WorldWideScience

Sample records for zr-6 critical assembly

  1. Measurement of the neutron spectrum of the Big Ten critical assembly by lithium-6 spectrometry

    International Nuclear Information System (INIS)

    De Leeuw-Gierts, G.; De Leeuw, S.; Hansen, G.E.; Helmick, H.H.

    1979-01-01

    The central neutron-flux spectrum of the Los Alamos Scientific Laboratory's critical assembly, Big Ten, was measured with a 6 Li spectrometer and techniques developed at the Centre d'Etude de L'Energie Nucleaire, Mol, as part of an experimental program to establish the characteristics of Big Ten

  2. Measurement of the neutron spectrum of the Big Ten critical assembly by lithium-6 spectrometry

    International Nuclear Information System (INIS)

    Leeuw-Gierts, G. de; Leeuw, S. de

    1980-01-01

    The central neutron-flux spectrum of the Los Alamos Scientific Laboratory's critical assembly, Big Ten, was measured with a 6 Li spectrometer and techniques developed at the Centre d'Etude de l'Energie Nucleaire, Mol, as part of an experimental program to establish the characteristics of Big Ten

  3. Microstructural characterization of LaB6-ZrB2 eutectic composites

    International Nuclear Information System (INIS)

    Wang Shengchang; Wei, W.J.; Zhang Litong

    2003-01-01

    Detail microstructure of LaB 6 -ZrB 2 composites has been characterized by TEM and HRTEM. The directionally solidified ZrB 2 fibers in LaB 6 matrix near LaB 6 -ZrB 2 eutectics present at least three growing relationship systems. In addition to previous report of [001]LaB 6 / [0001]ZrB 2 relationship, [0 anti 11]LaB 6 / [0001]ZrB 2 and [1 anti 20]LaB 6 / [0001]ZrB 2 . were identified. Different with [001]LaB 6 / [0001]ZrB 2 system, the interfaces of [0 anti 11]LaB 6 / [0001]ZrB 2 and [1 anti 20]LaB 6 / [0001]ZrB 2 . show non-coherent and clean interfaces. There is neither glassy phase nor reaction products found at the interfaces (orig.)

  4. Stress effect on the critical current of Ti-Nb-Zr-Ta multifilamentary superconductors

    International Nuclear Information System (INIS)

    Monju, Yoshiyuki; Tatara, Isamu

    1978-01-01

    The tensile behaviour at R.T., 77K, 4.2K and the degradation of the critical current with stress have been measured on multifilamentary Ti-Nb-Zr-Ta alloy superconductors. The assembly of the stress effect apparatus is as follows; At the center of the 60KOe superconducting solenoid coil, sample wire is hold around an FRP spool and the wire ends are gripped to the load train. Current is supplied through helium vapourcooled flexible leads up to 2000 A. It was clear that a definite degradation of the critical current with stress was not observed up to the stress equal to one third of the fracture stress at 4.2K. This stress value should be defined the maximum allowable stress of alloy superconductors examined from stress effects. (author)

  5. Research and design calculation of multipurpose critical assembly using moderated light water and low enriched fuel from 1.6 to 5.0% U-235

    International Nuclear Information System (INIS)

    Nguyen Kien Cuong; Vo Doan Hai Dang; Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Minh Tuan; Nguyen Manh Hung; Pham Quang Huy; Tran Quoc Duong; Tran Tri Vien

    2015-01-01

    Basing on the idea in ??using fuel of nuclear power plants such as PWR (AP-1000) and VVER-1000 with light water as moderation, design calculation of critical assembly was performed to confirm the possibility of using these fuels. Designed critical assembly has simple structure consisting of low enriched fuel from 1.6% to 5% U-235; water has functions as cooling, biological protection and control. Critical assembly is operated at nominal power 100 W with fuel pitch about 2.0 cm. Applications of the critical assembly are quite abundant in basic research, education and training with low investment cost compare with research reactor and easy in operation. So critical assembly can be used for university or training centre for nuclear engineering training. Main objectives of the project are: design calculation in neutronics, thermal hydraulics and safety analysis for critical configuration benchmarks using low enriched fuel; design in mechanical and auxiliary systems for critical assembly; determine technical specifications and estimate construction, installation cost of critical assembly. The process of design, fabrication, installation and construction of critical assembly will be considered with different implementation phases and localization capabilities in installation of critical assembly is highly feasibility. Cost estimation of construction and installation of critical assembly was implemented and showed that investment cost for critical assembly is much lower than research reactor and most of components, systems of critical assembly can be localized with current technique quality of the country. (author)

  6. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    KAUST Repository

    Wang, Hao; Dong, Xinglong; Lin, Junzhong; Teat, Simon J.; Jensen, Stephanie; Cure, Jeremy; Alexandrov, Eugeny V.; Xia, Qibin; Tan, Kui; Wang, Qining; Olson, David H.; Proserpio, Davide M.; Chabal, Yves J.; Thonhauser, Timo; Sun, Junliang; Han, Yu; Li, Jing

    2018-01-01

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  7. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    KAUST Repository

    Wang, Hao

    2018-04-25

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  8. Magnesium hexafluoridozirconates MgZrF{sub 6}.5H{sub 2}O, MgZrF{sub 6}.2H{sub 2}O, and MgZrF{sub 6}. Structures, phase transitions, and internal mobility of water molecules

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimenko, Andrey V.; Gaivoronskaya, Kseniya A.; Slobodyuk, Arseny B.; Didenko, Nina A. [Institute of Chemistry, Russian Academy of Sciences, Vladivostok (Russian Federation)

    2017-12-04

    The MgZrF{sub 6}.nH{sub 2}O (n = 5, 2 and 0) compounds were studied by the methods of X-ray diffraction and {sup 19}F, MAS {sup 19}F, and {sup 1}H NMR spectroscopy. At room temperature, the compound MgZrF{sub 6}.5H{sub 2}O has a monoclinic C-centered unit cell and is composed of isolated chains of edge-sharing ZrF{sub 8} dodecahedra reinforced with MgF{sub 2}(H{sub 2}O){sub 4} octahedra and uncoordinated H{sub 2}O molecules and characterized by a disordered system of hydrogen bonds. In the temperature range 259 to 255 K, a reversible monoclinic <-> two-domain triclinic phase transition is observed. The phase transition is accompanied with ordering of hydrogen atoms positions and the system of hydrogen bonds. The structure of MgZrF{sub 6}.2H{sub 2}O comprises a three-dimensional framework consisting of chains of edge-sharing ZrF{sub 8} dodecahedra linked to each other through MgF{sub 4}(H{sub 2}O){sub 2} octahedra. The compound MgZrF{sub 6} belongs to the NaSbF{sub 6} type and is built from regular ZrF{sub 6} and MgF{sub 6} octahedra linked into a three-dimensional framework through linear Zr-F-Mg bridges. The peaks in {sup 19}F MAS spectra were attributed to the fluorine structural positions. The motions of structural water molecules were studied by variable-temperature {sup 1}H NMR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Dong, Xinglong [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia). Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division; Lin, Junzhong [Peking University, Beijing (China). College of Chemistry and Molecular Engineering; Teat, Simon J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Jensen, Stephanie [Wake Forest University, Winston-Salem, NC (United States). Department of Physics; Cure, Jeremy [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Alexandrov, Eugeny V. [Samara University (Russia). Samara Center for Theoretical Materials Science (SCTMS; Xia, Qibin [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; South China University of Technology, Guangzhou (China). School of Chemistry and Chemical Engineering; Tan, Kui [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Wang, Qining [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Olson, David H. [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Proserpio, Davide M. [Samara University (Russia). Samara Center for Theoretical Materials Science (SCTMS; Università degli Studi di Milano, Milano (Italy). Dipartimento di Chimica; Chabal, Yves J. [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Thonhauser, Timo [Wake Forest University, Winston-Salem, NC (United States). Department of Physics; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Department of Chemistry; Sun, Junliang [Peking University, Beijing (China). College of Chemistry and Molecular Engineering; Han, Yu [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia). Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division; Li, Jing [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology

    2018-05-01

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  10. Reflector-moderated critical assemblies

    International Nuclear Information System (INIS)

    Paxton, H.C.; Jarvis, G.A.; Byers, C.C.

    1975-07-01

    Experiments with reflector-moderated critical assemblies were part of the Rover Program at the Los Alamos Scientific Laboratory (LASL). These assemblies were characterized by thick D 2 O or beryllium reflectors surrounding large cavities that contained highly enriched uranium at low average densities. Because interest in this type of system has been revived by LASL Plasma Cavity Assembly studies, more detailed descriptions of the early assemblies than had been available in the unclassified literature are provided. (U.S.)

  11. The factors affecting the 95Nb/95Zr and 140La/95Zr-cooling time correlations

    International Nuclear Information System (INIS)

    Haddad, Kh

    2005-03-01

    The factors affecting the 95 Nb/ 95 Zr and 140 La/ 95 Zr-cooling time correlations were studied by analysing the gamma scanning results of the IRT fuel assemblies. the results showed that, these ratios are stable along the fuel assembly regardless of the position of the measured section. This allow to limit gamma scanning of the whole assembly on the measurement of the central section. The effects of irradiation history and conditions, burnup, control rods on the 95 Nb/ 95 Zr and 140 La/ 95 Zr-cooling time correlations were studied. The results showed the following: the identical irradiation history and conditions during the last irradiation, whose period is comparable with half lives of the used fission products, is fundamental condition for fission product ratio-cooling time correlation. The background resulting from burnup cause high systematic error in the measured results and it does not cause arbitrary error; whereas control rods cause high arbitrary error. The 95 Nb/ 95 Zr-cooling time correlation is more sensitive than the 140 La/ 95 Zr-cooling time correlation. (author)

  12. Investigation of microstructure and properties of ultrathin graded ZrNx self-assembled diffusion barrier in deep nano-vias prepared by plasma ion immersion implantation

    Science.gov (United States)

    Zou, Jianxiong; Liu, Bo; Lin, Liwei; Lu, Yuanfu; Dong, Yuming; Jiao, Guohua; Ma, Fei; Li, Qiran

    2018-01-01

    Ultrathin graded ZrNx self-assembled diffusion barriers with controllable stoichiometry was prepared in Cu/p-SiOC:H interfaces by plasma immersion ion implantation (PIII) with dynamic regulation of implantation fluence. The fundamental relationship between the implantation fluence of N+ and the stoichiometry and thereby the electrical properties of the ZrNx barrier was established. The optimized fluence of a graded ZrN thin film with gradually decreased Zr valence was obtained with the best electrical performance as well. The Cu/p-SiOC:H integration is thermally stable up to 500 °C due to the synergistic effect of Cu3Ge and ZrNx layers. Accordingly, the PIII process was verified in a 100-nm-thick Cu dual-damascene interconnect, in which the ZrNx diffusion barrier of 1 nm thick was successfully self-assembled on the sidewall without barrier layer on the via bottom. In this case, the via resistance was reduced by approximately 50% in comparison with Ta/TaN barrier. Considering the results in this study, ultrathin ZrNx conformal diffusion barrier can be adopted in the sub-14 nm technology node.

  13. Microstructural and thermophysical properties of U–6 wt.%Zr alloy for fast reactor application

    International Nuclear Information System (INIS)

    Kaity, Santu; Banerjee, Joydipta; Nair, M.R.; Ravi, K.; Dash, Smruti; Kutty, T.R.G.; Kumar, Arun; Singh, R.P.

    2012-01-01

    Highlights: ► Characterization of U–6%Zr alloy prepared by injection casting route. ► Martensitic to non-martensitic transformation of U–6%Zr alloy occurs at 843 K. ► Specific heat versus temperature curve shows a phase transition at 845 K. ► Average coefficient of thermal expansion is 18.28 × 10 −6 K −1 (298–823 K). ► Hardness versus temperature plot shows a transition at 748 K. - Abstract: The microstructural and high temperature behavior of U–6 wt.%Zr alloy has been investigated in this study. U–6 wt.%Zr alloy sample for this study was prepared by following injection casting route. The thermophysical properties like coefficient of thermal expansion, specific heat, thermal conductivity of the above alloy were determined. The hot-hardness data of the U–6 wt.%Zr alloy was also generated from room temperature to 973 K. Apart from that, the fuel-clad chemical compatibility with T91 grade steel was also studied by diffusion couple experiment. No studies have been reported on U–6 wt.%Zr alloy. This paper aims at filling up the gap on characterization and thermophysical property evaluation of U–6 wt.%Zr alloy.

  14. Dynamical analysis of critical assembly CC-1

    International Nuclear Information System (INIS)

    Aleman Fernandez, J.R.

    1990-01-01

    The computer code CC-1, elaborated for the analysis of transients in Critical Assemblies is described. The results by the program are compared with the ones presented in the Safety Report for the Critical Assembly of ''La Quebrada'' Nuclear Research Centre (CIN). 7 refs

  15. Synthesis and hydration behavior of calcium zirconium aluminate (Ca7ZrAl6O18) cement

    International Nuclear Information System (INIS)

    Kang, Eun-Hee; Yoo, Jun-Sang; Kim, Bo-Hye; Choi, Sung-Woo; Hong, Seong-Hyeon

    2014-01-01

    Calcium zirconium aluminate (Ca 7 ZrAl 6 O 18 ) cements were prepared by solid state reaction and polymeric precursor methods, and their phase evolution, morphology, and hydration behavior were investigated. In polymeric precursor method, a nearly single phase Ca 7 ZrAl 6 O 18 was obtained at relatively lower temperature (1200 °C) whereas in solid state reaction, a small amount of CaZrO 3 coexisted with Ca 7 ZrAl 6 O 18 even at higher temperature (1400 °C). Unexpectedly, Ca 7 ZrAl 6 O 18 synthesized by polymeric precursor process was the large-sized and rough-shaped powder. The planetary ball milling was employed to control the particle size and shape. The hydration behavior of Ca 7 ZrAl 6 O 18 was similar to that of Ca 3 Al 2 O 6 (C3A), but the hydration products were Ca 3 Al 2 O 6 ·6H 2 O (C3AH6) and several intermediate products. Thus, Zr (or ZrO 2 ) stabilized the intermediate hydration products of C3A

  16. Enhanced flux pinning in MOCVD-YBCO films through Zr additions: systematic feasibility studies

    International Nuclear Information System (INIS)

    Aytug, T; Paranthaman, M; Specht, E D; Zhang, Y; Kim, K; Zuev, Y L; Cantoni, C; Goyal, A; Christen, D K; Maroni, V A; Chen, Y; Selvamanickam, V

    2010-01-01

    Systematic effects of Zr additions on the structural and flux pinning properties of YBa 2 Cu 3 O 7-δ (YBCO) films deposited by metal-organic chemical vapor deposition (MOCVD) have been investigated. Detailed characterization, conducted by coordinated transport, x-ray diffraction, scanning and transmission electron microscopy analyses, and imaging Raman microscopy have revealed trends in the resulting property/performance correlations of these films with respect to varying mole percentages (mol%) of added Zr. For compositions ≤7.5 mol%, Zr additions lead to improved in-field critical current density, as well as extra correlated pinning along the c-axis direction of the YBCO films via the formation of columnar, self-assembled stacks of BaZrO 3 nanodots.

  17. Structural stability of ternary C22–Zr6X2Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and C22–Zr6Sn2T′ (T′=Fe, Co, Ni, Cu) compounds

    International Nuclear Information System (INIS)

    Colinet, Catherine; Crivello, Jean-Claude; Tedenac, Jean-Claude

    2013-01-01

    The crystal and electronic structures, and the thermodynamic properties of Zr 6 X 2 Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and Zr 6 Sn 2 T′ (T′=Fe, Co, Ni, Cu) ternary compounds in the Fe 2 P-type structure have been investigated by means of first principle calculations. The calculated structural parameters are in good agreement with the experimental data. The total electronic densities of states as well as the Bader charges of the atoms have been computed. Both electronic and size effects allow to explain the stability of the ternary Zr 6 X 2 Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and Zr 6 Sn 2 T′ (T′=Fe, Co, Ni, Cu) compounds. - Graphical abstract: Valence charge electronic localization function (ELF) calculated for Zr 6 Sb 2 Co compound. Display Omitted - Highlights: • Structural stability of Zr 6 X 2 T′ compounds (X: p element, T′: late transition metal) in the Fe 2 P-type structure. • First principles calculation of lattice parameters and enthalpies of formation. • Electronic densities of state in the series Zr 6 Sn 2 T′ (T′=Fe, Co, Ni, Cu). • Electronic densities of state in the series Zr 6 X 2 Co (X=Al, Ga, Sn, As, Sb, Bi, Te)

  18. The effect of aging on the critical current density in superconducting Nb-Ti-Zr alloys

    International Nuclear Information System (INIS)

    Ishida, Fumihiko; Doi, Toshio

    1979-01-01

    The effect of aging temperature, cold-reduction prior to aging, O 2 content and composition on the variation in the critical current density, J sub(c), by isothermal aging was investigated in heavily cold-worked Nb-Ti-Zr alloys on the Nb-Ti side. The results are summarized as follows: (1) When these alloys are aged isothermally at temperatures from 350 to 500 0 C, J sub(c) increases initially, reaches a maximum value and then decreases. Increase in J sub(c) of three orders of magnitude is possible as a result of aging. (2) The maximum value of J sub(c) on the isothermal aging curve becomes higher at a lower aging temperature, at a less cold-reduction prior to aging or with a higher O 2 content. (3) The J sub(c) of aged alloy becomes a maximum in composition containing 35 at%Nb, 60 to 65 at%Ti and less than 5 at%Zr. (4) The maximum value of J sub(c) was obtained for Nb-60.0 at%Ti-5.0 at%Zr alloy containing 1200 wt ppm O 2 , aged at 350 0 C for 330 h after 98.44% cold-reduction. The values of J sub(c) at 4.2 K were 2.4 x 10 9 A/m 2 at 5.0 T, 1.1 x 10 9 A/m 2 at 7.0 T and 3.0 x 10 8 A/m 2 at 9.0 T, respectively. The upper critical field of this specimen was 11.3 T at 4.2 K and its critical temperature was 8.6 K. (author)

  19. Mononuclear Amido and Binuclear Imido Zirconium Complexes Supported by Dibenzotetraaza[14]annulene Ligands. X-ray Structure of [(Me(4)taa)Zr(&mgr;-NR)(2)Zr(NHR)(2)] (R = Bu(t) or 2,6-C(6)H(3)Me(2)).

    Science.gov (United States)

    Nikonov, Georgii I.; Blake, Alexander J.; Mountford, Philip

    1997-03-12

    Reaction of 2 equiv of Li[NH-2,6-C(6)H(3)R(2)] with [(Me(4)taa)ZrCl(2)] (Me(4)taaH(2) = tetramethyldibenzotetraaza[14]annulene) gives the bis(amido) derivatives [(Me(4)taa)Zr(NH-2,6-C(6)H(3)R(2))(2)] [R = Pr(i) (1) and Me (2)]. Addition of Me(4)taaH(2) to [Zr(N-2,6-C(6)H(3)Pr(i)(2))(NH-2,6-C(6)H(3)Pr(i)(2))(2)(py)(2)] also affords 1. The reaction of 2 equiv of aryl or alkyl amines H(2)NR with the bis(alkyl) complex [(Me(4)taa)Zr(CH(2)SiMe(3))(2)] is the most versatile method for preparing [(Me(4)taa)Zr(NHR)(2)] (R = 2,6-C(6)H(3)Pr(i)(2), 2,6-C(6)H(3)Me(2), Ph, or Bu(t)). Reaction of 1 equiv of Me(4)taaH(2) with the binuclear complexes [(Bu(t)NH)(2)Zr(&mgr;-NBu(t))(2)Zr(NHBu(t))(2)] or [(py)(HN-2,6-C(6)H(3)Me(2))(2)Zr(&mgr;-N-2,6-C(6)H(3)Me(2))(2)Zr(NH-2,6-C(6)H(3)Me(2))(2)(py)] gives the asymmetrically substituted derivatives [(Me(4)taa)Zr(&mgr;-NR)(2)Zr(NHR)(2)] [R = Bu(t) (6) or 2,6-C(6)H(3)Me(2) (8)], which have been crystallographically characterized.

  20. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Chen, Y; Shi, T; Liu, Y; Khatri, ND; Liu, J; Yao, Y; Xiong, X; Lei, C; Soloveichik, S; Galstyan, E; Majkic, G

    2013-01-21

    The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba2Cu3Ox film. By a modified MOCVD process,enhanced critical current densities have been achieved with high levels of Zr addition,including 3.83 MA cm(-2) in 15 at.% Zr- added 1.1 mu m thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/ 12 mm have been reached in (Gd,Y) BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape,corresponding to a pinning force value of 268 GN m(-3). The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second- phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met.

  1. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition

    International Nuclear Information System (INIS)

    Selvamanickam, V; Shi, T; Liu, Y; Khatri, N D; Liu, J; Yao, Y; Galstyan, E; Majkic, G; Chen, Y; Xiong, X; Lei, C; Soloveichik, S

    2013-01-01

    The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba 2 Cu 3 O x film. By a modified MOCVD process, enhanced critical current densities have been achieved with high levels of Zr addition, including 3.83 MA cm −2 in 15 at.% Zr-added 1.1 μm thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/12 mm have been reached in (Gd,Y)BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape, corresponding to a pinning force value of 268 GN m −3 . The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second-phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met. (paper)

  2. Full Core Criticality Modeling of Gas-Cooled Fast Reactor Using the SCALE6.0 and MCNP5 Code Packages

    International Nuclear Information System (INIS)

    Matijevic, M.; Jecmenica, R.; Pevec, D.; Trontl, K.

    2012-01-01

    The Gas-Cooled Fast Reactor (GFR) is one of the reactor concepts selected by the Generation IV International Forum (GIF) for the next generation of innovative nuclear energy systems. It was selected among a group of more than 100 prototypes and his commercial availability is expected by 2030. GFR has common goals of the rest GIF advanced reactor types: economy, safety, proliferation resistance, availability and sustainability. Several GFR fuel design concepts such as plates, rod pins and pebbles are currently being investigated in order to meet the high temperature constraints characteristic for a GFR working enviroment. In the previous study we have compared the fuel depletion results for heterogeneous GFR fuel assembly (FA), obtained with TRITON6 sequence of SCALE6.0 code system, with the MCNPX-CINDER90 and TRIPOLI-4-D codes. Present work is a continuation of neutronic criticality analysis of heterogeneous FA and full core configurations of a GFR concept using 3-D Monte Carlo codes KENO-VI/SCALE6.0 and MCNP5. The FA is based on a hexagonal mesh of fuel rods (uranium and plutonium carbide fuel, silicon carbide clad, helium gas coolant) with axial reflector thickness being varied for the purpose of optimization. Three reflector materials were analysed: zirconium carbide (ZrC), silicon carbide (SiC) and natural uranium. ZrC has been selected as a reflector material, having the best contribution to the neutron economy and to the reactivity of the core. The core safety parameters were also analysed: a negative temperature coefficient of reactivity was verified for the heavy metal fuel and coolant density loss. Criticality calculations of different FA active heights were performed and the reflector thickness was also adjusted. Finally, GFR full core criticality calculations using different active fuel rod heights and fixed ZrC reflector height were done to find the optimal height of the core. The Shannon entropy of the GFR core fission distribution was proved to be

  3. Surface Characterization of ZrO2/Zr Coating on Ti6Al4V and IN VITRO Evaluation of Corrosion Behavior and Biocompatibility

    Science.gov (United States)

    Wang, Ruoyun; Sun, Yonghua; He, Xiaojing; Gao, Yuee; Yao, Xiaohong

    Biocompatibility is crucial for implants. In recent years, numerous researches were conducted aiming to modify titanium alloys, which are the most extensively used materials in orthopedic fields. The application of zirconia in the biomedical field has recently been explored. In this study, the biological ZrO2 coating was synthesized on titaniumalloy (Ti6Al4V) substrates by a duplex-treatment technique combining magnetron sputtering with micro-arc oxidation (MAO) in order to further improve the corrosion resistance and biocompatibility of Ti6Al4V alloys. The microstructures and phase constituents of the coatings were characterized by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), the surface wettability was evaluated by contact angle measurements. The results show that ZrO2 coatings are porous with pore sizes less than 2μm and consist predominantly of the tetragonal ZrO2 (t-ZrO2) and cubic ZrO2(c-ZrO2) phase. Electrochemical tests indicate that the corrosion rate of Ti6Al4V substrates is appreciably reduced after surface treatment in the phosphate buffer saline (PBS). In addition, significantly improved cell adhesion and growth were observed from the ZrO2/Zr surface. Therefore, the hybrid approach of magnetron sputtering and MAO provides a surface modification for Ti6Al4V to achieve acceptable corrosion resistance and biocompatibility.

  4. Enhanced flux pinning in MOCVD-YBCO films through Zr additions : systematic feasibility studies.

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, T.; Paranthaman, M.; Specht, E. D.; Zhang, Y.; Kim, K.; Zuev, Y. L.; Cantoni, C.; Goyal, A.; Christen, D. K.; Maroni, V. A.; Chen, Y.; Selvamanickam, V.; ORNL; SuperPower, Inc.

    2010-01-01

    Systematic effects of Zr additions on the structural and flux pinning properties of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films deposited by metal-organic chemical vapor deposition (MOCVD) have been investigated. Detailed characterization, conducted by coordinated transport, x-ray diffraction, scanning and transmission electron microscopy analyses, and imaging Raman microscopy have revealed trends in the resulting property/performance correlations of these films with respect to varying mole percentages (mol%) of added Zr. For compositions {le} 7.5 mol%, Zr additions lead to improved in-field critical current density, as well as extra correlated pinning along the c-axis direction of the YBCO films via the formation of columnar, self-assembled stacks of BaZrO{sub 3} nanodots.

  5. Enhanced flux pinning in MOCVD-YBCO films through Zr additions: systematic feasibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, T; Paranthaman, M; Specht, E D; Zhang, Y; Kim, K; Zuev, Y L; Cantoni, C; Goyal, A; Christen, D K [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Maroni, V A [Argonne National Laboratory, Argonne, IL 60439 (United States); Chen, Y; Selvamanickam, V, E-mail: aytugt@ornl.go [SuperPower, Incorporated, 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2010-01-15

    Systematic effects of Zr additions on the structural and flux pinning properties of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films deposited by metal-organic chemical vapor deposition (MOCVD) have been investigated. Detailed characterization, conducted by coordinated transport, x-ray diffraction, scanning and transmission electron microscopy analyses, and imaging Raman microscopy have revealed trends in the resulting property/performance correlations of these films with respect to varying mole percentages (mol%) of added Zr. For compositions {<=}7.5 mol%, Zr additions lead to improved in-field critical current density, as well as extra correlated pinning along the c-axis direction of the YBCO films via the formation of columnar, self-assembled stacks of BaZrO{sub 3} nanodots.

  6. Determination of the equilibrium constant of FeZrCl6 formation from FeCl3 and ZrCl4

    International Nuclear Information System (INIS)

    Berdonosov, S.S.; Kharisov, B.I.; Nikitin, M.I.

    1992-01-01

    Equilibrium pressures of chlorine formed in the course of reaction FeCl 3 +ZrCl 4 ↔ FeZrCl 6 +0.5 Cl 2 were determined at the temperatures of 250-325 deg C. The values of equilibrium constant K p of the reaction mentioned at the temperatures of 250, 275, 300 and 325 deg were calculated, taking into consideration the determined values of p Cl2 and literature data on equilibrium pressures of ZrCl 4 and FeCl 3 vapours

  7. PEMBUATAN SERBUK U-6Zr DENGAN PENGKAYAAN URANIUM 19,75 % UNTUK BAHAN BAKAR REAKTOR RISET

    Directory of Open Access Journals (Sweden)

    Masrukan Masrukan

    2016-03-01

    Full Text Available ABSTRAK PEMBUATAN SERBUK PADUAN U-6Zr DENGAN PENGKAYAAN URANIUM 19,75 % UNTUK BAHAN BAKAR REAKTOR RISET. Telah dilakukan pembuatan serbuk paduan U-6Zr dengan pengkayaan 19,75 % untuk bahan bakar reaktor riset. Pembuatan bahan bakar U-6Zr ini dalam rangka mencari bahan bakar baru yang mempunyai densitas tinggi untuk mengganti bahan bakar yang sudah ada U3Si2-Al. Tujuan dari percobaan ini untuk mengetahui sifat-sifat serbuk paduan U- 6Zr yang diperoleh dari proses hydriding-dehydriding sebagai kandidat bahan bakar reaktor riset. Serbuk yang diperoleh dari proses hydriding-dehydriding dikenai pengujian, diantaranya pungujian komposisi kimia, densitas, kandungan hidrogen, fasa dan sifat termal. Hasil pengujian komposisi kimia menunjukkan beberapa unsur seperti Al, Ca, Cu, dan Ni melebihi batas yang diijinkan dimana masing-masing unsur terdapat sebesar 202,21 ppm; 214,05 ppm; 61,25 ppm dan 134,53 ppm. Pada pengujian diperolah densitas serbuk U-6Zr sebesar 13,58 g/cm3 dan pada pengujian kandungan hidrogen sisa diperoleh kandungan hidrogen sebesar 0,16 %. Untuk pengujian fasa, diperoleh fasa αU dan δU, sedangkan pada pengujian sifat termal yakni transformasi temperatur terdapat dua puncak yakni puncak pertama terjadi pada temperatur 274 hingga 311 oC dan puncak kedua terjadi pada temperatur 493 hingga 527oC. Puncak pertama terjadi reaksi endotermik dengan menyerap panas sebesar ∆H = 6,23 cal/g tetapi tidak terbentuk fasa baru, sedangkan puncak kedua terjadi reaksi eksotermik dengan mengeluarkan panas sebesar ∆H = -9.34 cal/g dan terbentuk fasa αZr. Sementara itu, dari pengujian kapasitas panas pada temperatur 34 hingga 75 oC, terjadinya penurunan nilai kapasitas panas yang disertai dengan penyerapan panas. Pada temperatur yang lebih tinggi hingga temperatur 437oC nilai kapasitas panas menjadi lebih kecil disertai pengeluaran panas. Reaksi termokimia antara Zr dengan hidrogen sisa menunjukkan terbentuknya fasa αZr yang diindikasikan oleh reaksi

  8. Tungsten--carbide critical assembly

    International Nuclear Information System (INIS)

    Hansen, G.E.; Paxton, H.C.

    1975-06-01

    The tungsten--carbide critical assembly mainly consists of three close-fitting spherical shells: a highly enriched uranium shell on the inside, a tungsten--carbide shell surrounding it, and a steel shell on the outside. Ideal critical specifications indicate a rather low computed value of k/sub eff/. Observed and calculated fission-rate distributions for 235 U, 238 U, and 237 Np are compared, and calculated leakage neutrons per fission in various energy groups are given. (U.S.)

  9. Criticality Analysis of SAMOP Subcritical Assembly

    International Nuclear Information System (INIS)

    Tegas-Sutondo; Syarip; Triwulan-Tjiptono

    2005-01-01

    A critically analysis has been performed for homogenous system of uranyl nitrate solution, as part of a preliminary design assessment on neutronic aspect of SAMOP sub-critical assembly. The analysis is intended to determine some critical parameters such as the minimum of critical dimension and critical mass for the desired concentration. As the basis of this analysis, it has been defined a fuel system with an enrichment of 20% for cylindrical geometry of both bare and graphite reflected of 30 cm thickness. The MCNP code has been utilized for this purpose, for variation of concentrations ranging from 150 g/l to 500 g/l. It is found that the best concentration giving the minimum geometrical dimension is around 400 g/l, for both the bare and reflected systems. Whilst the best one, of minimum critical mass is corresponding to the concentration of around 200 g/l with critical mass around 14.1 kg and 4.2 kg for the bare and reflected systems respectively. Based on the result of calculations, it is concluded that by taking into consideration of the critical limit, the SAMOP subcritical assembly is neutronically can be made. (author)

  10. Criticality calculations for a critical assembly, graphite moderate, using 20% enriched uranium

    International Nuclear Information System (INIS)

    Almeida Ferreira, A.C. de; Hukai, R.Y.

    1975-01-01

    The construction of a Zero Power Reactor (ZPR) at the Instituto de Energia Atomica in order to measure the neutron characteristics (parameters) of HTGR reactors is proposed. The necessary quantity fissile uranium for these measurements has been calculed. Criticality studies of graphite moderated critical assemblies containing thorium have been made and the critical mass of each of several typical commercial HTGR compositions has been calculated using computer codes HAMMER and CITATION. Assemblies investigated contained a central cylindrical core region, simulating a typical commercial HTGR composition, a uranium-graphite driver region and a outer pure graphite reflector region. It is concluded that a 10Kg inventory of fissile uranium will be required for a program of measurements utilizing each of the several calculated assemblies

  11. Los Alamos Critical Assemblies Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1981-06-01

    The Critical Assemblies Facility of the Los Alamos National Laboratory has been in existence for thirty-five years. In that period, many thousands of measurements have been made on assemblies of 235 U, 233 U, and 239 Pu in various configurations, including the nitrate, sulfate, fluoride, carbide, and oxide chemical compositions and the solid, liquid, and gaseous states. The present complex of eleven operating machines is described, and typical applications are presented

  12. ZPR-3 Assembly 6F : A spherical assembly of highly enriched uranium, depleted uranium, aluminum and steel with an average {sup 235}U enrichment of 47 atom %.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; McKnight, R. D; Schaefer, R. W.; Nuclear Engineering Division

    2010-09-30

    Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 6 consisted of six phases, A through F. In each phase a critical configuration was constructed to simulate a very simple shape such as a slab, cylinder or sphere that could be analyzed with the limited analytical tools available in the 1950s. In each case the configuration consisted of a core region of metal plates surrounded by a thick depleted uranium metal reflector. The average compositions of the core configurations were essentially identical in phases A - F. ZPR-3

  13. Application of SN and Monte Carlo codes to the SHEBA critical assemblies

    International Nuclear Information System (INIS)

    O'Dell, R.D.

    1993-01-01

    The Solution High-Energy Burst Assembly (SHEBA) at Los Alamos is a low-enriched (4.95 wt. %) aqueous uranyl fluoride solution critical assembly. There are two SHEBA configurations, both consisting of right circular cylinders with a central control rod. The first configuration, hereafter called the old SHEBA, had a fuel solution diameter of 54.6 cm and a measured critical solution height of 36.5 cm. An improved modification, hereafter called the new SHEBA, has a fuel solution diameter of 48.9 cm but since it is not yet operational, the critical solution height has not yet been measured. In this presentation the application of the discrete-ordinates (S N ) code TWODANT using Hansen-Roach cross sections and the MCNP Monte Carlo code using continuous-energy cross sections for calculating the critical solution heights for both the old and new SHEBA assemblies is described. The code's predictions are compared and it is shown that a single calculation with a standard computer code may yield misleading results, especially when using a Monte Carlo code

  14. Photoluminescence properties of Eu(3+)/ Sm(3+) activated CaZr4(PO4)6 phosphors.

    Science.gov (United States)

    Nair, Govind B; Dhoble, S J

    2016-09-01

    Solid state reaction method was employed for the synthesis of a series of CaZr4(PO4)6: Eu(3+)/Sm(3+) phosphors. The red-emitting CaZr4(PO4)6:Eu(3+) phosphors can be efficiently excited at 396 nm and thereby, exhibit a strong red luminescence predominantly corresponding to the electric dipole transition at 615 nm. Under 405 nm excitation, CaZr4(PO4)6:Sm(3+) phosphors display orange emission with color temperatures approximately around 2200 K. The acquired results reveal that CaZr4(PO4)6: RE(3+) (RE = Eu, Sm) phosphors could be potential candidates for red and orange emitting phosphor, respectively, for UV/blue-pump LEDs.

  15. Structural stability of ternary C22–Zr{sub 6}X{sub 2}Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and C22–Zr{sub 6}Sn{sub 2}T′ (T′=Fe, Co, Ni, Cu) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Colinet, Catherine, E-mail: ccolinet@simap.grenoble-inp.fr [Science et Ingénierie des Matériaux et Procédés, Grenoble INP, UJF, CNRS, 38402 Saint Martin d’Hères, Cedex (France); Crivello, Jean-Claude [ICMPE-CMTR, CNRS UMR-7182, 2-8 rue Henri Dunant, 94320 Thiais (France); Tedenac, Jean-Claude [Institut de Chimie Moléculaire et des Matériaux I.C.G., UMR-CNRS 5253, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5 (France)

    2013-09-15

    The crystal and electronic structures, and the thermodynamic properties of Zr{sub 6}X{sub 2}Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and Zr{sub 6}Sn{sub 2}T′ (T′=Fe, Co, Ni, Cu) ternary compounds in the Fe{sub 2}P-type structure have been investigated by means of first principle calculations. The calculated structural parameters are in good agreement with the experimental data. The total electronic densities of states as well as the Bader charges of the atoms have been computed. Both electronic and size effects allow to explain the stability of the ternary Zr{sub 6}X{sub 2}Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and Zr{sub 6}Sn{sub 2}T′ (T′=Fe, Co, Ni, Cu) compounds. - Graphical abstract: Valence charge electronic localization function (ELF) calculated for Zr{sub 6}Sb{sub 2}Co compound. Display Omitted - Highlights: • Structural stability of Zr{sub 6}X{sub 2}T′ compounds (X: p element, T′: late transition metal) in the Fe{sub 2}P-type structure. • First principles calculation of lattice parameters and enthalpies of formation. • Electronic densities of state in the series Zr{sub 6}Sn{sub 2}T′ (T′=Fe, Co, Ni, Cu). • Electronic densities of state in the series Zr{sub 6}X{sub 2}Co (X=Al, Ga, Sn, As, Sb, Bi, Te)

  16. Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism

    Science.gov (United States)

    Halla, Velazquez-Jimenez Litza; Hurt Robert, H; Juan, Matos; Rene, Rangel-Mendez Jose

    2014-01-01

    When activated carbon (AC) is modified with zirconium(IV) by impregnation or precipitation, the fluoride adsorption capacity is typically improved. There is significant potential to improve these hybrid sorbent by controlling the impregnation conditions, which determine the assembly and dispersion of the Zr phases on carbon surfaces. Here, commercial activated carbon was modified with Zr(IV) together with oxalic acid (OA) used to maximize the zirconium dispersion and enhance fluoride adsorption. Adsorption experiments were carried out at pH 7 and 25 °C with a fluoride concentration of 40 mg L−1. The OA/Zr ratio was varied to determine the optimal conditions for subsequent fluoride adsorption. The data was analyzed using the Langmuir and Freundlich isotherm models. FTIR, XPS and the surface charge distribution were performed to elucidate the adsorption mechanism. Potentiometric titrations showed that the modified activated carbon (ZrOx-AC) possesses positive charge at pH lower than 7, and FTIR analysis demonstrated that zirconium ions interact mainly with carboxylic groups on the activated carbon surfaces. Moreover, XPS analysis demonstrated that Zr(IV) interacts with oxalate ions, and the fluoride adsorption mechanism is likely to involve –OH− exchange from zirconyl oxalate complexes. PMID:24359079

  17. Kinetic analysis of sub-prompt-critical reactor assemblies

    International Nuclear Information System (INIS)

    Das, S.

    1992-01-01

    Neutronic analysis of safety-related kinetics problems in experimental neutron multiplying assemblies has been carried out using a sub-prompt-critical reactor model. The model is based on the concept of a sub-prompt-critical nuclear reactor and the concept of instantaneous neutron multiplication in a reactor system. Computations of reactor power, period and reactivity using the model show excellent agreement with results obtained from exact kinetics method. Analytic expressions for the energy released in a controlled nuclear power excursion are derived. Application of the model to a Pulsed Fast Reactor gives its sensitivity between 4 and 5. (author). 6 refs., 4 figs., 1 tab

  18. Physics analyses of an accelerator-driven sub-critical assembly

    Science.gov (United States)

    Naberezhnev, Dmitry G.; Gohar, Yousry; Bailey, James; Belch, Henry

    2006-06-01

    Physics analyses have been performed for an accelerator-driven sub-critical assembly as a part of the Argonne National Laboratory activity in preparation for a joint conceptual design with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine. KIPT has a plan to construct an accelerator-driven sub-critical assembly targeted towards the medical isotope production and the support of the Ukraine nuclear industry. The external neutron source is produced either through photonuclear reactions in tungsten or uranium targets, or deuteron reactions in a beryllium target. KIPT intends using the high-enriched uranium (HEU) for the fuel of the sub-critical assembly. The main objective of this paper is to study the possibility of utilizing low-enriched uranium (LEU) fuel instead of HEU fuel without penalizing the sub-critical assembly performance, in particular the neutron flux level. In the course of this activity, several studies have been carried out to investigate the main choices for the system's parameters. The external neutron source has been characterized and a pre-conceptual target design has been developed. Several sub-critical configurations with different fuel enrichments and densities have been considered. Based on our analysis, it was shown that the performance of the LEU fuel is comparable with that of the HEU fuel. The LEU fuel sub-critical assembly with 200-MeV electron energy and 100-kW electron beam power has an average total flux of ˜2.50×10 13 n/s cm 2 in the irradiation channels. The corresponding total facility power is ˜204 kW divided into 91 and 113 kW deposited in the target and sub-critical assemblies, respectively.

  19. Benchmark assemblies of the Los Alamos critical assemblies facility

    International Nuclear Information System (INIS)

    Dowdy, E.J.

    1986-01-01

    Several critical assemblies of precisely known materials composition and easily calculated and reproducible geometries have been constructed at the Los Alamos National Laboratory. Some of these machines, notably Jezebel, Flattop, Big Ten, and Godiva, have been used as benchmark assemblies for the comparison of the results of experimental measurements and computation of certain nuclear reaction parameters. These experiments are used to validate both the input nuclear data and the computational methods. The machines and the applications of these machines for integral nuclear data checks are described. (author)

  20. Benchmark assemblies of the Los Alamos Critical Assemblies Facility

    International Nuclear Information System (INIS)

    Dowdy, E.J.

    1985-01-01

    Several critical assemblies of precisely known materials composition and easily calculated and reproducible geometries have been constructed at the Los Alamos National Laboratory. Some of these machines, notably Jezebel, Flattop, Big Ten, and Godiva, have been used as benchmark assemblies for the comparison of the results of experimental measurements and computation of certain nuclear reaction parameters. These experiments are used to validate both the input nuclear data and the computational methods. The machines and the applications of these machines for integral nuclear data checks are described

  1. Benchmark assemblies of the Los Alamos critical assemblies facility

    International Nuclear Information System (INIS)

    Dowdy, E.J.

    1985-01-01

    Several critical assemblies of precisely known materials composition and easily calculated and reproducible geometries have been constructed at the Los Alamos National Laboratory. Some of these machines, notably Jezebel, Flattop, Big Ten, and Godiva, have been used as benchmark assemblies for the comparison of the results of experimental measurements and computation of certain nuclear reaction parameters. These experiments are used to validate both the input nuclear data and the computational methods. The machines and the applications of these machines for integral nuclear data checks are described

  2. Hot rolling effect on the characters of Zr-0.6Nb-0.5Fe-0.5Cr alloy

    International Nuclear Information System (INIS)

    Sungkono; Siti Aidah

    2015-01-01

    Characters of Zr-0.6Nb-0.5Fe-0.5Cr alloy after hot rolling have been studied. The objective of this research was to obtain of hot rolling effect on the characteristics of microstructures, hardness and phases formed in Zr-0.6Nb-0.5Fe-0.5Cr alloy. The hot rolling process of alloy carried out at temperature of 800 °C with retention time of 1.5 and 2 hours and a thickness reduction between 5 to 25 %. The results of this experiment showed that the Zr-0.6Nb-0.5Fe-0.5Cr alloy has Widmanstaetten structure with microstructure evolving into deformed columnar grains and deformed elongated grains with increasing thickness reduction. Besides, the longer the retention time at temperature of 800 °C is the larger are the grain structures and formation of α-Zr and Zr_3Fe phase. The hardness of Zr-0.6Nb-0.5Fe-0.5Cr alloy has same trends i.e the larger thickness reduction gives higher hardness. The Zr-0.6Nb-0.5Fe-0.5Cr alloy can under go hot rolling deformation at a thickness reduction of 25 % and the formation of α-Zr and Zr_3Fe can increased of hardness and strength of Zr-0.6 Nb-0.5 Fe-0.5 Cr alloy. (author)

  3. Effects of low heterogeneity in fast critical assemblies

    International Nuclear Information System (INIS)

    Belov, S.P.; Dulin, V.A.; Zhukov, A.V.; Kuzin, E.N.; Mozhaev, V.K.; Sitnikov, V.I.; Tsibulya, A.M.; Shapar', A.V.; Zayfert, E.; Kuntsman, B.; Khayntsel'man, B.

    1989-01-01

    The problem of the low heterogeneity of fast critical assemblies, which are used to simulate fast reactors that are under design, has begun to assume increasing importance as the errors in nuclear data and group constants decrease and the capabilities of design codes improve. The design of the fuel channels of the fast critical assemblies of a BFS differs from that of the fuel subassemblies of a power reactor. The principal difference is that critical assemblies have a more heterogeneous structure than a reactor core does. As a result, the effects of this heterogeneity turn out to be appreciable for a number of functionals. Of particular interest was the measurement of the main neutronic characteristics of a fast reactor in its actual design and in the mockup produced by using BFS facilities. The authors measured and calculated the most important functionals (the ratios of the average cross sections of the main absorbing and fissioning elements, etc.) for both a homogeneous medium (fuel assemblies) and a heterogeneous medium (slugs, tubes) of practically identical composition. The objective of this work was to compare the discrepancy between experiment and calculations for the central functionals in the homogeneous and heterogeneous cases after corrections. This is a check of the accuracy of the simulation of homogeneous cores in fast power reactors by using the tools of the BFS fast critical assembly

  4. X-ray photoelectron spectroscopy as detection tool for coordinated or uncoordinated fluorine atoms demonstrated on fluoride systems NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7

    Science.gov (United States)

    Boča, Miroslav; Barborík, Peter; Mičušík, Matej; Omastová, Mária

    2012-07-01

    While systems K3TaF8 and K3ZrF7 were prepared by modified molten salt method modified wet pathway was used for reproducible preparation of Na7Zr6F31. Its congruently melting character was demonstrated on simultaneous TG/DSC measurements and XRD patterns. X-ray photoelectron spectroscopy was applied for identification of differently bonded fluorine atoms in series of compounds NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7. Three different types of fluorine atoms were described qualitatively and quantitatively. Uncoordinated fluorine atoms (F-) provide signals at lowest binding energies, followed by signals from terminally coordinated fluorine atoms (M-F) and then bridging fluorine atoms (M-F-M) at highest energy. Based on XPS F 1s signals assigned to fluorine atoms in compounds with correctly determined structure it was suggested that fluorine atoms in K3ZrF7 have partially bridging character.

  5. Synthesis of high-purity Li{sub 8}ZrO{sub 6} powder by solid state reaction under hydrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Shin-mura, Kiyoto; Otani, Yu; Ogawa, Seiya [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Niwa, Eiki; Hashimoto, Takuya [Department of Physics, College of Humanities and Sciences, Nihon University, 3-8-1 Sakurajousui, Setagaya-ku, Tokyo 156-8550 (Japan); Hoshino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuchi, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Sasaki, Kazuya, E-mail: k_sasaki@tokai-u.ac.jp [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-11-01

    Highlights: • A fine pure Li{sub 8}ZrO{sub 6} powder was synthesized by using Li{sub 2}CO{sub 3} and ZrO{sub 2} via a solid state reaction. • Influences on the purity of product powder, lattice defect, and crystal orientation were revealed. • The suitable synthesis conditions of the fine and high purity Li{sub 8}ZrO{sub 6} powder were found. • The reaction process of the synthesis of Li{sub 8}ZrO{sub 6} was estimated. - Abstract: Li{sub 8}ZrO{sub 6} contains a large amount of Li and has a significant potential as a tritium breeder. However, few syntheses of fine-grain, high-purity Li{sub 8}ZrO{sub 6} powder have been reported. In this study, a high-purity powder of Li{sub 8}ZrO{sub 6} was synthesized by solid state reaction under hydrogen atmosphere combined with an effective lithium source and a suitable initial Li:Zr molar ratio. Mixed powders of Li{sub 2}CO{sub 3} and ZrO{sub 2} were fired at around 630 °C in H{sub 2} for several hours and several firing cycles. The low firing temperature inhibited the vaporization of Li during the heating, so that excessive amounts of Li were not needed for the synthesis, and the Li:Zr ratio in the starting material was 10:1 (mol:mol). In this synthesis, Li{sub 2}O was generated via the decomposition of Li{sub 2}CO{sub 3} during firing in H{sub 2}, and reacted with ZrO{sub 2} to form Li{sub 6}Zr{sub 2}O{sub 7}, which reacted with itself to form Li{sub 8}ZrO{sub 6}.

  6. Lattice dynamics, thermodynamics and elastic properties of C22-Zr{sub 6}FeSn{sub 2} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuan-Kai [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Shi, Siqi, E-mail: sqshi@shu.edu.cn [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Shen, Jian-Yun [General Research Institute for Nonferrous Metals, Beijing 100088 (China); Shang, Shun-Li [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Yao, Mei-Yi, E-mail: yaomeiyi@shu.edu.cn [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Liu, Zi-Kui [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-10-15

    Since Zr-Fe-Sn is one of the key ternary systems for cladding and structural materials in nuclear industry, it is of significant importance to understand physicochemical properties related to Zr-Fe-Sn system. In order to design the new Zr alloys with advanced performance by CALPHAD method, the thermodynamic model for the lower order systems is required. In the present work, first-principles calculations are employed to obtain phonon, thermodynamic and elastic properties of Zr{sub 6}FeSn{sub 2} with C22 structure and the end-members (C22-Zr{sub 6}FeFe{sub 2}, C22-Zr{sub 6}SnSn{sub 2} and C22-Zr{sub 6}SnFe{sub 2}) in the model of (Zr){sub 6}(Fe, Sn){sub 2}(Fe, Sn){sub 1}. It is found that the imaginary phonon modes are absent for C22-Zr{sub 6}FeSn{sub 2} and C22-Zr{sub 6}SnSn{sub 2}, indicating they are dynamically stable, while the other two end-members are unstable. Gibbs energies of C22-Zr{sub 6}FeSn{sub 2} and C22-Zr{sub 6}SnSn{sub 2} are obtained from the quasiharmonic phonon approach and can be added in the thermodynamic database: Nuclearbase. The C22-Zr{sub 6}FeSn{sub 2}’s single-crystal elasticity tensor components along with polycrystalline bulk, shear and Young’s moduli are computed with a least-squares approach based upon the stress tensor computed from first-principles method. The results indicate that distortion is more difficult in the directions normal the c-axis than along to it.

  7. Reactor Dynamics Experiments with a Sub-Critical Assembly

    International Nuclear Information System (INIS)

    Miley, G.H.; Yang, Y.; Wu, L.; Momota, H.

    2004-01-01

    A resurgence in use of nuclear power is now underway worldwide. However due to the shutdown of many university research reactors , student laboratories must rely more heavily on use of sub-critical assemblies. Here a driven sub-critical is described that uses a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The small IEC neutron source would be inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory

  8. A peristaltic pump driven 89Zr separation module

    DEFF Research Database (Denmark)

    Siikanen, J.; Peterson, M.; Tran, T.

    2012-01-01

    To facilitate the separation of 89Zr produced in yttrium foils, an automated separation module was designed and assembled. The module separates more than 85% of produced 89Zr - activity in 3 g foils in less than 90 min. About 10 % remains in the dissolving vial. The quality of the separated 89Zr...

  9. Impact of up-to-date evaluated nuclear data files on the Monte-Carlo analysis results of metallic fueled BFS critical assemblies

    International Nuclear Information System (INIS)

    Yoo, Jaewoon; Kim, Do-Heon; Kim, Sang-Ji; Kim, Yeong-Il

    2009-01-01

    Three metallic fueled BFS critical assemblies, BFS-73-1, BFS-75-1, and BFS-55-1 were analyzed by using the Monte-Carlo analysis code MCNP4C with five different evaluated data files, ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, JENDL-AC and ENDF/B-VI.6. The impacts of microscopic cross sections in the up-to-date evaluated nuclear data files were clarified by the analyses. The update of Zr cross section leads to the calculated k-effective lower than that of ENDF/B-VI.6. The revision of U-238 inelastic scattering cross section makes large difference in the predicted k-effectives between the libraries, which depends on the amount of the contribution of the inelastic cross sections change and the compensation of other reaction types. The results of the spectral indices and reaction rate ratios shows the improvement of the up-to-date evaluated nuclear data files for the U-238, Np-237, Pu-240 fission reactions, however, there are still need of further improvement for other minor actinide cross sections. The heterogeneity effects involved on the k-effective and relative fission rate distribution were evaluated in this study, which can be used as the correction factor for constructing the homogeneous benchmark configuration while keeping the consistency with the actual critical experiment. (author)

  10. Coretran/Vipre assembly critical power assessment against Nupec BWR experiments

    International Nuclear Information System (INIS)

    Aounallah, Y.

    2001-01-01

    This study has been performed, in the framework of the STARS project, to assess CORETRAN-01/VIPRE-02 code capability to predict critical heat flux conditions for BWR fuel assemblies. The assessment is based on comparisons of the code results with the NUPEC steady-state critical power measurements on full-scale assemblies tested under a range of flow conditions. Two assembly types were considered, the standard BWR 8 x 8 and the so-called ''high-burnup'' assembly, similar to GE-10. Code modelling options that have a significant impact on the results have been identified, along with code limitations. (author)

  11. Synthesis of Defect Perovskites (He2–xx)(CaZr)F6 by Inserting Helium into the Negative Thermal Expansion Material CaZrF6

    Energy Technology Data Exchange (ETDEWEB)

    Hester, Brett R. [Georgia Inst. of Technology, Atlanta, GA (United States); dos Santos, António M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molaison, Jamie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hancock, Justin C. [Georgia Inst. of Technology, Atlanta, GA (United States); Wilkinson, Angus P. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-09-11

    Defect perovskites (He2–xx)(CaZr)F6 can be prepared by inserting helium into CaZrF6 at high pressure. They can be recovered to ambient pressure at low temperature. There are no prior examples of perovskites with noble gases on the A-sites. The insertion of helium gas into CaZrF6 both elastically stiffens the material and reduces the magnitude of its negative thermal expansion. It also suppresses the onset of structural disorder, which is seen on compression in other media. Measurements of the gas released on warming to room temperature and Rietveld analyses of neutron diffraction data at low temperature indicate that exposure to helium gas at 500 MPa leads to a stoichiometry close to (He11)(CaZr)F6. Helium has a much higher solubility in CaZrF6 than silica glass or crystobalite. An analogue with composition (H2)2(CaZr)F6 would have a volumetric hydrogen storage capacity greater than current US DOE targets. We anticipate that other hybrid perovskites with small neutral molecules on the A-site can also be prepared and that they will display a rich structural chemistry.

  12. The low-temperature, high-magnetic-field critical current characteristics of Zr-added (Gd, Y)Ba2Cu3Ox superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Yao, Y; Chen, Y; Shi, T; Liu, Y; Khatri, ND; Liu, J; Lei, C; Galstyan, E; Majkic, G

    2012-10-26

    Critical current performances of state-of-the-art Zr-added (Gd, Y)BaCuO tapes have been investigated over a temperature range of 20-77 K, in magnetic fields up to 9 T and over a wide angular range of magnetic field orientations. The peak in critical current that is commonly observed in the field orientation perpendicular to the tape in BaZrO3 (BZO) containing superconducting tapes is found to vanish at 30 K in magnetic fields at 1-9 T. While the critical current of 15% Zr-added tapes was about 40% lower than that of 7.5% Zr-added tapes at 77 K, the pinning force values of the former were found to be 18-23% higher than those of the latter in the temperature range of 20-40 K and in magnetic fields of 3-5 T. The results from this study emphasize the importance of optimization of coated conductor fabrication processes for optimum performance not just in low magnetic fields at 77 K but also at the operating conditions of low temperatures and high magnetic fields that are of interest, especially for rotating superconducting machinery applications.

  13. The low-temperature, high-magnetic-field critical current characteristics of Zr-added (Gd,Y)Ba2Cu3Ox superconducting tapes

    International Nuclear Information System (INIS)

    Selvamanickam, V; Yao, Y; Shi, T; Liu, Y; Khatri, N D; Liu, J; Galstyan, E; Majkic, G; Chen, Y; Lei, C

    2012-01-01

    Critical current performances of state-of-the-art Zr-added (Gd, Y)BaCuO tapes have been investigated over a temperature range of 20–77 K, in magnetic fields up to 9 T and over a wide angular range of magnetic field orientations. The peak in critical current that is commonly observed in the field orientation perpendicular to the tape in BaZrO 3 (BZO) containing superconducting tapes is found to vanish at 30 K in magnetic fields at 1–9 T. While the critical current of 15% Zr-added tapes was about 40% lower than that of 7.5% Zr-added tapes at 77 K, the pinning force values of the former were found to be 18–23% higher than those of the latter in the temperature range of 20–40 K and in magnetic fields of 3–5 T. The results from this study emphasize the importance of optimization of coated conductor fabrication processes for optimum performance not just in low magnetic fields at 77 K but also at the operating conditions of low temperatures and high magnetic fields that are of interest, especially for rotating superconducting machinery applications. (paper)

  14. Coretran/Vipre assembly critical power assessment against Nupec BWR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aounallah, Y. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2001-07-01

    This study has been performed, in the framework of the STARS project, to assess CORETRAN-01/VIPRE-02 code capability to predict critical heat flux conditions for BWR fuel assemblies. The assessment is based on comparisons of the code results with the NUPEC steady-state critical power measurements on full-scale assemblies tested under a range of flow conditions. Two assembly types were considered, the standard BWR 8 x 8 and the so-called ''high-burnup'' assembly, similar to GE-10. Code modelling options that have a significant impact on the results have been identified, along with code limitations. (author)

  15. The Bare Critical Assembly of Natural Uranium and Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D [Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1958-07-01

    The first reactor built in Yugoslavia was the bare zero energy heavy water and natural uranium assembly at the Boris Kidric Institute of Nuclear Sciences, Belgrade. The reactor went critical on April 29, 1958. The possession of four tons of natural uranium metal and the temporary availability of seven tons of heavy water encouraged the staff of the Institute to build a critical assembly. A critical assembly was chosen, rather than high flux reactor, because the heavy water was available only temporarily. Besides, a 10 MW, enriched uranium, research reactor is being built at the same Institute and should be ready for operation late this year. It was supposed that the zero energy reactor would provide experience in carrying out critical experiments, operational experience with nuclear reactors, and the possibility for an extensive program in reactor physics. (author)

  16. Organization and methods of radiation monitoring while working at nuclear critical assemblies

    International Nuclear Information System (INIS)

    Shishkin, G.V.; Komissarov, L.A.

    1980-01-01

    The organization and methods of environmental radiation monitoring while working at nuclear critical assemblies, are described. Necessary equipment for critical assemblies (signal and Ventilation systems, devices for recording accidental radiation levels of and for measuring radiation field distribution) and the personnel program of actions in case of nuclear accident. The dosimetric control at critical assemblies is usually ensured by telesystems. 8004-01 multi-channel dosimetric device is described as an example of such-system [ru

  17. Biocompatible Materials Based on Self-Assembling Peptides on Ti25Nb10Zr Alloy: Molecular Structure and Organization Investigated by Synchrotron Radiation Induced Techniques

    Directory of Open Access Journals (Sweden)

    Valeria Secchi

    2018-03-01

    Full Text Available In this work, we applied advanced Synchrotron Radiation (SR induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH2 that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5–200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS, angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization.

  18. (6Li,d) reaction on sd-, fp- and g-shell nuclei in ZR- and FR-DWBA formalisms

    International Nuclear Information System (INIS)

    Rahman, M.A.; Mecking, M.; Strohbusch, U.

    1991-06-01

    ( 6 Li,d) reaction angular distributions on target nuclei 16 ≤ A ≤ 90 have been analyzed using both ZR- and FR-DWBA formalisms. The most prevalent method of analysis of alpha-transfer reactions such as( 6 Li,d) and its reverse (d, 6 Li) (where the wave function at zero distance in the p-state of relative cluster motion in the A = 6 nuclei will not have node) is the ZR-DWBA calculations due to the relatively short time of computation. It is of particular interest to verify whether FR-DWBA calculations result in similar S α - values to those of ZR-DWBA or not. It is found that to derive similar S α -values as in FR-DWBA calculations, one requires relatively large real well depth in ZR-DWBA calculations. Qualitative discussions have been made in this direction. (author). 12 refs, 3 figs, 2 tabs

  19. Benchmarking of HEU mental annuli critical assemblies with internally reflected graphite cylinder

    Directory of Open Access Journals (Sweden)

    Xiaobo Liu

    2017-01-01

    Full Text Available Three experimental configurations of critical assemblies, performed in 1963 at the Oak Ridge Critical Experiment Facility, which are assembled using three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches metal annuli with internally reflected graphite cylinder are evaluated and benchmarked. The experimental uncertainties which are 0.00057, 0.00058 and 0.00057 respectively, and biases to the benchmark models which are − 0.00286, − 0.00242 and − 0.00168 respectively, were determined, and the experimental benchmark keff results were obtained for both detailed and simplified models. The calculation results for both detailed and simplified models using MCNP6-1.0 and ENDF/B-VII.1 agree well to the benchmark experimental results within difference less than 0.2%. The benchmarking results were accepted for the inclusion of ICSBEP Handbook.

  20. Safety considerations of new critical assembly for the Research Reactor Institute, Kyoto University

    International Nuclear Information System (INIS)

    Umeda, Iwao; Matsuoka, Naomi; Harada, Yoshihiko; Miyamoto, Keiji; Kanazawa, Takashi

    1975-01-01

    The new critical assembly type of nuclear reactor having three cores for the first time in the world was completed successfully at the Research Reactor Institute of Kyoto University in autumn of 1974. It is called KUCA (Kyoto University Critical Assembly). Safety of the critical assembly was considered sufficiently in consequence of discussions between the researchers of the institute and the design group of our company, and then many bright ideas were created through the discussions. This paper is described the new safety design of main equipments - oil pressure type center core drive mechanism, removable water overflow mechanism, core division mechanism, control rod drive mechansim, protection instrumentation system and interlock key system - for the critical assembly. (author)

  1. Electron mass anisotropy of BaZrO3 doped YBCO thin films in pulsed magnetic fields up to 30 T

    International Nuclear Information System (INIS)

    Palonen, H; Huhtinen, H; Paturi, P; Shakhov, M A

    2013-01-01

    The high anisotropy of the critical current density in the high-temperature superconductor YBa 2 Cu 3 O 6+x can be compensated by changing the pinning landscape, for example, through doping with BaZrO 3 . We measure the change due to BaZrO 3 doping in the effective electron mass anisotropy, γ, by resistive measurements of the upper critical field in pulsed high magnetic fields. It is found that the angular dependence of the upper critical field follows the Blatter scaling up to 30 T but the irreversibility field does not. We also report a significant reduction in the effective electron mass anisotropy from 6.0 to 3.4 by BaZrO 3 doping. (paper)

  2. Verification of homogenization in fast critical assembly analyses

    International Nuclear Information System (INIS)

    Chiba, Go

    2006-01-01

    In the present paper, homogenization procedures for fast critical assembly analyses are investigated. Errors caused by homogenizations are evaluated by the exact perturbation theory. In order to obtain reference solutions, three-dimensional plate-wise transport calculations are performed. It is found that the angular neutron flux along plate boundaries has a significant peak in the fission source energy range. To treat this angular dependence accurately, the double-Gaussian Chebyshev angular quadrature set with S 24 is applied. It is shown that the difference between the heterogeneous leakage theory and the homogeneous theory is negligible, and that transport cross sections homogenized with neutron flux significantly underestimate neutron leakage. The error in criticality caused by a homogenization is estimated at about 0.1%Δk/kk' in a small fast critical assembly. In addition, the neutron leakage is overestimated by both leakage theories when sodium plates in fuel lattices are voided. (author)

  3. Potentiodynamic polarization studies of bulk amorphous alloy Zr57Cu15.4Ni12.6Al10Nb5 and Zr59Cu20Ni8Al10Ti3 in aqueous HNO3 media

    International Nuclear Information System (INIS)

    Sharma, Poonam; Dhawan, Anil; Jayraj, J.; Kamachi Mudali, U.

    2013-01-01

    The potentiodynamic polarization studies were carried out on Zr based bulk amorphous alloy Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 in solutions of 1 M, 6 M and 11.5 M HNO 3 aqueous media at room temperature. As received specimens of Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 (5 mm diameter rod) and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 (3 mm diameter rod) were polished with SiC paper before testing them for potentiodynamic polarization studies. The amorphous nature of the specimens was checked by X-ray diffraction. The bulk amorphous alloy Zr 59 Cu 20 Ni 8 Al 10 Ti 3 shows the better corrosion resistance than Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy in the aqueous HNO 3 media as the value of the corrosion current density (I corr ) for Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy were found to be more than Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy in aqueous HNO 3 media. The improved corrosion resistance of Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy is possibly due to the presence of Ti and formation of TiO 2 during anodic oxidation. Both Zr based bulk amorphous alloys shows wider passive range at lower concentration of nitric acid and the passive region gets narrowed down with the increase in concentration. A comparison of data obtained from both the Zr-based bulk amorphous alloys is made and results are discussed in the paper. (author)

  4. 6-Peroxo-6-zirconium crown and its hafnium analogue embedded in a triangular polyanion: [M6(O2)6(OH)6(gamma-SiW10O36)3]18- (M = Zr, Hf).

    Science.gov (United States)

    Bassil, Bassem S; Mal, Sib Sankar; Dickman, Michael H; Kortz, Ulrich; Oelrich, Holger; Walder, Lorenz

    2008-05-28

    We have synthesized and structurally characterized the unprecedented peroxo-zirconium(IV) containing [Zr6(O2)6(OH)6(gamma-SiW10O36)3]18- (1). Polyanion 1 comprises a cyclic 6-peroxo-6-zirconium core stabilized by three decatungstosilicate units. We have also prepared the isostructural hafnium(IV) analogue [Hf6(O2)6(OH)6(gamma-SiW10O36)3]18- (2). We investigated the acid/base and redox properties of 1 by UV-vis spectroscopy and electrochemistry studies. Polyanion 1 represents the first structurally characterized Zr-peroxo POM with side-on, bridging peroxo units. The simple, one-pot synthesis of 1 and 2 involving dropwise addition of aqueous hydrogen peroxide could represent a general procedure for incorporating peroxo groups into a large variety of transition metal and lanthanide containing POMs.

  5. Operating procedures for the Pajarito Site Critical Assembly Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1983-03-01

    Operating procedures consistent with DOE Order 5480.2, Chapter VI, and the American National Standard Safety Guide for the Performance of Critical Experiments are defined for the Pajarito Site Critical Assembly Facility of the Los Alamos National Laboratory. These operating procedures supersede and update those previously published in 1973 and apply to any criticality experiment performed at the facility

  6. Thor, a thorium-reflected plutonium-metal critical assembly

    International Nuclear Information System (INIS)

    Hansen, G.E.; Paxton, H.C.

    1979-01-01

    Critical specifications of Thor, an old assembly of thorium-reflected plutonium, have been refined. These specifications are brought together with void coefficients, Rossi-alpha values, fission traverses, and spectral indices

  7. Criticality safety evaluation report for FFTF 42% fuel assemblies

    International Nuclear Information System (INIS)

    Richard, R.F.

    1997-01-01

    An FFTF tritium/isotope production mission will require a new fuel supply. The reference design core will use a mixed oxide fuel nominally enriched to 40 wt% Pu. This enrichment is significantly higher than that of the standard Driver Fuel Assemblies used in past operations. Consequently, criticality safety for handling and storage of this fuel must be addressed. The purpose of this document is to begin the process by determining the minimum critical number for these new fuel assemblies in water, sodium and air. This analysis is preliminary and further work can be done to refine the results reported here. Analysis was initially done using 45 wt 5 PuO. Additionally, a preliminary assessment is done concerning storage of these fuel assemblies in Interim Decay Storage (IDS), Fuel Storage Facility (FSF), and Core Component Containers/Interim Storage Casks (CCC/ISC)

  8. Characterization of electrolytic HA/ZrO{sub 2} double layers coatings on Ti-6Al-4V implant alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yen, S.K. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)]. E-mail: skyen@dragon.nchu.edu.tw; Chiou, S.H. [Graduate Institute of Veterinary Microbiology, National Chung Hsing University, Taichung 40227, Taiwan (China); Wu, S.J. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Chang, C.C. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Lin, S.P. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Lin, C.M. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2006-01-15

    Hydroxyapatite (HA) coating was proved having bioactive property and hence improving the bonding strength on bone tissue without inducing the growth of fiber tissue. However, the weak adhesion between HA and metal implants is still the major problem. In this study, a novel method of electrolytic HA/ZrO{sub 2} double layers coating was successfully conducted on F-136 Ti-6Al-4V implant alloy in ZrO{sub 2}(NO{sub 3}){sub 2} aqueous solution and subsequently in the mixed solution of Ca(NO{sub 3}){sub 2} and NH{sub 4}H{sub 2}PO{sub 4}. After annealing at 400 deg. C, 500 deg. C and 600 deg. C for 4 h in air, the coated specimens were evaluated by X-ray diffraction analyses, surface morphology observations, scratch tests, dynamic polarization tests, immersion tests and cell culture assays. In addition to corrosion resistance, the adhesion strength of electrolytic deposited HA on Ti alloy was dramatically improved from the critical scratch load 2 N to 32 N by adding the intermediate electrolytic deposition of ZrO{sub 2}, which showed the strong bonding effects between Ti alloy substrate and HA coating. Based on the cell morphology and cell proliferation data, HA/ZrO{sub 2} double layers coating revealed the better substrate for the adhesion and proliferation of osteoblasts than the others. It was also found that the crystallization of HA had positive effect on the proliferation of osteoblasts.

  9. High-field superconductivity in the Nb-Ti-Zr ternary system

    International Nuclear Information System (INIS)

    Ralls, K.M.; Rose, R.M.; Wulff, J.

    1980-01-01

    Resistive critical current densities, critical fields, and normal-state electrical resistivities were obtained at 4.2 0 K for 55 alloys in the Nb-Ti-Zr ternary alloy system, excepting Ti-Zr binary compositions. The resistive critical field as a function of ternary composition has a saddle point between the Nb-Ti and Nb-Zr binaries, so that ternary alloying in this system is not expected to result in higher critical fields than the binary alloys

  10. High-field superconductivity in the Nb-Ti-Zr ternary system

    Science.gov (United States)

    Ralls, K. M.; Rose, R. M.; Wulff, J.

