a statefinder analysis of the model and found that it is distinguishably different from the standard ΛCDM model at present, but it shows a de Sitter type behavior in the far future of the evolution. (orig.)

  1. A COMPREHENSIVE TECHNICAL REVIEW OF THE DEMONSTRATION BULK VITRIFICATION SYSTEM

    International Nuclear Information System (INIS)

    SCHAUS, P.S.

    2006-01-01

    In May 2006, CH2M Hill Hanford Group, Inc. chartered an Expert Review Panel (ERP) to review the current status of the Demonstration Bulk Vitrification System (DBVS). It is the consensus of the ERP that bulk vitrification is a technology that requires further development and evaluation to determine its potential for meeting the Hanford waste stabilization mission. No fatal flaws (issues that would jeopardize the overall DBVS mission that cannot be mitigated) were found, given the current state of the project. However, a number of technical issues were found that could significantly affect the project's ability to meet its overall mission as stated in the project ''Justification of Mission Need'' document, if not satisfactorily resolved. The ERP recognizes that the project has changed from an accelerated schedule demonstration project to a formally chartered project that must be in full compliance with DOE 413.3 requirements. The perspective of the ERP presented herein, is measured against the formally chartered project as stated in the approved Justification of Mission Need document. A justification of Mission Need document was approved in July 2006 which defined the objectives for the DBVS Project. In this document, DOE concluded that bulk vitrification is a viable technology that requires additional development to determine its potential applicability to treatment of a portion of the Hanford low activity waste. The DBVS mission need statement now includes the following primary objectives: (1) process approximately 190,000 gallons of Tank S-109 waste into fifty 100 metric ton boxes of vitrified product; (2) store and dispose of these boxes at Hanford's Integrated Disposal Facility (IDF); (3) evaluate the waste form characteristics; (4) gather pilot plant operability data, and (5) develop the overall life cycle system performance of bulk vitrification and produce a comparison of the bulk vitrification process to building a second LAW Immobilization facility or other

  2. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    KAUST Repository

    Kim, Wun-gwi

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N2 physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO2 and good CO2/CH4 selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO2 and CH4 gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface. © 2012 American Chemical Society.

  3. Comparison of bulk Micromegas with different amplification gaps

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Purba, E-mail: purba.bhattacharya@saha.ac.in [Applied Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Bhattacharya, Sudeb [Emeritus Scientist (CSIR), Applied Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Majumdar, Nayana; Mukhopadhyay, Supratik; Sarkar, Sandip [Applied Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Colas, Paul; Attie, David [DSM/IRFU, CEA/Saclay, F-91191 Gif-sur-Yvette CEDEX (France)

    2013-12-21

    The bulk Micromegas detector is considered to be a promising candidate for building TPCs for several future experiments including the projected linear collider. The standard bulk with a spacing of 128μm has already established itself as a good choice for its performances in terms of gas gain uniformity, energy and space point resolution, and its capability to efficiently pave large readout surfaces with minimum dead zone. The present work involves the comparison of this standard bulk with a relatively less used bulk Micromegas detector having a larger amplification gap of 192μm. Detector gain, energy resolution and electron transparency of these Micromegas have been measured under different conditions in various Argon-based gas mixtures to evaluate their performance. These measured characteristics have also been compared in detail to numerical simulations using the Garfield framework that combines packages such as neBEM, Magboltz and Heed. Further, we have carried out another numerical study to determine the effect of dielectric spacers on different detector features. A comprehensive comparison of the two detectors has been presented and analyzed in this work. -- Highlights: •We present a comparative study between bulk Micromegas having different amplification gaps. •Various detector characteristics such as gain, electron transparency, energy resolution have been measured experimentally. •Successful comparisons of these measured data with the simulation results indicate that the device physics is quite well understood. •A numerical study to determine the effect of dielectric spacers on different detect or features has been carried out.

  4. Investigation of bulk acoustic microwaves excited by an interdigital transducer

    Directory of Open Access Journals (Sweden)

    Reshotka O. G.

    2015-12-01

    Full Text Available Excitation of bulk and surface acoustic waves with the interdigital transducer (IDT, which is deposited on the surface of piezoelectric crystal, is widely used in the development of devices in acoustoelectronics and in the design of the microwave acousto-optic deflectors. Excitation of bulk acoustic waves by IDT in the devices on surface acoustic waves leads to the appearance of spurious signals. At the same time excitation of bulk acoustic waves with IDT from the surface of lithium niobate crystals allows creating high frequency acousto-optic deflectors, which makes possible to significantly simplify the technology of their production. Therefore, significant attention is paid to the task of excitation and distribution of bulk acoustic waves with IDT including recent times by the method of simulation of their excitation and distribution. The obtained theoretical results require experimental verification. This paper documents the visualization of acoustic beams excited with IDT from the XY-surface of lithium niobate crystals. The Bragg cells with LiNbO3 crystals coated with IDT with a different period of electrodes were manufactured for the experimental research of excitation and distribution of bulk acoustic waves. Visualization results have shown that the acoustic waves excited with IDT distribute in both the Fresnel zone and the Fraunhofer zone. The length of these zones is caused by individual elementary emitters of which consists the IDT (by their size. At the same time the far zone for IDT is located at distances much greater than the actual size of the LiNbO3 crystals. This peculiarity is not always taken into account when calculating diffraction. The achieved results can be used to design high-frequency acousto-optic devices, as well as in the development of devices based on surface acoustic waves.

  5. The optimisation of transfer chutes in the bulk materials industry / M.N. van Aarde

    OpenAIRE

    Van Aarde, Michiel Nicolaas

    2009-01-01

    Bulk materials handling is a rapidly growing global industry. Immense challenges exist to improve the efficiency and cost effectiveness of transporting and handling bulk materials continuously. The nature and scale of bulk materials handling varies from country to country. This study specifically focuses on the handling of bulk materials in the mining sector. Within this industry, transfer chutes are a key component used for transferring bulk material from one conveyor to another. Among o...

  6. Copper phthalocyanine and metal free phthalocyanine bulk heterojunction photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Amjad, E-mail: amjad.farooq1212@hotmail.com [Wah Engineering College, University of Wah, Wah Cantt. 47040 (Pakistan); GIK Institute of Engineering Sciences and Technology, Topi 23640, Swabi (Pakistan); Karimov, Kh.S. [GIK Institute of Engineering Sciences and Technology, Topi 23640, Swabi (Pakistan); Physical Technical Institute, Aini St. 299/1, Dushanbe 734063 (Tajikistan); Ahmed, Nisar; Ali, Taimoor [GIK Institute of Engineering Sciences and Technology, Topi 23640, Swabi (Pakistan); Khalid Alamgir, M. [National Institute of Vacuum Science and Technology, NCP complex, Islamabad 44000 (Pakistan); Usman, Muhammad [Experimental Physics Laboratories, National Centre for Physics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)

    2015-01-15

    In this study we present the dependence of electrical properties of copper phthalocyanine (CuPc) and metal free phthalocyanine (H{sub 2}Pc) bulk heterojunction structure under different illumination levels. To fabricate the device on ITO coated glass substrate the bulk heterojunction thin film of CuPc and H{sub 2}Pc with thickness varying from 100 nm to 300 nm are deposited by thermal evaporator. Aluminum thin film was deposited by thermal evaporation as a top contact. The optical properties of the fabricated device are investigated using UV–vis spectroscopy. The current-voltage characteristics in dark and under illumination show that the device is sensitive towards visible light. The absorption spectrum describes its photo sensitivity in the range of wavelength from 200 nm to 850 nm. Simulation of current-intensity of light curve is carried out and experimental results are found in good agreement with simulated ones.

  7. Copper phthalocyanine and metal free phthalocyanine bulk heterojunction photodetector

    International Nuclear Information System (INIS)

    Farooq, Amjad; Karimov, Kh.S.; Ahmed, Nisar; Ali, Taimoor; Khalid Alamgir, M.; Usman, Muhammad

    2015-01-01

    In this study we present the dependence of electrical properties of copper phthalocyanine (CuPc) and metal free phthalocyanine (H 2 Pc) bulk heterojunction structure under different illumination levels. To fabricate the device on ITO coated glass substrate the bulk heterojunction thin film of CuPc and H 2 Pc with thickness varying from 100 nm to 300 nm are deposited by thermal evaporator. Aluminum thin film was deposited by thermal evaporation as a top contact. The optical properties of the fabricated device are investigated using UV–vis spectroscopy. The current-voltage characteristics in dark and under illumination show that the device is sensitive towards visible light. The absorption spectrum describes its photo sensitivity in the range of wavelength from 200 nm to 850 nm. Simulation of current-intensity of light curve is carried out and experimental results are found in good agreement with simulated ones

  8. Cast bulk metallic glass alloys: prospects as wear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  9. Bulk Material Based Thermoelectric Energy Harvesting for Wireless Sensor Applications

    International Nuclear Information System (INIS)

    Wang, W S; Magnin, W; Wang, N; Hayes, M; O'Flynn, B; O'Mathuna, C

    2011-01-01

    The trend towards smart building and modern manufacturing demands ubiquitous sensing in the foreseeable future. Self-powered Wireless sensor networks (WSNs) are essential for such applications. This paper describes bulk material based thermoelectric generator (TEG) design and implementation for WSN. A 20cm 2 Bi 0.5 Sb 1.5 Te 3 based TEG was created with optimized configuration and generates 2.7mW in typical condition. A novel load matching method is used to maximize the power output. The implemented power management module delivers 651μW to WSN in 50 deg. C. With average power consumption of Tyndall WSN measured at 72μW, feasibility of utilizing bulk material TEG to power WSN is demonstrated.

  10. The Economics of Bulk Water Transport in Southern California

    Directory of Open Access Journals (Sweden)

    Andrew Hodges

    2014-12-01

    Full Text Available Municipalities often face increasing demand for limited water supplies with few available alternative sources. Under some circumstances, bulk water transport may offer a viable alternative. This case study documents a hypothetical transfer between a water utility district in northern California and urban communities located on the coast of central and southern California. We compare bulk water transport costs to those of constructing a new desalination facility, which is the current plan of many communities for increasing supplies. We find that using water bags to transport fresh water between northern and southern California is in some instances a low-cost alternative to desalination. The choice is constrained, however, by concerns about reliability and, thus, risk. Case-study results demonstrate the challenges of water supply augmentation in water-constrained regions.

  11. Flux-pinning-induced stress and magnetostriction in bulk superconductors

    International Nuclear Information System (INIS)

    Johansen, Tom H.

    2000-01-01

    The development of bulk high-temperature superconductors (HTSs) and their applications has today come to a point where the mechanical response to high magnetic fields may be more important than their critical-current density and large-grain property. Reviewed in this article are the recent studies of the magneto-elastic effects which are caused by flux pinning in the superconductors. This includes the work on the giant irreversible magnetostriction and internal stress, which often cause fatal cracking of the HTS bulks as they become magnetized. The cracking is a problem that today accompanies the quest for the highest trapped field values, and the latest development in this area is also presented. While the first part is an overview of experimental efforts, the second summarizes the work done to model the pinning-induced stress and strain under various magnetic and geometrical conditions. (author)

  12. AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.

    2012-06-01

    AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293-333 K) and frequency range (50-5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=Aωs. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.

