WorldWideScience

Sample records for zr hf rare

  1. Zirconium Zr and hafnium Hf

    International Nuclear Information System (INIS)

    Busev, A.I.; Tiptsova, V.G.; Ivanov, V.M.

    1978-01-01

    The basic methods for extracting and determining Zr(4) and Hf(4) are described. Diantipyrinemethane and its alkyl homologs selectively extract Zr and Hf from HNO 3 solutions in the presence of nitrates. Zr is selectively extracted with tetraethyldiamide of heptyl phosphoric acid (in benzene) as well as with 2-thenoyltrifluoroacetone (in an acid). The latter reagents is suitable for rapid determination of 95 Zr in a mixture with 95 Nb and other fragments. The complexometric determination of Zr is based on formation of a stable complex of Zr with EDTA. The titration is carried out in the presence of n-sulfobenzene-azo-pyrocatechol, eriochrome black T. The determination is hindered by Hf, fluoride-, phosphate-, oxalate- and tartrate-ions. The method is used for determining Zr in zircon and eudialyte ore. Zr is determined photometrically with the aid of xylenol orange, arsenazo 3 and pyrocatechol violet (in phosphorites). Hf is determined in the presence of Zr photometrically with the aid of xylenol orange or methyl-thymol blue. The method is based on Zr being masked with hydrogen peroxide in the presence of sulfate-ions

  2. Fretting wear of ZrN and Zr(21% Hf)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Atar, E. [Gebze Inst. of Tech., Material Science and Engineering Dept., Kocaeli (Turkey); Cimenoglu, H.; Kayali, E.S. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Engineering, Istanbul (Turkey)

    2004-07-01

    In this study, the wear behaviours of ZrN and Zr(21% Hf)N coatings, deposited on hardened AISI D2 cold work tool steel were examined by a fretting wear tester. The hardness of ZrN and Zr(21% Hf)N coatings were almost the same, where as they exhibited different wear resistance. Addition of 21% Hf to ZrN coating achieved about 25% increase in the wear resistance. (orig.)

  3. Fretting wear of ZrN and Zr(21% Hf)N coatings

    International Nuclear Information System (INIS)

    Atar, E.; Cimenoglu, H.; Kayali, E.S.

    2004-01-01

    In this study, the wear behaviours of ZrN and Zr(21% Hf)N coatings, deposited on hardened AISI D2 cold work tool steel were examined by a fretting wear tester. The hardness of ZrN and Zr(21% Hf)N coatings were almost the same, where as they exhibited different wear resistance. Addition of 21% Hf to ZrN coating achieved about 25% increase in the wear resistance. (orig.)

  4. Titrimetric determination of Zr, Hf, Sn, Ta and rare earths in binary oxide systems

    International Nuclear Information System (INIS)

    Flyantikova, G.V.; Chekirda, T.N.; Lasovskaya, O.N.; Migun, N.P.

    1989-01-01

    Proximate method of titrimetric determination of oxides of Zr(4), Hf(4), Sn(4), Ta(5) and rare earths (La, Lu, Nd, Eu, Yb, Y) in binary systems (BS) with high accuracy was developed. A study was made on conditions of decomposition and dissolution of BS by means of their treatment by the mixture of solutions of concentrated sulfuric acid and ammonium sulfate during 2h boiling eith successive complexonometric determination of their components by direct EDTA titration in the presence of xylenol orange. The relative standard deviation when titrating 0.3-9.7mg oxides in BS does not exceed 0.02

  5. The Thermodynamic Characterization of ZrCo–H, HfCo−H, HfNi−H and Zr{sub 1–x}HfxNi(Co) Alloy–H Systems

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Ted B., E-mail: ted.flanagan@uvm.edu; Noh, Hak; Luo, Suifang

    2016-08-25

    ZrCo and HfCo intermetallic compounds have the same cubic (CsCl-type) structure and their ternary (Zr{sub 1−x}Hf{sub x})Co alloys are also cubic. ZrNi and HfNi intermetallic compounds have the orthorhombic structure (CrB-type) and the ternary (Zr{sub 1−x}Hf{sub x})Ni alloys also have this structure. Thermodynamic data for hydride formation and decomposition in ZrCo, HfCo and HfNi intermetallic compounds have been determined from reaction calorimetry and from pressure-composition isotherms. Thermodynamic data have been determined for the three ternary alloys: (Zr{sub 0.75}Hf{sub 0.25})Co, (Zr{sub 0.50}Hf{sub 0.50})Co, and (Zr{sub 0.25}Hf{sub 0.75})Co and the four ternary alloys: (Zr{sub 0.875}Hf{sub 0.125})Ni, (Zr{sub 0.75}Hf{sub 0.25})Ni, (Zr{sub 0.50}Hf{sub 0.50})Ni, and (Zr{sub 0.25}Hf{sub 0.75})Ni. This offers the opportunity to learn how the thermodynamic properties of the ternary alloy-H systems change with the stoichiometry of alloys with the same structure. - Highlights: • Calorimetric enthalpies determined for H absorption by ZrCo, HfCo, HfNi are determined. • Ternary alloys, e.g., Zr{sub 1−x}Hf{sub x}Ni, prepared and characterized by x-ray diffraction. • Isotherms for the ternary alloys give thermodynamic parameters for H solution.

  6. PEMISAHAN ZrHf SECARA SINAMBUNG MENGGUNAKAN MIXER SETTLER

    Directory of Open Access Journals (Sweden)

    Dwi Biyantoro

    2017-01-01

    Full Text Available ABSTRAK PEMISAHAN ZrHf SECARA SINAMBUNG MENGGUNAKANMIXER SETTLER. Telah dilakukan pemisahanZrHf secara sinambung menggunakan pengaduk pengenap (mixer settler 16 stage. Larutan umpan adalah zirkon nitrat dengan kadar Zr = 30786 ppm dan Hf = 499 ppm. Ekstraktan dipakai adalah solven 60 % TBP dalam kerosen dan larutan scrubbingyang dipakai adalah asam nitrat 1 M. Umpan masuk pada stageke 5 dikontakkan secara berlawanan arah dengan solven masuk pada stage ke 16 dan larutan scrubbing masuk pada stage ke 1. Tujuan penelitian ini adalah memisahkan unsur Zr dan Hf dari hasil olah pasir zirkon menggunakan solven TBP dengan alat mixer settler16 stage. Analisis umpan dan hasil proses pemisahan untuk zirkonium (Zr dilakukan dengan menggunakan alat pendar sinar-X, sedangkananalisis unsur hafnium (Hf menggunakan Analisis Pengaktifan Neutron (APN. Parameter penelitian dilakukan dengan variasi keasaman asam nitrat dalam umpan dan variasi waktu pada berbagai laju pengadukan. Hasil penelitian pemisahan unsur Zr dengan Hf diperolehkondisi optimum pada keasaman umpan 4 N HNO3, keseimbangan dicapai setelah 3jam dan laju pengadukan 3300 rpm. Hasil ekstrak  unsur zirkon (Zr diperoleh kadar sebesar 28577 ppm dengan efisiensi 92,76 % serta kadar pengotor hafnium (Hf sebesar 95 ppm. Kata Kunci: pemisahan Zr, Hf, ekstraksi, mixer settler, alat pendar sinar-X, APN. ABSTRACT SEPARATION of Zr - Hf CONTINUOUSLY USE THE MIXER SETTLER. Separation of Zr - Hf continuously using mixer settler 16 stage has been done. The feed solution is zircon nitrate concentration of Zr = 30786 ppm  and Hf = 499 ppm. As the solvent used extractant 60 % TBP in 40 % kerosene. Nitric acid solution used srubbing 1 M. The feed entered into stage to 5 is contacted with solvents direction on the stage to 16 and the scrubbing solution enter the stage to 1. The purpose of this study is to separate Zr and Hf of the results from the process of zircon sand using solvent TBP using 16 stage

  7. Evolution of Zr/Hf/Zr trilayers during annealing studied by RBS

    International Nuclear Information System (INIS)

    Kling, A.; Soares, J.C.

    2010-01-01

    The Zr/Hf system is highly interesting due its various applications, e.g. formation of amorphous ternary alloys, superconductive properties and production of gate oxide layers with high dielectric coefficients by oxidation of Zr/Hf multilayers. In this work Zr/Hf/Zr trilayers with an individual layer thickness of approximately 50 nm were deposited by electron gun evaporation on a substrate consisting of silicon covered by a micrometer thick thermal oxide layer. Samples were subjected to annealing procedures at 500 and 1200 o C in flowing air atmosphere to promote oxidation and Zr/Hf interdiffusion effects. RBS studies of the as-deposited and annealed samples were performed at the van-de-Graaff accelerator of ITN using He + and H + beams with energies between 2.0 and 2.525 MeV in order to study compositional changes induced by the heat treatment. In the case of low-temperature annealing the layer system appears, besides the oxidation process starting from the surface, to be stable. On the other hand, high-temperature annealing leads to an asymmetric Hf-diffusion into the surface and interior Zr-layer provoked by anomalous diffusion due to a phase transition in Zr accompanied by an almost complete oxidation of the layer structure Oxygen and metal depth distributions obtained by RBS in the as-deposited and treated samples are provided.

  8. Oxidation behavior of TiC, ZrC, and HfC dispersed in oxide matrices

    International Nuclear Information System (INIS)

    Arun, R.; Subramanian, M.; Mehrotra, G.M.

    1990-01-01

    The oxidation behavior of hot pressed TiC-Al 2 O 3 , TiC-ZrO 2 , ZrC-ZrO 2 , and HfC-HfO 2 composites has been investigated at 1273 K. The oxidation of TiC, ZrC, and HfC in hot-pressed composites containing ZrO 2 and HfO 2 has been found to be extremely rapid. The kinetics of oxidation of TiC and a 90 wt% TiC-Al 2 O 3 composite appear to be faster compared to that of pure TiC. X-ray diffraction results for hot-pressed ZrC-HfO 2 and HfC-HfO 2 composites indicate partial stabilization of tetragonal ZrO 2 and HfO 2 phases in these composites

  9. Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP

    Energy Technology Data Exchange (ETDEWEB)

    Lamichhane, Tej N.; Taufour, Valentin; Kaluarachchi, Udhara S.; Bud' ko, Sergey L.; Canfield, Paul C. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011 (United States); Masters, Morgan W. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Parker, David S. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Thimmaiah, Srinivasa [The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011 (United States)

    2016-08-29

    ZrMnP and HfMnP single crystals are grown by a self-flux growth technique, and structural as well as temperature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and 320 K, respectively. The spontaneous magnetizations of ZrMnP and HfMnP are determined to be 1.9 μ{sub B}/f.u. and 2.1 μ{sub B}/f.u., respectively, at 50 K. The magnetocaloric effect of ZrMnP in terms of entropy change (ΔS) is estimated to be −6.7 kJ m{sup −3} K{sup −1} around 369 K. The easy axis of magnetization is [100] for both compounds, with a small anisotropy relative to the [010] axis. At 50 K, the anisotropy field along the [001] axis is ∼4.6 T for ZrMnP and ∼10 T for HfMnP. Such large magnetic anisotropy is remarkable considering the absence of rare-earth elements in these compounds. The first principle calculation correctly predicts the magnetization and hard axis orientation for both compounds, and predicts the experimental HfMnP anisotropy field within 25%. More importantly, our calculations suggest that the large magnetic anisotropy comes primarily from the Mn atoms, suggesting that similarly large anisotropies may be found in other 3d transition metal compounds.