    1980-06-01

    Resistive critical current densities, critical fields, and normal-state electrical resistivities were obtained at 4.2 °K for 55 alloys in the Nb-Ti-Zr ternary alloy system, excepting Ti-Zr binary compositions. The resistive critical field as a function of ternary composition has a saddle point between the Nb-Ti and Nb-Zr binaries, so that ternary alloying in this system is not expected to result in higher critical fields than the binary alloys.

  11. Refinement of criticality and breeding parameters by means of experiments on a series of critical assemblies

    International Nuclear Information System (INIS)

    Golubev, V.I.; Dulin, V.A.; Kazanskij, Yu.A.; Mamontov, V.M.; Mozhaev, V.K.; Sidorov, G.I.

    1980-01-01

    A programme of measurements was performed on a number of critical assemblies with the aim of obtaining reliable experimental data under conditions approximating the simplest calculation model. To this end the neutron balance at the centres of the BFS-31, BFS-33, BFS-35, BFS-38, KBR-3 and KBR-7 critical assemblies was investigated. These assemblies contained central inserts made of uranium dioxide (BFS-33), natural uranium oxide and plutonium metal (BFS-31), natural uranium and plutonium metal (BFS-38), 90% enriched metallic uranium and stainless steel (KBR-3) and enriched uranium dioxide and nickel (KBR-7). The composition of the inserts was such that Ksub(infinite)=1. The K + values, the ratios of the reaction rates of the principal raw material and fissionable isotopes and the reactivity coefficients of a number of materials were measured in the inserts. The components of the breeding coefficient were measured at the centre of the BFS-39 critical assembly which simulates a power reactor (simplest composition with low- and high-enrichment zones and no control mechanism). The authors describe briefly the critical assemblies, the methods of measurement and calculation and methods of correcting for differences between the calculation model and the conditions under which the measurements were performed and compare the results of the experiments with the corresponding theoretical values obtained using various systems of group constants. In their latest versions, the group constants derived from different sets of integral experiments describe the experimental data much better than was previously possible. The deviations which occur in the predicted criticality and breeding parameters using different versions of the constants essentially reflect the difference in the results of the sets of integral experiments that were used for the group constants. (author)

  12. The Composition of Intermediate Products of the Thermal Decomposition of (NH4)2ZrF6 to ZrO2 from Vibrational-Spectroscopy Data

    Science.gov (United States)

    Voit, E. I.; Didenko, N. A.; Gaivoronskaya, K. A.

    2018-03-01

    Thermal decomposition of (NH4)2ZrF6 resulting in ZrO2 formation within the temperature range of 20°-750°C has been investigated by means of thermal and X-ray diffraction analysis and IR and Raman spectroscopy. It has been established that thermolysis proceeds in six stages. The vibrational-spectroscopy data for the intermediate products of thermal decomposition have been obtained, systematized, and summarized.

  13. Development of training simulator based on critical assemblies test bench

    International Nuclear Information System (INIS)

    Narozhnyi, A.T.; Vorontsov, S.V.; Golubeva, O.A.; Dyudyaev, A.M.; Il'in, V.I.; Kuvshinov, M.I.; Panin, A.V.; Peshekhonov, D.P.

    2007-01-01

    When preparing critical mass experiment, multiplying system (MS) parts are assembled manually. This work is connected with maximum professional risk to personnel. Personnel training and keeping the skill of working experts is the important factor of nuclear safety maintenance. For this purpose authors develop a training simulator based on functioning critical assemblies test bench (CATB), allowing simulation of the MS assemblage using training mockups made of inert materials. The control program traces the current status of MS under simulation. A change in the assembly neutron physical parameters is mapped in readings of the regular devices. The simulator information support is provided by the computer database on physical characteristics of typical MS components The work in the training mode ensures complete simulation of real MS assemblage on the critical test bench. It makes it possible to elaborate the procedures related to CATB operation in a standard mode safely and effectively and simulate possible abnormal situations. (author)

  14. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Zhiping Zhang

    2017-11-01

    Full Text Available Zr2WP2O12/ZrO2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr2WP2O12/ZrO2 composites with different mass ratio. Relative densities of all the resulting Zr2WP2O12/ZrO2 samples were also tested by Archimedes' methods. The obtained Zr2WP2O12/ZrO2 composites were comprised of orthorhombic Zr2WP2O12 and monoclinic ZrO2. As the increase of the Zr2WP2O12, the relative densities of Zr2WP2O12/ZrO2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr2WP2O12/ZrO2 composites can be tailored from 4.1 × 10−6 K−1 to −3.3 × 10−6 K−1 by changing the content of Zr2WP2O12. The 2:1 Zr2WP2O12/ZrO2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of −0.09 × 10−6 K−1. These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  15. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion.

    Science.gov (United States)

    Zhang, Zhiping; Sun, Weikang; Liu, Hongfei; Xie, Guanhua; Chen, Xiaobing; Zeng, Xianghua

    2017-01-01

    Zr 2 WP 2 O 12 /ZrO 2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr 2 WP 2 O 12 /ZrO 2 composites with different mass ratio. Relative densities of all the resulting Zr 2 WP 2 O 12 /ZrO 2 samples were also tested by Archimedes' methods. The obtained Zr 2 WP 2 O 12 /ZrO 2 composites were comprised of orthorhombic Zr 2 WP 2 O 12 and monoclinic ZrO 2 . As the increase of the Zr 2 WP 2 O 12 , the relative densities of Zr 2 WP 2 O 12 /ZrO 2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr 2 WP 2 O 12 /ZrO 2 composites can be tailored from 4.1 × 10 -6 K -1 to -3.3 × 10 -6 K -1 by changing the content of Zr 2 WP 2 O 12 . The 2:1 Zr 2 WP 2 O 12 /ZrO 2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of -0.09 × 10 -6 K -1 . These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  16. Highlighting micrographic structures of uranium-zirconium alloys with 6 per cent of weight of Zr; Mise en evidence des structures micrographiques des alliages uranium-zirconium a 6 pour cent en poids de Zr

    Energy Technology Data Exchange (ETDEWEB)

    Bouleau, Maurice

    1961-01-17

    In order to study the transformation kinetics of U-Zr alloys with a Zr content of 6 per cent in weight, the authors searched for a slow enough electrolytic polishing bath, and for an attack and examination method to highlight martensite structures produced by austempering and water tempering, and ultra-fine decomposition structures obtained by austempering. The authors explain the choice of a perchloric-butyl glycol polishing bath, of an examination under polarized light or normal light after appropriate attacks. These studies are reported for annealed alloys, and for processed alloys with martensite or ultra-fine decomposition structures [French] L'etude de la cinetique de transformation des alliages U-Zr a 6 pc en poids de Zr a necessite la recherche d'un bain de polissage electrolytique assez lent et de methodes d'attaque et d'examen qui permettent la mise en evidence des structures martensitiques (provenant de trempes etagees ou de trempes a l'eau) et des structures de decomposition ultrafines (obtenues par trempes etagees). Nous nous sommes arretes dans notre choix: - sur un bain de polissage perchlorique-butyl glycol; sur des examens en lumiere polarisee ou en lumiere normale apres attaques appropriees (en cellule dans le meme electrolyte ou au tampon dans un bain phosphorique ethylene glycol). (auteur)

  17. Zr 2Ir 6B with an eightfold superstructure of the cubic perovskite-like boride ZrIr 3B 0.5: Synthesis, crystal structure and bonding analysis

    Science.gov (United States)

    Hermus, Martin; Fokwa, Boniface P. T.

    2010-04-01

    Single phase powder samples and single crystals of Zr 2Ir 6B were successfully synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. Superstructure reflections were observed both on powder and on single crystal diffraction data, leading to an eightfold superstructure of ZrIr 3B x phase. The new phase, which has a metallic luster, crystallizes in space group Fm3¯m (no. 225) with the lattice parameters a=7.9903(4) Å, V=510.14(4) Å 3. Its crystal structure was refined on the basis of powder as well as single crystal data. The single crystal refinement converged to R1=0.0239 and w R2=0.0624 for all 88 unique reflections and 6 parameters. Zr 2Ir 6B is isotypic to Ti 2Rh 6B and its structure can be described as a defect double perovskite, A2BB' O6, where the A site is occupied by zirconium, the B site by boron, the O site by iridium but the B' site is vacant, leading to the formation of empty and boron-filled octahedral Ir 6 clusters. According to the result of tight-binding electronic structure calculations, Ir-B and Ir-Zr interactions are mainly responsible for the structural stability of the phase. According to COHP bonding analysis, the strongest bonding occurs for the Ir-B contacts, and the Ir-Ir bonding within the empty clusters is two times stronger than that in the BIr 6 octahedra.

  18. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Yue, Xishan; Xie, Zonghong; Jing, Yongjuan

    2017-01-01

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell (n_A"u"-"v) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n_A"u"-"v represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5 ∝ 45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2 ∝ 10 wt%. Thus, Ti-based filler metal with Zr content being 2 ∝ 10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n_A"u"-"v showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface. (orig.)

  19. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xishan [Northwestern Polytechnical University, School of Astronautics, Xi' an (China); AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Aeronautical Key Laboratory for Welding and Joining Technology, Beijing (China); Xie, Zonghong [Northwestern Polytechnical University, School of Astronautics, Xi' an (China); Jing, Yongjuan [AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Aeronautical Key Laboratory for Welding and Joining Technology, Beijing (China)

    2017-07-15

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell (n{sub A}{sup u-v}) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n{sub A}{sup u-v} represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5 ∝ 45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2 ∝ 10 wt%. Thus, Ti-based filler metal with Zr content being 2 ∝ 10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n{sub A}{sup u-v} showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface. (orig.)

  20. Enhanced memory performance by tailoring the microstructural evolution of (ZrO{sub 2}){sub 0.6}(SiO{sub 2}){sub 0.4} charge trapping layer in the nanocrystallites-based charge trap flash memory cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhenjie; Xu, Hanni; Xia, Yidong; Yin, Jiang; Li, Aidong; Liu, Zhiguo [Nanjing University, Department of Materials Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing (China); Zhu, Xinhua [Nanjing University, Department of Physics and National and Laboratory of Solid State Microstructures, Nanjing (China); Yan, Feng [Nanjing University, School of Electronics Science and Engineering, Nanjing (China)

    2012-07-15

    ZrO{sub 2} nanocrystallites based charge trap memory cells by incorporating a (ZrO{sub 2}){sub 0.6}(SiO{sub 2}){sub 0.4} film as a charge trapping layer and amorphous Al{sub 2}O{sub 3} as tunneling and blocking layer were prepared and investigated. The precipitation reaction in charge trapping layer forming ZrO{sub 2} nanocrystallites during rapid thermal annealing was investigated by transmission electron microscopy. The density and size of ZrO{sub 2} nanocrystallites are the critical factors for controlling the charge storage characteristics. The ZrO{sub 2} nanocrystallites based memory cells after postannealing at 800 C for 60 s exhibit the best electrical characteristics and a low charge loss {proportional_to}5 % after 10{sup 5} write/erase cycles operation. (orig.)

  1. Nuclear orientation of 9597Nb and 95Zr in ZrFe2

    International Nuclear Information System (INIS)

    Krane, K.S.; Olsen, C.E.; Rosenblum, S.S.; Steyert, W.A.

    1976-01-01

    The angular distribution anisotropies of γ rays were measured following the decays of 95 , 97 Nb and 95 Zr oriented at low temperatures in the ferromagnetic Laves phase compound ZrFe 2 . The magnetic hyperfine field of Nb in ZrFe 2 was deduced to be 9.4+-1.6 T; that of Zr in ZrFe 2 was estimated to be 15+-4 T. The nuclear magnetic moment of 97 Nb was deduced to be μ = (7.5+-1.4) μ/subN/

  2. New calculations for critical assemblies using MCNP4B

    International Nuclear Information System (INIS)

    Adams, A.A.; Frankle, S.C.; Little, R.C.

    1997-07-01

    A suite of 41 criticality benchmarks has been modeled using MCNP trademark (version 4B). Most of the assembly specifications were obtained from the Cross Section Evaluation Working Group (CSEWG) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) compendiums of experimental benchmarks. A few assembly specifications were obtained from experimental papers. The suite contains thermal and fast assemblies, bare and reflected assemblies, and emphasizes 233 U, 235 U, 238 U, and 239 Pu. The values of k eff for each assembly in the suite were calculated using MCNP libraries derived primarily from release 2 of ENDF/B-V and release 2 of ENDF/B-VI. The results show that the new ENDF/B-VI.2 evaluations for H, O, N, B, 235 U, 238 U, and 239 Pu can have a significant impact on the values of k eff . In addition to the integral quantity k eff , several additional experimental measurements were performed and documented. These experimental measurements include central fission and reaction-rate ratios for various isotopes, and neutron leakage and flux spectra. They provide more detailed information about the accuracy of the nuclear data than can k eff . Comparison calculations were performed using both ENDF/B-V.2 and ENDF/B-VI.2-based data libraries. The purpose of this paper is to compare the results of these additional calculations with experimental data, and to use these results to assess the quality of the nuclear data

  3. Safe Operation of Critical Assemblies and Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-05-15

    This Manual is provided as a guide to the safe operation of critical assemblies and small research reactors. It is intended that it should be used by all authorities and persons concerned with, or responsible for, the use of such equipment, in addition to the scientists and technologists who are actually working with, or operating it. It is suggested that it will be of use to those wishing to design and manufacture, or purchase, critical assemblies or research reactors, as well as those already in possession of them, and that it will prove particularly helpful to those users who have no direct access to other collected sources of information. This Manual is not a set of rules or a code of practice, but a series of recommendations which must be interpreted with scientific judgement in their application to any particular problem. The guiding principles are given from which good operational procedures may be established and improved. The promulgation of rigid standards is both impossible and undesirable at the present time, since the topics discussed form part of a rapidly growing science and technology. Therefore, any recommendations made should not be used to restrict or inhibit future developments. The Manual is intended mainly for use in those Member States where there has been little experience in the operation of critical assemblies and research reactors. It has been compounded from the best practices which exist in Member States having a large amount of such experience, so that nothing in it should conflict with the best practices to be encountered in the field of safe operation.

  4. Safe Operation of Critical Assemblies and Research Reactors

    International Nuclear Information System (INIS)

    1961-01-01

    This Manual is provided as a guide to the safe operation of critical assemblies and small research reactors. It is intended that it should be used by all authorities and persons concerned with, or responsible for, the use of such equipment, in addition to the scientists and technologists who are actually working with, or operating it. It is suggested that it will be of use to those wishing to design and manufacture, or purchase, critical assemblies or research reactors, as well as those already in possession of them, and that it will prove particularly helpful to those users who have no direct access to other collected sources of information. This Manual is not a set of rules or a code of practice, but a series of recommendations which must be interpreted with scientific judgement in their application to any particular problem. The guiding principles are given from which good operational procedures may be established and improved. The promulgation of rigid standards is both impossible and undesirable at the present time, since the topics discussed form part of a rapidly growing science and technology. Therefore, any recommendations made should not be used to restrict or inhibit future developments. The Manual is intended mainly for use in those Member States where there has been little experience in the operation of critical assemblies and research reactors. It has been compounded from the best practices which exist in Member States having a large amount of such experience, so that nothing in it should conflict with the best practices to be encountered in the field of safe operation.

  5. Criticality studies of fast assemblies with the new 27-group cross-section set

    International Nuclear Information System (INIS)

    Garg, S.B.; Shukla, V.K.

    1976-01-01

    A test of 27-group cross-section set (Garg-set) recently derived from ENDF/B library has been carried out in the criticality studies of the Pu 239 , U 235 and U 233 based metal, oxide and carbide fuelled fast critical assemblies. A total of twenty fast critical assemblies of different sizes and varying neutron spectra have been selected for analysis. Based on these analyses it has been observed that the Garg-set predicts well the criticality of uranium and plutonium based hard-spectra assemblies. In the soft-spectra systems it underpredicts criticality because of the following reasons: (a) It makes use of the higher capture cross-sections of structural and coolant elements given in ENDF/B - Version IV library. (b) It does not account for the resonance self-shielding effects of cross-sections. It has also been observed that the Garg-set gives better results than the MABBN-set for dense and dilute plutonium-based and the hard uranium-based assemblies. This superior trend of the Garg-set is slightly lost in the uranium-based dilute systems because of large differences in the capture cross-sections of structural elements of these two sets. (author)

  6. Thermodynamic modeling of the Pt-Zr system

    International Nuclear Information System (INIS)

    Gao Yongliang; Guo Cuiping; Li Changrong; Du Zhenmin

    2010-01-01

    By means of the CALPHAD (CALculation of PHAse Diagram) technique, the Pt-Zr system was critically assessed. The solution phases (liquid, bcc, fcc and hcp) are described with the substitutional model. The intermetallic compounds Pt 4 Zr, Pt 4 Zr 3 , αPtZr and Pt 3 Zr 5 are treated as the formula (Pt,Zr) m (Pt,Zr) n by a two-sublattice model with the elements Pt and Zr on the first and the second sublattices, respectively. A two-sublattice model (Pt,Zr) 0.5 (Pt,Zr) 0.5 is applied to describe the compound βPtZr with CsCl-type structure (B2) in order to cope with the order-disorder transition between bcc solution (A2) and βPtZr (B2). Another two-sublattice model (Pt,Zr) 0.75 (Pt,Zr) 0.25 with Ni 3 Ti-type structure (D0 24 ) is applied to describe the compound Pt 3 Zr in order to cope with the order-disorder transition between hexagonal close-packed (A3) and Pt 3 Zr (D0 24 ). The compound Pt 10 Zr 7 is treated as a stoichiometric compound. A set of self-consistent thermodynamic parameters of the Pt-Zr system was obtained. (orig.)

  7. Effect of ZrO{sub 2} particle on the performance of micro-arc oxidation coatings on Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong; Sun, Yezi; Zhang, Jin, E-mail: zhangjin@ustb.edu.cn

    2015-07-01

    Highlights: • An anti-oxidation TiO{sub 2}/ZrO{sub 2} composite coating on Ti6Al4V alloy was prepared using micro-arc oxidation technology by adding ZrO{sub 2} particles in single phosphoric acid solution. • The composite coating displays excellent anti-oxidation characteristic at 700 °C in the air. • The concentration of ZrO{sub 2} particles not only influences the roughness and thickness of the coating, but the morphologies, phase composition, oxidation resistance and wear resistance. - Abstract: This paper investigates the effect of ZrO{sub 2} particle on the oxidation resistance and wear properties of coatings on a Ti6Al4V alloy generated using the micro-arc oxidation (MAO) technique. Different concentrations micron ZrO{sub 2} particles were added in phosphate electrolyte and dispersed by magnetic stirring apparatus. The composition of coating was characterized using X-ray diffraction and energy dispersive spectrum, and the morphology was examined using SEM. The high temperature oxidation resistance of the coating sample at 700 °C was investigated. Sliding wear behaviour was tested by a wear tester. The results showed that the coating consisted of ZrTiO{sub 4}, ZrO{sub 2}, TiO{sub 2}. With ZrO{sub 2} particle addition, the ceramic coating's forming time reduced by the current dynamic curve. It was shown that the addition of ZrO{sub 2} particles (3 g/L, 6 g/L) expressed an excellent oxidation resistance at 700 °C and wear resistance.

  8. Failure assessment and evaluation of critical crack length for a fresh Zr-2 pressure tube of an Indian PHWR

    International Nuclear Information System (INIS)

    Krishnan, Suresh; Bhasin, Vivek; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1996-01-01

    Fracture analysis of Zr-2 pressure tubes having through wall axial crack was done using finite element method. The analysis was done for tubes in as received condition. During reactor operation the mechanical properties of Zr-2 undergo changes. The analysis is valid for pressure tubes of newly commissioned reactors. The main aim of the study was to determine critical crack length of pressure tubes in normal operating conditions. Elastic plastic fracture analysis was done for different crack lengths to determine applied J-integral values. Tearing modulus instability concept was used to evaluate critical crack length. One of the important parameter studied was, the effect of crack face pressure, which leaking fluid exert on the crack faces/lips of through wall axial crack. Its effect was found to be significant for pressure tubes. It increases the applied J-integral values. Approximate analytical solutions which takes into account the plasticity ahead of crack tip, are available and widely used. These formulae do not take into account the crack face pressure. Since, for the present situation the effect of crack face pressure is significant hence, detailed finite analysis was necessary. Detailed 3D finite element analysis gives an insight into the variation of J-integral values over the thickness of pressure tube. It was found that J values are maximum at the middle layer of the tube. A peak factor on J values was defined and evaluated as ratio of maximum J to average J across the thickness, crack opening area for each length was also evaluated. The knowledge of crack opening area is useful for leak before break studies. The failure assessment was also done using Central Electricity Generating Board (CEGB) R-6 method considering the ductile tearing. The reserve factors (or safety margins) for different crack lengths was evaluated using R-6 method. (author). 30 refs., 21 figs., 34 tabs

  9. ZPR-6 assembly 7 high {sup 240} PU core : a cylindrical assemby with mixed (PU, U)-oxide fuel and a central high {sup 240} PU zone.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; Schaefer, R. W.; McKnight, R. D.; Tsiboulia, A.; Rozhikhin, Y.; Nuclear Engineering Division; Inst. of Physics and Power Engineering

    2007-10-01

    Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of

  10. Time-temperature-transformation diagram of Zr-based Zr-Al-Cu-Ni metallic glasses

    International Nuclear Information System (INIS)

    Goh, T.T.; Li, Y.; Ng, S.C.

    1996-01-01

    The critical cooling rates R c for glass formation in four Zr-based Zr-Al-Cu-Ni alloys were determined using techniques developed by Uhlmann based on theories of homogeneous nucleation, crystal growth and transformation kinetics. It involves the construction of a time-temperature-transformation curve which requires the knowledge of the viscosity-temperature curve of the alloys. Two types of viscosity-temperature expressions, namely Andrade expression and Doolittle expression, were used to model the viscosity of the Zr-based alloys and the choice of the viscosity-temperature expression which gives the best estimate of the calculated time-temperature-transformation curve is discussed. (author)

  11. Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5 ceramics

    International Nuclear Information System (INIS)

    Lin, Z.J.; Zhuo, M.J.; He, L.F.; Zhou, Y.C.; Li, M.S.; Wang, J.Y.

    2006-01-01

    The microstructures of bulk Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 ceramics have been investigated using transmission electron microscopy and scanning transmission electron microscopy. These two carbides were determined to have a point group 6/mmm and a space group P6 3 /mmc using selected-area electron diffraction and convergent beam electron diffraction. The atomic-scale microstructures of Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 were investigated through high-resolution imaging and Z-contrast imaging. Furthermore, intergrowth between Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 was identified. Stacking faults in Zr 3 Al 3 C 5 were found to result from the insertion of an additional Zr-C layer. Cubic ZrC was occasionally identified to be incorporated in elongated Zr 3 Al 3 C 5 grains. In addition, Al may induce a twinned ZrC structure and lead to the formation of ternary zirconium aluminum carbides

  12. Measurement of tritium production in 6LiD irradiated with neutrons from a critical system

    International Nuclear Information System (INIS)

    Duan Shaojie

    1998-03-01

    The tritium production rate and its distribution, in a 6 LiD semisphere on a critical assembly neutron source are measured with a 6 Li sandwich gold-silicon surface barrier detector. Then tritium production rate and the average tritium production length of the neutrons in the whole 6 LiD sphere are derived from approximate sphere symmetry

  13. Comparison and mechanism of photocatalytic activities of N-ZnO and N-ZrO2 for the degradation of rhodamine 6G.

    Science.gov (United States)

    Sudrajat, Hanggara; Babel, Sandhya

    2016-05-01

    N-doped ZnO (N-ZnO) and N-doped ZrO2 (N-ZrO2) are synthesized by novel, simple thermal decomposition methods. The catalysts are evaluated for the degradation of rhodamine 6G (R6G) under visible and UV light. N-ZnO exhibits higher dye degradation under both visible and UV light compared to N-ZrO2 due to possessing higher specific surface area, lower crystalline size, and lower band gap. However, it is less reusable than N-ZrO2 and its photocatalytic activity is also deteriorated at low pH. At the same intensity of 3.5 W/m(2), UVC light is shown to be a better UV source for N-ZnO, while UVA light is more suitable for N-ZrO2. At pH 7 with initial dye concentration of 10 mg/L, catalyst concentration of 1 g/L, and UVC light, 94.3 % of R6G is degraded by N-ZnO within 2 h. Using UVA light under identical experimental conditions, 93.5 % degradation of R6G is obtained by N-ZrO2. Moreover, the type of light source is found to determine the reactive species produced in the R6G degradation by N-ZnO and N-ZrO2. Less oxidative reactive species such as superoxide radical and singlet oxygen play a major role in the degradation of R6G under visible light. On the contrary, highly oxidative hydroxyl radicals are predominant under UVC light. Based on the kinetic study, the adsorption of R6G on the catalyst surface is found to be the controlling step.

  14. Thermodynamic description of the Ta-W-Zr system

    International Nuclear Information System (INIS)

    Guo, Cuiping; Li, Changrong; Du, Zhenmin; Shang, Shunli

    2014-01-01

    The Ta-W, W-Zr and Ta-W-Zr systems are critically reviewed and modeled using the CALPHAD technique. The enthalpy of formation of the stoichiometric compound W 2 Zr in the W-Zr system is predicted from first-principles calculations. The solution phases (liquid, bcc and hcp) are modeled by the substitutional solution model. The compound W 2 Zr is treated with the formula (Ta,W) 2 Zr in the Ta-W-Zr system because of a significant solid solubility of Ta in W 2 Zr. All experimental data, including the Gibbs energy of formation, enthalpy of formation, activity of Ta and W of bcc phase at 1 200 K, Ta-W and W-Zr phase diagrams, and three isothermal sections of the Ta-W-Zr system at 1 073, 1 098, and 1 873 K, are reproduced in the present work. A set of self-consistent thermodynamic parameters of the Ta-W-Zr system is obtained.

  15. Pulsed Nd:YAG laser welding of Cu54Ni6Zr22Ti18 bulk metallic glass

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Lee, Changhee; Lee, D.M.; Sun, J.H.; Shin, S.Y.; Bae, J.C.

    2007-01-01

    Pulsed Nd:YAG laser was used to weld Cu 54 Ni 6 Zr 22 Ti 18 (numbers indicate at.%) metallic glass with glass forming ability of 6 mm. Through a single pulse irradiation on the glassy plate, the pulse condition for welding without crystallization was investigated. Under the selected pulse condition, the Cu 54 Ni 6 Zr 22 Ti 18 plate was periodically welded with different welding speeds. For the welding speed of 60 mm/min, no crystallization was observed in both weldment and heat-affected zone. For the 20 mm/min, the crystallized areas with a band shape were observed along the welding direction

  16. Sinterability of ZrN and (Zr0.6Dy0.4)N pellets – surrogate fuel fabrication for ELECTRA

    International Nuclear Information System (INIS)

    Pukari, Merja; Takano, Masahide

    2013-01-01

    → Limited O concentration improves the achievable densities within the same temperature and time frames. → The sinterability is only affected if O solution into the lattice is complete. → O-rich phases may not be detectable with XRD only → After reaching the surface area of about 6 m 2 /g, the gain in sinterability is negligible. → Similar research is currently being conducted on (Pu,Zr)N

  17. Effects of Fabrication Parameters on Interface of Zirconia and Ti-6Al-4V Joints Using Zr55Cu30Al10Ni5 Amorphous Filler

    Science.gov (United States)

    Liu, Yuhua; Hu, Jiandong; Shen, Ping; Guo, Zuoxing; Liu, Huijie

    2013-09-01

    ZrO2 was brazed to Ti-6Al-4V using a Zr55Cu30Al10Ni5 (at.%) amorphous filler in a high vacuum at 1173-1273 K. The influences of brazing temperature, holding time, and cooling rate on the microstructure and shear strength of the joints were investigated. The interfacial microstructures can be characterized as ZrO2/ZrO2- x + TiO/(Zr,Ti)2(Cu,Ni)/(Zr,Ti)2(Cu,Ni,Al)/acicular Widmanstäten structure/Ti-6Al-4V. With the increase in the brazing temperature, both the thickness of the ZrO2- x + TiO layer and the content of the (Zr,Ti)2(Cu,Ni) phase decreased. However, the acicular Widmanstäten structure gradually increased. With the increase in the holding time, the (Zr,Ti)2(Cu,Ni) phase decreased, and the thickness of the (Zr,Ti)2(Cu,Ni) + (Zr,Ti)2(Cu,Ni,Al) layer decreased. In addition, cracks formed adjacent to the ZrO2 side under rapid cooling. The microstructures produced under various fabrication parameters directly influence the shear strength of the joints. When ZrO2 and Ti-6Al-4V couples were brazed at 1173 K for 10 min and then cooled at a rate of 5 K/min, the maximum shear strength of 95 MPa was obtained.

  18. The role of Zr and T6 heat treatment on microstructure evolution and hardness of AlSi9Cu3(Fe diecasting alloy

    Directory of Open Access Journals (Sweden)

    Vončina M.

    2017-01-01

    Full Text Available The microstructure features and hardness of AlSi9Cu3(Fe die casting alloy was investigated in the presence of Zr addition. The cast alloys were undergone the solutionizing treatment 2 h at 500°C followed by artificial aging at 180°C for 5 h. Optical microscopy and electron micro-analyzer were used to study the formation of different intermetallic phases. The hardness was tested for all samples at 25°C. The results revealed that the intermetallic phase, based on (Al,Si(Zr,Ti, forms when Zr is added in the investigated alloy, while the T6 heat treatment does not influence on the formation of Zr-bearing phase. Results also indicate that the hardness slightly increases in the AlSi9Cu3 alloy in as-cast state when Zr is added, while after T6 heat treatment increases by 50% in the alloy without Zr and by 61% in the alloy with Zr addition.

  19. Zr-92(d,p)Zr-93 and Zr-92(d,t)Zr-91

    Science.gov (United States)

    Baron, N.; Fink, C. L.; Christensen, P. R.; Nickels, J.; Torsteinsen, T.

    1972-01-01

    The structures of Zr-93 and Zr-91 were studied by the stripping reaction Zr-92(d,p)Zr-93 and the pick-up reaction Zr-92(d,t)Zr-91 using 13 MeV incident deuterons. The reaction product particles were detected by counter telescope. Typical spectra from the reactions were analyzed by a nonlinear least squares peak fitting program which included a background search. Spin and parity assignments to observed excited levels were made by comparing experimental angular distributions with distorted wave Born approximation calculations.

  20. Critical behavior of the ferromagnetic-paramagnetic phase transition in Fe{sub 90−x}Ni{sub x}Zr{sub 10} alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Tran Dang, E-mail: thanhxraylab@yahoo.com [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Huy Dan, Nguyen [Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Phan, The-Long; Yu, Seong-Cho, E-mail: scyu@chungbuk.ac.kr [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kumarakuru, Haridas; Olivier, Ezra J.; Neethling, Johannes H. [Centre for HRTEM, Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2014-01-14

    This work presents a detailed study on the critical behavior of the ferromagnetic-paramagnetic (FM-PM) phase transition in Fe{sub 90−x}Ni{sub x}Zr{sub 10} (x = 0 and 5) alloy ribbons. Basing on field dependences of magnetization (M-H), M{sup 2} versus H/M plots prove the alloys exhibiting a second-order magnetic phase transition. To investigate the nature of the FM-PM phase transition at T{sub C} = 245 and 306 K for x = 0 and 5, respectively, we performed a critical-exponent study. The values of critical components β, γ, and δ determined by using the modified Arrott plots, Kouvel-Fisher (KF), and critical isotherm analyses agree with each other. For x = 0, the critical parameters β = 0.365 ± 0.013 and γ = 1.615 ± 0.033 are obtained by modified Arrott plots while β = 0.368 ± 0.008 and γ = 1.612 ± 0.016 are obtained by the KF method. These values are close to those expected for the 3D-Heisenberg model, revealing short-range FM interactions in Fe{sub 90}Zr{sub 10}. Meanwhile, for x = 5, the values of the critical parameters β = 0.423 ± 0.008 and γ = 1.325 ± 0.036 are obtained by modified Arrott plots, and β = 0.425 ± 0.006 and γ = 1.323 ± 0.012 are obtained by the KF method. The falling of the β value in between the values of the mean-field theory (β = 0.5) and the 3D-Heisenberg model (β = 0.365) indicates an existence of FM short-range order and magnetic inhomogeneity in Fe{sub 85}Ni{sub 5}Zr{sub 10}. With a partial replacement of Ni for Fe in Fe{sub 90−x}Ni{sub x}Zr{sub 10}, the value of the critical exponent β trends to shift towards that of the mean-field theory. Such the result proves the presence of Ni favors establishing FM long-range order. The nature of this phenomenon is carefully discussed.

  1. Neutron data testing for plutonium isotopes in experiments at fast critical assemblies

    International Nuclear Information System (INIS)

    Bednyakov, S.M.; Dulin, V.A.; Manturov, G.N.; Mozhaev, V.K.; Semenov, M.Yu.; Tsibulya, A.M.

    1996-01-01

    Experimental results on checking neutron data, obtained at the fast critical assemblies, are presented. They constitute sufficiently large collection of data making it possible to test nuclear neutron constants of plutonium isotopes for the new system of group constants BNAB-93. The work contains comparison of the measurement results on average fission cross section ratios and reactivity coefficients ratios for 239,240,241 Pu (to 235 U) with calculational data, obtained on the basis of the new testing system of the BNAB-93 group constants system. 14 refs., 6 figs

  2. Subchannel analysis of a critical power test, using simulated BWR 8x8 fuel assembly

    International Nuclear Information System (INIS)

    Mitsutake, T.; Terasaka, H.; Yoshimura, K.; Oishi, M.; Inoue, A.; Akiyama, M.

    1990-01-01

    Critical power predictions have been compared with the critical power test data obtained in simulated BWR 8x8 fuel rod assemblies. Two analytical methods for the critical power prediction in rod assemblies are used in the prediction, which are the subchannel analysis using the COBRA/BWR subchannel computer code with empirical critical heat flux (CHF) correlations and the liquid film dryout estimation using the CRIPP-3F 'multi-fluid' computer code. Improvements in both the analytical methods were made for spacer effect modeling, though they were specific for application to the current BWR rod assembly type. In general a reasonable agreement was obtained, though comparisons, between the prediction and the obtained test data. (orig.)

  3. Blood Compatibility of ZrO2 Particle Reinforced PEEK Coatings on Ti6Al4V Substrates

    Directory of Open Access Journals (Sweden)

    Jian Song

    2017-11-01

    Full Text Available Titanium (Ti and its alloys are widely used in biomedical devices. As biomaterials, the blood compatibility of Ti and its alloys is important and needs to be further improved to provide better functionality. In this work, we studied the suitability of zirconia (ZrO2 particle reinforced poly-ether-ether-ketone (PEEK coatings on Ti6Al4V substrates for blood-contacting implants. The wettability, surface roughness and elastic modulus of the coatings were examined. Blood compatibility tests were conducted by erythrocytes observation, hemolysis assay and clotting time of recalcified human plasma, to find out correlations between the microstructure of the ZrO2-filled PEEK composite coatings and their blood compatibilities. The results suggested that adding ZrO2 nanoparticles increased the surface roughness and improved the wettability and Derjaguin-Muller-Toporov (DMT elastic modulus of PEEK coating. The PEEK composite matrix coated Ti6Al4V specimens did not cause any aggregation of erythrocytes, showing morphological normal shapes. The hemolysis rate (HR values of the tested specimens were much less than 5% according to ISO 10993-4 standard. The values of plasma recalcification time (PRT of the tested specimens varied with the increasing amount of ZrO2 nanoparticles. Based on the results obtained, 10 wt % ZrO2 particle reinforced PEEK coating has demonstrated an optimum blood compatibility, and can be considered as a candidate to improve the performance of existing PEEK based coatings on titanium substrates.

  4. Thermal expansion of phosphates with the NaZr2(PO4)3 structure containing lanthanides and zirconium: R0.33Zr2(PO4)3 (R = Nd, Eu, Er) and Er0.33(1–x) Zr0.25xZr2(PO4)3

    International Nuclear Information System (INIS)

    Volgutov, V. Yu.; Orlova, A. I.

    2015-01-01

    Phosphates R 0.33 Zr 2 (PO 4 ) 3 (R = Nd, Eu, or Er) and Er 0.33(1–x) Zr 0.25 Zr 2 (PO 4 ) 3 (x = 0, 0.25, 0.5, 0.75, 1.0) of the NaZr 2 (PO 4 ) 3 family have been synthesized and investigated by high-temperature X-ray diffraction. The crystallochemical approach is used to obtain compounds with expected small and controllable thermal-expansion parameters. Phosphates with close-to-zero thermal-expansion parameters, including those with low thermal-expansion anisotropy, have been obtained: Nd 0.33 Zr 2 (PO 4 ) 3 with α a =–2.21 × 10 −6 °C −1 , α c = 0.81 × 10 −6 °C −1 , and Δα = 3.02 × 10 −6 °C –1 and Er 0.08 Zr 0.19 Zr 2 (PO 4 ) 3 with α a =–1.86 × 10 −6 °C −1 , α c = 1.73 × 10 −6 °C −1 , and Δα = 3.58 × 10 −6 °C −1

  5. Experimental investigation of the Zr corner of the ternary Zr-Nb-Fe phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, M.S. E-mail: granovsk@cnea.gov.ar; Canay, M.; Lena, E.; Arias, D

    2002-04-01

    Intermediate phases in the Zr-rich region of the Zr-Nb-Fe system have been investigated by X-ray diffraction, optical and electron microscopy and electron microprobe analysis. The chemical composition ranges covered by the alloys studied here are: (41-97) at.% Zr, (32-0.9) at.% Nb and (0.6-38) at.% Fe. The phases found in this region were: the solid solutions {alpha}-Zr and {beta}-Zr, the intermetallic Zr{sub 3}Fe with less than 0.2 at.% Nb in solution, two new ternary intermetallic compounds (Zr+Nb){sub 2}Fe '{lambda}{sub 1}' with a cubic Ti{sub 2}Ni-type structure in the composition range (2.4-13) at.% Nb and (31-33) at.% Fe, and (Fe+Nb){sub 2}Zr '{lambda}{sub 2}' indexed as hexagonal Laves phase MgZn{sub 2} type (C14) with a wide range of compositions close to (35-37) at.% Zr, (12-31) at.% Nb and (32-53) at.% Fe.

  6. Experimental investigation of the Zr corner of the ternary Zr-Nb-Fe phase diagram

    International Nuclear Information System (INIS)

    Granovsky, M.S.; Canay, M.; Lena, E.; Arias, D.

    2002-01-01

    Intermediate phases in the Zr-rich region of the Zr-Nb-Fe system have been investigated by X-ray diffraction, optical and electron microscopy and electron microprobe analysis. The chemical composition ranges covered by the alloys studied here are: (41-97) at.% Zr, (32-0.9) at.% Nb and (0.6-38) at.% Fe. The phases found in this region were: the solid solutions α-Zr and β-Zr, the intermetallic Zr 3 Fe with less than 0.2 at.% Nb in solution, two new ternary intermetallic compounds (Zr+Nb) 2 Fe 'λ 1 ' with a cubic Ti 2 Ni-type structure in the composition range (2.4-13) at.% Nb and (31-33) at.% Fe, and (Fe+Nb) 2 Zr 'λ 2 ' indexed as hexagonal Laves phase MgZn 2 type (C14) with a wide range of compositions close to (35-37) at.% Zr, (12-31) at.% Nb and (32-53) at.% Fe

  7. An improved benchmark model for the Big Ten critical assembly - 021

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    2010-01-01

    A new benchmark specification is developed for the BIG TEN uranium critical assembly. The assembly has a fast spectrum, and its core contains approximately 10 wt.% enriched uranium. Detailed specifications for the benchmark are provided, and results from the MCNP5 Monte Carlo code using a variety of nuclear-data libraries are given for this benchmark and two others. (authors)

  8. Electrochemical characterization of pulsed layer deposited hydroxyapatite-zirconia layers on Ti-21Nb-15Ta-6Zr alloy for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Javier [Department of Chemistry, Universidad de La Laguna, P.O. Box 456, E-38200 La Laguna, Tenerife (Spain); Bolat, Georgiana [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Cimpoesu, Nicanor [“Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science, 61-63 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Trinca, Lucia Carmen [Science Department, University of Agricultural Sciences and Veterinary Medicine, M. Sadoveanu Alley 3, 700490 Iasi (Romania); Mareci, Daniel, E-mail: danmareci@yahoo.com [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Souto, Ricardo Manuel, E-mail: rsouto@ull.es [Department of Chemistry, Universidad de La Laguna, P.O. Box 456, E-38200 La Laguna, Tenerife (Spain); Institute of Material Science and Nanotechnology, Universidad de La Laguna, E-38200 La Laguna, Tenerife (Spain)

    2016-11-01

    Highlights: • New quarternary Ti-based alloy for biomaterial application. • Combined hydroxyapatite-zirconia coating produced by pulsed laser deposition. • Porous layer formed on the coated alloy blocks electron transfer reactions. • Electrochemical behaviour consistent with passive film with duplex structure. • HA–ZrO{sub 2} coated Ti-21Nb-15Ta-6Zr exhibits high potential for osseointegration. - Abstract: A new titanium base Ti-21Nb-15Ta-6Zr alloy covered with hydroxyapatite-zirconia (HA–ZrO{sub 2}) by pulsed laser deposition (PLD) technique was characterized regarding its corrosion resistance in simulated physiological Ringer’s solution at 37 °C. For the sake of comparison, Ti-6Al-4V standard implant alloy, with and without hydroxyapatite-zirconia coating, was also characterized. Multiscale electrochemical analysis using both conventional averaging electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, and spatially-resolved microelectrochemical techniques (scanning electrochemical microscopy, SECM) were used to investigate the electrochemical behaviour of the materials. In addition, scanning electron microscopy evidenced that no relevant surface morphology changes occurred on the materials upon immersion in the simulated physiological solution, despite variations in their electrochemical behaviour. Although uncoated metals appear to show better performances during conventional corrosion tests, the response is still quite similar for the HA–ZrO{sub 2} coated materials while providing superior resistance towards electron transfer due to the formation of a more dense film on the surface, thus effectively behaving as a passive material. It is believed corrosion of the HA–ZrO{sub 2} coated Ti-21Nb-15Ta-6Zr alloy will have negligible effect upon biochemical and cellular events at the bone-implant interface and could facilitate osseointegration.

  9. The transition from amorphous to crystalline in Al/Zr multilayers

    International Nuclear Information System (INIS)

    Zhong Qi; Zhang Zhong; Ma Shuang; Qi Runze; Li Jia; Wang Zhanshan; Le Guen, Karine; André, Jean-Michel; Jonnard, Philippe

    2013-01-01

    The amorphous-to-crystalline transition in Al(1.0%wtSi)/Zr and Al(Pure)/Zr multilayers grown by direct-current magnetron sputtering system has been characterized over a range of Al layer thicknesses (1.0–5.0 nm) by using a series of complementary measurements including grazing incidence X-ray reflectometry, atomic force microscopy, X–ray diffraction, and high-resolution transmission electron microscopy. The Al layer thickness transition exhibits the Si doped in Al could not only disfavor the crystallization of Al but also influence the changing trends of surface roughness and diffraction peak position of phase Al . An interesting feature of the presence of Si in Al layer is that Si could influence the transition process in Al(1%wtSi) layer, in which the critical thickness (1.6 nm) of Al(Pure) layer in Al(Pure)/Zr shifts to 1.8 nm of Al(1.0%wtSi) layer in Al(1.0%wtSi)/Zr multilayer. We also found that the Zr-on-Al interlayer is wider than the Al-on-Zr interlayer in both systems, and the Al layers do not have specific crystal orientation in the directions vertical to the layer from selected area electron diffraction patterns below the thickness (3.0 nm) of Al layers. Above the thickness (3.0 nm) of Al layers, the Al layers are highly oriented in Al , so that the transformation from asymmetrical to symmetrical interlayers can be observed. Based on the analysis of all measurements, we build up a model with four steps, which could explain the Al layer thickness transition process in terms of a critical thickness for the nucleation of Al(Pure) and Al(1%wtSi) crystallites.

  10. Highlighting micrographic structures of uranium-zirconium alloys with 6 per cent of weight of Zr

    International Nuclear Information System (INIS)

    Bouleau, Maurice

    1961-01-01

    In order to study the transformation kinetics of U-Zr alloys with a Zr content of 6 per cent in weight, the authors searched for a slow enough electrolytic polishing bath, and for an attack and examination method to highlight martensite structures produced by austempering and water tempering, and ultra-fine decomposition structures obtained by austempering. The authors explain the choice of a perchloric-butyl glycol polishing bath, of an examination under polarized light or normal light after appropriate attacks. These studies are reported for annealed alloys, and for processed alloys with martensite or ultra-fine decomposition structures [fr

  11. Over 15 MA/cm2 of critical current density in 4.8 µm thick, Zr-doped (Gd,Y)Ba2Cu3Ox superconductor at 30 K, 3T.

    Science.gov (United States)

    Majkic, Goran; Pratap, Rudra; Xu, Aixia; Galstyan, Eduard; Selvamanickam, Venkat

    2018-05-03

    An Advanced MOCVD (A-MOCVD) reactor was used to deposit 4.8 µm thick (Gd,Y)BaCuO tapes with 15 mol% Zr addition in a single pass. A record-high critical current density (J c ) of 15.11 MA/cm 2 has been measured over a bridge at 30 K, 3T, corresponding to an equivalent (I c ) value of 8705 A/12 mm width. This corresponds to a lift factor in critical current of ~11 which is the highest ever reported to the best of author's knowledge. The measured critical current densities at 3T (B||c) and 30, 40 and 50 K, respectively, are 15.11, 9.70 and 6.26 MA/cm 2 , corresponding to equivalent Ic values of 8705, 5586 and 3606 A/12 mm and engineering current densities (J e ) of 7068, 4535 and 2928 A/mm 2 . The engineering current density (J e ) at 40 K, 3T is 7 times higher than that of the commercial HTS tapes available with 7.5 mol% Zr addition. Such record-high performance in thick films (>1 µm) is a clear demonstration that growing thick REBCO films with high critical current density (J c ) is possible, contrary to the usual findings of strong J c degradation with film thickness. This achievement was possible due to a combination of strong temperature control and uniform laminar flow achieved in the A-MOCVD system, coupled with optimization of BaZrO 3 nanorod growth parameters.

  12. Zr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability

    International Nuclear Information System (INIS)

    Sun, Y.J.; Qu, D.D.; Huang, Y.J.; Liss, K.-D.; Wei, X.S.; Xing, D.W.; Shen, J.

    2009-01-01

    Zr-Cu-Ni-Al quaternary amorphous alloy compositions with varying glass-forming ability are developed by an efficient method of proportional mixing of binary eutectics. The critical diameter of the glassy sample is improved from 6 mm for Zr 53 Cu 18.7 Ni 12 Al 16.3 to 14 mm for Zr 50.7 Cu 28 Ni 9 Al 12.3 by straightforwardly adjusting the eutectic unit's coefficients. The drastic improvement in GFA is attributed to balancing the chemical affinities of the Zr, Cu, Ni and Al components in the melt prior to solidification which makes the precipitation of competing crystalline phases more difficult. As the glass-forming ability increases, the concentration of Cu in the alloys exhibits a same trend. Based on synchrotron radiation high-energy X-ray diffraction analysis and Miracle's structural model, it is envisioned that the substitution of additional Cu atoms for Zr atoms in the investigated alloys stabilizes the efficient cluster packing structure of the amorphous alloys, leading to the pronounced increase in their glass-forming ability

  13. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study.

    Science.gov (United States)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-12-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5-216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO2 phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets.

  14. Utilization of thorium and U-ZrH1.6 fuels in various heterogeneous cores for TRIGA PUSPATI Reactor (RTP)

    Science.gov (United States)

    Damahuri, Abdul Hannan Bin; Mohamed, Hassan; Aziz Mohamed, Abdul; Idris, Faridah

    2018-01-01

    The use of thorium as nuclear fuel has been an appealing prospect for many years and will be great significance to nuclear power generation. There is an increasing need for more research on thorium as Malaysian government is currently active in the national Thorium Flagship Project, which was launched in 2014. The thorium project, which is still in phase 1, focuses on the research and development of the thorium extraction from mineral processing ore. Thus, the aim of the study is to investigate other alternative TRIGA PUSPATI Reactor (RTP) core designs that can fully utilize thorium. Currently, the RTP reactor has an average neutron flux of 2.797 x 1012 cm-2/s-1 and an effective multiplication factor, k eff, of 1.001. The RTP core has a circular array core configuration with six circular rings. Each ring consists of 6, 12, 18, 24, 30 or 36 U-ZrH1.6 fuel rods. There are three main type of uranium weight, namely 8.5, 12 and 20 wt.%. For this research, uranium zirconium hydride (U-ZrH1.6) fuel rods in the RTP core were replaced by thorium (ThO2) fuel rods. Seven core configurations with different thorium fuel rods placements were modelled in a 2D structure and simulated using Monte Carlo n-particle (MCNPX) code. Results show that the highest initial criticality obtained is around 1.35101. Additionally there is a significant discrepancy between results from previous study and the work because of the large estimated leakage probability of approximately 21.7% and 2D model simplification.

  15. Vitrification and determination of the crystallization time scales of the bulk-metallic-glass-forming liquid Zr58.5Nb2.8Cu15.6Ni12.8Al10.3

    International Nuclear Information System (INIS)

    Hays, C. C.; Schroers, J.; Johnson, W. L.; Rathz, T. J.; Hyers, R. W.; Rogers, J. R.; Robinson, M. B.

    2001-01-01

    The crystallization kinetics of Zr 58.5 Nb 2.8 Cu 15.6 Ni 12.8 Al 10.3 were studied in an electrostatic levitation (ESL) apparatus. The measured critical cooling rate is 1.75 K/s. Zr 58.5 Nb 2.8 Cu 15.6 Ni 12.8 Al 10.3 is the first bulk-metallic-glass-forming liquid that does not contain beryllium to be vitrified by purely radiative cooling in the ESL. Furthermore, the sluggish crystallization kinetics enable the determination of the time-temperature-transformation (TTT) diagram between the liquidus and the glass transition temperatures. The shortest time to reach crystallization in an isothermal experiment; i.e., the nose of the TTT diagram is 32 s. The nose of the TTT diagram is at 900 K and positioned about 200 K below the liquidus temperature

  16. Structure and Infrared Emissivity Properties of the MAO Coatings Formed on TC4 Alloys in K2ZrF6-Based Solution

    Science.gov (United States)

    Li, Ying; Hu, Dan; Xi, Zhengping

    2018-01-01

    Micro-arc oxidation (MAO) ceramic coatings were formed on TC4 alloy surface in silicate and metaphosphate electrolytes based with K2ZrF6 for various concentrations. X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) were used to characterize the phase composition, microstructure and chemical compositions of the coatings. The infrared emissivity of the coatings was measured at 50 °C in a wavelength range of 8–20 µm. The microstructural observations all revealed the typical porousstructures. Moreover, adecline in roughness and thickness of the prepared coatings can be observed when the concentration of K2ZrF6 increases. Combined with the results of XRD and XPS, it was found that all the oxides existed as the amorphous form in the coatings except the TiO2 phase. The coatings exhibited the highest infrared emissivity value (about 0.89) when the concentration of K2ZrF6 was 6 g/L, which was possibly attributed to the defect microstructure and the optimal role of ZrO2. PMID:29414841

  17. Observations of a Cast Cu-Cr-Zr Alloy

    Science.gov (United States)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  18. Composite Fe - BaCe0.2Zr0.6Y0.2O2.9 Anodes for Proton Conductor Fuel Cells

    DEFF Research Database (Denmark)

    Lapina, Alberto; Chatzichristodoulou, Christodoulos; Holtappels, Peter

    2014-01-01

    Symmetrical cells with Fe - BaCe0.2Zr0.6Y0.2O2.9 composite electrodes are produced by screen printing and infiltration, using BaCe0.2Zr0.6Y0.2O2.9 as electrolyte. The electrochemical performance of the composite electrode is studied by impedance spectroscopy at 250–500◦C in dry and wet hydrogen/n...

  19. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study

    International Nuclear Information System (INIS)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-01-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5–216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO 2  phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets. (paper)

  20. Assembly and dynamics of the U4/U6 di-snRNP by single-molecule FRET

    Science.gov (United States)

    Hardin, John W.; Warnasooriya, Chandani; Kondo, Yasushi; Nagai, Kiyoshi; Rueda, David

    2015-01-01

    In large ribonucleoprotein machines, such as ribosomes and spliceosomes, RNA functions as an assembly scaffold as well as a critical catalytic component. Protein binding to the RNA scaffold can induce structural changes, which in turn modulate subsequent binding of other components. The spliceosomal U4/U6 di-snRNP contains extensively base paired U4 and U6 snRNAs, Snu13, Prp31, Prp3 and Prp4, seven Sm and seven LSm proteins. We have studied successive binding of all protein components to the snRNA duplex during di-snRNP assembly by electrophoretic mobility shift assay and accompanying conformational changes in the U4/U6 RNA 3-way junction by single-molecule FRET. Stems I and II of the duplex were found to co-axially stack in free RNA and function as a rigid scaffold during the entire assembly, but the U4 snRNA 5′ stem-loop adopts alternative orientations each stabilized by Prp31 and Prp3/4 binding accounting for altered Prp3/4 binding affinities in presence of Prp31. PMID:26503251

  1. Superconductivity and spin fluctuations in M-Zr metallic glasses (M = Cu, Ni, Co, and Fe)

    International Nuclear Information System (INIS)

    Altounian, Z.; Strom-Olsen, J.O.

    1983-01-01

    The superconducting transition temperature, upper critical field, and magnetic susceptibility have been measured in four binary metallic glass systems: Cu-Zr, Ni-Zr, Co-Zr, and Fe-Zr. For each alloy system, a full and continuous range of Zr-rich compositions accessible by melt spinning has been examined. For Cu-Zr, the range is 0.75>x>0.30; for Ni-Zr, 0.80>x>0.30; for Co-Zr, 0.80>x>0.48, and for Fe-Zr, 0.80>x>0.55 (x being the concentration of Zr in at. %). The results show clearly the influence of spin fluctuations in reducing the superconducting transition temperature. The data have been successfully analyzed using a modified form of the McMillan equation together with expressions for the Stoner enhanced magnetic susceptibility and the Ginsburg-Landau-Abrikosov-Gor'kov expression for the upper critical field

  2. Mechanical spectroscopy study on the Cu54Zr40Al6 amorphous matrix alloy at low temperature

    International Nuclear Information System (INIS)

    Marques, P.W.B.; Chaves, J.M.; Silva, P.S.; Florêncio, O.; Moreno-Gobbi, A.; Aliaga, L.C.R.; Botta, W.J.

    2015-01-01

    Highlights: • Cu 54 Zr 40 Al 6 alloy was characterized by mechanical spectroscopy at low temperature. • Flexural and ultrasonic methods showed peaks associated to rearrangement of clusters. • The peaks less stable were associated with annihilation of Zr or Cu clusters. • MHz range can be favors the formation of Cu an Al-centered icosahedral structures. • TEM images show an increase in the size and number of crystal in amorphous matrix. - Abstract: A mechanical spectroscopy study of Cu 54 Zr 40 Al 6 bulk metallic glasses composites was carried out in the kHz and MHz frequency ranges, by means of flexural and ultrasonic methods, respectively, in the temperature interval 150–300 K. In internal friction and attenuation curves at low temperature were observed peaks which were associated with distortions in the configuration of atomic clusters, which absorbed different quantities of energy due to short and medium order rearrangements. Changes within the clusters or atomic jumps between clusters occurring in the specimen induced the onset of polyamorphic peaks, since electronic interactions and bonding changed abruptly

  3. The secondary electron yield of TiZr and TiZrV non evaporable getter thin film coatings

    CERN Document Server

    Scheuerlein, C; Hilleret, Noël; Taborelli, M

    2001-01-01

    The secondary electron yield (SEY) of two different non evaporable getter (NEG) samples has been measured 'as received' and after thermal treatment. The investigated NEGs are TiZr and TiZrV thin film coatings of 1 mm thickness, which are sputter deposited onto copper substrates. The maximum SEY dmax of the air exposed TiZr and TiZrV coating decreases from above 2.0 to below 1.1 during a 2 hour heat treatment at 250 °C and 200 °C, respectively. Saturating an activated TiZrV surface under vacuum with the gases typically present in ultra high vacuum systems increases dmax by about 0.1. Changes in elemental surface composition during the applied heat treatments were monitored by Auger electron spectroscopy (AES). After activation carbon, oxygen and chlorine were detected on the NEG surfaces. The potential of AES for detecting the surface modifications which cause the reduction of SE emission during the applied heat treatments is critically discussed.

  4. Physical and geometrical parameters of ANNA critical assemblies. Pt. 2

    International Nuclear Information System (INIS)

    Malewski, S.; Dabrowski, C.

    1973-01-01

    An extended analysis of four critical configurations of ANNA Assembly has been performed. Diffusion parameters of the thermal group and of one or three epithermal groups have been determined. Using these data the critical calculations have been carried out and the main neutron density distributions presented. The role of some neutron processes in these systems and their influence on integral parameters has been considered. The calculated quantities have been compared with the available experimental data. (author)

  5. Experimental phases diagram Zr-Fe and Zr-Sn-Fe of the Fe rich zone at a temperature of 1100oC

    International Nuclear Information System (INIS)

    Nieva, N.; Jimenez, J.; Gomez, A; Granovsky, M.S

    2010-01-01

    Zr-based alloys are frequently used in the nuclear energy industry; among these are the Zr-based Zircaloys whose main alloys are Sn and Fe. In order to experimentally evaluate part of the diagram of the binary Zr-Fe phases and the ternary Zr-Sn-Fe in the Fe-rich zone, different binary alloys in the area closest to the composition of the ZrFe 2 and Zr 6 Fe 23 compounds were designed as well as a ternary alloy of Zr-Sn-Fe in the Fe-rich region of the ternary system. All the alloys underwent a two month heat treatment at a temperature of 1100 o C. Later the phases that were present were identified using different complementary techniques (mainly X-ray diffraction and microanalysis). The clear presence of the Zr 6 Fe 23 phase was not observed in any of the alloys. A new ternary phase consisting approximately of Zr 2 0Sn 14 Fe 66 was verified in the ternary alloy

  6. Experiments for IFR fuel criticality in ZPPR-21

    International Nuclear Information System (INIS)

    Olsen, D.N.; Collins, P.J.; Carpenter, S.G.

    1991-01-01

    A series of benchmark measurements was made in ZPPR-21 to validate criticality calculations for fuel processing operations for Argonne's Integral Fast Reactor program. Six different mixtures of Pu/U/Zr fuel with a graphite reflector were built and criticality was determined by period measurements. The assemblies were isolated from room return neutrons by a lithium hydride shield. Analysis was done using a fully-detailed model with the VIM Monte Carlo code and ENDF/B-V.2 data. Sensitivity analysis was used to validate the measurements against other benchmark data. A simple RZ model was defined and used with the KENO code. Corrections to the RZ model were provided by the VIM calculations with low statistical uncertainty. (Author)

  7. Magnetic and structural behavior of Sr2ZrMnO6 double perovskite

    International Nuclear Information System (INIS)

    Llamosa, D.P.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2009-01-01

    We report synthesis and characterization of new Sr 2 ZrMnO 6 manganite-like material. Samples were produced by the solid state reaction method with sinterization temperatures up to 1400 deg. C. X-ray diffraction experiments reveal that structure belongs to the perovskite system, space group Fm3-barm(no. 225). Lattice parameter a=7.86A was obtained by means of Rietveld-type refinement, through the GSAS code. Magnetic properties were studied by using an MPMS Quantum Design SQUID. From measurements of magnetization as a function of temperature, we determine the occurrence of a paramagnetic-antiferromagnetic transition with Neel temperature 50 K. Curie-Weiss fitting permitted to obtain the magnetic characteristic parameters. At temperature regimes below the Neel temperature, strong evidences of frustration and an irreversibility temperature between zero field cooling (ZFC) and field cooling (FC) measurements were observed. Curves of magnetization as a function of applied field were performed at T=4K. Results show a hysteretic feature for Sr 2 ZrMnO 6 magnetic material. This response is attributed to formation of magnetic clusters as a consequence of cationic (magnetic and no magnetic) disorder along the double perovskite structure.

  8. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    Science.gov (United States)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  9. Systems analysis determining critical items, critical assembly processes, primary failure modes and corrective actions on ASST magnets

    International Nuclear Information System (INIS)

    Arden, C.S.

    1993-04-01

    During the assembly process through the completion of the Accelerator Surface String Test (ASST) phase one test, Magnet Systems Division Reliability Engineering has tracked all the known discrepancies utilizing the Failure Reporting, Analysis and Corrective Action System (FRACAS) and data base. This paper discusses the critical items, critical assembly processes, primary failure modes and corrective actions (lessons learned) based on actual data for the ASST magnets. The ASST magnets include seven Brookhaven Lab Dipoles (DCA-207 through 213), fourteen Fermi Lab Dipoles (DCA-310 through 323) and five Lawrence Berkeley Lab Quadrupoles (QCC-402 through 406). Between all the ASST magnets built there were one hundred eighty six (186) class one discrepancies reported out of approximately eleven hundred total discrepancy reports. The class one or critical discrepancies are defined as form, fit, function, safety or reliability problem. Each and every ASST magnet is considered a success, as they all achieved the quench performance requirements and were capable of being incorporated into the string test. This paper also discuss some specific magnet discrepancies, including failure cause(s), corrective action and possible open issues

  10. Systems analysis determining critical items, critical assembly processes, primary failure modes and corrective actions on ASST magnets

    International Nuclear Information System (INIS)

    Arden, C.S.

    1994-01-01

    During the assembly process through the completion of the Accelerator Surface String Test (ASST) phase one test, Magnet Systems Division Reliability Engineering has tracked all the known discrepancies utilizing the Failure Reporting, Analysis and Corrective Action System (FRACAS) and data base. This paper discusses the critical items, critical assembly processes, primary failure modes and corrective actions (lessons learned) based on actual data for the ASST magnets. The ASST magnets include seven Brookhaven Lab Dipoles (DCA-207 through 213), fourteen Fermi Lab Dipoles (DCA-310 through 323) and five Lawrence Berkeley Lab Quadrupoles (QCC-402 through 406). Between all the ASST magnets built there were one hundred eighty six (186) class one discrepancies reported out of approximately eleven hundred total discrepancy reports. The class one or critical discrepancies are defined as form, fit, function, safety or reliability problem. Each and every ASST magnet is considered a success, as they all achieved the quench performance requirements and were capable of being incorporated into the string test. This paper will also discuss some specific magnet discrepancies, including failure cause(s), corrective action and possible open issues

  11. Optical properties of Ar ions irradiated nanocrystalline ZrC and ZrN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C. [Ramapo College of New Jersey, Mahwah, NJ 07430 (United States); Miller, K.H. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Makino, H. [Research Institute, Kochi University of Technology, Kami, Kochi, 782-8502 (Japan); Craciun, D. [National Institute for Laser, Plasma, and Radiation Physics, Bucharest-Magurele (Romania); Simeone, D. [CEA/DEN/DANS/DM2S/SERMA/LEPP-LRC CARMEN CEN Saclay France & CNRS/ SPMS UMR8785 LRC CARMEN, Ecole Centrale de Paris, F92292, Chatenay Malabry (United States); Craciun, V., E-mail: valentin.craciun@inflpr.ro [National Institute for Laser, Plasma, and Radiation Physics, Bucharest-Magurele (Romania)

    2017-05-15

    Employing wide spectral range (0.06–6 eV) optical reflectance measurements and high energy X-ray photoemission spectroscopy (HE-XPS), we studied the effect of 800 keV Ar ion irradiation on optical and electronic properties of nanocrystalline ZrC and ZrN thin films, which were obtain by the pulsed laser deposition technique. Both in ZrC and ZrN, we observed that irradiation affects the optical properties of the films mostly at low frequencies, which is dominated by the free carriers response. In both materials, we found a significant reduction in the free carriers scattering rate and an increase of the zero frequency conductivity, i.e. possible increase in mobility, at higher irradiation fluence. This is consistent with our previous findings that irradiation affects the crystallite size and the micro-strain, but it does not induce major changes in the chemical bonding. HE-XPS investigations further confirms the stability of the Zr-C and Zr-N bonds, despite a small increase in the surface region of the Zr-O bonds fraction with increasing irradiation fluence.

  12. Arsenic and fluoride removal from contaminated drinking water with Haix-Fe-Zr and Haix-Zr resin beads.

    Science.gov (United States)

    Phillips, Debra H; Sen Gupta, Bhaskar; Mukhopadhyay, Soumyadeep; Sen Gupta, Arup K

    2018-06-01

    The objective of the study was to carry-out batch tests to examine the effectiveness of Haix-Fe-Zr and Haix-Zr resin beads in the removal of As(III), As(V) and F - from groundwater with a similar geochemistry to a site where a community-based drinking water plant has been installed in West Bengal, India. The groundwater was spiked separately with ∼200 μg/L As(III) and As(V) and 5 mg/L F - . Haix-Zr resin beads were more effective than Haix-Fe-Zr resin beads in removing As(III) and As(V). Haix-Zr resin beads showed higher removal of As(V) compared to As(III). Haix-Zr resin beads removed As(V) below the WHO (10 μg/L) drinking water standards at 8.79 μg/L after 4 h of shaking, while As(III) was reduced to 7.72 μg/L after 8 h of shaking. Haix-Fe-Zr resin beads were more effective in removing F - from the spiked groundwater compared to Haix-Zr resin beads. Concentrations of F - decreased from 6.27 mg/L to 1.26 mg/L, which is below the WHO drinking water standards (1.5 mg/L) for F - , after 15 min of shaking with Haix-Fe-Zr resin beads. After 20 min of shaking in groundwater treated with Haix-Zr resin beads, F - concentrations decreased from 6.27 mg/L to 1.43 mg/L. In the removal of As(III), As(V), and F - from the groundwater, Haix-Fe-Zr and Haix-Zr resin beads fit the parabolic diffusion equation (PDE) suggesting that adsorption of these contaminants was consistent with inter-particle diffusion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Oxidation study of Ta–Zr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Chen, Sin-Min

    2013-02-01

    Refractory metal alloy coatings, such as Mo–Ru and Ta–Ru coatings, have been developed to protect glass molding dies. Forming intermetallic compounds in the coatings inhibits grain growth in high temperature environments when mass producing optical components. After annealing in oxygen containing atmospheres, a surface roughening of the Mo–Ru coatings and a soft oxide layer on the Ta–Ru coatings have been observed in our previous works. Oxidation resistance becomes critical in high-temperature applications. In this study, Ta–Zr coatings were deposited with a Ti interlayer on silicon wafers using direct current magnetron sputtering at 400 °C. The as-deposited Ta–Zr coatings possessed nanocrystallite or amorphous states, depending on the chemical compositions. The annealing treatments were conducted at 600 °C under atmospheres of 50 ppm O{sub 2}–N{sub 2} or 1% O{sub 2}–Ar, respectively. After the annealing treatment, this study investigated variations in crystalline structure, hardness, surface roughness, and chemical composition profiles. Preferential oxidation of Zr in the Ta–Zr coatings was verified using X-ray photoelectron spectroscopy, and the microstructure was observed using transmission electron microscopy. - Highlights: ►The as-deposited Ta-rich Ta–Zr coatings revealed an amorphous structure. ►The Zr-rich coatings presented a crystalline β-Zr phase and an amorphous matrix. ►Zr oxidized preferentially as Ta–Zr coatings annealed at 600 °C. ►The hardness of coatings revealed a parabolic relationship with the oxygen content. ►A protective oxide scale formed on the surface of the crystallized Zr-rich coatings.

  14. Amorphization of Zr3Al by hydrogenation and subsequent electron irradiation

    International Nuclear Information System (INIS)

    Meng, W.J.; Koike, J.; Okamoto, P.R.; Rehn, L.E.

    1988-12-01

    1-MeV electron irradiation of hydrogenated Zr 3 Al (Zr 3 AlH/sub 0.96/) at 10K is studied. A more than 20 fold reduction in the critical dose required for complete amorphization is observed for the hydrogenated specimen as compared to the un-hydrogenated Zr 3 Al under identical irradiation conditions. 11 refs., 4 figs

  15. Microstructure, mechanical property and in vitro biocorrosion behavior of single-phase biodegradable Mg–1.5Zn–0.6Zr alloy

    Directory of Open Access Journals (Sweden)

    Tao Li

    2014-06-01

    Full Text Available The microstructure, mechanical property, and in vitro biocorrosion behavior of as-cast single-phase biodegradable Mg–1.5Zn–0.6Zr alloy were investigated and compared with a commercial as-cast AZ91D alloy. The results show that the Mg–1.5Zn–0.6Zr alloy had a single-phase solid solution structure, with an average grain size of 34.7 ± 13.1 μm. The alloy exhibited ultimate tensile strength of 168 ± 2.0 MPa, yield strength of 83 ± 0.6 MPa, and elongation of 9.1 ± 0.6%. Immersion tests and electrochemical measurements reveal that the alloy displayed lower biocorrosion rate and more uniform corrosion mode than AZ91D in Hank's solution. The elimination of intensive galvanic corrosion reactions and the formation of a much more compact and uniform corrosion film mainly account for the better biocorrosion properties of the Mg–1.5Zn–0.6Zr alloy than AZ91D.

  16. Influence of “whirlwind” mixing grids on the critical power of WWER fuel assembly

    International Nuclear Information System (INIS)

    Selivanov, Yu.F.; Pomet'ko, R.S.; Volkov, S.E.

    2014-01-01

    The problem of optimizing the number and placement of lattices in different types assemblies is discussed. The effect of the amount of mixing lattices and their locations in assemblies on the conditions of occurrence of boiling crisis in the fuel assembly on its critical power (power of assembly in case of boiling crisis) is studied. Experiments were carried out with the use of freon as a coolant. It is recommended simultaneous use in the assembly of lattices of “whirlwind” type, well-intensifying heat exchange, and cell lattices of “pass” type (or lattices with deflectors) affecting on moving flow, provided the optimal location of lattices in the assembly [ru

  17. Ion conductivities of ZrF4-BaF2-CsF glasses

    International Nuclear Information System (INIS)

    Kawamoto, Yoji; Nohara, Ichiro

    1987-01-01

    The glass-forming region in the ZrF 4 -BaF 2 -CsF glass system has been determined and the ac conductivity and the transport number of fluoride ions have been measured. The conductivities of compounds β-Cs 2 ZrF 6 , α-SrZrF 6 , α-BaZrF 6 , β-BaZrF 6 and α-PbZrF 6 have also been measured. These results and a previous study of ZrF 4 -BaF 2 -MF n (M: the groups I-IV metals) glasses revealed the following: (1) the ZrF 4 -BaF 2 -CsF glasses are exclusively fluoride-ion conductors; (2) the ionic conductivities of ZrF 4 -based glasses are predominantly determined by the activation energies for conduction; (3) the activation energy for conduction decreases with an increase in the average polarizability of glass-constituting cations; (4) a decrease in average Zr-F bond length and a lowering of the average F coordination number of Zr are presumed to increase the activation energy for conduction. Principles of developing ZrF 4 -based glasses with higher conductivities have also been proposed. (Auth.)