  13. A numerical study of bulk evaporation and condensation problem

    International Nuclear Information System (INIS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A numerical model is developed to simulate the dynamic behavior of bulk evaporation and condensation process in an encapsulated container with internal heat generation at micro-gravity level. Thermal performance of a multi-phase system with internal heat generation is investigated. The numerical simulation yields the evolution of the bulk liquid-vapor phase change process. This includes the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field. An example of such systems is a phase change nuclear fuel element which was first introduced by Ding and Anghaie with application in high temperature space nuclear power and propulsion systems

  14. Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells

    Science.gov (United States)

    2013-01-01

    Hybrid thin film solar cell based on all-inorganic nanoparticles is a new member in the family of photovoltaic devices. In this work, a novel and performance-efficient inorganic hybrid nanostructure with continuous charge transportation and collection channels is demonstrated by introducing CdTe nanotetropods (NTs) and CdSe quantum dots (QDs). Hybrid morphology is characterized, demonstrating an interpenetration and compacted contact of NTs and QDs. Electrical measurements show enhanced charge transfer at the hybrid bulk heterojunction interface of NTs and QDs after ligand exchange which accordingly improves the performance of solar cells. Photovoltaic and light response tests exhibit a combined optic-electric contribution from both CdTe NTs and CdSe QDs through a formation of interpercolation in morphology as well as a type II energy level distribution. The NT and QD hybrid bulk heterojunction is applicable and promising in other highly efficient photovoltaic materials such as PbS QDs. PMID:24139059

  15. Electrochemical oxidation of methanol on Pt3Co bulk alloy

    Directory of Open Access Journals (Sweden)

    S. LJ. GOJKOVIC

    2003-11-01

    Full Text Available The electrochemical oxidation of methanol was investigated on a Pt3Co bulk alloy in acid solutions. Kinetic parameters such as transfer coefficient, reaction orders with respect to methanol and H+ ions and energy of activation were determined. It was found that the rate of methanol oxidation is significantly diminished by rotation of the electrode. This effect was attributed to the diffusion of formaldehyde and formic acid from the electrode surface. Stirring of the electrolyte also influenced the kinetic parameters of the reaction. It was speculated that the predominant reaction pathway and rate determining step are different in the quiescent and in the stirred electrolyte. Cobalt did not show a promoting effect on the rate of methanol oxidation on the Pt3Co bulk alloy with respect to a pure Pt surface.

  16. A Novel Approach to Forecasting the Bulk Freight Market

    Directory of Open Access Journals (Sweden)

    Vangelis Tsioumas

    2017-03-01

    Full Text Available The fast-paced and ever changing freight market compels maritime executives to use sound forecasting tools. This paper aims to enhance the forecasting accuracy of the Baltic Dry Index (BDI by means of developing a multivariate Vector Autoregressive model with exogenous variables (VARX. The proposed model incorporates the Chinese steel production, the dry bulk fleet development and a new composite indicator, the Dry Bulk Economic Climate Index (DBECI. The predictive power of this approach is evaluated against a univariate ARIMA framework, which serves as a benchmark model. The selection of explanatory variables and the model specification are validated using a series of pertinent tests. The results demonstrate that the VARX model outperforms the ARIMA approach, suggesting that the selected independent variables can substantially improve the accuracy of BDI forecasts. The present study is of interest to maritime practitioners, as it provides useful insights into the direction of the freight market and allows them to make informed decisions.

  17. Bulk locality and entanglement swapping in AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, William R. [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA 95616 (United States)

    2017-03-29

    Localized bulk excitations in AdS/CFT are produced by operators which modify the pattern of entanglement in the boundary state. We show that simple models — consisting of entanglement swapping operators acting on a qubit system or a free field theory — capture qualitative features of gravitational backreaction and reproduce predictions of the Ryu-Takayanagi formula. These entanglement swapping operators naturally admit multiple representations associated with different degrees of freedom, thereby reproducing the code subspace structure emphasized by Almheiri, Dong, and Harlow. We also show that the boundary Reeh-Schlieder theorem implies that equivalence of certain operators on a code subspace necessarily breaks down when non-perturbative effects are taken into account (as is expected based on bulk arguments).

  18. Ion specific correlations in bulk and at biointerfaces

    International Nuclear Information System (INIS)

    Kalcher, I; Horinek, D; Netz, R R; Dzubiella, J

    2009-01-01

    Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at interfaces. The molecular origins of these 'Hofmeister effects' are not well understood and their theoretical description poses a formidable challenge to the modeling and simulation community. On the basis of the combination of atomistically resolved molecular dynamics (MD) computer simulations and statistical mechanics approaches, we present a few selected examples of specific electrolyte effects in bulk, at simple neutral and charged interfaces, and on a short α-helical peptide. The structural complexity in these strongly Coulomb-correlated systems is highlighted and analyzed in the light of available experimental data. While in general the comparison of MD simulations to experiments often lacks quantitative agreement, mostly because molecular force fields and coarse-graining procedures remain to be optimized, the consensus as regards trends provides important insights into microscopic hydration and binding mechanisms.

  19. Capacity Issues and Efficiency Drivers in Brazilian Bulk Terminals

    Directory of Open Access Journals (Sweden)

    Peter Fernandes Wanke

    2014-01-01

    Full Text Available This paper presents an efficiency analysis of Brazilian bulk terminals built upon the conjoint use of Data Envelopment Analysis and the bootstrapping technique. Confidence intervals and bias corrected central estimates were used as cornerstone tools, not only to test for significant differences on efficiency scores and their reciprocals, but also on returns to scale indicators provided by different DEA models. The results of the study suggest that most Brazilian bulk terminals present increasing returns-to-scale, that is, they are too small in size comparatively to the tasks performed, indicating a capacity shortfall. Results also suggest paths for improving efficiency levels in a scenario of low investments and capacity constraints: privatization and cargo specialization. A final contribution to the literature lays on the development a simple methodology to assess returns-to-scale based on bootstrap results.

  20. Oxygenation and cracking in melt-textured YBCO bulk superconductors

    International Nuclear Information System (INIS)

    Kracunovska, S; Diko, P; Litzkendorf, D; Habisreuther, T; Bierlich, J; Gawalek, W

    2005-01-01

    Microstructural changes during the oxygenation of YBCO bulks were studied. It was shown that a lower temperature of oxygenation leads to the formation of a denser structure of a/b- and c-macrocracks and causes faster and more homogeneous oxygenation of the sample. The opening of created macrocracks is the way in which the macroscopic stresses induced by macroscopic 211 particle concentration inhomogeneity are released. This is very important, because it prevents the formation of fatal c-macrocracks, which divide the sample into more domains, during cooling from oxygenation temperature or during sample performance. Oxygenation with a multistage programme causes the oxygen concentration difference between the oxygenated layer and the tetragonal matrix to be smaller, and consequently fewer macrocracks are formed. This leads to the prolongation of oxygenation times for full oxygenation and to the insufficient release of macroscopic stresses. 211 low concentration regions and pores also enhance the oxygenation rate of YBCO bulks

  1. Ion specific correlations in bulk and at biointerfaces.

    Science.gov (United States)

    Kalcher, I; Horinek, D; Netz, R R; Dzubiella, J

    2009-10-21

    Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at interfaces. The molecular origins of these 'Hofmeister effects' are not well understood and their theoretical description poses a formidable challenge to the modeling and simulation community. On the basis of the combination of atomistically resolved molecular dynamics (MD) computer simulations and statistical mechanics approaches, we present a few selected examples of specific electrolyte effects in bulk, at simple neutral and charged interfaces, and on a short α-helical peptide. The structural complexity in these strongly Coulomb-correlated systems is highlighted and analyzed in the light of available experimental data. While in general the comparison of MD simulations to experiments often lacks quantitative agreement, mostly because molecular force fields and coarse-graining procedures remain to be optimized, the consensus as regards trends provides important insights into microscopic hydration and binding mechanisms.

  2. Nuclear techniques for bulk and surface analysis of materials

    International Nuclear Information System (INIS)

    D'Agostino, M.D.; Kamykowski, E.A.; Kuehne, F.J.; Padawer, G.M.; Schneid, E.J.; Schulte, R.L.; Stauber, M.C.; Swanson, F.R.

    1978-01-01

    A review is presented summarizing several nondestructive bulk and surface analysis nuclear techniques developed in the Grumman Research Laboratories. Bulk analysis techniques include 14-MeV-neutron activation analysis and accelerator-based neutron radiography. The surface analysis techniques include resonant and non-resonant nuclear microprobes for the depth profile analysis of light elements (H, He, Li, Be, C, N, O and F) in the surface of materials. Emphasis is placed on the description and discussion of the unique nuclear microprobe analytical capacibilities of immediate importance to a number of current problems facing materials specialists. The resolution and contrast of neutron radiography was illustrated with an operating heat pipe system. The figure shows that the neutron radiograph has a resolution of better than 0.04 cm with sufficient contrast to indicate Freon 21 on the inner capillaries of the heat pipe and pooling of the liquid at the bottom. (T.G.)

  3. Stationary walking solitons in bulk quadratic nonlinear media

    OpenAIRE

    Mihalache, Dumitru; Mazilu, D; Crasonavn, L C; Torner Sabata, Lluís

    1997-01-01

    We study the mutual trapping of fundamental and second-harmonic light beams propagating in bulk quadratic nonlinear media in the presence of Poynting vector beam walk-off. We show numerically the existence of a two-parameter family of (2 + 1)-dimensional stationary, spatial walking solitons. We have found that the solitons exist at various values of material parameters with different wave intensities and soliton velocities. We discuss the differences between (2 + 1) and (1 + 1)-dimensional wa...

  4. Synthesis of bulk quantity BN nanotubes with uniform morphology

    International Nuclear Information System (INIS)

    Wen, G.; Zhang, T.; Huang, X.X.; Zhong, B.; Zhang, X.D.; Yu, H.M.

    2010-01-01

    Bulk quantity hexagonal BN nanotubes (h-BNNTs) with uniform morphology were synthesized via an improved ball-milling and annealing method. The sample was characterized by X-ray photoelectron spectrometry, electron energy loss spectroscopy, X-ray diffraction, scanning electron microscopy, conventional transmission electron microscopy (TEM) and high-resolution TEM. The results show that the fabricated BNNTs have a uniform diameter ranging from 80 to 100 nm and a length of about 50-60 μm.

  5. Surface and Bulk Nanostructuring of Insulators by Ultrashort Laser Pulses

    Science.gov (United States)

    2017-04-05

    non perturbative effects leading to HHG. 15. SUBJECT TERMS Nanostructuring of bulk insulators, sub-picosecond electronic and structural events , photo...time, the charge density oscillations follow the time periodicity of the incident radiation. These transient charge oscillations are exclusively due...As in section II photoexcitation and the dielectric response of laser-irradiated diamond are treated in independent particle approximation based on the

  6. Surface and Bulk Nanostructuring of Polymers Using Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Güven, O.; Barsbay, M.; Ateş,; Akbulut, M. [Hacettepe University, Department of Chemistry, Ankara (Turkey)

    2009-07-01

    Ionizing radiation has long been known tobe a powerful tool in modifying and controlled the properties, forms and eventually end-uses of polymeric materials for a variety of applications. Industrial applications are full of successful examples of macro scale, bulk property modifications by radiation. Extremely short wavelength of ionizing radiation however, makes it an important and useful tool in creating very small size structures in polymers.