  10. Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP

    International Nuclear Information System (INIS)

    Lamichhane, Tej N.; Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.; Masters, Morgan W.; Parker, David S.; Thimmaiah, Srinivasa

    2016-01-01

    ZrMnP and HfMnP single crystals are grown by a self-flux growth technique, and structural as well as temperature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and 320 K, respectively. The spontaneous magnetizations of ZrMnP and HfMnP are determined to be 1.9 μ_B/f.u. and 2.1 μ_B/f.u., respectively, at 50 K. The magnetocaloric effect of ZrMnP in terms of entropy change (ΔS) is estimated to be −6.7 kJ m"−"3 K"−"1 around 369 K. The easy axis of magnetization is [100] for both compounds, with a small anisotropy relative to the [010] axis. At 50 K, the anisotropy field along the [001] axis is ∼4.6 T for ZrMnP and ∼10 T for HfMnP. Such large magnetic anisotropy is remarkable considering the absence of rare-earth elements in these compounds. The first principle calculation correctly predicts the magnetization and hard axis orientation for both compounds, and predicts the experimental HfMnP anisotropy field within 25%. More importantly, our calculations suggest that the large magnetic anisotropy comes primarily from the Mn atoms, suggesting that similarly large anisotropies may be found in other 3d transition metal compounds.

  11. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada

    Science.gov (United States)

    Lowery, Claiborne L.E.; Miller, C.F.; Walker, B.A.; Wooden, J.L.; Mazdab, F.K.; Bea, F.

    2006-01-01

    Zirconium and Hf are nearly identical geochemically, and therefore most of the crust maintains near-chondritic Zr/Hf ratios of ???35-40. By contrast, many high-silica rhyolites and granites have anomalously low Zr/Hf (15-30). As zircon is the primary reservoir for both Zr and Hf and preferentially incorporates Zr, crystallization of zircon controls Zr/ Hf, imprinting low Zr/Hf on coexisting melt. Thus, low Zr/Hf is a unique fingerprint of effective magmatic fractionation in the crust. Age and compositional zonation in zircons themselves provide a record of the thermal and compositional histories of magmatic systems. High Hf (low Zr/ Hf) in zircon zones demonstrates growth from fractionated melt, and Ti provides an estimate of temperature of crystallization (TTiZ) (Watson and Harrison, 2005). Whole-rock Zr/Hf and zircon zonation in the Spirit Mountain batholith, Nevada, document repeated fractionation and thermal fluctuations. Ratios of Zr/Hf are ???30-40 for cumulates and 18-30 for high-SiO2 granites. In zircons, Hf (and U) are inversely correlated with Ti, and concentrations indicate large fluctuations in melt composition and TTiZ (>100??C) for individual zircons. Such variations are consistent with field relations and ion-probe zircon geochronology that indicate a >1 million year history of repeated replenishment, fractionation, and extraction of melt from crystal mush to form the low Zr/Hf high-SiO2 zone. ?? 2006 The Mineralogical Society.

  12. The anisotropy of Hf diffusion in α-Zr

    International Nuclear Information System (INIS)

    Hood, G.M.; Zou, H.; Roy, J.A.; Schultz, R.J.; Matsuura, N.; Jackson, J.A.

    1995-07-01

    Hf diffusion coefficients (D) have been measured in the temperature interval 870-1100 K, in directions parallel (D pa ) and perpendicular (D pe ) to the c-axis of double-faced, single crystal specimens of both high-purity (HP) and nominally pure (NP) α-Zr single crystals. The diffusion profiles were measured by secondary ion mass spectrometry. Hf diffusion in HP α-Zr is characterised by an activation energy of about 3.0 eV and a pre-exponential factor of about 10 -5 m 2 /s. The anisotropy ratio, D pa /D pe is ∼ 1.0 for the NP specimens. A dependence of D on diffusion time/depth is indicated for some NP experiments on NP Zr. (author). 7 refs., 2 tabs., 3 figs

  13. Theoretical predictions of hydrolysis and complex formation of group-4 elements Zr, Hf and Rf in HF and HCl solutions

    International Nuclear Information System (INIS)

    Pershina, V.; Trubert, D.; Le Naour, C.; Kratz, J.V.

    2002-01-01

    Fully relativistic molecular density-functional calculations of the electronic structures of hydrated, hydrolyzed and fluoride/chloride complexes have been performed for group-4 elements Zr, Hf, and element 104, Rf. Using the electronic density distribution data, relative values of the free energy change for hydrolysis and complex formation reactions were defined. The results show the following trend for the first hydrolysis step of the cationic species: Zr>Hf>Rf in agreement with experiments. For the complex formation in HF solutions, the trend to a decrease from Zr to Hf is continued with Rf, provided no hydrolysis takes place. At pH>0, further fluorination of hydrolyzed species or fluoro-complexes has an inversed trend in the group Rf≥Zr>Hf, with the difference between the elements being very small. For the complex formation in HCl solutions, the trend is continued with Rf, so that Zr>Hf>Rf independently of pH. A decisive energetic factor in hydrolysis or complex formation processes proved to be a predominant electrostatic metal-ligand interaction. Trends in the K d (distribution coefficient) values for the group-4 elements are expected to follow those of the complex formation

  14. Anion exchange behavior of Ti, Zr, Hf, Nb and Ta as homologues of Rf and Db in mixed HF-acetone solutions

    International Nuclear Information System (INIS)

    Aksenov, N.V.; Bozhikov, G.A.; Starodub, G.Ya.; Dmitriev, S.N.; Filosofov, D.V.; Jon Sun Jin; Radchenko, V.I.; Lebedev, N.A.; Novgorodov, A.F.

    2009-01-01

    We studied in detail the sorption behavior of Ti, Zr, Hf, Nb and Ta on AG 1 anion exchange resin in HF-acetone mixed solutions as a function of organic cosolvent and acid concentrations. Anion exchange behavior was found to be strongly acetone concentration dependent. The distribution coefficients of Ti, Zr, Hf and Nb increased and those of Ta decreased with increasing content of acetone in HF solutions. With increasing HF concentration, anion exchange equilibrium analysis indicated the formation of fluoride complexes of group-4 elements with charge -3 and Ta with charge -2. For Nb the slope of -2 increased up to -5. Optimal conditions for separation of the elements using AIX chromatography were found. Group-4 elements formed MF 7 3- (M = Ti, Zr, Hf) complexes whose sorption decreased Ti > Hf > Zr in reverse order of complex stability. This fact is of particular interest for studying ion exchange behavior of Rf compared to Ti. The advantages of studying chemical properties of Rf and Db in aqueous HF solutions mixed with organic solvents are briefly discussed

  15. Difference in Thermal Degradation Behavior of ZrO2 and HfO2 Anodized Capacitors

    Science.gov (United States)

    Kamijyo, Masahiro; Onozuka, Tomotake; Yoshida, Naoto; Shinkai, Satoko; Sasaki, Katsutaka; Yamane, Misao; Abe, Yoshio

    2004-09-01

    Microcrystalline ZrO2 and HfO2 thin film capacitors were prepared by anodizing sputter-deposited Zr and Hf films. The thermal degradation behavior of both anodized capacitors was clarified by the measurement of their capacitance properties and Auger depth profiles before and after heat treatment in air. As a result, it is confirmed that the heat-resistance property of the HfO2 anodized capacitor is superior to that of the ZrO2 capacitor. In addition, it is revealed that the thermal degradation of the ZrO2 anodized capacitor is caused by the diffusion of Zr atoms from the underlying layer into the ZrO2 anodized layer, while that of the HfO2 anodized capacitor is caused by the diffusion of oxygen atoms from the anodized layer into the underlying Hf layer.

  16. Beta decomposition of (Hf/sub x/Zr/sub 1-x/)80Nb20 ternary alloys

    International Nuclear Information System (INIS)

    Jones, W.B.; Taggart, R.; Polonis, D.H.

    1978-01-01

    The processes of beta decomposition have been examined in ternary alloys of the form (Hf/sub x/Zr/sub 1-x/) 80 Nb 20 to determine the influence of Hf additions to a basic Zr 80 Nb 20 composition. In the chill cast condition, Hf additions have been found to decrease the temperature coefficient of electrical resistivity from a value of -0.0015%/K for the binary Zr 80 Nb 20 alloy to a value of -0.011%/K for a (Hf 50 Zr 50 ) 80 Nb 20 ternary alloy. This change is explained in terms of the bcc lattice instability typical of Ti, Zr, and Hf alloys. The Hf additions enhance the kinetics of omega-phase precipitation during aging at 648 K. The aging of a (Hf 05 Zr 95 ) 80 Nb 20 alloy for 12 h results in the precipitation of a high volume fraction of cuboidal shaped omega-phase particles. A phase separation which results in the formation of solute lean discs (β/sub l/) occurs together with the precipitation of the omega-phase. These discs formed both randomly within the matrix and heterogeneously along dislocations and at grain boundaries

  17. On the stabilization of NbV-solutions by ZrIV and HfIV

    International Nuclear Information System (INIS)

    Soerensen, E.; Bjerre, A.B.

    1987-11-01

    Niobium cannot be separated from zirconium or hafnium when these elements occur together in solution with common anions such as Cl- and SO 4 --. This is ascribed to the copolymerisation of Nb v and the hydrolyzed ionic species of Zr IV v and Hf IV by which the colloidal particles are masked as Zr- and Hf-compounds. In HCl the particles are positively charged as opposed to when they are in sulphate solution where the Zr- and Hf- sulphate complexes confer a negative charge. The two cases are considered separately. (author)

  18. Highly ordered nanotubular film formation on Ti–25Nb–xZr and Ti–25Ta–xHf

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong-Jae; Byeon, In-Seop [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, & Research Center for Oral Disease Regulation of the Aged, College of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative Sciences and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, & Research Center for Oral Disease Regulation of the Aged, College of Dentistry, Chosun University, Gwangju (Korea, Republic of)

    2015-12-01

    The purpose of this study was to investigate the highly ordered nanotubular film formation on Ti–25Nb–xZr and Ti–25Ta–xHf, examining the roles of niobium, zirconium, tantalum and hafnium alloying elements. The Ti–25Nb–xZr and Ti–25Ta–xHf ternary alloys contained 0, 7 and 15 wt.% of these alloying elements and were manufactured using a vacuum arc-melting furnace. Cast ingots of the alloys were homogenized in Ar atmosphere at 1050 °C for 2 h, followed by quenching into ice water. Formation of nanotubular films was achieved by an electrochemical method in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF at 30 V and 1 h for the Ti–25Nb–xZr alloys and 2 h for the Ti–25Ta–xHf alloys. Microstructures of the Ti–25Ta–xHf alloys transformed from α″ phase to β phase, changing from a needle-like structure to an equiaxed structure as the Hf content increased. In a similar manner, the needle-like structure of the Ti–25Nb–xZr alloys transformed to an equiaxed structure as the Zr content increased. Highly ordered nanotubes formed on the Ti–25Ta–15Hf and Ti–25Nb–15Zr alloys compared to the other alloys, and the nanotube layer thickness on Ti–25Ta–15Hf and Ti–25Nb–15Zr was greater than for the other alloys. Nanotubes formed on Ti–25Ta–15Hf and Ti–25Nb–15Zr showed two sizes of highly ordered structures. The diameters of the large nanotubes decreased and the diameters of the small nanotubes increased as Zr and Hf contents increased. It was found that the layer thickness, diameter, surface density and growth rate of nanotubes on the Ti–25Ta–xHf and Ti–25Nb–xZr alloys can be controlled by varying the Hf and Zr contents. X-ray diffraction analyses revealed only weak peaks for crystalline anatase or rutile TiO{sub 2} phases from the nanotubes on the Ti–25Nb–xZr and Ti–25Ta–xHf alloys, indicating a largely amorphous condition. - Highlights: • Nanotubular film formation on anodized Ti-25Nb-xZr and Ti-25Ta-xHf (x = 0, 7 and

  19. A new type of Nb (Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shifeng; Wang, Xibo; Luo, Yangbing; Song, Zhentao; Ren, Deyi [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083 (China); Zhou, Yiping; Zhang, Mingquan; Wang, Jumin; Song, Xiaolin; Yang, Zong [Yunnan Institute of Coal Geology Prospection, Kunming 650218 (China); Jiang, Yaofa [Xuzhou Institute of Architectural Technology, Xuzhou 221116 (China)