  18. Arc melting and homogenization of ZrC and ZrC + B alloys

    Science.gov (United States)

    Darolia, R.; Archbold, T. F.

    1973-01-01

    A description is given of the methods used to arc-melt and to homogenize near-stoichiometric ZrC and ZrC-boron alloys, giving attention to the oxygen contamination problem. The starting material for the carbide preparation was ZrC powder with an average particle size of 4.6 micron. Pellets weighing approximately 3 g each were prepared at room temperature from the powder by the use of an isostatic press operated at 50,000 psi. These pellets were individually melted in an arc furnace containing a static atmosphere of purified argon. A graphite resistance furnace was used for the homogenization process.

  19. Interaction of (NH4)2ZrF6 and (NH4)3ZrF7 with strontium and lead nitrates

    International Nuclear Information System (INIS)

    Krysenko, G.F.; Mel'nichenko, E.I.; Ehpov, D.G.; Polishchuk, S.A.

    1991-01-01

    Methods of chemical, X-ray phase, thermogravimetric analysis and IR spectroscopy were used to study reactions between ammonium fluorozirconates and strontium and lead nitrates. Formation of anhydrous hexa- and octafluorozirconates of strontium and lead in the form of MZrF 6 ·0.5NH 4 F and M 2 ZrF 8 ·0.5NH 4 F double salts, which decompose at 315-430 deg C to corresponding hexa- and octafluorozirconates, was established. Effect of hydrofluoric acid on composition of lead fluorozirconates was studied

  20. Safety analysis report for the Hanford Critical Mass Laboratory: Supplement No. 2. Experiments with heterogeneous assemblies

    International Nuclear Information System (INIS)

    Gore, B.F.; Davenport, L.C.

    1981-04-01

    Factors affecting the safety of criticality experiments using heterogeneous assemblies are described and assessed. It is concluded that there is no substantial change in safety from experiments already being routinely performed at the Critical Mass Laboratory (CML), and that laboratory and personnel safety are adequately provided by the combination of engineered and administrative safety limits enforced at the CML. This conclusion is based on the analysis of operational controls, potential hazards, and the consequences of accidents. Contingencies considered that could affect nuclear criticality include manual changes in fuel loadings, water flooding, fire, explosion, loss of services, earthquake, windstorm, and flood. Other potential hazards considered include radiation exposure to personnel, and potential releases within the Assembly Room and outside to the environment. It is concluded that the Maximum Credible Nuclear Burst of 3 x 10 18 fissions (which served as the design basis for the CML) is valid for heterogeneous assemblies as well as homogeneous assemblies. This is based upon examination of the results of reactor destructive tests and the results of the SL-1 reactor destructive accident. The production of blast effects which might jeopardize the CML critical assembly room (of thick reinforced concrete) is not considered credible due to the extreme circumstances required to produce blast effects in reactor destructive tests. Consequently, it is concluded that, for experiments with heterogeneous assemblies, the consequences of the Maximum Credible Burst are unchanged from those previously estimated for experiments with homogeneous systems

  1. Fabrication of Zr2WP2O12/ZrV0.6P1.4O7 composite with a nearly zero-thermal-expansion property.

    Science.gov (United States)

    Yanase, Ikuo; Sakai, Hiroshi; Kobayashi, Hidehiko

    2017-11-15

    Sintered bodies of Zr 2 WP 2 O 12 (ZWP) and ZrV 0.6 P 1.4 O 7 (ZVP) were fabricated, and their linear thermal expansion coefficients (TEC) were found to be -2.92 × 10 -6 and 3.27 × 10 -6  °C -1 , respectively, in the range 25-500 °C. In an attempt to fabricate composites with a zero-thermal-expansion property, sintered ZWP/ZVP composites with ZVP/ZWP volume ratios of 0.5/0.5, 0.53/0.47, 0.55/0.45, and 0.6/0.4 were fabricated. Scanning electron microscopy revealed that sintering of ZVP/ZWP composites progressed well compared with that of ZWP. A porous ZVP/ZWP composite with a relative density of ca. 83% was fabricated at a ZVP/ZWP volume ratio of 0.53/0.47. X-ray diffractometry and energy dispersive X-ray spectrometry clarified that the ZVP/ZWP composite mainly consisted of ZWP and ZVP grains. Thermomechanical analysis confirmed that the ZVP/ZWP composite exhibited very low thermal expansion with a slight hysteresis with a TEC of -0.29 × 10 -7  °C -1 in the range 25-500 °C.

  2. Spatial kinetics studies in liquid-metal fast breeder reactor critical assemblies

    International Nuclear Information System (INIS)

    Brumback, S.B.; Goin, R.W.; Carpenter, S.G.

    1988-01-01

    Recent measurements in the zero-power physics reactor have been used to study the effect of spatial decoupling in fast reactor critical assemblies of various sizes and compositions. Flux distributions in these assemblies had varying degrees of sensitivity to perturbations. Decoupling was investigated using rod-drop, boron-oscillator, and noise-coherence techniques, which emphasized different times following perturbations. Equilibrium flux distributions were also measured for subcritical configurations with inserted control rods. For most assemblies, accurate reactivity measurements were obtained by analyzing the power history from a single detector using inverse kinetics methods, assuming an instantaneous efficiency change for the detector. The instantaneous efficiency change assumption broke down, however, in assemblies with zones in which normal plutonium fuel was replaced by /sup 235/U fuel or fuel with a high /sup 240/Pu content. Flux redistributions caused by perturbations in these cores took several minutes to evolve

  3. Study on surface defect structures of ZrO2 and some doped ZrO2 by means of work function measurement

    International Nuclear Information System (INIS)

    Yamawaki, M.; Suzuki, A.; Ono, F.; Yamaguchi, K.

    1997-01-01

    The work function change of the ZrO 2 +2%Y 2 O 3 sintered pellet, caused by a change of the composition of the sweep gas, was measured using a high temperature Kelvin probe. The Pt reference electrode was calibrated by using ZrO 2 +2%Y 2 O 3 as a standard material. Work function changes of undoped ZrO 2 and Nb-doped ZrO 2 (2%Nb 2 O 5 ) were measured as a function of equilibrium oxygen partial pressure, P O 2 . The thus obtained exponents of P O 2 , 1/n, were 1/6.2 and 1/33.6 for ZrO 2 and ZrO 2 +2%Nb 2 O 5 , respectively. These exponent values were discussed in terms of defect chemistry of the surface layer. (orig.)

  4. Structural investigation of Fe(Cu)ZrB amorphous alloy

    International Nuclear Information System (INIS)

    Duhaj, P.; Janickovic, D.

    1996-01-01

    The crystallization process in Fe 86 (Cu 1 )Zr 7 B 6 and Fe 87 Zr 7 B 6 is investigated using the methods of transmission electron microscopy, electron and X-ray diffraction and resistometry. Two crystallization reactions take place during thermal annealing of amorphous Fe 86 (Cu 1 )Zr 7 B 6 and Fe 87 Zr 7 B 6 alloys. In both alloys the first crystallization begins with the formation of nanocrystalline α-Fe at temperature to approximately 800 K. The second crystallization starts above 1000 K; the nanocrystalline phase dissolves and together with the remaining amorphous matrix form rough grains of α-Fe and dispersed Fe 23 Zr 6 phases. From Moessbauer spectroscopy it seems that there exist two neighbourhoods of Fe atoms in the amorphous structure. One of them is characterized by low Zr content and is responsible for the high-field component of the hyperfine field distribution p(H). The second one is rich in Zr and B and is responsible for the low-field component of p(H). This is in accord with the observation of two crystallization steps separated by a large interval of temperatures due to the existence of two chemically different regions or clusters. (orig.)

  5. Order-disorder phase transition in ZrV2Dsub(3.6)

    International Nuclear Information System (INIS)

    Didisheim, J.-J.; Yvon, K.; Tissot, P.

    1981-01-01

    The deuterated C15-type Laves phase ZrV 2 Dsub(3.6) undergoes a structural phase transition near room temperature (T of the order of 325 K). In the cubic high-temperature phase the deuterium atoms are disordered over two types of tetrahedral interstices, the centres of which are 1.3 A apart. In the tetragonal low-temperature phase the D atoms are ordered and occupy only the energetically more favourable interstices. The tetragonal structure is isotypic with the low-temperature phase of HfV 2 D 4 . The shortest D-D distance is 2.1 A. (author)

  6. Intermetallic phases in the iron-rich region of the Zr-Fe phase diagram

    International Nuclear Information System (INIS)

    Granovsky, M.S.; Arias, D.

    1996-01-01

    Intermetallic phases in the Fe-rich region of the Zr-Fe system are studied by X-ray diffraction and optical and electron microscopy. The chemical composition of each phase has been quantitatively measured in a electron microprobe. The stable phases found in this region are ZrFe 2 , Zr 6 Fe 23 and (αFe). ZrFe 2 is identified as a cubic Laves type phase (C15) and the ZrFe 2 /ZrFe 2 +Zr 6 Fe 23 boundary composition is 73±1 at.% Fe. Zr 6 Fe 23 is a cubic phase of the Th 6 Mn 23 type and its composition is 80.0±1.5 at.% Fe. The eutectic L↔Zr 6 Fe 23 +τ-Fe transformation temperature and composition are 1325 C and 91±1 at.% Fe, respectively. The solubility of Zr in τ-Fe at 1012 C is 500±50 appm and 1000±100 appm close to the eutectic temperature. (orig.)

  7. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating

    International Nuclear Information System (INIS)

    Obadele, Babatunde Abiodun; Andrews, Anthony; Mathew, Mathew T.; Olubambi, Peter Apata; Pityana, Sisa

    2015-01-01

    Highlights: • The tribocorrosion behaviour of TiNiZrO 2 composite is investigated. • The effect of ZrO 2 on the microstructure is discussed. • The effect of the combined action of wear and chemical process is reported. • ZrO 2 addition improved the tribocorrosion property of Ti6Al4V. - Abstract: Ti6Al4V alloy was laser cladded with titanium, nickel and zirconia powders in different ratio using a 2 kW CW ytterbium laser system (YLS). The microstructures of the cladded layers were examined using field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Corrosion and tribocorrosion tests were performed on the cladded surface in 1 M H 2 SO 4 solution. The microstructure revealed the transformation from a dense dendritic structure in TiNi coating to a flower-like structure observed in TiNiZrO 2 cladded layers. There was a significant increase in surface microindentation hardness values of the cladded layers due to the present of hard phase ZrO 2 particles. The results obtained show that addition of ZrO 2 improves the corrosion resistance property of TiNi coating but decrease the tribocorrosion resistance property. The surface hardening effect induced by ZrO 2 addition, combination of high hardness of Ti 2 Ni phase could be responsible for the mechanical degradation and chemical wear under sliding conditions

  8. Microstructure and thermal stability of Cu/Zr0.3Al0.7N/Zr0.2Al0.8N/Al34O60N6 cermet-based solar selective absorbing coatings

    Science.gov (United States)

    Meng, Jian-ping; Guo, Rui-rui; Li, Hu; Zhao, Lu-ming; Liu, Xiao-peng; Li, Zhou

    2018-05-01

    Solar selective absorbing coatings play a valuable role in photo-thermal conversion for high efficiency concentrating solar power systems (CSP). In this paper, a novel Cu/Zr0.3Al0.7N/Zr0.2Al0.8N/Al34O60N6 cermet-based solar selective absorbing coating was successfully deposited by ion beam assisted deposition. The optical properties, microstructure and element distribution in depth were investigated by spectroscopic ellipsometry, UV-vis-NIR spectrophotometer, transmission electron microscope (TEM) and Auger electron spectroscopy (AES), respectively. A high absorptance of 0.953 and a low thermal emittance of 0.079 at 400 °C are obtained by the integral computation according to the whole reflectance from 300 nm to 28,800 nm. After annealing treatment at 400 °C (in vacuum) for 192 h, the deposited coating exhibits the high thermal stability. Whereas, the photothermal conversion efficiency decreases from 12.10 to 6.86 due to the emittance increase after annealing at 600 °C for 192 h. Meanwhile, the nitrogen atom in the Zr0.3Al0.7N sub-layer diffuses toward the adjacent sub-layer due to the spinodal decomposition of metastable c-ZrAlN and the phase transition from c-AlN to h-AlN, which leads to the composition of the Zr0.3Al0.7N sub-layer deviates the initial design. This phenomenon has a guide effect for the thermal-stability improvement of cermet coatings. Additionally, a serious diffusion between copper and silicon substrate also contributes to the emittance increase.

  9. Experiments for IFR fuel criticality in ZPPR-21

    International Nuclear Information System (INIS)

    Olsen, D.N.; Collins, P.J.; Carpenter, S.G.

    1991-01-01

    A series of benchmark measurements was made in ZPPR-21 to validate criticality calculations for fuel operations in Argonne's Integral Fast Reactor. Six different mixtures of Pu/U/Zr fuel with a graphite reflector were built and criticality was determined by period measurements. The assemblies were isolated from room return problems by a lithium hydride shield. Analysis was done using a fully-detailed model with the VIM Monte Carlo code and ENDF/B-V.2 data. Sensitivity analysis was used to validate the measurements against other benchmark data. A simple RZ model was defined the used with the KENO code. Corrections to the RZ model were provided by the VIM calculations with low statistical uncertainty. 7 refs., 5 figs., 5 tabs

  10. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy.

    Science.gov (United States)

    Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming

    2016-03-23

    A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr-Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK 0.1 . A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.

  11. Deuterium absorption property of Al/Zr-V/Mo multifilms

    International Nuclear Information System (INIS)

    Wang Haifeng; Peng Shuming; Zhang Xiaohong; Long Xinggui; Yang Benfu

    2005-01-01

    Deuterium absorption property of Al/Zr-V/Mo multifilms was studied experimentally to explore the effect of Al film. There is only one desorption peak at 320 degree C for Al film, two desorption peaks at 220 degree C and 350 degree C for Zr-V film. When the average thickness of Al film is less than 0.6 μm, the desorption property of Al/Zr-V multifilms is just as Zr-V film, when it is more than 0.6 μm, just as Al film. Deuterium absorption by Al/Zr-V multifilms decreases as the thickness of Al film increases until 0.7 μm, then the deuterium absorption no longer changes significantly. The Al film of multifilms cracks on desorbing, so the absorption rate varies as Zr-V film when the thickness of Al film is less than 0.6 μ. When the thickness of Al film is more than 0.6 μm, the deuterium absorption rate of multifilm does not change with the thickness of Al film. (author)

  12. Educational reactor-physics experiments with the critical assemble TCA

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki [Tokyo Inst. of Tech. (Japan); Horiki, Oichiro; Suzaki, Takenori

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for (1) Critical approach and Exponential experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, and (5) Measurement of safety plate worth by the rod drop method. (author)

  13. Educational reactor-physics experiments with the critical assembly TCA

    International Nuclear Information System (INIS)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki; Horiki, Oichiro; Suzaki, Takenori.

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for 1) Critical approach and Exponential experiment, 2) Measurement of neutron flux distribution, 3) Measurement of power distribution, 4) Measurement of fuel rod worth distribution, and 5) Measurement of safety plate worth by the rod drop method. (author)

  14. Wear studies on ZrO2-filled PEEK as coating bearing materials for artificial cervical discs of Ti6Al4V

    International Nuclear Information System (INIS)

    Song, Jian; Liu, Yuhong; Liao, Zhenhua; Wang, Song; Tyagi, Rajnesh; Liu, Weiqiang

    2016-01-01

    Polyetheretherketone (PEEK) and its composite coatings are believed to be the potential candidates' bio-implant materials. However, these coatings have not yet been used on the surface of titanium-based orthopedics and joint products and very few investigations on the tribological characteristics could be found in the published literature till date. In this study, the wettabilities, composition and micro-hardness were characterized using contact angle measurement, scanning electron microscopy (SEM) and hardness tester. The tribological tests were conducted using a ball-on-disc contact pair under 25% newborn calf serum (NCS) lubricated condition. For comparison, bare Ti6Al4V was studied. The obtained results revealed that those PEEK/ZrO 2 composite coatings could improve the tribological properties of Ti6Al4V significantly. Adhesive wear and mild abrasive wear might be the dominant wear and failure mechanisms for PEEK/ZrO 2 composite coatings in NCS lubricated condition. After comprehensive evaluation in the present study, 5 wt.% ZrO 2 nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Graphical abstract: Polyetheretherketone (PEEK) is a type of biomaterial which might be used in surface modification. In this study, the wettabilities, composition, hardness, friction and wear characteristics of PEEK/ZrO 2 coatings were investigated, compared with bare Ti6Al4V sample. After comprehensive evaluation, 5 wt.% ZrO 2 nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Highlights: • PEEK coating were filled by ZrO 2 nanoparticles with different weight percentage. • The lubrication regime of all the tested samples are boundary lubrication. • Adhesive wear and mild abrasive wear were the dominant wear

  15. Microstructure, mechanical property and in vitro biocorrosion behavior of single-phase biodegradable Mg–1.5Zn–0.6Zr alloy

    OpenAIRE

    Tao Li; Yong He; Hailong Zhang; Xitao Wang

    2014-01-01

    The microstructure, mechanical property, and in vitro biocorrosion behavior of as-cast single-phase biodegradable Mg–1.5Zn–0.6Zr alloy were investigated and compared with a commercial as-cast AZ91D alloy. The results show that the Mg–1.5Zn–0.6Zr alloy had a single-phase solid solution structure, with an average grain size of 34.7 ± 13.1 μm. The alloy exhibited ultimate tensile strength of 168 ± 2.0 MPa, yield strength of 83 ± 0.6 MPa, and elongation of 9.1 ± 0.6%. Immersion tests and electroc...

  16. Structural investigation of Fe(Cu)ZrB amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Duhaj, P. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Matko, I. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Svec, P. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Sitek, J. [Department of Nuclear Physics and Technology, Slovak Technical University, 81219 Bratislava (Slovakia); Janickovic, D. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav

    1996-07-01

    The crystallization process in Fe{sub 86}(Cu{sub 1})Zr{sub 7}B{sub 6} and Fe{sub 87}Zr{sub 7}B{sub 6} is investigated using the methods of transmission electron microscopy, electron and X-ray diffraction and resistometry. Two crystallization reactions take place during thermal annealing of amorphous Fe{sub 86}(Cu{sub 1})Zr{sub 7}B{sub 6} and Fe{sub 87}Zr{sub 7}B{sub 6} alloys. In both alloys the first crystallization begins with the formation of nanocrystalline {alpha}-Fe at temperature to approximately 800 K. The second crystallization starts above 1000 K; the nanocrystalline phase dissolves and together with the remaining amorphous matrix form rough grains of {alpha}-Fe and dispersed Fe{sub 23}Zr{sub 6} phases. From Moessbauer spectroscopy it seems that there exist two neighbourhoods of Fe atoms in the amorphous structure. One of them is characterized by low Zr content and is responsible for the high-field component of the hyperfine field distribution p(H). The second one is rich in Zr and B and is responsible for the low-field component of p(H). This is in accord with the observation of two crystallization steps separated by a large interval of temperatures due to the existence of two chemically different regions or clusters. (orig.)

  17. Effect of nitrogen addition and annealing temperature on superelastic properties of Ti-Nb-Zr-Ta alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Masaki [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Kim, Hee Young, E-mail: heeykim@ims.tsukuba.ac.jp [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Hosoda, Hideki [Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Nam, Tae-hyun [School of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Miyazaki, Shuichi, E-mail: miyazaki@ims.tsukuba.ac.jp [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); School of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2010-10-15

    Research highlights: In this study, the effects of composition and annealing temperature on microstructure, shape memory effect and superelastic properties were investigated in Ti-Nb-4Zr-2Ta-N alloys by measuring stress-strain curves at various temperatures and using transmission electron microscopy. Dissolution of {alpha} phase increases M{sub s} and decreases the critical stress for slip for the Ti-22Nb-4Zr-2Ta alloy while it causes the decrease of M{sub s} and the increase of the critical stress for slip for the Ti-20Nb-4Zr-2Ta-0.6N alloy. The different effect of dissolution of {alpha} phase can be attributed to the fact that N is absorbed in {alpha} phase. - Abstract: The composition dependence of the mechanical properties and martensitic transformation behavior of Ti-Nb-4Zr-2Ta-N alloys is investigated. The effect of annealing temperature on the microstructural evolution and superelastic properties in the N-added and N-free alloys is compared. The addition of N decreases M{sub s} of Ti-Nb-4Zr-2Ta alloys by about 200 K per 1 at.%N and improves the superelastic properties of Ti-Nb-4Zr-2Ta alloys. The dissolution of {alpha} phase increases the martensitic transformation start temperature and decreases the superelastic recovery strain for the N-free alloy, whereas it causes opposite effects for the N-added alloy. The different annealing temperature dependences of superelastic properties are discussed on the basis of microstructure observation.

  18. Effect of nitrogen addition and annealing temperature on superelastic properties of Ti-Nb-Zr-Ta alloys

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Hosoda, Hideki; Nam, Tae-hyun; Miyazaki, Shuichi

    2010-01-01

    Research highlights: In this study, the effects of composition and annealing temperature on microstructure, shape memory effect and superelastic properties were investigated in Ti-Nb-4Zr-2Ta-N alloys by measuring stress-strain curves at various temperatures and using transmission electron microscopy. Dissolution of α phase increases M s and decreases the critical stress for slip for the Ti-22Nb-4Zr-2Ta alloy while it causes the decrease of M s and the increase of the critical stress for slip for the Ti-20Nb-4Zr-2Ta-0.6N alloy. The different effect of dissolution of α phase can be attributed to the fact that N is absorbed in α phase. - Abstract: The composition dependence of the mechanical properties and martensitic transformation behavior of Ti-Nb-4Zr-2Ta-N alloys is investigated. The effect of annealing temperature on the microstructural evolution and superelastic properties in the N-added and N-free alloys is compared. The addition of N decreases M s of Ti-Nb-4Zr-2Ta alloys by about 200 K per 1 at.%N and improves the superelastic properties of Ti-Nb-4Zr-2Ta alloys. The dissolution of α phase increases the martensitic transformation start temperature and decreases the superelastic recovery strain for the N-free alloy, whereas it causes opposite effects for the N-added alloy. The different annealing temperature dependences of superelastic properties are discussed on the basis of microstructure observation.

  19. Intermetallic phases in the iron-rich region of the Zr-Fe phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, M.S. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Materiales; Arias, D. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Materiales

    1996-04-01

    Intermetallic phases in the Fe-rich region of the Zr-Fe system are studied by X-ray diffraction and optical and electron microscopy. The chemical composition of each phase has been quantitatively measured in a electron microprobe. The stable phases found in this region are ZrFe{sub 2}, Zr{sub 6}Fe{sub 23} and ({alpha}Fe). ZrFe{sub 2} is identified as a cubic Laves type phase (C15) and the ZrFe{sub 2}/ZrFe{sub 2}+Zr{sub 6}Fe{sub 23} boundary composition is 73{+-}1 at.% Fe. Zr{sub 6}Fe{sub 23} is a cubic phase of the Th{sub 6}Mn{sub 23} type and its composition is 80.0{+-}1.5 at.% Fe. The eutectic L{r_reversible}Zr{sub 6}Fe{sub 23}+{tau}-Fe transformation temperature and composition are 1325 C and 91{+-}1 at.% Fe, respectively. The solubility of Zr in {tau}-Fe at 1012 C is 500{+-}50 appm and 1000{+-}100 appm close to the eutectic temperature. (orig.).

  20. Basic experiments of reactor physics using the critical assembly TCA

    International Nuclear Information System (INIS)

    Obara, Toru; Igashira, Masayuki; Sekimoto, Hiroshi; Nakajima, Ken; Suzaki, Takenori.

    1994-02-01

    This report is based on lectures given to graduate students of Tokyo Institute of Technology. It covers educational experiments conducted with the Tank-Type Critical Assembly (TCA) at Japan Atomic Energy Research Institute in July, 1993. During this period, the following basic experiments on reactor physics were performed: (1) Critical approach experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, (5) Measurement of safety sheet worth by the rod drop method. The principle of experiments, experimental procedure, and analysis of results are described in this report. (author)

  1. Microstructure Characteristics of High Lift Factor MOCVD REBCO Coated Conductors With High Zr Content

    Energy Technology Data Exchange (ETDEWEB)

    Galstyan, E; Gharahcheshmeh, MH; Delgado, L; Xu, AX; Majkic, G; Selvamanickam, V

    2015-06-01

    We report the microstructural characteristics of high levels of Zr-added REBa2Cu3O7-x (RE = Gd, Y rare earth) coated conductors fabricated by Metal Organic Chemical Vapor Deposition (MOCVD). The enhancements of the lift factor defined as a ratio of the in-field (3 T, B parallel to c-axis) critical current density (J(c)) at 30 K and self-field J(c) at 77 K have been achieved for Zr addition levels of 20 and 25 mol% via optimization of deposition parameters. The presence of strong flux pinning is attributed to the aligned nanocolumns of BaZrO3 and nanoprecipitates embedded in REBa2Cu3O7-x matrix with good crystal quality. A high density of BZO nanorods with a typical size 6-8 nm and spacing of 20 nm has been observed. Moreover, the high Zr content was found to induce a high density of intrinsic defects, including stacking faults and dislocations. The correlation between in-field performance along the c-axis and microstructure of (Gd, Y) BCO film with a high level of Zr addition is discussed.

  2. Self-assembling surfactant-like peptide A6K as potential delivery system for hydrophobic drugs

    Directory of Open Access Journals (Sweden)

    Chen Y

    2015-01-01

    Full Text Available Yongzhu Chen,1 Chengkang Tang,2 Jie Zhang,2 Meng Gong,3 Bo Su,2 Feng Qiu4 1Periodical Press, 2Core Facility of West China Hospital, 3Laboratory of Endocrinology and Metabolism, West China Hospital, 4Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, People’s Republic of China Background: Finding a suitable delivery system to improve the water solubility of hydrophobic drugs is a critical challenge in the development of effective formulations. In this study, we used A6K, a self-assembling surfactant-like peptide, as a carrier to encapsulate and deliver hydrophobic pyrene.Methods: Pyrene was mixed with A6K by magnetic stirring to form a suspension. Confocal laser scanning microscopy, transmission electron microscopy, dynamic light scattering, atomic force microscopy, fluorescence, and cell uptake measurements were carried out to study the features and stability of the nanostructures, the state and content of pyrene, as well as the pyrene release profile.Results: The suspension formed contained pyrene monomers trapped in the hydrophobic cores of the micellar nanofibers formed by A6K, as well as nanosized pyrene crystals wrapped up and stabilized by the nanofibers. The two different encapsulation methods greatly increased the concentration of pyrene in the suspension, and formation of pyrene crystals wrapped up by A6K nanofibers might be the major contributor to this effect. Furthermore, the suspension system could readily release and transfer pyrene into living cells.Conclusion: A6K could be further exploited as a promising delivery system for hydrophobic drugs. Keywords: pyrene, self-assembling peptide, micelles, nanofibers, drug delivery  

  3. Precipitation in cold-rolled Al–Sc–Zr and Al–Mn–Sc–Zr alloys prepared by powder metallurgy

    International Nuclear Information System (INIS)

    Vlach, M.; Stulikova, I.; Smola, B.; Kekule, T.; Kudrnova, H.; Danis, S.; Gemma, R.; Ocenasek, V.; Malek, J.; Tanprayoon, D.; Neubert, V.

    2013-01-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 °C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al 3 Sc and/or Al 3 (Sc,Zr) particles precipitated during extrusion at 350 °C in the alloys studied. Additional precipitation of the Al 3 Sc and/or Al 3 (Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 °C. The precipitation of the Al 6 Mn- and/or Al 6 (Mn,Fe) particles of a size ∼ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 °C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al 3 Sc particles formation and/or coarsening and that of the Al 6 Mn and/or Al 6 (Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al 3 Sc-phase and the Al 6 Mn-phase precipitation. - Highlights: • The Mn, Sc and Zr additions to Al totally suppresses recrystallization at 550 °C. • The Sc,Zr-containing particle precipitation is slightly facilitated by

  4. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shen, H.H.; Liu, L.; Liu, X.Z.; Guo, Q.; Meng, T.X.; Wang, Z.X.; Yang, H.J.; Liu, X.P., E-mail: liuxiaoping@tyut.edu.cn

    2016-12-01

    Highlights: • A Zr/ZrC modified layer was formed on AISI 440B stainless steel using plasma surface Zr-alloying. • The thickness of the modified layer increases with alloying temperature and time. • Formation mechanism of the modified layer is dependent on the mutual diffusion of Zr and substrate elements. • The modified surface shows an improved wear resistance. - Abstract: The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  5. Effect of heat treatment on elevated temperature tensile and creep properties of the extruded Mg–6Gd–4Y–Nd–0.7Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Lin, E-mail: yuanlin@hit.edu.cn; Shi, Wenchao; Jiang, WenMao; Zhao, Zhe; Shan, Debin

    2016-03-21

    The light and heavy rare earth elements are added to the magnesium alloys to improve the strengths and the creep resistance. The age hardening behaviors of the extruded Mg–6Gd–4Y–Nd–0.7Zr alloy aged at 200, 225 and 250 °C were investigated. Tensile tests and creep tests of the extruded and extruded-T5 Mg–6Gd–4Y–Nd–0.7Zr were carried out at 150–300 °C. The relationship between the microstructure and the properties of the extruded-T5 Mg–6Gd–4Y–Nd–0.7Zr alloy was studied. The result shows that the extruded Mg–6Gd–4Y–Nd–0.7Zr (contained less than 10 wt% Gd) peak aged at 225 °C for 72 h has the excellent creep resistance and high strengths with the UTS more than 350 MPa from room temperature to 200 °C, which are correlative with the precipitates. The high dense and uniform distribution of β′ phase with good heat stability precipitates inhibiting the dislocation motion contributes to age hardening, accelerates the ageing hardening response and increases the creep resistance. The artificially aged (T5) at low temperature further creep tested and tensile tested at higher temperatures decreases the resistance to the dislocation motion and the grain boundary sliding, resulting in the reduction in creep properties and strengths of the extruded-T5 Mg–6Gd–4Y–Nd–0.7Zr alloy above 225 °C.

  6. Measurement of critical mass for an assembly of bare uranium shells

    International Nuclear Information System (INIS)

    Myers, W.L.; Goulding, C.A.; Hollas, C.L.

    1997-01-01

    As part of the research into nuclear measurement techniques, a series of measurements was performed that have applications to criticality safety and nuclear material handling. The critical mass of a set of bare, enriched-uranium metal hemispherical shells, known as the Rocky Flats shells, was measured for an assembly having an inside radius of 2.347 cm. The critical mass value was extrapolated from a series of subcritical measurements using three different kinds of sources (AmBe, AmF, and 252 Cf) placed at the center of the shells. Two kinds of neutron detection configurations (a 1% efficiency and a 25% efficiency configuration) were used to make the measurements

  7. Structural and Mechanical Properties of the ZrC/Ni-Nanodiamond Coating Synthesized by the PVD and Electroplating Processes for the Cutting Knifes

    Science.gov (United States)

    Chayeuski, V.; Zhylinski, V.; Cernashejus, O.; Visniakov, N.; Mikalauskas, G.

    2018-04-01

    In this work, combined gradient ZrC/Ni-nanodiamond ultradispersed diamonds (UDD) coatings were synthesized on the surface of knife blades made of hard alloy WC-2 wt.% Co by electroplating and cathode arc evaporation PVD techniques to increase the durability period of a wood-cutting milling tool. The microstructure, phase and elemental composition, microhardness, and adhesion strength of the coatings were investigated. Ni-UDD layer is not mixed with the ZrC coating and hard alloy substrate. Cobalt is present in Ni-UDD layer after deposition of ZrC. The ZrC/Ni-nanodiamond coating consists of separate phases of zirconium carbide (ZrC), α-Ni, and Ni-UDD. The maximum value of microhardness of the Ni-nanodiamond coating is 5.9 GPa. The microhardness value of the ZrC/Ni-nanodiamond coatings is 25 ± 6 GPa, which corresponds to the microhardness of the hard alloy substrate and ZrC coating. The obtained high values of the critical loads on the scratch track of the ZrC/Ni-nanodiamond coating in 24 N prove a sufficiently high value of the adhesion strength of the bottom Ni-UDD layer with WC-Co substrate. Pilot testing of ZrC/Ni-nanodiamond-coated cutting tools proved their increasing durability period to be 1.5-1.6 times higher than that of bare tools, when milling laminated chipboard.

  8. Critical assembly of uranium enriched to 10% in uranium-235

    International Nuclear Information System (INIS)

    Hansen, G.E.; Paxton, H.E.

    1979-01-01

    Big Ten is described in the detail appropriate for a benchmark critical assembly. Characteristics provided are spectral indexes and a detailed neutron flux spectrum, Rossi-α on a reactivity scale established by positive periods, and reactivity coefficients of a variety of isotopes, including the fissionable materials. The observed characteristics are compared with values calculated with ENDF/B-IV cross sections

  9. Correlation between in-field critical currents in Zr-added (Gd, Y)Ba2Cu3Ox superconducting tapes at 30 and 77 K

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Xu, A; Liu, Y; Khatri, ND; Lei, C; Chen, Y; Galstyan, E; Majkic, G

    2014-03-11

    Critical current (I-c) values of 1384 Lambda/12 mm, corresponding to a critical current density of 12.47 MA cm(-2) and a pinning force of 374 GN m(-3), have been achieved at 30 K, 3 T in the orientation of field parallel to the c axis (B parallel to c) in (Gd, Y)BaCuO tapes with 15 mol% Zr addition made by metal organic chemical vapor deposition (MOCVD). These tapes show pinning force levels as high as 453 GN m(-3) at 30 K. An analysis of the properties of 24-28 (Gd, Y)BaCuO tapes with 15 mol% Zr addition showed a lack of correlation between their critical currents at 30 K, 3 T (B parallel to c) and I-c values both at 77 K, zero field and at 77 K, 1 T (B parallel to c). However, a strong correlation was found between the critical currents at 30 K, 3 T and at 77 K, 3 T (B parallel to c). It has also been discovered that the minimum critical current (I-c, (min)) value at 77 K, 3 T has no influence on the I-c,I- (min) value at 30 K, 3 T, and it in turn depends on the ratio of the I-c values in the orientations of field parallel and perpendicular to the c axis at 77 K, 3 T.

  10. First TREAT transient overpower tests on U-Pu-Zr fuel: M5 and M6

    International Nuclear Information System (INIS)

    Robinson, W.R.; Bauer, T.H.; Wright, A.E.; Rhodes, E.A.; Stanford, G.S.; Klickman, A.E.

    1987-01-01

    Transient Reactor Test Facility (TREAT) tests M5 and M6 were the first transient overpower (TOP) test of the margin to cladding breach and prefailure elongation of metallic U-Pu-Zr ternary fuel, the reference fuel of the integral fast reactor concept. Similar tests on U-5 wt% Fs fueled Experimental Breeder Reactor (EBR)-II driver pins were previously performed and reported. Results from these earlier tests indicated a margin to failure of ∼ 4 times nominal power and significant axial elongation prior to failure, a feature that was very pronounced at low burnups. While these two fuels types are similar in many respects, the ternary alloy exhibits a much more complex physical structure and is typically irradiated at much higher temperatures. Thus, a prime motivation for performing M5 and M6 was to compare the safety-related fuel performance characteristics of U-Fs and U-Pu-Zr. Tests M5 and M6 indicate that, under the TOP conditions used in the tests, ternary fuel displayed about the same margin to failure as U-Fs fuel. At low burnups, ternary fuel showed less prefailure axial elongation than observed in U-Fs pins, but elongations of 3 to 5% might turn out to be typical. Finally, fuel from the breached ternary pin in M6 showed, qualitatively, the same benignly dispersive behavior as U-Fs

  11. Internal oxidation of laminated ternary Ru–Ta–Zr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Lu, Tso-Shen

    2015-10-30

    Highlights: • Internal oxidation was observed in annealed and laminated Ru–Ta–Zr coatings. • The oxidized Ru–Ta–Zr coatings comprised three alternately stacked sublayers. • Correlated variations of O{sup 2-} and Zr{sup 4+} binding energies were verified in XPS spectra. - Abstract: Researchers have observed the internal oxidation phenomenon in binary alloy coatings when developing refractory alloy coatings for protective purposes by conducting annealing at high temperatures and in oxygen-containing atmospheres. The coatings were assembled using cyclical gradient concentration deposition during cosputtering by employing a substrate holder rotating at a slow speed. The internally oxidized zone demonstrated a laminated structure, comprising alternating oxygen-rich and oxygen-deficient layers stacked in a general orientation. In the current study, Ru–Ta–Zr coatings were prepared with various stacking sequences during cosputtering. The Ru–Ta–Zr coatings were annealed at 600 °C in an atmosphere continuously purged with 1% O{sub 2}–99% Ar mixed gas for 30 min. A transmission electron microscope was used to examine the periods of the laminated layers and crystallinity of the annealed coatings. Depth profiles produced using an Auger electron spectroscope and X-ray photoelectron spectroscope were used to certify the periodic variation of the related constituents and chemical states of the elements, respectively. The results indicate that the internally oxidized ternary coatings are stacked of Ru-, Ta{sub 2}O{sub 5}-, and ZrO{sub 2}-dominant sublayers and that the stacking sequences of the sublayers affect the crystalline structure of the coatings. Zr is oxidized preferentially in the Ru–Ta–Zr coatings, increasing the surface hardness of the oxidized coatings.

  12. The application of DTA and TG methods to investigate the non-crystalline hydration products of CaAl2O4 and Ca7ZrAl6O18 compounds

    International Nuclear Information System (INIS)

    Szczerba, Jacek; Madej, Dominika; Śnieżek, Edyta; Prorok, Ryszard

    2013-01-01

    Highlights: ► Hydrates, i.e. CAH 10 , C 2 AH 8 , C 3 AH 6 and C 4 AH 19 are formed during hydration of CaAl 2 O 4 and Ca 7 ZrAl 6 O 18 . ► Hydrated CaAl 2 O 4 and Ca 7 ZrAl 6 O 18 compounds were investigated by X-ray diffraction, SEM/EDS and thermal analysis. ► The hydration reaction proceeds as consumes the unreacted core of the CaAl 2 O 4 and Ca 7 ZrAl 6 O 18 grain. - Abstract: The hydration products and thermal decomposition mechanism of hydrated CaAl 2 O 4 and Ca 7 ZrAl 6 O 18 compounds were investigated by X-ray diffraction, SEM/EDS and thermal analysis. The processes of crystal hydrate nucleation and precipitation were preceded by the evolution of the X-ray amorphous phase during the first 24 h of hydration. DTA–TGA–EGA techniques allowed the study of the detailed decomposition and identification of intermediate and stable to be performed. The differential thermal analysis (DTA) curves of hydrated CaAl 2 O 4 and Ca 7 ZrAl 6 O 18 compounds show five similar endothermic peaks due to crystal water desorption. According to the quantitative TGA–EGA analyses performed on hydrated CaAl 2 O 4 and Ca 7 ZrAl 6 O 18 compounds, it was found that C 2 AH 8 , C 3 AH 6 and Al(OH) 3 phases are the main hydration products of CaAl 2 O 4 . Under the same laboratory conditions, the hydration of Ca 7 ZrAl 6 O 18 proceeds with the formation of mainly CAH 10 and AH 3 -gel phases. We provide the original illustrations of the hydrate crystals formation via amorphous phases

  13. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    Science.gov (United States)

    Shen, H. H.; Liu, L.; Liu, X. Z.; Guo, Q.; Meng, T. X.; Wang, Z. X.; Yang, H. J.; Liu, X. P.

    2016-12-01

    The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  14. Influence of microstructure on the mechanical properties of a Zr-4.6 wt.% Al alloy

    International Nuclear Information System (INIS)

    Raman, V.; Mukhopadhyay, P.; Banerjee, S.

    1978-01-01

    The influence of microstructure on the room temperature mechanical properties of a Zr-4.6 wt.% Al alloy was investigated. Quenching from the beta phase produced a significant solid solution hardening. On aging the alloy at low temperatures for short periods aluminium rejection from the solid solution occurred and a fine dispersion of a metastable Zr 3 Al phase (DO 19 structure) formed. The strengthening caused by the presence of these ordered particles was found to more than compensate the softening brought about by decreasing supersaturation. The high strength corresponding to this structure could be explained in terms of the contributions from the coherency strains associated with and the state of order within the metastable particles. Aging at these temperatures for longer periods or at higher temperatures gave rise to a lamellar distribution of the α-zirconium (aluminium) and the equilibrium Zr 3 Al (Ll 2 structure) phases. The strength associated with this lamellar structure was found to be appreciably lower and to be strongly dependent on the interlamellar spacing. Investigations of the fracture surfaces showed that the modes of fracture associated with these different microstructures were different. An attempt was made to rationalize the observed strength properties in terms of existing theoretical models. (Auth.)

  15. Reactor laboratory course for Korean under-graduate students in Kyoto University Critical Assembly (KUGSiKUCA)

    International Nuclear Information System (INIS)

    Pyeon, Cheol Ho; Misawa, Tsuyoshi; Unesaki, Hironobu; Ichihara, Chihiro; Shiroya, Seiji; Whang, Joo Ho; Kim, Myung Hyun

    2005-01-01

    The Reactor Laboratory Course for Korean Under-Graduate Students has been carried out at Kyoto University Critical Assembly of Japan. This course has been launched from fiscal year 2003 and has been founded by Ministry of Science and Technology of Korean Government. Since then, the total number of 43 Korean under-graduate students, who have majored in nuclear engineering of 6 universities in all over the Korea, has been taken part in this course. The reactor physics experiments have been performed in this course, such as Approach to criticality, Control rod calibration, Measurement of neutron flux and power calibration, and Educational reactor operation. As technical tour of Japan, nuclear site tour has been taken during their stay in Japan, such as PWR, FBR, nuclear fuel company and some institutes

  16. Ni-free Zr-Cu-Al-Nb-Pd bulk metallic glasses with different Zr/Cu ratios for biomedical applications.

    Science.gov (United States)

    Huang, Lu; Yokoyama, Yoshihiko; Wu, Wei; Liaw, Peter K; Pang, Shujie; Inoue, Akihisa; Zhang, Tao; He, Wei

    2012-08-01

    Zr-based bulk metallic glasses (BMGs) possess attractive properties for prospective biomedical applications. The present study designs Ni-free Zr-Cu-Al-Nb-Pd BMGs and investigates their in vitro biocompatibility by studying mechanical properties, bio-corrosion resistance, and cellular responses. The Ti-6Al-4V alloy is used as a reference material. It is found that the Zr-based BMGs exhibit good mechanical properties, including high strengths above 1600 MPa, high hardness over 4700 MPa, and low elastic moduli of 85-90 GPa. The Zr-based BMGs are corrosion resistant in a simulated body environment, as revealed by wide passive regions, low passive current densities, and high pitting overpotentials. The formation of ZrO(2)-rich surface passive films of the Zr-based BMGs contributes to their high corrosion resistance, whereas their pitting corrosion in the phosphate buffered saline solution can be attributed to the sensitivity of the ZrO(2) films to the chloride ion. The general biosafety of the Zr-based BMGs is revealed by normal cell adhesions and cell morphologies. Moreover, the Zr/Cu content ratio in the alloy composition affects the biocompatibility of the Zr-based BMGs, by increasing their corrosion resistance and surface wettability with the increase of the Zr/Cu ratio. Effects of Zr/Cu ratios can be used to guide the future design of biocompatible Zr-based BMGs. Copyright © 2012 Wiley Periodicals, Inc.

  17. Interdiffusion between U-Zr-Mo and stainless steel cladding

    International Nuclear Information System (INIS)

    Hwang, J. Y.; Lee, B. S.; Lee, J. T.; Kang, Y. H.

    1998-01-01

    Interdiffusion investigations were carried out at 700 deg C for 200 hours for the diffusion couples assembled with the U-Zr-Mo ternary fuel versus austenitic stainless steel D9 and the U-Zr-Mo ternary fuel versus martensitic stainless steel HT9 respectively to investigate the fuel-cladding compatibility. SEM-EDS analysis was utilized to determine the composition and the penetration depths of the reaction layers. In the case of Fuel/D9 couple, (Fe, Cr, Ni) of the cladding elements formed the precipitates with the Zr, Mo and diminished the U concentration upto 800μ length from the fuel side. Composition of the precipitates was varied with the penetrated elements. In Fuel/HT9 couple, reaction layer was smaller than that of D9 couples and was less affected by cladding elements. The eutectic reaction appeared partially in the Fuel/HT9 diffusion couple

  18. Reactor physics studies in the GCFR phase-II critical assembly

    International Nuclear Information System (INIS)

    Pond, R.B.

    1976-09-01

    The reactor physics studies performed in the gas cooled fast reactor (GCFR) mockup on ZPR-9 are covered. This critical assembly, designated Phase II in the GCFR program, had a single zone PuO 2 -UO 2 core composition and UO 2 radial and axial blankets. The assembly was built both with and without radial and axial stainless steel reflectors. The program included the following measurements: small-sample reactivity worths of reactor constituent materials (including helium); 238 U Doppler effect; uranium and plutonium reaction rate distributions; thorium, uranium, and plutonium α and reactor kinetics. Analysis of the measurements used ENDF/B-IV nuclear data; anisotropic diffusion coefficients were used to account for neutron streaming effects. Comparison of measurements and calculations to GCFR Phase I are also made

  19. VVANTAGE 6 - an advanced fuel assembly design for VVER reactors

    International Nuclear Information System (INIS)

    Doshi, P.K.; DeMario, E.E.; Knott, R.P.

    1993-01-01

    Over the last 25 years, Westinghouse fuel assemblies for pressurized water reactors (PWR's) have undergone significant changes to the current VANTAGE 5. VANTAGE 5 PWR fuel includes features such as removable top nozzles, debris filter bottom nozzles, low-pressure-drop zircaloy grids, zircaloy intermediate flow mixing grids, optimized fuel rods, in-fuel burnable absorbers, and increased burnup capability to region average values of 48000 MWD/MTU. These features have now been adopted to the VVER reactors. Westinghouse has completed conceptual designs for an advanced fuel assembly and other core components for VVER-1000 reactors known as VANTAGE 6. This report describes the VVANTAGE 6 fuel assembly design

  20. Wear studies on ZrO{sub 2}-filled PEEK as coating bearing materials for artificial cervical discs of Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jian [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, Yuhong, E-mail: liuyuhong@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liao, Zhenhua; Wang, Song [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Tyagi, Rajnesh [Department of Mechanical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005 (India); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2016-12-01

    Polyetheretherketone (PEEK) and its composite coatings are believed to be the potential candidates' bio-implant materials. However, these coatings have not yet been used on the surface of titanium-based orthopedics and joint products and very few investigations on the tribological characteristics could be found in the published literature till date. In this study, the wettabilities, composition and micro-hardness were characterized using contact angle measurement, scanning electron microscopy (SEM) and hardness tester. The tribological tests were conducted using a ball-on-disc contact pair under 25% newborn calf serum (NCS) lubricated condition. For comparison, bare Ti6Al4V was studied. The obtained results revealed that those PEEK/ZrO{sub 2} composite coatings could improve the tribological properties of Ti6Al4V significantly. Adhesive wear and mild abrasive wear might be the dominant wear and failure mechanisms for PEEK/ZrO{sub 2} composite coatings in NCS lubricated condition. After comprehensive evaluation in the present study, 5 wt.% ZrO{sub 2} nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Graphical abstract: Polyetheretherketone (PEEK) is a type of biomaterial which might be used in surface modification. In this study, the wettabilities, composition, hardness, friction and wear characteristics of PEEK/ZrO{sub 2} coatings were investigated, compared with bare Ti6Al4V sample. After comprehensive evaluation, 5 wt.% ZrO{sub 2} nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Highlights: • PEEK coating were filled by ZrO{sub 2} nanoparticles with different weight percentage. • The lubrication regime of all the tested samples are boundary lubrication. • Adhesive wear and mild abrasive

  1. Chemical ordering around open-volume regions in bulk metallic glass Zr52.5Ti5Al10Cu17.9Ni14.6

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Hartley, J.; Howell, R.; Sterne, P. A.; Nieh, T. G.

    2000-01-01

    We provide direct experimental evidence for a nonrandom distribution of atomic constituents in Zr 52.5 Ti 5 Al 10 Cu 17.9 Ni 14.6 bulk metallic glass using positron annihilation spectroscopy. The Ti content around the open-volume regions is significantly enhanced at the expense of Ni and Cu. Our results indicate that Ni and Cu atoms closely occupy the volume bounded by their neighboring atoms while Al, Ti, and Zr are less closely packed, and more likely to be associated with the open-volume regions. The overall distribution of elements seen by the positron is not significantly altered by annealing or by crystallization. Theoretical calculations indicate that the observed elemental distribution is not consistent with the known crystalline phases Zr 2 Cu and NiZr 2 , while Al 3 Zr 4 shows some of the characteristics seen in the experiment. (c) 2000 American Institute of Physics

  2. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO{sub 2} composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Obadele, Babatunde Abiodun, E-mail: obadele4@gmail.com [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Andrews, Anthony [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Materials Engineering, Kwame Nkrumah University of Science and Technology, Kumasi-Ghana (Ghana); Mathew, Mathew T. [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of orthopedics, Rush University Medical Center, Chicago, IL 60612 (United States); Olubambi, Peter Apata [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Pityana, Sisa [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); National Laser Center, Council for Scientific and Industrial Research, Pretoria (South Africa)

    2015-08-01

    Highlights: • The tribocorrosion behaviour of TiNiZrO{sub 2} composite is investigated. • The effect of ZrO{sub 2} on the microstructure is discussed. • The effect of the combined action of wear and chemical process is reported. • ZrO{sub 2} addition improved the tribocorrosion property of Ti6Al4V. - Abstract: Ti6Al4V alloy was laser cladded with titanium, nickel and zirconia powders in different ratio using a 2 kW CW ytterbium laser system (YLS). The microstructures of the cladded layers were examined using field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Corrosion and tribocorrosion tests were performed on the cladded surface in 1 M H{sub 2}SO{sub 4} solution. The microstructure revealed the transformation from a dense dendritic structure in TiNi coating to a flower-like structure observed in TiNiZrO{sub 2} cladded layers. There was a significant increase in surface microindentation hardness values of the cladded layers due to the present of hard phase ZrO{sub 2} particles. The results obtained show that addition of ZrO{sub 2} improves the corrosion resistance property of TiNi coating but decrease the tribocorrosion resistance property. The surface hardening effect induced by ZrO{sub 2} addition, combination of high hardness of Ti{sub 2}Ni phase could be responsible for the mechanical degradation and chemical wear under sliding conditions.

  3. The corrosion behaviour of Zr3Al-based alloys

    International Nuclear Information System (INIS)

    Murphy, E.V.; Wieler, R.

    1977-07-01

    The corrosion resistance of several zirconium-aluminum alloys with aluminum contents ranging from 7.6 to 9.6 wt% was examined in 300 deg C and 325 deg C water, 350 deg C and 400 deg C steam and in air and wet CO 2 at 325 deg C and 400 deg C. In the transformed alloys there are three phases present, αZr, Zr 2 Al and Zr 3 Al of which the αZr phase is the least corrosion resistant. The most important factor controlling the corrosion behaviour of these alloys was found to be the size, distribution and amount of the αZr phase in the transformed alloys, which in turn was dependent upon the microstructural scale of the untransformed alloys

  4. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: compositional optimization for potential biomedical applications.

    Science.gov (United States)

    Hua, Nengbin; Huang, Lu; Chen, Wenzhe; He, Wei; Zhang, Tao

    2014-11-01

    The present study designs and prepares Ni-free Zr60+xTi2.5Al10Fe12.5-xCu10Ag5 (at.%, x=0, 2.5, 5) bulk metallic glasses (BMGs) by copper mold casting for potential biomedical application. The effects of Zr content on the in vitro biocompatibility of the Zr-based BMGs are evaluated by investigating mechanical properties, bio-corrosion behavior, and cellular responses. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high notch toughness. Electrochemical measurements demonstrate that the Zr-based BMGs are corrosion resistant in a phosphate buffered saline solution. The bio-corrosion resistance of BMGs is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. Regular cell responses of mouse MC3T3-E1 cells, including cell adhesion and proliferation, are observed on the Zr-Ti-Al-Fe-Cu-Ag BMGs, which reveals their general biosafety. The high-Zr-based BMGs exhibit a higher cell proliferation activity in comparison with that of pure Zr and Ti-6Al-4V alloy. The effects of Zr content on the in vitro biocompatibility can be used to guide the future design of biocompatible Zr-based BMGs. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Boiling transition phenomenon in BWR fuel assemblies effect of fuel spacer shape on critical power

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Morooka, Shin-ichi; Mitsutake, Toru; Yokobori, Seiichi; Kimura, Jiro.

    1996-01-01

    A thorough understanding of the thermal-hydraulic phenomena near fuel spacer is necessary for the accurate prediction of the critical power of BWR fuel assemblies, and is thus essential for effective developments of a new BWR fuel assembly. The main purpose of this study is to develop an accurate method for predicting the effect of spacer shapes on critical power. Tests have been conducted under actual BWR operating conditions, using an annulus flow channel consisting of a heated rod and circular-tube channel, and BWR simulated 4x4 rod bundles with heater rods unheated just upsteam of spacer. The effect of spacer shapes on critical power was predicted analytically based on the droplet deposition rate estimation. The droplet deposition rate for different spacer shapes was calculated using a single-phase flow model. The prediction results were compared with the test results for the annulus flow channel using ring-type spacers. Analytical results of critical power agreed with measured critical power from point of the effects of changes in the rod-spacer clearance and the spacer thickness on critical power. (author)

  6. Experimental investigation and thermodynamic modeling of the Ga–Zr system

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu, Shuhong, E-mail: shhliu@csu.edu.cn [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Tang, Ying [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Yin, Ming [Thermal Processing Technology Center, Illinois Institute of Technology (IIT), 10 West 32nd Street, Chicago, IL 60616 (United States); Sundman, Bosse [INSTN, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Du, Yong [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Nash, Philip [Thermal Processing Technology Center, Illinois Institute of Technology (IIT), 10 West 32nd Street, Chicago, IL 60616 (United States); Tao, Huijin [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2014-02-25

    Highlights: • Phase equilibria of the Ga–Zr system were investigated by experiment. • Δ{sub f}Hs for intermetallic compounds were computed via first–principles calculations. • The enthalpy of formation at 298 K for αGaZr was measured by calorimetry. • A set of self-consistent thermodynamic parameters was obtained. -- Abstract: Phase equilibria of the Ga–Zr system were investigated by experiment and thermodynamic modeling. In the experimental part, eleven alloys were prepared by melting the pure elements and annealed. Both the as-cast and annealed samples were analyzed by X-ray diffraction, optical microscopy, and scanning electron microscope. The annealed alloys were investigated by differential thermal analysis and electron probe microanalysis. In order to assist the thermodynamic modeling, the enthalpies of formation at 0 K for the GaZr{sub 2}, Ga{sub 3}Zr{sub 5}, Ga{sub 2}Zr{sub 3}, Ga{sub 4}Zr{sub 5}, αGaZr, Ga{sub 3}Zr{sub 2}, Ga{sub 5}Zr{sub 3}, Ga{sub 2}Zr and Ga{sub 3}Zr phases were computed via first-principles calculations. The enthalpy of formation at 298 K for the αGaZr was measured by high temperature reaction calorimetry. Based on the experimental phase diagram data from the present work and the literature as well as the present first-principles calculations, the Ga–Zr system was critically assessed by means of CALPHAD approach. The calculated phase diagram and thermodynamic properties agree well with the available experimental data.

  7. Trial evaluation on criticality safety of the fuel assemblies at falling accident as spent fuel transport and storage cask

    International Nuclear Information System (INIS)

    Tadano, Tomoaki

    2016-01-01

    The authors conducted critical safety assessment on the supposed event at the time of a fall accident of cask, and examined the influence on criticality safety. If the spacer of fuel assembly is sound, it is assumed that the pitch of fuel rod interval changes, and if the spacer is broken, it is assumed that the fuel rod is unevenly distributed in the basket. For the critical calculation of fuel assembly basket system, they performed it using a calculation code. For both of the single cell and assembly, calculation results showed an increase in the effective multiplication factor of reactivity of 2-3%. When this reactivity is applied to the criticality analysis result of PWR fuel assembly, the value approaches to the limit 0.95 of the neutron effective multiplication factor keff. However, the keff when new fuel is loaded is sufficiently lower than 0.93. Therefore, it is unlikely that the criticality analysis result approaches to 0.95 at all burnups, and the possibility to become criticality is very low in actual spent fuel transport. When considering the reactivity of this research, it is possible that the design condition for the assumption of novel fuel loading becomes severer. Furthermore, criticality analysis under non-uniform pitch will become necessary, and criticality safety analysis for BWR fuel with heterogeneous enrichment degree and burnup degree will become also necessary. (A.O.)

  8. Criticality safety assessment of FBTR fuel sub-assemblies using WIMS cross section set

    International Nuclear Information System (INIS)

    Gupta, H.C.; Chakraborty, B.

    2002-01-01

    Full text: FBTR's irradiated fuel sub-assemblies (FSAs) are sent to RML at Indira Gandhi Centre for Atomic Research for post irradiation examination. The FSAs are cut open and the fuel pins are separated for examination in the hot cells. It was required to evaluate the criticality safety in handling the FSAs in the hot cells. Criticality safety studies for handling two as well as three irradiated FSAs in the hot cells under dry conditions were carried out by the Safety Group at IGCAR, Kalpakkam. Monte Carlo code KENO (Version Va) which uses 16-group Hansen-Roach cross-section set was used for the calculations. Subsequently, during the safety review of the proposition by the Safety Review Committee (SARCOP) of AERB, it was stipulated to carry out the criticality safety studies under flooded condition also. We carried out the criticality safety studies for these fuel sub assemblies in different configurations under dry (buried in concrete) as well as wet condition (flooded with light water) using Monte Carlo codes MONALI (developed at BARC) and KENO4 using WlMS-69 group cross section set. Results of our analyses under various conditions are presented in this paper

  9. Effect of water chemistry and fuel operation parameters on Zr + 1% Nb cladding corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Kritsky, V G; Petrik, N G; Berezina, I G; Doilnitsina, V V [VNIPIET, St. Petersburg (Russian Federation)

    1997-02-01

    In-pile corrosion of Zr + 1%Nb fuel cladding has been studied. Zr-oxide and hydroxide solubilities at various temperatures and pH values have been calculated and correlations obtained between post-transition corrosion and the solubilities nodular corrosion and fuel operation parameters, as well as between the rate of fuel cladding degradation and water chemistry. Extrapolations of fuel assemblies behaviour to higher burnups have also performed. (author). 12 refs, 11 figs.

  10. Incorporating Small Fatigue Crack Growth in Probabilistic Life Prediction: Effect of Stress Ratio in Ti-6Al-2Sn-4Zr-6-Mo (Preprint)

    Science.gov (United States)

    2012-08-01

    contains color. 14. ABSTRACT The effect of stress ratio on the statistical aspects of small fatigue crack growth behavior was studied in a duplex ...on the statistical aspects of small fatigue crack growth behavior was studied in a duplex microstructure of Ti-6Al-2Sn-4Zr-6Mo (Ti-6-2-4-6) at 260°C...Similarly, an accurate representation of the R effect is required in problems where the crack grows through regions of varying stress state, such as a weld

  11. A simplified treatment of radial enrichment distributions of LWR fuel assemblies in criticality calculations

    International Nuclear Information System (INIS)

    Hennebach, M.; Schnorrenberg, N.

    2008-01-01

    Criticality safety assessments are usually performed for fuel assembly models that are as generic as possible to encompass small modifications in geometry that have no impact on criticality. Dealing with different radial enrichment distributions for a fuel assembly type, which is especially important for BWR fuel, poses more of a challenge, since this characteristic is rather obviously influencing the neutronic behaviour of the system. Nevertheless, the large variability of enrichment distributions makes it very desirable and even necessary to treat them in a generalized way, both to keep the criticality safety assessment from becoming too unwieldy and to avoid having to extend it every time a new variation comes up. To be viable, such a generic treatment has to be demonstrably covering, i.e. lead to a higher effective neutron multiplication factor k eff than any of the radial enrichment distributions it represents. Averaging the enrichment evenly over the fuel rods of the assembly is a general and simple approach, and under reactor conditions, it is also a covering assumption: the graded distribution is introduced to achieve a linear power distribution, therefore reducing the enrichment of the better moderated rods at the edge of the assembly. With an even distribution of the average enrichment over all rods, these wellmoderated rods will cause increased fission rates at the assembly edges and a rise in k eff . Since the moderator conditions in a spent nuclear fuel cask differ strongly from a reactor even when considering optimal moderation, the proof that a uniform enrichment distribution is a covering assumption compared with detailed enrichment distributions has to be cask-specific. In this report, a method for making that proof is presented along with results for fuel assemblies from BWR reactors. All results are from three-dimensional Monte Carlo calculations with the SCALE 5.1 code package [1], using a 44-group neutron crosssection library based on ENDF

  12. Influence of Temperature to Thermal Properties of U-Zr Alloy With The Zr Content Variation

    International Nuclear Information System (INIS)

    Aslina-Br-Ginting; Masrukan; M-Husna-Al-Hasa

    2007-01-01

    Have been done thermal of characteristic covering heat stability, heat capacities, enthalpy and also phase changes from uranium, zirkonium and U-Zr alloy with the Zr content variation of Zr 2 %, 6 %, 10% and 14% weight. Change of the temperature and composition anticipated will cause the characteristic of thermal to uranium metal, zirkonium and also U-Zr alloy. Therefore at this research was conducted using analysis influence of temperature to thermal of characteristic of uranium, zirkonium and U-Zr alloy with the Zr content variation by using DTA and DSC. Result of analysis indicate that the uranium metal at temperature 662 o C stable in phase α. Above at temperature, uranium metal experience of the phase change indicated by formed the thermochemical reaction as much 3 endothermic peak. At temperature 667.16 o C, happened by the phase change of α become the phase β with the enthalpy 2,3034 cal/g, at temperature 773.05 o C happened by the phase change β becoming phase γ 2,8725 cal/g and also at temperature 1125.26 the o C uranium metal experience the phenomenon become to melt with the enthalpy 2,1316 cal/g. (author)

  13. New Intermetallic Ternary Phosphide Chalcogenide AP2-xXx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure

    Science.gov (United States)

    Kitô, Hijiri; Yanagi, Yousuke; Ishida, Shigeyuki; Oka, Kunihiko; Gotoh, Yoshito; Fujihisa, Hiroshi; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi

    2014-07-01

    We have synthesized a series of intermetallic ternary phosphide chalcogenide superconductors, AP2-xXx (A = Zr, Hf; X = S, Se), using the high-pressure synthesis technique. These materials have a PbFCl-type crystal structure (space group P4/nmm) when x is greater than 0.3. The superconducting transition temperature Tc changes systematically with x, yielding dome-like phase diagrams. The maximum Tc is achieved at approximately x = 0.7, at which point the Tc is 6.3 K for ZrP2-xSex (x = 0.75), 5.5 K for HfP2-xSex (x = 0.7), 5.0 K for ZrP2-xSx (x = 0.675), and 4.6 K for Hfp2-xSx (x = 0.5). They are typical type-II superconductors and the upper and lower critical fields are estimated to be 2.92 T at 0 K and 0.021 T at 2 K for ZrP2-xSex (x = 0.75), respectively.

  14. The 91Zr(d,t)90Zr reaction

    International Nuclear Information System (INIS)

    Gomes, L.C.

    1975-01-01

    Sixteen levels populated in the 91 Zr(d,t) 90 Zr pick-up reaction were studied with 16 MeV deuterons. Distorted waves Born approximation calculations were compared to the data, and yielded spectroscopic factors and l values. Particle-hole states in 90 Zr were observed. Some significant errors were found in Zr(d,t) reactions Q values recently compiled [pt

  15. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys

    International Nuclear Information System (INIS)

    Ning Congqin; Zhai Wanyin; Chen Lei; Ding Dongyan; Dai Kerong

    2010-01-01

    β-type low elastic modulus alloys of the Ti-Nb-Zr system have recently attracted much attention for both orthopedic and dental applications. In the present study, meta-stable β alloys of Ti-35Nb-xZr with different Zr contents were developed. The effect of Zr content on the microstructure, mechanical properties and cell attachment was investigated. It was found that the addition of Zr improved the tensile strength and elongation of Ti-35Nb-xZr alloys, and simultaneously reduced the elastic modulus. Moreover, the Zr element helped to stabilize the β phase. Cell culture work indicated that the addition of Zr enhanced the attachment and spreading of bone marrow stem cells. Cell attachment and spreading on the surface of titanium alloys were dominated not only by the wettability but also by the inherent biocompatibility of alloying elements. The peak-aged alloy with 5 wt% Zr had a highest tensile strength of 874 MPa, while its elastic modulus was only 65 GPa, presenting a much higher strength/modulus ratio than Ti-6Al-4V. The Ti-35Nb-5Zr alloy exhibited a great potential for orthopedic and dental applications.

  16. Thermal adaptation of mesophilic and thermophilic FtsZ assembly by modulation of the critical concentration.

    Directory of Open Access Journals (Sweden)

    Luis Concha-Marambio

    Full Text Available Cytokinesis is the last stage in the cell cycle. In prokaryotes, the protein FtsZ guides cell constriction by assembling into a contractile ring-shaped structure termed the Z-ring. Constriction of the Z-ring is driven by the GTPase activity of FtsZ that overcomes the energetic barrier between two protein conformations having different propensities to assemble into polymers. FtsZ is found in psychrophilic, mesophilic and thermophilic organisms thereby functioning at temperatures ranging from subzero to >100°C. To gain insight into the functional adaptations enabling assembly of FtsZ in distinct environmental conditions, we analyzed the energetics of FtsZ function from mesophilic Escherichia coli in comparison with FtsZ from thermophilic Methanocaldococcus jannaschii. Presumably, the assembly may be similarly modulated by temperature for both FtsZ orthologs. The temperature dependence of the first-order rates of nucleotide hydrolysis and of polymer disassembly, indicated an entropy-driven destabilization of the FtsZ-GTP intermediate. This destabilization was true for both mesophilic and thermophilic FtsZ, reflecting a conserved mechanism of disassembly. From the temperature dependence of the critical concentrations for polymerization, we detected a change of opposite sign in the heat capacity, that was partially explained by the specific changes in the solvent-accessible surface area between the free and polymerized states of FtsZ. At the physiological temperature, the assembly of both FtsZ orthologs was found to be driven by a small positive entropy. In contrast, the assembly occurred with a negative enthalpy for mesophilic FtsZ and with a positive enthalpy for thermophilic FtsZ. Notably, the assembly of both FtsZ orthologs is characterized by a critical concentration of similar value (1-2 μM at the environmental temperatures of their host organisms. These findings suggest a simple but robust mechanism of adaptation of FtsZ, previously shown

  17. Roles of texture of Zr alloys in ZrO{sub 2} film formation and δ-hydride orientation near ZrO{sub 2}/Zr interface

    Energy Technology Data Exchange (ETDEWEB)

    Qin, W.; Szpunar, J.A., E-mail: weq565@mail.usask.ca, E-mail: jerzy.szpunar@usask.ca [Univ. of Saskatchewan, Dept. of Mechanical Engineering, Saskatoon, SK (Canada); Kozinski, J., E-mail: janusz.kozinski@lassonde.yorku.ca [York Univ., Faculty of Science and Engineering, Toronto, ON (Canada)

    2014-07-01

    Oxidation and hydrogen embrittlement are related to formation of cracks and failure of Zr alloys used in nuclear reactor applications. An in-depth understanding of the formation of ZrO{sub 2} film and the hydride precipitation and orientation is important for improving the corrosion resistance of zirconium alloys. In this work a theoretical model is developed to analyze the microstructure of ZrO{sub 2} film formed on Zr alloys and the effect of stress that results from ZrO{sub 2} formation on hydride reorientation in the region near oxide/metal interface. Our work shows that the macroscopic stress produced due to Pilling-Bedworth ratio for ZrO{sub 2}/Zr could lead to the hydride re-orientation in the region near ZrO{sub 2}/Zr interface. Whether or not this effect can occur is dependent on the texture of the zirconium alloys. Control of texture of zirconium alloys can affect the microstructure of ZrO{sub 2} film and can be responsible for change of hydride orientation. (author)

  18. Creep properties of annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe cladding tubes and their performance comparison

    International Nuclear Information System (INIS)

    Ko, S.; Hong, S.I.; Kim, K.T.

    2010-01-01

    Creep properties of annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe cladding tubes were studied and compared. The creep rates of the annealed Zr-Nb-O alloy were found to be greater than those of the stress-relieved Zr-Nb-Sn-Fe alloy. Zr-Nb-O alloy was found to have stress exponents of 5-7 independent of stress level whereas Zr-Nb-Sn-Fe alloy exhibited the transition of the stress exponent from 6.5 to 7.5 in the lower stress region to ∼4.2 in the higher stress region. The reduction of stress exponent at high stresses in Zr-Nb-Sn-Fe can be explained in terms of the dynamic solute-dislocation effect caused by Sn atoms. The constancy of stress exponent without the transition was observed in Zr-Nb-O alloy, supporting that the decrease of the stress exponent with increasing stress in Zr-Nb-Sn-Fe is associated with Sn atoms. The difference of creep life between annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe is not large considering the large difference of strength level between annealed Zr-Nb-O and annealed stress-relieved Zr-Nb-Sn-Fe. The better-than-expected creep life of annealed Zr-Nb-O alloy can be attributable to the combined effects of creep ductility enhancement associated with softening and the decreased contribution of grain boundary diffusion due to the increased grain size.

  19. Reactor physics studies in the steam flooded GCFR-Phase II critical assembly

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.