  7. Organic bulk heterojunction photovoltaic structures: design, morphology and properties

    International Nuclear Information System (INIS)

    Bulavko, G V; Ishchenko, A A

    2014-01-01

    Main approaches to the design of organic bulk heterojunction photovoltaic structures are generalized and systematized. Novel photovoltaic materials based on fullerenes, organic dyes and related compounds, graphene, conjugated polymers and dendrimers are considered. The emphasis is placed on correlations between the chemical structure and properties of materials. The effect of morphology of the photoactive layer on the photovoltaic properties of devices is analyzed. Main methods of optimization of the photovoltaic properties are outlined. The bibliography includes 338 references

  8. Bulk viscosity and ultrasonic attenuation in liquid metals

    International Nuclear Information System (INIS)

    Awasthi, O.N.; Murthy, B.V.S.

    1984-11-01

    Ultrasonic attenuation in simple liquid metals has been investigated using the thermodynamic theory of relaxation processes incorporating the concept of a two state model for the liquid near the melting point. Agreement of the results with the experimental values of the ultrasonic attenuation and bulk viscosity indicates that this might be an appropriate approach to explain the excess attenuation of ultrasonic waves in liquid metals. (author)

  9. INITIATION EFFICIENCY f OF METHYL METHACRYLATE BULK RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    沈家骢; 田元; 王国斌; 杨梅林

    1990-01-01

    The values of the initiation efficiency f at various conversions in the bulk polymerization of MMA initiated by AIBME have first been determined according to a strict unsteady-state formula and based on the data of radical concentration and the termination rate constant determined using ESR method. A model of diffusion control initiation is proposed. The theory is well in agreement with the experiments during the whole process of polymerization.

  10. Bulk etch rate of LR-115 cellulose nitrate film

    International Nuclear Information System (INIS)

    Harris, M.J.; Schlenker, R.A.

    1977-01-01

    Bulk etch rate (V/sub b/) of Kodak LR-115 cellulose nitrate film has been studied, and values for the parameter are presented. An interesting variability of V/sub b/ has been found which has implications for microdosimetry using this type of integrating nuclear track detector. Short-term and longer-term thickness changes have been observed which may increase the uncertainty in estimations of dose using this type of detector

  11. Bulk ordering and surface segregation in Ni50Pt50

    DEFF Research Database (Denmark)

    Pourovskii, L.P.; Ruban, Andrei; Abrikosov, I.A.

    2001-01-01

    in the bulk compare well with experimental data. The surface-alloy compositions for the (111) and (110) facets above the ordering transition temperature are also found to be in a good agreement with experiments. It is demonstrated that the segregation profile at the (110) surface of NiPt is mainly caused...... by the unusually strong segregation of Pt into the second layer and the interlayer ordering due to large chemical nearest-neighbor interactions....

  12. Surface and Bulk Nanostructuring of Polymers Using Ionizing Radiation

    International Nuclear Information System (INIS)

    Güven, O.; Barsbay, M.; Ateş; Akbulut, M.

    2009-01-01

    Ionizing radiation has long been known tobe a powerful tool in modifying and controlled the properties, forms and eventually end-uses of polymeric materials for a variety of applications. Industrial applications are full of successful examples of macro scale, bulk property modifications by radiation. Extremely short wavelength of ionizing radiation however, makes it an important and useful tool in creating very small size structures in polymers

  13. Faraday cage angled-etching of nanostructures in bulk dielectrics

    OpenAIRE

    Latawiec, Pawel; Burek, Michael J.; Sohn, Young-Ik; Lončar, Marko

    2016-01-01

    For many emerging optoelectronic materials, heteroepitaxial growth techniques do not offer the same high material quality afforded by bulk, single-crystal growth. However, the need for optical, electrical, or mechanical isolation at the nanoscale level often necessitates the use of a dissimilar substrate, upon which the active device layer stands. Faraday cage angled-etching (FCAE) obviates the need for these planar, thin-film technologies by enabling in-situ device release and isolation thro...

  14. Design of belt conveyors in bulk terminal applications. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, P J; Ramos, C M

    1985-10-01

    This paper discusses belt conveyors and their development in bulk terminal applications in South Africa. Single- and multi-product terminal philosophy is discussed, including methods of handling different products over the same system and limiting the effects of degradation at transfer points. In Part II, some aspects of belt conveyor design, as well as the results of tests on a chute designed to handle a range of products, will be covered. 23 references.

  15. Bounds on Masses of Bulk Fields in String Compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; McGreevy, John; Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC

    2006-02-13

    In string compactification on a manifold X, in addition to the string scale and the normal scales of low-energy particle physics, there is a Kaluza-Klein scale 1/R associated with the size of X. We present an argument that generic string models with low-energy supersymmetry have, after moduli stabilization, bulk fields with masses which are parametrically lighter than 1/R. We discuss the implications of these light states for anomaly mediation and gaugino mediation scenarios.

  16. Bulk sample self-attenuation correction by transmission measurement

    International Nuclear Information System (INIS)

    Parker, J.L.; Reilly, T.D.

    1976-01-01

    Various methods used in either finding or avoiding the attenuation correction in the passive γ-ray assay of bulk samples are reviewed. Detailed consideration is given to the transmission method, which involves experimental determination of the sample linear attenuation coefficient by measuring the transmission through the sample of a beam of gamma rays from an external source. The method was applied to box- and cylindrically-shaped samples

  17. Bulk Materials Analysis Using High-Energy Positron Beams

    International Nuclear Information System (INIS)

    Glade, S C; Asoka-Kumar, P; Nieh, T G; Sterne, P A; Wirth, B D; Dauskardt, R H; Flores, K M; Suh, D; Odette, G.R.

    2002-01-01

    This article reviews some recent materials analysis results using high-energy positron beams at Lawrence Livermore National Laboratory. We are combining positron lifetime and orbital electron momentum spectroscopic methods to provide electron number densities and electron momentum distributions around positron annihilation sites. Topics covered include: correlation of positron annihilation characteristics with structural and mechanical properties of bulk metallic glasses, compositional studies of embrittling features in nuclear reactor pressure vessel steel, pore characterization in Zeolites, and positron annihilation characteristics in alkali halides

  18. Phenomenology of Bulk Scalar Production at the LHC

    CERN Document Server

    Beauchemin , Pierre-Hugues; Burgess, Cliff

    We examine the sensitivity of the ATLAS detector to extra-dimensional scalars in scenarios having the extra-dimensional Planck scale in the TeV range and n = 2 large extra dimensions. Such scalars appear as partners of the graviton in higher-dimensional supersymmetric theories. Using first the scalar's lowest-dimensional effective couplings to quarks and gluons, we compute the rate of production of a hard jet together with missing energy. We find a nontrivial range of bulk scalar couplings for which ATLAS could observe a signal, and in particular, higher sensitivity to couplings to gluons than to quarks. Bulk scalar emission increases the missing-energy signal by adding to graviton production, and so complicates the inference of the extra-dimensional Planck scale from the observed rate of jet + EmissT . Because bulk scalar differential cross sections resemble those for gravitons, it is unlikely that these can be experimentally distinguished should a missing energy signal be observed. However, given, for examp...

  19. Forecasting Dry Bulk Freight Index with Improved SVM

    Directory of Open Access Journals (Sweden)

    Qianqian Han

    2014-01-01

    Full Text Available An improved SVM model is presented to forecast dry bulk freight index (BDI in this paper, which is a powerful tool for operators and investors to manage the market trend and avoid price risking shipping industry. The BDI is influenced by many factors, especially the random incidents in dry bulk market, inducing the difficulty in forecasting of BDI. Therefore, to eliminate the impact of random incidents in dry bulk market, wavelet transform is adopted to denoise the BDI data series. Hence, the combined model of wavelet transform and support vector machine is developed to forecast BDI in this paper. Lastly, the BDI data in 2005 to 2012 are presented to test the proposed model. The 84 prior consecutive monthly BDI data are the inputs of the model, and the last 12 monthly BDI data are the outputs of model. The parameters of the model are optimized by genetic algorithm and the final model is conformed through SVM training. This paper compares the forecasting result of proposed method and three other forecasting methods. The result shows that the proposed method has higher accuracy and could be used to forecast the short-term trend of the BDI.

  20. Bulk energy storage increases United States electricity system emissions.

    Science.gov (United States)

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  1. Bulk and shear viscosities of hot and dense hadron gas

    International Nuclear Information System (INIS)

    Kadam, Guru Prakash; Mishra, Hiranmaya

    2015-01-01

    We estimate the bulk and the shear viscosity at finite temperature and baryon densities of hadronic matter within a hadron resonance gas model which includes a Hagedorn spectrum. The parameters of the Hagedorn spectrum are adjusted to fit recent lattice QCD simulations at finite chemical potential. For the estimation of the bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For the shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons

  2. Standard practice for bulk sampling of liquid uranium hexafluoride

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice covers methods for withdrawing representative samples of liquid uranium hexafluoride (UF6) from bulk quantities of the material. Such samples are used for determining compliance with the applicable commercial specification, for example Specification C787 and Specification C996. 1.2 It is assumed that the bulk liquid UF6 being sampled comprises a single quality and quantity of material. This practice does not address any special additional arrangements that might be required for taking proportional or composite samples, or when the sampled bulk material is being added to UF6 residues already in a container (“heels recycle”). 1.3 The number of samples to be taken, their nominal sample weight, and their disposition shall be agreed upon between the parties. 1.4 The scope of this practice does not include provisions for preventing criticality incidents. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of th...

  3. Estimation of Bulk modulus and microhardness of tetrahedral semiconductors

    International Nuclear Information System (INIS)

    Gorai, Sanjay Kumar

    2012-01-01

    A general empirical formula was found for calculating of bulk modulus (B) and microhardness (H) from electronegativity and principal quantum number of II-VI, III-V semiconductors. Constant C1, appearing the in the expression of bulk modulus and constants C2 and C3, appearing in the expression of microhardness and the exponent M have following values respectively The numerical values of C1,C2, C3 and M are respectively 206.6, 8.234, 1.291, -1.10 for II-VI 72.4, 31.87, 7.592, -0.95 for III-V semiconductors. Both electro-negativity and principal quantum number can effectively reflect on the chemical bonding behaviour of constituent atoms in these semiconductors. The calculated values of bulk modulus and microhardness are in good agreement with the reported values in the literature. Present study helps in designing novel semiconductor materials, and to further explore the mechanical properties of these semiconductors.

  4. Design of solar drying-plant for bulk material drying

    Directory of Open Access Journals (Sweden)

    Peter Horbaj

    2008-11-01

    Full Text Available A generally well-known high energy requirement for technological processes of drying and the fact that the world’s supplyof the conventional energy sources has considerably decreased are the decisive factors forcing us to look for some new, if possible,renewable energy sources for this process by emphasising their environmental reliability. One of the possibilities how to replace, atleast partly, the conventional energy sources – heat in a drying process is solar energy.Air-drying of bulk materials usually has a series of disadvantages such as time expenditure, drying defects in the bulk materialand inadequate final moisture content. A method that obviates or reduces the disadvantages of air-drying and, at the same time, reducesthe costs of kiln drying, is drying with solar heat. Solar energy can replace a large part of this depletable energy since solar energy cansupply heat at the temperatures most often used to dry bulk material. Solar drying-plant offer an attractive solution.