    2010-07-01

    This paper describes a new type of Nb(Ta)-Zr(Hf)-REE-Ga polymetallic deposit of volcanic origin in the late Permian coal-bearing strata of eastern Yunnan, southwestern China. Well logging data (especially natural gamma-ray), geochemical data (high concentrations of Nb, Ta, Zr, Hf, REE, and Ga) and mineralogical compositions (Nb(Ta)-, Zr(Hf)-, or REE-bearing minerals rarely observed), together with the volcanic lithological characteristics indicate that there are thick (1-10 m, mostly 2-5 m) ore beds in the lower Xuanwei Formation (late Permian) in eastern Yunann of southwestern China. The ore beds are highly enriched in (Nb,Ta){sub 2}O{sub 5} (302-627 ppm), (Zr,Hf)O{sub 2} (3805-8468 ppm), REE (oxides of La-Lu + Y) (1216-1358 ppm), and Ga (52.4-81.3 ppm). The ore beds are mainly composed of quartz, mixed-layer illite-smectite, kaolinite, berthierine, and albite. Four types of ore beds in the study area were identified, namely, clay altered volcanic ash, tuffaceous clay, tuff, and volcanic breccia. Preliminary studies suggest that the high concentrations of otherwise rare metals were mainly derived from the alkalic pyroclastic rocks. The modes of occurrence, spatial distribution, and enrichment mechanism of the rare metals, however, require further study. (author)

  20. A new class of materials with promising thermoelectric properties: MNiSn (M=Ti, Zr, Hf)

    Energy Technology Data Exchange (ETDEWEB)

    Hohl, H; Ramirez, A P; Kaefer, W; Fess, K; Thurner, Ch; Kloc, Ch; Bucher, E

    1997-07-01

    TiNiSn, ZrNiSn and HfNiSn are members of a large group of intermetallic compounds which crystallize in the cubic MgAgAs-type structure. Polycrystalline samples of these compounds have been prepared and investigated for their thermoelectric properties. With thermopowers of about {minus}200 {micro}V/K and resistivities of a few m{Omega}cm, power factors S{sup 2}/{rho} as high as 38 {micro}W/K{sup 2}cm were obtained at 700 K. These remarkably high power factors are, however, accompanied by a thermal conductivity, solid solutions Zr{sub 1{minus}x}Hf{sub x}NiSn, Zr{sub 1{minus}x}Ti{sub x}NiSn, and Hf{prime}{sub 1{minus}x}Ti{sub x}NiSn were formed. The figure of merit of Zr{sub 0.5}Hf{sub 0.5}NiSn at 700 K (ZT = 0.41) exceeds the end members ZrNiSn (ZT = 0.26) and HfNiSn (ZT = 0.22).

  1. Glass-forming ability and stability of ternary Ni-early transition metal (Ti/Zr/Hf) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Joysurya [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India); Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India)]. E-mail: rangu@met.iisc.ernet.in

    2006-08-15

    Four Ni-bearing Ti, Zr and Hf ternary alloys of nominal composition Zr{sub 41.5}Ti{sub 41.5}Ni{sub 17}, Zr{sub 25}Ti{sub 25}Ni{sub 50}, Zr{sub 41.5}Hf{sub 41.5}Ni{sub 17} and Ti{sub 41.5}Hf{sub 41.5}Ni{sub 17} were rapidly solidified in order to produce ribbons. The Zr-Ti-Ni and Ti-Hf-Ni alloys become amorphous, whereas the Zr-Hf-Ni alloy shows precipitation of a cubic phase. The devitrification of all three alloys was followed and the relative tendency to form nanoquasicrystals and cF96 phases analysed. The relative glass-forming ability of the alloys can be explained by taking into account their atomic size difference. Addition of Ni often leads to quasicrystallisation or quasicrystal-related phases. This can be explained by the atomic radius and heat of mixing of the constituent elements. The phases precipitated at the initial stages of crystallisation indicate the possible presence of Frank-Kasper polyhedral structure in the amorphous alloys. Structural analysis reveals that the Laves and the anti-Laves phases have the same polyhedral structural unit, which is similar to the structural characteristics of glass.

  2. Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations

    Science.gov (United States)

    Yuan, Junhui; Yu, Niannian; Wang, Jiafu; Xue, Kan-Hao; Miao, Xiangshui

    2018-04-01

    The successful fabrication of two-dimensional lateral heterostructures (LHS's) has opened up unprecedented opportunities in material science and device physics. It is therefore highly desirable to search for more suitable materials to create such heterostructures for next-generation devices. Here, we investigate a novel lateral heterostructure composed of monolayer ZrS2 and HfS2 based on density functional theory. The phonon dispersion and ab initio molecular dynamics analysis indicate its good kinetic and thermodynamic stability. Remarkably, we find that these lateral heterostructures exhibit an indirect to direct bandgap transition, in contrast to the intrinsic indirect bandgap nature of ZrS2 and HfS2. The type-II alignment and chemical bonding across the interline have also been revealed. The tensile strain is proved to be an efficient way to modulate the band structure. Finally, we further discuss other three stable lateral heterostructures: (ZrSe2)2(HfSe2)2 LHS, (ZrS2)2(ZrSe2)2 LHS and (HfS2)2(HfSe2)2 LHS. Generally, the lateral heterostructures of monolayer ZrS2 and HfS2 are of excellent electrical properties, and may find potential applications for future electronic devices.

  3. Glass forming ability: Miedema approach to (Zr, Ti, Hf)-(Cu, Ni) binary and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Joysurya [Department of Chemical, Materials and Biomolecular Engineering, 191 Auditorium Road, University of Connecticut, Storrs 06269, CT (United States)], E-mail: jbasu@engr.uconn.edu; Murty, B.S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Ranganathan, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2008-10-06

    Miedema's approach has been useful in determining the glass forming composition range for a particular alloy system. The concept of mixing enthalpy and mismatch entropy can be used in order to quantify Inoue's criteria of bulk metallic glass formation. In the present study, glass forming composition range has been determined for different binary and ternary (Zr, Ti, Hf)-(Cu, Ni) alloys based on the mixing enthalpy and mismatch entropy calculations. Though copper and nickel appear next to each other in the periodic table, the glass forming ability of the copper and nickel bearing alloys is different. Thermodynamic analysis reveals that the glass forming behaviour of Zr and Hf is similar, whereas it is different from that of Ti. The smaller atomic size of Ti and the difference in the heat of mixing of Ti, Zr, Hf with Cu and Ni leads to the observed changes in the glass forming behaviour. Enthalpy contour plots can be used to distinguish the glass forming compositions on the basis of the increasing negative enthalpy of the composition. This method reveals the high glass forming ability of binary Zr-Cu, Hf-Cu, Hf-Ni systems over a narrow composition range.

  4. Study on the adducts formation of Zr and Hf chelates

    International Nuclear Information System (INIS)

    Ree, Chin Taik; Jung, Young Sam; Park, Jun Kown

    1986-01-01

    The synergistic effect observed in Zr(IV) and Hf(IV) extraction from strong perchloric acid solutions by the mixtures of 2-Thenoyltri-fluoroacetone(TTA) and Octanols is shown to be caused by the formation of a mixed complex, M(TTA) 3 XS (M=Zr(IV), HF(IV), X=ClO 4 - , S=Octanol). One of the four TTA molecules coordinated at lower HClO 4 concentration to the metal as bidendate ligand seems to be changed to monodendate due to increasing HClO 4 concentration. The monodenate TTA ligand leaves the coordination site, finally, due to the activity of perchlorate at higher concentration and the additional coordination of an Octanol molecule seems to be allowed to the vaccant site which shows the synergistic extraction phenomena. (Author)

  5. Interatomic potential to predict the favored and optimized compositions for ternary Cu-Zr-Hf metallic glasses

    International Nuclear Information System (INIS)

    Luo, S. Y.; Cui, Y. Y.; Dai, Y.; Li, J. H.; Liu, B. X.

    2012-01-01

    Under the framework of smoothed and long range second-moment approximation of tight-binding, a realistic interatomic potential was first constructed for the Cu-Zr-Hf ternary metal system. Applying the constructed potential, Monte Carlo simulations were carried out to compare the relative stability of crystalline solid solution versus its disordered counterpart over the entire composition triangle of the system (as a function of alloy composition). Simulations not only reveal that the origin of metallic glass formation but also determine, in the composition triangle, a quadrilateral region, within which metallic glass formation is energetically favored. It is proposed to define the energy differences between the crystalline solid solutions and disordered states as the driving force for amorphization and the corresponding calculations pinpoint an optimized composition locating at an composition of Cu 55 Zr 10 Hf 35 , around which the driving force for metallic glass formation reaches its maximum, suggesting that the ternary Cu-Zr-Hf metallic glasses designed to have the compositions around Cu 55 Zr 10 Hf 35 could be more stable than other alloys in the system. Moreover, for the Cu 55 Zr 10 Hf 35 metallic glass, the Voronoi tessellation calculations reveal some interesting features of its atomic configurations and coordination polyhedra distribution.

  6. Mechanical, electronic and thermal properties of Cu{sub 5}Zr and Cu{sub 5}Hf by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Guohui [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, Xinyu, E-mail: xyzhang@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Qin, Jiaqian, E-mail: jiaqianqin@gmail.com [Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330 (Thailand); Ning, Jinliang; Zhang, Suhong; Ma, Mingzhen; Liu, Riping [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-08-15

    Highlights: • The mechanical and fundamental thermal data of Cu{sub 5}Zr and Cu{sub 5}Hf are determined. • The technologically important elastic anisotropy is obtained and discussed according to its industrial applications. • The brittle/ductile and bonding nature of Cu{sub 5}Zr and Cu{sub 5}Hf are analyzed in details. - Abstract: The structural, elastic, electronic and thermodynamic properties of Cu{sub 5}Zr and Cu{sub 5}Hf compounds are investigated by first-principles calculations combined with the quasi-harmonic Debye model. The calculated lattice parameters of cubic AuBe{sub 5}-type Cu{sub 5}Zr and Cu{sub 5}Hf agree well with available experimental and other theoretical results and the formation enthalpy calculations show that AuBe{sub 5}-type Cu{sub 5}Hf is more energetically stable than the competing hexagonal CaCu{sub 5}-type phase. The mechanical properties such as mechanical stabilities, anisotropy character, ductility (estimated from the value of B/G, Poisson’s ratio υ and Cauchy pressures C{sub 12}–C{sub 44}) and thermodynamic properties such as volume change under temperature and pressure (V/V{sub 0}), heat capacity (C{sub v}), Debye temperature (Θ), thermal expansion coefficient (α) of AuBe{sub 5}-type Cu{sub 5}Zr and Cu{sub 5}Hf are calculated together. Cu{sub 5}Hf has better performances than Cu{sub 5}Zr with higher hardness and better resistance to fracture which are rationalized from the calculated electronic structure (including density of states, charge density distributions, Mulliken’s population analysis) and we find that all ionic, covalent and metallic components exist in bonding of Cu{sub 5}Zr and Cu{sub 5}Hf but the covalent bonding in Cu{sub 5}Hf is stronger.

  7. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Huang, Y.J.; Shen, J.; Sun, J.F.; Yu, X.B.