    1978-08-01

    A possible accident scenario in a Gas-Cooled Fast Reactor (GCFR) is the leakage of secondary steam into the core. Considerable analytical effort has gone into the study of the effects of such an accidental steam entry. The work described represents the first full scale experimental study of the steam-entry phenomenon in GCFRs. The reference GCFR model used for the study was the benchmark GCFR Phase II assembly, and polyethylene foam was used to provide a very homogeneous steam simulation. The reactivity worth of steam entry was measured for three different steam densities. In addition, a set of integral physics parameters were measured in the largest steam density (0.008 g/cm 3 ) configuration. The corresponding parameters were also measured in dry reference GCFR critical assembly for comparison. The experiments were analyzed using ENDF/B-IV data and two-dimensional diffusion theory methods. As in earlier GCFR critical experiments analysis, the Benoist method was used to treat the problem of neutron streaming

  20. On the effect of different placing ZrH moderator material on the performance of a SFR core

    Energy Technology Data Exchange (ETDEWEB)

    Merk, B. [Helmholtz-Zentrum Dresden-Rossendorf, Institut fuer Sicherheitsforschung, Postfach 51 01 19, 01314 Dresden (Germany); Weiss, F. P. [Gesellschaft fuer Anlagen- und Reaktorsicherheit GRS MbH Forschungszentrum, Boltzmannstr. 14, 85748 Garching (Germany)

    2012-07-01

    This study describes the development of a sodium fast reactor fuel assembly design with reduced void reactivity coefficient, achieved through the use of the ZrH moderating material. In the study the sodium void effect, as well as the major feedback coefficients are analyzed. Besides the feedback coefficients, the influence on the operational parameters like neutron flux distribution, power distribution, and burnup distribution is investigated for the different possibilities of arranging the moderating material in the fuel assembly. Additionally, the fuel cycle parameters - breeding and minor actinide production - are analyzed. For a first evaluation of the behavior during transients the influence of temperature changes in the ZrH is studied. (authors)

  1. Antibacterial activity and cell compatibility of TiZrN, TiZrCN, and TiZr-amorphous carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Heng-Li [School of Dentistry, China Medical University, Taichung 404, Taiwan (China); Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@nfu.edu.tw [Department of Mechanical and Computer-aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Liu, Jia-Xu [Department of Mechanical and Computer-aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Tsai, Ming-Tzu [Department of Biomedical Engineering, Hungkuang University, Taichung 433, Taiwan (China); Lai, Chih-Ho [Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan (China)

    2015-12-01

    A cathodic-arc evaporation system with plasma-enhanced duct equipment was used to deposit TiZrN, TiZrCN, and TiZr/a-C coatings. Reactive gases (N{sub 2} and C{sub 2}H{sub 2}) activated by the Ti and Zr plasma in the evaporation process was used to deposit the TiZrCN and TiZr/a-C coatings with different C and nitrogen contents. The crystalline structures and bonding states of coatings were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. The microbial activity of the coatings was evaluated against Staphylococcus aureus (Gram-positive bacteria) and Actinobacillus actinomycetemcomitans (Gram-negative bacteria) by in vitro antibacterial analysis using a fluorescence staining method employing SYTO9 and a bacterial-viability test on an agar plate. The cell compatibility and morphology related to CCD-966SK cell-line human skin fibroblast cells on the coated samples were also determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, reverse-transcriptase-polymerase chain reaction, and scanning electron microscopy. The results suggest that the TiZrCN coatings not only possess better antibacterial performance than TiZrN and TiZr/a-C coatings but also maintain good compatibility with human skin fibroblast cells. - Highlights: • TiZrN, TiZrCN, and TiZr/a-C coatings were deposited using cathodic arc evaporation. • The TiZrCN showed a composite structure containing TiN, ZrN, and a-C. • The TiZrCN-coated Ti showed the least hydrophobicity among the samples. • The TiZrCN-coated Ti showed good human skin fibroblast cell viability. • The TiZrCN-coated Ti exhibited good antibacterial performance.

  2. Electrochemical Properties of Hydrogen-Storage Alloys ZrMn{sub 2}Ni{sub x} and ZrMnNi{sub 1+x} for Ni-MH Secondary Battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Ryoung [Faculty of Applied Chemistry, Chonnam National University, Kwangju (Korea); Kwon, Ik Hyun [Automobile High-Technology Research Institute, Division of Advanced Materials Engineering, Chonbuk National University, Chonju (Korea)

    2001-04-01

    In order to improve the performance of AB{sub 2}-type hydrogen-storage alloys for Ni-MH secondary battery, AB{sub 2}-type alloys, ZrMn{sub 2}Ni{sub x}(x=0.0, 0.3, 0.6, 0.9 and 1.2) and ZrMnNi{sub 1+x}(x=0.0, 0.1, 0.2, 0.3 and 0.4) were prepared as the Zr-Mn-Ni three component alloys. The hydrogen-storage and the electrochemical properties were investigated. The C14 Laves phase formed in all alloys of ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2). The equilibrium plateau pressure of the alloy, ZrMn{sub 2}Ni{sub 0.6}-H{sub 2} system, was about 0.5 atm at 30 degree C. Among these alloys, ZrMn{sub 2}Ni{sub 0.6} was the easiest to activate, and it had the largest discharge capacity as well as the best cycling performance. The C14 Laves phase also formed in all alloys of ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4). The equilibrium plateau pressure of the alloy, ZrMnNi{sub 1.0}-H{sub 2} system, was about 0.45 atm at 30 degree C. Among these alloys, ZrMnNi{sub 1.0} was the easiest to activate, taking only 3 charge-discharge cycles, and it had the largest discharge capacity of 42 mAh/g. Among these alloys, ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2) and ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4), ZrMnNi{sub 1.0} had the largest discharge capacity (maximum value of 42 mAh/g), and it showed the fastest activation and good cycling performance. 23 refs., 4 figs., 2 tabs.

  3. Phase equilibria in the Zr-Si-B ternary system (Zr-Si-ZrB{sub 2} region) at 1 173 K

    Energy Technology Data Exchange (ETDEWEB)

    Han, Feng; Luo, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Lab. of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Lab. of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry

    2017-10-15

    The isothermal section of the Zr-Si-B ternary system (Zr-Si-ZrB{sub 2} region) at 1 173 K has been experimentally determined. All equilibrated alloys were characterized via X-ray powder diffraction and scanning electron microscopy equipped with energy-dispersive X-ray analysis. A ternary phase Zr{sub 5}(Si{sub 0.86}B{sub 0.14}){sub 3} was found at 1 173 K. The experimental results show that the isothermal section consists of 11 single-phase regions, 26 two-phase regions and 13 three-phase regions. The existence of eight compounds, i.e. ZrSi{sub 2}, ZrSi, Zr{sub 5}Si{sub 4}, Zr{sub 3}Si{sub 2}, Zr{sub 2}Si, ZrB, ZrB{sub 2} and Zr{sub 5}(Si{sub 0.86}B{sub 0.14}){sub 3} in this system has been confirmed in the Zr-Si-ZrB{sub 2} region at 1 173 K.

  4. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy

    KAUST Repository

    Vlach, Martin

    2013-12-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al3Sc and/or Al3(Sc,Zr) particles precipitated during extrusion at 350 C in the alloys studied. Additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 C. The precipitation of the Al6Mn- and/or Al 6(Mn,Fe) particles of a size ~ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al3Sc particles formation and/or coarsening and that of the Al6Mn and/or Al 6(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al3Sc-phase and the Al 6Mn-phase precipitation. © 2013 Elsevier Inc.

  5. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy

    KAUST Repository

    Vlach, Martin; Stulí ková , Ivana; Smola, Bohumil; Kekule, Tomá š; Kudrnová , Hana; Daniš, Stanislav; Gemma, Ryota; Očená šek, Vladivoj; Má lek, Jaroslav; Tanprayoon, Dhritti; Neubert, Volkmar

    2013-01-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al3Sc and/or Al3(Sc,Zr) particles precipitated during extrusion at 350 C in the alloys studied. Additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 C. The precipitation of the Al6Mn- and/or Al 6(Mn,Fe) particles of a size ~ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al3Sc particles formation and/or coarsening and that of the Al6Mn and/or Al 6(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al3Sc-phase and the Al 6Mn-phase precipitation. © 2013 Elsevier Inc.

  6. Effects of existing evaluated nuclear data files on neutronics characteristics of the BFS-62-3A critical assembly benchmark model

    International Nuclear Information System (INIS)

    Semenov, Mikhail

    2002-11-01

    This report is continuation of studying of the experiments performed on BFS-62-3A critical assembly in Russia. The objective of work is definition of the cross section uncertainties on reactor neutronics parameters as applied to the hybrid core of the BN-600 reactor of Beloyarskaya NPP. Two-dimensional benchmark model of BFS-62-3A was created specially for these purposes and experimental values were reduced to it. Benchmark characteristics for this assembly are 1) criticality; 2) central fission rate ratios (spectral indices); and 3) fission rate distributions in stainless steel reflector. The effects of nuclear data libraries have been studied by comparing the results calculated using available modern data libraries - ENDF/B-V, ENDF/B-VI, ENDF/B-VI-PT, JENDL-3.2 and ABBN-93. All results were computed by Monte Carlo method with the continuous energy cross-sections. The checking of the cross sections of major isotopes on wide benchmark criticality collection was made. It was shown that ENDF/B-V data underestimate the criticality of fast reactor systems up to 2% Δk. As for the rest data, the difference between each other in criticality for BFS-62-3A is around 0.6% Δk. However, taking into account the results obtained for other fast reactor benchmarks (and steel-reflected also), it may conclude that the difference in criticality calculation results can achieve 1% Δk. This value is in a good agreement with cross section uncertainty evaluated for BN-600 hybrid core (±0.6% Δk). This work is related to the JNC-IPPE Collaboration on Experimental Investigation of Excess Weapons Grade Pu Disposition in BN-600 Reactor Using BFS-2 Facility. (author)

  7. The effects of Zr on the interdiffusion between metal fuel and cladding material

    International Nuclear Information System (INIS)

    Lee, J. T.; Joo, K. S.; Lee, Y. W.; Son, D. S.; Kim, H.; Kim, K. M.

    1999-01-01

    The interdiffusion layers of the heat-treated U-X(X=6, 8, 10, 12)wt.%Zr /HT9 diffusion couples at 725 deg C to 735 deg C was investigated in terms of Zr content. The diffusion layer of U-6Zr/HT9 formed at 725 deg C was similar to that at 700 deg C, but eutectic reactions was locally initiated along the interface. It was observed that the incipient eutectic reaction layer consisted of a two-phase U(Fe,Cr) 2 + U-rich(90-96at.%U), U-rich phase, partially decomposed Zr-rich band, a two-phase U 6 Fe + needle-shaped precipitates and Zr-rich band. The activated interdiffusion between U-Zr and HT9, is thought to be due to the eutectic liquid phase which partially dissolved Zr and decomposed Zr-rich band, and eutectic liquid phase resulted in the thick diffusion layer of a two-phase UFe 2 matrix + round-shaped U(Fe,Cr,Mo) precipitates. As Zr interrupts the interdiffusion between U-Zr and HT9 at interface, it was thought that Zr-content had an effect of suppression on eutectic reaction

  8. Synthesis, luminescent properties and white light emitting diode application of Ba{sub 7}Zr(PO{sub 4}){sub 6}:Eu{sup 2+} yellow-emitting phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chenxia; Dai, Jian [College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 (China); Deng, Degang, E-mail: dengdegang@cjlu.edu.cn [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Shen, Changyu [College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 (China); Xu, Shiqing, E-mail: sxucjlu@163.com [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China)

    2015-10-15

    A yellow-emitting phosphor, Eu{sup 2+}-activated Ba{sub 7}Zr(PO{sub 4}){sub 6} phosphor was synthesized by solid-state reaction method and the luminescence properties were investigated. The phosphor exhibited strong absorption in near ultraviolet (n-UV) region, which matched well with the n-UV chip. Upon excitation at 370 nm, the Ba{sub 7}Zr(PO{sub 4}){sub 6}:Eu{sup 2+} phosphor has a broad yellow emission band with a peak at 585 nm and a full width at half maximum of 178 nm wider than that of the commercial yellow-emitting YAG:Ce{sup 3+} phosphor. The mechanism of concentration quenching of Eu{sup 2+} ions in Ba{sub 7}Zr(PO{sub 4}){sub 6} phosphor is verified to be energy transfer among the nearest neighbor Eu{sup 2+} ions. The CIE value and temperature dependence of photoluminescence were also discussed. Furthermore, a white-LED was fabricated using a 370 nm UV chip pumped with a blend of phosphors consisting of yellow-emitting Ba{sub 6.97}Zr(PO{sub 4}){sub 6}:0.03Eu{sup 2+} and blue-emitting BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors, which achieved a CIE of (0.3329, 0.3562) with a color-rendering index of 86.4 around the CCT of 5487 K.

  9. Identification of new phases in the Zr-Nb-Fe system

    International Nuclear Information System (INIS)

    Granovsky, Marta S.; Arias, Delia E.; Lena, Esteban M.

    1999-01-01

    Intermediate phases in the Zr - rich region of the Zr - Nb - Fe system have been investigated by X-ray diffraction, optical and electron microscopy and electron microanalysis. The chemical composition ranges of the alloys here studied were (52 - 97) at. % Zr, (14 - 0.9) at. % Nb and (38 - 0.6) at. % Fe. The phases found in this region were the solid solutions α(Zr) and β(Zr), the intermetallic Zr 3 Fe with less than 0.2 at. % Nb in solution, and two new ternary phases: (Zr + Nb) 2 Fe, identified as a cubic Ti 2 Ni - type structure and another compound with composition close to Zr - 12 at. % Nb - 50 at. % Fe. (author)

  10. Data base of reactor physics experimental results in Kyoto University critical assembly experimental facilities

    International Nuclear Information System (INIS)

    Ichihara, Chihiro; Fujine, Shigenori; Hayashi, Masatoshi

    1986-01-01

    The Kyoto University critical assembly experimental facilities belong to the Kyoto University Research Reactor Institute, and are the versatile critical assembly constructed for experimentally studying reactor physics and reactor engineering. The facilities are those for common utilization by universities in whole Japan. During more than ten years since the initial criticality in 1974, various experiments on reactor physics and reactor engineering have been carried out using many experimental facilities such as two solidmoderated cores, a light water-moderated core and a neutron generator. The kinds of the experiment carried out were diverse, and to find out the required data from them is very troublesome, accordingly it has become necessary to make a data base which can be processed by a computer with the data accumulated during the past more than ten years. The outline of the data base, the data base CAEX using personal computers, the data base supported by a large computer and so on are reported. (Kako, I.)

  11. Efficient UV-emitting X-ray phosphors: octahedral Zr(PO4)6 luminescence centers in potassium hafnium-zirconium phosphates K2Hf1-xZrx(PO4)2 and KHf2(1-x)Zr2x(PO4)3

    International Nuclear Information System (INIS)

    Torardi, C.C.; Miao, C.R.; Li, J.

    2003-01-01

    Potassium hafnium-zirconium phosphates, K 2 Hf 1-x Zr x (PO 4 ) 2 and KHf 2(1-x) Zr 2x (PO 4 ) 3 , are broad-band UV-emitting phosphors. At room temperature, they have emission peak maxima at approximately 322 and 305 nm, respectively, under 30 kV peak molybdenum X-ray excitation. Both phosphors demonstrate luminescence efficiencies that make them up to ∼60% as bright as commercially available CaWO 4 Hi-Plus. The solid-state and flux synthesis conditions, and X-ray excited UV luminescence of these two phosphors are discussed. Even though the two compounds have different atomic structures, they contain zirconium in the same active luminescence environment as that found in highly efficient UV-emitting BaHf 1-x Zr x (PO 4 ) 2 . All the three materials have hafnium and zirconium in octahedral coordination via oxygen-atom corner sharing with six separate PO 4 tetrahedra. This octahedral Zr(PO 4 ) 6 moiety appears to be an important structural element for efficient X-ray excited luminescence, as are the edge-sharing octahedral TaO 6 chains for tantalate emission

  12. Mechanical spectroscopy study on the Cu{sub 54}Zr{sub 40}Al{sub 6} amorphous matrix alloy at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Marques, P.W.B., E-mail: paulowilmar@df.ufscar.br [Departamento de Física, Universidade Federal de São Carlos, CP-676, São Carlos, SP (Brazil); Chaves, J.M.; Silva, P.S.; Florêncio, O. [Departamento de Física, Universidade Federal de São Carlos, CP-676, São Carlos, SP (Brazil); Moreno-Gobbi, A. [Instituto de Física, Facultad de Ciencias (UDELAR), Iguá 4225, CEP 11400 Montevideo (Uruguay); Aliaga, L.C.R.; Botta, W.J. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, CP-676, São Carlos, SP (Brazil)

    2015-02-05

    Highlights: • Cu{sub 54}Zr{sub 40}Al{sub 6} alloy was characterized by mechanical spectroscopy at low temperature. • Flexural and ultrasonic methods showed peaks associated to rearrangement of clusters. • The peaks less stable were associated with annihilation of Zr or Cu clusters. • MHz range can be favors the formation of Cu an Al-centered icosahedral structures. • TEM images show an increase in the size and number of crystal in amorphous matrix. - Abstract: A mechanical spectroscopy study of Cu{sub 54}Zr{sub 40}Al{sub 6} bulk metallic glasses composites was carried out in the kHz and MHz frequency ranges, by means of flexural and ultrasonic methods, respectively, in the temperature interval 150–300 K. In internal friction and attenuation curves at low temperature were observed peaks which were associated with distortions in the configuration of atomic clusters, which absorbed different quantities of energy due to short and medium order rearrangements. Changes within the clusters or atomic jumps between clusters occurring in the specimen induced the onset of polyamorphic peaks, since electronic interactions and bonding changed abruptly.

  13. Microstructure and mechanical properties of as-cast Zr-Nb alloys.

    Science.gov (United States)

    Kondo, Ryota; Nomura, Naoyuki; Suyalatu; Tsutsumi, Yusuke; Doi, Hisashi; Hanawa, Takao

    2011-12-01

    On the basis of the microstructures and mechanical properties of as-cast Zr-(0-24)Nb alloys the effects of phase constitution on the mechanical properties and magnetic susceptibility are discussed in order to develop Zr alloys for use in magnetic resonance imaging (MRI). The microstructures were evaluated using an X-ray diffractometer, an optical microscope, and a transmission electron microscope; the mechanical properties were evaluated by a tensile test. The α' phase was dominantly formed with less than 6 mass% Nb content. The ω phase was formed in Zr-(6-20)Nb alloys, but disappeared from Zr-22Nb. The β phase dominantly existed in Zr-(9-24)Nb alloys. The mechanical properties as well as the magnetic susceptibility of the Zr-Nb alloys varied depending on the phase constitution. The Zr-Nb alloys consisting of mainly α' phase showed high strength, moderate ductility, and a high Young's modulus, retaining low magnetic susceptibility. Zr-Nb alloys containing a larger volume of ω phase were found to be brittle and, thus, should be avoided, despite their low magnetic susceptibility. When the Zr-Nb alloys consisted primarily of β phase the effect of ω phase weakened the mechanical properties, thereby leading to an increase in ductility, even with an increase in magnetic susceptibility. The minimum value of Young's modulus was obtained for Zr-20Nb, because this composition was the phase boundary between the β and ω phases. However, the magnetic susceptibility of the alloy was half that of Ti-6Al-4V alloys. Zr-Nb alloys consisting of α' or β phase have excellent mechanical properties with low magnetic susceptibility and, thus, these alloys could be useful for medical devices used in MRI. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: Compositional optimization for potential biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Nengbin, E-mail: flower1982cn@126.com [Department of Materials Science and Engineering, Fujian University of Technology, 350118 Fuzhou (China); Department of Materials Science and Engineering, Fuzhou University, 350116 Fuzhou (China); Huang, Lu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2100 (United States); Chen, Wenzhe [Department of Materials Science and Engineering, Fujian University of Technology, 350118 Fuzhou (China); Department of Materials Science and Engineering, Fuzhou University, 350116 Fuzhou (China); He, Wei [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2100 (United States); Department of Mechanical, Aerospace and Biomedical Engineering, The University of Tennessee, Knoxville, TN 37996-2200 (United States); Zhang, Tao [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, 100191 Beijing (China)

    2014-11-01

    The present study designs and prepares Ni-free Zr{sub 60+x}Ti{sub 2.5}Al{sub 10}Fe{sub 12.5−x}Cu{sub 10}Ag{sub 5} (at.%, x = 0, 2.5, 5) bulk metallic glasses (BMGs) by copper mold casting for potential biomedical application. The effects of Zr content on the in vitro biocompatibility of the Zr-based BMGs are evaluated by investigating mechanical properties, bio-corrosion behavior, and cellular responses. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high notch toughness. Electrochemical measurements demonstrate that the Zr-based BMGs are corrosion resistant in a phosphate buffered saline solution. The bio-corrosion resistance of BMGs is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. Regular cell responses of mouse MC3T3-E1 cells, including cell adhesion and proliferation, are observed on the Zr–Ti–Al–Fe–Cu–Ag BMGs, which reveals their general biosafety. The high-Zr-based BMGs exhibit a higher cell proliferation activity in comparison with that of pure Zr and Ti-6Al-4V alloy. The effects of Zr content on the in vitro biocompatibility can be used to guide the future design of biocompatible Zr-based BMGs. - Highlights: • Ni-free Zr{sub 60+x}Ti{sub 2.5}Al{sub 10}Fe{sub 12.5−x}Cu{sub 10}Ag{sub 5} (at.%, x = 0, 2.5, 5) BMGs were fabricated. • Plasticity and notch toughness of BMGs are enhanced by high-Zr-content. • The high-Zr-based BMGs exhibit excellent bio-corrosion resistance in PBS solution. • The biosafety of BMGs is revealed by regular cell adhesion and proliferation. • High-Zr-bearing BMGs are favorable for potential applications as biomaterials.

  15. Sulfur activation at the Little Boy-Comet Critical Assembly: a replica of the Hiroshima bomb

    International Nuclear Information System (INIS)

    Kerr, G.D.; Emery, J.F.; Pace, J.V. III.

    1985-04-01

    Studies have been completed on the activation of sulfur by fast neutrons from the Little Boy-Comet Critical Assembly which replicates the general features of the Hiroshima bomb. The complex effects of the bomb's design and construction on leakage of sulfur-activation neutrons were investigated both experimentally and theoretically. Our sulfur activation studies were performed as part of a larger program to provide benchmark data for testing of methods used in recent source-term calculations for the Hiroshima bomb. Source neutrons capable of activating sulfur play an important role in determining neutron doses in Hiroshima at a kilometer or more from the point of explosion. 37 refs., 5 figs., 6 tabs

  16. A comparison of reaction rate calculations using Endf/B-VII with critical assembly measurements

    International Nuclear Information System (INIS)

    Wilkerson, C.; Mac Innes, M.; Barr, D.; Trellue, H.; MacFarlane, R.; Chadwick, M.

    2008-01-01

    We present critical assembly reaction rate data, and modeling of the same using the recently released Endf/B-VII library. While some of the experimental measurements were performed as long as 50 years ago, the results have not been widely used/available outside of Los Alamos. Over the years, a variety of target foils were fabricated and placed in differing neutron spectrum/fluence environments within critical assemblies. Neutron-induced reactions such as (n,γ), (n,2n), and (n,f) on these targets were measured, typically referenced to 235 U(n,f) or 239 Pu(n,f). Because the cross section for the latter reactions are now well known, these experiments provide a rich data set for testing evaluated cross sections. Due to the large variety of critical assemblies that were historically available at Los Alamos, it was possible to make measurements in spectral environments ranging from hard (Pu Jezebel, center of Pu Flattop) through intermediate (Big Ten) to degraded (reflector region of Flattop). This broad range of configurations allows us to test both the cross section magnitudes and their energy dependencies. We will present data, along with reaction rate predictions using primarily MCNP5 in conjunction with Endf/B-VII, for a number of target nuclei, including iridium, isotopes of uranium (e.g., 233, 235, 237, 238), neptunium (237), plutonium (239), and americium (241). (authors)

  17. Effect of nitrogen addition on superelasticity of Ti-Zr-Nb alloys

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Miyazaki, Shuichi; Inamura, Tomonari; Hosoda, Hideki

    2008-01-01

    Recently, the Ti-Zr-Nb alloys have been developed as Ni-free shape memory and superelastic alloys. In this study, the effect of Nb and nitrogen (N) contents on martensitic transformation behavior, shape memory effect and superelasticity in Ti-18Zr-(12-16)Nb-(0-1.0)N (at%) alloys were investigated using tensile tests, optical microscopy and X-ray diffraction. Shape memory effect was observed in Ti-18Zr-(12-13)Nb and Ti-18Zr-12Nb-0.5N alloys at room temperature. The superelastic behavior appeared by the increase of Nb or N content. The Ti-18Zr-(14-15)Nb, Ti-18Zr-(13-14)Nb-0.5N and Ti-18Zr-(12-14)Nb-1.0N alloys exhibited the superelasticity at room temperature. The martensitic transformation start temperature (M s ) decreased by 75 K with 1 at% increase of N content for Ti-18Zr-13Nb alloy. The critical stress for slip deformation and the stress for inducing the martensitic transformation increased with increasing N content. The superelastic recovery strain was also increased by adding N. The maximum recovery strain of 5.0% was obtained in the Ti-18Zr-14Nb-0.5N alloy. (author)

  18. Effects of Undercooling and Cooling Rate on Peritectic Phase Crystallization Within Ni-Zr Alloy Melt

    Science.gov (United States)

    Lü, P.; Wang, H. P.

    2018-04-01

    The liquid Ni-16.75 at. pct Zr peritectic alloy was substantially undercooled and containerlessly solidified by an electromagnetic levitator and a drop tube. The dependence of the peritectic solidification mode on undercooling was established based on the results of the solidified microstructures, crystal growth velocity, as well as X-ray diffraction patterns. Below a critical undercooling of 124 K, the primary Ni7Zr2 phase preferentially nucleates and grows from the undercooled liquid, which is followed by a peritectic reaction of Ni7Zr2+L → Ni5Zr. The corresponding microstructure is composed of the Ni7Zr2 dendrites, peritectic Ni5Zr phase, and inter-dendritic eutectic. Nevertheless, once the liquid undercooling exceeds the critical undercooling, the peritectic Ni5Zr phase directly precipitates from this undercooled liquid. However, a negligible amount of residual Ni7Zr2 phase still appears in the microstructure, indicating that nucleation and growth of the Ni7Zr2 phase are not completely suppressed. The micromechanical property of the peritectic Ni5Zr phase in terms of the Vickers microhardness is enhanced, which is ascribed to the transition of the peritectic solidification mode. To suppress the formation of the primary phase completely, this alloy was also containerlessly solidified in free fall experiments. Typical peritectic solidified microstructure forms in large droplets, while only the peritectic Ni5Zr phase appears in smaller droplets, which gives an indication that the peritectic Ni5Zr phase directly precipitates from the undercooled liquid by completely suppressing the growth of the primary Ni7Zr2 phase and the peritectic reaction due to the combined effects of the large undercooling and high cooling rate.

  19. Benchmarks of subcriticality in accelerator-driven system at Kyoto University Critical Assembly

    Directory of Open Access Journals (Sweden)

    Cheol Ho Pyeon

    2017-09-01

    Full Text Available Basic research on the accelerator-driven system is conducted by combining 235U-fueled and 232Th-loaded cores in the Kyoto University Critical Assembly with the pulsed neutron generator (14 MeV neutrons and the proton beam accelerator (100 MeV protons with a heavy metal target. The results of experimental subcriticality are presented with a wide range of subcriticality level between near critical and 10,000 pcm, as obtained by the pulsed neutron source method, the Feynman-α method, and the neutron source multiplication method.

  20. Antimicrobial property, cytocompatibility and corrosion resistance of Zn-doped ZrO{sub 2}/TiO{sub 2} coatings on Ti6Al4V implants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoyun; He, Xiaojing; Gao, Yuee; Zhang, Xiangyu; Yao, Xiaohong, E-mail: xhyao@tyut.edu.cn; Tang, Bin

    2017-06-01

    Zn-doped ZrO{sub 2}/TiO{sub 2} porous coatings (Zn-ZrO{sub 2}/TiO{sub 2}) were prepared on the surface of titanium alloy (Ti6Al4V) by a hybrid approach of magnetron sputtering and micro-arc oxidation (MAO). The microstructures, phase constituents and elemental states of the coating were investigated by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the Zn-ZrO{sub 2}/TiO{sub 2} coatings are porous and its thickness is approximately 13 μm. The major phases in the oxidation coating are tetragonal ZrO{sub 2} (t-ZrO{sub 2}), cubic ZrO{sub 2} (c-ZrO{sub 2}) and rutile TiO{sub 2}. XPS result reveals that Zn exists as ZnO in the Zn-ZrO{sub 2}/TiO{sub 2} coatings. The biological experiments indicate that Zn-ZrO{sub 2}/TiO{sub 2} coatings exhibit not only excellent antibacterial property against Gram-positive Staphylococcus aureus (S. aureus), but also favorable cytocompatibility. In addition, the corrosion resistance of the coating is also appreciably improved in the simulated body fluids (SBF), which can ensure better biocompatibility in body fluids. - Highlights: • The porous Zn-ZrO{sub 2}/TiO{sub 2} coatings were successfully prepared by a novel duplex-treatment technique. • Zn-ZrO{sub 2}/TiO{sub 2} coatings possess superior corrosion resistance and excellent antibacterial ability against S. aureus. • Zn-ZrO{sub 2}/TiO{sub 2} coatings can enhance in vitro angiogenesis activity of osteoblastic cells.

  1. Effect of Zr addition on intergranular corrosion of low-chromium ferritic stainless steel

    International Nuclear Information System (INIS)

    Park, Jin Ho; Kim, Jeong Kil; Lee, Bong Ho; Seo, Hyung Suk; Kim, Kyoo Young

    2014-01-01

    Addition of Zr to low-Cr ferritic stainless steel forms a mixture of ZrC and Fe 23 Zr 6 precipitates that can prevent intergranular corrosion. Transmission electron microscopy and three-dimensional atom probe analysis suggest that the ZrC and Fe 23 Zr 6 mixture prevents intergranular corrosion in two ways: by acting as a strong carbide former to suppress the formation of Cr-carbide and by acting as a barrier against the diffusion of the solute Cr towards the grain boundary

  2. Green approach for the synthesis and characterization of ZrSnO4 nanopowder

    Science.gov (United States)

    Athar, Taimur; Vishwakarma, Sandeep Kumar; Bardia, Avinash; Alabass, Razzaq; Alqarlosy, Ahmed; Khan, Aleem Ahmed

    2016-06-01

    Well-defined structural framework of ZrSnO4 nanopowder has been synthesized for the fabrications of cost-effective and sensitive devices which give final reproducible result with reliability under ideal conditions. The synthesis was carried out at moderate temperature and then finally dried in the laboratory oven and then followed with calcination at 1000 °C for 4 h to get phase selective product. It was observed that gelation time depends on the concentration of reactants and temperature. The characterization of ZrSnO4 was carried out with XRD, SEM, TEM, UV, thermal analysis, DLS and FT-IR techniques. With adjustment of reaction parameters, the systematic tuning of the particle size, shape and functional properties can be controlled. It was concluded that self-assembly is an integral part for the synthesis and opens a new exciting opportunity for better understanding the formation of nanostructure framework from micro- to nanoscale along with mechanistic via wet chemical approach. ZrSnO4 has vital role in identifying its potential cytotoxicity in the biological systems. The cytotoxicity effects of ZrSnO4 nanopowder in vitro were evaluated in three different human cell types (hepatocytes, mesenchymal stem cells and neuronal cells). Acute exposure of nanoparticles was found to have greater cytotoxic effect at higher concentration (30 µg/ml). However, partial detoxification was observed during nanoparticles exposure at day 6. The study concluded that an initial stress from nanoparticles incorporates sealing or detoxification of nanoparticles which may help to recover cell viability.

  3. Basket criticality design of a dual purpose cask for VVER 1000 spent fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Rezaeian, Mahdi [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Kamali, Jamshid [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of)

    2016-12-15

    Dual purpose cask technology is one of the most prominent options for interim storage of spent fuels following their removal from reactors. Criticality safety of the spent fuel assemblies are ensured by design of the basket within these casks. In this study, a set of criticality design calculations of a dual purpose cask for 12 VVER 1000 spent fuel assemblies of Bushehr nuclear power plant were carried out. The basket material of borated stainless steel with 0.5 to 2.5 wt% of boron and Boral (Al-B{sub 4}C) with 1.5 to 40 wt% of boron carbide, were investigated and the minimum required receptacle pitch of the basket was determined. Using the calculated receptacle pitch of the basket, the minimum required diameter of the cavity could be established.

  4. Neutron diffraction studies on Ca1−xBaxZr4P6O24 solid solutions

    Indian Academy of Sciences (India)

    NZP bears special attention for disposal of nuclear waste materials as a significant extent of diversified chemical elements that can be accommodated in the lattice. [2]. The NZP crystallizes in a rhombohedral lattice (space group R-3c) formed by linking ZrO6 octahedral and PO4 tetrahedral units [3]. The Na atom occupies ...

  5. Accommodation of tin in tetragonal ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bell, B. D. C.; Grimes, R. W.; Wenman, M. R., E-mail: m.wenman@imperial.ac.uk [Department of Materials and Centre for Nuclear Engineering, Imperial College, London SW7 2AZ (United Kingdom); Murphy, S. T. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Burr, P. A. [Department of Materials and Centre for Nuclear Engineering, Imperial College, London SW7 2AZ (United Kingdom); Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Menai, New South Wales 2234 (Australia)

    2015-02-28

    Atomic scale computer simulations using density functional theory were used to investigate the behaviour of tin in the tetragonal phase oxide layer on Zr-based alloys. The Sn{sub Zr}{sup ×} defect was shown to be dominant across most oxygen partial pressures, with Sn{sub Zr}{sup ″} charge compensated by V{sub O}{sup ••} occurring at partial pressures below 10{sup −31 }atm. Insertion of additional positive charge into the system was shown to significantly increase the critical partial pressure at which Sn{sub Zr}{sup ″} is stable. Recently developed low-Sn nuclear fuel cladding alloys have demonstrated an improved corrosion resistance and a delayed transition compared to Sn-containing alloys, such as Zircaloy-4. The interaction between the positive charge and the tin defect is discussed in the context of alloying additions, such as niobium and their influence on corrosion of cladding alloys.

  6. A new facility for the determination of critical heat flux in nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, R A; Hadaller, G I; Hamilton, R C; Hayes, R C; Shin, K S; Stern, F [Stern Laboratories Inc., Hamilton, ON (Canada)

    1993-11-01

    A facility for the determination of critical heat flux in simulated reactor fuel assemblies has been constructed at Stern Laboratories for CANDU Owners` Group. This paper describes the facility and method of testing. 9 figs.

  7. Preparation of Zr(Mo,W)2O8 with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)2(OH,Cl)2∙2H2O.

    Science.gov (United States)

    Petrushina, Mariya Yu; Dedova, Elena S; Filatov, Eugeny Yu; Plyusnin, Pavel E; Korenev, Sergei V; Kulkov, Sergei N; Derevyannikova, Elizaveta A; Sharafutdinov, Marat R; Gubanov, Alexander I

    2018-03-28

    Solid solutions of Zr(Mo,W) 2 O 7 (OH,Cl) 2 ∙2H 2 O with a preset ratio of components were prepared by a hydrothermal method. The chemical composition of the solutions was determined by energy dispersive X-ray spectroscopy (EDX). For all the samples of ZrMo x W 2-x O 7 (OH,Cl) 2 ∙2H 2 O (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0), TGA and in situ powder X-ray diffraction (PXRD) studies (300-1100 K) were conducted. For each case, the boundaries of the transformations were determined: Zr(Mo,W) 2 O 7 (OH,Cl) 2 ∙2H 2 O → orthorhombic-ZrMo x W 2-x O 8 (425-525 K), orthorhombic-ZrMo x W 2-x O 8  → cubic-ZrMo x W 2-x O 8 (700-850 K), cubic-ZrMo x W 2-x O 8  → trigonal-ZrMo x W 2-x O 8 (800-1050 K for x > 1) and cubic-ZrMo x W 2-x O 8  → oxides (1000-1075 K for x ≤ 1). The cell parameters of the disordered cubic-ZrMo x W 2-x O 8 (space group Pa-3) were measured within 300-900 K, and the thermal expansion coefficients were calculated: -3.5∙10 -6  - -4.5∙10 -6  K -1 . For the ordered ZrMo 1.8 W 0.2 O 8 (space group P2 1 3), a negative thermal expansion (NTE) coefficient -9.6∙10 -6  K -1 (300-400 K) was calculated. Orthorhombic-ZrW2O 8 is formed upon the decomposition of ZrW 2 O 7 (OH,Cl) 2 ∙2H 2 O within 500-800 K.

  8. Highly Stable Sr-Free Cobaltite-Based Perovskite Cathodes Directly Assembled on a Barrier-Layer-Free Y2 O3 -ZrO2 Electrolyte of Solid Oxide Fuel Cells.

    Science.gov (United States)

    Ai, Na; Li, Na; Rickard, William D A; Cheng, Yi; Chen, Kongfa; Jiang, San Ping

    2017-03-09

    Direct assembly is a newly developed technique in which a cobaltite-based perovskite (CBP) cathode can be directly applied to a barrier-layer-free Y 2 O 3 -ZrO 2 (YSZ) electrolyte with no high-temperature pre-sintering steps. Solid oxide fuel cells (SOFCs) based on directly assembled CBPs such as La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ show high performance initially but degrade rapidly under SOFC operation conditions at 750 °C owing to Sr segregation and accumulation at the electrode/electrolyte interface. Herein, the performance and interface of Sr-free CBPs such as LaCoO 3-δ (LC) and Sm 0.95 CoO 3-δ (SmC) and their composite cathodes directly assembled on YSZ electrolyte was studied systematically. The LC electrode underwent performance degradation, most likely owing to cation demixing and accumulation of La on the YSZ electrolyte under polarization at 500 mA cm -2 and 750 °C. However, the performance and stability of LC electrodes could be substantially enhanced by the formation of LC-gadolinium-doped ceria (GDC) composite cathodes. Replacement of La by Sm increased the cell stability, and doping of 5 % Pd to form Sm 0.95 Co 0.95 Pd 0.05 O 3-δ (SmCPd) significantly improved the electrode activity. An anode-supported YSZ-electrolyte cell with a directly assembled SmCPd-GDC composite electrode exhibited a peak power density of 1.4 W cm -2 at 750 °C, and an excellent stability at 750 °C for over 240 h. The higher stability of SmC as compared to that of LC is most likely a result of the lower reactivity of SmC with YSZ. This study demonstrates the new opportunities in the design and development of intermediate-temperature SOFCs based on the directly assembled high-performance and durable Sr-free CBP cathodes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. States in 94Zr from 94Zr(d,d')94Zr* at 15.5 Mev

    International Nuclear Information System (INIS)

    Frota-Pessoa, E.; Joffily, S.

    1986-01-01

    94 energy levels up to approx. 4.3 Mev excitation energy are studied in the 94 Zr(d,d') 94 Zr* reaction. Deuterons had a bombarding energy of 15.5 MeV. The emergent deuterons were analysed by a magnetic spectrograph and the detector was nuclear emulsion. The resolution in energy was about 11 KeV. The distorted-wave analysis was used to determine the l transferred, the β 2 l and J Π values for some 94 Zr excited states. These results are compared with previous ones. 32 levels of excitation energy in 94 Zr were found which did not appear in previous 94 Zr(d,d') reactions. 20 levels do not correspond to the ones. (Author) [pt

  10. Model development of UO_2-Zr dispersion plate-type fuel behavior at early phase of severe accident and molten fuel meat relocation

    International Nuclear Information System (INIS)

    Zhang Zhuohua; Yu Junchong; Peng Shinian

    2014-01-01

    According to former study on oxygen diffusion, Nb-Zr solid reaction and UO_2-Zr solid reaction, the models of oxidation, solid reaction in fuel meat and relocation of molten fuel meat are developed based on structure and material properties of UO_2-Zr dispersion plate-type fuel, The new models can supply theoretical elements for the safety analysis of the core assembled with dispersion plate-type fuel under severe accident. (authors)

  11. Effect of thermo-mechanical processing on microstructure and mechanical properties of U - Nb - Zr alloys: Part 2 - U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr

    Science.gov (United States)

    Morais, Nathanael Wagner Sales; Lopes, Denise Adorno; Schön, Cláudio Geraldo

    2018-04-01

    The present work is the second and final part of an extended investigation on Usbnd Nb - Zr alloys. It investigates the effect of mechanical processing routes on microstructure of alloys U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr, through X-ray diffraction and scanning electron microscopy, completing the investigation, which started with alloy U - 6 wt% Nb - 6 wt% Zr in part 1. Mechanical properties are determined using microhardness and bending tests and correlated with the developed microstructures. The results show that processing sequence, in particular the inclusion of a 1000 °C heat treatment step, affects significantly the microstructure and mechanical properties of these alloys alloy in different ways. Microstructural characterization shows that both alloys present significant volume fraction of precipitates of a body-centered cubic (BCC) γ-Nb-Zr rich phase in addition the uranium-rich matrix. Bending tests show that sample ductility does not correlate necessarily with hardness and that the key factor appears to be the amount of the γ-Nb-Zr precipitates, which controls the matrix microstructure. Samples with a monoclinic α″ cellular microstructure and/or with the tetragonally-distorted BCC phase (γ0), although not strictly ductile, showed the largest allowed strains-before-break and complete elastic recovery of the broken pieces, pointing out to the macroscopic observation of superelasticity.

  12. Oxidant effect of La(NO{sub 3}){sub 3}·6H{sub 2}O solution on the crystalline characteristics of nanocrystalline ZrO{sub 2} films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Nam Khen [Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kim, Jin-Tae [Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Department of Nanomaterials Science and Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kang, Goru; An, Jong-Ki; Nam, Minwoo [Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kim, So Yeon [Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Park, In-Sung, E-mail: parkis77@hanyang.ac.kr [Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763 (Korea, Republic of); Yun, Ju-Young, E-mail: jyun@kriss.re.kr [Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Department of Nanomaterials Science and Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of)

    2017-02-01

    Highlights: • The La(NO{sub 3}){sub 3}·6H{sub 2}O aqua solution is introduced as an oxidant in ALD process. • The H{sub 2}O and La(NO{sub 3}){sub 3}·6H{sub 2}O lead different crystalline properties of ZrO{sub 2} films. • Concentration of La(NO{sub 3}){sub 3}·6H{sub 2}O solution minimally influences crystalline status. - Abstract: Nanocrystalline ZrO{sub 2} films were synthesized by atomic layer deposition method using CpZr[N(CH{sub 3}){sub 2}]{sub 3} (Cp = C{sub 5}H{sub 5}) as the metal precursor and La(NO{sub 3}){sub 3}·6H{sub 2}O solution as the oxygen source. La element in the deposited ZrO{sub 2} films could not be detected as its content was below the resolution limit of the X-ray photoelectron spectroscopy. The alternative introduction of La(NO{sub 3}){sub 3}·6H{sub 2}O solution to conventionally used H{sub 2}O as the oxidant effectively altered the crystalline structure, grain size, and surface roughness of the grown ZrO{sub 2} films. Specifically, the crystalline structure of the ZrO{sub 2} film changed from a mixture of tetragonal and monoclinic phases to monoclinic phase. The average grain size also increased, and the resulting film surface became rougher. The average grain sizes of the ZrO{sub 2} films prepared from La(NO{sub 3}){sub 3}·6H{sub 2}O solution at concentrations of 10, 20, 30, and 40% were 280, 256, 208, and 200 nm, respectively, whereas that prepared using H{sub 2}O oxidant was 142 nm. However, the concentration of La(NO{sub 3}){sub 3}·6H{sub 2}O solution minimally influenced the crystalline characteristics of the nanocrystalline ZrO{sub 2} films i.e., the crystalline structure, grain size, and surface roughness except for crystallite size.

  13. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    Science.gov (United States)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-09-01

    Electric resistivity ρ and thermoelectric power S of Ni 36Nb 24Zr 40 and (Ni 0.36Nb 0.24Zr 0.4) 90H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T2 and slight increase of S/ T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  14. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    International Nuclear Information System (INIS)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-01-01

    Electric resistivity ρ and thermoelectric power S of Ni 36 Nb 24 Zr 40 and (Ni 0.36 Nb 0.24 Zr 0.4 ) 90 H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T 2 and slight increase of S/T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  15. Anomalies of Nuclear Criticality, Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E. D.; Prichard, Andrew W.; Durst, Bonita E.; Erickson, David; Puigh, Raymond J.

    2010-02-19

    This report is revision 6 of the Anomalies of Nuclear Criticality. This report is required reading for the training of criticality professionals in many organizations both nationally and internationally. This report describes many different classes of nuclear criticality anomalies that are different than expected.

  16. Inhomogeneous nucleation and domain wall motion with Barkhausen avalanches in epitaxial PbZr0.4Ti0.6O3 thin films

    International Nuclear Information System (INIS)

    Yang, Sang Mo; Kim, Hun Ho; Kim, Tae Heon; Kim, Ik Joo; Yoon, Jong Gul

    2012-01-01

    We investigated the ferroelectric (FE) domain nucleation and domain wall motion in epitaxial PbZr 0.4 Ti 0.6 O 3 capacitors by using modified piezoresponse force microscopy with the domain-tracing method. From time-dependent FE domain evolution images, we observed that defect-mediated inhomogeneous nucleation occurred with a stochastic nature. In addition, we found that the number of nuclei N(t) was linearly proportional to log t, where t is the accumulated time of the applied pulse fields. The time-dependence of N(t) suggests a distribution of energy barriers for nucleation, which may determine the stochastic nature of domain nucleation. We also observed that the domain grew with consecutive Barkhausen avalanches and that the growth direction became anisotropic when the domain radius was larger than a critical radius of about 100 nm.

  17. Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities.

    Science.gov (United States)

    Didychuk, Allison L; Montemayor, Eric J; Carrocci, Tucker J; DeLaitsch, Andrew T; Lucarelli, Stefani E; Westler, William M; Brow, David A; Hoskins, Aaron A; Butcher, Samuel E

    2017-09-08

    U6 small nuclear ribonucleoprotein (snRNP) biogenesis is essential for spliceosome assembly, but not well understood. Here, we report structures of the U6 RNA processing enzyme Usb1 from yeast and a substrate analog bound complex from humans. Unlike the human ortholog, we show that yeast Usb1 has cyclic phosphodiesterase activity that leaves a terminal 3' phosphate which prevents overprocessing. Usb1 processing of U6 RNA dramatically alters its affinity for cognate RNA-binding proteins. We reconstitute the post-transcriptional assembly of yeast U6 snRNP in vitro, which occurs through a complex series of handoffs involving 10 proteins (Lhp1, Prp24, Usb1 and Lsm2-8) and anti-cooperative interactions between Prp24 and Lhp1. We propose a model for U6 snRNP assembly that explains how evolutionarily divergent and seemingly antagonistic proteins cooperate to protect and chaperone the nascent snRNA during its journey to the spliceosome.The mechanism of U6 small nuclear ribonucleoprotein (snRNP) biogenesis is not well understood. Here the authors characterize the enzymatic activities and structures of yeast and human U6 RNA processing enzyme Usb1, reconstitute post-transcriptional assembly of yeast U6 snRNP in vitro, and propose a model for U6 snRNP assembly.

  18. Creep behavior and threshold stress of an extruded Al-6Mg-2Sc-1Zr alloy

    International Nuclear Information System (INIS)

    Deshmukh, S.P.; Mishra, R.S.; Kendig, K.L.

    2004-01-01

    Creep experiments were performed on extruded Al-6Mg-2Sc-1Zr (wt.%) alloy in a temperature range of 423-533 K. A threshold type creep behavior was measured and explained by observed dislocation-particle interactions. The experimental threshold stress values at various temperatures were compared with existing theoretical models. None of the available models could account for the decrease in threshold creep strength with increasing temperature

  19. A multi-component Zr alloy with comparable strength and Higher plasticity than Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Liang, S.X.; Yin, L.X.; Ma, M.Z.; Jing, R.; Yu, P.F.; Zhang, Y.F.; Wang, B.A.; Liu, R.P.

    2013-01-01

    Zirconium (Zr)-based bulk metallic glass possesses the highest potential as a structural material among metallic glasses. Although Zr-based bulk metallic glass exhibits extremely high strength, its potential application has been restricted by a number of issues, such as fragility, small size, difficult fabrication into different shapes and poisonous beryllium content, among others. In this paper, a Zr-based crystal alloy with comparable strength and higher plasticity than Zr-based bulk metallic glass is presented. The proposed Zr-based alloy has a tensile strength greater than 1600 MPa. That value is comparable to the 1500 MPa to 2000 MPa strength of Zr-based bulk metallic glasses (BMGs). The ductility in terms of elongation reached 6.2%; at the same time, the 1400 MPa tensile strength was retained. This phenomenon is not possible for Zr-based BMGs. XRD results show that the proposed ultrahigh-strength Zr-based crystal alloy has two-phase structures: an hcp-structured α phase and a bcc-structured β phase. The forged specimen exhibits a typical basket-weave microstructure, which is characterised by the interlaced plate α phase separated from the β phase matrix. Fine, short bar-shaped α phases precipitated along the original β grain boundary together with ultrafine dot-shaped α phases that presented inside the original β grain when the ageing temperature was between 500 °C and 525 °C. As the ageing temperature increased, the dot-shaped α phase grew into plate shapes, decreasing the material's strength and increasing its plasticity. The ultrafine dot-shaped and short bar-shaped α phases in the original β phase matrix are the main strengthening mechanisms of the ultrahigh-strength Zr-based crystal alloy.

  20. Preparation and sintering of Zr(C,N,O) phases

    International Nuclear Information System (INIS)

    Tamborenea, S.; Mazzoni, A.D.; Aglietti, E.F.

    2003-01-01

    The Zr(C,O,N) compounds form a great mono-phase zone belonging to the pseudoternary ZrO-ZrN-ZrC system.Theses phases have cubic crystalline structure with a o parameter depending on the C, O 2 and N 2 content.These phases have many potential applications in the manufacture of ceramic pieces utilizable as electronic conductors.The Zr (C,O,N) phases can be obtained from ZrO 2 by carbonitriding reactions: that is carbothermal reduction and simultaneous nitriding.In this work a series of experiences of carbonitriding of zirconia under different conditions (temperatures between 1400 and 1600degC, times of 120 min, carbon content between 20 and 40%) in order to obtain suitable powders to be sintered.The XRD analysis shows the Zr(C,O,N) as the main products and β -ZrON as the only secondary product in proportions depending on the obtaining conditions.The variables employed were the C content and the reaction temperature.The Zr(C,O,N) content varies between 40 and 90% and tends to increase with the temperature and the carbon content whereas the β -ZrON phase varies between the 40 and 10 % decreasing its proportion with temperature and the carbon content.The oxidation resistance of these phases was studied by DTA-TG tests in air.Results show complete oxidation reaction at ∼500degC in air.The sintering of these materials was made on disks obtained by pressing of powders of Zr(C,N,O) contents higher than 90%.Sintering was performed in nitrogen atmosphere and temperatures between 1450 and 1620degC.Disks were characterized by pycnometry and Hg volumeter.The densities obtained were between 5 and 6,6g/cm 3 with a tendency to increase with the Zr(C,N,O) phase content, the temperature and the sintering time.Sintered disks were characterized by dilatometry in N 2

  1. Semi-insulating Sn-Zr-O: Tunable resistance buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Teresa M.; Burst, James M.; Reese, Matthew O.; Perkins, Craig L. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2015-03-02

    Highly resistive and transparent (HRT) buffer layers are critical components of solar cells and other opto-electronic devices. HRT layers are often undoped transparent conducting oxides. However, these oxides can be too conductive to form an optimal HRT. Here, we present a method to produce HRT layers with tunable electrical resistivity, despite the presence of high concentrations of unintentionally or intentionally added dopants in the film. This method relies on alloying wide-bandgap, high-k dielectric materials (e.g., ZrO{sub 2}) into the host oxide to tune the resistivity. We demonstrate Sn{sub x}Zr{sub 1−x}O{sub 2}:F films with tunable resistivities varying from 0.001 to 10 Ω cm, which are controlled by the Zr mole fraction in the films. Increasing Zr suppresses carriers by expanding the bandgap almost entirely by shifting the valence-band position, which allows the HRT layers to maintain good conduction-band alignment for a low-resistance front contact.

  2. Safe operation of critical assemblies and research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    Some countries have accumulated considerable experience in the operation of these reactors and have in the process developed safe practices. On the other hand, other countries which have recently acquired, or will soon acquire, such reactors do not have sufficient background of experience with them to have developed full knowledge regarding their safe operation. In this situation, the International Atomic Energy Agency has considered that it would be useful to make available to all its Member States a set of recommendations on the safe operation of these reactors, based on the accumulated experience and best practices. The Director General accordingly nominated a Pane Ion Safe Operation of Critical Assemblies and Research Reactors to assist the Agency's Secretariat in drafting such recommendations

  3. Fretting wear of ZrN and Zr(21% Hf)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Atar, E. [Gebze Inst. of Tech., Material Science and Engineering Dept., Kocaeli (Turkey); Cimenoglu, H.; Kayali, E.S. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Engineering, Istanbul (Turkey)

    2004-07-01

    In this study, the wear behaviours of ZrN and Zr(21% Hf)N coatings, deposited on hardened AISI D2 cold work tool steel were examined by a fretting wear tester. The hardness of ZrN and Zr(21% Hf)N coatings were almost the same, where as they exhibited different wear resistance. Addition of 21% Hf to ZrN coating achieved about 25% increase in the wear resistance. (orig.)

  4. Fretting wear of ZrN and Zr(21% Hf)N coatings

    International Nuclear Information System (INIS)

    Atar, E.; Cimenoglu, H.; Kayali, E.S.

    2004-01-01

    In this study, the wear behaviours of ZrN and Zr(21% Hf)N coatings, deposited on hardened AISI D2 cold work tool steel were examined by a fretting wear tester. The hardness of ZrN and Zr(21% Hf)N coatings were almost the same, where as they exhibited different wear resistance. Addition of 21% Hf to ZrN coating achieved about 25% increase in the wear resistance. (orig.)

  5. Microstructures and phase transformations of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Wentao; Sun, Xuguang; Yuan, Bifei [School of Mechanical Engineering, Xi' an Shiyou University, Xi' an 710065 (China); Xiong, Chengyang; Zhang, Fei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Sun, Baohui [Lanzhou Seemine SMA Co. Ltd., Lanzhou 730010 (China)

    2016-12-15

    The microstructures, phase transformations and shape memory properties of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) alloys were investigated. The X-ray diffraction and transmission electron microscopy observations showed that the Ti-30Zr-5Nb, Ti-30Zr-7/9Nb and Ti-30Zr-13Nb alloys were composed of the hcp α′-martensite, orthorhombic α″-martensite and β phases, respectively. The results indicated the enhanced β-stabilizing effect of Nb in Ti-30Zr-xNb alloys than that in Ti-Nb alloys due to the high content of Zr. The differential scanning calorimetry test indicated that the Ti-30Zr-5Nb alloy displayed a reversible transformation with a high martensitic transformation start temperature of 776 K and a reverse martensitic transformation start temperature (A{sub s}) of 790 K. For the Ti-30Zr-7Nb and Ti-30Zr-9Nb alloys, the martensitic transformation temperatures decreased with the increasing Nb content. Moreover, an ω phase transformation occurred in the both alloys upon heating at a temperature lower than the corresponding A{sub s}, which is prompted by more addition of Nb. Although the critical stress in tension of the three martensitic alloys decreased with increasing Nb content, the Ti-30Zr-9Nb alloy showed a critical stress of as high as 300 MPa. Among all the alloys, the Ti-30Zr-9Nb alloy exhibited the maximum shape memory effect of 1.61%, due to the lowest critical stress for the martensite reorientation. - Highlights: •Ti-30Zr-5Nb alloy is composed of hcp α′-martensite with the M{sub s} of 776 K. •Ti-30Zr-7Nb and Ti-30Zr-9Nb alloys are predominated by orthorhombic α″-martensite. •Ti-30Zr-13Nb alloy consists of a single β phase due to the β-stabilizing effect of Nb. •The martensitic transformation temperatures decrease with increasing Nb content. •Ti-30Zr-9Nb alloy shows the maximum shape memory effect of 1.61%.

  6. First TREAT [Transient Reactor Test Facility] transient overpower tests on U-Pu-Zr fuel: M5 and M6

    International Nuclear Information System (INIS)

    Robinson, W.R.; Bauer, T.H.; Wright, A.E.; Rhodes, E.A.; Stanford, G.S.; Klickman, A.E.

    1987-01-01

    Transient Reactor Test Facility (TREAT) tests M5 and M6 were the first transient overpower (TOP) tests of the margin to cladding breach and prefailure elongation of metallic U-Pu-Zr ternary fuel, the reference fuel of the Integral Fast Reactor concept. Similar tests on U-Fs fueled EBR-II driver pins were previously performed and reported [1,2]. Results from these earlier tests indicated a margin to failure of about 4 times nominal power and significant axial elongation prior to failure, a feature that was very pronounced at low burnups. While these two fuel types are similar in many respects, the ternary alloy exhibits a much more complex physical structure and is typically irradiated at much higher temperatures. Thus, a prime motivation for performing M5 and M6 was to compare the safety related fuel performance characteristics of U-Fs and U-Pu-Zr. This report described conditions, results, and conclusions of testing of these fuel types

  7. Microstructure and Mechanical Properties of Mg-11Li-6Zn-0.6Zr-0.4Ag-0.2Ca-x Y Alloys.

    Science.gov (United States)

    Kim, Yong-Ho; Yoo, Hyo-Sang; Son, Hyeon-Taek

    2018-09-01

    Magnesium and its alloys are potential candidates for many automotive and aerospace applications due to their low density and high specific strength. However, the use of magnesium as wrought products is limited because of its poor workability at ambient temperatures. Mg-Li alloys containing 5-11 wt.% Li exhibit a two-phase structure consisting of a α (hcp) Mg-rich phase and a β (bcc) Li-rich phase. Mg-Li alloys with Li content greater than 11 wt.% exhibit a single-phase structure consisting of only the β phase. In the present study, we studied the effects of Y addition on the microstructure and mechanical properties of Mg-11Li-6Zn-0.6Zr-0.4Ag-0.2Ca based alloys. The melt was maintained at 720 °C for 20 min and poured into a mold. Then, the as-cast Mg alloys were homogenized at 350 °C for 4 h and were hot-extruded onto a 4-mm-thick plate with a reduction ratio of 14:1. The as-cast Mg-11Li-6Zn-0.6Zr-0.4Ag-0.2Ca-xY (x 0, 1, 3, and 5 wt.%) alloys were composed of α-Mg, β-Li, γ-Mg2Zn3Li, I-Mg3YZn6, W-Mg3Y2Zn3, and X-Mg12YZn phases. By increasing the Y content from 0 to 5 wt.%, the composition of the W-Mg3Y2Zn3 phase increased. With increasing Y content, from 0 to 1, 3, and 5 wt.%, the average grain size and ultimate tensile of the as-extruded Mg alloys decreased slightly, from 8.4, to 3.62, 3.56, and 3.44 μm and from 228.92 to 215.57, 187.47, and 161.04 MPa, respectively, at room temperature.

  8. Performance improvement of charge-trap memory by using a stacked Zr_0_._4_6Si_0_._5_4O_2/Al_2O_3 charge-trapping layer

    International Nuclear Information System (INIS)

    Tang, Zhenjie; Hu, Dan; Zhang, Xiwei; Zhao, Yage; Li, Rong

    2016-01-01

    The postdeposition annealing (PDA)-treated charge-trap flash memory capacitor with stacked Zr_0_._4_6Si_0_._5_4O_2/Al_2O_3 charge-trapping layer flanked by a SiO_2 tunneling oxide and an Al_2O_3 blocking oxide was fabricated and investigated. It is observed that the memory capacitor exhibits prominent memory characteristics with large memory windows 12.8 V in a ±10 V gate sweeping voltage range, faster program/erase speed, and good data-retention characteristics even at 125 C compared to a single charge-trapping layer (Zr_0_._4_6Si_0_._5_4O_2, Zr_0_._7_9Si_0_._2_1O_2, and Zr_0_._4_6Al_1_._0_8O_2_._5_4). The quantum wells and introduced interfacial traps of the stacked trapping layer regulate the storage and loss behavior of charges, and jointly contribute to the improved memory characteristics. Hence, the memory capacitor with a stacked trapping layer is a promising candidate in future nonvolatile charge-trap memory device design and application. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Poly (Vinyl Chloride Based Ion Selective Electrode for Determination of Zr (IV Ions Based on 2, 6-Dibenzylidenecyclohexanone

    Directory of Open Access Journals (Sweden)

    Syed A. Nabi

    2008-08-01

    Full Text Available A selective poly (vinyl chloride-based membrane sensor using 2,6-Dibenzylidenecyclohexanone as an ionophore have been prepared and explored as Zr (IV selective electrode. The sensitivity, working range and response time shows a significant dependence on the concentration of ionophore. The electrode prepared with 100 mg of PVC, 10 mg of ionophore and 5 ml of dibutylthylate shows the best performance. The electrode works well in the concentration range of 1×10-1-5×10-5 with a nerstian slope 55±2 eV and response time of 18 seconds. The sensor works well over the pH range 3-6. The sensor can be used for the period of over 1 month with out deviation in response characteristics. The selectivity of the electrode was studied and it was found that the electrode exhibited good selectivity for zirconium (IV over some alkaline earth metal ions. The electrode was also used as indicator electrode for potentiometeric titration of Zr (IV ions against EDTA solution.

  10. Thermoluminescence on ZrO{sub 2} films with different dopants; Termoluminiscencia en peliculas de ZrO{sub 2} con distintos impurificantes

    Energy Technology Data Exchange (ETDEWEB)

    Ceron R, P. V.; Rivera M, T.; Ramos G, A. I.; Guzman M, J.; Montes R, E., E-mail: victceronr@hotmail.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: The metal oxides doped with rare earths have presented good thermoluminescent properties for certain wavelengths in the UV. With respect to zirconium oxide exist several studies in which were incorporated impurities and their properties as dosimeter in several regions of the electromagnetic spectrum were analyzed. Because of this background, in this material thermoluminescent glow curves induced by UV in films of ZrO{sub 2}:Eu and ZrO{sub 2}:Tb were studied for comparison with the response of the material doped with two rare earths (ZrO{sub 2}:Eu + Tb). Samples were deposited on glass by ultrasonic spray pyrolysis technique with different synthesis parameters. It was found that the strongest Tl response was to ZrO{sub 2} film doped with terbium (14 times more intense than the film of ZrO{sub 2}:Eu and 6 times the response of ZrO{sub 2}:Eu + Tb). (Author)

  11. Reduction behaviors of Zr for LiCl-KCl-ZrCl4 and LiCl-KCl-ZrCl4-CdCl2

    International Nuclear Information System (INIS)

    Kim, Si Hyung; Yoon, Jongho; Kim, Gha Young; Kim, Tack Jin; Shim, Joon Bo; Kim, Kwang Rag; Jung, Jae Hoo; Ahn, Do Hee; Paek, Seungwoo

    2013-01-01

    The reduction potentials of most of the zirconium ions on the solid cathode are smaller (about 0.4V) than that of uranium, and thus zirconium can be recovered prior to uranium during the reduction stage. In the case of a liquid cadmium cathode, which is one of the major cathodes, the reduction potential can be changed because zirconium reacts with the liquid cadmium. Up to now, it has not been well known what the reduction potential of Zr was on the liquid Cd cathode. According to the Cd-Zr phase diagram, there are four intermetallic compounds between cadmium and zirconium. It is easier to use the solid cathode than the liquid cadmium cathode in LiCl-KCl-ZrCl 4 containing CdCl 2 to identify the formation of the Cd-Zr phase. In this study, the reduction behaviors of zirconium were compared in the LiCl-KCl-ZrCl 4 and LiCl-KCl-ZrCl 4 -CdCl 2 solutions when using a solid cathode. The reduction behavior of Zr at a solid W cathode and a Cd-coated W cathode was compared in a LiCl-KCl-ZrCl 4 solution at 500 .deg. C. It was observed from the results using a solid W cathode that Zr 4+ ions were gradually oxidized to Zr 2+ , Zr, and ZrCl during the reduction sweep, but the final oxidation peak of Zr 2+ to Zr 4+ seemed to be unclear during the oxidation sweep. In the case of the Cd-coated W electrode, only a Cd 2 Zr phase was formed at 500 .deg. C, which seemed to be related to the melting point of Cd-Zr intermetallics. Through additional studies at different temperatures, the formation behavior will be studied

  12. Cu-Zr-Ag bulk metallic glasses based on Cu8Zr5 icosahedron

    International Nuclear Information System (INIS)

    Xia Junhai; Qiang Jianbing; Wang Yingmin; Wang Qing; Dong Chuang

    2007-01-01

    Based on the cluster line criterion, the Ag addition into the Cu 8 Zr 5 cluster composition is investigated for the search of ternary Cu-Zr-Ag bulk metallic glasses with high glass forming abilities. Two initial binary compositions Cu 0.618 Zr 0.382 and Cu 0.64 Zr 0.36 are selected. The former one corresponds to a deep eutectic point; it is also the composition of the Cu 8 Zr 5 icosahedron, which is derived from the Cu 8 Zr 3 structure. The latter one, which can be regarded as the Cu 8 Zr 5 cluster plus a glue atom Cu, is the best glass-forming composition in the Cu-Zr binary system. Two composition lines (Cu 0.618 Zr 0.382 ) 1-x Ag x and (Cu 0.64 Zr 0.36 ) 1-x Ag x are thus constructed in the Cu-Zr-Ag system by linking these two compositions with the third constitute Ag. A series of Cu-Zr-Ag bulk metallic glasses are found with 2-8 at.% Ag contents in both composition lines. The optimum composition (Cu 0.618 Zr 0.382 ) 0.92 Ag 0.08 within the searched region with the highest T g /T l = 0.633, is located along the cluster line (Cu 0.618 Zr 0.382 ) 1-x Ag x , where the deep eutectic Cu 0.618 Zr 0.382 exactly corresponds to the dense packing cluster Cu 8 Zr 5 . The alloying mechanism is discussed in the light of atomic size and electron concentration factors

  13. EXAFS study of short range order in Fe-Zr amorphous alloys

    International Nuclear Information System (INIS)

    Fernandez-Gubieda, M.L.; Gorria, P.; Barandiaran, J.M.; Barquin, L.F.

    1995-01-01

    Room temperature X-ray absorption spectra on Fe K-edge have been performed in Fe 100-x-y Zr x B y and Fe 86 Zr 7 Cu 1 B 6 alloys (x=7, 7.7, 9; y=0, 2, 4, 6). Fe-Fe coordination number and interatomic distances do not change in any sample. However, small changes in the Fe-Zr short range order, which could explain the evolution of the magnetic properties, have been observed. (orig.)

  14. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, A. [Los Alamos National Laboratory (LANL); Macfarlane, R E [Los Alamos National Laboratory (LANL); Mosteller, R D [Los Alamos National Laboratory (LANL); Kiedrowski, B C [Los Alamos National Laboratory (LANL); Frankle, S C [Los Alamos National Laboratory (LANL); Chadwick, M. B. [Los Alamos National Laboratory (LANL); Mcknight, R D [Argonne National Laboratory (ANL); Lell, R M [Argonne National Laboratory (ANL); Palmiotti, G [Idaho National Laboratory (INL); Hiruta, h [Idaho National Laboratory (INL); Herman, Micheal W [Brookhaven National Laboratory (BNL); Arcilla, r [Brookhaven National Laboratory (BNL); Mughabghab, S F [Brookhaven National Laboratory (BNL); Sublet, J C [Culham Science Center, Abington, UK; Trkov, A. [Jozef Stefan Institute, Slovenia; Trumbull, T H [Knolls Atomic Power Laboratory; Dunn, Michael E [ORNL

    2011-01-01

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [1]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unrnoderated and uranium reflected (235)U and (239)Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected actinide reaction rates such as (236)U; (238,242)Pu and (241,243)Am capture in fast systems. Other deficiencies, such as the overprediction of Pu solution system critical

  15. Stability and Degradation Mechanisms of Metal-Organic Frameworks Containing the Zr6O4(OH)4 Secondary Building Unit

    Science.gov (United States)

    2013-03-18

    chemical and thermal stability.15 aScience Applications International Corporation (SAIC), Inc., PO Box 68, Gunpowder, MD 21010, USA. E-mail: jared.b.decoste2...isotherm for ZrMOF–NH2 shows micropore lling occurring at relative humidity levels less than 20%, while ZrMOF–BDC does not show micropore lling until...the –NH2 group in ZrMOF–NH2. This phenomenon can also be seen for ZrMOF–BIPY when compared to ZrMOF–BPDC, albeit these structures exhibit micropore

  16. Research on the reactor physics using the Kyoto University Critical Assembly (KUCA)

    International Nuclear Information System (INIS)

    1986-10-01

    The Kyoto University Critical Assembly [KUCA] is a multi-core type critical assembly established in 1974, as a facility for the joint use study by researchers of all universities in Japan. Thereafter, many reactor physics experiments have been carried out using three cores (A-, B-, and C-cores) in the KUCA. In the A- and B-cores, solid moderator such as polyethylene or graphite is used, whereas light-water is utilized as moderator in the C-core. The A-core has been employed mainly in connection with the Cockcroft-Walton type accelerator installed in the KUCA, to measure (1) the subcriticality by the pulsed neutron technique for the critical safety research and (2) the neutron spectrum by the time-of-flight technique. Recently, a basic study on the tight lattice core has also launched using the A-core. The B-core has been employed for the research on the thorium fuel cycle ever since. The C-core has been employed (1) for the basic studies on the nuclear characteristics of light-water moderated high-flux research reactors, including coupled-cores, and (2) for a research related to reducing enrichment of uranium fuel used in research reactors. The C-core is being utilized in the reactor laboratory course experiment for students of ten universities in Japan. The data base of the KUCA critical experiments is generated so far on the basis of approximately 350 experimental reports accumulated in the KUCA. Besides, the assessed KUCA code system has been established through analyses on the various KUCA experiments. In addition to the KUCA itself, both of them are provided for the joint use study by researchers of all universities in Japan. (author)

  17. Molecular composition of vapor in the NaF-ZrF4 system

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Sidorov, L.N.; Rykov, A.N.; Novoselova, A.V.