  5. Bulk viscous matter-dominated Universes: asymptotic properties

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)

    2013-08-01

    By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.

  6. Shear and bulk viscosity of high-temperature gluon plasma

    Science.gov (United States)

    Zhang, Le; Hou, De-Fu

    2018-05-01

    We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic {gg}≤ftrightarrow {gg} forward scattering and the inelastic soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} processes. Due to the suppressed contribution to η and ζ in the {gg}≤ftrightarrow {gg} forward scattering and the effective g≤ftrightarrow {gg} gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} process with an analytic method. We find that the contribution of the collision term from the {gg}≤ftrightarrow {ggg} soft gluon bremsstrahlung process is just a small perturbation to the {gg}≤ftrightarrow {gg} scattering process and that the correction is at ∼5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula \\zeta \\propto \\tfrac{{α }s2{T}3}{ln}{α }s-1} in high-temperature gluon plasma. Supported by Ministry of Science and Technology of China (MSTC) under the “973” Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)

  7. Elution of monomer from different bulk fill dental composite resins.

    Science.gov (United States)

    Cebe, Mehmet Ata; Cebe, Fatma; Cengiz, Mehmet Fatih; Cetin, Ali Rıza; Arpag, Osman Fatih; Ozturk, Bora

    2015-07-01

    The purpose of this study was to evaluate the elution of Bis-GMA, TEGDMA, HEMA, and Bis-EMA monomers from six bulk fill composite resins over four different time periods, using HPLC. Six different composite resin materials were used in the present study: Tetric Evo Ceram Bulk Fill (Ivoclar Vivadent, Amherst, NY), X-tra Fill (VOCO, Cuxhaven, Germany), Sonic Fill (Kerr, Orange, CA, USA), Filtek Bulk Fill (3M ESPE Dental Product, St. Paul, MN), SDR (Dentsply, Konstanz, Germany), EQUIA (GC America INC, Alsip, IL). The samples (4mm thickness, 5mm diameter) were prepared and polymerized for 20s with a light emitted diode unit. After fabrication, each sample was immediately immersed in 75wt% ethanol/water solution used as extraction fluid and stored in the amber colored bottles at room temperature. Ethanol/water samples were taken (0.5mL) at predefined time intervals:10m (T1), 1h (T2), 24h (T3) and 30 days (T4). These samples were analyzed by HPLC. The obtained data were analyzed with one-way ANOVA and Tukey HSD at significance level of pcomposites (pcomposite resins in all time periods and the amount of eluted monomers was increased with time. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, B.; Chen, T.; Shklovskii, B. I., E-mail: shklovsk@physics.spa.umn.edu [University of Minnesota, Fine Theoretical Physics Institute (United States)

    2013-09-15

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states.

  9. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    International Nuclear Information System (INIS)

    Skinner, B.; Chen, T.; Shklovskii, B. I.

    2013-01-01

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states

  10. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    Science.gov (United States)

    Deng, Z.; Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M.

    2011-05-01

    Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y 1.65Ba 2Cu 3O 7-x (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  11. Bulk Fuel Storage and Delivery Systems Infrastructure Military Construction Requirements for Japan

    National Research Council Canada - National Science Library

    Padgett, Gary

    2000-01-01

    .... Specifically, this audit evaluated requirements for bulk fuel storage facilities at three locations in Japan. We also evaluated the management control program as it relates to the bulk fuel storage military construction requirements validation process.

  12. Comparison of FTIR Spectra of Bulk and Acid Residual Organic Matter in Chondrites

    Science.gov (United States)

    Kebukawa, Y.; Alexander, C. M. O'D.; Cody, G. D.

    2013-09-01

    We compared infrared spectra of bulk meteorites and IOM. The CH_2/CH_3 ratios show some difference between bulk samples and IOM, but there is no systematic correlation with chondrite groups or petrologic type.

  13. Possibilities and limitations in the use of bulk explosives for undergound blasting work

    Energy Technology Data Exchange (ETDEWEB)

    Thum, W.

    1982-06-01

    Conditions for the use of bulk explosives - Characterization of the explosives - ANFO - Water gel blasting agents - Underground application of bulk explosives - Comparison of application criteria - Dead-pressing effects - Modifications of application technology - Loading systems.

  14. Numerical studies on the force characteristic of superconducting linear synchronous motor with HTS bulk magnet

    Science.gov (United States)

    Tang, Junjie; Li, Jing; Li, Xiang; Han, Le

    2018-03-01

    High temperature superconductor (HTS) bulks have significant potential use in linear motor application act as quasi-permanent magnet to replace traditional magnets. Force characteristic between HTS bulk magnet and traveling magnetic field was investigated with numerical simulation and experimental measurement in this paper. Influences of bulk height and number on the force characteristic were studied by the finite element model considering the nonlinear E-J relationship. Study was also made on addition of a back iron plate to the bulk magnet. Besides, force characteristic of bulk was compared with the permanent magnet results. The small initial decrease of the thrust could be explained by inside superconducting current redistribution. It was found that efficiency of linear motor did not increase by adding more bulk magnets. The bulk magnet will be remagnetized instead of erasing trapped field with the increase of the traveling magnetic field strength. The conclusions are helpful in prediction and design the linear motor with HTS bulk magnet.

  15. An empirical method to estimate bulk particulate refractive index for ocean satellite applications

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Mascarenhas, A.A.M.Q.; Matondkar, S.G.P.; Naik, P.; Nayak, S.R.

    An empirical method is presented here to estimates bulk particulate refractive index using the measured inherent and apparent optical properties from the various waters types of the Arabian Sea. The empirical model, where the bulk refractive index...

  16. Temporary surface passivation for characterisation of bulk defects in silicon : a review

    OpenAIRE

    Grant, Nicholas E.; Murphy, John D.

    2017-01-01

    Accurate measurements of the bulk minority carrier lifetime in high-quality silicon materials is challenging due to the influence of surface recombination. Conventional surface passivation processes such as thermal oxidation or dielectric deposition often modify the bulk lifetime significantly before measurement. Temporary surface passivation processes at room or very low temperatures enable a more accurate measurement of the true bulk lifetime, as they limit thermal reconfiguration of bulk d...

  17. Surface barrier and bulk pinning in MgB$_2$ superconductor

    OpenAIRE

    Pissas, M.; Moraitakis, E.; Stamopoulos, D.; Papavassiliou, G.; Psycharis, V.; Koutandos, S.

    2001-01-01

    We present a modified method of preparation of the new superconductor MgB$_2$. The polycrystalline samples were characterized using x-ray and magnetic measurements. The surface barriers control the isothermal magnetization loops in powder samples. In bulk as prepared samples we always observed symmetric magnetization loops indicative of the presence of a bulk pinning mechanism. Magnetic relaxation measurements in the bulk sample reveal a crossover of surface barrier to bulk pinning.

  18. The temperature dependence of the isothermal bulk modulus at 1 bar pressure

    International Nuclear Information System (INIS)

    Garai, J.; Laugier, A.

    2007-01-01

    It is well established that the product of the volume coefficient of thermal expansion and the bulk modulus is nearly constant at temperatures higher than the Debye temperature. Using this approximation allows predicting the values of the bulk modulus. The derived analytical solution for the temperature dependence of the isothermal bulk modulus has been applied to ten substances. The good correlations to the experiments indicate that the expression may be useful for substances for which bulk modulus data are lacking

  19. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    International Nuclear Information System (INIS)

    Deng, Z.; Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M.

    2011-01-01

    Highlights: → Rectangular YBCO bulks to realize a compact combination. → The gap effect was added to consider in the trapped flux density mapping. → The trapped-flux dependence between single and combined bulks is gap related. → It is possible to estimate the total magnetic flux of bulk combinations. - Abstract: Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y 1.65 Ba 2 Cu 3 O 7-x (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  20. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zgdeng@gmail.co [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-05-15

    Highlights: {yields} Rectangular YBCO bulks to realize a compact combination. {yields} The gap effect was added to consider in the trapped flux density mapping. {yields} The trapped-flux dependence between single and combined bulks is gap related. {yields} It is possible to estimate the total magnetic flux of bulk combinations. - Abstract: Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y{sub 1.65}Ba{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  1. Effectiveness of three bulking agents for food waste composting

    International Nuclear Information System (INIS)

    Adhikari, Bijaya K.; Barrington, Suzelle; Martinez, Jose; King, Susan

    2009-01-01

    Rather than landfilling, composting the organic fraction of municipal solid wastes recycles the waste as a safe and nutrient enriched soil amendment, reduces emissions of greenhouse gases and generates less leachate. The objective of this project was to investigate the composting effectiveness of three bulking agents, namely chopped wheat (Triticum) straw, chopped mature hay consisting of 80% timothy (milium) and 20% clover (triphullum) and pine (pinus) wood shavings. These bulking agents were each mixed in duplicates at three different ratios with food waste (FW) and composted for 10 days using prototype in-vessel composters to observe their temperature and pH trends. Then, each mixture was matured in vertical barrels for 56 days to measure their mass loss and final nutrient content and to visually evaluate their level of decomposition. Chopped wheat straw (CWS) and chopped hay (CH) were the only two formulas that reached thermophilic temperatures during the 10 days of active composting when mixed with FW at a wet mass ratio of 8.9 and 8.6:1 (FW:CWS and FW:CH), respectively. After 56 days of maturation, these two formulas were well decomposed with no or very few recognizable substrate particles, and offered a final TN exceeding the original. Wood shavings (WS) produced the least decomposed compost at maturation, with wood particles still visible in the final product, and with a TN lower than the initial. Nevertheless, all bulking agents produced compost with an organic matter, TN, TP and TK content suitable for use as soil amendment

  2. On-surface synthesis on a bulk insulator surface

    Science.gov (United States)

    Richter, Antje; Floris, Andrea; Bechstein, Ralf; Kantorovich, Lev; Kühnle, Angelika

    2018-04-01

    On-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise. Consequently, on-surface synthesis has attracted great attention in the last decade, with an impressive number of classical reactions transferred to a surface as well as new reactions demonstrated that have no classical analogue. So far, the majority of the work has been carried out on conducting surfaces. However, when aiming for electronic decoupling of the resulting structures, e.g. for the use in future molecular electronic devices, non-conducting surfaces are highly desired. Here, we review the current status of on-surface reactions demonstrated on the (10.4) surface of the bulk insulator calcite. Besides thermally induced C-C coupling of halogen-substituted aryls, photochemically induced [2  +  2] cycloaddition has been proven possible on this surface. Moreover, experimental evidence exists for coupling of terminal alkynes as well as diacetylene polymerization. While imaging of the resulting structures with dynamic atomic force microscopy provides a direct means of reaction verification, the detailed reaction pathway often remains unclear. Especially in cases where the presence of metal atoms is known to catalyze the corresponding solution chemistry reaction (e.g. in the case of the Ullmann reaction), disclosing the precise reaction pathway is of importance to understand and generalize on-surface reactivity on a bulk insulator surface. To this end, density-functional theory calculations have proven to provide atomic

  3. Spin dynamics in bulk CdTe at room temperature

    International Nuclear Information System (INIS)

    Nahalkova, P.; Nemec, P.; Sprinzl, D.; Belas, E.; Horodysky, P.; Franc, J.; Hlidek, P.; Maly, P.