    2007-01-01

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti 41.5 Zr 2.5 Hf 5 Cu 42.5-x Ni 7.5 Si 1 Sn x (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy. The activation energies for glass transition and crystallization for Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy also possesses superior mechanical properties

  8. Validation of Zr and Hf analysis contained on water phase using k_0-neutron activation analysis method

    International Nuclear Information System (INIS)

    Wisjachudin Faisa; Sutisna

    2010-01-01

    At conversion of Zr-sand to Zircon Oxide, the Hf content in product process should not be more than 100 ppm. While Zr and Hf are two elements that have a similar chemical property Hs, they are difficult to analyze by ordinary chemical analysis. One of reliable analytical method that can be used to quantify Zr and Hf is the instrumental neutron activation analysis. Related to this problem, a result of k_0-Instrumental Neutron Activation Analysis (k_0-INAA) on Zr and Hf (in aqueous phase) has been validated. A number of 200 µL SPEX Pure standard solution which have a concentration of 1 g/L pipeted into a cleaned micro vial, then dried at a temperature of 40°C for 24 hours. Samples, together with flux monitors, were irradiated simultaneously at 15 MW power (thermal neutron flux around 4.1 x 10"1"7n. m"-"2.s"-"1) for 30 minutes in the rabbit facility of GA. Siwabessy reactor. Counting of the irradiated sample have been done using a high resolution HPGe detector (FWHM = 1.9 keV at Eγ 1332.5 keV of "6"0Co,Peak to Compton ratio ~ 40). The analytical results showed a relative standard deviation (RSD) of Zr is 6.6 % with average uncertainty of 3.08 % and a detection limit of 0.1 mg, while RSD of Hf = 8.2 %, with average uncertainty of 8.04 % and a detection limit of 0.3 mg. Recovery obtained was 106,0 % and 96,0 % for Zr and Hf respectively. These results are relatively better compared to the previous result using the Standard Reference Material (SRM) 1633b Coal Fly Ash which have RSD Hf was 20.6 %. (author)

  9. Electric transport properties of the pentatelluride materials HfTe{sub 5} and ZrTe{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Tritt, T M; Wilson, M L; Littleton, R L [and others

    1997-07-01

    The authors have measured the resistivity and thermopower of single crystals as well as polycrystalline pressed powders of the low-dimensional pentatelluride materials: HfTe{sub 5} and ZrTe{sub 5}. They have performed these measurements as a function of temperature between 5K and 320K. In the single crystals there is a peak in the resistivity for both materials at a peak temperature, T{sub p} where T{sub p} {approx} 80K for HfTe{sub 5} and T{sub p} {approx} 145K for ZrTe{sub 5}. Both materials exhibit a large p-type thermopower around room temperature which undergoes a change to n-type below the peak. These data are similar to behavior observed previously in these materials. They have also synthesized pressed powders of polycrystalline pentatelluride materials, HfTe{sub 5} and ZrTe{sub 5}. They have measured the resistivity and thermopower of these polycrystalline materials as a function of temperature between 5K and 320K. For the polycrystalline material, the room temperature thermopower for each of these materials is relatively high, +95 {micro}V/K and +65 {micro}V/K for HfTe{sub 5} and ZrTe{sub 5}, respectively. These values compare closely to thermopower values for single crystals of these materials. At 77 K, the thermopower is +55 {micro}V/K for HfTe{sub 5} and +35 {micro}V/K for ZrTe{sub 5}. In fact, the thermopower for the polycrystals decreases monotonically with temperature to T {approx} 5K, thus exhibiting p-type behavior over the entire range of temperature. As expected, the resistivity for the polycrystals is higher than the single crystal material, with values of 430 m{Omega}-cm and 24 m{Omega}-cm for HfTe{sub 5} and ZrTe{sub 5} respectively, compared to single crystal values of 0.35 m{Omega}-cm (HfTe{sub 5}) and 1.0 m{Omega}-cm (ZrTe{sub 5}). The authors have found that the peak in the resistivity evident in both single crystal materials is absent in these polycrystalline materials. They will discuss these materials in relation to their potential as

  10. Lattice Thermal Conductivity from Atomistic Simulations: ZrB2 and HfB2

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  11. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    Science.gov (United States)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-04-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  12. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    Science.gov (United States)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-06-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  13. Zircon and whole-rock Zr/Hf ratios as markers of the evolution of granitic magmas: Examples from the Teplice caldera (Czech Republic/Germany)

    Czech Academy of Sciences Publication Activity Database

    Breiter, Karel; Škoda, R.

    2017-01-01

    Roč. 111, č. 4 (2017), s. 435-457 ISSN 0930-0708 R&D Projects: GA ČR GA14-13600S Institutional support: RVO:67985831 Keywords : Zr/Hf value * zircon * Teplice caldera * rhyolite * rare-metal granite * Cínovec deposit Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Mineralogy Impact factor: 1.236, year: 2016

  14. Microstructure and tensile properties of Fe-40 at. pct Al alloys with C, Zr, Hf, and B additions

    Science.gov (United States)

    Gaydosh, D. J.; Draper, S. L.; Nathal, M. V.

    1989-01-01

    The influence of small additions of C, Zr, and Hf, alone or in combination with B, on the microstructure and tensile behavior of substoichiometric FeAl was investigated. Tensile properties were determined from 300 to 1100 K on powder which was consolidated by hot extrusion. All materials possessed some ductility at room temperature, although ternary additions generally reduced ductility compared to the binary alloy. Adding B to the C- and Zr-containing alloys changed the fracture mode from intergranular to transgranular and restored the ductility to approximately 5 percent elongation. Additions of Zr and Hf increased strength up to about 900 K. Fe6Al6Zr and Fe6Al6Hf precipitates, both with identical body-centered tetragonal structures, were identified as the principal second phase in these alloys. Strength decreased steadily as temperature increased above 700 K, as diffusion-assisted mechanisms became operative. Although all alloys had similar strengths at 1100 K, Hf additions significantly improved high-temperature ductility by suppressing cavitation.

  15. ZrCu2P2 and HfCu2P2 phosphides and their crystal structure

    International Nuclear Information System (INIS)

    Lomnitskaya, Ya.F.

    1986-01-01

    Isostructural ZrCu 2 P 2 and HfCu 2 P 2 compounds are prepared for the first time. X-ray diffraction analysis (of powder, DRON-2.0 diffractometer, FeKsub(α) radiation) was used to study crystal structure of HfCu 2 P 2 phosphide belonging to the CaAl 2 Si 2 structural type (sp. group P anti 3 m 1, R=0.095). Lattice parameters the compounds are as follows: for ZrCu 2 P 2 a=0.3810(1), c=0.6184(5); for HfCu 2 P 2 a=0.3799(1), c=0.6160(2) (nm). Atomic parameters in the HfCu 2 P 2 structure and interatomic distances are determined

  16. Phase and Microstructural Correlation of Spark Plasma Sintered HfB2-ZrB2 Based Ultra-High Temperature Ceramic Composites

    Directory of Open Access Journals (Sweden)

    Ambreen Nisar

    2017-07-01

    Full Text Available The refractory diborides (HfB2 and ZrB2 are considered as promising ultra-high temperature ceramic (UHTCs where low damage tolerance limits their application for the thermal protection system in re-entry vehicles. In this regard, SiC and CNT have been synergistically added as the sintering aids and toughening agents in the spark plasma sintered (SPS HfB2-ZrB2 system. Herein, a novel equimolar composition of HfB2 and ZrB2 has shown to form a solid-solution which then allows compositional tailoring of mechanical properties (such as hardness, elastic modulus, and fracture toughness. The hardness of the processed composite is higher than the individual phase hardness up to 1.5 times, insinuating the synergy of SiC and CNT reinforcement in HfB2-ZrB2 composites. The enhanced fracture toughness of CNT reinforced composite (up to a 196% increment surpassing that of the parent materials (ZrB2/HfB2-SiC is attributed to the synergy of solid solution formation and enhanced densification (~99.5%. In addition, the reduction in the analytically quantified interfacial residual tensile stress with SiC and CNT reinforcements contribute to the enhancement in the fracture toughness of HfB2-ZrB2-SiC-CNT composites, mandatory for aerospace applications.

  17. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shen, J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: junshen@hit.edu.cn; Sun, J.F. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yu, X.B. [Lab of Energy Science and Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)]. E-mail: yuxuebin@hotmail.com

    2007-01-16

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 42.5-x}Ni{sub 7.5}Si{sub 1}Sn {sub x} (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy. The activation energies for glass transition and crystallization for Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy also possesses superior mechanical properties.

  18. Anion exchange behaviour of Zr, Hf, Nb, Ta and Pa as homologues of RF and Db in fluoride medium

    International Nuclear Information System (INIS)

    Monroy G, F.; Trubert, D.; Brillard, L.; Hussonnois, M.; Constantinescu, O.; Le Naour, C.

    2010-01-01

    Studies of the chemical property of trans actinide elements are very difficult due to their short half-lives and extremely small production yields. However it is still possible to obtain considerable information about their chemical properties, such as the most stable oxidation states in aqueous solution, complexing ability, etc., comparing their behaviour with their lighter homologous in the periodic table. In order to obtain a better knowledge of the behaviour of rutherfordium, RF (element 104), dub nium, Db (element 105) in HF medium, the sorption properties of Zr, Hf, Nb, Ta an Pa, homologues of RF and Db, were studied in NH 4 F/HClO 4 medium in this work. Stability constants of the fluoride complexes of these elements were experimentally obtained from K d obtained at different F - and H + concentrations. The anionic complexes: [Zr(Hf)F 5 ] - , [Zr(Hf)F 6 ] 2- , [Zr(Hf)F 7 ] 3- , [Ta(Pa)F 6 ] - , [Ta(Pa)F 7 ] 2- , [Ta(Pa)F 8 ] 3- , [NbOF 4 ] - and [NbOF 5 ] 2- are present as predominant species in the HF range over investigation. (Author)

  19. Separation of zirconium (Zr) and hafnium (Hf) using solvent mixture of TBP-D_2EHPA and amberlite XAD-16

    International Nuclear Information System (INIS)

    Dwi Biyantoro; I Made Sukarna; Agus Suyanto

    2017-01-01

    The aims of this research were to determine the composition (ratio of extractant and resin) of the SIR which is effective for the separation of Zr and Hf, knowing adsorption equilibrium models Zr and Hf using the SIR, and knowing the most effective adsorption results from SIR weight ratio. The research was conducted by using the SIR method that is impregnating the extractant into the resin. Extractant used is a mixture of TBP and D_2EHPA (1 : 3), the resin used is XAD-16, and the feed used is ZOC. This research was conducted by varying the composition of the SIR, after the result of effective SIR variation. Adsorption process is then performed using the ZOC with SIR. Then filtered, the filtrate was analyzed by XRF. While solids SIR adsorption product was desorbed using sulfuric acid. Then the desorption results were analyzed using XRF spectrometer. Based on calculations, the results of the most effective SIR composition for the separation of Zr-Hf are comparison extractant and resin = 5:5 either for the dry method and wet method, the equilibrium equations for Zr approaching Langmuir equilibrium models while the equilibrium equation for Hf approaching Freundlich equilibrium models which the most effective adsorption results that bait comparison with the SIR = 10 mL : 5 g with β = 0.1831; η Zr = 26.39 % and η Hf = 66.19 % for dry method and β = 0.1557; η Zr = 25.17 % and η Hf = 68.36 % for wet method. From result desorption process was 2 M H_2SO_4. (author)

  20. H and D implantation transforms Ti, Zr and Hf into good superconductors

    International Nuclear Information System (INIS)

    Meyer, J.D.; Stritzker, B.

    1981-01-01

    The elements Ti, Zr, and Hf from group IVB with superconducting transition temperatures of Tsub(c) = 0.4, 0.6 and 0.13 K, respectively, were implanted at liquid helium temperature with hydrogen, deuterium and helium. The He implantations were performed to simulate the Tsub(c) enhancement due to lattice disorder introduced during the implantation. In this case, only Zr showed a Tsub(c) increase above the measuring limit of 1 K. On the other hand, the implantation of H and D will change the electronic properties of the materials in addition to lattice damage. Indeed all H and D implantations lead to a substantial increase of Tsub(c). For example, a transition temperature of 4.65 K was achieved in D implanted Zr at a concentration of D/Zr = 0.13. Whereas a pronounced inverse isotope effects was observed for H(D) implanted Zr and Hf, H and D implanted Ti had essentially the same Tsub(c) of 4.9 K. Based on the similarity of most of these results to the Pd-H(D) system [1], similar mechanisms are proposed to explain the experimental observation, i.e: (1) the electron-phonon coupling is enhanced due to coupling to the protons (deuterons) and/or to the optic phonon modes; (2) anharmonic effects are responsible for the inverse isotope effect. (orig.)