    1980-01-01

    The NaF-ZrF 4 system is studied. It is established that Na 2 ZrF 6 , NaZrF 5 , (NaZrF 5 ) 2 , NaZr 2 F 9 complex molecules are present in the saturated vapor alongside with pure components. Partial pressures of all vapor components are determined. The values of partial pressure and evaporation heat have been used to calculate the vapor composition above the system; T-x and P-T projections of the phase diagram of the NaF-ZrF 4 system are plotted

  18. Interdiffusion between U-Pu-Zr fuel and HT9 cladding

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Petri, M.C.

    1994-01-01

    As part of systematic interdiffusion studies of fuel-cladding compatibility in the integral Fast Reactor, a solid-solid diffusion couple was assembled with U-22Pu-23 1 Zr fuel and HT9 2 cladding and annealed at 650 degrees C for 100 hours. The couple was examined for diffusion structure development using a scanning electron microscope equipped with an energy dispersive x-ray analyzer (SEM-EDX). Point-by-point and linescan analysis was used to generate composition profiles and diffusion paths. From the composition profiles, average effective interdiffusion coefficients were calculated for individual components on both sides of the Matano plane. Results from this investigation indicate that the same types of phases as would be expected from binary U-Fe, Pu-Fe, and Zr-Fe phase diagrams develop in this couple; and U and Pu are the fastest diffusing fuel components and Fe is the fastest diffusing cladding component. Compared with diffusion couples with binary (U-Zr) fuel, the addition of Pu greatly enhanced the extent of diffusion and affected the types of phases observed

  19. In situ synthesis and formation mechanism of ZrC and ZrB2 by combustion synthesis from the Co-Zr-B4C system

    Directory of Open Access Journals (Sweden)

    Mengxian Zhang

    2015-09-01

    Full Text Available ZrC-ZrB2-based composites were prepared by combustion synthesis (CS reaction from 10 wt.% to 50 wt.% Co-Zr-B4C powder mixtures. With increasing Co contents, the particle sizes of near-spherical ZrC and platelet-like ZrB2 decreased from 1 μm to 0.5 μm and from 5 μm to 2 μm, respectively. In addition, the formation mechanism of ZrC and ZrB2 was explored by the phase transition and microstructure evolution on the combustion wave quenched sample in combination with differential scanning calorimeter analysis. The results showed that the production of ZrC was ascribed to the solid-solid reaction between Zr and C and the precipitation from the Co-Zr-B-C melt, while ZrB2 was prepared from the saturated liquid. The low B concentration in the Co-Zr-B-C liquid and high cooling rate during the CS process led to the presence of Co2B and ZrCo3B2 in the composites. The addition of Co in the Co-Zr-B4C system not only prevented ZrC and ZrB2 particulates from growing, but also promoted the occurrence of ZrC-ZrB2-forming reaction.

  20. Sensitivity coefficients of reactor parameters in fast critical assemblies and uncertainty analysis

    International Nuclear Information System (INIS)

    Aoyama, Takafumi; Suzuki, Takayuki; Takeda, Toshikazu; Hasegawa, Akira; Kikuchi, Yasuyuki.

    1986-02-01

    Sensitivity coefficients of reactor parameters in several fast critical assemblies to various cross sections were calculated in 16 group by means of SAGEP code based on the generalized perturbation theory. The sensitivity coefficients were tabulated and the difference of sensitivity coefficients was discussed. Furthermore, the uncertainty of calculated reactor parameters due to cross section uncertainty were estimated using the sensitivity coefficients and cross section covariance data. (author)

  1. Correlation between in-field critical currents in Zr-added (Gd, Y)Ba2Cu3Ox superconducting tapes at 30 and 77 K

    International Nuclear Information System (INIS)

    Selvamanickam, V; Xu, A; Liu, Y; Khatri, N D; Galstyan, E; Majkic, G; Lei, C; Chen, Y

    2014-01-01

    Critical current (I c ) values of 1384 A/12 mm, corresponding to a critical current density of 12.47 MA cm −2 and a pinning force of 374 GN m −3 , have been achieved at 30 K, 3 T in the orientation of field parallel to the c axis (B ∥ c) in (Gd, Y)BaCuO tapes with 15 mol% Zr addition made by metal organic chemical vapor deposition (MOCVD). These tapes show pinning force levels as high as 453 GN m −3 at 30 K. An analysis of the properties of 24–28 (Gd, Y)BaCuO tapes with 15 mol% Zr addition showed a lack of correlation between their critical currents at 30 K, 3 T (B ∥ c) and I c values both at 77 K, zero field and at 77 K, 1 T (B ∥ c). However, a strong correlation was found between the critical currents at 30 K, 3 T and at 77 K, 3 T (B ∥ c). It has also been discovered that the minimum critical current (I c, min ) value at 77 K, 3 T has no influence on the I c, min value at 30 K, 3 T, and it in turn depends on the ratio of the I c values in the orientations of field parallel and perpendicular to the c axis at 77 K, 3 T. (paper)

  2. 89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer

    International Nuclear Information System (INIS)

    Pandit-Taskar, Neeta; Solomon, Stephen B.; Durack, Jeremy C.; Carrasquillo, Jorge A.; Lefkowitz, Robert A.; Osborne, Joseph R.; O'Donoghue, Joseph A.; Beylergil, Volkan; Ruan, Shutian; Cheal, Sarah M.; Lyashchenko, Serge; Gonen, Mithat; Lewis, Jason S.; Holland, Jason P.; Reuter, Victor E.; Loda, Massimo F.; Smith-Jones, Peter M.; Weber, Wolfgang A.; Larson, Steven M.; Bander, Neil H.; Scher, Howard I.; Morris, Michael J.

    2014-01-01

    Given the bone tropism of prostate cancer, conventional imaging modalities poorly identify or quantify metastatic disease. 89 Zr-huJ591 positron emission tomography (PET) imaging was performed in patients with metastatic prostate cancer to analyze and validate this as an imaging biomarker for metastatic disease. The purpose of this initial study was to assess safety, biodistribution, normal organ dosimetry, and optimal imaging time post-injection for lesion detection. Ten patients with metastatic prostate cancer received 5 mCi of 89 Zr-huJ591. Four whole-body scans with multiple whole-body count rate measurements and serum activity concentration measurements were obtained in all patients. Biodistribution, clearance, and lesion uptake by 89 Zr-huJ591 immuno-PET imaging was analyzed and dosimetry was estimated using MIRD techniques. Initial assessment of lesion targeting of 89 Zr-huJ591 was done. Optimal time for imaging post-injection was determined. The dose was well tolerated with mild chills and rigors seen in two patients. The clearance of 89 Zr-huJ591 from serum was bi-exponential with biological half-lives of 7 ± 4.5 h (range 1.1-14 h) and 62 ± 13 h (range 51-89 h) for initial rapid and later slow phase. Whole-body biological clearance was 219 ± 48 h (range 153-317 h). The mean whole-body and liver residence time was 78.7 and 25.6 h, respectively. Dosimetric estimates to critical organs included liver 7.7 ± 1.5 cGy/mCi, renal cortex 3.5 ± 0.4 cGy/mCi, and bone marrow 1.2 ± 0.2 cGy/mCi. Optimal time for patient imaging after injection was 7 ± 1 days. Lesion targeting of bone or soft tissue was seen in all patients. Biopsies were performed in 8 patients for a total 12 lesions, all of which were histologically confirmed as metastatic prostate cancer. One biopsy-proven lesion was not positive on 89 Zr-huJ591, while the remaining 11 lesions were 89 Zr-huJ591 positive. Two biopsy-positive nodal lesions were noted only on 89 Zr-huJ591 study, while the

  3. Zr-rich corner of the Zr-Sn-O diagram

    International Nuclear Information System (INIS)

    Roberti, L.A.; Arias, D.E.

    1993-01-01

    The understanding of the effect of light elements (in particular oxygen, nitrogen and hydrogen) on the behaviour of alloys for nuclear use is necessary because of its technological importance. The Zr-Sn-O system is perhaps the most representative of all possible ternary systems which can be used to simulate a simplified Zircaloy-type alloy in which the effect of O can be studied. However, in the specialized literature experimental data on phase equilibria and thermophysical properties of this system are not easily found. In the present work, the equilibrium compositions of the α and β phases of the Zr-Sn-O system at temperatures between 1150 and 1323 K are calculated, using the scarce available information. First results of the calculations show satisfactory coincidences with experimental data. Future work will be oriented towards the proposal of isothermal cross-sections calculated by a modelling of phases with wider Sn and O composition ranges, and involving equilibria with the phases Zr 4 Sn, Zr 5 Sn 3 , ZrO 2 , ZrSnO 4 . (Author)

  4. Criticality alarm device

    International Nuclear Information System (INIS)

    Kasai, Kenji.

    1994-01-01

    The device of the present invention is utilized, for example, to a reprocessing facility for storing and processing nuclear fuels and measures and controls the nuclear fuel assembly system so as not to exceed criticality. That is, a conventional criticality alarm device applies a predetermined processing to neutron fluxes generated from a nuclear fuel assembly system containing nuclear fuels and outputs an alarm. The device of the present invention comprises (1) a neutron flux supply source for increasing and decreasing neutron fluxes periodically and supplying them to nuclear fuel assemblies, (2) a detector for detecting neutron fluxes in the nuclear fuel assemblies, (3) a critical state judging section for judging the critical state of the nuclear fuel assemblies based on the periodically changing signals obtained from the detector (2) and (4) an alarm section for outputting criticality alarms depending on the result of the judgement. The device of the present invention can accurately recognize the critical state of the nuclear fuel assembly system and can forecast reaching of the nuclear fuel assembly to criticality or prompt neutron critical state. (I.S.)

  5. Stable and metastable equilibrium states of the Zr-O system

    International Nuclear Information System (INIS)

    Versaci, R.A.; Abriata, J.P.; Garces, J.; Comision Nacional de Energia Atomica, San Carlos de Bariloche

    1987-01-01

    The precise knowledge of the phase diagrams is of fundamental importance for the comprehension of processes like soldering and thermal treatment. The Zr-O diagram has been widely studied, mainly in the zone corresponding to ZrO 2 . A critical analysis of the existing information about this diagram is presented. Furthermore, a lot of information about the phase equilibrium, metastable phase, crystal structure, thermodynamic properties and a possible diagram for pressures higher than one atmosphere is presented. (M.E.L.) [es

  6. Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys

    International Nuclear Information System (INIS)

    Witusiewicz, V.T.; Sommer, F.

    2000-01-01

    Since the Al-Cu-Ni-Zr system is a basis for the production of bulk amorphous materials by rapid solidification techniques from the liquid state, it is of great scientific interest to determine the partial and the integral thermodynamic functions of liquid and undercooled liquid alloys. Such data, as was pointed out previously, are important in order to understand their extremely good glass-forming ability in multicomponent metallic systems as well as for processing improvements. In order to measure the thermodynamic properties of the Al-Cu-Ni-Zr quaternary, it is necessary to have reliable thermochemical data for its constituent canaries and ternaries first. In a series of articles, the authors have reported in detail the thermodynamic properties of liquid Al-Cu, Al-Ni, Cu-Ni, Cu-Zr, Al-Zr, Al-Cu-Ni, and Al-Cu-Zr alloys. This article deals with the direct calorimetric measurements of the partial and the integral enthalpies of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys and the heat capacity of liquid Ni 26 Zr 74 . In a subsequent article, the authors will present similar data for the liquid ternary Al-Ni-Zr and for the liquid quaternary Al-Cu-Ni-Zr alloys

  7. Effect of cold rolling on the microstructural evolution of new β-typed Ti–6Mo–6V–5Cr–3Sn–2.5Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gwnaghyo; Lee, Kwangmin, E-mail: kmlee@jnu.ac.kr

    2017-01-15

    A Ti–6Mo–6V–5Cr–3Sn–2.5Zr (wt.%) alloy was designed as a new metastable β-Ti alloy. The effect that cold rolling had on the microstructural evolution of the material was investigated via optical microscopy (OM), X-ray diffraction (XRD), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM) measurements. A single β phase formed in the alloy after solution treatment at 780 °C for 30 min followed by water quenching. The solution-treated alloy was cold rolled with thickness reductions of 10%, 30%, 50% and 70%, and the hardness values increased as the thickness of the specimen decreased. The textures of the cold rolled specimen were characterized according to the 〈110〉 partial parallel to the rolling direction as the rolling reduction increased. The crystallographic orientation showed principal α-fiber textures for (111)〈110〉 and (112)〈110〉. The cold deformation led to the appearance of martensite α″ phases, particularly stress-induced martensite (SIM) α″ phases. - Highlights: • Effect of cold rolling on new β-typed Ti-6Mo-6V-5Cr-3Sn-2.5Zr alloy was studied. • A single β phase was obtained after solution treatment at 780 °C for 30 min. • α-Fiber textures became dominated with the increase in cold rolling reduction. • A stress-induced α″ martensite was caused by cold rolling.

  8. Lithium ion diffusion measurements on a garnet-type solid conductor Li6.6La3Zr1.6Ta0.4O12 by using a pulsed-gradient spin-echo NMR method.

    Science.gov (United States)

    Hayamizu, Kikuko; Matsuda, Yasuaki; Matsui, Masaki; Imanishi, Nobuyuki

    2015-09-01

    The garnet-type solid conductor Li7-xLa3Zr2-xTaxO12 is known to have high ionic conductivity. We synthesized a series of compositions of this conductor and found that cubic Li6.6La3Zr1.6Ta0.4O12 (LLZO-Ta) has a high ionic conductivity of 3.7×10(-4)Scm(-1) at room temperature. The (7)Li NMR spectrum of LLZO-Ta was composed of narrow and broad components, and the linewidth of the narrow component varied from 0.69kHz (300K) to 0.32kHz (400K). We carried out lithium ion diffusion measurements using pulsed-field spin-echo (PGSE) NMR spectroscopy and found that echo signals were observed at T≥313K with reasonable sensitivity. The lithium diffusion behavior was measured by varying the observation time and pulsed-field gradient (PFG) strength between 313 and 384K. We found that lithium diffusion depended significantly on the observation time and strength of the PFG, which is quite different from lithium ion diffusion in liquids. It was shown that lithium ion migration in the solid conductor was distributed widely in both time and space. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The Structural Evolution of (Gd, Y)Ba2Cu3Ox Tapes With Zr Addition Made by Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lei, CH; Galstyan, E; Chen, YM; Shi, T; Liu, YH; Khatri, N; Liu, JF; Xiong, XM; Majkic, G; Selvamanickam, V

    2013-06-01

    Structural analysis of (Gd, Y) Ba2Cu3Ox tapes with Zr addition made by metal organic chemical vapor deposition has been conducted with transmission electron microscopy and X-ray diffraction. Zr content in the films was varied from 0 to 25% in the precursor. In all Zr-doped films, self-assembled nanocolumnar structures of BaZrO3 (BZO) were observed along the c-axis. The amount of BaZrO3 was found to increase steadily with Zr content. Additionally, planar BZO plates were found on the (001) plane of (Gd, Y) Ba2Cu3Ox film. The size and thickness of BZO plates were seen to increase with Zr doping level. Rare-earth copper oxide phases were observed to begin to emerge in the 20% Zr-doped film. Cross-sectional study of the interface between (Gd, Y)Ba2Cu3Ox and LaMnO3 cap layer revealed a thin discrete BZO layer on the LaMnO3 in the 20% Zr doped film.

  10. Mechanical spectroscopy study of the Cu36Zr59Al5 and Cu54Zr40Al6 amorphous alloys

    Directory of Open Access Journals (Sweden)

    Paulo Wilmar Barbosa Marques

    2012-12-01

    Full Text Available A mechanical spectroscopy study of Cu-Zr-Al bulk metallic glasses, was performed with two types of equipment: a Kê-type inverted torsion pendulum and an acoustic elastometer, working in the frequency ranges of Hz and kHz, respectively, with a heating rate of 1 K/min. The analysis of the anelastic relaxation shows similar spectra for both types of equipment resulting in internal friction patterns that vary with temperature and are not reproducible at each thermal cycle. The normalized of the square of the frequency changes from the first to later measurement cycles. These results indicate that the specimens of Cu-Zr-Al alloys were changing by mechanical relaxation, owing to the motion of atoms or clusters in the glassy state and possible "defects" produced during the processing of alloys.

  11. High pressure oxidation of sponge-Zr in steam/hydrogen mixtures

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1997-01-01

    A thermogravimetric apparatus for operation in 1 and 70 atm steam-hydrogen or steam-helium mixtures was used to investigate the oxidation kinetics of sponge-Zr containing 215 ppm Fe. Weight-gain rates, reflecting both oxygen and hydrogen uptake, were measured in the temperature range 350-400 C. The specimens consisted of thin sponge-Zr layers metallurgically bonded to a Zircaloy disk. The edges of the disk specimens were coated with a thin layer of pure gold to avoid the deleterious effect of corners. Following each experiment, the specimens were examined metallographically to reveal the morphology of the oxide and/or hydride formed. Two types of oxide, one black and uniform and the other white and nodular, were observed on sponge-Zr surfaces oxidized in steam environments at 70 atm. The oxidation rate when white-nodular oxide formed was a factor of two higher than that of black-uniform oxide at 400 C for steam contents above 1 mol%. The oxidation rate was independent of total pressure, the carrier gas (H 2 or He) and steam content above ∝1 mol%. The oxidation kinetics of sponge-Zr follows a linear law for maximum reaction times up to ∝6 days. The oxidation rate in steam-hydrogen mixtures at 70 atm total pressure decreases when the steam content approaches the steam-starved region (∝0.5 mol% steam at 400 C and ∝0.02 mol% steam at 350 C). Lower steam concentrations cause massive hydriding of the specimens. Even at steam concentrations above the critical value, direct hydrogen absorption from the gas was manifest by hydrogen pickup fractions greater than unity. (orig.)

  12. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly

    Science.gov (United States)

    2016-01-01

    Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critical appraisal of the various advantages offered by this approach, while also pointing out some of its current drawbacks. Promising future research directions as well as remaining technical challenges and unresolved problems are briefly highlighted. PMID:27019522

  13. Effects of interfacial layer on characteristics of TiN/ZrO2 structures.

    Science.gov (United States)

    Kim, Younsoo; Kang, Sang Yeol; Choi, Jae Hyoung; Lim, Jae Soon; Park, Min Young; Chung, Suk-Jin; Chung, Jaegwan; Lee, Hyung Ik; Kim, Ki Hong; Kyoung, Yong Koo; Heo, Sung; Yoo, Cha Young; Kang, Ho-Kyu

    2011-09-01

    To minimize the formation of unwanted interfacial layers, thin interfacial layer (ZrCN layer) was deposited between TiN bottom electrode and ZrO2 dielectric in TiN/ZrO2/TiN capacitor. Carbon and nitrogen were also involved in the layer because ZrCN layer was thermally deposited using TEMAZ without any reactant. Electrical characteristics of TiN/ZrO2/TiN capacitor were improved by insertion of ZrCN layer. The oxidation of TiN bottom electrode was largely inhibited at TiN/ZrCN/ZrO2 structure compared to TiN/ZrO2 structure. While the sheet resistance of TiN/ZrCN/ZrO2 structure was constantly sustained with increasing ZrO2 thickness, the large increase of sheet resistance was observed in TiN/ZrO2 structure after 6 nm ZrO2 deposition. When ZrO2 films were deposited on ZrCN layer, the deposition rate of ZrO2 also increased. It is believed that ZrCN layer acted both as a protection layer of TiN oxidation and a seed layer of ZrO2 growth.

  14. Temperature and boron dependencies of buckling and radial reflector saving for VVER lattices

    International Nuclear Information System (INIS)

    Alvarez, C.

    1990-01-01

    The temperature and boron dependencies of buckling and radial reflectors savings are analyzed in this paper on the basis of the results from the calculations ZR-6M critical assembly. These dependencies are related to the physical behavior of temperature and boron reactivity coefficients for the cores of VVER-type critical facilities. As a byproduct, the parameter was also investigated and its dependence on water density was determined

  15. Electromagnetic Properties of (Gd, Y)Ba2Cu3Ox Superconducting Tapes With High Levels of Zr Addition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Yao, Y; Chen, Y; Khatri, ND; Liu, J; Galtsyan, E; Lei, C; Selvamanickam, V

    2013-06-01

    The dependence of the critical current density (J(c)) on the orientation of applied magnetic fields was studied in Zr-doped (Gd, Y)Ba2Cu3Ox tapes fabricated by metal organic chemical vapor deposition. The in-field performance of J(c) of (Gd, Y)Ba2Cu3Ox tapes with Zr-doping levels of 7.5-30 at.% was investigated up to 5 T over a temperature range of 40-77 K. The highest critical currents (I-c) at H parallel to c and the highest values of minimum Ic in angular dependence measurements were achieved in the tapes with 20% Zr doping over a broad range of temperature and magnetic field conditions measured. The electromagnetic properties have been related to the changes in BaZrO3 content and microstructure.

  16. Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels.

    Science.gov (United States)

    Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng

    2018-01-12

    Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening.

  17. Electrical and optical properties of a kind of ferroelectric oxide films comprising of PbZr0.4Ti0.6O3 stacks

    Science.gov (United States)

    Li, Shimin; Ma, Guohong; Wang, Chao; Zhao, Wenchao; Chen, Xiaoshuang; Chu, Junhao; Dai, Ning; Shi, Wangzhou; Hu, Gujin

    2017-07-01

    A type of ferroelectric oxide films, consisting of three PbZr0.4Ti0.6O3 stacks with different periodic thicknesses, has been designed and fabricated on F-doped transparent conductive tin oxide substrates by using one single precursor solution and spinning-coating process. These films exhibit superior ferroelectric, dielectric, and optical performance. Each PbZr0.4Ti0.6O3 multilayer has a high reflectivity band with ˜110 nm photonic band width and average reflectivity of >80%, a dielectric constant of 530 and dielectric tunability of ˜28% at 1 MHz, a remnant polarization of 36 μC/cm2, and a polarization loss of cycles, rendering their perspective application in photonic band-gap engineering, microwave tunable devices, and integrated optoelectronics.

  18. {sup 89}Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pandit-Taskar, Neeta; Solomon, Stephen B.; Durack, Jeremy C.; Carrasquillo, Jorge A.; Lefkowitz, Robert A.; Osborne, Joseph R. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); O' Donoghue, Joseph A. [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Beylergil, Volkan; Ruan, Shutian; Cheal, Sarah M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Lyashchenko, Serge [Memorial Sloan Kettering Cancer Center, Department of Radiochemistry and Molecular Imaging Probes Core, New York, NY (United States); Gonen, Mithat [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Lewis, Jason S. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Department of Radiochemistry and Molecular Imaging Probes Core, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Program in Molecular Pharmacology and Chemistry, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Holland, Jason P. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Harvard Medical School, Department of Radiology of Massachusetts General Hospital, Boston, MA (United States); Reuter, Victor E. [Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, NY (United States); Weill Cornell Medical College, Department of Pathology, New York, NY (United States); Loda, Massimo F. [Dana-Farber Cancer Institute, Boston, MA (United States); Broad Institute of Harvard and MIT, Cambridge, MA (United States); Smith-Jones, Peter M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Department of Psychiatry and Behavioral Science of Stony Brook University, Stony Brook, NY (United States); Weber, Wolfgang A.; Larson, Steven M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Program in Molecular Pharmacology and Chemistry, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Bander, Neil H. [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States); Weill Cornell Medical College, Department of Urology, New York, NY (United States); Scher, Howard I.; Morris, Michael J. [Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY (United States); Weill Cornell Medical College, Department of Medicine, New York, NY (United States)

    2014-11-15

    Given the bone tropism of prostate cancer, conventional imaging modalities poorly identify or quantify metastatic disease. {sup 89}Zr-huJ591 positron emission tomography (PET) imaging was performed in patients with metastatic prostate cancer to analyze and validate this as an imaging biomarker for metastatic disease. The purpose of this initial study was to assess safety, biodistribution, normal organ dosimetry, and optimal imaging time post-injection for lesion detection. Ten patients with metastatic prostate cancer received 5 mCi of {sup 89}Zr-huJ591. Four whole-body scans with multiple whole-body count rate measurements and serum activity concentration measurements were obtained in all patients. Biodistribution, clearance, and lesion uptake by {sup 89}Zr-huJ591 immuno-PET imaging was analyzed and dosimetry was estimated using MIRD techniques. Initial assessment of lesion targeting of {sup 89}Zr-huJ591 was done. Optimal time for imaging post-injection was determined. The dose was well tolerated with mild chills and rigors seen in two patients. The clearance of {sup 89}Zr-huJ591 from serum was bi-exponential with biological half-lives of 7 ± 4.5 h (range 1.1-14 h) and 62 ± 13 h (range 51-89 h) for initial rapid and later slow phase. Whole-body biological clearance was 219 ± 48 h (range 153-317 h). The mean whole-body and liver residence time was 78.7 and 25.6 h, respectively. Dosimetric estimates to critical organs included liver 7.7 ± 1.5 cGy/mCi, renal cortex 3.5 ± 0.4 cGy/mCi, and bone marrow 1.2 ± 0.2 cGy/mCi. Optimal time for patient imaging after injection was 7 ± 1 days. Lesion targeting of bone or soft tissue was seen in all patients. Biopsies were performed in 8 patients for a total 12 lesions, all of which were histologically confirmed as metastatic prostate cancer. One biopsy-proven lesion was not positive on {sup 89}Zr-huJ591, while the remaining 11 lesions were {sup 89}Zr-huJ591 positive. Two biopsy-positive nodal lesions were noted only on

  19. Band gap tuning of amorphous Al oxides by Zr alloying

    Energy Technology Data Exchange (ETDEWEB)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J. [Department of Photonics Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus (Denmark); Borca, C. N.; Piamonteze, C. [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Rechendorff, K.; Nielsen, L. P.; Almtoft, K. P. [Danish Technological Institute, Kongsvang Alle 29, 8000 Aarhus (Denmark); Gudla, V. C.; Bordo, K.; Ambat, R. [Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs-Lyngby (Denmark)

    2016-08-29

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearly as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.

  20. Low silicon U(Al,Si)3 stabilization by Zr addition

    International Nuclear Information System (INIS)

    Pizarro, L.M.; Alonso, P.R.; Rubiolo, G.H.

    2009-01-01

    Previous knowledge states that (U,Zr)Al 3 and U(Al,Si) 3 phases with Zr and Si content higher than 6 at.% (7.7 wt%) and 4 at.% (1.4 wt%), respectively, does not partially transform to UAl 4 at 600 o C. In this work, four alloys within the quaternary system U-Al-Si-Zr were made with a fixed nominal 0.18 at.% (0.1 wt%) Si content in order to assess the synergetic effect of both Zr and Si alloying elements to the thermodynamic stability of the (U,Zr)(Al,Si) 3 phase. Heat treatments at 600 deg. C were undertaken and samples were analyzed by means of XRD, EPMA and EDS techniques. A remarkable conclusion is that addition of 0.3 at.% Si in the (U,Zr)(Al,Si) 3 phase reduces in 2.7 at.% the necessary Zr content to inhibit its transformation to U(Al,Si) 4 .

  1. Band gap tuning of amorphous Al oxides by Zr alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Jones, N. C.; Borca, C. N.

    2016-01-01

    minimum changes non-linearly as well.Fitting of the energy band gap values resulted in a bowing parameter of 2 eV. The band gap bowing of themixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction bandminimum of anodized Al2O3.......The optical band gap and electronic structure of amorphous Al-Zr mixed oxides, with Zr content ranging from4.8 to 21.9% were determined using vacuum ultraviolet (VUV) and X-ray absorption spectroscopy (XAS). Thelight scattering by the nano-porous structure of alumina at low wavelengths...... was estimated based on the Miescattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on Zr content deviatesfrom linearity and decreases from 7.3 eV for pure anodized Al2O3 to 6.45 eV for Al-Zr mixed oxide with Zrcontent of 21.9%. With increasing Zr content, the conduction band...

  2. MOCA, Criticality of VVER Reactor Hexagonal Fuel Assemblies

    International Nuclear Information System (INIS)

    KYNCL, Jan

    1994-01-01

    1 - Description of program or function: Criticality problem in neutron transport for hexagonal fuel assembly in VVER nuclear reactor. The assembly is assumed to be either arranged in an infinite hexagonal array or placed in vacuum. The problem is solved in three- dimensional geometry, using standard energy group formalism and assuming that effective scattering cross sections are presented as Legendre polynomial expansions. The code evaluates ten different physical quantities, e.g. multiplication factor, neutron flux per energy group and spatial zone, integrated over angle and power in any zone of the assembly. 2 - Method of solution: Monte Carlo method of successive generations is applied. Computation proceeds according to an analog random process. The code is organized into three blocks: In the first block, the input data are converted to quantities for use in the Monte Carlo calculation. An initial neutron distribution is calculated, which corresponds to a fission spectrum uniform in spatial and angular variables. The main calculations are carried out in the second block (subroutine PROC2). This block is subdivided into geometrical and physical parts. Neutron tracks in individual zones and groups as well as probabilities for the formation of secondary neutrons are calculated. In the third block (subroutine PROC3), the results are evaluated statistically. Effective multiplication coefficients, the neutron flux per group and zone, and respective errors are computed. These quantities serve as a basis for the evaluation of other quantities. The results are either printed or stored for future evaluations. 3 - Restrictions on the complexity of the problem: In the PC version of the program, the maximum number of neutrons is 1000, the maximum number of energy groups is 4, and the maximum number of material compositions is 15. Angular expansion of scattering cross sections is allowed up to P10. These restrictions can easily be removed by increasing input parameters and

  3. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, A.C.; Herman, M.; Kahler,A.C.; MacFarlane,R.E.; Mosteller,R.D.; Kiedrowski,B.C.; Frankle,S.C.; Chadwick,M.B.; McKnight,R.D.; Lell,R.M.; Palmiotti,G.; Hiruta,H.; Herman,M.; Arcilla,R.; Mughabghab,S.F.; Sublet,J.C.; Trkov,A.; Trumbull,T.H.; Dunn,M.

    2011-12-01

    The ENDF/B-VII.1 library is the latest revision to the United States Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [M. B. Chadwick et al., 'ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data,' Nuclear Data Sheets, 112, 2887 (2011)]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected {sup 235}U and {sup 239}Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also

  4. Determination of Nb and Zr in U-Nb-Zr alloys by ICP-AES

    International Nuclear Information System (INIS)

    Wang Cuiping; Dong Shizhe; Li Lin; He Meiying

    2003-01-01

    The U-Nb-Zr alloy sample is dissolved by HNO 3 , H 2 O 2 and HF, and the contents of Nb and Zr in the sample are determined on the JY-70 II type ICP-AES by using the internal standard synchronous dilution method. The range of determination is 1%-10% and 0.33%-3.33%, respectively for Nb and Zr. The relative standard deviation is better than 3.2% for Nb, and 2.5% for Zr. The method is rapid and convenient for determining Nb and Zr in U-Nb-Zr alloy sample

  5. Grain boundary sinks in neutron-irradiated Zr and Zr-alloys

    International Nuclear Information System (INIS)

    Griffiths, M.; Gilbert, R.W.; Coleman, C.E.

    1988-01-01

    Samples of annealed sponge and crystal-bar Zr and Zircaloy-2 have been examined following irradiation in EBR-II at temperatures ≅ 700 K. Loop analysis shows that there is selective denuding of interstitial loops near to some grain boundaries indicating that such boundaries are net sinks for interstitial point defects. Furthermore, in sponge Zr and Zircaloy-2, vacancy c-component loops are observed running into the grain boundaries showing that the grain boundaries are not preferred sinks for vacancies. Cavities are observed in all samples. In crystal-bar Zr and sponge Zr they are mostly observed adjacent to grain boundaries. They are also sometimes found within grains associated with precipitates. The cavities are more common in the crystal-bar Zr and this is probably because both the sponge Zr and Zircaloy-2 contain vacancy c-component loops which compete for vacancies (assuming that the cavities are vacancy sinks). Only some of the grain boundaries have cavities adjacent to them and this may be related to the orientation of the boundary. (orig.)

  6. Fatigue and strain effects in NbTi, Nb3Sn, and V2(Hf, Zr) multifilamentary superconductors

    International Nuclear Information System (INIS)

    Kuroda, T.; Wada, H.; Tachikawa, K.

    1988-01-01

    The effects of cyclic strain on critical current were studied in NbTi, bronze processed Nb 3 Sn, and composite diffusion processed V 2 (Hf,Zr) multifilamentary wires. No appreciable changes in critical current were found in NbTi wires until just prior to fatigue-induced fracture. Critical current degradation was also not observed in Nb 3 Sn or V 2 (Hf,Zr) as long as the wires were strained below the reversible limit strain. For strains beyond this limit strain the critical current was first degraded by an increasing number of cycles and then remained constant after a certain cycle number was passed

  7. Luminescent properties in films of ZrO{sub 2}: Dy; Propiedades luminiscentes en peliculas de ZrO{sub 2}: Dy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, R. C.; Guzman, J.; Rivera, T.; Ceron, P.; Montes, E.; Guzman, D. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Garcia H, M. [UNAM, Instituto de Investigaciones en Materiales, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Falcony, C. [IPN, Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, 07000 Mexico D. F. (Mexico); Azorin, J., E-mail: rodmarolm@yahoo.com [Universidad Autonoma Metropolitana, Unidad Iztapala, Av. San Rafael Atlixco 186, 09340 Mexico D. F. (Mexico)

    2014-08-15

    In this work the luminescent characterization of zirconium oxide (ZrO{sub 2}) films impure with dysprosium (Dy{sup +3}) is reported, obtained by means of the ultrasonics spray pyrolysis technique. The films were deposited on glass substrates (Corning), in a temperatures interval of 400 to 550 grades C, using as precursor elements Zirconium oxide chloride octahydrate (ZrOCl{sub 2}·8H{sub 2}O) and Dysprosium tri-chloride (DyCl{sub 3}), dissolved in deionized water, varying the concentration of the contaminated from the 1 to 20 atomic % with relationship to the zirconium in solution. The luminescent characterization was analyzed by means of photoluminescence and thermoluminescence. The photoluminescence results showed a spectrum with three maxima which correspond to the electronic transitions {sup 4}F{sub 9/2} - {sup 6}H{sub 15/2}, {sup 4}F{sub 9/2} - {sup 6}H{sub 13/2} and {sup 4}F{sub 9/2} - {sup 6}H{sub 11/2} characteristics of the Dy{sup 3+} ion. The thermoluminescence (Tl) response when being exposed to a monochrome UV beam in 240 nm showed a wide curve that exhibits a maxim centered in 200 grades C. The Tl response of ZrO{sub 2}:Dy in function of the dose was shown lineal in the interval of 24 mJ/cm{sup 2} to 432 mJ/cm{sup 2}. A study of the repeatability and dissipation of the ZrO{sub 2}:Dy Tl response is included. Considering the shown previous results we can conclude that the ZrO{sub 2} in film form obtained by spray pyrolysis has luminescent properties in 240 nm. (Author)

  8. Solubility and partitioning of hydrogen in meta-stable ZR-based alloys used in the nuclear industry

    International Nuclear Information System (INIS)

    Khatamian, D.

    1998-11-01

    Terminal solubility and partitioning of hydrogen in Zr-Nb alloys with different Nb concentrations were examined using differential scanning calorimetry and hot vacuum extraction mass spectrometry. Specimens were charged to different concentrations of hydrogen and annealed at 1123 K to generate a two-phase structure consisting of α-Zr (Zr-0.6 wt.% Nb) and meta-stable β-Zr (Zr-20 wt.% Nb) within the alloy. Specimens were aged at 673 and 773 K for up to 1000 h to evaluate the effect of the decomposition of the meta-stable β-Zr to α-Zr + β-Nb on the solubility limit. The results show that the solubility limit for hydrogen in the annealed Zr-Nb alloys is higher than in unalloyed Zr and that the solubility limit increases with the Nb concentration of the alloy. They also show that the hydrogen solubility limits of the completely aged Zr-Nb alloys are similar and approach the values for pure α-Zr. The solubility ratio of hydrogen in β-Zr (Zr-20 wt.% Nb) to that in α-Zr (Zr-0.6 wt.% Nb) was found to range from 9 to 7 within the temperature range of 520 to 580 K. (author)

  9. Experimental investigation of phase equilibria in the Co-Ni-Zr ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingjun; Yang, Shuiyuan; Yu, Wenjie; Wang, Cuiping [Xiamen Univ. (China). Fujian Key Laboratory of Materials Genome; Xiong, Huaping; Cheng, Yaoyong; Wu, Xin [Beijing Institute of Aeronautical Materials (China). Div. of Welding and Forging

    2016-10-15

    The phase equilibria of the Co-Ni-Zr ternary system at 1 000 C, 1 100 C and 1 200 C were experimentally investigated by means of back-scattered electron imaging, electron probe microanalysis and X-ray diffraction on the equilibrated ternary alloys. In this study, no ternary compound is found. The (αCo, Ni) phase region extends from the Ni-rich corner to the Co-rich corner with small solubility of Zr at three sections. At 1 000 C and 1 100 C, Ni{sub 5}Zr, Co{sub 2}Zr and Ni{sub 10}Zr{sub 7} phases have large solid solution ranges, but Ni{sub 10}Zr{sub 7} phase disappears at 1 200 C. The Ni{sub 7}Zr{sub 2}, NiZr, Co{sub 11}Zr{sub 2}, Co{sub 23}Zr{sub 6} and CoZr phases exhibit nearly linear compounds in the studied sections, and have large composition ranges. Additionally, some differences in phase relationship exist among the above three isothermal sections.

  10. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating

    Science.gov (United States)

    Obadele, Babatunde Abiodun; Andrews, Anthony; Mathew, Mathew T.; Olubambi, Peter Apata; Pityana, Sisa

    2015-08-01

    Ti6Al4V alloy was laser cladded with titanium, nickel and zirconia powders in different ratio using a 2 kW CW ytterbium laser system (YLS). The microstructures of the cladded layers were examined using field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Corrosion and tribocorrosion tests were performed on the cladded surface in 1 M H2SO4 solution. The microstructure revealed the transformation from a dense dendritic structure in TiNi coating to a flower-like structure observed in TiNiZrO2 cladded layers. There was a significant increase in surface microindentation hardness values of the cladded layers due to the present of hard phase ZrO2 particles. The results obtained show that addition of ZrO2 improves the corrosion resistance property of TiNi coating but decrease the tribocorrosion resistance property. The surface hardening effect induced by ZrO2 addition, combination of high hardness of Ti2Ni phase could be responsible for the mechanical degradation and chemical wear under sliding conditions.

  11. Nanotube morphology changes for Ti-Zr alloys as Zr content increases

    International Nuclear Information System (INIS)

    Kim, Won-Gi; Choe, Han-Cheol; Ko, Yeong-Mu; Brantley, William A.

    2009-01-01

    Nanotube morphology changes in Ti-Zr alloys as Zr content increases have been investigated. Ti-Zr (10, 20, 30 and 40 wt.%) alloys were prepared by arc melting and heat treated for 24 h at 1000 o C in an argon atmosphere. TiO 2 nanotubes were formed on the Ti-Zr alloys by anodization in H 3 PO 4 containing 0.5 wt.% NaF. Electrochemical experiments were performed using a conventional three-electrode configuration with a platinum counter electrode and a saturated calomel reference electrode. Samples were embedded in epoxy resin, leaving an area of 10 mm 2 exposed to the electrolyte. Anodization was carried out using a scanning potentiostat, and all experiments were conducted at room temperature. Microstructures of the alloys were examined by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and x-ray diffraction (XRD). The Ti-Zr alloy microstructures observed by OM and FE-SEM changed from a lamellar structure to a needle-like structure with increasing Zr content. The microstructures also changed from β phase to increasing amounts of α phase as the Zr content increased. The number of large nanotubes formed by anodization decreased, and the number of small nanotubes increased, as the Zr content increased. The mean inner diameter ranged from approximately 150 to 200 nm with a tube-wall thickness of about 20 nm. The interspace between the nanotubes was approximately 60, 70, 100 and 130 nm for Zr contents of 10, 20, 30 and 40 wt.%, respectively.

  12. Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy

    Science.gov (United States)

    Zhang, Yi; Sun, Huili; Volinsky, Alex A.; Wang, Bingjie; Tian, Baohong; Liu, Yong; Song, Kexing

    2018-02-01

    Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s-1 strain rate range. Based on the true stress-true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.

  13. Synthesis of Carboxylate Cp*Zr(IV) Species: Toward the Formation of Novel Metallocavitands.

    Science.gov (United States)

    Daigle, Maxime; Bi, Wenhua; Légaré, Marc-André; Morin, Jean-François; Fontaine, Frédéric-Georges

    2015-06-01

    With the intent of generating metallocavitands isostructural to species [(CpZr)3(μ(3)-O)(μ(2)-OH)3(κO,O,μ(2)-O2C(R))3](+), the reaction of Cp*2ZrCl2 and Cp*ZrCl3 with phenylcarboxylic acids was carried out. Depending on the reaction conditions, five new complexes were obtained, which consisted of Cp*2ZrCl(κ(2)-OOCPh) (1), (Cp*ZrCl(κ(2)-OOCPh))2(μ-κ(2)-OOCPh)2 (2), [(Cp*Zr(κ(2)-OOCPh))2(μ-κ(2)-OOCPh)2(μ(2)-OH)2]·Et2O (3·Et2O), [[Cp*ZrCl2](μ-Cl)(μ-OH)(μ-O2CC6H5)[Cp*Zr

  14. U-Zr alloy: XPS and TEM study of surface passivation

    Science.gov (United States)

    Paukov, M.; Tkach, I.; Huber, F.; Gouder, T.; Cieslar, M.; Drozdenko, D.; Minarik, P.; Havela, L.

    2018-05-01

    Surface reactivity of Uranium metal is an important factor limiting its practical applications. Bcc alloys of U with various transition metals are much less reactive than pure Uranium. So as to specify the mechanism of surface protection, we have been studying the U-20 at.% Zr alloy by photoelectron spectroscopy and transmission electron microscopy. The surface was studied in as-obtained state, in various stages of surface cleaning, and during an isochronal annealing cycle. The analysis based on U-4f, Zr-3p, and O-1 s spectra shows that a Zr-rich phase segregates at the surface at temperatures exceeding 550 K, which provides a self-assembled coating. The comparison of oxygen exposure of the stoichiometric and coated surfaces shows that the coating is efficiently preventing the oxidation of uranium even at elevated temperatures. The coating can be associated with the UZr2+x phase. TEM study indicated that the coating is about 20 nm thick. For the clean state, the U-4f core-level lines of the bcc alloy are practically identical to those of α-U, revealing similar delocalization of the 5f electronic states.

  15. Crystallization behavior of Zr62Al8Ni13Cu17 Metallic Glass

    Directory of Open Access Journals (Sweden)

    Jo Mi Sun

    2017-06-01

    Full Text Available The crystallization behavior has been studied in Zr62Al8Ni13Cu17 metallic glass alloy. The Zr62Al8Ni13Cu17 metallic glass crystallized through two steps. The fcc Zr2Ni phase transformed from the amorphous matrix during first crystallization and then the Zr2Ni and residual amorphous matrix transformed into a mixture of tetragonal Zr2Cu and hexagonal Zr6Al2Ni phases. Johnson-Mehl-Avrami analysis of isothermal transformation data suggested that the formation of crystalline phase is primary crystallization by diffusion-controlled growth.

  16. Zr inclusions in actinide—Zr alloys: New data and ideas about how they form

    International Nuclear Information System (INIS)

    Janney, Dawn E.; O'Holleran, Thomas P.

    2015-01-01

    High-Zr inclusions are common in actinide—Zr alloys despite phase diagrams indicating that these alloys should not contain a high-Zr phase. The inclusions may contain enough Zr to cause significant differences between bulk compositions and those of inclusion-free areas, leading to possible errors in interpreting data if the inclusions are not considered. This paper presents data from high-Zr inclusions in a complex U—Np—Pu—Am—Zr—RE alloy. It is suggested that the high-Zr inclusions nucleated as high-Zr solid solutions at interfaces with high-actinide RE liquids, then unmixed to form nanometer-scale high-actinide sub-inclusions.

  17. Thermal properties and thermal shock resistance of liquid phase sintered ZrC-Mo cermets

    International Nuclear Information System (INIS)

    Landwehr, Sean E.; Hilmas, Gregory E.; Fahrenholtz, William G.; Talmy, Inna G.; Wang Hsin

    2009-01-01

    The linear thermal expansion coefficient (CTE), heat capacity, and thermal conductivity, were investigated as a function of temperature for hot pressed ZrC and liquid phase sintered ZrC-Mo cermets. The ZrC and the ZrC-Mo cermets had the same CTE at 50 deg. C (∼5.1-5.5 ppm deg. C -1 ), but the CTE of ZrC increased to ∼12.2 ppm deg. C -1 at 1000 deg. C compared to ∼7.2-8.5 ppm deg. C -1 for the ZrC-Mo cermets. Heat capacity was calculated using a rule of mixtures and previously reported thermodynamic data. Thermal diffusivity was measured with a laser flash method and was, in turn, used to calculate thermal conductivity. Thermal conductivity increased linearly with increasing temperature for all compositions and was affected by solid solution formation and carbon deficiency of the carbide phases. Hot pressed ZrC had the highest thermal conductivity (∼30-37 W m -1 K -1 ). The nominally 20 and 30 vol% Mo compositions of the ZrC-Mo cermets had a lower thermal conductivity, but the thermal conductivity generally increased with increasing Mo content. Water quench thermal shock testing showed that ZrC-30 vol% Mo had a critical temperature difference of 350 deg. C, which was ∼120 deg. C higher than ZrC. This increase was due to the increased toughness of the cermet compared to ZrC.

  18. Stopping powers of Zr, Pd, Cd, In and Pb for 6.5 MeV protons and mean excitation energies

    International Nuclear Information System (INIS)

    Ishiwari, R.; Shiomi, N.; Sakamoto, N.

    1983-01-01

    Stopping powers of Zr, Pd, Cd, In and Pb have been measured for 6.5 MeV protons. Mean excitation energies have been extracted from the stopping power data by taking into account Bloch correction and Z 1 3 correction. For the shell correction the Bonderup shell correction has been used. The results agree fairly well with those of other authors

  19. Scratch Behaviors of Cr-Coated Zr-Based Fuel Claddings for Accident-Tolerant Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ho; Kim, Il-Hyun; Kim, Hyun-Gil; Kim, Hyung-Kyu; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    As the progression of Fukushima accident is worsened by the runaway reaction at a high temperature above 1200 .deg. C, it is essential to ensure the stabilities of coating layers on conventional Zr-based alloys during normal operations as well as severe accident conditions. This is because the failures of coating layer result in galvanic corrosion phenomenon by potential difference between coating layer and Zr alloy. Also, it is possible to damage the coating layer during handling and manufacturing process by contacting structural components of a fuel assembly. So, adhesion strength is one of the key factors determining the reliability of the coating layer on conventional Zr-based alloy. In this study, two kinds of Cr-coated Zr-based claddings were prepared using arc ion plating (AIP) and direct laser (DL) coating methods. The objective is to evaluate the scratch deformation behaviors of each coating layers on Zr alloys. Large area spallation below normal load of about 15 N appeared to be the predominant mode of failure in the AIP coating during scratch test. However, no tensile crack were found in entire stroke length. In DL coating, small plastic deformation and grooving behavior are more dominant scratching results. It was observed that the change of the slope of the COF curve did not coincide with the failure of coating layer.

  20. Structure, mechanical properties, and grindability of dental Ti-Zr alloys.

    Science.gov (United States)

    Ho, Wen-Fu; Chen, Wei-Kai; Wu, Shih-Ching; Hsu, Hsueh-Chuan

    2008-10-01

    Structure, mechanical properties and grindability of a series of binary Ti-Zr alloys with zirconium contents ranging from 10 to 40 wt% have been investigated. Commercially pure titanium (c.p. Ti) was used as a control. Experimental results indicated that the diffraction peaks of all the Ti-Zr alloys matched those for alpha Ti. No beta-phase peaks were found. The hardness of the Ti-Zr alloys increased as the Zr contents increased, and ranged from 266 HV (Ti-10Zr) to 350 HV (Ti-40Zr). As the concentration of zirconium in the alloys increased, the strength, elastic recovery angles and hardness increased. Moreover, the elastically recoverable angle of Ti-40Zr was higher than of c.p. Ti by as much as 550%. The grindability of each metal was found to be largely dependent on the grinding conditions. The Ti-40Zr alloy had a higher grinding rate and grinding ratio than c.p. Ti at low speed. The grinding rate of the Ti-40Zr alloy at 500 m/min was about 1.8 times larger than that of c.p. Ti, and the grinding ratio was about 1.6 times larger than that of c.p. Ti. Our research suggested that the Ti-40Zr alloy has better mechanical properties, excellent elastic recovery capability and improved grindability at low grinding speed. The Ti-40Zr alloy has a great potential for use as a dental machining alloy.

  1. Temperature and boron dependencies of buckling and radial reflector savings for VVER lattices

    International Nuclear Information System (INIS)

    Alvarez, C.

    1990-01-01

    The temperature and boron dependencies of buckling and radial reflector savings are analyzed in this paper on the basis of the results from the calculations for the ZR-6M critical assembly. These dependencies are related to he physical behaviour of temperature and boron reactivity coefficients for the cores of VVER-type critical facilities. As a byproduct, the dp/dBg 2 parameter was also investigated and its dependence on water density was determined

  2. The experimental determination of the buckling in the bare heavy water natural uranium critical assembly 'RB'

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N M; Popovic, D D; Takac, S M; Djordjevic, M M [Boris Kidric Institute of Nuclear Sciences, Vinca, Beograd (Yugoslavia)

    1960-03-15

    The buckling in the bare heavy water natural uranium critical assembly was determined by measuring the thermal neutron flux distribution. The obtained value for the critical buckling at the temperature of 20 deg C is: B{sup 2} = (8.516 {+-} 0.02) m{sup -2}. The above error is a statistical one, obtained from several series of measurements. The possible systematic error was estimated as 0.1 m{sup -2}. (author)

  3. The experimental determination of the buckling in the bare heavy water natural uranium critical assembly 'RB'

    International Nuclear Information System (INIS)

    Raisic, N.M.; Popovic, D.D.; Takac, S.M.; Djordjevic, M.M.

    1960-01-01

    The buckling in the bare heavy water natural uranium critical assembly was determined by measuring the thermal neutron flux distribution. The obtained value for the critical buckling at the temperature of 20 deg C is: B 2 = (8.516 ± 0.02) m -2 . The above error is a statistical one, obtained from several series of measurements. The possible systematic error was estimated as 0.1 m -2 . (author)

  4. High pressure hydriding of sponge-Zr in steam-hydrogen mixtures

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1997-01-01

    Hydriding kinetics of thin sponge-Zr layers metallurgically bonded to a Zircaloy disk has been studied by thermogravimetry in the temperature range 350-400 C in 7 MPa hydrogen-steam mixtures. Some specimens were prefilmed with a thin oxide layer prior to exposure to the reactant gas; all were coated with a thin layer of gold to avoid premature reaction at edges. Two types of hydriding were observed in prefilmed specimens, viz., a slow hydrogen absorption process that precedes an accelerated (massive) hydriding. At 7 MPa total pressure, the critical ratio of H 2 /H 2 O above which massive hydriding occurs at 400 C is ∝200. The critical H 2 /H 2 O ratio is shifted to ∝2.5 x 10 3 at 350 C. The slow hydriding process occurs only when conditions for hydriding and oxidation are approximately equally favorable. Based on maximum weight gain, the specimen is completely converted to δ-ZrH 2 by massive hydriding in ∝5 h at a hydriding rate of ∝10 -6 mol H/cm 2 s. Incubation times of 10-20 h prior to the onset of massive hydriding increases with prefilm oxide thickness in the range of 0-10 μm. By changing to a steam-enriched gas, massive hydriding that initially started in a steam-starved condition was arrested by re-formation of a protective oxide scale. (orig.)

  5. Experimental investigation and thermodynamic calculation of the Mg-Sr-Zr system

    International Nuclear Information System (INIS)

    Zhou, Hua; Chen, Chong; Du, Yong; Central South Univ., Hunan; Gong, Haoran

    2016-01-01

    Both experimental investigation and thermodynamic calculation were performed for the Mg-Sr-Zr system. Four decisive alloys were firstly selected and prepared using a powder metallurgy method to measure the isothermal section at 400 C via a combination of X-ray diffraction and electron probe microanalysis. No ternary compound has been observed for this ternary system. Four three-phase regions, (Mg) + (αZr) + Mg 17 Sr 2 , Mg 17 Sr 2 + (αZr) + Mg 38 Sr 9 , Mg 38 Sr 9 + (αZr) + Mg 23 Sr 6 , and Mg 23 Sr 6 + (αZr) + Mg 2 Sr, have been identified at 400 C. No appreciable ternary solubility has been detected in the binary Mg-Sr compounds. Phase transition temperatures of the Mg-Sr-Zr alloys were measured by means of differential scanning calorimetry. The thermodynamic calculations match well with the experimental data in the present work, indicating that no ternary thermodynamic parameters are needed for the thermodynamic description of this ternary system. In order to verify the reliability of the current thermodynamic calculations of the Mg-Sr-Zr system, eight as-cast alloys in the Mg-rich corner were also prepared. The calculated liquidus projection is consistent with the observed primary phase regions. The present thermodynamic calculations are reliable and can be used in the development of Mg alloys.

  6. Studies of cluster-assembled materials: From gas phase to condensed phase

    Science.gov (United States)

    Gao, Lin

    . After being mass gated in a reflectron equipped time-of-flight mass spectrometer (TOF-MS) and deposited onto TEM grids, the resultant specimens can be loaded onto high-resolution TEM investigation via electron diffraction. In conclusion, soft-landing of mass selected clusters has been shown to be a successful approach to obtain structural information on Zr-Met-Car cluster-assembled materials collected from the gas phase. TEM images indicate the richness of the morphologies associated with these cluster crystals. However, passivation methods are expected to be examined further to overcome the limited stabilities of these novel clusters. From this initial study, it's shown the promising opportunity to study other Met-Cars species and more cluster-based materials. Experimental results of reactions run with a solvothermal synthesis method obtained while searching for new Zr-C cluster assembled materials, are reported. One unexpected product in single crystal form was isolated and tentatively identified by X-ray diffraction to be [Zr6i O(OH)O12·2(Bu)4], with space group P2 1/n and lattice parameters of a = 12.44 A, b = 22.06 A, c = 18.40 A, alpha = 90°, beta = 105°, gamma = 90°, V = 4875 A3 and R 1 = 3.15% for the total observed data (I ≥ 2 sigma I) and oR2 = 2.82%. This novel hexanuclear Zr(IV)-oxo-hydroxide cluster anion may be the first member in polyoxometalates class with metal atoms from the IVB group and having Oh symmetry. Alternatively, it may be the first member in {[(Zr6Z)X 12]X6}m- class with halides replaced by oxo- and hydroxyl groups and with an increased oxidation state of Zr. It is predicted to bear application potentials directed by both families. This work could suggest a direction in which the preparation of Zr-C cluster-assembled materials in a liquid environment may be eventually fulfilled. 1,3-Bis(diethylphosphino)propane (depp) protected small gold clusters are studied via multiple techniques, including Electrospray Ionization Mass Spectrometry

  7. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    International Nuclear Information System (INIS)

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.; Bounds, J.A.; Kimpland, R.H.; Damjanovich, R.P.; Jaegers, P.J.

    1997-01-01

    Experiments were performed to measure a variety of parameters for SHEBA: behavior of the facility during transient and steady-state operation; characteristics of the SHEBA fuel; delayed-critical solution height vs solution temperature; initial reactor period and reactivity vs solution height; calibration of power level vs reactor power instrumentation readings; flux profile in SHEBA; radiation levels and neutron spectra outside the assembly for code verification and criticality alarm and dosimetry purposes; and effect on reactivity of voids in the fuel

  8. Neutron diffraction studies on Ca1-xBaxZr4P6O24 solid solutions

    International Nuclear Information System (INIS)

    Achary, S.N.; Jayakumar, O.D.; Patwe, S.J.; Kulshreshtha, S.K.; Tyagi, A.K.; Shinde, A.B.; Krishna, P.S.R.

    2008-01-01

    Herein we report the results of detailed crystallographic studies of Ca 1-x Ba x Zr 4 P 6 O 24 compositions from combined Rietveld refinements of powder X-ray and neutron diffraction data. All the studied compositions crystallize in rhombohedral lattice (space group R-3 No. 148). A continuous solid solution is concluded from the systematic variation of unit cell parameters. The variation of unit cell parameters with the composition indicates decreasing trend in α parameter with increasing Ba 2+ concentration contrast to an increasing trend in c parameter. (author)

  9. Relaxation of magnetization in spinel CuCrZrS4

    International Nuclear Information System (INIS)

    Ito, Masakazu; Furuta, Tatsuya; Terada, Norio; Ebisu, Shuji; Nagata, Shoichi

    2012-01-01

    We studied time t dependence of magnetization M(t) of thiospinel CuCrZrS 4 which has a spin-glass freezing. The relaxation of M is observed below T f ≃6K and shows a logarithmic time dependence. This means that a relaxation time τ of CuCrZrS 4 is distributed in a wide time range. Randomness of an arrangement of the Cr and Zr ions in CuCrZrS 4 probably gives rise to a distribution of τ. Temperature T dependence of magnetic viscosity β(T) is understood by a conventional after-effect model with a box-type distribution function of τ.

  10. The {sup 95}Zr( n , γ ){sup 96}Zr Cross Section from the Surrogate Ratio Method and Its Effect on s -process Nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.Q.; Li, Z.H.; Wang, Y.B.; Su, J.; Li, Y. J.; Han, Y.L.; Shen, Y.P.; Guo, B.; Zeng, S.; Lian, G.; Chen, Y.S.; Liu, W.P. [China Institute of Atomic Energy, P.O. Box 275(10), Beijing 102413 (China); Nishio, K.; Makii, H.; Nishinaka, I.; Hirose, K.; Orlandi, R. [Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Lugaro, M. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 1121 Budapest (Hungary); Karakas, A. I. [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Clayton, VIC 3800 (Australia); Mohr, P., E-mail: panyu@ciae.ac.cn, E-mail: maria.lugaro@csfk.mta.hu [Institute for Nuclear Research (ATOMKI), H-4001 Debrecen (Hungary)

    2017-10-20

    The {sup 95}Zr( n , γ ){sup 96}Zr reaction cross section is crucial in the modeling of s -process nucleosynthesis in asymptotic giant branch stars because it controls the operation of the branching point at the unstable {sup 95}Zr and the subsequent production of {sup 96}Zr. We have carried out the measurement of the {sup 94}Zr({sup 18}O, {sup 16}O) and {sup 90}Zr({sup 18}O, {sup 16}O) reactions and obtained the γ -decay probability ratio of {sup 96}Zr* and {sup 92}Zr* to determine the {sup 95}Zr( n , γ ){sup 96}Zr reaction cross sections with the surrogate ratio method. Our deduced Maxwellian-averaged cross section of 66 ± 16 mb at 30 keV is close to the value recommended by Bao et al., but 30% and more than a factor of two larger than the values proposed by Toukan and Käppeler and Lugaro et al., respectively, and routinely used in s -process models. We tested the new rate in stellar models with masses between 2 and 6 M {sub ⊙} and metallicities of 0.014 and 0.03. The largest changes—up to 80% variations in {sup 96}Zr—are seen in models of mass 3–4 M {sub ⊙}, where the {sup 22}Ne neutron source is mildly activated. The new rate can still provide a match to data from meteoritic stardust silicon carbide grains, provided that the maximum mass of the parent stars is below 4 M {sub ⊙}, for a metallicity of 0.03.

  11. Mechanochemical synthesis of magnetically hard anisotropic RFe{sub 10}Si{sub 2} powders with R representing combinations of Sm, Ce and Zr

    Energy Technology Data Exchange (ETDEWEB)

    Gabay, A.M., E-mail: gabay@udel.edu; Hadjipanayis, G.C.

    2017-01-15

    Alloy synthesis consisting of mechanical activation followed by annealing was explored as a method of manufacturing medium-grade permanent magnet materials with a reduced content of the critical rare earth elements. Four R{sub x}Fe{sub 10}Si{sub 2} alloys with R=Sm, Sm{sub 0.7}Zr{sub 0.3}, Sm{sub 0.3}Ce{sub 0.3}Zr{sub 0.4} and Ce{sub 0.6}Zr{sub 0.4} (nominal compositions) were prepared from mixtures of Sm{sub 2}O{sub 3}, CeO{sub 2}, ZrO{sub 2}, Fe{sub 2}O{sub 3} and Si powders in the presence of a reducing agent Ca and a CaO dispersant. The collected alloy particles typically consisted of few joined submicron crystals. For R=Sm, X-ray diffraction analysis reveals a significant amount of the unwanted Th{sub 2}Zn{sub 17}-type compound forming alongside the desired ThMn{sub 12}-type 1:12 compound. A more pure 1:12 phase could be obtained for R=Ce{sub 0.6}Zr{sub 0.4}, but it exhibited a room-temperature coercivity of less than 1 kOe. The most pure 1:12 phase and the highest values of the coercivity (10.8 kOe) and calculated maximum energy product (13.8 MGOe) were obtained for R=Sm{sub 0.7}Zr{sub 0.3} processed at 1150 °C. The calculated maximum energy products of the Sm{sub 0.3}Ce{sub 0.3}Zr{sub 0.4}Fe{sub 10}Si{sub 2} particles, with half of their rare earths constituents represented by the relatively abundant Ce, was 10.1 MGOe. - Highlights: • 30% Zr substitution for Sm improves prospects of the alloys as permanent magnets. • Pure ThMn{sub 12}-type structure could only be obtained in the Zr-substituted alloys. • Obtained powders exhibit better properties than nanocrystalline Sm(Fe,M){sub 12} alloys. • If fully dense, alloy containing only 2.3 at% Sm would energy product of 10 MGOe.

  12. Effect of ZrB{sub 2} particles on the microstructure and mechanical properties of hybrid (ZrB{sub 2} + Al{sub 3}Zr)/AA5052 insitu composites

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Gaurav, E-mail: gauravgautamm1988@gmail.com; Mohan, Anita, E-mail: amohan.app@iitbhu.ac.in

    2015-11-15

    Present study outlines the effect of ZrB{sub 2} particles variation on the morphology and mechanical properties of (ZrB{sub 2}+Al{sub 3}Zr)/AA5052Al alloy composites. Composites with varying amount of ZrB{sub 2} particles have been produced by direct melt reaction (DMR) technique. These composites have been characterized by X-ray diffractometer (XRD) and energy-dispersive spectroscopy (EDS) to confirm the presence of ZrB{sub 2} and Al{sub 3}Zr particles. Optical microscopy (OM) and scanning-electron microscopy (SEM) have been used to understand the morphology. To see the effect of ZrB{sub 2} variation on mechanical properties, hardness and tensile properties have been evaluated. The XRD and EDS results confirm the successful formation of ZrB{sub 2} particles in matrix of AA5052Al alloy. SEM and TEM studies exhibit that ZrB{sub 2} particles are mostly in hexagonal and some rectangular shape while Al{sub 3}Zr particles are in polyhedron and rectangular shapes. Most of ZrB{sub 2} particles are within a size range of 10–190 nm. Interface region is free of any impurity. OM studies show grain refinement of AA5052Al alloy matrix with formation of second phase ZrB{sub 2} particles. Tensile results indicate that the UTS and YS improve up to 3 vol.% of ZrB{sub 2} but beyond this composition a decreasing trend is observed. The strength coefficient increases with increase in ZrB{sub 2} particles up to 3 vol.% in the Al{sub 3}Zr/Al alloy composites, whereas strain hardening decreases. While beyond 3 vol.% ZrB{sub 2} particles in the Al{sub 3}Zr/Al alloy composite, opposite trend is observed in strength coefficient and strain hardening. Percentage elongation also improves with 1vol.% ZrB{sub 2}, but further addition of ZrB{sub 2} shows an adverse effect. However, a continuous increasing trend has been observed in bulk hardness. Fracture studies show facets of Al{sub 3}Zr particles and dimples of matrix, but with inclusion of ZrB{sub 2} dimple size decreases. Increase in Zr

  13. Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings

    Science.gov (United States)

    Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing

    2018-04-01

    Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.

  14. Calculation of Gibbs energy of Zr-Al-Ni, Zr-Al-Cu, Al-Ni-Cu and Zr-Al-Ni-Cu liquid alloys based on quasiregular solution model

    International Nuclear Information System (INIS)

    Li, H.Q.; Yang, Y.S.; Tong, W.H.; Wang, Z.Y.

    2007-01-01

    With the effects of electronic structure and atomic size being introduced, the mixing enthalpy as well as the Gibbs energy of the ternary Zr-Al-Cu, Ni-Al-Cu, Zr-Ni-Al and quaternary Zr-Al-Ni-Cu systems are calculated based on quasiregular solution model. The computed results agree well with the experimental data. The sequence of Gibbs energies of different systems is: G Zr-Al-Ni-Cu Zr-Al-Ni Zr-Al-Cu Cu-Al-Ni . To Zr-Al-Cu, Ni-Al-Cu and Zr-Ni-Al, the lowest Gibbs energy locates in the composition range of X Zr 0.39-0.61, X Al = 0.38-0.61; X Ni = 0.39-0.61, X Al = 0.38-0.60 and X Zr = 0.32-0.67, X Al = 0.32-0.66, respectively. And to the Zr-Ni-Al-Cu system with 66.67% Zr, the lowest Gibbs energy is obtained in the region of X Al = 0.63-0.80, X Ni = 0.14-0.24

  15. Interaction of Au with thin ZrO2 films: influence of ZrO2 morphology on the adsorption and thermal stability of Au nanoparticles.

    Science.gov (United States)

    Pan, Yonghe; Gao, Yan; Kong, Dandan; Wang, Guodong; Hou, Jianbo; Hu, Shanwei; Pan, Haibin; Zhu, Junfa

    2012-04-10

    The model catalysts of ZrO(2)-supported Au nanoparticles have been prepared by deposition of Au atoms onto the surfaces of thin ZrO(2) films with different morphologies. The adsorption and thermal stability of Au nanoparticles on thin ZrO(2) films have been investigated using synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS). The thin ZrO(2) films were prepared by two different methods, giving rise to different morphologies. The first method utilized wet chemical impregnation to synthesize the thin ZrO(2) film through the procedure of first spin-coating a zirconium ethoxide (Zr(OC(2)H(5))(4)) precursor onto a SiO(2)/Si(100) substrate at room temperature followed by calcination at 773 K for 12 h. Scanning electron microscopy (SEM) investigations indicate that highly porous "sponge-like nanostructures" were obtained in this case. The second method was epitaxial growth of a ZrO(2)(111) film through vacuum evaporation of Zr metal onto Pt(111) in 1 × 10(-6) Torr of oxygen at 550 K followed by annealing at 1000 K. The structural analysis with low energy electron diffraction (LEED) of this film exhibits good long-range ordering. It has been found that Au forms smaller particles on the porous ZrO(2) film as compared to those on the ordered ZrO(2)(111) film at a given coverage. Thermal annealing experiments demonstrate that Au particles are more thermally stable on the porous ZrO(2) surface than on the ZrO(2)(111) surface, although on both surfaces, Au particles experience significant sintering at elevated temperatures. In addition, by annealing the surfaces to 1100 K, Au particles desorb completely from ZrO(2)(111) but not from porous ZrO(2). The enhanced thermal stability for Au on porous ZrO(2) can be attributed to the stronger interaction of the adsorbed Au with the defects and the hindered migration or coalescence resulting from the porous structures. © 2012 American Chemical Society

  16. Internal friction behaviours in Zr57Al10Ni12.4Cu15.6Nb5 bulk metallic glass

    International Nuclear Information System (INIS)

    Zhang Bo; Zu Fangqiu; Zhen Kang; Shui Jiapeng; Wen Ping

    2002-01-01

    The internal friction patterns of Zr 57 Al 10 Ni 12.4 Cu 15.6 Nb 5 bulk metallic glass (BMG) were investigated with different frequencies and heating rates. An internal friction peak with extremely large magnitude is observed in the internal friction curves as a function of temperature (Q -1 -T curves). The internal friction peak was fitted by an equation Q -1 =AX(T)/η, where A is a constant, X(T) is the fraction of the glass/supercooled liquid and the viscosity η obeys the Vogel-Fulcher-Tammann relation. We confirm that the internal friction peak originates from both of the glass transition and crystallization. The anomalous behaviours of the peak suggest that Zr 57 Al 10 Ni 12.4 Cu 15.6 Nb 5 BMG has a wide supercooled liquid region and the magnitude of the peak can be used to judge the glass forming ability (GFA) of the glass forming alloys. In addition, the internal friction technique proved to be a new powerful tool for studying structural relaxation and phase transition as well as the GFA of BMG. (author)

  17. Facile preparation of highly pure KF-ZrF4 molten salt

    Science.gov (United States)

    Zong, Guoqiang; Cui, Zhen-Hua; Zhang, Zhi-Bing; Zhang, Long; Xiao, Ji-Chang

    2018-03-01

    The preparation of highly pure KF-ZrF4 (FKZr) molten salt, a potential secondary coolant in molten salt reactors, was realized simply by heating a mixture of (NH4)2ZrF6 and KF. X-ray diffraction analysis indicated that the FKZr molten salt was mainly composed of KZrF5 and K2ZrF6. The melting point of the prepared FKZr molten salt was 420-422 °C under these conditions. The contents of all metal impurities were lower than 20 ppm, and the content of oxygen was lower than 400 ppm. This one-step protocol avoids the need for a tedious procedure to prepare ZrF4 and for an additional purification process to remove oxide impurities, and is therefore a convenient, efficient and economic preparation method for high-purity FKZr molten salt.

  18. Evaluation of neutron flux in the Pool Critical Assembly

    International Nuclear Information System (INIS)

    Lippincott, E.P.; Ruddy, F.H.; Gold, R.; Kellogg, L.S.; Roberts, J.H.

    1984-09-01

    A recently completed series of experiments in the Pool Critical Assembly (PCA) at Oak Ridge National Laboratory (ORNL) provided extensive neutron flux characterization of a mockup pressure vessel configuration. Considerable effort has been made to understand the uncertainties of the various measurements made in the PCA and to resolve discrepancies in the data. Additional measurements are available for similar configurations in the Oak Ridge Reactor-Poolside Facility (ORR-PSF) at ORNL and in the NESDIP facility in the UK. Comparisons of these results, together with associated neutron field calculations, enable a better evaluation of the actual uncertainties and realistic limits of accuracy to be assessed. Such assessments are especially valuable when the accuracy improvements of benchmark referencing are to be included and extrapolations to new configurations are made

  19. Magnetic properties of FeZr{sub 2} and Fe{sub 2}Zr intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Prajapat, C. L., E-mail: prajapat@barc.gov.in; Singh, M. R.; Mishra, P. K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Chattaraj, D. [Product Development Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Mishra, R. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Ravikumar, G. [Scientific Information Resources Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India)

    2016-05-23

    Magnetic properties of Fe-Zr system, viz., FeZr{sub 2} and Fe{sub 2}Zr have been studied. Both the compounds show soft ferromagnetic behavior. Curie temperature is well above the room temperature. Lower saturation magnetization for the zirconium rich sample, FeZr{sub 2}, could be due to possible donation of electrons from the Zr-rich neighbors to Fe atoms or diminution of long range magnetic order by defects.