    2006-01-01

    In this paper, we report on the room temperature dynamics of spin-polarized carriers in undoped bulk CdTe. Platelets of CdTe with different concentration of preparation-induced dislocations were prepared by combining the mechanical polishing and chemical etching. Using the polarization-resolved pump-probe experiment in transmission geometry, we have observed a systematic decrease of both the signal polarization and the electron spin dephasing time (from 52 to 36 ps) with the increased concentration of defects. We have suggested that the Elliot-Yafet mechanism might be the dominant spin dephasing mechanism in platelets of CdTe at room temperature

  4. Structural study of conventional and bulk metallic glasses during annealing

    International Nuclear Information System (INIS)

    Pineda, E.; Hidalgo, I.; Bruna, P.; Pradell, T.; Labrador, A.; Crespo, D.

    2009-01-01

    Metallic glasses with conventional glass-forming ability (Al-Fe-Nd, Fe-Zr-B, Fe-B-Nb compositions) and bulk metallic glasses (Ca-Mg-Cu compositions) were studied by synchrotron X-ray diffraction during annealing throughout glass transition and crystallization temperatures. The analysis of the first diffraction peak position during the annealing process allowed us to follow the free volume change during relaxation and glass transition. The structure factor and the radial distribution function of the glasses were obtained from the X-ray measurements. The structural changes occurred during annealing are analyzed and discussed.

  5. Bulk functionalization of graphene using diazonium compounds and amide reaction

    Science.gov (United States)

    Peng, Chang; Xiong, Yuzi; Liu, Zhibo; Zhang, Fan; Ou, Encai; Qian, Jiangtao; Xiong, Yuanqin; Xu, Weijian

    2013-09-01

    An efficient and convenient method is applied to introduce varieties of simple functionalities onto the graphene surface for the bulk preparation, which begins with pristine graphite that does not require initial oxidative damage of the graphene basal planes. Diazonium compounds functionalized reaction is demonstrated and it successfully prevented the aggregation of graphene for which providing solubility in high polar organic media or even in volatile solvents such as ethanol and acetone. This approach is complemented by the phenyl carboxylic diazonium salt functionalized graphene (PCFG) attachment of a symmetrically substituted zinc phthalocyanine (PCFG-Pc) using the amide reaction, which is used for the covalent introduction of a complex phthalocyanine molecule.

  6. On binding energy of trions in bulk materials

    Science.gov (United States)

    Filikhin, Igor; Kezerashvili, Roman Ya.; Vlahovic, Branislav

    2018-03-01

    We study the negatively T- and positively T+ charged trions in bulk materials in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing Faddeev equation in configuration space. Results of calculations of the binding energies for T- are consistent with previous computational studies and are in reasonable agreement with experimental measurements, while the T+ is unbound for all considered cases. The mechanism of formation of the binding energy of trions is analyzed by comparing contributions of a mass-polarization term related to kinetic energy operators and a term related to the Coulomb repulsion of identical particles.

  7. Phase transitions and dynamics of bulk and interfacial water

    International Nuclear Information System (INIS)

    Franzese, G; Hernando-Martinez, A; Kumar, P; Mazza, M G; Stokely, K; Strekalova, E G; Stanley, H E; De los Santos, F

    2010-01-01

    New experiments on water at the surface of proteins at very low temperature display intriguing dynamic behaviors. The extreme conditions of these experiments make it difficult to explore the wide range of thermodynamic state points needed to offer a suitable interpretation. Detailed simulations suffer from the same problem, where equilibration times at low temperature become extremely long. We show how Monte Carlo simulations and mean field calculations using a tractable model of water help interpret the experimental results. Here we summarize the results for bulk water and investigate the thermodynamic and dynamic properties of supercooled water at an interface.

  8. Phase transitions and dynamics of bulk and interfacial water

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, G; Hernando-Martinez, A [Departament de Fisica Fonamental, Universitat de Barcelona, Diagonal 647, Barcelona 08028 (Spain); Kumar, P [Center for Studies in Physics and Biology, Rockefeller University, 1230 York Avenue, New York, NY 10021 (United States); Mazza, M G; Stokely, K; Strekalova, E G; Stanley, H E [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States); De los Santos, F, E-mail: gfranzese@ub.ed [Departamento de Electromagnetismo y Fisica de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2010-07-21

    New experiments on water at the surface of proteins at very low temperature display intriguing dynamic behaviors. The extreme conditions of these experiments make it difficult to explore the wide range of thermodynamic state points needed to offer a suitable interpretation. Detailed simulations suffer from the same problem, where equilibration times at low temperature become extremely long. We show how Monte Carlo simulations and mean field calculations using a tractable model of water help interpret the experimental results. Here we summarize the results for bulk water and investigate the thermodynamic and dynamic properties of supercooled water at an interface.

  9. Double stage crystallization of bulk Ge20Te80 glass

    International Nuclear Information System (INIS)

    Parthasarathy, G.; Bandyopadhyay, A.K.; Gopal, E.S.R.; Subbanna, G.N.

    1984-01-01

    The growing interest of the semiconducting glasses is partly because of their interesting electrical and optical properties. These properties are usually connected with their crystallization. In many glasses, the glass-supercooled liquid transition precedes crystallization. The glass transition temperature (Tsub(g)) is found to exhibit multistage processes for a few systems. In this communication, we report the observation of a double Tsub(g) effect in bulk Ge 20 Te 80 glass and also explain the structural changes taking place in the two stages. (author)

  10. A small Maglev car model using YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W M [Department of Physics, Shaanxi Normal University, Xi' an, Shaanxi 710016 (China); Zhou, L [Northwest Institute for Nonferrous Metal Research, PO Box 51, Xi' an, Shaanxi 710016 (China); Yong, Feng [Northwest Institute for Nonferrous Metal Research, PO Box 51, Xi' an, Shaanxi 710016 (China); Zhang, P X [Northwest Institute for Nonferrous Metal Research, PO Box 51, Xi' an, Shaanxi 710016 (China); Chao, X X [Department of Physics, Shaanxi Normal University, Xi' an, Shaanxi 710016 (China); Bian, X B [Department of Physics, Shaanxi Normal University, Xi' an, Shaanxi 710016 (China); Zhu, S H [Department of Physics, Shaanxi Normal University, Xi' an, Shaanxi 710016 (China); Wu, X L [Department of Physics, Shaanxi Normal University, Xi' an, Shaanxi 710016 (China); Liu, P [Department of Physics, Shaanxi Normal University, Xi' an, Shaanxi 710016 (China)

    2006-07-15

    Models of two small Maglev cars have been made. The track was paved with NdFeB magnets. The arrangement of the magnets made it easy to get a uniform magnetic field distribution along the length of the track and a magnetic field gradient in the lateral direction. When the car with YBCO bulk superconductors was field cooled to LN{sub 2} temperature at a certain distance above the track, the car could be automatically levitated over the track and moved along the track without any obvious friction. The model can be used to demonstrate the Meissner effect and a fast transportation system to students and adults.

  11. Spin-cast bulk heterojunction solar cells: A dynamical investigation

    KAUST Repository

    Chou, Kang Wei

    2013-02-22

    Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Towards the first generation micro bulk forming system

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Eriksen, Rasmus Solmer; Hansen, Hans Nørgaard

    2011-01-01

    . This work describes a number of prototype system units, which collectively form a desktop sized micro forming production system. The system includes a billet preparation module, an integrated transfer system, a temperature controlled forming tool, including process simulation, and a dedicated micro forming......The industrial demand for micro mechanical components has surged in the later years with the constant introduction of more integrated products. The micro bulk forming process holds a promising pledge of delivering high quality micro mechanical components at low cost and high production rates...... press. The system is demonstrated on an advanced micro forming case where a dental component is formed in medical grade Titanium....

  13. Dynamics of Biomembranes: Effect of the Bulk Fluid

    KAUST Repository

    Bonito, A.

    2011-01-01

    We derive a biomembrane model consisting of a fluid enclosed by a lipid membrane. The membrane is characterized by its Canham-Helfrich energy (Willmore energy with area constraint) and acts as a boundary force on the Navier-Stokes system modeling an incompressible fluid. We give a concise description of the model and of the associated numerical scheme. We provide numerical simulations with emphasis on the comparisons between different types of flow: the geometric model which does not take into account the bulk fluid and the biomembrane model for two different regimes of parameters. © EDP Sciences, 2011.

  14. The electrical neutrality of atoms and of bulk matter

    International Nuclear Information System (INIS)

    Unnikrishnan, C.S.; Gillies, G.T.

    2004-01-01

    The equality of the charges of the electron and the proton, and the charge neutrality of the neutron are of great significance in the fundamental theory of particles. This equality suggests a deep symmetry between leptons and quarks that is not yet revealed in other experiments. The electrical neutrality of bulk matter is a direct result of this characteristic of the fundamental charges, with important consequences for precise tests of fundamental physical laws and for electrical metrology. The question is of interest also in cosmology. In this paper, we discuss the experimental evidence for the equality of the fundamental electrical charges, its implications and the possibility of improved experiments. (authors)

  15. A small Maglev car model using YBCO bulk superconductors

    International Nuclear Information System (INIS)

    Yang, W M; Zhou, L; Yong, Feng; Zhang, P X; Chao, X X; Bian, X B; Zhu, S H; Wu, X L; Liu, P

    2006-01-01

    Models of two small Maglev cars have been made. The track was paved with NdFeB magnets. The arrangement of the magnets made it easy to get a uniform magnetic field distribution along the length of the track and a magnetic field gradient in the lateral direction. When the car with YBCO bulk superconductors was field cooled to LN 2 temperature at a certain distance above the track, the car could be automatically levitated over the track and moved along the track without any obvious friction. The model can be used to demonstrate the Meissner effect and a fast transportation system to students and adults

  16. Characterisation of ferroelectric bulk materials and thin films

    CERN Document Server

    Cain, Markys G

    2014-01-01

    This book presents a comprehensive review of the most important methods used in the characterisation of piezoelectric, ferroelectric and pyroelectric materials. It covers techniques for the analysis of bulk materials and thick and thin film materials and devices. There is a growing demand by industry to adapt and integrate piezoelectric materials into ever smaller devices and structures. Such applications development requires the joint development of reliable, robust, accurate and - most importantly - relevant and applicable measurement and characterisation methods and models. In the past f

  17. Radiation-hard silicon gate bulk CMOS cell family

    International Nuclear Information System (INIS)

    Gibbon, C.F.; Habing, D.H.; Flores, R.S.

    1980-01-01

    A radiation-hardened bulk silicon gate CMOS technology and a topologically simple, high-performance dual-port cell family utilizing this process have been demonstrated. Additional circuits, including a random logic circuit containing 4800 transistors on a 236 x 236 mil die, are presently being designed and processed. Finally, a joint design-process effort is underway to redesign the cell family in reduced design rules; this results in a factor of 2.5 cell size reduction and a factor of 3 decrease in chip interconnect area. Cell performance is correspondingly improved

  18. Thermal behaviors of liquid La-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D. W.; Wang, X. D., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn; Lou, H. B.; Cao, Q. P.; Jiang, J. Z., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wang, L. W. [Institute of Materials Science and Engineering, Lanzhou University, Lanzhou 730000 (China); Zhang, D. X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China)

    2014-12-14

    Thermal behaviors of liquid La-based bulk metallic glasses have been measured by using the dilatometer with a self-sealed sample cell. It is demonstrated that the strong glass forming liquid not only has the small thermal expansion coefficient but also shows the slow variation rate. Moreover, the strong glass former has relatively dense atomic packing and also small density change in the liquid state. The results suggest that the high glass forming ability of La-based metallic glasses would be closely related to the slow atomic rearrangements in liquid melts.