  1. First-principles study of lattice thermal conductivity in ZrTe5 and HfTe5

    Science.gov (United States)

    Wang, Cong; Wang, Haifeng; Chen, Y. B.; Yao, Shu-Hua; Zhou, Jian

    2018-05-01

    Recently, the layered transition-metal pentatellurides ZrTe5 and HfTe5 have attracted increasing attention because of their interesting topological electronic properties. Nevertheless, some of their other good physical properties seem to be ignored now. Actually, both ZrTe5 and HfTe5 have high electric conductivities (>105 Ω-1 m-1) and Seebeck coefficients (> 100 μV/K) at room temperature, thus making them promising thermoelectric materials. However, the disadvantage is that the thermal conductivities of the two materials are relatively high according to the few available experiments; meanwhile, the detailed mechanism of the intrinsic thermal conductivity has not been studied yet. Based on the density functional theory and the Boltzmann transport theory, we present here the theoretical study of the intrinsic lattice thermal conductivities of ZrTe5 and HfTe5, which are found to be in the range of 5-8 W/mṡK at room temperature and well consistent with the experimental results. We also find that the thermal conductivities of the two materials are anisotropic, which are mainly caused by their anisotropic crystal structures. Based on the detailed analysis, we proposed that the thermal conductivities of the two materials could possibly be reduced by different kinds of structural engineering at the atomic and mesoscopic scales, such as alloying, doping, nano-structuring, and polycrystalline structuring, which could make ZrTe5 and HfTe5 good thermoelectric materials for room temperature thermoelectric applications.

  2. Anion exchange behaviour of Zr, Hf, Nb, Ta and Pa as homologues of RF and Db in fluoride medium

    Energy Technology Data Exchange (ETDEWEB)

    Monroy G, F. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Trubert, D.; Brillard, L.; Hussonnois, M.; Constantinescu, O.; Le Naour, C., E-mail: fabiola.monroy@inin.gob.m [Institut de Physique Nucleaire, F-91406 Orsay, France (France)

    2010-07-01

    Studies of the chemical property of trans actinide elements are very difficult due to their short half-lives and extremely small production yields. However it is still possible to obtain considerable information about their chemical properties, such as the most stable oxidation states in aqueous solution, complexing ability, etc., comparing their behaviour with their lighter homologous in the periodic table. In order to obtain a better knowledge of the behaviour of rutherfordium, RF (element 104), dub nium, Db (element 105) in HF medium, the sorption properties of Zr, Hf, Nb, Ta an Pa, homologues of RF and Db, were studied in NH{sub 4}F/HClO{sub 4} medium in this work. Stability constants of the fluoride complexes of these elements were experimentally obtained from K{sub d} obtained at different F{sup -} and H{sup +} concentrations. The anionic complexes: [Zr(Hf)F{sub 5}]{sup -}, [Zr(Hf)F{sub 6}]{sup 2-}, [Zr(Hf)F{sub 7}]{sup 3-}, [Ta(Pa)F{sub 6}]{sup -}, [Ta(Pa)F{sub 7}]{sup 2-}, [Ta(Pa)F{sub 8}]{sup 3-}, [NbOF{sub 4}]{sup -} and [NbOF{sub 5}]{sup 2-} are present as predominant species in the HF range over investigation. (Author)

  3. Microstructure research for ferroelectric origin in the strained Hf0.5Zr0.5O2 thin film via geometric phase analysis

    Science.gov (United States)

    Bi, Han; Sun, Qingqing; Zhao, Xuebing; You, Wenbin; Zhang, David Wei; Che, Renchao

    2018-04-01

    Recently, non-volatile semiconductor memory devices using a ferroelectric Hf0.5Zr0.5O2 film have been attracting extensive attention. However, at the nano-scale, the phase structure remains unclear in a thin Hf0.5Zr0.5O2 film, which stands in the way of the sustained development of ferroelectric memory nano-devices. Here, a series of electron microscopy evidences have illustrated that the interfacial strain played a key role in inducing the orthorhombic phase and the distorted tetragonal phase, which was the origin of the ferroelectricity in the Hf0.5Zr0.5O2 film. Our results provide insight into understanding the association between ferroelectric performances and microstructures of Hf0.5Zr0.5O2-based systems.

  4. Mesocrystals luminescent BaZrHfO{sub 3} synthesized via hydrothermal process assisted by microwave

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, Rafael Uarth, E-mail: uarth.fisica@gmail.com

    2016-07-01

    Full text: The Barium Zirconate (BaZrO{sub 3}), is a ceramic oxide belonging to the functional group of perovskites (ABO{sub 3}), this compound can be doped with hafniun (Hf) in solid solution by microwave assisted hydrothermal method (MAH) radioluminescent increases their properties. This method allows to obtain barium zirconate at low temperature as 140 deg C and short times as 160 minutes. The choice of Hafnium (Hf) as a dopant is based on its similarity with Zirconium (Zr), another good reason for this choice is that the Hafnium has intrinsic luminescent characteristics. In general, radioluminescent materials have high density and high atomic mass (atomic number of Hafnium is 72), thereby facilitating the absorption of ionizing radiation to convert it into visible light, this characteristic is strongly dependent on the morphology and especially the electronic structure of (BaZrO{sub 3}). This work consisted in production of barium zirconate powders doped 1-2-4-8-16% (Hf) using (MAH) method. For the characterization of the powders was employed methods : a) X-ray diffraction, b) Raman Spectroscopy, c) Xanes, d) photoluminescence spectroscopy. After the electronic and structural characterization the powders were introduced in a polymeric resin (nylon-BZO), one new characterizations will be performed to validate the results obtained in the production of films to the results already obtained for the powders. We conclude so far, that the powders-doped with 16% Hf has an intense luminescent emission compared to the powders with less concentration of Hf. The small structural change that causes the Hf in (BZO) is considered as a secondary factory. (author)

  5. Thermoelectric Properties of the XCoSb (X: Ti,Zr,Hf) Half-Heusler Alloys

    KAUST Repository

    Gandi, Appala; Schwingenschlö gl, Udo

    2017-01-01

    We investigate the thermoelectric properties of the half-Heusler alloys XCoSb (X: Ti,Zr,Hf) by solving Boltzmann transport equations and discuss them in terms of the electronic band structure. The rigid band approximation is employed to address

  6. Site preference of metal atoms in Gd_5_-_xM_xTt_4 (M = Zr, Hf; Tt = Si, Ge)

    International Nuclear Information System (INIS)

    Yao, Jinlei; Mozharivskyj, Yurij

    2011-01-01

    Zirconium and hafnium were incorporated into the Gd_5Ge_4 and Gd_5Si_4 parent compounds in order to study the metal-site occupation in the M_5X_4 magnetocaloric phases (M = metals; X = p elements) family. The Gd_5_-_xZr_xGe_4 phases adopt the orthorhombic Sm_5Ge_4-type (space group Pnma) structure for x ≤ 1.49 and the tetragonal Zr_5Si_4-type (P4_12_12) structure for x ≥ 1.77. The Gd_5_-_xHf_xSi_4 compounds crystallize in the orthorhombic Gd_5Si_4-type (Pnma) structure for x ≤ 0.41 and the Zr_5Si_4-type structure for x ≥ 0.7. In both systems, single-crystal X-ray diffraction reveals that the Zr/Hf atoms preferentially occupy the slab-surface M2 and slab-center M3 sites, both of which have a significantly larger Zr/Hf population than the slab-surface M1 site. The metal-site preference, i.e. the coloring problem on the three metal sites, is discussed considering geometric and electronic effects of the local coordination environments. The analysis of the metal-site occupation in Gd_5_-_xZr_xGe_4 and Gd_5_-_xHf_xSi_4 as well as other metal-substituted M_5X_4 systems suggests that both geometric and electronic effects can be used to explain the metal-site occupation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Electronic structure and magnetism of new ilmenite compounds for spintronic devices: FeBO{sub 3} (B = Ti, Hf, Zr, Si, Ge, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, R.A.P. [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Camilo, A. [Department of Physics, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Lazaro, S.R. de, E-mail: srlazaro@uepg.br [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil)

    2015-11-15

    First-principles calculations were performed in the framework of Density Functional Theory (DFT) within hybrid functional (B3LYP) to study the electronic structure and magnetic properties of new ilmenite FeBO{sub 3} (B=Ti, Hf, Zr, Si, Ge, Sn) materials. In particular, the magnetic exchange interaction between Fe{sup 2+} layers is dependent on the interlayer distance and it can be controlled by ionic radius of B-site cation. Thus, Fe(Ti, Si, Ge)O{sub 3} are antiferromagnetic materials, while Fe(Zr, Hf, Sn)O{sub 3} are ferromagnetic. We also argue that antiferromagnetic materials and FeZrO{sub 3} are convectional semiconductors, whereas FeHfO{sub 3} and FeSnO{sub 3} exhibit intrinsic half-metallic behavior, making them promising candidates for spintronic devices. - Highlights: • We study electronic structure and magnetism of new FeBO{sub 3} (B=Ti, Hf, Zr, Si, Ge, Sn) ilmenite materials. • We found that magnetic ordering of Fe-based ilmenite materials can be controlled by size of B-site cation. • Fe(Ti, Zr, Si, Ge)O{sub 3} are convectional semiconductors. • FeHfO{sub 3} and FeSnO{sub 3} exhibit intrinsic half-metallic behavior with potential application for spintronic devices.

  8. Structure and physical properties of ternary uranium transition-metal antimonides U3MSb5 (M = Zr, Hf, Nb)

    International Nuclear Information System (INIS)

    Tkachuk, Andriy V.; Muirhead, Craig P.T.; Mar, Arthur

    2006-01-01

    The ternary uranium transition-metal antimonides U 3 MSb 5 (M = Zr, Hf, Nb) were prepared by arc-melting reactions followed by annealing at 800 deg. C, or by use of a Sn flux. These compounds extend the previously known series U 3 MSb 5 (M = Ti, V, Cr, Mn) and RE 3 MSb 5 (RE = La, Ce, Pr, Nd, Sm; M = Ti, Zr, Hf, Nb). The crystal structures of U 3 MSb 5 were determined by single-crystal X-ray diffraction data (Pearson symbol hP18, hexagonal, space group P6 3 /mcm, Z = 2; U 3 ZrSb 5 , a = 9.2223(3) A, c = 6.1690(2) A; U 3 HfSb 5 , a = 9.2084(4) A, c = 6.1629(3) A; U 3 NbSb 5 , a = 9.1378(4) A, c 6.0909(6) A). U 3 TaSb 5 has also been identified in microcrystalline form (a = 9.233(3) A, c = 6.142(3) A). Four-probe electrical resistivity measurements on single crystals and dc magnetic susceptibility measurements on powders indicated prominent transitions that are attributed to ferromagnetic ordering. The Curie temperatures, T C , located from ac magnetic susceptibility curves, are 135 K for U 3 ZrSb 5 , 141 K for U 3 HfSb 5 , and 107 K for U 3 NbSb 5

  9. Band Alignment and Optical Properties of (ZrO20.66(HfO20.34 Gate Dielectrics Thin Films on p-Si (100

    Directory of Open Access Journals (Sweden)

    Dahlang Tahir

    2011-11-01

    Full Text Available (ZrO20.66(HfO20.34 dielectric films on p-Si (100 were grown by atomic layer deposition method, for which the conduction band offsets, valence band offsets and band gaps were obtained by using X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy. The band gap, valence and conduction band offset values for (ZrO20.66(HfO20.34 dielectric thin film, grown on Si substrate were about 5.34, 2.35 and 1.87 eV respectively. This band alignment was similar to that of ZrO2. In addition, The dielectric function ε (k, ω, index of refraction n and the extinction coefficient k for the (ZrO20.66(HfO20.34 thin films were obtained from a quantitative analysis of REELS data by comparison to detailed dielectric response model calculations using the QUEELS-ε (k,ω-REELS software package. These optical properties are similar with ZrO2 dielectric thin films.