  20. Biocorrosion Evaluation on a Zr-Cu-Ag-Ti Metallic Glass

    Science.gov (United States)

    Kumar, Shresh; Anwar, Rebin; Ryu, Wookha; Park, E. S.; Vincent, S.

    2018-04-01

    Metallic glasses are in high demand for fabrication of variety of innovative products, in particular surgical and biomedical tools and devices owing to its excellent biocompatible properties. In the present investigation, a novel Zr39.5Cu50.5Ag4Ti6 metallic glass composition was synthesized using melt spinning technique. Potentiodynamic polarization studies were conducted to investigate bio-corrosion behaviour of Zr39.5Cu50.5Ag4Ti6 metallic glass. The test were conducted in various simulated artificial body conditions such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hank’s balanced saline solution. The bio-corrosion results of metallic glass were compared with traditional biomaterials. The study aims to provide bio-compatible properties of Zr39.5Cu50.5Ag4Ti6 metallic glass.

  1. Calculation and analysis for a series of enriched uranium bare sphere critical assemblies

    International Nuclear Information System (INIS)

    Yang Shunhai

    1994-12-01

    The imported reactor fuel assembly MARIA program system is adapted to CYBER 825 computer in China Institute of Atomic Energy, and extensively used for a series of enriched uranium bare sphere critical assemblies. The MARIA auxiliary program of resonance modification MA is designed for taking account of the effects of resonance fission and absorption on calculated results. By which, the multigroup constants in the library attached to MARIA program are revised based on the U.S. Evaluated Nuclear Data File ENDF/B-IV, the related nuclear data files are replaced. And then, the reactor geometry buckling and multiplication factor are given in output tapes. The accuracy of calculated results is comparable with those of Monte Carlo and Sn method, and the agreement with experiment result is in 1%. (5 refs., 4 figs., 3 tabs.)

  2. Hydrogen interactions with ZrCo nanoclusters: a first-principles study

    International Nuclear Information System (INIS)

    Chattaraj, D.; Parida, S.C.; Dash, Smruti; Bhattacharya, Saswata; Majumder, C.

    2014-01-01

    Tritium is one of the fuels going to be used in fusion reactor program. But, this radioactive isotope should be stored safely. ZrCo intermetallic has been chosen as a tritium storage material in ITER program. It is important to study how hydrogen interacts with ZrCo in its different dimensions. In this study we have investigated the hydrogen interaction with the Zr m Co n (m+n = 2, 4 and 6) nanoclusters using the state-of-the-art first principles method

  3. Facile synthesis of highly stable and well-dispersed mesoporous ZrO(2)/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene.

    Science.gov (United States)

    Li, Qiang; Xu, Jie; Wu, Zhangxiong; Feng, Dan; Yang, Jianping; Wei, Jing; Wu, Qingling; Tu, Bo; Cao, Yong; Zhao, Dongyuan

    2010-09-28

    Highly ordered mesoporous ZrO(2)/carbon (FDU-15) composites have been synthesized via a facile evaporation induced triconstituent co-assembly (EISA) approach by using Pluronic F127 as a template and zirconium oxychloride octahydrate and resol as Zr and carbon sources. The synthesized mesoporous composites exhibit a highly ordered two-dimensional (2-D) hexagonal mesostructure with relatively high specific surface areas (up to 947 m(2) g(-1)), pore sizes around 3.8 nm and high pore volumes (up to 0.71 cm(3) g(-1)). The results clearly show that the crystalline zirconia nanoparticles (ca. 1.9-3.9 nm) are well-dispersed in amorphous matrices of the ordered mesoporous carbon FDU-15 materials, which construct the nanocomposites. The ordered mesostructures of the obtained ZrO(2)/FDU-15 composites can be well-retained even at the high pyrolysis temperature (up to 900 degrees C), suggesting a high thermal stability. The zirconia content of the ZrO(2)/FDU-15 composites can be tunable in a wide range (up to 47%). Moreover, the resultant mesoporous ZrO(2)/FDU-15 composites exhibit high catalytic activity in oxidative dehydrogenation (ODH) of ethylbenzene (EB) to styrene (ST), with high ethylbenzene conversion (59.6%) and styrene selectivity (90.4%), which is mainly attributed to the synergistic catalytic effect between the oxygen-containing groups located on the carbon pore walls and weakly basic sites of the nanocrystalline ZrO(2). Furthermore, the high specific surface areas and opening pore channels are also responsible for their high catalytic activity. Therefore, it is a very promising catalyst material in styrene production on an industrial scale.

  4. Study on neutron streaming effect in large fast critical assembly

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Yamaoka, Mitsuaki; Sakurai, Shungo; Tanimoto, Koichi; Abe, Yuhei

    1981-03-01

    A cell calculation method taking into account the neutron leakage from a cell and a transport calculation method treating the neutron streaming have been developed, and their applicability has been investigated. In the cell calculation method, the neutron leakage in the perpendicular direction to plates was treated by introducing an albedo collision probability which is a first-flight collision probability incorporating albedos at cell boundaries, and that in the parallel direction was treated by the pseudo absorption method. The use of the albedo collision probability made it possible to calculate the flux tilt in a cell exactly. This cell calculation method was applied to two slab models where fuel drawers were stacked in perpendicular and parallel directions to plates. Cell averaged cross sections calculated by the proposed method agreed well with those obtained from exact transport calculations treating the plate-wise heterogeneity, while the infinite cell calculation and the conventional pseudo absorption method produced about 2% errors in the cell-averaged cross sections. The cell-averaging procedure for control-rod channels was also proposed, and this method was applied to the calculation of control-rod worths and control-rod position worths. A transport calculation method based on the response matrix method has been proposed to treat the neutron streaming in fast critical assemblies directly. A response matrix code in two dimensional XY geometry RES2D was made. The accuracy of response matrices obtained from the RES2D code was checked by applying it to a slab cell and by comparing cell-averaged cross sections and k-infinity with those from a reference cell calculation based on the collision probability. The agreement of the results was good, and it was found that the response matrix method is very promising for the treatment of the neutron streaming in fast critical assemblies. (author)

  5. Superconducting properties of amorphous Zr-Ge binary alloys

    International Nuclear Information System (INIS)

    Inoue, A.; Takahashi, Y.; Toyota, N.; Fukase, T.; Masumoto, T.

    1982-01-01

    A new type of refractory metal-metalloid amorphous alloys exhibiting superconductivity has been found in a binary Zr-Ge system by a modified melt-spinning technique. Specimens are in the form of continuous ribbons 1 to 2 mm wide and 0.02 to 0.03 mm thick. The germanium content in the amorphous alloys is limited to the range of 13 to 21 at%. These amorphous alloys are so ductile that no cracks are observed even after closely contacted bending test. Data are reported for various alloy compositions for the Vickers hardness and crystallization temperature, the tensile fracture strength, superconducting transition temperature Tsub(c), upper critical magnetic field, critical current density in the absence of an applied field, upper critical field gradient at Tsub(c) and the electrical resistivity at 4.2 K. The Ginzburg-Landau (GL) parameter and the GL coherence length were estimated to be 72 to 111 and about 7.9 nm, respectively, from these experimental values by using the Ginzburg-Landau-Abrikosov-Gorkov theory and hence it is concluded that the Zr-Ge amorphous alloys are extremely 'soft' type-II superconductor with high degree of dirtiness which possesses the Tsub(c) values higher than zirconium metal, in addition to high strength combined with good ductility. (author)

  6. Luminescent properties in films of ZrO2: Dy

    International Nuclear Information System (INIS)

    Martinez, R. C.; Guzman, J.; Rivera, T.; Ceron, P.; Montes, E.; Guzman, D.; Garcia H, M.; Falcony, C.; Azorin, J.

    2014-08-01

    In this work the luminescent characterization of zirconium oxide (ZrO 2 ) films impure with dysprosium (Dy +3 ) is reported, obtained by means of the ultrasonics spray pyrolysis technique. The films were deposited on glass substrates (Corning), in a temperatures interval of 400 to 550 grades C, using as precursor elements Zirconium oxide chloride octahydrate (ZrOCl 2 ·8H 2 O) and Dysprosium tri-chloride (DyCl 3 ), dissolved in deionized water, varying the concentration of the contaminated from the 1 to 20 atomic % with relationship to the zirconium in solution. The luminescent characterization was analyzed by means of photoluminescence and thermoluminescence. The photoluminescence results showed a spectrum with three maxima which correspond to the electronic transitions 4 F 9/2 - 6 H 15/2 , 4 F 9/2 - 6 H 13/2 and 4 F 9/2 - 6 H 11/2 characteristics of the Dy 3+ ion. The thermoluminescence (Tl) response when being exposed to a monochrome UV beam in 240 nm showed a wide curve that exhibits a maxim centered in 200 grades C. The Tl response of ZrO 2 :Dy in function of the dose was shown lineal in the interval of 24 mJ/cm 2 to 432 mJ/cm 2 . A study of the repeatability and dissipation of the ZrO 2 :Dy Tl response is included. Considering the shown previous results we can conclude that the ZrO 2 in film form obtained by spray pyrolysis has luminescent properties in 240 nm. (Author)

  7. Air Plasma-Sprayed La2Zr2O7-SrZrO3 Composite Thermal Barrier Coating Subjected to CaO-MgO-Al2O3-SiO2 (CMAS)

    Science.gov (United States)

    Cai, Lili; Ma, Wen; Ma, Bole; Guo, Feng; Chen, Weidong; Dong, Hongying; Shuang, Yingchai

    2017-08-01

    La2Zr2O7-SrZrO3 composite thermal barrier coatings (TBCs) were prepared by air plasma spray (APS). The La2Zr2O7-SrZrO3 composite TBCs covered with calcium-magnesium-aluminum-silicate (CMAS) powder, as well as the powder mixture of CMAS and spray-dried La2Zr2O7-SrZrO3 composite powder, were heat-treated at 1250 °C in air for 1, 4, 8, and 12 h. The phase constituents and microstructures of the reaction products were characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Experimental results showed that the La2Zr2O7-SrZrO3 composite TBCs had higher CMAS resistance than 8YSZ coating. A dense new layer developed between CMAS and La2Zr2O7-SrZrO3 composite TBCs during interaction, and this new layer consisted mostly of apatite (Ca2La8(SiO4)6O2) and c-ZrO2. The newly developed layer effectively protected the La2Zr2O7-SrZrO3 composite TBCs from further CMAS attack.

  8. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Yoon, K. H.; Lee, C. B.

    2014-01-01

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness

  9. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K. H.; Lee, C. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness.

  10. Aqueous corrosion behaviour of Zr-1 Nb and Zr-20 Nb with different heat treatments

    International Nuclear Information System (INIS)

    Jaime Solis, F.; Bordoni, Roberto; Olmedo, Ana M.; Villegas, Marina; Miyagusuku, Marcela

    2003-01-01

    The corrosion behaviour of Zr-1 Nb and Zr-20 Nb coupons annealed at 850 C degrees during 1 hour and afterwards aged at different temperatures and time periods was studied. The Zr-1 Nb samples were aged at 400 and 500 C degrees and the Zr-20 Nb samples at 265 and 550 C degrees. The results have shown that ageing increases the corrosion resistance because the aged microstructure is somewhat closer to the equilibrium one. This was not the case of Zr-1 Nb aged 72 hs at 400 C degrees. The presence of the ω-phase does not have a deleterious effect in the corrosion behaviour of Zr-20 Nb. Also, an ageing of 2200 h at 265 C degrees induced a relevant decrease in the corrosion rate of Zr-20 Nb indicating a decomposition of the β- Zr phase. This effect was observed at the inlet of pressure tubes in CANDU reactors. The results obtained will be used to establish the relative importance of the α-Zr and β-Zr phases in the corrosion behaviour of pressure tubes. (author)

  11. Study of neutron noise from reflected, metal assemblies with criticality safety applications in mind

    International Nuclear Information System (INIS)

    Barnett, C.S.

    1985-01-01

    The author studied the statistics of detected neutrons that leaked from four subcritical reflected, enriched-uranium assemblies, to explore the feasibility of developing a criticality warning system based on neutron noise analysis. The calculated multiplication factors of the assemblies are 0.59, 0.74, 0.82, and 0.92. The author studied three possible discriminators, i.e., three signatures that might be used to discriminate among assemblies of various multiplications. They are (1) variance-to-mean ratio of the counts in a time bin (V/M), (2) covariance-to-mean ratio of the counts in a common time bin from two different detectors (C/M), (3) covariance-to-mean ratio of the counts from a single detector in two adjacent time bins of equal length, which the author calls the serial-covariance-to-mean ratio (SC/M). The performances of the three discriminators were not greatly different, but a hierarchy did emerge: SC/M greater than or equal to V/M greater than or equal to C/M. An example of some results: in the neighborhood of k = 0.6 the Δk required for satisfactory discrimination varies from about 3% to 7% as detector solid angle varies from 19% to 5%. In the neighborhood of k = 0.8 the corresponding Δks are 1% and 2%. The noise analysis techniques studied performed well enough in deeply subcritical situations to deserve testing in an applications environment. They have a good chance of detecting changes in reactivity that are potentially dangerous. One can expect sharpest results when doing comparison, i.e., when comparing two records, one taken in the past under circumstances known to be normal and one taken now to search for change

  12. Study of neutron noise from reflected, metal assemblies with criticality safety applications in mind

    International Nuclear Information System (INIS)

    Barnett, C.S.

    1985-01-01

    The author studied the statistics of detected neutrons that leaked from four subcritical reflected, enriched-uranium assemblies, to explore the feasibility of developing a criticality warning system based on neutron noise analysis. The calculated multiplication factors of the assemblies are 0.59, 0.74, 0.82, and 0.92. The author studied three possible discriminators, i.e., three signatures that might be used to discriminate among assemblies of various multiplications. They are: (1) variance-to-mean ratio of the counts in a time bin (V/M); (2) covariance-to-mean ratio of the counts in a common time bin from two different detectors (C/M); and (3) covariance-to-mean ratio of the counts from a single detector in two adjacent time bins of equal length, which the author calls the serial-covariance-to-mean ratio (SC/M). The performances of the three discriminators were not greatly different, but a hierarchy did emerge: SC/M greater than or equal to V/M greater than or equal to C/M. An example of some results: in the neighborhood of k = 0.6 the Δk required for satisfactory discrimination varies from about 3% to 7% as detector solid angle varies from 19% to 5%. In the neighborhood of k = 0.8 the corresponding Δks are 1% and 2%. The noise analysis techniques studied performed well enough in deeply subcritical situations to deserve testing in an applications environment. They have a good chance of detecting changes in reactivity that are potentially dangerous. One can expect sharpest results when doing comparisons, i.e., when comparing two records, one taken in the past under circumstances known to be normal and one taken now to search for change

  13. Evolution of Zr/Hf/Zr trilayers during annealing studied by RBS

    International Nuclear Information System (INIS)

    Kling, A.; Soares, J.C.

    2010-01-01

    The Zr/Hf system is highly interesting due its various applications, e.g. formation of amorphous ternary alloys, superconductive properties and production of gate oxide layers with high dielectric coefficients by oxidation of Zr/Hf multilayers. In this work Zr/Hf/Zr trilayers with an individual layer thickness of approximately 50 nm were deposited by electron gun evaporation on a substrate consisting of silicon covered by a micrometer thick thermal oxide layer. Samples were subjected to annealing procedures at 500 and 1200 o C in flowing air atmosphere to promote oxidation and Zr/Hf interdiffusion effects. RBS studies of the as-deposited and annealed samples were performed at the van-de-Graaff accelerator of ITN using He + and H + beams with energies between 2.0 and 2.525 MeV in order to study compositional changes induced by the heat treatment. In the case of low-temperature annealing the layer system appears, besides the oxidation process starting from the surface, to be stable. On the other hand, high-temperature annealing leads to an asymmetric Hf-diffusion into the surface and interior Zr-layer provoked by anomalous diffusion due to a phase transition in Zr accompanied by an almost complete oxidation of the layer structure Oxygen and metal depth distributions obtained by RBS in the as-deposited and treated samples are provided.

  14. Zirconium Zr and hafnium Hf

    International Nuclear Information System (INIS)

    Busev, A.I.; Tiptsova, V.G.; Ivanov, V.M.

    1978-01-01

    The basic methods for extracting and determining Zr(4) and Hf(4) are described. Diantipyrinemethane and its alkyl homologs selectively extract Zr and Hf from HNO 3 solutions in the presence of nitrates. Zr is selectively extracted with tetraethyldiamide of heptyl phosphoric acid (in benzene) as well as with 2-thenoyltrifluoroacetone (in an acid). The latter reagents is suitable for rapid determination of 95 Zr in a mixture with 95 Nb and other fragments. The complexometric determination of Zr is based on formation of a stable complex of Zr with EDTA. The titration is carried out in the presence of n-sulfobenzene-azo-pyrocatechol, eriochrome black T. The determination is hindered by Hf, fluoride-, phosphate-, oxalate- and tartrate-ions. The method is used for determining Zr in zircon and eudialyte ore. Zr is determined photometrically with the aid of xylenol orange, arsenazo 3 and pyrocatechol violet (in phosphorites). Hf is determined in the presence of Zr photometrically with the aid of xylenol orange or methyl-thymol blue. The method is based on Zr being masked with hydrogen peroxide in the presence of sulfate-ions

  15. ZrC zone structure and features of electronic structure of solid solutions on the base ZrC, ZrN, TiC and TiN

    International Nuclear Information System (INIS)

    Mokhracheva, L.P.; Gel'd, P.V.; Tskhaj, V.A.

    1983-01-01

    The results of ZrC zone structure calculation conducted using the strong bond method in the three-centre variant are given. Essentially higher degree of M-C chemical bond ionicity than in TiC is shown to take place for it. Solid solution formation in TiC-ZrC, TiN-ZrC and ZrC-ZrN systems differing from TiC-TiN, TiN-ZrN and TiC-TiN is stated to be followed by essential deformation of component zone structures that, obviously, should prevent formation of solid solutions without vacancies in sublatices in these systems

  16. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Hirukawa, Koji; Sakurada, Koichi.

    1994-01-01

    A bundle of fuel rods is divided into four fuel rod group regions of small fuel rod bundles by a cross-shaped partitioning structure consisting of paired plate-like structures which connect two opposing surfaces of a channel box. A water removing material with less neutron absorption (for example, Zr or a Zr alloy) or a solid moderator is inserted and secured to a portion of a non-boiling water region interposed between the paired plate-like structure. It has a structure that light water flows to the region in the plate-like structure. The volume, density or composition of the water removing material is controlled depending on the composition of the fuels, to change the moderating characteristics of neutrons in the non-boiling water region. This can easily moderate the difference of nuclear characteristics between each of fuel assemblies using fuel materials of different fuel compositions. Further, the reactivity control effect of the burnable poisons can be enhanced without worsening fuel economy or linear power density. (I.N.)

  17. Numerical verification of the theory of coupled reactors for a deuterium critical assembly using MCNP5

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.

    2013-01-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors and the coupling coefficients were investigated by changing of the water levels in the inner and outer cores. The numerical results of the model developed with MCNP5 code were validated and verified against published results and the mathematical model based on coupled reactor theory. (author)

  18. Numerical verification of the theory of coupled reactors for a deuterium critical assembly using MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca, E-mail: lewis-b@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors and the coupling coefficients were investigated by changing of the water levels in the inner and outer cores. The numerical results of the model developed with MCNP5 code were validated and verified against published results and the mathematical model based on coupled reactor theory. (author)

  19. The development of octagon Zr-4 alloy tube for heating reactors

    International Nuclear Information System (INIS)

    Yang Fanglin; Yang Yingli; Wang Guangshen

    1989-10-01

    The asymmetrical octagon Zr-4 alloy tubes which are used for fuel assembly in the heating reactor have been developed. The thickness of tube wall is 1.5 mm and the length is 1725 mm. The long side of the octagon is 138.7 0.3 +0.2 mm, the short side is 93.1 ± 0.1 mm. To manufacture these tubes a stretch draw forming processing method is adopted. The process is divided into two phases. In the first phase, a short draw mould is used to stretch the Zr-4 alloy tube. In the second phase, a long draw mould, its length is equal to the end-produt length, is used to complete the final processing. The size accuracy and repeatability of this method are excellent and can fully meet the design requirements

  20. Monte Carlo cross section testing for thermal and intermediate 235U/238U critical assemblies, ENDF/B-V vs ENDF/B-VI

    International Nuclear Information System (INIS)

    Weinman, J.P.

    1997-06-01

    The purpose of this study is to investigate the eigenvalue sensitivity to changes in ENDF/B-V and ENDF/B-VI cross section data sets by comparing RACER vectorized Monte Carlo calculations for several thermal and intermediate spectrum critical experiments. Nineteen Oak Ridge and Rocky Flats thermal solution benchmark critical assemblies that span a range of hydrogen-to- 235 U (H/U) concentrations (2052 to 27.1) and above-thermal neutron leakage fractions (0.555 to 0.011) were analyzed. In addition, three intermediate spectrum critical assemblies (UH3-UR, UH3-NI, and HISS-HUG) were studied

  1. Dynamics of transfer and distribution of 95Zr in the broadbean-soil ecosystem

    International Nuclear Information System (INIS)

    Liu Lili; Shi Jianjun; Zhao Xiyue; Hua Yuejin

    2005-01-01

    The transfer and distribution of 95 Zr in a simulated broadbean-soil system was studied by using isotope-tracer techniques. The results showed that the 95 Zr was mainly concentrated in the haulm, pod and root, and the activity concentration of 95 Zr in these tissues reached the maximum in the initial stage then decreased continuously. The activity concentration of 95 Zr in edible part-bean was relatively lower, which was just near to the detection limit. The 95 Zr in soil was mainly (97%) deposited in surface layer soil (0-6 cm), indicating that the 95 Zr absorbed by surface soil could not be moved downwards easily because of the strong adsorption. The dynamics of 95 Zr concentrations in broadbean and soil were also confirmed by application of nonlinear regression method

  2. Structure and Dynamics of Zr6O8 Metal-Organic Framework Node Surfaces Probed with Ethanol Dehydration as a Catalytic Test Reaction.

    Science.gov (United States)

    Yang, Dong; Ortuño, Manuel A; Bernales, Varinia; Cramer, Christopher J; Gagliardi, Laura; Gates, Bruce C

    2018-03-14

    Some metal-organic frameworks (MOFs) incorporate nodes that are metal oxide clusters such as Zr 6 O 8 . Vacancies on the node surfaces, accidental or by design, act as catalytic sites. Here, we report elucidation of the chemistry of Zr 6 O 8 nodes in the MOFs UiO-66 and UiO-67 having used infrared and nuclear magnetic resonance spectroscopies to determine the ligands on the node surfaces originating from the solvents and modifiers used in the syntheses and having elucidated the catalytic properties of the nodes for ethanol dehydration, which takes place selectively to make diethyl ether but not ethylene at 473-523 K. Density functional theory calculations show that the key to the selective catalysis is the breaking of node-linker bonds (or the accidental adjacency of open/defect sites) that allows catalytically fruitful bonding of the reactant ethanol to neighboring sites on the nodes, facilitating the bimolecular ether formation through an S N 2 mechanism.

  3. Assessment of off-stoichiometric Zr33-xFe52+xSi15 C14 Laves phase compounds as permanent magnet materials

    Science.gov (United States)

    Gabay, A. M.; Hadjipanayis, G. C.

    2018-05-01

    Recently, Fe-based rare-earth-free compounds with non-cubic crystal structures were proposed as a base for permanent magnets which would not rely on critical elements. In this work, two series of alloys, Zr27Fe73-wSiw (0 ≤ w ≤ 15) and Zr33-xFe52+xSi15 (0 ≤ x ≤ 11), were prepared and characterized after annealing at 1538 K in order to determine the fundamental magnetic properties of the C36 and C14 hexagonal Laves phase compounds. A mixture of the cubic C15 and Zr6Fe23 structures was observed instead of the expected C36 structure. The hexagonal C14 was found in all Zr33-xFe52+xSi15 alloys with its lattice parameters linearly decreasing as the Fe(Si) atoms occupy the Zr sites in the Laves phase crystal structure. The solubility limit of Fe in the C14 structure at 1538 K corresponds to x = 9.5. The Curie temperature of the C14 compounds increases with deviation from the Laves phase stoichiometry from 290 K to 530 K. The room-temperature spontaneous magnetization also increases reaching, after correcting for the non-magnetic impurities, a value of 6.7 kG. The magnetocrystalline anisotropy of the off-stoichiometric C14 Laves phase was found to be uniaxial with the easy magnetization direction parallel to the hexagonal axis. Unfortunately, the anisotropy field, which does not exceed 10 kOe, is not sufficiently high to make the compounds interesting as permanent magnet materials.

  4. Deuterium absorption and material phase characteristics of Zr2Fe

    International Nuclear Information System (INIS)

    Nobile, A.; Mosley, W.C.; Holder, J.S.; Brooks, K.N.

    1992-01-01

    Scanning electron microscope (SEM) images of polished surfaces, electron probe microanalysis, and X-ray powder diffractometry indicated the presence of a continuous Zr 2 Fe phase with secondary phases of ZrFe 2 , Zr 5 FeSn, α-Zr, and Zr 6 Fe 3 O. A statistically-designed experiment to determine the effects of temperature, time, and vacuum quality On activation of St 198 revealed that when activated at low temperature (350 degrees C) deuterium absorption rate was slower when the vacuum quality was pwr (2.5 Pa vs. 3x10 -4 Pa). However, at higher activation temperature (500 degrees C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200--500 degrees C. The P-C-T data over the full range of deuterium loading and at temperatures of 350 degrees C and below is described by: K 0e -(ΔH α /RT)=PD 2 q 2 /(q*-q) 2 where ΔHα and K 0 have values of 101.8 kJ·mole -1 and 3.24x10 -8 Pa -1 , and q* is 15.998 kPa·L -1 ·g -1 . At higher temperatures, one or more secondary reactions in the solid phase occur that slowly consume D 2 from the gas phase. XRD suggests these reactions to be: 2 Zr 2 FeD x → x ZrD 2 + x/3 ZrFe 2 + (2 - 2/3x) Zr 2 Fe and Zr 2 FeD x + (2 -1/2x) D 2 → ZrD 2 + Fe, where 0 < x < 3. Reaction between gas phase deuterium and Zr2FC formed in the first reaction accounts for the observed consumption of deuterium from the gas phase by this reaction

  5. Structure of zirconium-93 and zirconium-91 as shown by the reactions Zr-92(d,p)Zr-93 and Zr-92(d,t)Zr-91

    Science.gov (United States)

    Baron, N.; Leonard, R. F.; Stewart, W. M.; Fink, C. L.; Christensen, P. R.; Nickles, J.; Thorsteinsen, T. F.

    1972-01-01

    Deuterons of 13-MeV incident energy were scattered from Zr-92(d,p)Zr-93. The Zr-92(d,p)Zr-93 data analysis resulted in the location of 47 levels up to an excitation energy of 4.84 MeV, and the spins of 43 of these levels were identified. Essentially all the strength of the 2d5/2, 3s1/2, 2d3/2, and 1g7/2 shells was observed; and the excitation energy of their centroids was computed to be 0.00, 1.21, 2.23, and 2.37 MeV, respectively. Also, 43 percent of the 1h11/2 strength, 21 percent of the 2f7/2 strength, and 3 percent of the 3p3/2 strength were observed. In addition, the Zr-92(d,t)Zr-91 data analysis resulted in the location of 26 levels up to an excitation energy of 4.01 MeV, and the spins of 21 of these levels were identified. Most of the expected strength of the 2d5/2 and 1g9/2 shells was obtained, and the excitation energy of their centroids was computed to be 0.31 and 3.19 MeV, respectively. In addition, six l=1 states are populated belonging to either the 2p1/2 or 2p3/2 shells.

  6. From solid solution to cluster formation of Fe and Cr in α-Zr

    International Nuclear Information System (INIS)

    Burr, P.A.; Wenman, M.R.; Gault, B.; Moody, M.P.; Ivermark, M.; Rushton, M.J.D.; Preuss, M.; Edwards, L.; Grimes, R.W.

    2015-01-01

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques — atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  7. From solid solution to cluster formation of Fe and Cr in α-Zr

    Energy Technology Data Exchange (ETDEWEB)

    Burr, P.A., E-mail: burr.patrick@gmail.com [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Menai, New South Wales 2234 (Australia); Wenman, M.R. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Gault, B.; Moody, M.P. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Ivermark, M. [High Temperature Materials, Sandvik Materials Technology, 734 27 Hallstahammar (Sweden); University of Manchester, School of Materials, M13 9PL (United Kingdom); Rushton, M.J.D. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Preuss, M. [University of Manchester, School of Materials, M13 9PL (United Kingdom); Edwards, L. [Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Menai, New South Wales 2234 (Australia); Grimes, R.W. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom)

    2015-12-15

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques — atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  8. Characterization of neutron leakage probability, k /SUB eff/ , and critical core surface mass density of small reactor assemblies through the Trombay criticality formula

    International Nuclear Information System (INIS)

    Kumar, A.; Rao, K.S.; Srinivasan, M.

    1983-01-01

    The Trombay criticality formula (TCF) has been derived by incorporating a number of well-known concepts of criticality physics to enable prediction of changes in critical size or k /SUB eff/ following alterations in geometrical and physical parameters of uniformly reflected small reactor assemblies characterized by large neutron leakage from the core. The variant parameters considered are size, shape, density and diluent concentration of the core, and density and thickness of the reflector. The effect of these changes (except core size) manifests, through sigma /SUB c/ the critical surface mass density of the ''corresponding critical core,'' that sigma, the massto-surface-area ratio of the core,'' is essentially a measure of the product /rho/ extended to nonspherical systems and plays a dominant role in the TCF. The functional dependence of k /SUB eff/ on sigma/sigma /SUB c/ , the system size relative to critical, is expressed in the TCF through two alternative representations, namely the modified Wigner rational form and, an exponential form, which is given

  9. Fundamental science investigations to develop a 6-MV laser triggered gas switch for ZR: first annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Van Den Avyle, James A.; Lehr, Jane Marie; Rose, David (Voss Scientific, Albuquerque, NM); Krompholz, Hermann G. (Texas Tech University, Lubbock, TX); Vela, Russell (Texas Tech University, Lubbock, TX); Jorgenson, Roy Eberhardt; Timoshkin, Igor (University of Strathclyde, Glasgow, Scotland); Woodworth, Joseph Ray; Prestwich, Kenneth Randel (Voss Scientific, Albuquerque, NM); Krile, John (Texas Tech University, Lubbock, TX); Given, Martin (University of Strathclyde, Glasgow, Scotland); McKee, G. Randall; Rosenthal, Stephen Edgar; Struve, Kenneth William; Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Benwell, Andrew L. (University of Missouri-Columbia, Columbia, Missouri); Kovaleski, Scott (University of Missouri-Columbia, Columbia, Missouri); LeChien, Keith, R.; Johnson, David (Titan Pulse Sciences Division); Fouracre, R.A. (University of Strathclyde, Glasgow, Scotland); Yeckel, Chris (University of Missouri-Columbia, Columbia, Missouri); Wakeland, Peter Eric (Ktech Corporation, Albuquerque, NM); Miller, A. R. (Titan Pulse Sciences Division); Hodge, Keith Conquest (Ktech Corporation, Albuquerque, NM); Pasik, Michael Francis; Savage, Mark Edward; Maenchen, John Eric; Curry, Randy D. (University of Missouri-Columbia, Columbia, Missouri); Feltz, Greg (Ktech Corporation, Albuquerque, NM); Bliss, David Emery; MacGregor, Scott (University of Strathclyde, Glasgow, Scotland); Corley, J. P. (Ktech Corporation, Albuquerque, NM); Anaya, Victor (Ktech Corporation, Albuquerque, NM); Wallace, Zachariah (Ktech Corporation, Albuquerque, NM); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Neuber, Andreas. (Texas Tech University, Lubbock, TX)

    2007-03-01

    In October 2005, an intensive three-year Laser Triggered Gas Switch (LTGS) development program was initiated to investigate and solve observed performance and reliability issues with the LTGS for ZR. The approach taken has been one of mission-focused research: to revisit and reassess the design, to establish a fundamental understanding of LTGS operation and failure modes, and to test evolving operational hypotheses. This effort is aimed toward deploying an initial switch for ZR in 2007, on supporting rolling upgrades to ZR as the technology can be developed, and to prepare with scientific understanding for the even higher voltage switches anticipated needed for future high-yield accelerators. The ZR LTGS was identified as a potential area of concern quite early, but since initial assessments performed on a simplified Switch Test Bed (STB) at 5 MV showed 300-shot lifetimes on multiple switch builds, this component was judged acceptable. When the Z{sub 20} engineering module was brought online in October 2003 frequent flashovers of the plastic switch envelope were observed at the increased stresses required to compensate for the programmatically increased ZR load inductance. As of October 2006, there have been 1423 Z{sub 20} shots assessing a variety of LTGS designs. Numerous incremental and fundamental switch design modifications have been investigated. As we continue to investigate the LTGS, the basic science of plastic surface tracking, laser triggering, cascade breakdown, and optics degradation remain high-priority mission-focused research topics. Significant progress has been made and, while the switch does not yet achieve design requirements, we are on the path to develop successively better switches for rolling upgrade improvements to ZR. This report summarizes the work performed in FY 2006 by the large team. A high-level summary is followed by detailed individual topical reports.

  10. Enhancing MA transmutation by irradiation of (MA, Zr)Hx in FBR blanket region - 5383

    International Nuclear Information System (INIS)

    Konashi, K.; Ikeda, K.; Itoh, K.; Hirai, M.; Koyama, T.; Kurosaki, K.

    2015-01-01

    Minor actinide (MA) hydride is proposed as transmutation target in sodium-cooled mixed oxide fuelled fast reactor. Preliminarily calculations have been done to check the transmutation efficiency of MA hydride targets. Three different types of MA target, MA-Zr alloy, (MA, Zr)O 2 and (MA, Zr)H x , have been compared on MA transmutation rate. The targets are assumed to be loaded around an active core in a 280 MWe sodium-cooled reactor; 54 MA target assemblies are respectively arranged in a row in the radial blanket zone. They are supposed to be irradiated for one year and then be cooled for 60 days. The transmuted mass has been evaluated by three-dimensional diffusion calculation to be 25, 15, 61 kg/EFPY for the alloy, the oxide and the hydride respectively, where production of MA in the active core is taken into account. The transmutation mass by (MA, Zr)H x is much larger than those by the other types of targets, while the core characteristics remain sound by locating MA targets outside of the active core. On top of that, two kinds of (MA, Zr)O 2 targets which are combined with ZrH x (x=1.7) pins have been calculated. Major Research/Development items are selected to establish the MA hydride transmutation method by reviewing technologies applicable to the transmutation system. The practical use of the MA hydride transmutation method is not far ahead technically, since this method can be developed by the extension of existing technologies. (authors)

  11. Structural study of Zr-based metallic glasses

    International Nuclear Information System (INIS)

    Matsubara, E.; Ichitsubo, T.; Saida, J.; Kohara, S.; Ohsumi, H.

    2007-01-01

    Structures of Zr 70 Ni 20 Al 10 , Zr 70 Cu 20 Al 10 , Zr 70 Cu 30 and Zr 70 Ni 30 amorphous alloys were analyzed by high-energy X-ray diffraction. The relatively stable Zr 2 Cu amorphous alloy shows a local atom arrangement different from the Zr 2 Cu crystalline phase. By contrast, the less stable Zr 70 Ni 30 amorphous alloy has a structure similar to Zr 2 Ni. In the Zr 70 Cu 20 Al 10 metallic glass, Zr-Al nearest neighbor pairs are introduced in the amorphous structure. In the Zr 70 Ni 20 Al 10 metallic glass, the strong correlation between Zr-Ni pairs is drastically modified by the formation of Zr-Al pairs. The presence of Zr-Al pairs in the ternary alloys suppresses the crystallization and stabilizes the glassy state

  12. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    International Nuclear Information System (INIS)

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.

    1997-10-01

    The Solution High-Energy Burst Assembly (SHEBA) was originally constructed during 1980 and was designed to be a clean free-field geometry, right-circular, cylindrically symmetric critical assembly employing U(5%)O 2 F 2 solution as fuel. A second version of SHEBA, employing the same fuel but equipped with a fuel pump and shielding pit, was commissioned in 1993. This report includes data and operating experience for the 1993 SHEBA only. Solution-fueled benchmark work focused on the development of experimental measurements of the characterization of SHEBA; a summary of the results are given. A description of the system and the experimental results are given in some detail in the report. Experiments were designed to: (1) study the behavior of nuclear excursions in a low-enrichment solution, (2) evaluate accidental criticality alarm detectors for fuel-processing facilities, (3) provide radiation spectra and dose measurements to benchmark radiation transport calculations on a low-enrichment solution system similar to centrifuge enrichment plants, and (4) provide radiation fields to calibrate personnel dosimetry. 15 refs., 37 figs., 10 tabs

  13. Distribution and migration of 95Zr in a tea plant/soil system

    International Nuclear Information System (INIS)

    Shi Jianjun; Guo Jiangfeng

    2006-01-01

    95 Zr is a primary radionuclide in the radioactive liquid efflux from a pressurized water reactor and one of the main radionuclides released after nuclear accidents. The fission yield of 95 Zr is as high as 6.2%, however, its environmental behavior has not been well documented. An experiment was conducted to evaluate the accumulation and distribution of 95 Zr in a tea plant/soil system. 95 Zr was accumulated primarily in the trunk of tea plants after being taken up from the soil. The radioactivity concentration of 95 Zr in the trunk increased slowly with time, then it reached a dynamic equilibrium 14 days after application. The radioactivity concentration of 95 Zr in the other parts of the tea plant was very low; only slighter greater than the detection limit. The results indicated that 95 Zr was not readily translocated in the tea plant. About 98.9% of applied 95 Zr was found to concentrate in the upper 5 cm layer after being sprayed onto the soil surface. The results indicated that 95 Zr could not readily move downwards with percolating water due to strong adsorption to surface soil

  14. Analysis of Np-237 ENDF for the theortical interpretation of critical assembly experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Mihaila, B. (Bogdan); Chadwick, M. B. (Mark B.); MacFarlane, R. E. (Robert E.); Kawano, T. (Toshihiko)

    2004-01-01

    We report on the present status of our effort toward an improved Np-237 evaluated nuclear data file (ENDF). The aim here is to bridge the gap between calculated and observed k-eff values, as measured at the Np-U critical assembly at LANL, TA-18. As such, we perform a critical analysis of the existing body of experimental data and recommended evaluations. We are targeting in principal the fission nu-bar and cross section in Np-237, as well as the inelastic scattering which is particularly important since Np-237 is a threshold fissioner. This analysis will be employed in a future sensitivity study of the calculated k-eff with respect to variations of the afore mentioned nuclear data.

  15. First principles and phonon calculations of ZrCo and ZrCo-H systems

    International Nuclear Information System (INIS)

    Chattaraj, D.; Parida, S.C.; Dash, Smruti; Majumder, C.

    2012-01-01

    The intermetallic ZrCo is a potential material for the storage and release of hydrogen isotopes because of its high gravimetric capacity and its low hydrogen equilibrium pressure. This intermetallic is a proposed material for the safe storage, supply and delivery of hydrogen isotope in the ITER project. To investigate the suitability of ZrCo as a getter material for the storage of hydrogen isotope it is essential to know in detail the structure-property relationships in both ZrCo and its hydride. Hence, in this study, we have investigated the structural, electronic, vibrational and thermodynamic properties of ZrCo and ZrCoH 3 using the first principles and phonon calculations

  16. The estimation of corrosion behaviour of ZrTi binary alloys for dental applications using electrochemical techniques

    International Nuclear Information System (INIS)

    Mareci, Daniel; Bolat, Georgiana; Chelariu, Romeu; Sutiman, Daniel; Munteanu, Corneliu

    2013-01-01

    Titanium and zirconium are in the same group in the periodic table of elements and are known to have similar physical and chemical properties. Both Ti and Zr usually have their surfaces covered by a thin oxide film spontaneously formed in air. However, the cytotoxicity of ZrO 2 is lower than that of TiO 2 rutile. Treatments with fluoride are known as the main methods to prevent plaque formation and dental caries. The corrosion behaviour of ZrTi alloys with Ti contents of 5, 25 and 45 wt.% and cp-Ti was investigated for dental applications. All samples were tested by linear potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) performed in artificial saliva with different pH levels (5.6 and 3.4) and different fluoride (1000 ppm F − ) and albumin protein (0.6%) contents. In addition, scanning electron microscopy (SEM) was employed to observe the surface morphology of the test materials after linear potentiodynamic polarisation. The corrosion current densities for the ZrTi alloys increased with the titanium content. The Zr5Ti and Zr25Ti alloys were susceptible to localised corrosion. The role that Ti plays as an alloying element is that of increasing the resistance of ZrTi alloy to localised corrosion. The presence of 0.6% albumin protein in fluoridated acidified artificial saliva with 1000 ppm F − could protect the cp-Ti and ZrTi alloys from attack by fluoride ions. - Highlights: • Electrochemical and corrosion behaviour of the new ZrTi alloys were investigated. • The passive behaviour for all the ZrTi alloys is observed. • Addition of Ti to Zr improves the corrosion resistance in some fluoridated saliva. • The presence of albumin could prevent the ZrTi alloys from attack by fluoride ions

  17. The estimation of corrosion behaviour of ZrTi binary alloys for dental applications using electrochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, Daniel [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Bolat, Georgiana, E-mail: georgiana20022@yahoo.com [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Chelariu, Romeu [“Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, Iasi (Romania); Sutiman, Daniel [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Munteanu, Corneliu [“Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical, Iasi (Romania)

    2013-08-15

    Titanium and zirconium are in the same group in the periodic table of elements and are known to have similar physical and chemical properties. Both Ti and Zr usually have their surfaces covered by a thin oxide film spontaneously formed in air. However, the cytotoxicity of ZrO{sub 2} is lower than that of TiO{sub 2} rutile. Treatments with fluoride are known as the main methods to prevent plaque formation and dental caries. The corrosion behaviour of ZrTi alloys with Ti contents of 5, 25 and 45 wt.% and cp-Ti was investigated for dental applications. All samples were tested by linear potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) performed in artificial saliva with different pH levels (5.6 and 3.4) and different fluoride (1000 ppm F{sup −}) and albumin protein (0.6%) contents. In addition, scanning electron microscopy (SEM) was employed to observe the surface morphology of the test materials after linear potentiodynamic polarisation. The corrosion current densities for the ZrTi alloys increased with the titanium content. The Zr5Ti and Zr25Ti alloys were susceptible to localised corrosion. The role that Ti plays as an alloying element is that of increasing the resistance of ZrTi alloy to localised corrosion. The presence of 0.6% albumin protein in fluoridated acidified artificial saliva with 1000 ppm F{sup −} could protect the cp-Ti and ZrTi alloys from attack by fluoride ions. - Highlights: • Electrochemical and corrosion behaviour of the new ZrTi alloys were investigated. • The passive behaviour for all the ZrTi alloys is observed. • Addition of Ti to Zr improves the corrosion resistance in some fluoridated saliva. • The presence of albumin could prevent the ZrTi alloys from attack by fluoride ions.

  18. Structural study of Zr-based metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, E. [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)]. E-mail: e.matsubara@materials.mbox.media.kyoto-u.ac.jp; Ichitsubo, T. [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Saida, J. [Center of Interdisciplinary Research, Tohoku University, Sendai 980-8578 (Japan); Kohara, S. [JASRI, SPring-8, Sayo-gun, Hyogo 679-5198 (Japan); Ohsumi, H. [JASRI, SPring-8, Sayo-gun, Hyogo 679-5198 (Japan)

    2007-05-31

    Structures of Zr{sub 70}Ni{sub 20}Al{sub 10}, Zr{sub 70}Cu{sub 20}Al{sub 10}, Zr{sub 70}Cu{sub 30} and Zr{sub 70}Ni{sub 30} amorphous alloys were analyzed by high-energy X-ray diffraction. The relatively stable Zr{sub 2}Cu amorphous alloy shows a local atom arrangement different from the Zr{sub 2}Cu crystalline phase. By contrast, the less stable Zr{sub 70}Ni{sub 30} amorphous alloy has a structure similar to Zr{sub 2}Ni. In the Zr{sub 70}Cu{sub 20}Al{sub 10} metallic glass, Zr-Al nearest neighbor pairs are introduced in the amorphous structure. In the Zr{sub 70}Ni{sub 20}Al{sub 10} metallic glass, the strong correlation between Zr-Ni pairs is drastically modified by the formation of Zr-Al pairs. The presence of Zr-Al pairs in the ternary alloys suppresses the crystallization and stabilizes the glassy state.

  19. Super-microporous solid base MgO-ZrO2 composite and their application in biodiesel production

    Science.gov (United States)

    Su, Jiaojiao; Li, Yongfeng; Wang, Huigang; Yan, Xiaoliang; Pan, Dahai; Fan, Binbin; Li, Ruifeng

    2016-10-01

    The super-microporous microcrystalline MgO-ZrO2 nanomaterials (pore size 1-2 nm) was prepared successfully via a facile one-pot evaporation-induced self-assembly (EISA) method and employed in the transesterification of soybean oil and methanol. X-ray diffraction, transmission electron microscope, temperature programmed desorption of CO2, and N2 adsorption porosimetry were employed to characterize the nanocomposites. Nitrogen sorption isotherms revealed that these materials had large surface areas of more than 200 m2/g. Moreover, the sample with a Mg/Zr molar ratio of 0.5 and calcined at 400 °C showed high biodiesel yield (around 99% at 150 °C).

  20. Zr-ZrO sub 2 cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    CERN Document Server

    Zhang Qi Chu; Lee, K D; Shen, Y G

    2003-01-01

    High solar performance Zr-ZrO sub 2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO sub 2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO sub 2 or Al sub 2 O sub 3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80 deg. C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO sub 2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coating film w...

  1. Tuning ZrFe{sub 4}Si{sub 2} by Ge and Y substitution

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Katharina [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Institute of Solid State Physics, TU Dresden (Germany); Mufti, Nandang; Bergmann, Christoph; Rosner, Helge; Geibel, Christoph [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Goltz, Til; Klauss, Hans-Henning [Institute of Solid State Physics, TU Dresden (Germany); Woike, Theo [Institute for Structural Physics, TU Dresden (Germany)

    2016-07-01

    The intermetallic compound series AFe{sub 4}X{sub 2} (A = Y, Lu, Zr; X = Si, Ge) presents a rare case of magnetic frustrated metallic systems. In particular ZrFe{sub 4}Si{sub 2} is of strong interest because our results indicate this system to be very close to a quantum critical point (QCP) where Fe magnetic order disappears. To get a deeper insight into its ground state, we performed a detailed study of Ge and Y substituted ZrFe{sub 4}Si{sub 2}. The isovalent substitution of Ge for Si induces a negative chemical pressure as Ge is larger than Si. As expected from this, the substitution results in the formation of a well-defined antiferromagnetic order with Neel temperatures increasing up to 25 K at 40 % Ge. This confirms ZrFe{sub 4}Si{sub 2} to be extremely close to the QCP, just on the magnetic side of it. With the second substitution series Y{sub x}Zr{sub 1-x}Fe{sub 4}Si{sub 2} we investigate the development from the highly reduced antiferromagnetic order in ZrFe{sub 4}Si{sub 2} towards the two magnetic transitions at 56 K and 76 K, which we see in YFe{sub 4}Si{sub 2}.

  2. Microstructural evolution of Ni40Zr60 alloy during early stage of mechanical alloying of intermetallic compounds NiZr2 and Ni11Zr9

    International Nuclear Information System (INIS)

    Lee Peeyew; Koch, C.C.

    1994-01-01

    The microstructural change of Ni 40 Zr 60 alloy during mechanical alloying of mixtures of the intermetallic compounds NiZr 2 and Ni 11 Zr 9 has been studied by transmission electron microscopy. A specific ''cauliflower'' phase was formed during early stage of mechanical alloying process. It is suggested that the solid state reaction between intermetallic compounds NiZr 2 and Ni 11 Zr 9 is not the only origin for the formation of the ''cauliflower'' phase. ((orig.))

  3. Control of box C/D snoRNP assembly by N6-methylation of adenine.

    Science.gov (United States)

    Huang, Lin; Ashraf, Saira; Wang, Jia; Lilley, David Mj

    2017-09-01

    N 6 -methyladenine is the most widespread mRNA modification. A subset of human box C/D snoRNA species have target GAC sequences that lead to formation of N 6 -methyladenine at a key trans Hoogsteen-sugar A·G base pair, of which half are methylated in vivo The GAC target is conserved only in those that are methylated. Methylation prevents binding of the 15.5-kDa protein and the induced folding of the RNA Thus, the assembly of the box C/D snoRNP could in principle be regulated by RNA methylation at its critical first stage. Crystallography reveals that N 6 -methylation of adenine prevents the formation of trans Hoogsteen-sugar A·G base pairs, explaining why the box C/D RNA cannot adopt its kinked conformation. More generally, our data indicate that sheared A·G base pairs (but not Watson-Crick base pairs) are more susceptible to disruption by N 6 mA methylation and are therefore possible regulatory sites. The human signal recognition particle RNA and many related Alu retrotransposon RNA species are also methylated at N6 of an adenine that forms a sheared base pair with guanine and mediates a key tertiary interaction. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  4. Effect of rare-earth composition on microstructure and pinning properties of Zr-doped (Gd,Y)Ba2Cu3Ox superconducting tapes

    International Nuclear Information System (INIS)

    Selvamanickam, V; Zhang, Y; Guevara, A; Shi, T; Yao, Y; Majkic, G; Galtsyan, E; Chen, Y; Lei, C; Miller, D J

    2012-01-01

    The effect of changing Gd + Y content from 1.2 to 1.6 in the precursor of (Gd,Y)Ba 2 Cu 3 O 7 superconducting thin film tapes made by metal organic chemical vapor deposition (MOCVD) at a constant Gd:Y ratio and a fixed Zr content of 7.5% has been studied. The influence of changing the Gd:Y ratio from Gd = 0 to Y= 0 in 0.2 mol steps at a constant Gd + Y content of 1.2 in the precursor has also been investigated at a fixed Zr content of 7.5%. The critical current of these films is found to vary significantly as a function of rare-earth content as well as a function of rare-earth type. Even for a fixed Zr content, it is found that the critical current in the orientation of magnetic field parallel to the a–b plane and that in the orientation of field perpendicular to the a–b plane can be systematically varied with changing Gd + Y content as well as with changing Gd:Y ratio. The nanoscale defect structures along the a–b plane and along the c-axis are found to be sensitive to these changes in rare-earth content and type. (paper)

  5. Pr6O11 micro-spherical nano-assemblies: Microwave-assisted synthesis, characterization and optical properties

    International Nuclear Information System (INIS)

    Majeed, Shafquat; Shivashankar, S.A.

    2013-01-01

    We report the synthesis of Pr 6 O 11 microspheres self-assembled from ultra-small nanocrystals formed by the microwave irradiation of a solution of a salt of Pr in ethylene glycol (EG). The as-prepared product consists of microspheres measuring 200 to 500 nm in diameter and made of 6 O 11 microspheres assembled from ultra-small nanocrystals were synthesized. • As-prepared microspheres are covered by ethylene glycol as shown by IR analysis. • Role of temperature and pressure on self-assembly studied. • Luminescence emission behaviour of as-prepared and annealed products studied

  6. Microbial BOD sensors based on Zr (IV)-loaded collagen fiber.

    Science.gov (United States)

    Zhao, Lei; He, Li; Chen, Shujuan; Zou, Likou; Zhou, Kang; Ao, Xiaolin; Liu, Shuliang; Hu, Xinjie; Han, Guoquan

    2017-03-01

    Biochemical oxygen demand (BOD) sensors based on Zr (IV)-loaded collagen fiber (ZrCF), a novel material with great porous structure, were developed. This novel material shows adsorbability by microorganisms. Saccharomyces cerevisiae and Escherichia coli were used for the construction of BOD sensors. Factors affecting BOD sensor performance were examined. The ZrCF-based BOD sensor showed different sensitivities and linear response ranges with different biofilm densities. The amount of microorganisms strongly affected the performance of the BOD sensor. Poor permeability of previously reported immobilization carriers were greatly circumvented by ZrCF. The service life of the ZrCF-based BOD sensor was more than 42 days. The immobilized microorganisms can be stored for more than 6 months under 4°C in PB solution. There was good correlation between the results of the sensor method and the standard 5-day BOD method in the determination of pure organic substrates and real water samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Characterization of the CALIBAN Critical Assembly Neutron Spectra using Several Adjustment Methods Based on Activation Foils Measurement

    OpenAIRE

    Casoli Pierre; Grégoire Gilles; Rousseau Guillaume; Jacquet Xavier; Authier Nicolas

    2016-01-01

    CALIBAN is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located on the French CEA Center of Valduc. The reactor is extensively used for benchmark experiments dedicated to the evaluation of nuclear data, for electronic hardening or to study the effect of the neutrons on various materials. Therefore CALIBAN irradiation characteristics and especially its central cavity neutron spectrum have to be very accurately evaluated. In order to streng...

  8. Monte Carlo Depletion with Critical Spectrum for Assembly Group Constant Generation

    International Nuclear Information System (INIS)

    Park, Ho Jin; Joo, Han Gyu; Shim, Hyung Jin; Kim, Chang Hyo

    2010-01-01

    The conventional two-step procedure has been used in practical nuclear reactor analysis. In this procedure, a deterministic assembly transport code such as HELIOS and CASMO is normally to generate multigroup flux distribution to be used in few-group cross section generation. Recently there are accuracy issues related with the resonance treatment or the double heterogeneity (DH) treatment for VHTR fuel blocks. In order to mitigate the accuracy issues, Monte Carlo (MC) methods can be used as an alternative way to generate few-group cross sections because the accuracy of the MC calculations benefits from its ability to use continuous energy nuclear data and detailed geometric information. In an earlier work, the conventional methods of obtaining multigroup cross sections and the critical spectrum are implemented into the McCARD Monte Carlo code. However, it was not complete in that the critical spectrum is not reflected in the depletion calculation. The purpose of this study is to develop a method to apply the critical spectrum to MC depletion calculations to correct for the leakage effect in the depletion calculation and then to examine the MC based group constants within the two-step procedure by comparing the two-step solution with the direct whole core MC depletion result

  9. Formation of Ti--Zr--Cu--Ni bulk metallic glasses

    International Nuclear Information System (INIS)

    Lin, X.H.; Johnson, W.L.

    1995-01-01

    Formation of bulk metallic glass in quaternary Ti--Zr--Cu--Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti 34 Zr 11 Cu 47 Ni 8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti 34 Zr 11 Cu 47 Ni 8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn 2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation. copyright 1995 American Institute of Physics

  10. Physical properties of molten core materials: Zr-Ni and Zr-Cr alloys measured by electrostatic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Ohishi, Yuji, E-mail: ohishi@see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University (Japan); Kondo, Toshiki [Graduate School of Engineering, Osaka University (Japan); Ishikawa, Takehiko [Japan Aerospace Exploration Agency (Japan); SOKEN-DAI (Graduate University for Advanced Studies) (Japan); Okada, Junpei T. [Institute for Materials Research, Tohoku University (Japan); Watanabe, Yuki [Advanced Engineering Services Co. Ltd. (Japan); Muta, Hiroaki; Kurosaki, Ken [Graduate School of Engineering, Osaka University (Japan); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University (Japan); Research Institute of Nuclear Engineering, University of Fukui (Japan)

    2017-03-15

    It is important to understand the behaviors of molten core materials to investigate the progression of a core meltdown accident. In the early stages of bundle degradation, low-melting-temperature liquid phases are expected to form via the eutectic reaction between Zircaloy and stainless steel. The main component of Zircaloy is Zr and those of stainless steel are Fe, Ni, and Cr. Our group has previously reported physical property data such as viscosity, density, and surface tension for Zr-Fe liquid alloys using an electrostatic levitation technique. In this study, we report the viscosity, density, and surface tension of Zr-Ni and Zr-Cr liquid alloys (Zr{sub 1-x}Ni{sub x} (x = 0.12 and 0.24) and Zr{sub 0.77}Cr{sub 0.23}) using the electrostatic levitation technique. - Highlights: • The physical properties of Zr-Ni and Zr-Cr liquid alloys have been measured Zr{sub 1-x}Ni{sub x} (x = 0.12 and 0.24) and Zr{sub 77}Cr{sub 23}. • The measurement was conducted using the electrostatic levitation technique. • The density, viscosity, and surface tension of each liquid alloy were measured.

  11. Physical properties of molten core materials: Zr-Ni and Zr-Cr alloys measured by electrostatic levitation

    International Nuclear Information System (INIS)

    Ohishi, Yuji; Kondo, Toshiki; Ishikawa, Takehiko; Okada, Junpei T.; Watanabe, Yuki; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2017-01-01

    It is important to understand the behaviors of molten core materials to investigate the progression of a core meltdown accident. In the early stages of bundle degradation, low-melting-temperature liquid phases are expected to form via the eutectic reaction between Zircaloy and stainless steel. The main component of Zircaloy is Zr and those of stainless steel are Fe, Ni, and Cr. Our group has previously reported physical property data such as viscosity, density, and surface tension for Zr-Fe liquid alloys using an electrostatic levitation technique. In this study, we report the viscosity, density, and surface tension of Zr-Ni and Zr-Cr liquid alloys (Zr 1-x Ni x (x = 0.12 and 0.24) and Zr 0.77 Cr 0.23 ) using the electrostatic levitation technique. - Highlights: • The physical properties of Zr-Ni and Zr-Cr liquid alloys have been measured Zr 1-x Ni x (x = 0.12 and 0.24) and Zr 77 Cr 23 . • The measurement was conducted using the electrostatic levitation technique. • The density, viscosity, and surface tension of each liquid alloy were measured.

  12. Zr3NiSb7: a new antimony-enriched ZrSb2 derivative

    Directory of Open Access Journals (Sweden)

    V. Romaka

    2008-08-01

    Full Text Available Single crystals of trizirconium nickel heptaantimonide were synthesized from the constituent elements by arc-melting. The compound crystallizes in a unique structure type and belongs to the family of two-layer structures. All crystallographically unique atoms (3 × Zr, 1 × Ni and 7 × Sb are located at sites with m symmetry. The structure contains `Zr2Ni2Sb5' and `Zr4Sb9' fragments and might be described as a new ZrSb2 derivative with a high Sb content.

  13. Simulation of reactor noise analysis measurement for light-water critical assembly TCA using MCNP-DSP

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro; Sakurai, Kiyoshi; Tonoike, Kotaro; Miyoshi, Yoshinori

    2001-01-01

    Reactor noise analysis methods using Monte Carlo technique have been proposed and developed in the field of nuclear criticality safety. The Monte Carlo simulation for noise analysis can be made by simulating physical phenomena in the course of neutron transport in a nuclear fuel as practically as possible. MCNP-DSP was developed by T. Valentine of ORNL for this purpose and it is a modified version of MCNP-4A. The authors applied this code to frequency analysis measurements performed in light-water critical assembly TCA. Prompt neutron generation times for critical and subcritical cores were measured by doing the frequency analysis of detector signals. The Monte Carlo simulations for these experiments were carried out using MCNP-DSP, and prompt neutron generation times were calculated. (author)

  14. Commissioning and start-up of RA-8 critical assembly

    International Nuclear Information System (INIS)

    Lorenzo, N. de; Diaz, C.; Facchini, G.; Fernandez, C.; Fittipaldi, A.; Juracich, R.; Levanon, I.; Manceda, J.; Martinez, J.; Mogdan, R.; Perez, J.; Scarnichia, E.; Blaumann, H.; Gennuso, G.; Scotti, G.

    1999-01-01

    The RA-8 critical assembly was designed as one of the experimental facilities for the CAREM Reactor Project. This paper describes the activities developed during the cold and hot commissioning, pointing out the difficulties and the solutions applied (some of them original ones). Moreover, this paper will show the main features of the newest nuclear installation of CNEA making a brief description of its characteristics. Among the special circumstances related to the commissioning that are described in the paper we can mention the following: 1. The facility shares the building with the Thermohydraulic Assay Laboratory (L.E.T.), another experimental facility of CAREM, and thus some shared systems have already been working for many years before this start up. Special procedures for these systems were designed to verify the proper functioning under the new requirements. 2. A new driving mechanism, based in hydraulic cylinders, was used to move the control rods. The criteria for acceptance and a validation of the procedure completeness have been carried out. 3. The implementation of a power measurement system based in neutron noise. 4. Measurement of Power Distribution using direct gamma counting from the fuel elements. 5. The commissioning was interrupted for a ten-month period because the personnel involved had to carry out the commissioning of the Egyptian Research Reactor 2. Also, the common activities during a commissioning are described, pointing out the major steps carried out and the results obtained. The following are examples of these activities: 1. Environmental dose survey (before fuel loading and during other stages). 2. Test of equipment and systems isolated from the rest of the plant. 3. Integrated system test (two or more systems working at the same time). 4. Start-up and power operation simulations before fuel loading. 5. Fuel loading strategy during the approximation to criticality by mass. 6. Modification of systems' components to improve the

  15. Mixed PWR core loadings with inert matrix Pu-fuel assemblies

    International Nuclear Information System (INIS)

    Stanculescu, A.; Kasemeyer, U.; Paratte, J.-M.; Chawla, R.

    1999-01-01

    The most efficient way to enhance plutonium consumption in light water reactors is to eliminate the production of plutonium all together. This requirement leads to fuel concepts in which the uranium is replaced by an inert matrix. At PSI, studies have focused on employing ZrO 2 as inert matrix. Adding a burnable poison to such a fuel proves to be necessary. As a result of scoping studies, Er 2 O 3 was identified as the most suitable burnable poison material. The results of whole-core three-dimensional neutronics analyses indicated, for a present-day 1000 MW e pressurised water reactor, the feasibility of an asymptotic equilibrium four-batch cycle fuelled solely with the proposed PuO 2 -Er 2 O 3 -ZrO 2 inert matrix fuel (IMF). The present paper presents the results of more recent investigations related to 'real-life' situations, which call for transition configurations in which mixed IMF and UO 2 assembly loadings must be considered. To determine the influence of the introduction of IMF assemblies on the characteristics of a UO 2 -fuelled core, three-dimensional full-core calculations have been performed for a present-day 1000 MW e PWR containing up to 12 optimised IMF assemblies. (author)

  16. Diffusion and chemical activity of Zr-Sn and Zr-Ti systems

    International Nuclear Information System (INIS)

    Zee, R.H.; Watters, J.F.; Davidson, R.D.

    1986-01-01

    A modified evaporation method was used to determine the diffusion coefficients and the emission rates of Sn and Ti in Zr-Sn and Zr-Ti, respectively, at temperatures between 1605 and 1970 K. Results show that both Sn and Ti diffuse in their respective alloys via a vacancy mechanism. Comparison with data in the literature reveals that the activation energy for diffusion of Sn in Zr-Sn, with Sn content between 3 and 5 at.X is relatively constant from 1200 to 1970 K. From the measured emission rates, values of 103 and 98 kcal/mol were obtained for the enthalpies of sublimation for Sn and Ti in their alloys. With a comparison of the solute vapor pressures with those of the pure elements, partial molar free energies, entropies, and enthalpies for the two systems were determined in the temperature range investigated. The Zr-Sn system shows a very large negative heat of formation (-33 kcal/mol) whereas the Zr-Ti system behaves quite ideally, in agreement with phase-diagram predictions

  17. Determination of concentration of Zr in Cu-Cr-Zr alloy and Li and Ti in lithium titanate by CPAA using proton beam from VEC accelerator

    International Nuclear Information System (INIS)

    Dasgupta, S.; Datta, J.; Chowdhury, D.P.; Verma, R.

    2015-01-01

    It has recently been reported that copper exhibits advanced mechanical properties in several technological applications even at elevated temperatures while it still retains its usual excellent conducting properties for which it is recommended primarily. The addition of Zr inhibits chemical reaction of Cu at elevated temperatures. It also helps to retain the physical properties at elevated temperatures. The Zr content of 0.15% can increase the softening temperature (by 300°C) having no significant effect on electrical conductivity. Uses include heat sinks, electrical and mechanical power transmission devices, electrical switches and turbine generators. The concentration of Zr in Cu-Cr-Zr was determined by charged particle activation analysis (CPAA) through activation product 90g Nb (t 1/2 - 14.6 h, 141.2 keV (69 %) from 90 Zr(p, n) 90g Nb nuclear reaction using 13 MeV proton from VEC machine. The irradiation of sample and standard (pure Zr metal plate) were carried out with proton beam using ∼600 nA beam current for 15 - 30 min. 90 Zr was chosen as the preferred isotope due to its high abundance in nature, the availability of a suitable daughter product with a γ-energy having no other interfering γ-energies from the matrix elements. The counting measurements of active sample were performed with a high resolution γ-spectrometer using HPGe detector (Efficiency: 40%, Resolution: 2 keV at 1332 keV). The data analysis of the γ-spectra of samples of Cu-Cr-Zr and standard showed the concentration of Zr in Cu-Cr-Zr sample was 190±18 mg kg -1

  18. Electronic and optical properties of ZrB12 and YB6. Discussion on electron-phonon coupling

    International Nuclear Information System (INIS)

    Teyssier, J.; Kuzmenko, A.; Marel, D. van der; Lortz, R.; Junod, A.; Filippov, V.; Shitsevalova, N.

    2006-01-01

    We report the optical properties of high-quality single crystals of low temperature superconductors zirconiumdodecaboride ZrB 12 (T c =5.95 K) and yttrium hexaboride YB 6 (T c =7.15 K) in the range 6 meV-4.6 eV at room temperature. The experimental optical conductivity was extracted from the analysis of the reflectivity in the infrared range and ellipsometry measurement of the dielectric function in the visible range. The electronic band structure of these compounds was calculated by the self-consistent full-potential LMTO method and used to compute the interband part of the optical conductivity and the plasma frequency Ω p . A good agreement was observed between the interband part of the experimental optical conductivities and the band structure calculations. Different methods combining optical spectroscopy, resistivity, specific heat measurements and results of band structure calculations are used to determine the electron-phonon coupling constant. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys investigated by EXAFS method

    International Nuclear Information System (INIS)

    Antonowicz, J.; Pietnoczka, A.; Zalewski, W.; Bacewicz, R.; Stoica, M.; Georgarakis, K.; Yavari, A.R.

    2011-01-01

    Research highlights: → Coordination number, interatomic distances and mean square atomic displacement in Zr-Cu and Zr-Cu-Al glasses. → Icosahedral symmetry in local atomic structure. → Deviation from random mixing behavior resulting from Al addition. - Abstract: We report on extended X-ray absorption fine structure (EXAFS) study of rapidly quenched Zr-Cu and Zr-Cu-Al glassy alloys. The local atomic order around Zr and Cu atoms was investigated. From the EXAFS data fitting the values of coordination number, interatomic distances and mean square atomic displacement were obtained for wide range of compositions. It was found that icosahedral symmetry rather than that of corresponding crystalline analogs dominates in the local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys. Judging from bonding preferences we conclude that addition of Al as an alloying element results in considerable deviation from random mixing behavior observed in binary Zr-Cu alloys.

  20. Oxidation of Zr and thin (0.2-4 nm) Zr films on Ag: An ESCA investigation

    International Nuclear Information System (INIS)

    Steiner, P.; Sander, I.; Siegwart, B.; Huefner, S.

    1987-01-01

    The oxidation of polycrystalline Zr under 10 -8 -10 -3 mbar oxygen pressure in the temperature range 25 0 -350 0 C is obtained from ESCA experiments. Changes in the ESCA spectra for thin Zr films on Ag oxidized at 250 0 C are observed and compared to the bulk Zr-metal. Thin Ag overlayers on Zr show a catalytic increase of the room temperature oxidation of Zr. (orig.)

  1. Creep properties of Nb-1Zr and Nb-1Zr-0.1C

    International Nuclear Information System (INIS)

    Horak, J.A.; Egner, L.K.

    1994-12-01

    In the early 1980s a compact, lithium cooled, fast-energy spectrum nuclear reactor was selected for space applications requiring prolonged uninterrupted electrical power. This reactor was to be capable of generating up to 100 kilowatts of electricity for times up to seven years in space and thus was given the acronym SP-100. The material selected for the fuel cladding, reactor heat transport systems and structural components was Nb-1 wt % Zr (Nb-1Zr). In addition to commercial Nb-1Zr, modified alloys containing 100--200 wt ppM each of carbon and nitrogen and 900 ± 150 wt ppM carbon were also included, Type B Nb-1Zr and PWC-11, respectively. The SP-100 reactor was designed to operate at temperatures of 1290--1425 K. At these temperatures the principal mode of deformation for Nb-1Zr is creep, and creep strain of the fuel cladding limits the useful reactor lifetime. To develop a creep data base for design, safety and reliability analyses, uniaxial creep testing of Nb-1Zr, Type B Nb-1Zr and PWC-11 was conducted from 1250--1450 K at stresses from 5.0 MPa to 41.4 MPa. Methodology and test results are presented

  2. Toughening behavior in ceramics associated with the transformation of tetragonal ZrO/sub 2/

    International Nuclear Information System (INIS)

    Becher, P.F.