  19. Interlayer excitons in a bulk van der Waals semiconductor

    DEFF Research Database (Denmark)

    Arora, Ashish; Drueppel, Matthias; Schmidt, Robert

    2017-01-01

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity......, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments...

  20. Bulk and monolayer ordering of block copolymer blends

    Science.gov (United States)

    Onikoyi, Adetunji J.

    The control of the nanoscale structure or morphology of a block copolymer is a desired goal for nanolithography applications. In this work, we are particularly interested in providing guides for controlling domain size, domain shape and defect densities in block copolymers and their blends for thin film applications. To reach this goal, a sphere forming PS-b-P2VP (having a PS majority block) and its blends with PS homopolymer or cylinder forming PS-b-P2VP are studied in both the bulk and thin films. Structure characterization is performed using a variety of experimental techniques including small angle X-ray scattering, scanning force microscopy and transmission electron microscopy. In the bulk, the spherical domains of the pure, sphere forming PS-b-P2VP arrange on a BCC lattice. On adding PS homopolymer (hPS), the lattice parameter of the BCC spheres increases, while the order-to-disorder temperature (ODT) of the BCC lattice simultaneously decreases. At a given hPS composition, the use of larger sized hPS leads to larger increases in the lattice parameter and larger decreases in the ODT. In bulk blends of cylinder forming PS-b-P2VP with sphere forming PS-b-P2VP, the ordered morphology changes (e.g., cylindrical morphology → coexisting spherical and cylindrical morphologies → spherical morphology) as the sphere forming PS-b-P2VP volume fraction phis increases, while the ODT of the cylindrical morphology decreases. The phase boundaries of these morphologies in monolayers shift to lower phis compared to those of the bulk, apparently caused by a selective adsorption of the cylindrical PS-b-P2VP to form a brush on the substrate. This selective adsorption leads to a preference for spherical domains in diamond-shaped lateral confinements when cylindrical domains are stabilized outside the confinements on the same substrate. Finally, we explore the use of graphoepitaxy to order monolayers of sphere forming PS-b-P2VP and its blends with hPS. The probability of forming

  1. Applications and modelling of bulk HTSs in brushless ac machines

    International Nuclear Information System (INIS)

    Barnes, G.J.

    2000-01-01

    The use of high temperature superconducting material in its bulk form for engineering applications is attractive due to the large power densities that can be achieved. In brushless electrical machines, there are essentially four properties that can be exploited; their hysteretic nature, their flux shielding properties, their ability to trap large flux densities and their ability to produce levitation. These properties translate to hysteresis machines, reluctance machines, trapped-field synchronous machines and linear motors respectively. Each one of these machines is addressed separately and computer simulations that reveal the current and field distributions within the machines are used to explain their operation. (author)

  2. Soliton interaction in quadratic and cubic bulk media

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær; Bang, Ole

    2000-01-01

    Summary form only given. The understanding of how and to what extend the cubic nonlinearity affects beam propagation and spatial soliton formation in quadratic media is of vital importance in fundamental and applied nonlinear physics. We consider beam propagation under type-I SHG conditions...... in lossless bulk second order nonlinear optical materials with a nonvanishing third order nonlinearity. It is known that in pure second order systems a single soliton can never collapse whereas in systems with both nonlinearities and that stable single soliton propagation can only in some circumstances...

  3. Spin-cast bulk heterojunction solar cells: A dynamical investigation

    KAUST Repository

    Chou, Kang Wei; Yan, Buyi; Li, Ruipeng; Li, Erqiang; Zhao, Kui; Anjum, Dalaver H.; Alvarez, Steven; Gassaway, Robert; Biocca, Alan K.; Thoroddsen, Sigurdur T; Hexemer, Alexander; Amassian, Aram

    2013-01-01

    Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. In-Kind Export Subsidies for Processed and Bulk Goods

    OpenAIRE

    Philip L. Paarlberg

    1996-01-01

    This research analyzes the interaction between a bulk commodity and a processed good under in-kind export subsidies. An in-kind export subsidy lowers the export price of the good on which it is paid. The other price changes are ambiguous. A numerical model for U.S. wheat and flour illustrates these conditions. Given the parameters of the model, an in-kind payment using wheat lowers flour prices and the export price of wheat. The U.S. domestic wheat price rises. When flour is used for the paym...

  5. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    NARCIS (Netherlands)

    Koop, G.; Dik, N.; Nielen, M.; Lipman, L.J.A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms,

  6. The impact of compaction, moisture content, particle size and type of bulking agent on initial physical properties of sludge-bulking agent mixtures before composting.

    Science.gov (United States)

    Huet, J; Druilhe, C; Trémier, A; Benoist, J C; Debenest, G

    2012-06-01

    This study aimed to experimentally acquire evolution profiles between depth, bulk density, Free Air Space (FAS), air permeability and thermal conductivity in initial composting materials. The impact of two different moisture content, two particle size and two types of bulking agent on these four parameters was also evaluated. Bulk density and thermal conductivity both increased with depth while FAS and air permeability both decreased with it. Moreover, depth and moisture content had a significant impact on almost all the four physical parameters contrary to particle size and the type of bulking agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Science.gov (United States)

    2010-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  8. 77 FR 39858 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Science.gov (United States)

    2012-07-05

    ... bulk electric system reliability through steady state power flow, and contain a transient stability... Commission 18 CFR Part 40 Revisions to Electric Reliability Organization Definition of Bulk Electric System... definition of ``bulk electric system'' developed by the North American Electric Reliability Corporation (NERC...

  9. 46 CFR 153.900 - Certificates and authorization to carry a bulk liquid hazardous material.

    Science.gov (United States)

    2010-10-01

    ... ship must have a Subchapter D or I Certificate of Inspection that is endorsed to allow the cargo tank... requirements for the bulk liquid cargo; and (2) The ship— (i) Has a Certificate of Inspection, Certificate of...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS...

  10. Soil bulk density changes caused by mechanized harvesting: A case study in central Appalachia

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux; Pam Edwards; Mark Jones; Mark Jones

    2005-01-01

    A mechanized harvesting system consisting of a feller-buncher and a grapple skidder was examined to quantify soil bulk density changes in a central Appalachian hardwood forest site. Soil bulk density was measured using a nuclear gauge pre-harvest and post-harvest systematically across the harvest unit and on transects across skid trails. Bulk density also was measured...

  11. 27 CFR 1.83 - Acquiring or receiving distilled spirits in bulk for addition to wine.

    Science.gov (United States)

    2010-04-01

    ... distilled spirits in bulk for addition to wine. 1.83 Section 1.83 Alcohol, Tobacco Products and Firearms... UNDER THE FEDERAL ALCOHOL ADMINISTRATION ACT, NONINDUSTRIAL USE OF DISTILLED SPIRITS AND WINE, BULK... Bottling § 1.83 Acquiring or receiving distilled spirits in bulk for addition to wine. Persons holding...

  12. 78 FR 64905 - Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk

    Science.gov (United States)

    2013-10-30

    ...-ZA31 Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk AGENCY: Coast Guard... availability of a proposed policy letter concerning the carriage of shale gas extraction waste water in bulk... transport shale gas extraction waste water in bulk. The policy letter also defines the information the Coast...

  13. Bulk material management mode of general contractors in nuclear power project

    International Nuclear Information System (INIS)

    Zhang Jinyong; Zhao Xiaobo

    2011-01-01

    The paper introduces the characteristics of bulk material management mode in construction project, and the advantages and disadvantages of bulk material management mode of general contractors in nuclear power project. In combination with the bulk material management mode of China Nuclear Power Engineering Co., Ltd, some improvement measures have been put forward as well. (authors)

  14. 78 FR 803 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Science.gov (United States)

    2013-01-04

    ... Bulk 74. Electric System 1. Inclusion I1 (Transformers) 75. Commission Determination 80. 2. Inclusion... configurations are included in the bulk electric system. Inclusions: I1--Transformers with the primary terminal... bulk electric system. 15. NERC explained that inclusion I1 includes transformers with the primary...

  15. Chirality-dependent friction of bulk molecular solids.

    Science.gov (United States)

    Yang, Dian; Cohen, Adam E

    2014-08-26

    We show that the solid-solid friction between bulk chiral molecular solids can depend on the relative chirality of the two materials. In menthol and 1-phenyl-1-butanol, heterochiral friction is smaller than homochiral friction, while in ibuprofen, heterochiral friction is larger. Chiral asymmetries in the coefficient of sliding friction vary with temperature and can be as large as 30%. In the three compounds tested, the sign of the difference between heterochiral and homochiral friction correlated with the sign of the difference in melting point between racemate (compound or conglomerate) and pure enantiomer. Menthol and ibuprofen each form a stable racemic compound, while 1-phenyl-1-butanol forms a racemic conglomerate. Thus, a difference between heterochiral and homochiral friction does not require the formation of a stable interfacial racemic compound. Measurements of chirality-dependent friction provide a unique means to distinguish the role of short-range intermolecular forces from all other sources of dissipation in the friction of bulk molecular solids.

  16. Friction welding of bulk metallic glasses to different ones

    International Nuclear Information System (INIS)

    Shoji, Takuo; Kawamura, Yoshihito; Ohno, Yasuhide

    2004-01-01

    For application of bulk metallic glasses (BMGs) as industrial materials, it is necessary to establish the metallurgical bonding technology. The BMGs exhibit high-strain-rate superplasticity in the supercooled liquid state. It has been reported that bulk metallic glasses were successfully welded together by friction, pulse-current, explosion and electron-beam methods. In this study, friction welding of the BMGs to different ones were tried for Pd 40 Ni 40 P 20 , Pd 40 Cu 30 P 20 Ni 10 , Zr 55 Cu 30 Al 10 Ni 5 and Zr 41 Be 23 Ti 14 Cu 12 Ni 10 BMGs. Successful welding was obtained in the combinations of the Pd 40 Ni 40 P 20 and Pd 40 Cu 30 P 20 Ni 10 BMGs, and the Zr 55 Cu 30 Al 10 Ni 5 and Zr 41 Be 23 Ti 14 Cu 12 Ni 10 ones. No crystallization was observed and no visible defect was recognized in the interface. The joining strength of the welded BMGs was the same as that of the parent BMG or more. BMGs seem to be successfully welded to the different ones with a difference below about 50 K in glass transition temperature

  17. Interlayer excitons in a bulk van der Waals semiconductor.

    Science.gov (United States)

    Arora, Ashish; Drüppel, Matthias; Schmidt, Robert; Deilmann, Thorsten; Schneider, Robert; Molas, Maciej R; Marauhn, Philipp; Michaelis de Vasconcellos, Steffen; Potemski, Marek; Rohlfing, Michael; Bratschitsch, Rudolf

    2017-09-21

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe 2 , we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.Excitons, quasi-particles of bound electron-hole pairs, are at the core of the optoelectronic properties of layered transition metal dichalcogenides. Here, the authors unveil the presence of interlayer excitons in bulk van der Waals semiconductors, arising from strong localization and spin-valley coupling of charge carriers.