  10. First-principles study of new quaternary Heusler compounds without 3d transition metal elements: ZrRhHfZ (Z = Al, Ga, In)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaotian [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China); Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Cheng, Zhenxiang, E-mail: cheng@uow.edu.au [Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Guo, Ruikang [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China); Wang, Jianli [Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Rozale, Habib [Condensed Matter and Sustainable Development Laboratory, Physics Department, University of Sidi-Bel-Abbès, 22000 Sidi-Bel-Abbès (Algeria); Wang, Liying [Department of Physics, Tianjin University, Tianjin 300350 (China); Yu, Zheyin [Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Liu, Guodong, E-mail: gdliu1978@126.com [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2017-06-01

    Plane-wave pseudo-potential methods based on density functional theory are employed to investigate the electronic structures, and the magnetic and half-metallic properties of the newly designed quaternary Heusler compounds ZrRhHfZ (Z = Al, Ga, In) without 3d transition metal elements. The calculated results show that ZrRhHfZ (Z = Al, Ga, In) compounds are half-metallic, with 100% spin polarization around the Fermi level. The structural stability of these compounds has been tested from the aspects of their cohesion energy and formation. The spin-flip/half-metallic gaps of ZrRhHfZ (Z = Al, Ga, In) compounds are quite large, with values of 0.2548 eV, 0.3483 eV, and 0.2866 eV, respectively. These compounds show Slater-Pauling behavior, and the total spin magnetic moment per unit cell (M{sub t}) scales with the total number of valence electrons (Z{sub t}) following the rule: M{sub t} = Z{sub t} - 18. The magnetization of ZrRhHfZ (Z = Al, Ga, In) compounds mainly comes from the 4d electrons of the Zr atoms and the 5d electrons of the Hf atoms. Furthermore, the effects of uniform strain and tetragonal deformation on the half metallicity has been investigated in detail, which is important for practical application. Finally, we reveal that the half-metallicity can be maintained when the Coulomb interactions are considered. - Highlights: • New quaternary compounds without 3d transition metal elements have been designed. • The electronic structures and magnetism of the ZrRhHfZ compounds have been studied. • The effect of strain on the half-metallic behavior has been tested. • The effect of the Coulomb interactions on the half-metallicity has been investigated.

  11. Prediction study of structural, elastic and electronic properties of FeMP (M = Ti, Zr, Hf) compounds

    Science.gov (United States)

    Tanto, A.; Chihi, T.; Ghebouli, M. A.; Reffas, M.; Fatmi, M.; Ghebouli, B.

    2018-06-01

    First principles calculations are applied in the study of FeMP (M = Ti, Zr, Hf) compounds. We investigate the structural, elastic, mechanical and electronic properties by combining first-principles calculations with the CASTEP approach. For ideal polycrystalline FeMP (M = Ti, Zr, Hf) the shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature are also calculated from the single crystal elastic constants. The shear anisotropic factors and anisotropy are obtained from the single crystal elastic constants. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal.

  12. Systems Tl2MoO4-E(MoO4)2, where E=Zr or Hf, and the crystal structure of Tl8Hf(MoO4)6

    International Nuclear Information System (INIS)

    Bazarov, B.G.; Bazarova, Ts.T.; Fedorov, K.N.; Bazarova, Zh.G.; Chimitova, O.D.; Klevtsova, R.F.; Glinskaya, L.A.

    2006-01-01

    Systems Tl 2 MoO 4 -E(MoO 4 ) 2 (E=Zr, Hf) were studied by X-ray diffraction, differential thermal analysis and IR spectroscopy. Formation of Tl 8 E(MoO 4 ) 6 and Tl 2 E(MoO 4 ) 2 compounds was established. Phase T-x diagrams of the Tl 2 MoO 4 -Zr(MoO 4 ) 2 system were constructed. Monocrystals were grown, and structure of Tl 8 Hf(MoO 4 ) 6 was studied. The compound is crystallized in monoclinic syngony with elementary cell parameters a=9.9688(6), b=18.830(1), c=7.8488(5) A, β=108.538(1) Deg, Z=2, sp. gr. C2/m. The isolated group [HfMo 6 O 24 ] 8- is responsible for fundamental fragment of the structure. Three varieties of crystallographically independent Tl-polyhedra fill space evenly between fragments [HfMo 6 O 24 ] 8- forming three-dimensional form [ru

  13. HfO2 - rare earth oxide systems in the region with high content of rare earth oxide

    International Nuclear Information System (INIS)

    Shevchenko, A.V.; Lopato, L.M.

    1982-01-01

    Using the methods of annealing and hardenings (10 2 -10 4 deg/s cooling rate) and differential thermal analysis elements of state diagrams of HfO 2 - rare earth oxide (rare earths-La, Pr, Nd, Sm, Gd, Tb, Dy, Y, Er, Yb, Lu, Sc) systems from 1800 deg C up to melting in the range of 60-100 mol% rare earth oxide concentration were constructed. Regularities of HfQ 2 addition effect on high-temperature polymorphic transformations of rare earth oxides were studied. Results of investigation were discussed from viewpoint of crystal chemistry

  14. Growth and characterization of acentric BaHf(BO{sub 3}){sub 2} and BaZr(BO{sub 3}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Szymborska-Małek, Katarzyna; Gągor, Anna [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Majchrowski, Andrzej [Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland)

    2015-05-15

    Growth, single crystal X-ray diffraction, polarized Raman and infrared (IR) studies of BaHf(BO{sub 3}){sub 2} are presented. Raman and IR spectra of polycrystalline BaZr(BO{sub 3}){sub 2} are also reported to facilitate assignment of modes. BaHf(BO{sub 3}){sub 2} borate crystallizes in trigonal system, space group R3c, with lattice parameters: a=5.1540(4) Å, c=33.901(3) Å. It accommodates dolomite-like structure doubled in the c direction, which is built of alternating layers of HfO{sub 6} octahedra and BaO{sub 6} distorted trigonal prisms that are connected through borate groups. The obtained structural as well as spectroscopic data show that BaHf(BO{sub 3}){sub 2} is isostructural with BaZr(BO{sub 3}){sub 2} and the deviations from centrosymmetry is small. - Graphical abstract: Arrangement of BO{sub 3} groups in BaHf(BO{sub 3}){sub 2} along the c direction in one unit cell. Dark and light blue denote different borate groups. - Highlights: • BaHf(BO{sub 3}){sub 2} single crystals were grown. • X-ray diffraction showed that this borate crystallizes in the acentric R3c structure. • Raman and IR spectra were measured for BaHf(BO{sub 3}){sub 2} and BaZr(BO{sub 3}){sub 2}, respectively. • Assignment of modes is proposed.

  15. TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys

    International Nuclear Information System (INIS)

    Santamarta, R.; Arróyave, R.; Pons, J.; Evirgen, A.; Karaman, I.; Karaca, H.E.; Noebe, R.D.

    2013-01-01

    The precipitates formed after suitable thermal treatments in seven Ni-rich Ni–Ti–Hf and Ni–Ti–Zr high-temperature shape memory alloys have been investigated by conventional and high-resolution transmission electron microscopy. In both ternary systems, the precipitate coarsening kinetics become faster as the Ni and ternary element contents (Hf or Zr) of the bulk alloy are increased, in agreement with the precipitate composition measured by energy-dispersive X-ray microanalysis. The precipitate structure has been found to be the same in both Hf- and Zr-containing ternary alloys, and determined to be a superstructure of the B2 austenite phase, which arises from a recombination of the Hf/Zr and Ti atoms in their sublattice. Two different structural models for the precipitate phase were optimized using density functional theory methods. These calculations indicate that the energetics of the structure are not very sensitive to the atomic configuration of the Ti–Hf/Zr planes, thus significant configurational disorder due to entropic effects can be envisaged at high temperatures. The precipitates are fully coherent with the austenite B2 matrix; however, upon martensitic transformation, they lose some coherency with the B19′ matrix as a result of the transformation shear process in the surrounding matrix. The strain accommodation around the particles is much easier in the Ni–Ti–Zr-containing alloys than in the Ni–Ti–Hf system, which correlates well with the lower transformation strain and stiffness predicted for the Ni–Ti–Zr alloys. The B19′ martensite twinning modes observed in the studied Ni-rich ternary alloys are not changed by the new precipitated phase, being equivalent to those previously reported in Ni-poor ternary alloys

  16. Fatigue and strain effects in NbTi, Nb3Sn, and V2(Hf, Zr) multifilamentary superconductors

    International Nuclear Information System (INIS)

    Kuroda, T.; Wada, H.; Tachikawa, K.

    1988-01-01

    The effects of cyclic strain on critical current were studied in NbTi, bronze processed Nb 3 Sn, and composite diffusion processed V 2 (Hf,Zr) multifilamentary wires. No appreciable changes in critical current were found in NbTi wires until just prior to fatigue-induced fracture. Critical current degradation was also not observed in Nb 3 Sn or V 2 (Hf,Zr) as long as the wires were strained below the reversible limit strain. For strains beyond this limit strain the critical current was first degraded by an increasing number of cycles and then remained constant after a certain cycle number was passed

  17. (V,Nb)-doped half Heusler alloys based on {Ti,Zr,Hf}NiSn with high ZT

    International Nuclear Information System (INIS)

    Rogl, G.; Sauerschnig, P.; Rykavets, Z.; Romaka, V.V.; Heinrich, P.; Hinterleitner, B.; Grytsiv, A.; Bauer, E.; Rogl, P.

    2017-01-01

    Half Heusler alloys are among the most promising materials for thermoelectric generators as they can be used in a wide temperature range and their starting materials are abundant and cheap, the latter as long as no hafnium is involved. For Sb-doped Ti 0.5 Zr 0.25 Hf 0.25 NiSn Sakurada and Shutoh in 2008 have published ZT max  = 1.5 at 690 K, a value that hitherto was never reproduced independently. In this paper we successfully prepared Ti 0.5 Zr 0.25 Hf 0.25 NiSn with ZT max  = 1.5, however, at higher temperature (825 K). As the main goal is to produce hafnium – free half Heusler alloys, we investigated the influence of niobium or vanadium dopants on Ti x Zr 1−x NiSn 0.98 Sb 0.02 , reaching ZTs > 1.2 and thermal-electric conversion efficiencies up to 13.1%. For Hf-free n-type TiNiSn-based half Heusler alloys these values are unsurpassed. In order to further improve our thermoelectric materials our study is completed by electrical resistivity and thermal conductivity data in the low temperature range but also by mechanical properties (elastic moduli, hardness) at room temperature. The electrical properties have been discussed in comparison with DFT calculations.

  18. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  19. Thermoelectric Performance of the MXenes M2CO2 (M = Ti, Zr, or Hf)

    KAUST Repository

    Gandi, Appala; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2016-01-01

    MXenes, M2CO2, where M = Ti, Zr, or Hf, in order to evaluate the effect of the metal M on the thermoelectric performance. The lattice contribution to the thermal conductivity, obtained from the phonon life times, is found to be lowest in Ti2CO2

  20. The Development of HfO2-Rare Earth Based Oxide Materials and Barrier Coatings for Thermal Protection Systems

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan James

    2014-01-01

    Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.

  1. Ternary ceramic alloys of Zr-Ce-Hf oxides

    Science.gov (United States)

    Becher, P.F.; Funkenbusch, E.F.