    1986-01-01

    The contribution of the stress-induced phase transformation ZrO/sub 2/ to the fracture toughness of ceramics is described in terms of the zone size, the critical transformation stress and the influence of these parameters on the tetragonal to monoclinic transformation. For example in partially stabilized zirconia (PSZ), the ΔK/sub lC//sup T/ is shown to depend upon the martensite start (M/sub s/) temperature, which can be altered by the solute content and the particle or precipitate size. This behavior is consistent with the thermodynamics of the transformation. Experimental data correspond to the behavior predicted for various systems toughened by the addition of tetragonal ZrO/sub 2/ [e.g. PSZ and Al/sub 2/O/sub 3/-Z/sub 4/O/sub 2/(Y/sub 2/O/sub 3/). The stress required to transform the ZrO/sub 2/ is also modified by residual stresses due to the mismatch in matrix and particle (esp. thermal expansion) properties in the composite systems. The total residual stress acting on a particle is the sum of the particle's internal stress and the stress field of neighboring particles, and as a result, the total residual stress increases with volume fraction of ZrO/sub 2/ (V/sub f/). In the case of the Al/sub 2/O/sub 3/-ZrO/sub 2/ composites the pertinent stresses are tensile in character and thus promote the ZrO/sub 2/ transformation as V/sub f/ increases] For each level of Y/sub 2/O/sub 3/ in the ZrO/sub 2/, ΔK/sub lc//sup T/ then goes through a maximum with increase in V/sub f/ at a value of V/sub f/ where σ/sub R//sup T/ - σ/sub C//sup T/. The critical transformation stress is thus described for different levels of solute (e.g. Y/sub 2/O/sub 3/) in the ZrO/sub 2/. The dependence of ΔK/sub lc//sup T/ upon (σ/sub C//sup T/ - σ/sub R//sup T/) obtained is found to agree with the predicted behavior

  3. Mechanical and electrochemical characterization of Ti-12Mo-5Zr alloy for biomedical application

    International Nuclear Information System (INIS)

    Zhao Changli; Zhang Xiaonong; Cao Peng

    2011-01-01

    Highlights: → A new β metastable titanium alloy with composition of Ti-12Mo-5Zr that comprised of non-toxic elements Mo and Zr has been developed. → The elastic modulus of the Ti-12Mo-5Zr alloy is as low as 64 GPa, which is much lower than those of pure Ti and Ti-6Al-4V alloy. → The Ti-12Mo-5Zr alloy has moderate strength and much higher microhardness as compared with Ti-6Al-4V, which showing better mechanical biocompatibility. → The corrosion resistance is much higher than that of Ti-6Al-4V in a simulated body fluid (Hank's solution). - Abstract: We have fabricated a new β metastable titanium alloy that comprised of non-toxic elements Mo and Zr. Ingot with composition of Ti-12Mo-5Zr is prepared by melting pure metals in a vacuum non-consumable arc melting furnace. The alloy is then homogenized and solution treated under different temperature. The alloy is characterized by optical microscopy, X-ray diffraction, tensile tests and found to have an acicular martensitic α'' + β structure and dominant β phase for the 1053 K and 1133 K solution treatment samples, respectively. The elastic modulus of the latter is about 64 GPa, which is much lower than those of pure Ti and Ti-6Al-4V alloy. In addition, it had moderate strength and much higher microhardness as compared with Ti-6Al-4V alloy. The results show better mechanical biocompatibility of this alloy, which will avoid stress shielding and thus prevent bone resorption in orthopedic implants applications. As long-term stability in biological environment is required, we have also evaluated the electrochemical behavior in a simulated body fluid (Hank's solution). Potentiodynamic polarization curves exhibits that the 1133 K solution treatment Ti-12Mo-5Zr sample has better corrosion properties than Ti-6Al-4V and is comparable to the pure titanium. The good corrosion resistance combined with better mechanical biocompatibility makes the Ti-12Mo-5Zr alloy suitable for use as orthopedic implants.

  4. Optimization of plutonium and minor actinide transmutation in an AP1000 fuel assembly via a genetic search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Washington, J., E-mail: jwashing@gmail.com; King, J., E-mail: kingjc@mines.edu

    2017-01-15

    Highlights: • We model a modified AP1000 fuel assembly in SCALE6.1. • We couple the NEWT module of SCALE to the MOGA module of DAKOTA. • Transmutation is optimized based on choice of coating and fuel. • Greatest transmutation achieved with PuZrO{sub 2}MgO fuel pins coated with Lu{sub 2}O{sub 3}. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, which contains approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are the preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a near-term solution. Previous simulation work demonstrated the potential to transmute transuranic elements in a modified light water reactor fuel pin. This study optimizes a quarter-assembly containing target fuels coated with spectral shift absorbers for the transmutation of plutonium and minor actinides in light water reactors. The spectral shift absorber coating on the target fuel pin tunes the neutron energy spectrum experienced by the target fuel. A coupled model developed using the NEWT module from SCALE 6.1 and a genetic algorithm module from the DAKOTA optimization toolbox provided performance data for the burnup of the target fuel pins in the present study. The optimization with the coupled NEWT/DAKOTA model proceeded in three stages. The first stage optimized a single-target fuel pin per quarter-assembly adjacent to the central instrumentation channel. The second stage evaluated a variety of quarter-assemblies with multiple target fuel pins from the first stage and the third stage re-optimized the pins in the optimal second stage quarter-assembly. An 8 wt% PuZrO{sub 2}MgO inert matrix fuel pin with a 1.44 mm radius and a 0.06 mm Lu{sub 2}O{sub 3} coating in a five target fuel pin per quarter-assembly configuration represents the optimal combination for the

  5. Studies of spatial decoupling in heterogeneous LMFBR critical assemblies

    International Nuclear Information System (INIS)

    Brumbach, S.B.; Goin, R.W.; Carpenter, S.G.

    1984-01-01

    Recent measurements at the Zero Power Plutonium Reactor have studied the spatial decoupling in large, heterogeneous assemblies. These assemblies exhibited a significantly greater degree of decoupling than previous homogeneous assemblies of similar size. The flux distributions in these heterogeneous assemblies were very sensitive reactivity perturbations, and perturbed flux distributions were achieved relatively slowly. Decoupling was investigated using rod-drop, boron-oscillator and noise-coherence techniques which emphasized different times following the perturbations. Reactivity changes could be measured by analyzing the power history from a single detector using inverse kinetics methods with the assumption of an instantaneous efficiency change for the detector. For assemblies more decoupled than ZPPR-13, the instantaneous efficiency change assumption begins to be invalid

  6. Colloidal Self-Assembly Driven by Deformability & Near-Critical Phenomena

    NARCIS (Netherlands)

    Evers, C.H.J.|info:eu-repo/dai/nl/338775188

    2016-01-01

    Self-assembly is the spontaneous formation of patterns or structures without human intervention. This thesis aims to increase our understanding of self-assembly. In self-assembly of proteins, the building blocks are very small and complex. Consequently, grasping the basic principles that drive the

  7. Comparative study of the core level photoemission of the ZrB{sub 2} and ZrB{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Huerta, L. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico); Duran, A. [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 2681, Ensenada, Baja California 22800 (Mexico); Falconi, R. [Division Academica de Ciencias Basicas, Universidad Juarez Autonoma de Tabasco, Cunduacan, Tabasco, CP 86690, AP 24 (Mexico); Flores, M. [Departamento de Ingenieria de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, Zapopan Jal 45101 (Mexico); Escamilla, R., E-mail: rauleg@servidor.unam.m [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico)

    2010-05-01

    X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) were used to investigate the binding energies and valence band for ZrB{sub 2} and ZrB{sub 12}. The Zr 3d and B 1s core levels were identified. The Zr 3d core level shows a spin-orbit split 3d{sub 5/2} and 3d{sub 3/2} while that for B 1s core level exhibited a single symmetric peak, these being typical of zirconium and boride signals. Comparing the Zr 3d and B 1s core levels with metallic Zr, B{sub 2}O{sub 3} and ZrO{sub 2} reference materials only a negative chemical shift for Zr 3d associated to ZrB{sub 2} was observed, which suggests that the charge transfer model based on the concept of electronegativity was not applicable to explain the superconductivity in the ZrB{sub 12} sample. The measured valence band using UPS is consistent with the band-structure calculations indicating a higher density of states (DOS) at E{sub F} for ZrB{sub 12} respect to ZrB{sub 2}. Finally, we found that the weak mixed B-p and Zr-d states for ZrB{sub 12} is crucial for the superconductivity due to the state population increased the DOS at the E{sub F}.

  8. Nanocrystallization in Cu-Zr-Al-Sm Bulk Metallic Glasses

    Science.gov (United States)

    Sikan, Fatih; Yasar, Bengisu; Kalay, Ilkay

    2018-04-01

    The effect of rare-earth element (Sm) microalloying on the thermal stability and crystallization kinetics of melt-spun ribbons and suction-cast rods of Zr48Cu38.4Al9.6Sm4 alloy were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). The XRD results of constant heating rate annealing indicated that amorphous Zr48Cu38.4Al9.6Sm4 melt-spun ribbons devitrifies into Cu2Sm at 673 K (400 °C). The sequence continues with the precipitation of Cu10Zr7 and then these two phases coexist. XRD and TEM studies on 1 mm diameter as suction-cast rods indicated the precipitation of 30-nm-mean size Cu2Sm crystals during solidification. TEM investigation of the isothermal crystallization sequence of melt-spun ribbons and 1-mm-diameter suction-cast rods revealed the precipitation of Cu2Sm nanocrystals at the onset of crystallization and the restriction of the growth of these nanocrystals up to 10 nm diameter with further annealing. APT analysis of 1-mm-diameter suction-cast rods showed that the limited growth of Cu2Sm nanocrystals is due to sluggish diffusion of Sm and Al-Zr pile up at the interface.

  9. Eddy Currents Inspection of CANDU Steam Generator Tubes using Zetec's ZR-1 Robot. Experience in Romania

    International Nuclear Information System (INIS)

    Scott Hower; Luiza Vladu; Adrian Nichisov; Mihai Cretu

    2006-01-01

    Full text of publication follows: The commercial operation of Unit 1 of Cernavoda NPP started on 2 December, 1996. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium. The nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant has four CANDU - design steam generators that have been in service since 1996. The paper introduces the new ZR-1 Robot System for Inspection and Maintenance/Repair from Zetec that combines the newest state-of-the-art robotics technology with Zetec experience - based innovation to address the needs for inspection and repair of steam generators. The multipurpose ZR-1 can be easily installed to perform the necessary eddy current inspection and remain installed ready for follow-up maintenance and repair. It has superior technical performances and a modular three axis motion of arm that enables 100% coverage of tube sheet. Automated, repeatable, and precise positioning of tool heads ensures accurate delivery and reducing costly rework and reduces inspection time by 30%. The modular, light weight, and portable design permits easy assembly and disassembly through small openings and it reduces setup/tear down time by 30%. The first deployment of the new ZR-1 Robot was made in September 2004 at the Cernavoda NPP inspection outage. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium; the nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant Unit 1 has four CANDU - design steam generators that have been in service since 1996. The paper presents also the Zetec's field experience and customer experience with this system. It describes the equipment setup in Cernavoda's steam generators mock-up, functional tests and calibration. Finally, provides details on the execution of the inspection, options for standardizing the inspection techniques and conclusions. (authors)

  10. Microstructural characterization and tribological behavior of surface plasma Zr-Er alloying on TC11 alloy

    Science.gov (United States)

    Wei, Dongbo; Zhang, Pingze; Liu, Yingchao; Chen, Xiaohu; Ding, Feng; Li, Fengkun

    2018-02-01

    The Zr coating and Zr-Er coating are grown on TC11 substrate by double-glow plasma surface metallurgy technique, followed by the wear tests at ambient temperature and 500 °C. The data of nanohardness and elastic modulus of the samples are collected by the nano-indentation test. The adhesion strength of coatings is investigated by means of the scratch test. The study of wear resistance is performed using a ball-on-disc wear test system by running against the Si3N4 ball and measured by scanning electron microscope (SEM) and X-ray diffraction (XRD). Experimental results indicate that the nanohardness of the Zr coating and Zr-Er coating are 5.94 GPa and 7.98 GPa, respectively, which are 1.79 times and 2.41 times greater than that of TC11 substrate. Zr coating and Zr-Er coating realize the metallurgical bonding with TC11 substrate with continuous and compact structure. Compared with the Zr coating and TC11, the Zr-Er coating presents the lowest specific wear rates, which are 1.689 × 10-6 mm3 Nm-1 and 1.851 × 10-6 mm3 Nm-1 at ambient temperature and 500 °C respectively, indicating the excellent and improved wear resistance of TC11.

  11. Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers

    International Nuclear Information System (INIS)

    Liu Shengwei; Yu Jiaguo

    2008-01-01

    Bi 2 WO 6 hierarchical multilayered flower-like assemblies are fabricated on a large scale by a simple hydrothermal method in the presence of polymeric poly(sodium 4-styrenesulfonate). Such 3D Bi 2 WO 6 assemblies are constructed from orderly arranged 2D layers, which are further composed of a large number of interconnected nanoplates with a mean side length of ca. 50 nm. The bimodal mesopores associated with such hierarchical assembly exhibit peak mesopore size of ca. 4 nm for the voids within a layer, and peak mesopore size of ca. 40 nm corresponding to the interspaces between stacked layers, respectively. The formation process is discussed on the basis of the results of time-dependent experiments, which support a novel 'coupled cooperative assembly and localized ripening' formation mechanism. More interestingly, we have noticed that the collective effect related to such hierarchical assembly induces a significantly enhanced optical absorbance in the UV-visible region. This work may shed some light on the design of complex architectures and exploitation of their potential applications. - Graphical abstract: Bi 2 WO 6 hierarchical multilayered flower-like assemblies are fabricated on a large scale by a simple hydrothermal method in the presence of polymeric poly(sodium 4-styrenesulfonate)

  12. Hydrogen traps in the oxide/alloy interface region of Zr-Nb alloys

    International Nuclear Information System (INIS)

    Khatamian, D.

    1995-03-01

    In this study the 1 H( 15 N,αγ) 12 C nuclear reaction has been used to measure hydrogen profiles of anodically oxidized Zr-Nb specimens containing various amounts of niobium. The profiles have been correlated with oxygen profiles, obtained using a Scanning Auger Microprobe (SAM), and with X-ray diffraction patterns. In addition, unoxidized Zr-2.5Nb (Zr-2.5 wt% Nb) samples were implanted with oxygen and hydrogen to study the interaction between these two species when dissolved in the alloy. All the anodically oxidized specimens, except the pure Zr and the single-phase β-Zr (Zr-20Nb) samples, displayed hydrogen peaks beneath the oxide layer. These results, in conjunction with the results from the implanted specimens, indicate that the hydrogen moves under the influence of a stress gradient to the sub-oxide region, where the metal lattice has been expanded due to superficial oxide growth. The results show that dissolved oxygen sites in Zr-2.5Nb alloy do not trap hydrogen. (author). 16 refs., 6 figs

  13. The preparation of Zr-deuteride and phase stability studies of the Zr-D system

    Science.gov (United States)

    Maimaitiyili, T.; Steuwer, A.; Bjerkén, C.; Blomqvist, J.; Hoelzel, M.; Ion, J. C.; Zanellato, O.

    2017-03-01

    Deuteride phases in the zirconium-deuterium system in the temperature range 25-286 °C have been studied in-situ by high resolution neutron diffraction. The study primarily focused on observations of δ→γ transformation at 180 °C, and the peritectoid reaction α + δ ↔ γ at 255 °C in commercial grade Zr powder that was deuterated to a deuterium/Zr ratio of one to one. A detailed description of the zirconium deuteride preparation route by high temperature gas loading is also described. The lattice parameters of α-Zr, δ-ZrDx and ε-ZrDx were determined by whole pattern crystal structure analysis, using Rietveld and Pawley refinements, and are in good agreement with values reported in the literature. The controversial γ-hydride phase was observed both in-situ and ex-situ in deuterated Zr powder after a heat treatment at 286 °C and slow cooling.

  14. Method of preventing criticality of fresh fuel assembly in storage facility

    International Nuclear Information System (INIS)

    Kawamura, Makoto.

    1990-01-01

    With an aim of improving the operation efficiency of a reactor, extention of the operation cycle by increasing U 235 enrichment degree of fuel uranium is planned. However, along with the increase of the enrichment degree of the fuel uranium, there occurs a problem of criticality upon fuel handling. Then, in the present invention, boric acid incorporating B-10 of great neutron absorption effect are packed with water soluble polymeric materials which are further packed with a fuel packing sheet, or the water soluble polymeric materials incorporating boric acids are packed with fuel packing sheets which are disposed to a fresh fuel assembly and stored in a store house as they are. The fuel packing sheet is a perforated sheet having a plurality of water intruding pores. Then, if water should intrude to the store house accidentally, the water soluble polymeric materials are dissolved, so that the intruded water is converted into aqueous boric acid easily and absorbs neutrons effectively to thereby attain the prevention of criticality. (T.M.)

  15. Autoradiographic technique for rapid inventory of plutonium-containing fast critical assembly fuel

    International Nuclear Information System (INIS)

    Brumbach, S.B.; Perry, R.B.

    1977-10-01

    A nondestructive autoradiographic technique is described which can provide a verification of the piece count and the plutonium content of plutonium-containing fuel elements. This technique uses the spontaneously emitted gamma rays from plutonium to form images of fuel elements on photographic film. Autoradiography has the advantage of providing an inventory verification without the opening of containers or the handling of fuel elements. Missing fuel elements, substitution of nonradioactive material, and substitution of elements of different size are detectable. Results are presented for fuel elements in various storage configurations and for fuel elements contained in a fast critical assembly

  16. Zr-doped SnO2 thin films synthesized by spray pyrolysis technique for barrier layers in solar cells

    Science.gov (United States)

    Reddy, N. Nanda Kumar; Akkera, Harish Sharma; Sekhar, M. Chandra; Park, Si-Hyun

    2017-12-01

    In the present work, we investigated the effect of Zr doping (0-6 at%) on the structural, electrical, and optical properties of tin oxide (SnO2) thin films deposited onto glass substrates using a spray pyrolysis technique. The room-temperature X-ray diffraction pattern shows that all deposited films exhibit polycrystalline tetragonal structure. The pure SnO2 film is grown along a preferred (200) direction, whereas Zr-doped SnO2 (Zr:SnO2) films started growing along the (220) orientation along with a high intensity peak of (200). Scanning electron microscope (SEM) and atomic force microscope (AFM) images showed that the grains of the films are spherical in structure, and the grain size decreased with increasing of Zr concentration. The optical transmission spectra of deposited films as a function of wavelength confirm that the average optical transmittance is > 85% for Zr:SnO2 films. The value of the optical bandgap is significantly decreased from 3.94 to 3.68 eV with increasing Zr concentration. Furthermore, the electrical measurements found that the sheet resistance ( R sh) and resistivity ( ρ) values are decreased with increasing of Zr doping. The lowest values of R sh = 6.82 Ω and ρ = 0.4 × 10- 3 Ω cm are found in 6-at% Zr-doped SnO2 film. In addition, a good efficiency value of the figure of merit ( ɸ = 3.35 × 10- 3 Ω-1) is observed in 6-at% Zr-doped SnO2 film. These outstanding properties of Zr-doped SnO2 films make them useful for several optoelectronic device applications.

  17. A study on microstructure and corrosion resistance of ZrO2-containing PEO coatings formed on AZ31 Mg alloy in phosphate-based electrolyte

    International Nuclear Information System (INIS)

    Zhuang, J.J.; Guo, Y.Q.; Xiang, N.; Xiong, Y.; Hu, Q.; Song, R.G.

    2015-01-01

    Graphical abstract: - Highlights: • PEO coatings were formed in K 2 ZrF 6 -containing electrolyte. • K 2 ZrF 6 is capable to optimize the microstructure of PEO coating. • Corrosion resistance of PEO coatings is effected by K 2 ZrF 6 concentration in the electrolyte. • Potentiodynamic polarization results are well matched with the EIS test results. • Long time immersion test confirmed the electrochemical results. - Abstract: ZrO 2 -containing ceramic coatings formed on the AZ31 Mg alloy were fabricated in an alkaline electrolyte containing sodium phosphate and potassium fluorozirconate (K 2 ZrF 6 ) by plasma electrolytic oxidation (PEO). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) techniques were used to study the phase structure and composition of the coatings. It is indicated that the coatings formed in the K 2 ZrF 6 -containing electrolyte were composed of MgO, MgF 2 and t-ZrO 2 . Morphological investigation carried out by scanning electron microscopy (SEM) and stereoscopic microscopy, revealed that the uniformity of coatings increased and roughness of coatings decreased after the addition of K 2 ZrF 6 . Electrochemical investigation was achieved by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test. The results showed that the PEO coating formed in K 2 ZrF 6 -containing electrolyte exhibited an improved corrosion resistance than that of the coating formed in K 2 ZrF 6 -free electrolyte. In addition, the polarization and EIS tests results both showed that the suitable concentration (2.5 g/l) of K 2 ZrF 6 is of significant ability to improve the corrosion resistance of coatings. However, 5 g/l and 10 g/l K 2 ZrF 6 has a negative effect on improving the corrosion resistance of PEO coatings compared with the coating formed in 2.5 g/l K 2 ZrF 6 -containing electrolyte.

  18. Educational use of research reactor (KUR) and critical assembly (KUCA) at Kyoto University

    International Nuclear Information System (INIS)

    Misawa, Tsuyoshi; Unesaki, Hironobu; Ichihara, Chihiro; Pyeon, Cheol Ho; Shiroya, Seiji

    2005-01-01

    At Kyoto University Research Reactor Institute, a research reactor of 5MW (KUR) and a critical assembly (KUCA) have been used for educational purpose to train undergraduate or graduate students. Using KUR, basic experiments for neutron applications have been carried out, and KUCA has been used for the education of nuclear engineering and technology. Especially, using KUCA, a joint reactor laboratory course of graduate level is offered every summer since 1975 by nine associated Japanese universities, and more than 2200 students attended this course

  19. Mechanical Characterisation and Biomechanical and Biological Behaviours of Ti-Zr Binary-Alloy Dental Implants

    Directory of Open Access Journals (Sweden)

    Aritza Brizuela-Velasco

    2017-01-01

    Full Text Available The objective of the study is to characterise the mechanical properties of Ti-15Zr binary alloy dental implants and to describe their biomechanical behaviour as well as their osseointegration capacity compared with the conventional Ti-6Al-4V (TAV alloy implants. The mechanical properties of Ti-15Zr binary alloy were characterised using Roxolid© implants (Straumann, Basel, Switzerland via ultrasound. Their biomechanical behaviour was described via finite element analysis. Their osseointegration capacity was compared via an in vivo study performed on 12 adult rabbits. Young’s modulus of the Roxolid© implant was around 103 GPa, and the Poisson coefficient was around 0.33. There were no significant differences in terms of Von Mises stress values at the implant and bone level between both alloys. Regarding deformation, the highest value was observed for Ti-15Zr implant, and the lowest value was observed for the cortical bone surrounding TAV implant, with no deformation differences at the bone level between both alloys. Histological analysis of the implants inserted in rabbits demonstrated higher BIC percentage for Ti-15Zr implants at 3 and 6 weeks. Ti-15Zr alloy showed elastic properties and biomechanical behaviours similar to TAV alloy, although Ti-15Zr implant had a greater BIC percentage after 3 and 6 weeks of osseointegration.

  20. Interphase Constituent of Laminated Composites Ti46Zr26Cu17Ni11

    Directory of Open Access Journals (Sweden)

    XU Bingtong

    2017-10-01

    Full Text Available Thermal analysis of the Ti46Zr26Cu17Ni11 amorphous ribbon prepared by melt spinning was conducted by using DSC. Accordingly the amorphous alloy was treated by vacuum heat treatment at 693 K (Tg, 753 K (Tg-Tx1 and 813 K (> Tx1 for different time to analyze the crystallization behavior. Taking Ti46Zr26Cu17Ni11 amorphous alloy, TA2 and pure Al as raw materials, laminated composites were fabricated by Gleeble-3500 thermal simulator at 873 K, 10 MPa and 8 h. The phase composition, precipitation order and properties of interface layers were investigated by SEM, TEM, micro hardness tester, combined thermodynamics and element diffusion theory. The results indicate that the glass transition temperature Tg of Ti46Zr26Cu17Ni11 amorphous is 720 K and the initial crystallization temperature Tx1 is 788 K. The I phase is crystallized from the amorphous at first, followed by a ternary or quaternary Laves phase and a TiNi phase precipited. After hot pressing, the interface between pure Al and crystallization layer is divided into two parts, which are Al3Ni with small thickness and Al3(Ti0.6Zr0.4 with fine grain and uniform microstructure. The interfaces are straight and there are no defects, with a thickness ratio of about 6.5:1 compared with interface layer between pure Ti with Al. The hardness of Al3(Ti0.6Zr0.4 and Al3Ti are 564.2HV and 579.8HV respectively. The plasticity of Al3(Ti0.6Zr0.4 layer is better.

  1. Amorphous phase formation in the Cu_3_6Zr_5_9A_l_5 and Cu_4_8Zr_4_3A_l_9 ternary alloys studied by molecular dynamics

    International Nuclear Information System (INIS)

    Aliaga, L.C.R.; Schimidt, C.S.; Lima, L.V.; Domingues, G.M.B.; Bastos, I.N.

    2016-01-01

    Amorphous alloys presents better mechanical and physical properties than its crystalline counterparts. However, there is a scarce understanding on structure - properties relationship in this class of materials. This paper presents the results of the molecular dynamics application to obtain an atomistic description of melting, solidification and the glass forming ability in the ternary Cu_3_6Zr_5_9A_l_5 and Cu_4_8Zr_4_3A_l_9 alloys. In the study we used the EAM potential and different cooling rates, β = 0.1, 1 and 100 K/ps to form the amorphous phase in a system consisting of 32,000 atoms by using the free code LAMMPS. The solidus and liquidus temperatures, on a heating rate of the 5 K/ps, were obtained. Also, on the cooling down step, it was observed that the glass transition temperature (T_g) decreases as cooling rate increases. The structural evolution was analyzed through the radial distribution functions and Voronoi polyhedra. Furthermore, it was determined the evolution of viscosity upper T_g, as well as the fragility (m) parameter for each amorphous alloy. The thermal parameters of the simulation obtained are compared with those of the experiments. (author)

  2. Space Station Freedom assembly and operation at a 51.6 degree inclination orbit

    Science.gov (United States)

    Troutman, Patrick A.; Brewer, Laura M.; Heck, Michael L.; Kumar, Renjith R.

    1993-01-01

    This study examines the implications of assembling and operating Space Station Freedom at a 51.6 degree inclination orbit utilizing an enhanced lift Space Shuttle. Freedom assembly is currently baselined at a 220 nautical mile high, 28.5 degree inclination orbit. Some of the reasons for increasing the orbital inclination are (1) increased ground coverage for Earth observations, (2) greater accessibility from Russian and other international launch sites, and (3) increased number of Assured Crew Return Vehicle (ACRV) landing sites. Previous studies have looked at assembling Freedom at a higher inclination using both medium and heavy lift expendable launch vehicles (such as Shuttle-C and Energia). The study assumes that the shuttle is used exclusively for delivering the station to orbit and that it can gain additional payload capability from design changes such as a lighter external tank that somewhat offsets the performance decrease that occurs when the shuttle is launched to a 51.6 degree inclination orbit.

  3. Study of precipitation behaviour of Mo and Zr in nitric acid solution

    International Nuclear Information System (INIS)

    Lin Cansheng; Wang Xiaoying; Zhang Chonghai

    1992-01-01

    The precipitation behaviour of Mo and Zr which depends on the concentrations of Mo, Zr, nitric acid and temperature is studied. Precipitation, post-precipitation and ultracentrifugation experiments are made at 100 deg C, 80 deg C, 60 deg C, 40 deg C and room temperatures in the range of 0.6-6.0 mol/1 nitric acid. The experimental feeds are made up of molybdenum labelled with 99 Mo, zirconium labelled with 95 Zr and nitric acid solution. The feed is allowed to stand at constant temperature for some time for the observation of precipitation behaviour. The filtered precipitate and ultracentrifuged liquid is to be measured with HP (Ge)-multichannel analyser in order to determine the content of Mo, Zr and their mole ration in the precipitate and to find out whether there is colloid in the liquid. The results show that the mixed solution of Mo and Zr can produce precipitate and post-precipitate in nitric acid. If the filtrated liquid is allowed to stand for some time, precipitate can be produced again, until the concentration of Mo and Zr in the feed is too low to form precipitate, such as 2.5 x 10 -3 mol/1. If the concentration of nitric acid is less than 4.0 mol/1, the precipitation is produced easily and more precipitate is formed. Precipitation is slower in solutions which are more than 4.0 mol/1 in HNO 3 . The mole-ratio of Mo to Zr in the precipitate is 2 to 1 and it is not dependent on that ratio in the system

  4. Efficient methods for targeted mutagenesis in zebrafish using zinc-finger nucleases: data from targeting of nine genes using CompoZr or CoDA ZFNs.

    Directory of Open Access Journals (Sweden)

    Raman Sood

    Full Text Available Recently, it has been shown that targeted mutagenesis using zinc-finger nucleases (ZFNs and transcription activator-like effector nucleases (TALENs can be used to generate knockout zebrafish lines for analysis of their function and/or developing disease models. A number of different methods have been developed for the design and assembly of gene-specific ZFNs and TALENs, making them easily available to most zebrafish researchers. Regardless of the choice of targeting nuclease, the process of generating mutant fish is similar. It is a time-consuming and multi-step process that can benefit significantly from development of efficient high throughput methods. In this study, we used ZFNs assembled through either the CompoZr (Sigma-Aldrich or the CoDA (context-dependent assembly platforms to generate mutant zebrafish for nine genes. We report our improved high throughput methods for 1 evaluation of ZFNs activity by somatic lesion analysis using colony PCR, eliminating the need for plasmid DNA extractions from a large number of clones, and 2 a sensitive founder screening strategy using fluorescent PCR with PIG-tailed primers that eliminates the stutter bands and accurately identifies even single nucleotide insertions and deletions. Using these protocols, we have generated multiple mutant alleles for seven genes, five of which were targeted with CompoZr ZFNs and two with CoDA ZFNs. Our data also revealed that at least five-fold higher mRNA dose was required to achieve mutagenesis with CoDA ZFNs than with CompoZr ZFNs, and their somatic lesion frequency was lower (<5% when compared to CopmoZr ZFNs (9-98%. This work provides high throughput protocols for efficient generation of zebrafish mutants using ZFNs and TALENs.

  5. Calibration setting numbers for dose calibrators for the PET isotopes "5"2Mn, "6"4Cu, "7"6Br, "8"6Y, "8"9Zr, "1"2"4I

    International Nuclear Information System (INIS)

    Wooten, A. Lake; Lewis, Benjamin C.; Szatkowski, Daniel J.; Sultan, Deborah H.; Abdin, Kinda I.; Voller, Thomas F.; Liu, Yongjian; Lapi, Suzanne E.

    2016-01-01

    For PET radionuclides, the radioactivity of a sample can be conveniently measured by a dose calibrator. These devices depend on a “calibration setting number”, but many recommended settings from manuals were interpolated based on standard sources of other radionuclide(s). We conducted HPGe gamma-ray spectroscopy, resulting in a reference for determining settings in two types of vessels containing one of several PET radionuclides. Our results reiterate the notion that in-house, experimental calibrations are recommended for different radionuclides and vessels. - Highlights: • Dose calibrators measure radioactivity by ionization of gas from emitted radiation. • Accuracy of dose calibrators depends on “calibration setting numbers” for isotopes. • Many manufacturer settings are interpolated from emissions of other radionuclides. • As a high-precision reference, HPGe gamma-ray spectroscopy was conducted. • New calibrations were found for PET isotopes "5"2Mn, "6"4Cu, "7"6Br, "8"6Y, "8"9Zr, and "1"2"4I.

  6. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides.

    Science.gov (United States)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-07

    Self-assembly of A 6 D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A 6 D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  7. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides

    Science.gov (United States)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-01

    Self-assembly of A6D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A6D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  8. A modification design and adjusting test for instruments and control system of critical assembly

    International Nuclear Information System (INIS)

    Wu Manrong; Li Guangjian

    1996-12-01

    A more reliable and safe control system and it's instruments for HFETRCA (high flux engineering test reactor critical assembly) have been built. In the system high performance CMOS unit was used, which has high integration, strong anti-interference and high trigger threshold. In the design of control rod driving circuit, the speed negative feedback principle was applied that results in more stable rotating rate of motors of transmission mechanism and more flexibility of adjusting rod speed. In order to improve reactor safety in accident, additional control circuit is equipped, by which not only control rods with electromagnet will rapidly drop but also other control rods will insert at the speed of 2∼6 times faster than the normal inserting speed. The key technique in the adjustment and new method of anti-interference are also introduced. After more than 40 times physical experiments with (4 x 4 - 4) fuel element in HFETRC, it is proved that the design and adjustment of the system is successful and they can be used as a reference to others. (3 figs., 2 tabs.)

  9. Systems Tl2MoO4-E(MoO4)2, where E=Zr or Hf, and the crystal structure of Tl8Hf(MoO4)6

    International Nuclear Information System (INIS)

    Bazarov, B.G.; Bazarova, Ts.T.; Fedorov, K.N.; Bazarova, Zh.G.; Chimitova, O.D.; Klevtsova, R.F.; Glinskaya, L.A.

    2006-01-01

    Systems Tl 2 MoO 4 -E(MoO 4 ) 2 (E=Zr, Hf) were studied by X-ray diffraction, differential thermal analysis and IR spectroscopy. Formation of Tl 8 E(MoO 4 ) 6 and Tl 2 E(MoO 4 ) 2 compounds was established. Phase T-x diagrams of the Tl 2 MoO 4 -Zr(MoO 4 ) 2 system were constructed. Monocrystals were grown, and structure of Tl 8 Hf(MoO 4 ) 6 was studied. The compound is crystallized in monoclinic syngony with elementary cell parameters a=9.9688(6), b=18.830(1), c=7.8488(5) A, β=108.538(1) Deg, Z=2, sp. gr. C2/m. The isolated group [HfMo 6 O 24 ] 8- is responsible for fundamental fragment of the structure. Three varieties of crystallographically independent Tl-polyhedra fill space evenly between fragments [HfMo 6 O 24 ] 8- forming three-dimensional form [ru

  10. Zr-doped TiO{sub 2} supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Belver, C., E-mail: carolina.belver@uam.es; Bedia, J.; Rodriguez, J.J.

    2017-01-15

    Highlights: • Novel Zr-doped TiO{sub 2} delaminated clay materials were prepared by a sol-gel process. • Zr is incorporated into the anatase lattice. • Zr-TiO{sub 2} nanoparticles are homogenously distributed over the delaminated clay. • Zr doping enhances the photoactivity by reducing the band gap. • Degradation rates were favored at low concentrations and high radiation intensities. - Abstract: Solar light-active Zr-doped TiO{sub 2} nanoparticles were successfully immobilized on delaminated clay materials by a one-step sol-gel route. Fixing the amount of TiO{sub 2} at 65 wt.%, this work studies the influence of Zr loading (up to 2%) on the photocatalytic activity of the resulting Zr-doped TiO{sub 2}/clay materials. The structural characterization demonstrates that all samples were formed by a delaminated clay with nanostructured anatase assembled on its surface. The Zr dopant was successfully incorporated into the anatase lattice, resulting in a slight deformation of the anatase crystal and the reduction of the band gap. These materials exhibit high surface area with a disordered mesoporous structure formed by TiO{sub 2} particles (15–20 nm) supported on a delaminated clay. They were tested in the solar photodegradation of antipyrine, usually used as an analgesic drug and selected as an example of emerging pollutant. High degradation rates have been obtained at low antipyrine concentrations and high solar irradiation intensities with the Zr-doped TiO{sub 2}/clay catalyst, more effective than the undoped one. This work demonstrates the potential application of the synthesis method for preparing novel and efficient solar-light photocatalysts based on metal-doped anatase and a delaminated clay.

  11. Criticality safety evaluation for TWR-S fuel assembly transportation using TK-S16 containers

    International Nuclear Information System (INIS)

    Pesic, M.P.; Steljic, M.M.; Antic, D.P.

    2002-01-01

    Criticality safety issues, concerning transportation of fresh high-enriched uranium fuel elements (TWR-S fuel assembly type) with Russian containers TK-S16, are objects of study in this paper. Three-dimensional (3D) models of fuel element and container were made, based upon their well-known geometry and material structure. The way to pack fuel elements in a bundle inside of the container is proposed. Calculations were done by MCNP4B2 computer code. This Monte Carlo criticality code determined the effective multiplication factor from the cross-section data and specific geometry data. This evaluation demonstrated the subcriticality of a single package and an array of packages during normal conditions of transport and various hypothetical accident conditions. (author)

  12. Solid electrolytes. Extremely fast charge carriers in garnet-type Li{sub 6}La{sub 3}ZrTaO{sub 12} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stanje, Bernhard; Breuer, Stefan; Uitz, Marlena [Christian Doppler Laboratory for Lithium Batteries, and Institute for Chemistry and Technology of Materials, Graz University of Technology (NAWI Graz), Graz (Austria); DFG Research Unit ' ' Mobility of Lithium Ions in Solids' ' , Graz University of Technology, Graz (Austria); Rettenwander, Daniel; Redhammer, Guenther [Department Chemistry and Physics of Materials, University of Salzburg (Austria); Berendts, Stefan; Lerch, Martin [Technische Universitaet Berlin, Institut fuer Chemie (Germany); Uecker, Reinhard [Leibniz Institute for Crystal Growth (Forschungsverbund Berlin e.V.), Berlin (Germany); Hanzu, Ilie; Wilkening, Martin [Christian Doppler Laboratory for Lithium Batteries, and Institute for Chemistry and Technology of Materials, Graz University of Technology (NAWI Graz), Graz (Austria); DFG Research Unit ' ' Mobility of Lithium Ions in Solids' ' , Graz University of Technology, Graz (Austria); Alistore-ERI European Research Institute, Amiens (France)

    2017-12-15

    The development of all-solid-state electrochemical energy storage systems, such as lithium-ion batteries with solid electrolytes, requires stable, electronically insulating compounds with exceptionally high ionic conductivities. Considering ceramic oxides, garnet-type Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} and derivatives, see Zr-exchanged Li{sub 6}La{sub 3}ZrTaO{sub 12} (LLZTO), have attracted great attention due to its high Li{sup +} ionic conductivity of 10{sup -3} S cm{sup -1} at ambient temperature. Despite numerous studies focussing on conductivities of powder samples, only few use time-domain NMR methods to probe Li ion diffusion parameters in single crystals. Here we report on temperature-variable NMR relaxometry measurements using both laboratory and spin-lock techniques to probe Li jump rates covering a dynamic time window spanning several decades. Both techniques revealed a consistent picture of correlated Li ion jump diffusion in the single crystal; the data perfectly mirror a modified BPP-type relaxation response being based on a Lorentzian-shaped relaxation function. The rates measured could be parameterized with a single set of diffusion parameters. Results from NMR are completely in line with ion transport parameters derived from conductivity spectroscopy. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications.

    Science.gov (United States)

    Kondratenko, Mikhail S; Ponomarev, Igor I; Gallyamov, Marat O; Razorenov, Dmitry Yu; Volkova, Yulia A; Kharitonova, Elena P; Khokhlov, Alexei R

    2013-01-01

    Novel composite membranes for high temperature polymer-electrolyte fuel cells (HT-PEFC) based on a poly[oxy-3,3-bis(4'-benzimidazol-2″-ylphenyl)phtalide-5″(6″)-diyl] (PBI-O-PhT) polymer with small amounts of added Zr were prepared. It was shown in a model reaction between zirconium acetylacetonate (Zr(acac)4) and benzimidazole (BI) that Zr-atoms are capable to form chemical bonds with BI. Thus, Zr may be used as a crosslinking agent for PBI membranes. The obtained Zr/PBI-O-PhT composite membranes were examined by means of SAXS, thermomechanical analysis (TMA), and were tested in operating fuel cells by means of stationary voltammetry and impedance spectroscopy. The new membranes showed excellent stability in a 2000-hour fuel cell (FC) durability test. The modification of the PBI-O-PhT films with Zr facilitated an increase of the phosphoric acid (PA) uptake by the membranes, which resulted in an up to 2.5 times increased proton conductivity. The existence of an optimal amount of Zr content in the modified PBI-O-PhT film was shown. Larger amounts of Zr lead to a lower PA doping level and a reduced conductivity due to an excessively high degree of crosslinking.

  14. Corrosion Behaviour of New Zr Alloys

    DEFF Research Database (Denmark)

    Tolksdorf, E.

    1974-01-01

    Corrosion studies have indicated that the most promising replacements for Zicaloy-2 are ZrCrFe, ZrVFe and probably ZrNbTa, provided they are in their optimized condition. These alloys are conventionally manufactured alloys. An internally oxidized ZrMgO alloy is even superior, from the corrosion...

  15. Characterization of the Caliban and Prospero Critical Assemblies Neutron Spectra for Integral Measurements Experiments

    Science.gov (United States)

    Casoli, P.; Authier, N.; Jacquet, X.; Cartier, J.

    2014-04-01

    Caliban and Prospero are two highly enriched uranium metallic core reactors operated on the CEA Center of Valduc. These critical assemblies are suitable for integral experiments, such as fission yields measurements or perturbation measurements, which have been carried out recently on the Caliban reactor. Different unfolding methods, based on activation foils and fission chambers measurements, are used to characterize the reactor spectra and especially the Caliban spectrum, which is very close to a pure fission spectrum.

  16. In situ formation of CA6 platelets in Al2O3 and Al2O3/ZrO2 matrices

    OpenAIRE

    Belmonte , M.; SÁnchez-Herencia , A.; Moreno , R.; Miranzo , P.; Moya , J.; Tomsia , A.

    1993-01-01

    Al2O3 and Al2O3/ZrO2 compacts containing CaO as a dopant have been sintered under different conditions and atmospheres: air, high vacuum (> 10-6torr). SEM observations have been made on the polished surfaces of sintered and also of annealed samples. Only after the annealing treatment in air at temperatures ranging from 1400° to 1 500°C, a massive formation of CA6 platelets was detected in samples sintered in low oxygen partial pressure atmospheres.ln order to clarify the mechanism of formatio...

  17. A study on microstructure and corrosion resistance of ZrO{sub 2}-containing PEO coatings formed on AZ31 Mg alloy in phosphate-based electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, J.J.; Guo, Y.Q.; Xiang, N. [Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Xiong, Y.; Hu, Q. [Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Song, R.G., E-mail: songrg@hotmail.com [Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China)

    2015-12-01

    Graphical abstract: - Highlights: • PEO coatings were formed in K{sub 2}ZrF{sub 6}-containing electrolyte. • K{sub 2}ZrF{sub 6} is capable to optimize the microstructure of PEO coating. • Corrosion resistance of PEO coatings is effected by K{sub 2}ZrF{sub 6} concentration in the electrolyte. • Potentiodynamic polarization results are well matched with the EIS test results. • Long time immersion test confirmed the electrochemical results. - Abstract: ZrO{sub 2}-containing ceramic coatings formed on the AZ31 Mg alloy were fabricated in an alkaline electrolyte containing sodium phosphate and potassium fluorozirconate (K{sub 2}ZrF{sub 6}) by plasma electrolytic oxidation (PEO). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) techniques were used to study the phase structure and composition of the coatings. It is indicated that the coatings formed in the K{sub 2}ZrF{sub 6}-containing electrolyte were composed of MgO, MgF{sub 2} and t-ZrO{sub 2}. Morphological investigation carried out by scanning electron microscopy (SEM) and stereoscopic microscopy, revealed that the uniformity of coatings increased and roughness of coatings decreased after the addition of K{sub 2}ZrF{sub 6}. Electrochemical investigation was achieved by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test. The results showed that the PEO coating formed in K{sub 2}ZrF{sub 6}-containing electrolyte exhibited an improved corrosion resistance than that of the coating formed in K{sub 2}ZrF{sub 6}-free electrolyte. In addition, the polarization and EIS tests results both showed that the suitable concentration (2.5 g/l) of K{sub 2}ZrF{sub 6} is of significant ability to improve the corrosion resistance of coatings. However, 5 g/l and 10 g/l K{sub 2}ZrF{sub 6} has a negative effect on improving the corrosion resistance of PEO coatings compared with the coating formed in 2.5 g/l K{sub 2}ZrF{sub 6}-containing electrolyte.

  18. Nuclear safety analysis for transport cask TK-6 (for WWER-440) and cover for fresh assemblies (for WWER-1000) in implementation of new fuel types at Ukrainian NPP

    International Nuclear Information System (INIS)

    Bilodid, Y.; Kovbasenko, Iu; Dudka, Olena

    2006-01-01

    According to the fresh fuel management procedure, fuel assemblies - after nuclear fuel delivery to the NPP fresh fuel unit - are vertically loaded into a cover intended for the delivery of fuel assemblies into the containment of the NPP reactor compartment. The cover is placed into an universal jack in the cooling and refueling pond, and then the fresh fuel assemblies are loaded into the reactor core. Based on the nuclear safety analysis carried out by the Russian Research Center 'Kurchatov Institute' for contemporary WWER-1000 fuel, it has become necessary to limit the number of fuel assemblies loaded into a cover below its designed capacity (12 FA instead of 18 FA as originally designed). Such a decision leads to worse economic performances in fuel transportation. The paper considers potential ways to overcome this restriction. Transport container TK-6 for spent fuel assemblies was designed quite a long time ago and, as shown in this paper, the requirement on the maximally permissible neutron multiplication factor of the loaded container for individual states to be analyzed in compliance with Ukrainian regulations is not met. First of all, this concerns the container criticality analysis in optimal neutron slow-down (container filling with water-air mixture with optimal density). The paper shows potential ways for TK-6 burnup-credit loading with the maximum number of fuel assemblies and partial container loading (Authors)

  19. P-T and T-x projections of phase diagram of CsF-ZrF4 system

    International Nuclear Information System (INIS)

    Karasev, N.M.; Korenev, Yu.M.; Sidorov, L.N.

    1980-01-01

    The CsF-ZrF 4 system has been investigated by the Knudsen effusion method and mass-spectral analysis of vaporization products. A molecular composition of vapour was determined. CsF, Cs 2 F 2 , ZrF 4 , Cs 2 ZrF 6 , CsZrF 5 , CsZr 2 F 9 molecules were found in the saturated vapour of the system. Heats of phase transitions and partial pressures of the molecules detected were determined depending on the melt compositions. Dissociation enthalpies of complex molecules were calculated. P-T and T-x projections of the state diagram of the CsF-ZrF 4 system were constructed

  20. Nano ZrO{sub 2} particles in nanocrystalline Fe–14Cr–1.5Zr alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.Z.; Li, L.L.; Saber, M.; Koch, C.C.; Zhu, Y.T., E-mail: ytzhu@ncsu.edu; Scattergood, R.O.

    2014-09-15

    Here we report on the formation of nano ZrO{sub 2} particles in Fe–14Cr–1.5Zr alloy powders synthesized by mechanical alloying. The nano ZrO{sub 2} particles were found uniformly dispersed in the ferritic matrix powders with an average size of about 3.7 nm, which rendered the alloy powders so stable that it retained nanocrystalline structure after annealing at 900 °C for 1 h. The ZrO{sub 2} nanoparticles have a tetragonal crystal structure and the following orientation relationship with the matrix: (0 0 2){sub ZrO2}//(0 0 2){sub Matrix} and [0 1 0]{sub ZrO2}//[1 2 0]{sub Matrix}. The size and dispersion of the ZrO{sub 2} particles are comparable to those of Y–Ti–O enriched oxides reported in irradiation-resistant ODS alloys. This suggests a potential application of the new alloy powders for nuclear energy applications.

  1. Influence of Zr and Ce doping on electromagnetic properties of (Gd,Y)-Ba-Cu-O superconducting tapes fabricated by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Chen, Y.; Xie, J.; Zhang, Y.; Guevara, A.; Kesgin, I.; Majkic, G.; Martchevsky, M.

    2009-01-01

    (Gd,Y)Ba 2 Cu 3 O x tapes have been fabricated by metal organic chemical vapor deposition (MOCVD) with Zr-doping levels of 0-15 mol.% and Ce doping levels of 0-10 mol.% in 0.4 μm thick films. The critical current density (J c ) of Zr-doped samples at 77 K, 1 T applied in the orientation of H -parallel c is found to increase with Zr content and shows a maximum at 7.5% Zr doping. The 7.5% Zr-doped sample exhibits a critical current density (J c ) of 0.95 MA/cm 2 at H -parallel c which is more than 70% higher than the J c of the undoped sample. The peak in J c at H -parallel c is 83% of that at H -parallel a-b in the 7.5% Zr-doped sample which is more than twice as that in the undoped sample. Superconducting transition temperature (T c ) values as high as about 89 K have been achieved in samples even with 15% Zr and 10% Ce. Ce-doped samples with and without Ba compensation are found to exhibit substantially different J c values as well as angular dependence characteristics.

  2. Influence of Zr and Ce doping on electromagnetic properties of (Gd,Y)-Ba-Cu-O superconducting tapes fabricated by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V., E-mail: selva@uh.ed [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Rd., Houston, TX 77204-4006 (United States); Chen, Y.; Xie, J. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States); Zhang, Y.; Guevara, A.; Kesgin, I.; Majkic, G. [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Rd., Houston, TX 77204-4006 (United States); Martchevsky, M. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States)

    2009-12-01

    (Gd,Y)Ba{sub 2}Cu{sub 3}O{sub x} tapes have been fabricated by metal organic chemical vapor deposition (MOCVD) with Zr-doping levels of 0-15 mol.% and Ce doping levels of 0-10 mol.% in 0.4 mum thick films. The critical current density (J{sub c}) of Zr-doped samples at 77 K, 1 T applied in the orientation of H -parallel c is found to increase with Zr content and shows a maximum at 7.5% Zr doping. The 7.5% Zr-doped sample exhibits a critical current density (J{sub c}) of 0.95 MA/cm{sup 2} at H -parallel c which is more than 70% higher than the J{sub c} of the undoped sample. The peak in J{sub c} at H -parallel c is 83% of that at H -parallel a-b in the 7.5% Zr-doped sample which is more than twice as that in the undoped sample. Superconducting transition temperature (T{sub c}) values as high as about 89 K have been achieved in samples even with 15% Zr and 10% Ce. Ce-doped samples with and without Ba compensation are found to exhibit substantially different J{sub c} values as well as angular dependence characteristics.

  3. Synthesis of ZrO2-8%CeO2 and ZrO2-8%Y2O3 by polymeric precursors route

    International Nuclear Information System (INIS)

    Macedo, D.A.; Macedo, M.C.; Melo, D.M.A.; Nascimento, R.M.; Rabelo, A.A.

    2006-01-01

    The stabilization of zirconia in the cubical and tetragonal structures comes gaining importance because of its excellent thermal stability, chemical resistance, mechanical properties and oxygen conductivity. Its main applications include electrolytes of high temperature fuel cells, sensors of oxygen and electrochemical reactors. In this work the polymeric precursors route was used to synthesize ZrO 2 -8 mol% Y 2 O 3 and ZrO 2 -8 mol%CeO 2 . In this process the dopant concentration, besides making possible the stabilization of distinct structures, influences in the morphologic characteristics of the powders synthesized. The characterization of the powders was carried through X-ray diffraction for existing phases verification and average crystallite size, thermogravimetric analysis, specific surface area measures, particles size distribution by laser scattering and the powder morphology was observed using scanning electronic microscopy. The powder only calcined at 700 deg C had presented of average crystallite size of 6,77 nm for ZrO 2 -8%Y 2 O 3 and 7,14 nm for ZrO 2 -CeO 2 . (author)

  4. Influence of ZrB2 addition on microstructural development and microhardness of Ti-SiC clad coatings on Ti6Al4V substrate

    CSIR Research Space (South Africa)

    Farotade, GA

    2017-08-01

    Full Text Available The microstructural features and microhardness of ZrB(sub2) reinforced Ti-SiC coatings on Ti-6Al-4V substrate were studied.The deposition of these coatings was achieved via laser cladding technique. A 4.0 KW fiber delivered Nd: YAG laser was used...

  5. Disordering and amorphization of Zr3Al by 3.8 MeV Zr3+ ion bombardment

    International Nuclear Information System (INIS)

    Chen, F.C.; Ardell, A.J.

    1991-01-01

    The ordered intermetallic compound Zr 3 Al was irradiated with 3. 8 MeV Zr 3+ ions at various fluences up to 5 x 10 12 tons/mm 2 at a temperature of 250 degrees C and the irradiation- induced microstructures were investigated by transmission electron microscopy. Disordering began at the lowest dose, 0.0033 dpa, and complete loss of chemical long-range order occurred at a dose of 0.33 dpa. The onset of amorphization was also observed at this dose. Electron diffraction patterns from irradiated samples showed satellite reflections along in thin foils in [100] orientation and streaking along in foils oriented [011]. These diffraction effects are attributed to the presence of irradiation-induced microstructural defects that, when imaged in dark field, resemble rows of dislocation loops. A model of these arrays of loops, which are suggested to have Burgers vectors of the Frank type, is proposed. The model accounts for the contrast effects observed in the images and the streaking and satellites seen in the diffraction patterns. At the highest dose, 1.6 dpa, a new phase, Zr 5 Al 3 , appeared unexpectedly, most likely as a consequence of irradiation-induced solute segregation

  6. Biocompatibility study on Ni-free Ti-based and Zr-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.H. [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Wong, P.C. [Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan (China); Chang, S.F. [Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan (China); Tsai, P.H. [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Jang, J.S.C., E-mail: jscjang@ncu.edu.tw [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan (China); Huang, J.C. [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan (China)

    2017-06-01

    Safety and reliability are crucial issues for medical instruments and implants. In the past few decays, bulk metallic glasses (BMGs) have drawn attentions due to their superior mechanical properties, good corrosion resistance, antibacterial and good biocompatibility. However, most Zr-based and Ti-based BMGs contain Ni as an important element which is prone to human allergy problem. In this study, the Ni-free Ti-based and Zr-based BMGs, Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14}, and Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8}, were selected for systematical evaluation of their biocompatibility. Several biocompatibility tests, co-cultural with L929 murine fibroblast cell line, were carried out on these two BMGs, as well as the comparison samples of Ti6Al4V and pure Cu. The results in terms of cellular adhesion, cytotoxicity, and metallic ion release affection reveal that the Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14} BMG and Ti6Al4V exhibit the optimum biocompatibility; cells still being attached on the petri dish with good adhesion and exhibiting the spindle shape after direct contact test. Furthermore, the Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14} BMG showed very low Cu ion release level, in agreement with the MTT results. Based on the current findings, it is believed that Ni-free Ti-based BMG can act as an ideal candidate for medical implant. - Highlight: • Ni-free bulk metallic glass is promising material for medical implants. • Ni-free Ti-based BMG presents similar cellular adhesion as Ti6Al4V. • Ni-free Ti-based BMG shows less cytotoxicity, and metallic ion release than Ti6Al4V.

  7. Enhanced flux pinning by BaZrO3 and (Gd,y)2O3 nano-structures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Paranthaman, Mariappan Parans [ORNL; Cantoni, Claudia [ORNL; Aytug, Tolga [ORNL; Goyal, Amit [ORNL; Lee, Dominic F [ORNL; Specht, Eliot D [ORNL; Zuev, Yuri L [ORNL; Zhang, Yifei [ORNL

    2009-01-01

    We have formed BaZrO3 nano-columns and (Gd,Y)2O3 nano-precipitates in reel-to-reel MOCVD processed (Gd,Y)Ba2Cu3O7-x coated conductors and increased the critical currents (Ic) of the conductors in applied magnetic fields to remarkable levels. A (Gd,Y)Ba2Cu3O7-x tape of 1m length with 6.5% Zr-additions and 30% composition rich in both Gd and Y showed Ic values of 813 A/cm-width at (self-field, 77K) and above 186 A/cm-width at (1T, 77K). The strongly enhanced flux pinning over a wide range of magnetic field orientations can be attributed to the bidirectionally aligned defect structures of BaZrO3 and (Gd,Y)2O3 created by optimized MOCVD conditions.

  8. Synthesis and cathodoluminescence characterization of ZrO2:Er3+ films

    International Nuclear Information System (INIS)

    Martínez-Hernández, A.; Guzmán-Mendoza, J.; Rivera-Montalvo, T.; Sánchez-Guzmán, D.; Guzmán-Olguín, J.C.; García-Hipólito, M.; Falcony, C.

    2014-01-01

    Trivalent erbium doped zirconium oxide films were deposited by the ultrasonic spray pyrolysis technique. Films were deposited using zirconium tetrachloride octahydrate (ZrCl 4 O·8H 2 O) and erbium nitrate hexahydrate ((NO 3 ) 3 Er·6H 2 O) as precursors and deionized water as solvent. The dopant concentrations in the spray solution were 1, 3, 5, 10 and 15 at% in ratio to zirconium content. The films were deposited on corning glass substrates at different temperatures from 400 up to 550 °C. Films deposited at temperatures lower than 400 °C were amorphous, however, as substrate temperatures are increased, the ZrO 2 films presented a better crystallinity and showed a tetragonal phase. Cathodoluminescence (CL) emission spectra showed bands centred at 524, 544 and 655 nm associated with the electronic transition of Er 3+ . - Highlights: • The films of ZrO 2 :Er 3+ were obtained by spray pyrolysis. • Emission spectra of ZrO 2 :Er 3+ films were reported. • Cathodoluminescence of ZrO 2 :Er 3+ films was analyzed. • Cathodoluminescence of ZrO 2 :Er 3+ films showed strong dependence on substrate temperature and electron voltage

  9. Investigation on microstructure and thermal properties of in-situ synthesized Cu-ZrO2 nanocomposites

    International Nuclear Information System (INIS)

    Elmahdy, Marwa; Abouelmagd, Gamal; Mazen, Asaad A.

    2017-01-01

    Cu-ZrO 2 nanocomposites were prepared by an in-situ reactive synthesis of copper nitrate Cu(NO 3 ) 2 and zirconium oxychloride ZrOCl 2 . Zirconia (ZrO 2 ) was added by 2.5, 5 and 10 wt.% to the Cu matrix to assess its effect on thermal conductivity and thermal expansion behavior. The results showed that ZrO 2 nanoparticles (30-50 nm) were homogeneously distributed in the copper matrix. The measured thermal conductivity for the Cu-ZrO 2 nanocomposites decreased from 372.8 to 94.4 W m -1 K -1 with increasing ZrO 2 content from 0 to 10 wt.%. Cu-10 wt.% ZrO 2 nanocomposite yields a low thermal conductivity of 94.4 W . m -1 K -1 along with a low coefficient of thermal expansion, 11.47 x 10 -6 K -1 .

  10. Electrochemical Stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against Metallic Lithium

    International Nuclear Information System (INIS)

    Kim, Yunsung; Yoo, Aeri; Schmidt, Robert; Sharafi, Asma; Lee, Heechul; Wolfenstine, Jeff; Sakamoto, Jeff

    2016-01-01

    The electrochemical stability of Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 (LLZNO) and Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 (LLZTO) against metallic Li was studied using direct current (DC) and electrochemical impedance spectroscopy (EIS). Dense polycrystalline LLZNO (ρ = 97%) and LLZTO (ρ = 92%) were made using sol–gel synthesis and rapid induction hot-pressing at 1100°C and 15.8 MPa. During DC cycling tests at room temperature (± 0.01 mA/cm 2 for 36 cycles), LLZNO exhibited an increase in Li–LLZNO interface resistance and eventually short-circuiting while the LLZTO was stable. After DC cycling, LLZNO appeared severely discolored while the LLZTO did not change in appearance. We believe the increase in Li–LLZNO interfacial resistance and discoloration are due to reduction of Nb 5+ to Nb 4+ . The negligible change in interfacial resistance and no color change in LLZTO suggest that Ta 5+ may be more stable against reduction than Nb 5+ in cubic garnet versus Li during cycling.

  11. The charge storage characteristics of ZrO2 nanocrystallite-based charge trap nonvolatile memory

    International Nuclear Information System (INIS)

    Tang Zhen-Jie; Li Rong; Yin Jiang

    2013-01-01

    ZrO 2 nanocrystallite-based charge trap flash memory capacitors incorporating a (ZrO 2 ) 0.6 (SiO 2 ) 0.4 pseudobinary high-k oxide film as the charge trapping layer were prepared and investigated. The precipitation reaction in the charge trapping layer, forming ZrO 2 nanocrystallites during rapid thermal annealing, was investigated by transmission electron microscopy and X-ray diffraction. It was observed that a ZrO 2 nanocrystallite-based memory capacitor after post-annealing at 850 °C for 60 s exhibits a maximum memory window of about 6.8 V, good endurance and a low charge loss of ∼25% over a period of 10 years (determined by extrapolating the charge loss curve measured experimentally), even at 85 °C. Such 850 °C-annealed memory capacitors appear to be candidates for future nonvolatile flash memory device applications

  12. Effect of rare-earth composition on microstructure and pinning properties of Zr-doped (Gd, Y)Ba{sub 2}Cu{sub 3}O{subx} superconducting tapes.

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V.; Chen, Y.; Zhang, Y.; Guevara, A.; Shi, T.; Yao, Y.; Majkic, G.; Lei, C.; Galtsyan, E.; Miller, D. J. (Materials Science Division); (Univ. Houston); (SuperPower Inc.)

    2012-01-01

    The effect of changing Gd + Y content from 1.2 to 1.6 in the precursor of (Gd,Y)Ba{sub 2}Cu{sub 3}O{sub 7} superconducting thin film tapes made by metal organic chemical vapor deposition (MOCVD) at a constant Gd:Y ratio and a fixed Zr content of 7.5% has been studied. The influence of changing the Gd:Y ratio from Gd = 0 to Y= 0 in 0.2 mol steps at a constant Gd + Y content of 1.2 in the precursor has also been investigated at a fixed Zr content of 7.5%. The critical current of these films is found to vary significantly as a function of rare-earth content as well as a function of rare-earth type. Even for a fixed Zr content, it is found that the critical current in the orientation of magnetic field parallel to the a-b plane and that in the orientation of field perpendicular to the a-b plane can be systematically varied with changing Gd + Y content as well as with changing Gd:Y ratio. The nanoscale defect structures along the a-b plane and along the c-axis are found to be sensitive to these changes in rare-earth content and type.

  13. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.

    Science.gov (United States)

    Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan

    2017-07-01

    The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Critical current density and upper critical field of the PbMo6S8 Chevrel phase

    International Nuclear Information System (INIS)

    Seeber, B.; Decroux, M.; Fischer, O.

    1988-01-01

    A detailed discussion of critical current density and upper critical field for PbMo 6 S 8 (PMS) is given. It is shown that PMS bulk as well as wire samples can be prepared with sufficient quality to observe the scaling law for the volume pinning force. Using the scaling law an estimation for the critical current density as a function of field and temperature was made. The study also indicates that a substantial improvement of the critical current density can be expected by optimizing the upper critical field without changing the microstructure. It is shown that the availability of high quality samples of EuMo 6 S 8 , to which PMS is similar, makes it possible to study separately the different physical parameters which determine the upper critical field in PMS

  15. Phase stability and elastic properties of β Ti-Nb-X (X = Zr, Sn) alloys: an ab initio density functional study

    Science.gov (United States)

    K, Rajamallu; Niranjan, Manish K.; Ameyama, Kei; Dey, Suhash R.

    2017-12-01

    Alloying effects of Zr and Sn on β phase stability and elastic properties in Ti-Nb alloys are investigated within the framework of first-principles density functional theory. Our results suggest that the stability of β phase can be significantly enhanced by the addition of Zr and Sn in Ti-Nb alloys. The computed results indicate that Zr and Sn behave as strong β stabilizers in the Ti-Nb system. The elastic properties are found to be altered considerably by the addition of ternary alloying elements (Zr and Sn). The computed elastic moduli of Ti18.75 at%Nb6.25 at%Zr and Ti25 at%NbxZr compositions are found to be lower than that for Ti18.75 at%Nb6.25 at%Sn and Ti25 at%NbxSn system. The lowest value of ˜54 GPa is obtained for Ti25 at%Nb6.25 at%Zr composition. Furthermore, the directional Young’s modulus is found to be in the order of E 100 system.

  16. Effect of Si and Zr on the Microstructure and Properties of Al-Fe-Si-Zr Alloys

    Directory of Open Access Journals (Sweden)

    Anna Morozova

    2017-11-01

    Full Text Available The effects of Si and Zr on the microstructure, microhardness and electrical conductivity of Al-Fe-Si-Zr alloys were studied. An increase in the Zr content over 0.3 wt. % leads to the formation of primary Al3Zr inclusions and also decreases mechanical properties. Therefore, the Zr content should not be more than 0.3 wt. %, although the smaller content is insufficient for the strengthening by the secondary Al3Zr precipitates. The present results indicate that high content of Si significantly affects the hardness and electrical conductivity of the investigated alloys. However, the absence of Si led to the formation of harmful needle-shaped Al3Fe particles in the microstructure of the investigated alloys after annealing. Therefore, the optimum amount of Si was 0.25–0.50 wt. % due to the formation of the Al8Fe2Si phase with the preferable platelet morphology. The maximum microhardness and strengthening effects in Al-1% Fe-0.25% Si-0.3% Zr were observed after annealing at 400–450 °C due to the formation of nanosized coherent Al3Zr (L12 dispersoids. The effect of the increasing of the electrical conductivity can be explained by the decomposition of the solid solution. Thus, Al-1% Fe-0.25% Si-0.3% Zr alloy annealed at 450 °C has been studied in detail as the most attractive with respect to the special focus on transmission line applications.

  17. Synthesis and characterization of a polyborosilazane/Cp2ZrCl2 hybrid precursor for the Si-B-C-N-Zr multinary ceramic.

    Science.gov (United States)

    Long, Xin; Shao, Changwei; Wang, Hao; Wang, Jun

    2015-09-21

    A novel zirconium-contained polyborosilazane (PBSZ-Zr) was synthesized by chemical modification of a liquid polyborosilazane (LPBSZ) with Cp2ZrCl2. A Si-B-C-N-Zr multinary ceramic was prepared via pyrolysis of PBSZ-Zr. The properties and the ceramization process of PBSZ-Zr, as well as the microstructural development and properties of the derived SiBCN-Zr ceramic, were well studied. The active Si-H and N-H groups in LPBSZ react with Zr-Cl in Cp2ZrCl2 to form PBSZ-Zr polymers. The Zr content of the SiBCN-Zr ceramic was 3.39 wt% when the weight ratio of Cp2ZrCl2 to LPBSZ was 20 : 100. The SiBCN-Zr ceramic remains amorphous when pyrolyzed below 1600 °C, but the crystal phases of Zr2CN, ZrC, BN, SiC, and Si3N4 were detected from a 1600 °C treated sample. Due to the low activity of free carbon at the interface of the SiBCN-Zr ceramic, the oxidation resistance of the SiBCN-Zr ceramic under air was improved compared with the SiBCN ceramic.

  18. Mechanical and dynamical behaviors of ZrSi and ZrSi{sub 2} bulk metallic glasses: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Shin-Pon, E-mail: jushin-pon@mail.nsysu.edu.tw [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China); Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Wu, Tsang-Yu; Liu, Shih-Hao [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China)

    2015-03-14

    The mechanical and dynamical properties of ZrSi and ZrSi{sub 2} bulk metallic glasses (BMGs) have been investigated by molecular dynamics simulation. The Honeycutt-Anderson (HA) index analysis indicates that the major indexes in ZrSi and ZrSi{sub 2} bulk metallic glasses are 1551, 1541, and 1431, which refers to the liquid structure. For uniaxial tension, the results show that the ZrSi and ZrSi{sub 2} BMGs are more ductile than their crystal counterparts. The evolution of the distribution of atomic local shear strain clearly shows the initialization of shear transformation zones (STZs), the extension of STZs, and the formation of shear bands along a direction 45° from the tensile direction when the tensile strain gradually increases. The self-diffusion coefficients of ZrSi and ZrSi{sub 2} BMGs at temperatures near their melting points were calculated by the Einstein equation according to the slopes of the MSD profiles at the long-time limit. Because the HA fraction summation of icosahedral-like structures of ZrSi BMG is higher than that of ZrSi{sub 2} BMG, and these local structures are more dense, the self-diffusion coefficients of the total, Zr, and Si atoms of ZrSi{sub 2} BMG are larger than those of ZrSi BMG. This can be attributed to the cage effect, where a denser local structure has a higher possibility of atoms jumping back to form a backflow and then suppress atomic diffusivity. For ZrSi{sub 2} BMG, the self-diffusion coefficient of Si increases with temperature more significantly than does that of Zr, because more open packing rhombohedra structures are formed by the Si-Si pair.

  19. Moessbauer spectroscopy of the Zr-rich region in Zr-Nb-Fe alloys with low Nb content

    International Nuclear Information System (INIS)

    Ramos, C.; Saragovi, C.; Granovsky, M.; Arias, D.

    1999-01-01

    Intermetallic phases and solid solutions in the Zr-rich region of the Zr-Nb-Fe system with low Nb content are studied by Moessbauer spectroscopy complemented with X-ray diffraction, optical and scanning electron microscopy and electron microprobe analysis. The phases found in each sample were those expected from the corresponding binary Zr-Fe system. Furthermore, one of the samples showed a ternary cubic Ti 2 Ni type phase with a similar stoichiometry to the tetragonal Zr 2 Fe compound. Moessbauer parameters were suggested to this phase (IS: - 0.12 mm/s, QS: 0.30 mm/s), to the bcc Zr(β) phase (IS: (-0.11 α 0.01) mm/s, QS: (0.23 α 0.02) mm/s), and to the hcp Zr(β T ) phase (IS: (-0.24 α 0.02) mm/s, QS: (0.45 α 0.02) mm/s)

  20. Assembly mechanism of FCT region type 1 pili in serotype M6 Streptococcus pyogenes.

    Science.gov (United States)

    Nakata, Masanobu; Kimura, Keiji Richard; Sumitomo, Tomoko; Wada, Satoshi; Sugauchi, Akinari; Oiki, Eiji; Higashino, Miharu; Kreikemeyer, Bernd; Podbielski, Andreas; Okahashi, Nobuo; Hamada, Shigeyuki; Isoda, Ryutaro; Terao, Yutaka; Kawabata, Shigetada

    2011-10-28

    The human pathogen Streptococcus pyogenes produces diverse pili depending on the serotype. We investigated the assembly mechanism of FCT type 1 pili in a serotype M6 strain. The pili were found to be assembled from two precursor proteins, the backbone protein T6 and ancillary protein FctX, and anchored to the cell wall in a manner that requires both a housekeeping sortase enzyme (SrtA) and pilus-associated sortase enzyme (SrtB). SrtB is primarily required for efficient formation of the T6 and FctX complex and subsequent polymerization of T6, whereas proper anchoring of the pili to the cell wall is mainly mediated by SrtA. Because motifs essential for polymerization of pilus backbone proteins in other Gram-positive bacteria are not present in T6, we sought to identify the functional residues involved in this process. Our results showed that T6 encompasses the novel VAKS pilin motif conserved in streptococcal T6 homologues and that the lysine residue (Lys-175) within the motif and cell wall sorting signal of T6 are prerequisites for isopeptide linkage of T6 molecules. Because Lys-175 and the cell wall sorting signal of FctX are indispensable for substantial incorporation of FctX into the T6 pilus shaft, FctX is suggested to be located at the pilus tip, which was also implied by immunogold electron microscopy findings. Thus, the elaborate assembly of FCT type 1 pili is potentially organized by sortase-mediated cross-linking between sorting signals and the amino group of Lys-175 positioned in the VAKS motif of T6, thereby displaying T6 and FctX in a temporospatial manner.