  18. Three-dimensional quantitation of pediatric tumor bulk

    International Nuclear Information System (INIS)

    Eggli, K.D.; Close, P.; Dillon, P.W.; Umlauf, M.; Hopper, K.D.

    1995-01-01

    Will 3-dimensional (3-D) volumetric determination improve our ability to assess tumor response to therapy? Forty-five CT scans of pediatric patients with unresectable thoracic or abdominal neoplasia were assessed for tumor bulk by the standard ''2-dimensional (2-D)'' volume formula (cross-sectional areaxlength) and by 3-D volumetric analysis. Thirty-two examinations were performed in follow-up, and percent change in tumor size was calculated. The 2-D volume calculation overestimated tumor volume by more than 50% on all but two examinations when the 2-D volume was compared with the 3-D volume. In 28% of follow-up examinations, the 2-D calculation of percent change differed by more than 10% from the 3-D volume. Fifteen percent differed by over 25%. This changed the response category of one patient from ''no response'' to ''partial response''. 3-D volumetric analysis, give more accurate assessment of the actual tumor bulk and its subsequent changes in size in response to therapy. (orig.)

  19. The desorptivity model of bulk soil-water evaporation

    Science.gov (United States)

    Clapp, R. B.

    1983-01-01

    Available models of bulk evaporation from a bare-surfaced soil are difficult to apply to field conditions where evaporation is complicated by two main factors: rate-limiting climatic conditions and redistribution of soil moisture following infiltration. Both factors are included in the "desorptivity model', wherein the evaporation rate during the second stage (the soil-limiting stage) of evaporation is related to the desorptivity parameter, A. Analytical approximations for A are presented. The approximations are independent of the surface soil moisture. However, calculations using the approximations indicate that both soil texture and soil moisture content at depth significantly affect A. Because the moisture content at depth decreases in time during redistribution, it follows that the A parameter also changes with time. Consequently, a method to calculate a representative value of A was developed. When applied to field data, the desorptivity model estimated cumulative evaporation well. The model is easy to calculate, but its usefulness is limited because it requires an independent estimate of the time of transition between the first and second stages of evaporation. The model shows that bulk evaporation after the transition to the second stage is largely independent of climatic conditions.

  20. Detailed balance theory of excitonic and bulk heterojunction solar cells

    Science.gov (United States)

    Kirchartz, Thomas; Mattheis, Julian; Rau, Uwe

    2008-12-01

    A generalized solar cell model for excitonic and classical bipolar solar cells describes the combined transport and interaction of electrons, holes, and excitons in accordance with the principle of detailed balance. Conventional inorganic solar cells, single-phase organic solar cells and bulk heterojunction solar cells, i.e., nanoscale mixtures of two organic materials, are special cases of this model. For high mobilities, the compatibility with the principle of detailed balance ensures that our model reproduces the Shockley-Queisser limit irrespective of how the energy transport is achieved. For less ideal devices distinct differences become visible between devices that are described by linear differential equations and those with nonlinear effects, such as a voltage-dependent collection in bipolar p-i-n -type devices. These differences in current-voltage characteristics are also decisive for the validity of the reciprocity theorem between photovoltaic quantum efficiency and electroluminescent emission. Finally, we discuss the effect of band offset at the heterointerface in a bulk heterojunction cell and the effect of the average distances between these heterointerfaces on the performance of a solar cell in order to show how our detailed balance model includes also these empirically important quantities.

  1. Processing of bulk Bi-2223 high-temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek

    2005-12-01

    Full Text Available The Bi2Sr2Ca2Cu3 O10+x (Bi-2223 is one of the main high temperature superconductors for applications. One of these applications is the Superconductor Fault Current Limiter (SCFCL, which is a very promising high temperature superconducting device. SCFCL's can be improved by using bulk superconductors with high critical currents, which requires a sufficiently dense and textured material. In the present work, a process for improving the microstructure of Bi-2223 bulk samples is investigated. Pressed precursor blocks are processed by sintering with a further partial melting step, in order to enhance the Bi-2223 grain texture and to healing cracks induced by pressing. In order to improve the microstructure, the precursor is mixed with silver powder before pressing. Samples with and without silver powder have been studied, with the aim of investigating the influence of silver on the microstructure evolution. The phase contents and the microstructure obtained have been analyzed through XRD and SEM/EDS. The electromagnetic characterization has been performed by Magnetic Susceptibility Analysis. We present and discuss the process and the properties of the superconducting blocks. High fractions of textured Bi-2223 grains have been obtained.

  2. Grain bulk density measurement based on wireless network

    Directory of Open Access Journals (Sweden)

    Wu Fangming

    2017-01-01

    Full Text Available To know the accurate quantity of stored grain, grain density sensors must be used to measure the grain’s bulk density. However, multi-sensors should be inserted into the storage facility, to quickly collect data during the inventory checking of stored grain. In this study, the ZigBee and Wi-Fi coexistence network’s ability to transmit data collected by density sensors was investigated. A system consisting of six sensor nodes, six router nodes, one gateway and one Android Pad was assembled to measure the grain’s bulk density and calculate its quantity. The CC2530 chip with ZigBee technology was considered as the core of the information processing, and wireless nodes detection in sensor, and router nodes. ZigBee worked in difference signal channel with Wi-Fi to avoid interferences and connected with Wi-Fi module by UART serial communications interfaces in gateway. The Android Pad received the measured data through the gateway and processed this data to calculate quantity. The system enabled multi-point and real-time parameter detection inside the grain storage. Results show that the system has characteristics of good expansibility, networking flexibility and convenience.

  3. Bulk Electric Load Cost Calculation Methods: Iraqi Network Comparative Study

    Directory of Open Access Journals (Sweden)

    Qais M. Alias

    2016-09-01

    Full Text Available It is vital in any industry to regain the spent capitals plus running costs and a margin of profits for the industry to flourish. The electricity industry is an everyday life touching industry which follows the same finance-economic strategy. Cost allocation is a major issue in all sectors of the electric industry, viz, generation, transmission and distribution. Generation and distribution service costing’s well documented in the literature, while the transmission share is still of need for research. In this work, the cost of supplying a bulk electric load connected to the EHV system is calculated. A sample basic lump-average method is used to provide a rough costing guide. Also, two transmission pricing methods are employed, namely, the postage-stamp and the load-flow based MW-distance methods to calculate transmission share in the total cost of each individual bulk load. The three costing methods results are then analyzed and compared for the 400kV Iraqi power grid considered for a case study.

  4. Electrochemical corrosion behavior of carbon steel with bulk coating holidays

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vol% NaCl aqueous solution.The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosionpotential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.

  5. Organization of bulk power markets: A concept paper

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, E.; Stoft, S. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

    1995-12-01

    The electricity industry in the US today is at a crossroads. The restructuring debate going on in most regions has made it clear that the traditional model of vertically integrated firms serving defined franchise areas and regulated by state commissions may not be the pattern for the future. The demands of large customers seeking direct access to power markets, the entry of new participants, and proposed reforms of the regulatory process all signify a momentum for fundamental change in the organization of the industry. This paper addresses electricity restructuring from the perspective of bulk power markets. The authors focus attention on the organization of electricity trade and the various ways it has been and might be conducted. Their approach concentrates on conceptual models and empirical case studies, not on specific proposals made by particular utilities or commissions. They review literature in economics and power system engineering that is relevant to the major questions. The objective is to provide conceptual background to industry participants, e.g. utility staff, regulatory staff, new entrants, who are working on specific proposals. While they formulate many questions, they do not provide definitive answers on most issues. They attempt to put the industry restructuring dialogue in a neutral setting, translating the language of economists for engineers and vice versa. Towards this end they begin with a review of the basic economic institutions in the US bulk power markets and a summary of the engineering practices that dominate trade today.

  6. Surface processing for bulk niobium superconducting radio frequency cavities

    Science.gov (United States)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  7. An estimate of the bulk viscosity of the hadronic medium

    Science.gov (United States)

    Sarwar, Golam; Chatterjee, Sandeep; Alam, Jane

    2017-05-01

    The bulk viscosity (ζ) of the hadronic medium has been estimated within the ambit of the Hadron Resonance Gas (HRG) model including the Hagedorn density of states. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the ζ of the hadronic matter up to a relaxation time. We study the influence of the hadronic spectrum on ζ and find its correlation with the conformal symmetry breaking measure, ε -3P. We estimate ζ along the contours with constant, S/{N}B (total entropy/net baryon number) in the T-μ plane (temperature-baryonic chemical potential) for S/{N}B=30,45 and 300. We also assess the value of ζ on the chemical freeze-out curve for various centers of mass energy (\\sqrt{{s}{NN}}) and find that the bulk viscosity to entropy density ratio, \\zeta /s is larger in the energy range of the beam energy scan program of RHIC, low energy SPS run, AGS, NICA and FAIR, than LHC energies.

  8. 5 MJ flywheel based on bulk HTS magnetic suspension

    Science.gov (United States)

    Poltavets, V.; Kovalev, K.; Ilyasov, R.; Glazunov, A.; Maevsky, V.; Verzbitsky, L.; Akhmadyshev, V.; Shikov, A.

    2014-05-01

    Nowadays the flywheel energy storage systems (FES) are developed intensively as uninterruptible power supply (UPS) devices for on-land and transport (especially airborne) applications worldwide. This work is devoted to the FES with magnetic suspension on the base of bulk HTS YBCO elements and permanent magnets. The developed FES is intended to be used as UPS in Russian atomic industry in case of an emergency. For the successful design of the FES the following questions should be solved: design of the motor/generator, design of the rotor (flywheel), design of the bearing system, design of the control system and system of power load matching, design of the cooling system. The developed small-scale FES with the stored energy 0.5 MJ was used to solve these basic questions. The elaborated FES consists of the synchronous electric machine with permanent magnets, the solid flywheel with axial magnetic suspension on the base of YBCO bulks and permanent magnets, the system of control and power load matching, and the system of liquid nitrogen cooling. The results of theoretical modeling of different schematics of magnetic suspension and experimental investigations of the constructed FES are presented. The design of the future full-scale FES with the stored energy ~5 MJ and output power up to 100 kW is described. The test results of the flywheel rotor and HTS magnetic suspension of 5 MJ FES are presented. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry"

  9. Magnetizing of permanent magnet using HTS bulk magnet

    International Nuclear Information System (INIS)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2011-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole containing the HTS bulk magnet, generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnetic plates inversely with various overlap distances between the tracks of the HTS bulk magnet. The magnetic field of the 'rewritten' magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated. (author)

  10. Ectopic expression of dentin sialoprotein during amelogenesis hardens bulk enamel.

    Science.gov (United States)

    White, Shane N; Paine, Michael L; Ngan, Amanda Y W; Miklus, Vetea G; Luo, Wen; Wang, HongJun; Snead, Malcolm L

    2007-02-23

    Dentin sialophosphpoprotein (Dspp) is transiently expressed in the early stage of secretory ameloblasts. The secretion of ameloblast-derived Dspp is short-lived, correlates to the establishment of the dentinoenamel junction (DEJ), and is consistent with Dspp having a role in producing the specialized first-formed harder enamel adjacent to the DEJ. Crack diffusion by branching and dissipation within this specialized first-formed enamel close to the DEJ prevents catastrophic interfacial damage and tooth failure. Once Dspp is secreted, it is subjected to proteolytic cleavage that results in two distinct proteins referred to as dentin sialoprotein (Dsp) and dentin phosphoprotein (Dpp). The purpose of this study was to investigate the biological and mechanical contribution of Dsp and Dpp to enamel formation. Transgenic mice were engineered to overexpress either Dsp or Dpp in their enamel organs. The mechanical properties (hardness and toughness) of the mature enamel of transgenic mice were compared with genetically matched and age-matched nontransgenic animals. Dsp and Dpp contributions to enamel formation greatly differed. The inclusion of Dsp in bulk enamel significantly and uniformly increased enamel hardness (20%), whereas the inclusion of Dpp weakened the bulk enamel. Thus, Dsp appears to make a unique contribution to the physical properties of the DEJ. Dsp transgenic animals have been engineered with superior enamel mechanical properties.