    1990-11-20

    A ternary ceramic alloy is described which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce[sub x]Hf[sub y]Zr[sub 1[minus]x[minus]y]O[sub 2], is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites. 1 fig.

  2. The influence of thermal treatment on the phase development in HfO2-Al2O3 and ZrO2-Al2O3 systems

    International Nuclear Information System (INIS)

    Stefanic, G.; Music, S.; Trojko, R.

    2005-01-01

    Amorphous precursors of HfO 2 -AlO 1.5 and ZrO 2 -AlO 1.5 systems covering the whole concentration range were co-precipitated from aqueous solutions of the corresponding salts. The thermal behaviour of the amorphous precursors was examined by differential thermal analysis, X-ray powder diffraction (XRD), laser Raman spectroscopy and scanning electron microscopy. The crystallization temperature of both systems increased with increase in the AlO 1.5 content, from 530 to 940 deg. C in the HfO 2 -AlO 1.5 system, and from 405 to 915 deg. C in the ZrO 2 -AlO 1.5 system. The results of phase analysis indicate an extended capability for the incorporation of Al 3+ ions in the metastable HfO 2 - and ZrO 2 -type solid solutions obtained after crystallization of amorphous co-gels. Precise determination of lattice parameters, performed using whole-powder-pattern decomposition method, showed that the axial ratio c f /a f in the ZrO 2 - and HfO 2 -type solid solutions with 10 mol% or more of Al 3+ approach 1. The tetragonal symmetry of these samples, as determined by laser Raman spectroscopy, was attributed to the displacement of the oxygen sublattice from the ideal fluorite positions. It was found that the lattice parameters of the ZrO 2 -type solid solutions decreased with increasing Al 3+ content up to ∼10 mol%, whereas above 10 mol%, further increase of the Al 3+ content has very small influence on the unit-cell volume of both HfO 2 - and ZrO 2 -type solid solutions. The reason for such behaviour was discussed. The solubility of Hf 4+ and Zr 4+ ions in the aluminium oxides lattice appeared to be negligible

  3. Assessment of the structural relations between the bcc and omega phases of Ti, Zr, Hf and other transition metals

    International Nuclear Information System (INIS)

    Aurelio, G.; Guillermet, A.F.

    2000-01-01

    The name omega (Ω) phase refers to a high-pressure structural modification of the transition metals (TMs) Ti, Zr, and Hf. In alloys of Ti, Zr and Hf with other TMs, the Ω phase can be formed and retained metastably at room temperature by quenching the bcc structure, which is usually the stable high-temperature phase in these alloy systems. As a part of a systematic investigation of the structural and bonding properties of the bcc and Ω phases, and of the bcc → Ω phase transformation in TMs and alloys, we present in this paper a detailed analysis of the structural relations between these phases in Ti, Zr, Hf and in other TMs. The approach is as follows. First, we establish the most general geometrical relations connecting the lattice parameters and interatomic distances (IDs) of the bcc and Ω structures. Next, we focus on the ratio between the relevant IDs of these phases, which are assessed on the basis of an extensive database with experimental and theoretical information. Both stable and metastable structures are considered, and various remarkable regularities in ID ratios are discussed. Finally, in the light of the systematics of ID ratios established in the present work, a discussion is made of the probable lattice parameters for the Ω phase of Hf, which are not yet accurately known from direct measurements. (orig.)

  4. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    Science.gov (United States)

    von Rohr, Fabian O.; Cava, Robert J.

    2018-03-01

    High-entropy alloys (HEAs) are a new class of materials constructed from multiple principal elements statistically arranged on simple crystallographic lattices. Due to the large amount of disorder present, they are excellent model systems for investigating the properties of materials intermediate between crystalline and amorphous states. Here we report the effects of systematic isoelectronic replacements, using Mo-Y, Mo-Sc, and Cr-Sc mixtures, for the valence electron count 4 and 5 elements in the body-centered cubic (BCC) Ta-Nb-Zr-Hf-Ti high-entropy alloy (HEA) superconductor. We find that the superconducting transition temperature Tc strongly depends on the elemental makeup of the alloy, and not exclusively its electron count. The replacement of niobium or tantalum by an isoelectronic mixture lowers the transition temperature by more than 60%, while the isoelectronic replacement of hafnium, zirconium, or titanium has a limited impact on Tc. We further explore the alloying of aluminium into the nearly optimal electron count [TaNb] 0.67(ZrHfTi) 0.33 HEA superconductor. The electron count dependence of the superconducting Tc for (HEA)Al x is found to be more crystallinelike than for the [TaNb] 1 -x(ZrHfTi) x HEA solid solution. For an aluminum content of x =0.4 the high-entropy stabilization of the simple BCC lattice breaks down. This material crystallizes in the tetragonal β -uranium structure type and superconductivity is not observed above 1.8 K.

  5. H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Evirgen, A.; Pons, J.; Karaman, I.; Santamarta, R.; Noebe, R. D.

    2018-03-01

    The distributions of H-phase precipitates in Ni50.3Ti29.7Hf20 and Ni50.3Ti29.7Zr20 alloys formed by aging treatments at 500 and 550 °C or slow furnace cooling and their effects on the thermal martensitic transformation have been investigated by TEM and calorimetry. The comparative study clearly reveals faster precipitate-coarsening kinetics in the NiTiZr alloy than in NiTiHf. For precipitates of a similar size of 10-20 nm in both alloys, the martensite plates in Ni50.3Ti29.7Zr20 have larger widths and span a higher number of precipitates compared with the Ni50.3Ti29.7Hf20 alloy. However, for large H-phase particles with hundreds of nm in length, no significant differences in the martensitic microstructures of both alloy systems have been observed. The martensitic transformation temperatures of Ni50.3Ti29.7Hf20 are 80-90 °C higher than those of Ni50.3Ti29.7Zr20 in the precipitate-free state and in the presence of large particles of hundreds on nm in length, but this difference is reduced to only 10-20 °C in samples with small H-phase precipitates. The changes in the transformation temperatures are consistent with the differences in the precipitate distributions between the two alloy systems observed by TEM.

  6. Effect of the annealing temperature of thin Hf0.3Zr0.7O2 films on their energy storage behavior

    International Nuclear Information System (INIS)

    Park, Min Hyuk; Kim, Han Joon; Kim, Yu Jin; Moon, Taehwan; Kim, Keum Do; Hwang, Cheol Seong

    2014-01-01

    With increasing annealing temperature (T anneal ), the magnitude of the electric fields for the antiferroelectric-to-ferro-electric (E AF ) and ferroelectric-to-antiferroelectric (E FA ) transition of a 9.2 nm thick Hf 0.3 Zr 0.7 O 2 film decreased. The energy storage densities of the Hf 0.3 Zr 0.7 O 2 films crystallized at 400 C, 500 C, and 600 C were as large as 42.2 J/cm 3 , 40.4 J/cm 3 , and 28.3 J/cm 3 , respectively, at the electric field of 4.35 MV/cm. The maximum dielectric constant of the Hf 0.3 Zr 0.7 O 2 film crystallized at 600 C was the largest (∝46) as it had the smallest E AF and E FA , whereas the leakage current density of the film crystallized at 400 C was the smallest. The 400 C of T anneal was the optimum condition for energy storage application. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shih-Chang [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Chang, Zue-Chin [Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Tsai, Du-Cheng [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Lin, Yi-Chen; Sung, Huan-Shin [Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Deng, Min-Jen [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Department of Optometry, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County 356, Taiwan (China); Shieu, Fuh-Sheng, E-mail: fsshieu@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2011-06-15

    The present paper reports the influence of growth conditions on the characteristics of (TiVCrZrHf)N films prepared by rf reactive magnetron sputtering at various substrate temperatures. The nitrogen content is observed to decrease with increasing substrate temperature. The X-ray diffraction results indicate that all (TiVCrZrHf)N films are simple face centered cubic (FCC) structures. Initially, there is an obvious decrease followed by an increase in grain size with the increase in substrate temperature. The lower part of the microstructure has an amorphous structure. A nano grain structure (size {approx}1 nm) with a random orientation is also observed above the amorphous structure. The fully dense columnar structure with an fcc crystal phase then starts to develop. Extreme hardness of around 48 GPa is obtained in the present alloy design.

  8. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings

    International Nuclear Information System (INIS)

    Liang, Shih-Chang; Chang, Zue-Chin; Tsai, Du-Cheng; Lin, Yi-Chen; Sung, Huan-Shin; Deng, Min-Jen; Shieu, Fuh-Sheng

    2011-01-01

    The present paper reports the influence of growth conditions on the characteristics of (TiVCrZrHf)N films prepared by rf reactive magnetron sputtering at various substrate temperatures. The nitrogen content is observed to decrease with increasing substrate temperature. The X-ray diffraction results indicate that all (TiVCrZrHf)N films are simple face centered cubic (FCC) structures. Initially, there is an obvious decrease followed by an increase in grain size with the increase in substrate temperature. The lower part of the microstructure has an amorphous structure. A nano grain structure (size ∼1 nm) with a random orientation is also observed above the amorphous structure. The fully dense columnar structure with an fcc crystal phase then starts to develop. Extreme hardness of around 48 GPa is obtained in the present alloy design.

  9. Behaviour at the indicator scale of the elements Zr, Hf and 104, Nb,Ta and Pa (105) in very complexation media; Comportement a l`echelle des indicateurs des elements Zr, Hf, et 104, Nb, Ta, et Pa (105) en milieux tres complexants

    Energy Technology Data Exchange (ETDEWEB)

    Monroy Guzman, F. [Institut de Physique Nucleaire, CNRS - IN2P3 Universite Paris Sud, 91406 Orsay Cedex (France)

    1997-12-31

    In order to determine the chemical properties of the trans-actinide elements of Z = 104 and 105 in aqueous solutions we studied their behaviour to ion exchange resin in different complex media. Due to the very short lifetimes (some tens of seconds) et to the low yield of these elements (a few atoms per irradiation hour) only very fast radiochemical techniques can be used. These severe constraints impose comparative studies of these elements with their most likely homologues to be carried out. The corresponding homologues were the elements of group 4 (Zr and Hf) for the element 104 and the elements of group 5 (Nb and Ta) and also Pa for the element 105. The complexation properties of the elements at indicator scale were determined in the media of HF, NH{sub 4}/HClO{sub 4}, NH{sub 4}SCN/HClO{sub 4}, NH{sub 4}SCN/HF and HCl/HF by ion exchange chromatography. The studies in fluorides media allowed us to identify the complexes in solution and to explain the shape of the experimentally observed sorption curves. The decrease of sorption for higher acid concentration in case of HF/HCl medium was interpreted by formation of chloro-fluoro-complexes. In case of the mixture NH{sub 4}SCN/HF, the particularly pronounced anti-synergic effects were observed and discussed. At the same time studies of the Hf and Ta short-lived isotopes were carried out by means of the RACHEL facility operating by the Orsay Tandem accelerator. These realistic simulations allowed optimization of different production, transportation and separation stages of the trans-actinide elements. The two experiments of 104 element production showed that this element forms in HF very stable anionic complexes similarly to its homologues Zr and Hf. (authors). 181 refs.