  1. Characterization of the interaction layer in diffusion couples U-Mo-Zr/Al and U-Mo-Zr/Al-A356 at 550 C degrees; Caracterizacion de la zona de interaccion en pares de difusion a 550 grados C U-Mo-Zr/Al y U-Mo-Zr/Al-A356

    Energy Technology Data Exchange (ETDEWEB)

    Komar Varela, Carolina; Arico, Sergio; Mirandou, Marcela; Balart, Silvia; Gribaudo, Luis [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales; com, carolinakomar@gmail

    2007-07-01

    Out-of-pile diffusion experiments were performed between U-7 wt.% Mo-1 wt.% Zr and Al or Al A356 (7,1 wt.% Si) at 550 C degrees. In this work morphological characterization and phase identification on both interaction layers are presented. They were carried out by the use of different techniques: optical and scanning electron microscopy, X-ray diffraction and WDS microanalysis. In the interaction layer U-7 wt.% Mo-1 wt.% Zr/Al, the phases UAl{sub 3}, UAl{sub 4}, Al{sub 20}Mo{sub 2}U and Al{sub 43}Mo{sub 4}U{sub 6} were identified. Similar results in the interaction layer of the U-7 % Mo/Al at 580 C degrees were previously obtained. In the interaction layer U-7 wt.% Mo-1 wt.% Zr/Al A356, the phases U(Al,Si){sub 3} with 25 at.% Si and Si{sub 5}U{sub 3} were identified. This last phase, with a higher Si concentration, was identified with X-ray diffraction synchrotron radiation performed at the National Synchrotron Light Laboratory, Campinas, Brazil. (author) [Spanish] Se realizaron experiencias fuera de reactor en pares de difusion quimica U-7 % Mo-1 % Zr/Al y U-7 % Mo-1 % Zr/Al A356. En este trabajo se presentan los resultados de la caracterizacion morfologica e identificacion de fases presentes en la zona de interaccion que se forma al ser sometidos a un tratamiento isotermico de 1,5 h a 550 grados C. Las tecnicas utilizadas fueron: microscopia optica y electronica de barrido, difraccion de rayos X y microanalisis cuantitativo por sonda electronica. En la zona de interaccion correspondiente al par U-7 % Mo-1 % Zr/Al se identificaron las fases UAl{sub 3}, UAl{sub 4}, Al{sub 20}Mo{sub 2}U y Al{sub 43}Mo{sub 4}U{sub 6}. Estas cuatro fases fueron identificadas en pares U-7 % Mo/Al a 580 grados C en trabajos anteriores. En la zona de interaccion correspondiente al par U-7 % Mo-1 % Zr/Al A356 se identificaron las fases U(Al,Si){sub 3} (con una concentracion de 25 %at.Si) y Si{sub 5}U{sub 3}. Este compuesto rico en Si solo pudo ser identificado mediante la utilizacion de

  2. Effect of Aging Time and Temperature on Microstructure and Mechanical Properties of Ti-39Nb-6Zr Alloy

    International Nuclear Information System (INIS)

    Kwon, Hyun Jun; Lim, Ka Ram; Lee, Yong Tae; Kim, Seung Eon; Lee, Dong Geun; Lee, Jun Hee

    2016-01-01

    The aim of this study is to optimize the microstructure and mechanical properties of Ti-39Nb-6Zr (TNZ40) for bio-implant applications. TNZ40 was designed to have a low elastic modulus (⁓40GPa) and good biocompatibility. However, the alloy shows relatively low strength compared to other titanium alloys for bio-implant. In the present study, we tried to obtain the proper combination of elastic modulus and strength by tailoring the direct aging conditions after severe plastic deformation. The mechanical properties are closely linked to characteristics including the distribution and volume fraction of precipitates.

  3. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol [Chosun University, Gwangju (Korea, Republic of); Yu, Jin Woo [Shingyeong University, Hwaseong (Korea, Republic of)

    2010-02-15

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy.

  4. Effect of Aging Time and Temperature on Microstructure and Mechanical Properties of Ti-39Nb-6Zr Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyun Jun; Lim, Ka Ram; Lee, Yong Tae; Kim, Seung Eon [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lee, Dong Geun [Sunchon National University, Sunchon (Korea, Republic of); Lee, Jun Hee [Dong-A University, Busan (Korea, Republic of)

    2016-12-15

    The aim of this study is to optimize the microstructure and mechanical properties of Ti-39Nb-6Zr (TNZ40) for bio-implant applications. TNZ40 was designed to have a low elastic modulus (⁓40GPa) and good biocompatibility. However, the alloy shows relatively low strength compared to other titanium alloys for bio-implant. In the present study, we tried to obtain the proper combination of elastic modulus and strength by tailoring the direct aging conditions after severe plastic deformation. The mechanical properties are closely linked to characteristics including the distribution and volume fraction of precipitates.

  5. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    International Nuclear Information System (INIS)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol; Yu, Jin Woo

    2010-01-01

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy

  6. Eddy Currents Inspection of CANDU Steam Generator Tubes using Zetec's ZR-1 Robot. Experience in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hower [Zetec Inc. (Romania); Luiza Vladu; Adrian Nichisov; Mihai Cretu [COMPCONTROL ING. (Romania)

    2006-07-01

    Full text of publication follows: The commercial operation of Unit 1 of Cernavoda NPP started on 2 December, 1996. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium. The nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant has four CANDU - design steam generators that have been in service since 1996. The paper introduces the new ZR-1 Robot System for Inspection and Maintenance/Repair from Zetec that combines the newest state-of-the-art robotics technology with Zetec experience - based innovation to address the needs for inspection and repair of steam generators. The multipurpose ZR-1 can be easily installed to perform the necessary eddy current inspection and remain installed ready for follow-up maintenance and repair. It has superior technical performances and a modular three axis motion of arm that enables 100% coverage of tube sheet. Automated, repeatable, and precise positioning of tool heads ensures accurate delivery and reducing costly rework and reduces inspection time by 30%. The modular, light weight, and portable design permits easy assembly and disassembly through small openings and it reduces setup/tear down time by 30%. The first deployment of the new ZR-1 Robot was made in September 2004 at the Cernavoda NPP inspection outage. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium; the nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant Unit 1 has four CANDU - design steam generators that have been in service since 1996. The paper presents also the Zetec's field experience and customer experience with this system. It describes the equipment setup in Cernavoda's steam generators mock-up, functional tests and calibration. Finally, provides details on the execution of the inspection, options for standardizing the inspection techniques and conclusions. (authors)

  7. Semisolid slurry of 7A04 aluminum alloy prepared by electromagnetic stirring and Sc, Zr additions

    Directory of Open Access Journals (Sweden)

    Jun-wen Zhao

    2017-05-01

    Full Text Available Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring (EMS and the addition of Sc and Zr elements were used to prepare semisolid slurry of 7A04 aluminum alloy in a large diameter slurry maker. The effects of different treatments on the microstructure, composition and their radial homogeneity were investigated. The results show that, compared to the slurry without any treatment, large volume slurry with finer and more uniform microstructure can be obtained when treated by EMS, Sc, or Zr additions individually. EMS is more competent in the microstructural and chemical homogenization of the slurry while Sc and Zr additions are more excellent in its microstructural refinement. The combined treatment of EMS, Sc and Zr produces premium 7A04 aluminum alloy slurry with uniformly distributed fine α-Al globules and composition. The interaction mechanism between EMS and Sc and Zr additions was also discussed.

  8. Mechanics of a crushable pebble assembly using discrete element method

    International Nuclear Information System (INIS)

    Annabattula, R.K.; Gan, Y.; Zhao, S.; Kamlah, M.

    2012-01-01

    The influence of crushing of individual pebbles on the overall strength of a pebble assembly is investigated using discrete element method. An assembly comprising of 5000 spherical pebbles is assigned with random critical failure energies with a Weibull distribution in accordance with the experimental observation. Then, the pebble assembly is subjected to uni-axial compression (ε 33 =1.5%) with periodic boundary conditions. The crushable pebble assembly shows a significant difference in stress–strain response in comparison to a non-crushable pebble assembly. The analysis shows that a ideal plasticity like behaviour (constant stress with increase in strain) is the characteristic of a crushable pebble assembly with sudden damage. The damage accumulation law plays a critical role in determining the critical stress while the critical number of completely failed pebbles at the onset of critical stress is independent of such a damage law. Furthermore, a loosely packed pebble assembly shows a higher crush resistance while the critical stress is insensitive to the packing factor (η) of the assembly.

  9. Effects of Al content on structure and mechanical properties of hot-rolled ZrTiAlV alloys

    International Nuclear Information System (INIS)

    Liang, S.X.; Yin, L.X.; Che, H.W.; Jing, R.; Zhou, Y.K.; Ma, M.Z.; Liu, R.P.

    2013-01-01

    Highlights: • Phase structure is greatly dependent on the Al content. • Intermetallic compound will precipitates while Al content is over 6.9 wt%. • Equiaxed α-phase grains present in the hot-rolled alloy with 6.9 wt% Al. • Alloys with Al content from 3.3 wt% to 5.6 wt% have good mechanical properties. - Abstract: Zirconium alloys show attractive properties for astronautic applications where the most important factors are anti-irradiation, corrosion resistance, anti-oxidant, very good strength-to-weight ratio. The effects of Al content (2.2–6.9 wt%) on structure and mechanical properties of the hot-rolled ZrTiAlV alloy samples were investigated in this study. Each sample of the hot-rolled ZrTiAlV alloys with Al contents from 2.2 wt% to 5.6 wt% is composed of the α phase and β phase, meanwhile, the relative content of the α phase increased with the Al content. However, the (ZrTi) 3 Al intermetallic compound was observed as the Al content increased to 6.9 wt%. Changes of phase compositions and structure with Al content distinctly affected mechanical properties of ZrTiAlV alloys. Yield strength of the alloy with 2.2 wt% Al is below 200 MPa. As Al content increased to 5.6 wt%, the yield strength, tensile strength and elongation of the examined alloy are 1088 MPa, 1256 MPa and 8%, respectively. As Al content further increased to 6.9 wt%, a rapid decrease in ductility was observed as soon as the (ZrTi) 3 Al intermetallic compound precipitated. Results show that the ZrTiAlV alloys with Al contents between 3.3 wt% and 5.6 wt% have excellent mechanical properties

  10. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt

    Science.gov (United States)

    Ozgurluk, Yasin; Doleker, Kadir Mert; Karaoglanli, Abdullah Cahit

    2018-04-01

    Thermal barrier coatings (TBCs) are mostly used in critical components of aircraft gas turbine engines. Hot corrosion is among the main deteriorating factors in TBCs which results from the effect of molten salt on the coating-gas interface. This type of corrosion is observed as a result of contamination accumulated during combustion processes. Fuels used in aviation industry generally contain impurities such as vanadium oxide (V2O5) and sodium sulfate (Na2SO4). These impurities damage turbines' inlet at elevated temperatures because of chemical reaction. Yttria stabilized zirconia (YSZ) is a conventional top coating material for TBCs while Gd2Zr2O7 is a new promising top coating material for TBCs. In this study, CoNiCrAlY metallic bond coat was deposited on Inconel 718 nickel based superalloy substrate material with a thickness about 100 μm using cold gas dynamic spray (CGDS) method. Production of TBCs were done with deposition of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 ceramic top coating materials using EB-PVD method, having a total thickness of 300 μm. Hot corrosion behavior of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 TBC systems were exposed to 45 wt.% Na2SO4 and 55 wt.% V2O5 molten salt mixtures at 1000 °C temperature. TBC samples were investigated and compared using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) analysis and X-ray diffractometer (XRD). The hot corrosion failure mechanisms of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 TBCs in the molten salts were evaluated.

  11. Experimental determination of the phase relationships in Zr/2.5 8.0 at% Nb/0 6.7 at% Al alloys with 750 at ppm 0 and 250 at ppm N between 730 900° C

    Science.gov (United States)

    Peruzzi, A.; Bolcich, J.

    1990-11-01

    Zr alloys with 2.5 to 8.0 at% Nb and 0 to 6.7 at% Al were subjected to dynamic and static treatments between 730-900° C and studied by qualitative and quantitative optical metallography, electrical resistance, X-ray diffractometry and electron microanalysis. The experimental data were analyzed by taking into account the effects of oxygen and nitrogen impurities. The main results for Zn-Nb-Al alloys with 750 at ppm O and 250 at ppm N are the following: (i) Equilibrium relationships are established between the α (hcp), β (bcc) and Zr 3Al (Cu 3Au) phases along isothermal sections at 730, 771 and 800°C. (ii) The β/ α + β boundaries are determined along iso-aluminum vertical sections at 6.7, 3.3 and 0 at% Al. (iii) The addition of Al to Zr-Nb alloys increases the solubility of Nb in the α phase, its maximum value at 730° C being about 0.7-0.8 at% for 4 at% Al. (iv) Solubility values for Al in the α-phase of Zr-Al were estimated by extrapolation from ternary alloys. These estimates help to solve an existing discrepancy in the Zr-Al system.

  12. Experimental determination of the phase relationships in Zr/2.5-8.0 at% Nb/0-6.7 at% Al alloys with 750 at ppm O and 250 at ppm N between 730-900deg C

    International Nuclear Information System (INIS)

    Peruzzi, A.; Bolcich, J.

    1990-01-01

    Zr alloys with 2.5 to 8.0 at% Nb and 0 to 6.7 at% Al were subjected to dynamic and static treatments between 730-900deg C and studied by qualitative and quantitative optical metallography, electrical resistance, X-ray diffractometry and electron microanalysis. The experimental data were analyzed by taking into account the effects of oxygen and nitrogen impurities. The main results for Zn-Nb-Al alloys with 750 atppm O and 250 atppm N are the following: (i) Equilibrium relationships are established between the α (hcp), β (bcc) and Zr 3 Al (Cu 3 Au) phases along isothermal sections at 730, 771 and 800deg C. (ii) The β/α+β boundaries are determined along iso-aluminum vertical sections at 6.7, 3.3 and 0 at% Al. (iii) The addition of Al to Zr-Nb alloys increases the solubility of Nb in the α phase, its maximum value at 730deg C being about 0.7-0.8 at% for 4 at% Al.(iv) Solubility values for Al in the α-phase of Zr-Al were estimated by extrapolation from ternary alloys. These estimates help to solve an existing discrepancy in the Zr-Al system. (orig.)

  13. Effects of Fe and Cr on corrosion behavior of ZrFeCr alloys in 500 oC steam

    International Nuclear Information System (INIS)

    Wang Jun; Fan Hongyuan; Xiong Ji; Liu Hong; Miao Zhi; Ying Shihao; Yang Gang

    2011-01-01

    Research highlights: Amount and size of SPP will effect the corrosion resistance of Zr alloy at 500 o C/10.3 MPa. - Abstract: A study of the corrosion behaviors of ZrFeCr alloy and the influence of microstructure on corrosion resistance are described by X-ray diffraction and scanning electron microscope in this paper. The results show that several ZrFeCr alloys exhibit protective behavior throughout the test and oxide growth is stable and protective. The best alloy has the composition Zr1.0Fe0.6Cr. Fitting of the weight gain curves for the protective oxide alloys in the region of protective behavior, it showed nearly cubic behavior for the most protective alloys. The Zr1.0Fe0.6Cr has the more laves Zr(Fe,Cr) 2 precipitate in matrix and it has the better corrosion resistance. The Zr0.2Fe0.1Cr has little precipitate, the biggest hydrogen absorption and the worst corrosion resistance. The number of precipitates and the amount of hydrogen absorption in Zr alloy plays an important role on corrosion resistance behaviors in 500 o C/10.3 MPa steam.

  14. Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys

    International Nuclear Information System (INIS)

    Kim, J.I.; Kim, H.Y.; Inamura, T.; Hosoda, H.; Miyazaki, S.

    2005-01-01

    Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys were investigated by using tensile tests and X-ray diffraction (XRD) measurement. The alloy ingots were fabricated by an arc melting method. The ingots were cold-rolled by a reduction up to 95% in thickness at room temperature. All the alloys were solution-treated at 1173 K for 1.8 ks. The alloys subjected to the solution treatment exhibited large elongations ranging between 28 and 40%. The martensitic transformation temperature decreased by 38 K with 1 at.% increase of Zr content. The maximum recovered strain of 4.3% was obtained in the Ti-22Nb-4Zr(at.%) alloy. Ti-22Nb-(2-4)Zr(at.%) and Ti-22Nb-6Zr(at.%) alloys exhibited stable shape memory effect and superelastic behavior at room temperature, respectively

  15. The preparation of Zr-deuteride and phase stability studies of the Zr-D system

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitiyili, T., E-mail: tuerdi.maimaitiyili@mah.se [Materials Science and Applied Mathematics, Malmö University, Nordenskiöldsgatan 1, 20506 Malmö (Sweden); Steuwer, A. [Nelson Mandela Metropolitan University, Gardham Avenue, 6031 Port Elizabeth (South Africa); Bjerkén, C.; Blomqvist, J. [Materials Science and Applied Mathematics, Malmö University, Nordenskiöldsgatan 1, 20506 Malmö (Sweden); Hoelzel, M. [Forschungsneutronenquelle Heinz-Maier-Leibnitz (FRM II), Technische Universität Muünchen, Lichtenbergstr. 1, D-85747 Garching (Germany); Ion, J.C. [Materials Science and Applied Mathematics, Malmö University, Nordenskiöldsgatan 1, 20506 Malmö (Sweden); Zanellato, O. [PIMM, Ensam - Cnam - CNRS, 151 Boulevard de l' Hôpital, 75013 Paris (France)

    2017-03-15

    Deuteride phases in the zirconium-deuterium system in the temperature range 25–286 °C have been studied in-situ by high resolution neutron diffraction. The study primarily focused on observations of δ→γ transformation at 180 °C, and the peritectoid reaction α + δ ↔ γ at 255 °C in commercial grade Zr powder that was deuterated to a deuterium/Zr ratio of one to one. A detailed description of the zirconium deuteride preparation route by high temperature gas loading is also described. The lattice parameters of α-Zr, δ-ZrD{sub x} and ε-ZrD{sub x} were determined by whole pattern crystal structure analysis, using Rietveld and Pawley refinements, and are in good agreement with values reported in the literature. The controversial γ-hydride phase was observed both in-situ and ex-situ in deuterated Zr powder after a heat treatment at 286 °C and slow cooling. - Highlights: • Controversial γ phase observed both in-situ and ex-situ after heat treatments. • γ-ZrD is observed at room temperature after 5 h of heat treatment at 286 °C. • Presence of α + δ ↔ γ at 255 °C was not observed. • It was observed that there is a δ → γ transformation present around 150 °C.

  16. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    International Nuclear Information System (INIS)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility

  17. Supplementary neutron flux calculations for the ORNL pool critical assembly pressure vessel facility

    Energy Technology Data Exchange (ETDEWEB)

    Maerker, R.E.; Maudlin, P.J.

    1981-02-01

    A three-dimensional Monte Carlo calculation was performed to estimate the neutron flux in the 8/7 configuration of the ORNL Pool Critical Assembly Pressure Vessel Facility. The calculational tool was the multigroup transport code MORSE operated in the adjoint mode. The MORSE flux results compared well with those using a previously adopted procedure for constructing a three-dimensional flux from one- and two-dimensional discrete ordinates calculations using the DOT-IV code. This study concluded that use of these discrete ordinates constructions in previous calculations is sufficiently accurate and does not account for the existing discrepancies between calculation and experiment.

  18. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    Energy Technology Data Exchange (ETDEWEB)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility.

  19. Supplementary neutron flux calculations for the ORNL pool critical assembly pressure vessel facility

    International Nuclear Information System (INIS)

    Maerker, R.E.; Maudlin, P.J.

    1981-02-01

    A three-dimensional Monte Carlo calculation was performed to estimate the neutron flux in the 8/7 configuration of the ORNL Pool Critical Assembly Pressure Vessel Facility. The calculational tool was the multigroup transport code MORSE operated in the adjoint mode. The MORSE flux results compared well with those using a previously adopted procedure for constructing a three-dimensional flux from one- and two-dimensional discrete ordinates calculations using the DOT-IV code. This study concluded that use of these discrete ordinates constructions in previous calculations is sufficiently accurate and does not account for the existing discrepancies between calculation and experiment

  20. Moessbauer spectroscopy of the Zr-rich region in Zr-Nb-Fe alloys with low Nb content

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, C. [Universidad de Buenos, Facultad de Ciencias Exactas y Naturales (Argentina); Saragovi, C. [Departamento de Fisica, Comision Nacional de Energia Atomica (Argentina); Granovsky, M.; Arias, D. [Departamento de Materiales, Comision Nacional de Energia Atomica (Argentina)

    1999-11-15

    Intermetallic phases and solid solutions in the Zr-rich region of the Zr-Nb-Fe system with low Nb content are studied by Moessbauer spectroscopy complemented with X-ray diffraction, optical and scanning electron microscopy and electron microprobe analysis. The phases found in each sample were those expected from the corresponding binary Zr-Fe system. Furthermore, one of the samples showed a ternary cubic Ti{sub 2}Ni type phase with a similar stoichiometry to the tetragonal Zr{sub 2}Fe compound. Moessbauer parameters were suggested to this phase (IS: - 0.12 mm/s, QS: 0.30 mm/s), to the bcc Zr({beta}) phase (IS: (-0.11 {alpha} 0.01) mm/s, QS: (0.23 {alpha} 0.02) mm/s), and to the hcp Zr({beta}{sup T}) phase (IS: (-0.24 {alpha} 0.02) mm/s, QS: (0.45 {alpha} 0.02) mm/s)

  1. Critical study of the dispersive n- 90Zr mean field by means of a new variational method

    Science.gov (United States)

    Mahaux, C.; Sartor, R.

    1994-02-01

    A new variational method is developed for the construction of the dispersive nucleon-nucleus mean field at negative and positive energies. Like the variational moment approach that we had previously proposed, the new method only uses phenomenological optical-model potentials as input. It is simpler and more flexible than the previous approach. It is applied to a critical investigation of the n- 90Zr mean field between -25 and +25 MeV. This system is of particular interest because conflicting results had recently been obtained by two different groups. While the imaginary parts of the phenomenological optical-model potentials provided by these two groups are similar, their real parts are quite different. Nevertheless, we demonstrate that these two sets of phenomenological optical-model potentials are both compatible with the dispersion relation which connects the real and imaginary parts of the mean field. Previous hints to the contrary, by one of the two other groups, are shown to be due to unjustified approximations. A striking outcome of the present study is that it is important to explicitly introduce volume absorption in the dispersion relation, although volume absorption is negligible in the energy domain investigated here. Because of the existence of two sets of phenomenological optical-model potentials, our variational method yields two dispersive mean fields whose real parts are quite different at small or negative energies. No preference for one of the two dispersive mean fields can be expressed on purely empirical grounds since they both yield fair agreement with the experimental cross sections as well as with the observed energies of the bound single-particle states. However, we argue that one of these two mean fields is physically more meaningful, because the radial shape of its Hartree-Fock type component is independent of energy, as expected on theoretical grounds. This preferred mean field is very close to the one which had been obtained by the Ohio

  2. Electron transport in diborides: observation of superconductivity in ZrB sub 2

    CERN Document Server

    Gasparov, V A; Zverkova, I I; Kulakov, M P

    2001-01-01

    Results on syntheses and electron transport properties of polycrystalline samples of diborides (AB sub 2) with different transition metals atoms (A = Zr, Nb, Ta) are reported. The temperature dependences of resistivity and ac susceptibility of these samples reveal superconducting transition of ZrB sub 2 with T sub c = 5.5 K, while NbB sub 2 and TaB sub 2 have been observed nonsuperconducting up to 0.37 K. The upper critical field H sub c sub 2 (T) is linear in temperature below T sub c. At T close to T sub c H sub c sub 2 (T) demonstrates a downward curvature. It is concluded that these diborides as well as MgB sub 2 samples behave like simple metals in the normal state with usual Bloch-Grueneisen temperature dependence of resistivity and with Debye temperatures: 280, 460 and 440 K, for ZrB sub 2 , NbB sub 2 and MgB sub 2 , respectively

  3. Benchmarking ENDF/B-VII.1, JENDL-4.0 and JEFF-3.1.1 with MCNP6

    International Nuclear Information System (INIS)

    Marck, Steven C. van der

    2012-01-01

    Recent releases of three major world nuclear reaction data libraries, ENDF/B-VII.1, JENDL-4.0, and JEFF-3.1.1, have been tested extensively using benchmark calculations. The calculations were performed with the latest release of the continuous energy Monte Carlo neutronics code MCNP, i.e. MCNP6. Three types of benchmarks were used, viz. criticality safety benchmarks, (fusion) shielding benchmarks, and reference systems for which the effective delayed neutron fraction is reported. For criticality safety, more than 2000 benchmarks from the International Handbook of Criticality Safety Benchmark Experiments were used. Benchmarks from all categories were used, ranging from low-enriched uranium, compound fuel, thermal spectrum ones (LEU-COMP-THERM), to mixed uranium-plutonium, metallic fuel, fast spectrum ones (MIX-MET-FAST). For fusion shielding many benchmarks were based on IAEA specifications for the Oktavian experiments (for Al, Co, Cr, Cu, LiF, Mn, Mo, Si, Ti, W, Zr), Fusion Neutronics Source in Japan (for Be, C, N, O, Fe, Pb), and Pulsed Sphere experiments at Lawrence Livermore National Laboratory (for 6 Li, 7 Li, Be, C, N, O, Mg, Al, Ti, Fe, Pb, D2O, H2O, concrete, polyethylene and teflon). The new functionality in MCNP6 to calculate the effective delayed neutron fraction was tested by comparison with more than thirty measurements in widely varying systems. Among these were measurements in the Tank Critical Assembly (TCA in Japan) and IPEN/MB-01 (Brazil), both with a thermal spectrum, two cores in Masurca (France) and three cores in the Fast Critical Assembly (FCA, Japan), all with fast spectra. The performance of the three libraries, in combination with MCNP6, is shown to be good. The results for the LEU-COMP-THERM category are on average very close to the benchmark value. Also for most other categories the results are satisfactory. Deviations from the benchmark values do occur in certain benchmark series, or in isolated cases within benchmark series. Such

  4. SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication.

    Science.gov (United States)

    Fong, Chii Shyang; Kim, Minhee; Yang, T Tony; Liao, Jung-Chi; Tsou, Meng-Fu Bryan

    2014-07-28

    Centrioles are 9-fold symmetric structures duplicating once per cell cycle. Duplication involves self-oligomerization of the centriolar protein SAS-6, but how the 9-fold symmetry is invariantly established remains unclear. Here, we found that SAS-6 assembly can be shaped by preexisting (or mother) centrioles. During S phase, SAS-6 molecules are first recruited to the proximal lumen of the mother centriole, adopting a cartwheel-like organization through interactions with the luminal wall, rather than via their self-oligomerization activity. The removal or release of luminal SAS-6 requires Plk4 and the cartwheel protein STIL. Abolishing either the recruitment or the removal of luminal SAS-6 hinders SAS-6 (or centriole) assembly at the outside wall of mother centrioles. After duplication, the lumen of engaged mother centrioles becomes inaccessible to SAS-6, correlating with a block for reduplication. These results lead to a proposed model that centrioles may duplicate via a template-based process to preserve their geometry and copy number. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. High-temperature strength of Nb-1%Zr alloy for irradiation-capsules inner-shell

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Nakata, Hirokatsu; Tanaka, Mitsuo; Fukaya, Kiyoshi.

    1978-04-01

    Coated fuel particles in capsules will be irradiated at about 1600 0 C in JMTR. Nb-1%Zr alloy was chosen for inner shell material of the capsules because of its sufficient strength at 1000 0 C and low induced radioactivity. Nb-1%Zr ingot produced by electron beam melting was formed into seamless tubes by hollowing and swaging, followed by annealing. Creep test in helium flow and tensile test in vacuum were made to examine mechanical strength of the Nb-1%Zr tubes at 1000 0 C. Following are the results; 1) 0.2% yield stress at 1000 0 C is about 6 kg/mm 2 . 2) 3000 hr creep rupture stress at 1000 0 C is about 6 kg/mm 2 . (auth.)

  6. User's manual of program RFIT Pt. 2

    International Nuclear Information System (INIS)

    Szatmary, Z.

    1991-06-01

    The RFIT program system was written for the parameter estimation and evaluation of a reactor physics testing project concerning WWER type reactors, to measure reactor physics parameters like neutron flux, reactivity, criticality, reactor kinetics variables etc. It was applied for the ZR-6 critical assembly of CRIP, Budapest. This second part contains detailed descriptions of the fitting functions, determination of correction factors, Newton iteration applied for solving least squares equations, error estimation, rules of input preparation for task RFIT, handling spectral ratio measurements (task SPEC), program output connected with parameter estimation. (R.P.)

  7. Pool critical assembly pressure vessel facility benchmark

    International Nuclear Information System (INIS)

    Remec, I.; Kam, F.B.K.

    1997-07-01

    This pool critical assembly (PCA) pressure vessel wall facility benchmark (PCA benchmark) is described and analyzed in this report. Analysis of the PCA benchmark can be used for partial fulfillment of the requirements for the qualification of the methodology for pressure vessel neutron fluence calculations, as required by the US Nuclear Regulatory Commission regulatory guide DG-1053. Section 1 of this report describes the PCA benchmark and provides all data necessary for the benchmark analysis. The measured quantities, to be compared with the calculated values, are the equivalent fission fluxes. In Section 2 the analysis of the PCA benchmark is described. Calculations with the computer code DORT, based on the discrete-ordinates method, were performed for three ENDF/B-VI-based multigroup libraries: BUGLE-93, SAILOR-95, and BUGLE-96. An excellent agreement of the calculated (C) and measures (M) equivalent fission fluxes was obtained. The arithmetic average C/M for all the dosimeters (total of 31) was 0.93 ± 0.03 and 0.92 ± 0.03 for the SAILOR-95 and BUGLE-96 libraries, respectively. The average C/M ratio, obtained with the BUGLE-93 library, for the 28 measurements was 0.93 ± 0.03 (the neptunium measurements in the water and air regions were overpredicted and excluded from the average). No systematic decrease in the C/M ratios with increasing distance from the core was observed for any of the libraries used

  8. Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance.

    Science.gov (United States)

    Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn

    2016-05-11

    The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.

  9. Ternary semiconductors NiZrSn and CoZrBi with half-Heusler structure: A first-principles study

    Science.gov (United States)

    Fiedler, Gregor; Kratzer, Peter

    2016-08-01

    The ternary semiconductors NiZrSn and CoZrBi with C 1b crystal structure are introduced by calculating their basic structural, electronic, and phononic properties using density functional theory. Both the gradient-corrected PBE functional and the hybrid functional HSE06 are employed. While NiZrSn is found to be a small-band-gap semiconductor (Eg=0.46 eV in PBE and 0.60 eV in HSE06), CoZrBi has a band gap of 1.01 eV in PBE (1.34 eV in HSE06). Moreover, effective masses and deformation potentials are reported. In both materials A B C , the intrinsic point defects introduced by species A (Ni or Co) are calculated. The Co-induced defects in CoZrBi are found to have a higher formation energy compared to Ni-induced defects in NiZrSn. The interstitial Ni atom (Nii) as well as the VNiNii complex introduce defect states in the band gap, whereas the Ni vacancy (VNi) only reduces the size of the band gap. While Nii is electrically active and may act as a donor, the other two types of defects may compensate extrinsic doping. In CoZrBi, only the VCoCoi complex introduces a defect state in the band gap. Motivated by the reported use of NiZrSn for thermoelectric applications, the Seebeck coefficient of both materials, both in the p -type and the n -type regimes, is calculated. We find that CoZrBi displays a rather large thermopower of up to 500 μ V /K when p doped, whereas NiZrSn possesses its maximum thermopower in the n -type regime. The reported difficulties in achieving p -type doping in NiZrSn could be rationalized by the unintended formation of Nii2 + in conjunction with extrinsic acceptors, resulting in their compensation. Moreover, it is found that all types of defects considered, when present in concentrations as large as 3%, tend to reduce the thermopower compared to ideal bulk crystals at T =600 K. For NiZrSn, the calculated thermodynamic data suggest that additional Ni impurities could be removed by annealing, leading to precipitation of a metallic Ni2ZrSn phase.

  10. Biological Properties of Ti-Nb-Zr-O Nanostructures Grown on Ti35Nb5Zr Alloy

    Directory of Open Access Journals (Sweden)

    Zhaohui Li

    2012-01-01

    Full Text Available Surface modification of low modulus implant alloys with oxide nanostructures is one of the important ways to achieve favorable biological behaviors. In the present work, amorphous Ti-Nb-Zr-O nanostructures were grown on a peak-aged Ti35Nb5Zr alloy through anodization. Biological properties of the Ti-Nb-Zr-O nanostructures were investigated through in vitro bioactivity testings, stem cell interactions, and drug release experiments. The Ti-Nb-Zr-O nanostructures demonstrated a good capability of inducing apatite formation after immersion in simulated body fluids (SBFs. Drug delivery experiment based on gentamicin and the Ti-Nb-Zr-O nanostructures indicated that a high drug loading content could result in a prolonged release process and a higher quantity of drug residues in the oxide nanostructures after drug release. Quick stem cell adhesion and spreading, as well as fast formation of extracellular matrix materials on the surfaces of the Ti-Nb-Zr-O nanostructures, were found. These findings make it possible to further explore the biomedical applications of the Ti-Nb-Zr-O nanostructure modified alloys especially clinical operation of orthopaedics by utilizing the nanostructures-based drug-release system.

  11. 51Cr diffusion in Zr-Sn alloys

    International Nuclear Information System (INIS)

    Nicolai, L.I.; Migoni, R.L.; Hojvat de Tendler, Ruth

    1982-01-01

    The 51 Cr volume diffusion in Zr-Sn alloys is measured in polycrystals with big grains by the thin-film method. The Sn content in the alloys ranges from 0.39% at to 6.66 % at. In the beta-phase the analysed temperature range is 982 deg C-1240 deg C. The Sn dehances the 51 Cr diffusion in beta-Zr, the effect being small but well defined. Assuming the formation of Sn-Cr dimers, the linear dehancement coefficient b and the parameters for the variation of b with temperature were calculated. The parameters Q and D o were calculated for the more diluted alloys and, upon application of the Zener theory for D o , a negative contribution to the activation entropy is found. Three experiments at different temperatures were performed in the alpha-phase. 51 Cr diffuses very fast in alpha-Zr-Sn. No definite correlation is found between the 51 Cr diffusivity and the increasing Sn concentration, probably due to the anisotropy of the alfa-phase. (M.E.L.) [es

  12. Synthesis of naturally cross-linked polycrystalline ZrO2 hollow nanowires using butterfly as templates

    International Nuclear Information System (INIS)

    Chen Yu; Gu Jiajun; Zhu Shenmin; Su Huilan; Zhang Di; Feng Chuanliang; Zhuang Leyan

    2012-01-01

    Highlights: ► Naturally cross-linked ZrO 2 nanotubes with ∼2.4 μm in length, ∼35 nm in diameter and ∼12 nm in wall thickness was synthesized via the selection of suitable butterfly bio-templates followed by heat processing. ► The contractions, which are main defects of the former hard-template method based on butterflies, are well controlled with the help of the surface tension effect. ► The achieved hollow ZrO 2 nanowires suggest a new optional approach that uses bio-templates in fabricating and designing nano systems. - Abstract: Butterfly wing skeleton is a widely used hard-template in recent years for fabricating photonic crystal structures. However, the smallest construction units for the most species of butterflies are commonly larger than ∼50 nm, which greatly hinders their applications in designing much smaller functional parts down to real “nano scale”. This work indicates, however, that hollow ZrO 2 nanowires with ∼2.4 μm in length, ∼35 nm in diameter and ∼12 nm in wall thickness can be synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Especially, the successful fabrication of these naturally cross-linked ZrO 2 nanotubes suggests a new optional approach in fabricating assembled nano systems.

  13. Study on technology for laboratory scale production of Zirconium Chloride (ZrCl4) by chlorinating Zirconium dioxide (ZrO2)

    International Nuclear Information System (INIS)

    Nguyen Van Sinh

    2007-01-01

    ZrCl 4 is used as a main material for producing metallic zirconium. There are four methods for obtaining ZrCl 4 . The method of chlorination of ZrO 2 was selected and some instruments have been made for the study (to produce ZrCl 4 in laboratory scale). A procedure of preparing ZrCl 4 on the obtained instruments was set up and a small amount of ZrCl 4 was successfully obtained. (author)

  14. Qualification of the APOLLO2 lattice physics code of the NURISP platform for WWER hexagonal lattices

    International Nuclear Information System (INIS)

    Hegyi, G.; Kereszturi, A.; Tota, A.

    2011-01-01

    The experiments performed at the ZR-6 zero critical reactor by the Temporary International Collective and a numerical assembly burnup benchmark specified for depletion calculation of a WWER-440 assembly containing gadolinium burnable poison were used to qualify the APOLLO2 (APOLLO2.8-E3) code as a part of its ongoing validation activity. The work is part of the NURISP project, where KFKI Atomic Energy Research Institute undertook to develop and qualify some calculation schemes for hexagonal problems. Concerning the ZR-6 measurements, single cell, macro cell and two-dimensional calculations of selected regular and perturbed experiments are being used for the validation. In the two-dimensional cases the radial leakage is also taken into account in the calculations together with the axial leakage represented by the measured axial buckling. Criticality parameter and reaction rate comparisons are presented. Although various sets of the experiments have been selected for the validation, good agreement of the measured and calculated parameters could be found by using the different options offered by APOLLO2. An additional mathematical benchmark-presented in the paper - also attests for the reliability of APOLLO2. All the test results prove the reliability of APOLLO2 for WWER core calculations. (Authors)

  15. A Comparative Study on Corrosion Behavior of Ti-35Nb-5Ta-7Zr Ti-6Al-4V and CP-Ti in 0.9 wt% NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol [Andong National University, Andong (Korea, Republic of)

    2009-08-15

    Recently, quaternary titanium alloys of the system Ti-Nb-Ta-Zr received considerable research considerable research interest as potential implant materials because of their excellent mechanical properties and biocompatibility. However, only few reported works were available on the corrosion behavior of such alloys. Hence, in the present work, electrochemical corrosion of Ti-35Nb-5Ta-7Zr alloy, which has been fabricated by are melting and heat treatment, was studied in 0.9 wt% NaCl at 37{+-}1 .deg. C, along with biomedical grade Ti-6Al-4V and CP-Ti. The phase and microstructure of the alloys were investigated employing XRD and SEM. The results of electrochemical studies indicated that the corrosion resistance of the quaternary alloy was inferior to that of Ti-6Al-4V and CP Ti.

  16. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti-6Al-4V-1Zr alloy surface

    International Nuclear Information System (INIS)

    Vasilescu, C.; Drob, P.; Vasilescu, E.; Demetrescu, I.; Ionita, D.; Prodana, M.; Drob, S.I.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → EIS spectra for Ti6Al4V1Zr alloy were fitted with one time constant electric equivalent circuit. → For covered alloy the equivalent circuit contains two time constants. → Resistances of films increased in time revealing the improvement of the alloy protection capacity. → Surface roughness significantly increased by apatite formation, being favourably to cell adhesion. - Abstract: A new titanium base Ti-6Al-4V-1Zr alloy covered with hydroxyapatite or bovine serum albumin/hydroxyapatite was characterized in this paper in order to be used as implant material. Following techniques were used: linear polarization, electrochemical impedance spectroscopy, scanning electronic microscopy, Fourier transform infrared spectroscopy and atomic force microscopy. For HA or BSA/HA covered alloy, the electric equivalent circuit contains two time constants (for the passive film and for coatings). The resistance of the protective films increased in time and BSA/HA coating was slightly rougher than HA coating, this situation being favourably to the cell adhesion.

  17. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti-6Al-4V-1Zr alloy surface

    Energy Technology Data Exchange (ETDEWEB)

    Vasilescu, C.; Drob, P. [Institute of Physical Chemistry ' Ilie Murgulescu' of Romanian Academy, Spl. Independentei 202, P.O. Box 12-194, 060021 Bucharest (Romania); Vasilescu, E., E-mail: ec_vasilescu@yahoo.co [Institute of Physical Chemistry ' Ilie Murgulescu' of Romanian Academy, Spl. Independentei 202, P.O. Box 12-194, 060021 Bucharest (Romania); Demetrescu, I.; Ionita, D.; Prodana, M. [Politehnica University of Bucharest, Faculty of Applied Chemistry and Material Science, Str. Polizu 1-7, 011061 Bucharest (Romania); Drob, S.I. [Institute of Physical Chemistry ' Ilie Murgulescu' of Romanian Academy, Spl. Independentei 202, P.O. Box 12-194, 060021 Bucharest (Romania)

    2011-03-15

    Graphical abstract: Display Omitted Research highlights: {yields} EIS spectra for Ti6Al4V1Zr alloy were fitted with one time constant electric equivalent circuit. {yields} For covered alloy the equivalent circuit contains two time constants. {yields} Resistances of films increased in time revealing the improvement of the alloy protection capacity. {yields} Surface roughness significantly increased by apatite formation, being favourably to cell adhesion. - Abstract: A new titanium base Ti-6Al-4V-1Zr alloy covered with hydroxyapatite or bovine serum albumin/hydroxyapatite was characterized in this paper in order to be used as implant material. Following techniques were used: linear polarization, electrochemical impedance spectroscopy, scanning electronic microscopy, Fourier transform infrared spectroscopy and atomic force microscopy. For HA or BSA/HA covered alloy, the electric equivalent circuit contains two time constants (for the passive film and for coatings). The resistance of the protective films increased in time and BSA/HA coating was slightly rougher than HA coating, this situation being favourably to the cell adhesion.

  18. A criticality analysis of the GBC-32 dry storage cask with Hanbit nuclear power plant unit 3 fuel assemblies from the viewpoint of burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Ju; Kim, Do Yeon; Park, Kwang Heon; Hong, Ser Gi [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2016-06-15

    Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that keff values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

  19. Neutron separation energies of Zr isotopes

    International Nuclear Information System (INIS)

    Gomes, L.C.; Dietzsch, O.

    1976-01-01

    Q values are reported for (d,t) reactions on all the stable isotopes of zirconium. The neutron separation energies of 94 Zr and 96 Zr differ greatly (by 27.5 and 22.1 keV, respectively) from the values in the 1971 Atomic Mass Evaluation. These results combined with those from other authors seem to indicate that the 1971 values for the masses of 93 Zr and 95 Zr are in error. (orig.) [de

  20. Formation of clusters composed of C60 molecules via self-assembly in critical fluids

    International Nuclear Information System (INIS)

    Fukuda, Takahiro; Ishii, Koji; Kurosu, Shunji; Whitby, Raymond; Maekawa, Toru

    2007-01-01

    Fullerenes are promising candidates for intelligent, functional nanomaterials because of their unique mechanical, electronic and chemical properties. However, it is necessary to invent some efficient but relatively simple methods of producing structures composed of fullerenes for the development of nanomechatronic, nanoelectronic and biochemical devices and sensors. In this paper, we show that various structures such as straight fibres, networks formed by fibres, wide sheets and helical structures, which are composed of C 60 molecules, are created by placing C 60 -crystals in critical ethane, carbon dioxide and xenon even though C 60 molecules do not dissolve or disperse in the above fluids. It is supposed, judging by the intermolecular potentials between C 60 and C 60 , between C 60 and ethane, and between ethane and ethane, that C 60 -clusters grow with the assistance of solvent molecules, which are trapped between C 60 molecules under critical conditions. This room-temperature self-assembly cluster growth process in critical fluids may open up a new methodology of forming structures built up with fullerenes without the need for any ultra-fine processing technologies

  1. Evidence of zirconium nano-agglomeration in as-cast dilute U–Zr alloys

    International Nuclear Information System (INIS)

    Mukherjee, S.; Kaity, S.; Saify, M.T.; Jha, S.K.; Pujari, P.K.

    2014-01-01

    Microstructure evaluation of as-cast and annealed U–Zr (Zr = 2, 6 and 10 wt.%) alloys has been carried out for the first time using positrons as a probe. The chemical signature in the matter–antimatter annihilation gamma and the positron lifetime data suggests that majority of positrons are annihilating from Zr sites in the as-cast alloys. The results have been interpreted as due to the presence of Zr nano-agglomerates in the as-cast alloys which have a higher positron affinity as compared to the rest of the U matrix. A minimum agglomerate size of ∼2 nm diameter has been calculated from the difference in positron affinity between the agglomerates and the matrix. Upon annealing, the Zr signature in the annihilation gamma photons vanishes suggesting that the Zr agglomerates diffuse out of U matrix and form micron-sized precipitates. This has been confirmed by scanning electron microscopy which shows a 3 times increase in the surface density of the precipitates in the annealed alloys as compared to the as-cast ones. Shorter positron diffusion length (measured using slow positron beam) as compared to precipitate separation has been invoked to explain the observed data

  2. A Negative Thermal Expansion Material of ZrMgMo3O12

    International Nuclear Information System (INIS)

    Song Wen-Bo; Liang Er-Jun; Liu Xian-Sheng; Li Zhi-Yuan; Yuan Bao-He; Wang Jun-Qiao

    2013-01-01

    A material with the formula ZrMgMo 3 O 12 having negative thermal expansion is presented and characterized. It is shown that ZrMgMo 3 O 12 crystallizes in an orthorhombic symmetry with space group Pnma(62) or Pna2 1 (33) and exhibits negative thermal expansion in a large temperature range (α l = −3.8 × 10 −6 K −1 from 300K to 1000K by x-ray diffraction and α l = −3.73 × 10 −6 K −1 from 295K to 775K by dilatometer). ZrMgMo 3 O 12 remains the orthorhombic structure without phase transition or decomposition at least from 123K to 1200K and is not hygroscopic. These properties make it an excellent material with negative thermal expansion for a variety of applications

  3. Onset of self-assembly

    International Nuclear Information System (INIS)

    Chitanvis, S.M.

    1998-01-01

    We have formulated a theory of self-assembly based on the notion of local gauge invariance at the mesoscale. Local gauge invariance at the mesoscale generates the required long-range entropic forces responsible for self-assembly in binary systems. Our theory was applied to study the onset of mesostructure formation above a critical temperature in estane, a diblock copolymer. We used diagrammatic methods to transcend the Gaussian approximation and obtain a correlation length ξ∼(c-c * ) -γ , where c * is the minimum concentration below which self-assembly is impossible, c is the current concentration, and γ was found numerically to be fairly close to 2/3. The renormalized diffusion constant vanishes as the critical concentration is approached, indicating the occurrence of critical slowing down, while the correlation function remains finite at the transition point. copyright 1998 The American Physical Society

  4. Giant magnetoresistance effect in CoZr/Cu/Co spin-valve films (abstract)

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Youssef, J. [CNRS-LMIMS, 92195 Meudon-Bellevue (France)]|[LPM Universite Mohammed V, Rabat (Morocco); Koshkina, O.; Le Gall, H. [CNRS-LMIMS, 92195 Meudon-Bellevue (France); Harfaoui, M.E. [LPMC Universite Ibn Tofail Kenitra (Morocco); Bouziane, K. [CNRS-LMIMS, 92195 Meudon-Bellevue (France); Yamani, M.E. [LPM Universite Mohammed V, Rabat (Morocco); Desvignes, J.M. [CNRS-LMIMS, 92195 Meudon-Bellevue (France)

    1997-04-01

    A high sensitivity of giant magnetoresistance (GMR) has been observed recently from soft magnetic layers such as NiFe, NiFeCo, and FeCoB. Amorphous CoZr alloys present ultrasoft properties compared to NiFe. GMR has been investigated for amorphous CoZr/Cu/Co thin films grown by rf diode sputtering using a target consisting of a Co disk partially covered with a Zr foil. The influence of the argon pressure on Cu layer deposition, Cu thickness, and Zr content on magnetic and transport properties was analyzed. The highest value of transverse GMR obtained along the easy axis is 3.6{percent} and the MR curve was saturated in a magnetic field of 100 Oe at room temperature. GMR shows scaling behavior with the sample composition. Very high sensitivity, around 1{endash}2{percent}/Oe was observed in a CoZr (3 nm)/Cu (3 nm)/Co (2 nm) sandwich. This study shows a large dependence of GMR on Cu thickness and the maximum of magnetoresistance strongly depending on the Ar pressure which modifies the interface roughness. The Zr content also influences the magnetotransport properties ({Delta}R/R and {Delta}R/R{Delta}H). The difference in coercivity between soft magnetic CoZr and hard magnetic Co layers induces antiferromagnetic alignment. Therefore a high MR ratio and field sensitivity are achieved by improving the magnetic properties of the CoZr layer.{copyright} {ital 1997 American Institute of Physics.}

  5. Can reduced size of metals induce hydrogen absorption: ZrAl2 case

    International Nuclear Information System (INIS)

    Jacob, I.; Deledda, S.; Bereznitsky, M.; Yeheskel, O.; Filipek, S.M.; Mogilyanski, D.; Kimmel, G.; Hauback, B.C.

    2011-01-01

    Research highlights: → 15 nm particles of ZrAl 2 and Zr(Al 0.5 Co 0.5 ) 2 are obtained by attrition and cryomilling. → ZrAl 2 nanoparticles remain inert to hydrogen absorption up to pressure of ∼2 GPa. → Zr(Al 0.5 Co 0.5 ) 2 nanoparticles exhibit reduced hydrogen absorption as compared to the corresponding bulk compounds. - Abstract: The hydrogen absorption ability of the non-absorbing Al-rich ZrAl 2 compound was examined after reducing its particles-size to the nanometer regime. The hydrogen abstinence of bulk ZrAl 2 has been previously related to its excessive elastic shear stiffening. The particle size of ZrAl 2 was reduced by attrition milling and cryomilling. The minimal average particle size was estimated from powder X-ray diffraction analysis to be in the range of 10-20 nm. The hydrogen absorption of the milled compounds was measured in different hydrogenation systems at hydrogen pressures between ∼6 MPa and ∼2 GPa. In all the cases the hydrogen absorption was negligible. In addition, there was a reduction of the hydrogen absorption capacity of nanosized Zr(Al 0.5 Co 0.5 ) 2 as compared to the corresponding bulk compound at the same conditions. We suggest, in view of our and other results, that no significant improvement of the thermodynamics (unlike the kinetics) of the hydrogen absorption can be achieved via the nanoparticle avenue.

  6. Extrapolated experimental critical parameters of unreflected and steel-reflected massive enriched uranium metal spherical and hemispherical assemblies

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1997-12-01

    Sixty-nine critical configurations of up to 186 kg of uranium are reported from very early experiments (1960s) performed at the Rocky Flats Critical Mass Laboratory near Denver, Colorado. Enriched (93%) uranium metal spherical and hemispherical configurations were studied. All were thick-walled shells except for two solid hemispheres. Experiments were essentially unreflected; or they included central and/or external regions of mild steel. No liquids were involved. Critical parameters are derived from extrapolations beyond subcritical data. Extrapolations, rather than more precise interpolations between slightly supercritical and slightly subcritical configurations, were necessary because experiments involved manually assembled configurations. Many extrapolations were quite long; but the general lack of curvature in the subcritical region lends credibility to their validity. In addition to delayed critical parameters, a procedure is offered which might permit the determination of prompt critical parameters as well for the same cases. This conjectured procedure is not based on any strong physical arguments

  7. The effect of nano-size ZrO2 powder addition on the microstructure and superconducting properties of single-domain Y-Ba-Cu-O bulk superconductors

    International Nuclear Information System (INIS)

    Iida, K; Babu, N H; Reddy, E S; Shi, Y-H; Cardwell, D A

    2005-01-01

    The effect of nano-size ZrO 2 powder addition on the microstructure and superconducting properties of Y-Ba-Cu-O single grain bulk superconductors has been investigated. Significant pushing phenomena of Y 2 BaCuO 5 (Y-211) particles, particularly in the c growth sector, were observed even with a small amount of ZrO 2 added to the precursor powder. An increase in Y-211 particle pushing was observed with increasing ZrO 2 content, leading to an inhomogeneous bulk microstructure. In addition, a growth cycle consisting of a Y-211 free layer-porous narrow layer-Y-211 high concentration layer was observed for samples prepared with 0.25 wt% ZrO 2 in both the a and c growth sectors. The extent of the growth of single grain Y-Ba-Cu-O (YBCO) decreased with increasing ZrO 2 content due to increased pushing of Y-211 particles towards molten liquid. The superconducting transition temperature, T c , of the ZrO 2 containing YBCO samples was sharp but depressed slightly (by up to 1 K) compared with an undoped YBCO grain, indicating a relative insensitivity of T c to ZrO 2 content. Finally, the sensitivity of critical current density, J c , to applied magnetic field in large grain bulk YBCO containing ZrO 2 was observed to depend critically on position due to the inhomogeneous sample microstructure

  8. Influence of ion bombardment on structure and properties of TiZrN thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu-Wei, E-mail: james722@itrc.narl.org.tw [Instrument Technology Research Center, National Applied Research Laboratories Taiwan (China); Huang, Jia-Hong; Yu, Ge-Ping [Department of Engineering and System Science, National Tsing Hua University, Taiwan (China); Hsiao, Chien-Nan; Chen, Fong-Zhi [Instrument Technology Research Center, National Applied Research Laboratories, Taiwan (China)

    2015-11-01

    Highlights: • (Ti,Zr)N thin films were produced using dual guns with Ti and Zr targets. • Ti{sub 0.5}Zr{sub 0.5}N shows excellent hardness of 37.8 GPa with exhibiting (1 1 1) preferred orientation. • Resistivity is inverse proportional to the packing density. • Hardness is proportional to the packing density. - Abstract: The study is focused on the characterization of TiZrN thin film by controlling the behavior of ion bombardment. Thin films are grown using radio frequency magnetron sputtering process on Si wafer. The negative bias voltage ranging from −20 V to −130 V was applied to the substrate. The ion current density increases rapidly as substrate bias is lower than −60 V, then slightly increases as the critical value about −60 V is exceeded. At the substrate bias of −60 V, the ion current density is close to 0.56 mA/cm{sup 2}. The resistivity measured by four-point probe decreases from conditions −20 V to −60 V and then increases for substrate bias increases from −60 V to −130 V. The resistivity of TiZrN films is contributed from the packing factor. The N/TiZr ratios about 1 were measured by Rutherford backscattering spectrometer, and the packing factors of TiZrN films can also be obtained by the results of RBS. Field Emission scanning electron microscope (FEG-SEM) is used to characterize the thickness and structure of the deposited TiZrN film. X-ray diffraction (XRD) is used to determine the preferred orientation and lattice parameter. The precursor results of XRD show that all the coating samples exhibited (1 1 1) preferred orientation, and the hardness values of TiZrN films were ranging from 20 to 40 GPa. To sum up the precursor studies, the TiZrN films which can improve the properties from TiN and ZrN is a new ceramic material with higher potential. Following the advance process and analysis research, the structure and properties can be correlated and as a reference for industry application.

  9. Al2TiO5-ZrTiO4-ZrO2 composites

    International Nuclear Information System (INIS)

    Parker, F.J.

    1990-01-01

    The characterization and properties of ceramic composites containing the phases Al 2 TiO 5 , ZrTiO 4 , and ZrO 2 are described. The low thermal expansions are apparently due to a combination of microcracking by the titanate phases and a contractive phase transformation by the ZrO 2 . The crystal chemistry and microstructure of the product are processing dependent. Although the composites represent a complex microcracking system, the low thermal expansions and high-temperature stability make them potential candidates for commercial application requiring thermal shock resistance

  10. Oxidation Resistance, Electrical and Thermal Conductivity, and Spectral Emittance of Fully Dense HfB2 and ZrB2 with SiC, TaSi2, and LaB6 Additives

    Science.gov (United States)

    2012-01-26

    of ZrB2-30 mol% SiC Electrically Heated Ribbons over 1-6 µm5 Spectral radiosities of direct electrically-heated ZrB2-30 mol% SiC specimens were mea...where RT (λ) is the spectral radiosity , h is Planck’s constant, k is Boltzmann’s constant, λ is wavelength, c is the speed of light, and T is the...Thus spectral radiosity measurements were performed at an angle normal to the ribbon surface. Specimens were loaded and removed from the chamber via an O

  11. Ultra-thin zirconia films on Zr-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joong Il Jake; Mayr-Schmoelzer, Wernfried; Mittendorfer, Florian; Redinger, Josef; Diebold, Ulrike; Schmid, Michael [Institute of Applied Physics, Vienna University of Technology (Austria); Li, Hao; Rupprechter, Guenther [Institute of Materials Chemistry, Vienna University of Technology (Austria)

    2014-07-01

    Zirconia ultra-thin films have been prepared by oxidation of Pt{sub 3}Zr(0001) and showed a structure equivalent to (111) of cubic zirconia. Following previous work, we have prepared ultra-thin zirconia by oxidation of a different alloy, Pd{sub 3}Zr(0001), which resulted in a similar structure with a slightly different lattice parameter, 351.2 ±0.4 pm. Unlike the oxide on Pt{sub 3}Zr, where Zr of the oxide binds to Pt in the substrate, here the oxide binds to substrate Zr via oxygen. This causes stronger distortion of the oxide structure, i.e. a stronger buckling of Zr in the oxide. After additional oxidation of ZrO{sub 2}/Pt{sub 3}Zr, a different ultra-thin zirconia phase is observed. A preliminary structure model for this film is based on (113)-oriented cubic zirconia. 3D oxide clusters are also present after growing ultra-thin zirconia films. They occur at the step edges, and the density is higher on Pd{sub 3}Zr. These clusters also appear on terraces after additional oxidation. XPS reveals different core level shifts of the oxide films, bulk, and oxide clusters.

  12. Study of alpha-case depth in Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V

    International Nuclear Information System (INIS)

    Gaddam, R; Sefer, B; Pederson, R; Antti, M-L

    2013-01-01

    At temperatures exceeding 480°C titanium alloys generally oxidises and forms a hard and brittle layer enriched with oxygen, which is called alpha case. This layer has negative effects on several mechanical properties and lowers the tensile ductility and the fatigue resistance. Therefore any alpha-case formed on titanium alloys during various manufacturing processes, such as heat treatment procedures, must be removed before the final part is mounted in an engine. In addition, long time exposure at elevated temperatures during operation of an engine could possibly also lead to formation of alpha-case on actual parts, therefore knowledge and understanding of the alpha-case formation and its effect on mechanical properties is important. Factors that contribute for growth of alpha-case are: presence of oxygen, exposure time, temperature and pressure. In the present study, isothermal oxidation experiments in air were performed on forged Ti-6Al-2Sn-4Zr-2Mo at 500°C and 593°C up to 500 hours. Similar studies were also performed on Ti-6Al-4V plate at 593°C and 700°C. Alpha-case depth for both alloys was quantified using metallography techniques and compared

  13. Microstructures and mechanical properties of Gd{sub 2}Zr{sub 2}O{sub 7}/ZrO{sub 2}(3Y) ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lei [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819 (China); Key Laboratory for Advanced Ceramics and Application of Shenyang, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142 (China); Ma, Weimin, E-mail: maleisy2003@163.com [Key Laboratory for Advanced Ceramics and Application of Shenyang, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142 (China); Sun, Xudong, E-mail: xdsun@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819 (China); Ji, Lianyong; Liu, Jianan; Hang, Kai [Key Laboratory for Advanced Ceramics and Application of Shenyang, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142 (China)

    2015-09-25

    Highlights: • Gd{sub 2}Zr{sub 2}O{sub 7}/ZrO{sub 2}(3Y) composites were prepared using vacuum sintering. • The phase composition and microstructure are studied. • Gd{sub 2}Zr{sub 2}O{sub 7}/ZrO{sub 2}(3Y) materials show superior mechanical properties. • The solid solution strengthening and stress-induced phase transformation toughening mechanism are proposed. • Two kinds of mechanisms explain the improvement of mechanical properties. - Abstract: Gd{sub 2}Zr{sub 2}O{sub 7}/ZrO{sub 2}(3Y) composite ceramics were prepared by vacuum sintering using Gd{sub 2}Zr{sub 2}O{sub 7} and ZrO{sub 2}(3Y) nanoparticles. The ceramics were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), the three-point-bending technique and single-edge-notched-beam tests. The effect of various proportions of ZrO{sub 2}(3Y) on the phase composition, microstructure, bending strength and fracture toughness of the final Gd{sub 2}Zr{sub 2}O{sub 7}/ZrO{sub 2}(3Y) composite ceramics was also analyzed. The change from m-ZrO{sub 2} to t-ZrO{sub 2} phase contents, before and after fracture, was measured using XRD quantitative phase analysis. The results confirm that, with the increasing content of ZrO{sub 2}(3Y), a phase transition from solid solution to saturated precipitation occurs and the bending strength and fracture toughness of the samples increase gradually. When the content of ZrO{sub 2}(3Y) reached 95 vol.%, the Gd{sub 2}Zr{sub 2}O{sub 7}/ZrO{sub 2}(3Y) composite ceramics had a bending strength of 547 MPa and a fracture toughness of 5.5 MPa m{sup 1/2}, indicating that stress-induced phase transformation toughening was an efficient way to increase the mechanical properties of the Gd{sub 2}Zr{sub 2}O{sub 7} ceramics.

  14. Investigation of mechanism and critical parameters for removal of arsenic from water using Zr-TiO2 composite.

    Science.gov (United States)

    Anđelković, I; Amaizah, N R R; Marković, S B; Stanković, D; Marković, M; Kuzmanović, D; Roglić, G

    2017-09-01

    Using the microwave-hydrothermal method for the synthesis of composite, high surface density of hydroxyl groups, as an active adsorption sites for arsenic, was obtained. Adsorption mechanisms of As(III) and As(V) onto zirconium-doped titanium dioxide (Zr-TiO 2 ) were investigated and proposed using macroscopic and microscopic methods. Obtained results are suggesting inner-sphere and outer-sphere adsorption mechanisms for As(III) and As(V), respectively. This allowed us to identify parameters that are critical for the successful removal of arsenic from water, which is essential information for further optimization of the removal process. The composite was further applied for the removal of As(III) and As(V) from water in a dynamic flow through the reactor. Column study proved that the removal of both arsenic species below the value recommended by WHO can be achieved. Elution of As(III) and As(V) from the composite can be done by using small amounts of 0.01 M NaOH solution resulting in preconcentration of arsenic species and possible multiple usage of composite.

  15. Phase diagram of the Fe-Sn-Zr system at 800 °C

    International Nuclear Information System (INIS)

    Nieva, N.; Corvalán, C.; Jiménez, M.J.; Gómez, A.; Arreguez, C.; Joubert, J.-M.; Arias, D.

    2017-01-01

    New experimental results on the Fe-Sn-Zr phase diagram at 800 °C are presented, particularly in the central, Fe rich and Sn rich regions of the Gibbs triangle. Seven ternary alloys were designed, produced and examined by different techniques: optical and scanning electron microscopy, semi-quantitative microanalysis, quantitative microanalysis and X-ray diffraction. The results of this work and previous experimental data were used to determine the phase diagram section at 800 °C which contains at least five ternary compounds: Fe 6 Sn 6 Zr, Y, X′, θ and C36. - Highlights: •A phase diagram of Fe-Sn-Zr system at 800 °C is proposed. •The isothermal section of Fe-Sn-Zr system at 800 °C and that at 900 °C determined previously allow reliable extrapolations at low temperatures. •The study at different temperatures (900 °C and 800 °C in this case) is highly desirable because it allows the separation between enthalpic and entropic effects in a future Calphad modelling.

  16. Phase diagram of the Fe-Sn-Zr system at 800 °C

    Energy Technology Data Exchange (ETDEWEB)

    Nieva, N. [Laboratorio de Física del Sólido, Departamento de Física, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán (Argentina); Corvalán, C., E-mail: corvalan@cnea.gov.ar [Gerencia de Materiales, Comisión Nacional de Energía Atómica Argentina (CNEA), Universidad Nacional de Tres de Febrero, Argentina, CONICET, Consejo Nacional de Ciencia y Técnica (Argentina); Jiménez, M.J. [IFISUR, CONICET, Departamento de Física, Universidad Nacional del Sur, Bahía Blanca (Argentina); Gómez, A. [Grupo LMFAE – PPFAE, Centro Atómico Ezeiza, Comisión Nacional de Energía Atómica (Argentina); Arreguez, C. [Laboratorio de Física del Sólido, Departamento de Física, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán (Argentina); Joubert, J.-M. [Chimie Métallurgique des Terres Rares (CMTR), Institut de Chimie et des Matériaux Paris-Est (ICMPE), CNRS, Université Paris-Est Créteil, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France); Arias, D. [Instituto de Tecnología J. Sabato, Universidad Nacional de San Martín-CNEA (Argentina)

    2017-04-15

    New experimental results on the Fe-Sn-Zr phase diagram at 800 °C are presented, particularly in the central, Fe rich and Sn rich regions of the Gibbs triangle. Seven ternary alloys were designed, produced and examined by different techniques: optical and scanning electron microscopy, semi-quantitative microanalysis, quantitative microanalysis and X-ray diffraction. The results of this work and previous experimental data were used to determine the phase diagram section at 800 °C which contains at least five ternary compounds: Fe{sub 6}Sn{sub 6}Zr, Y, X′, θ and C36. - Highlights: •A phase diagram of Fe-Sn-Zr system at 800 °C is proposed. •The isothermal section of Fe-Sn-Zr system at 800 °C and that at 900 °C determined previously allow reliable extrapolations at low temperatures. •The study at different temperatures (900 °C and 800 °C in this case) is highly desirable because it allows the separation between enthalpic and entropic effects in a future Calphad modelling.

  17. Reusable fuel test assembly for the FFTF

    International Nuclear Information System (INIS)

    Pitner, A.L.; Dittmer, J.O.

    1992-01-01

    A fuel test assembly that provides re-irradiation capability after interim discharge and reconstitution of the test pin bundle has been developed for use in the Fast Flux Test Facility (FFTF). This test vehicle permits irradiation test data to be obtained at multiple exposures on a few select test pins without the substantial expense of fabricating individual test assemblies as would otherwise be required. A variety of test pin types can be loaded in the reusable test assembly. A reusable test vehicle for irradiation testing in the FFTF has long been desired, but a number of obstacles previously prevented the implementation of such an experimental rig. The MFF-8A test assembly employs a 169-pin bundle using HT-9 alloy for duct and cladding material. The standard driver pins in the fuel bundle are sodium-bonded metal fuel (U-10 wt% Zr). Thirty-seven positions in the bundle are replaceable pin positions. Standard MFF-8A driver pins can be loaded in any test pin location to fill the bundle if necessary. Application of the MFF-8A reusable test assembly in the FFTF constitutes a considerable cost-saving measure with regard to irradiation testing. Only a few well-characterized test pins need be fabricated to conduct a test program rather than constructing entire test assemblies

  18. Glass-Forming Ability and Early Crystallization Kinetics of Novel Cu-Zr-Al-Co Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Xiaoliang Han

    2016-09-01

    Full Text Available In recent years, CuZr-based bulk metallic glass (BMG composites ductilized by a shape memory B2 CuZr phase have attracted great attention owing to their outstanding mechanical properties. However, the B2 CuZr phase for most CuZr-based glass-forming compositions is only stable at very high temperatures, leading to the uncontrollable formation of B2 crystals during quenching. In this work, by introducing Co (i.e., 4, 5, and 6 at. % and 10 at. % Al into CuZr-based alloys, the relatively good glass-forming ability (GFA of CuZr-based alloys still can be achieved. Meanwhile, the B2 phase can be successfully stabilized to lower temperatures than the final temperatures of crystallization upon heating CuZr-based BMGs. Unlike previous reported CuZr-based BMGs, the primary crystallization products upon heating are mainly B2 CuZr crystals but not CuZr2 and Cu10Zr7 crystals. Furthermore, the primary precipitates during solidification are still dominated by B2 crystals, whose percolation threshold is detected to lie between 10 ± 2 vol. % and 31 ± 2 vol. %. The crystallization kinetics underlying the precipitation of B2 crystals was also investigated. Our results show that the present glass-forming composites are promising candidates for the fabrication of ductile CuZr-based BMG composites.

  19. Effect of Zr addition on phase constitution and heat treatment behavior of Ti-25mass%Nb alloys

    International Nuclear Information System (INIS)

    Ikeda, M.; Mori, M.; Hirasawa, T.; Toyoshima, K.

    2005-01-01

    In an attempt to optimize the shape recovery temperature, the effect of Zr addition on phase constitution and heat treatment behavior is investigated by electrical resistivity and Vickers hardness (HV) measurements, X-ray diffractometry (XRD) and shape recovery tests. Ti-25mass%Nb-0, 2, 7 and 12mass%Zr alloys (abbreviated as 0Zr, 2Zr, 7Zr and 12Zr, respectively) were prepared using an arc-furnace. Specimens were solution-treated at 1273 K for 3.6 ks and then quenched by iced water (STQ). STQed specimens were isochronally heat-treated. In 0Zr and 2Zr, only the orthorhombic martensite phase α '' was identified by XRD, while the two-phase alloys α '' and β were identified in 7Zr and 12Zr. In 7Zr, resistivity at liquid nitrogen and room temperature (ρ LN and ρ RT , respectively) and resistivity ratio (ρ LN /ρ RT ) drastically increased at 523 K because of the reverse-transformation of α '' into β phase. Thereafter, resistivity and resistivity ratio decreased with increasing heat treatment temperature due to isothermal ω precipitation. Starting temperature of shape recovery is 623 K in 7Zr and 523 K in 12Zr. In 7Zr, shape recovery ratio is about 80% at 723 K, which is the maximum obtained in this study. (orig.)

  20. Effect of a dual-purpose cask payload increment of spent fuel assemblies from VVER 1000 Bushehr Nuclear Power Plant on basket criticality

    International Nuclear Information System (INIS)

    Rezaeian, M.; Kamali, J.

    2017-01-01

    Dual-purpose casks can be utilized for dry interim storage and transportation of the highly radioactive spent fuel assemblies (SFAs) of Bushehr Nuclear Power Plant (NPP). Criticality safety analysis was carried out using the MCNP code for the cask containing 12, 18, or 19 SFAs. The basket materials of borated stainless steel and Boral (Al-B_4C) were investigated, and the minimum required receptacle pitch of the basket was determined. - Highlights: • Criticality safety analysis for a dual purpose cask was carried out. • The basket material of borated stainless steel and Boral were investigated. • Minimum receptacle pitch was determined for 12, 18, or 19 VVER 1000 spent fuel assemblies.