  11. Cohesion and device reliability in organic bulk heterojunction photovoltaic cells

    KAUST Repository

    Brand, Vitali

    2012-04-01

    The fracture resistance of P3HT:PC 60BM-based photovoltaic devices are characterized using quantitative adhesion and cohesion metrologies that allow identification of the weakest layer or interface in the device structure. We demonstrate that the phase separated bulk heterojunction layer is the weakest layer and report quantitative cohesion values which ranged from ∼1 to 20 J m -2. The effects of layer thickness, composition, and annealing treatments on layer cohesion are investigated. Using depth profiling and X-ray photoelectron spectroscopy on the resulting fracture surfaces, we examine the gradient of molecular components through the thickness of the bulk heterojunction layer. Finally, using atomic force microscopy we show how the topography of the failure path is related to buckling of the metal electrode and how it develops with annealing. The research provides new insights on how the molecular design, structure and composition affect the cohesive properties of organic photovoltaics. © 2011 Elsevier B.V. All rights reserved.

  12. Bulk sensitive hard x-ray photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Weber, N.; Escher, M.; Merkel, M. [Focus GmbH, Neukirchner Str. 2, D-65510 Hünstetten (Germany); Gloskovskii, A.; Drube, W. [DESY Photon Science, Deutsches Elektronen-Synchrotron, D-22603 Hamburg (Germany); Schneider, C. M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Fakultät f. Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-11-15

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. The high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.

  13. Purity Evaluation of Bulk Single Wall Carbon Nanotube Materials

    International Nuclear Information System (INIS)

    Dettlaff-Weglikowska, U.; Hornbostel, B.; Cech, J.; Roth, S.; Wang, J.; Liang, J.

    2005-01-01

    We report on our experience using a preliminary protocol for quality control of bulk single wall carbon nanotube (SWNT) materials produced by the electric arc-discharge and laser ablation method. The first step in the characterization of the bulk material is mechanical homogenization. Quantitative evaluation of purity has been performed using a previously reported procedure based on solution phase near-infrared spectroscopy. Our results confirm that this method is reliable in determining the nanotube content in the arc-discharge sample containing carbonaceous impurities (amorphous carbon and graphitic particles). However, the application of this method to laser ablation samples gives a relative purity value over 100 %. The possible reason for that might be different extinction coefficient meaning different oscillator strength of the laser ablation tubes. At the present time, a 100 % pure reference sample of laser ablation SWNT is not available, so we chose to adopt the sample showing the highest purity as a new reference sample for a quantitative purity evaluation of laser ablation materials. The graphitic part of the carbonaceous impurities has been estimated using X-ray diffraction of 1:1 mixture of nanotube material and C60 as an internal reference. To evaluate the metallic impurities in the as prepared and homogenized carbon nanotube soot inductive coupled plasma (ICP) has been used

  14. Effect of rare earth substitution in cobalt ferrite bulk materials

    International Nuclear Information System (INIS)

    Bulai, G.; Diamandescu, L.; Dumitru, I.; Gurlui, S.; Feder, M.; Caltun, O.F.

    2015-01-01

    The study was focused on the influence of small amounts of rare earth (RE=La, Ce, Sm, Gd, Dy, Ho, Er, Yb) addition on the microstructure, phase content and magnetic properties of cobalt ferrite bulk materials. The X-Ray diffraction measurements confirmed the formation of the spinel structure but also the presence of secondary phases of RE oxides or orthoferrite in small percentages (up to 3%). Density measurements obtained by Archimedes method revealed a ~1 g cm −3 decrease for the RE doped cobalt ferrite samples compared with stoichiometric one. Both the Mössbauer and Fourier Transform Infrared Spectrocopy analysis results confirmed the formation of the spinel phase. The saturation magnetization and coercive field values of the doped samples obtained by Vibrating Sample Magnetometry were close to those of the pure cobalt ferrite. For magnetostrictive property studies the samples were analyzed using the strain gauge method. Higher maximum magnetostriction coefficients were found for the Ho, Ce, Sm and Yb doped cobalt ferrite bulk materials as related to the stoichiometric CoFe 2 O 4 sample. Moreover, improved strain derivative was observed for these samples but at higher magnetic fields due to the low increase of the coercive field values for doped samples. - Highlights: • Substitution by a large number of rare earth elements was investigated. • First reported results on magnetostriction measurements of RE doped cobalt ferrite. • The doped samples presented an increased porosity and a decreased grain size. • Increased magnetostrctive response was observed for several doped samples

  15. Magnetic levitation systems using a high-Tc superconducting bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Ohsaki, Hiroyuki [Dept. of Electrical Engineering, Univ. of Tokyo (Japan); Kitahara, Hirotaka [Dept. of Electrical Engineering, Univ. of Tokyo (Japan); Masada, Eisuke [Dept. of Electrical Engineering, Univ. of Tokyo (Japan)

    1996-12-31

    Recent development of high-performance high-Tc bulk superconductors is making their application for electromagnetic force use feasible. We have studied electromagnetic levitation systems using high-Tc bulk superconducting material. In this paper, after an overview of superconducting magnetic levitation systems, with an emphasis on high-Tc bulk superconductor applications, experimental results of a high-Tc bulk EMS levitation and FEM analysis results of magnetic gradient levitation using bulk superconductor are described. Problems to be solved for their application are also discussed. (orig.)

  16. Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation.

    Science.gov (United States)

    Benetti, A R; Havndrup-Pedersen, C; Honoré, D; Pedersen, M K; Pallesen, U

    2015-01-01

    The bulk-filling of deep, wide dental cavities is faster and easier than traditional incremental restoration. However, the extent of cure at the bottom of the restoration should be carefully examined in combination with the polymerization contraction and gap formation that occur during the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk-fill materials produced a significantly larger depth of cure and polymerization contraction. Although most of the bulk-fill materials exhibited a gap formation similar to that of the conventional resin composite, two of the low-viscosity bulk-fill resin composites, x-tra base and Venus Bulk Fill, produced larger gaps.

  17. Fracture toughness of Dy123 low porosity bulks at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Murakami, A.; Otaka, K.; Miura, T.; Iwamoto, A.

    2011-01-01

    Fracture toughness values were measured for Dy123 bulks. Fracture toughness was improved by reducing porosity. Fracture toughness values at 77 K were higher than those at room temperature. Fracture toughness was also improved by Ag addition. In order to evaluate the fracture toughness of DyBa 2 Cu 3 O x (Dy123) low porosity bulks, bending tests of V-notched specimens cut from the bulks were carried out. Fracture toughness evaluations of a conventional Dy123 bulk which had pores were also carried out and effects of elimination of pores on the fracture toughness were investigated. Fracture toughness values at 77 K of the low porosity bulks were higher than those of the porous bulk. These fracture toughness values at 77 K were higher than the values at room temperature. Fracture toughness of the low porosity bulk was improved by Ag addition.

  18. High temperature superconductor bulk materials. Fundamentals - processing - properties control - application aspects

    International Nuclear Information System (INIS)

    Krabbes, G.; Fuchs, G.; Canders, W.R.; May, H.; Palka, R.

    2006-01-01

    This book presents all the features of bulk high temperature superconducting materials. Starting from physical and chemical fundamentals, the authors move on to portray methods and problems of materials processing, thoroughly working out the characteristic properties of bulk superconductors in contrast to long conductors and films. The authors provide a wide range of specific materials characteristics with respect to the latest developments and future applications guiding from fundamentals to practical engineering examples. This book contains the following chapters: 1. Fundamentals 2. Growth and melt processing of YBCO 3. Pinning-relevant defects in bulk YBCO 4. Properties of bulk YBCO 5. Trapped fields 6. Improved YBCO based bulk superconductors and functional elements 7. Alternative systems 8. Peak effect 9. Very high trapped fields in YBCO permanent magnets 10. Engineering aspects: Field distribution in bulk HTSC 11. Inherently stable superconducting magnetic bearings 12. Application of bulk HTSCs in electromagnetic energy converters 13. Applications in magnet technologies and power supplies

  19. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    OpenAIRE

    Koop, G.; Dik, N.; Nielen, M.; Lipman, L.J.A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms, 3 bulk milk samples were collected at intervals of 2 wk. The samples were cultured for SPC, coliform count, and staphylococcal count and for the presence of Staphylococcus aureus. Furthermore, SCC ...

  20. Progress of the Hanford Bulk Vitrification Project ICVTM Testing Program

    International Nuclear Information System (INIS)

    Witwer, K.S.; Woolery, D.W.; Dysland, E.J.

    2006-01-01

    In June 2004, the Bulk Vitrification Project was initiated with the intent to engineer, construct and operate a full-scale bulk vitrification pilot-plant to treat low-activity tank waste from Hanford tank 241-S-109. The project, managed by CH2M HILL Hanford Group, Inc., and performed by AMEC Earth and Environmental, Inc. (AMEC), will develop and operate a full-scale demonstration facility to exhibit the effectiveness of the bulk vitrification process under actual operating conditions. Since project initiation, testing has been undertaken using crucible-scale, 1/6 linear (engineering) scale, and full-scale vitrification equipment. Crucible-scale testing, coupled with engineering-scale testing, helps establish process limitations of selected glass formulations. Full-scale testing provides critical design verification of the In Container Vitrification (ICV) TM process both prior to and during operation of the demonstration facility. Beginning in late 2004, several full-scale tests have been performed at AMEC's test site, located adjacent to the U.S. Department of Energy's Hanford Site, in Richland, WA. Early testing involved verification of melt startup methodology, followed by subsequent full-melt testing to validate critical design parameters and demonstrate the 'Bottom-Up, Feed While Melt' process. As testing has progressed, design improvements have been identified and incorporated into each successive test. Full scale testing at AMEC's test site is currently scheduled to complete in 2006, with continued full-scale operational testing at the demonstration facility on the Hanford Site starting in 2007. Additional engineering scale testing will validate recommended glass formulations that have been provided by the Pacific Northwest National Laboratory (PNNL). This testing is expected to continue through 2006. This paper discusses the progress of the full-scale and engineering scale testing performed to date. Crucible-scale testing, a critical step in developing