  10. Behaviour at the indicator scale of the elements Zr, Hf and 104, Nb,Ta and Pa (105) in very complexation media; Comportement a l`echelle des indicateurs des elements Zr, Hf, et 104, Nb, Ta, et Pa (105) en milieux tres complexants

    Energy Technology Data Exchange (ETDEWEB)

    Monroy Guzman, F [Institut de Physique Nucleaire, CNRS - IN2P3 Universite Paris Sud, 91406 Orsay Cedex (France)

    1998-12-31

    In order to determine the chemical properties of the trans-actinide elements of Z = 104 and 105 in aqueous solutions we studied their behaviour to ion exchange resin in different complex media. Due to the very short lifetimes (some tens of seconds) et to the low yield of these elements (a few atoms per irradiation hour) only very fast radiochemical techniques can be used. These severe constraints impose comparative studies of these elements with their most likely homologues to be carried out. The corresponding homologues were the elements of group 4 (Zr and Hf) for the element 104 and the elements of group 5 (Nb and Ta) and also Pa for the element 105. The complexation properties of the elements at indicator scale were determined in the media of HF, NH{sub 4}/HClO{sub 4}, NH{sub 4}SCN/HClO{sub 4}, NH{sub 4}SCN/HF and HCl/HF by ion exchange chromatography. The studies in fluorides media allowed us to identify the complexes in solution and to explain the shape of the experimentally observed sorption curves. The decrease of sorption for higher acid concentration in case of HF/HCl medium was interpreted by formation of chloro-fluoro-complexes. In case of the mixture NH{sub 4}SCN/HF, the particularly pronounced anti-synergic effects were observed and discussed. At the same time studies of the Hf and Ta short-lived isotopes were carried out by means of the RACHEL facility operating by the Orsay Tandem accelerator. These realistic simulations allowed optimization of different production, transportation and separation stages of the trans-actinide elements. The two experiments of 104 element production showed that this element forms in HF very stable anionic complexes similarly to its homologues Zr and Hf. (authors). 181 refs.

  11. The CaO-TiO2-ZrO2 system at 1,200 degree C and the solubilities of Hf and Gd in zirconolite

    International Nuclear Information System (INIS)

    Swenson, D.; Nieh, T.G.; Fournelle, J.H.

    1995-12-01

    In recent years, significant technological advancements have been made in the Synroc scheme for the immobilization high-level nuclear waste. However, many basic scientific issues related to Synroc fabrication have yet to be addressed. The CaO-TiO 2 -ZrO 2 system is an integral part of the Synroc formulation. Phase equilibria are established in the CaO-TiO 2 -ZrO 2 system at 1,200 C, using X-ray diffraction and electron probe microanalysis. The existence of two previously reported ternary phases, zirconolite (CaZrTi 2 O 7 ) and calzirtite (Ca 2 Zr 5 Ti 2 O 16 ), is confirmed. Each of these phases exhibits a significant range of homogeneity between TiO 2 and ZrO 2 while maintaining a nearly constant concentration of CaO. The ternary solubilities of the constituent binary phases are found to be negligible, with the exceptions of the perovskites, which display mutual solubility of at least 22 mol.% and may in fact form a series of continuous solid solutions. The solubilities of Hf and Gd in zirconolite are also investigated. While Hf-bearing samples did not reach thermodynamic equilibrium under the experimental conditions employed, the existence of a Hf analog to zirconolite, CaHfTi 2 O 7 , is conclusively demonstrated. The phase is stable at the stoichiometric composition, and its lattice parameters are very close to those reported in the literature for stoichiometric zirconolite. A Gd-bearing sample of the composition Ca 0.88 Zr 0.88 Gd 9.24 Ti 2 O 7 is found to be essentially single phase zirconolite, in agreement with previous investigations at higher temperatures

  12. New Intermetallic Ternary Phosphide Chalcogenide AP2-xXx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure

    Science.gov (United States)

    Kitô, Hijiri; Yanagi, Yousuke; Ishida, Shigeyuki; Oka, Kunihiko; Gotoh, Yoshito; Fujihisa, Hiroshi; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi

    2014-07-01

    We have synthesized a series of intermetallic ternary phosphide chalcogenide superconductors, AP2-xXx (A = Zr, Hf; X = S, Se), using the high-pressure synthesis technique. These materials have a PbFCl-type crystal structure (space group P4/nmm) when x is greater than 0.3. The superconducting transition temperature Tc changes systematically with x, yielding dome-like phase diagrams. The maximum Tc is achieved at approximately x = 0.7, at which point the Tc is 6.3 K for ZrP2-xSex (x = 0.75), 5.5 K for HfP2-xSex (x = 0.7), 5.0 K for ZrP2-xSx (x = 0.675), and 4.6 K for Hfp2-xSx (x = 0.5). They are typical type-II superconductors and the upper and lower critical fields are estimated to be 2.92 T at 0 K and 0.021 T at 2 K for ZrP2-xSex (x = 0.75), respectively.

  13. Collapse of the magnetic moment under pressure of AFe{sub 2} (A=Y, Zr, Lu and Hf) in the cubic Laves phase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenxu, E-mail: xwzhang@uestc.edu.cn; Zhang, Wanli

    2016-04-15

    The electronic structures of four Laves phase iron compounds (e.g. YFe{sub 2}, ZrFe{sub 2}, LuFe{sub 2} and HfFe{sub 2}) have been calculated with a state-of-the-art full potential electronic structure code. Our theoretical work predicted that the magnetic moments collapse under hydrostatic pressure. This feature is found to be universal in these materials. Its electronic origin is provided by the sharp peaks in the density of states near the Fermi level. It is shown that a first order quantum phase transition can be expected under pressure in Y(Zr, or Lu)Fe{sub 2}, while a second order one in HfFe{sub 2}. The bonding characteristics are discussed to elucidate the equilibrium lattice constant variation. The large spontaneous volume magnetostriction gives one of the most important characteristics of these compounds. Invar anomalies in these compounds can be partly explained by the current work when the fast continuous magnetic moment decrease with the decrease of the lattice constant was properly considered. This work may be as a first insight into the rich world of quantum phase transition and Invar mechanism in these Laves phase compounds. - Highlights: • Magnetic moment of YFe{sub 2}, ZrFe{sub 2}, LuFe{sub 2} and HfFe{sub 2} collapses under pressure. • The transition in Y(Zr or Lu) Fe{sub 2} under pressure is first order. • The transition in HfFe{sub 2} under pressure is second order. • The Invar effects in the compounds can be put into the magnetostriction model.

  14. Theoretical predictions of properties and volatility of chlorides and oxychlorides of group-4 elements. II. Adsorption of tetrachlorides and oxydichlorides of Zr, Hf, and Rf on neutral and modified surfaces

    International Nuclear Information System (INIS)

    Pershina, V.; Borschevsky, A.; Iliaš, M.; Türler, A.

    2014-01-01

    With the aim to interpret results of gas-phase chromatography experiments on volatility of group-4 tetrachlorides and oxychlorides including those of Rf, adsorption enthalpies of these species on neutral, and modified quartz surfaces were estimated on the basis of relativistic, two-component Density Functional Theory calculations of MCl 4 , MOCl 2 , MCl 6 − , and MOCl 4 2 with the use of adsorption models. Several mechanisms of adsorption were considered. In the case of physisorption of MCl 4 , the trend in the adsorption energy in the group should be Zr > Hf > Rf, so that the volatility should change in the opposite direction. The latter trend complies with the one in the sublimation enthalpies, ΔH sub , of the Zr and Hf tetrachlorides, i.e., Zr < Hf. On the basis of a correlation between these quantities, ΔH sub (RfCl 4 ) was predicted as 104.2 kJ/mol. The energy of physisorption of MOCl 2 on quartz should increase in the group, Zr < Hf < Rf, as defined by increasing dipole moments of these molecules along the series. In the case of adsorption of MCl 4 on quartz by chemical forces, formation of the MOCl 2 or MOCl 4 2− complexes on the surface can take place, so that the sequence in the adsorption energy should be Zr > Hf > Rf, as defined by the complex formation energies. In the case of adsorption of MCl 4 on a chlorinated quartz surface, formation of the MCl 6 2− surface complexes can occur, so that the trend in the adsorption strength should be ZrHf < Rf. All the predicted sequences, showing a smooth change of the adsorption energy in the group, are in disagreement with the reversed trend Zr ≈ Rf < Hf, observed in the “one-atom-at-a-time” gas-phase chromatography experiments. Thus, currently no theoretical explanation can be found for the experimental observations

  15. Theoretical predictions of properties and volatility of chlorides and oxychlorides of group-4 elements. II. Adsorption of tetrachlorides and oxydichlorides of Zr, Hf, and Rf on neutral and modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pershina, V., E-mail: V.Pershina@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt D-64291 (Germany); Borschevsky, A. [Helmholtz Institute Mainz, Mainz D-55128, Germany and Centre for Theoretical Chemistry and Physics, New Zealand Institute for Advanced Study, Massey University, Private Bag 102904, 0745 North Shore MSC, Auckland (New Zealand); Iliaš, M. [Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK-974 00 Banská Bystrica (Slovakia); Türler, A. [Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland and Laboratory for Radiochemistry and Environmental Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2014-08-14

    With the aim to interpret results of gas-phase chromatography experiments on volatility of group-4 tetrachlorides and oxychlorides including those of Rf, adsorption enthalpies of these species on neutral, and modified quartz surfaces were estimated on the basis of relativistic, two-component Density Functional Theory calculations of MCl{sub 4}, MOCl{sub 2}, MCl{sub 6}{sup −}, and MOCl{sub 4}{sup 2} with the use of adsorption models. Several mechanisms of adsorption were considered. In the case of physisorption of MCl{sub 4}, the trend in the adsorption energy in the group should be Zr > Hf > Rf, so that the volatility should change in the opposite direction. The latter trend complies with the one in the sublimation enthalpies, ΔH{sub sub}, of the Zr and Hf tetrachlorides, i.e., Zr < Hf. On the basis of a correlation between these quantities, ΔH{sub sub}(RfCl{sub 4}) was predicted as 104.2 kJ/mol. The energy of physisorption of MOCl{sub 2} on quartz should increase in the group, Zr < Hf < Rf, as defined by increasing dipole moments of these molecules along the series. In the case of adsorption of MCl{sub 4} on quartz by chemical forces, formation of the MOCl{sub 2} or MOCl{sub 4}{sup 2−} complexes on the surface can take place, so that the sequence in the adsorption energy should be Zr > Hf > Rf, as defined by the complex formation energies. In the case of adsorption of MCl{sub 4} on a chlorinated quartz surface, formation of the MCl{sub 6}{sup 2−} surface complexes can occur, so that the trend in the adsorption strength should be ZrHf < Rf. All the predicted sequences, showing a smooth change of the adsorption energy in the group, are in disagreement with the reversed trend Zr ≈ Rf < Hf, observed in the “one-atom-at-a-time” gas-phase chromatography experiments. Thus, currently no theoretical explanation can be found for the experimental observations.

  16. Ideal solution behaviour of glassy Cu–Ti, Zr, Hf alloys and properties of amorphous copper

    International Nuclear Information System (INIS)

    Ristić, R.; Cooper, J.R.; Zadro, K.; Pajić, D.; Ivkov, J.; Babić, E.

    2015-01-01

    Highlights: • Ideal solution behaviour (ISB) is established in all Cu–Ti, Zr, Hf glassy alloys. • ISB enables reliable estimates for various properties of amorphous Cu. • ISB also impacts glass forming ability in these and probably other similar alloys. - Abstract: A comprehensive study of selected properties of amorphous (a) Cu–TE alloys (TE = Ti, Zr and Hf) has been performed. Data for average atomic volumes of a-Cu–Hf, Ti alloys combined with literature data show that ideal solution behaviour (Vegard’s law) extends over the whole glass forming range (GFR) in all a-Cu–TE alloys. This enables one to obtain an insight into some properties and probable atomic arrangements for both, a-TEs (Ristić et al., 2010) and a-Cu by extrapolation of the data for alloys. Indeed the atomic volumes and other properties studied for all a-Cu–TE alloys extrapolate to the same values for a-Cu. Depending on the property, these values are either close to those of crystalline (c) Cu, or are close to those for liquid (L) Cu. In particular, the electronic transport properties of a-Cu seem close to those of L-Cu, whereas the static properties, such as the density of states, and Young’s modulus, converge to those of c-Cu. The possible impact of these results on our understanding of a-Cu–TE alloys, including glass forming ability, is discussed

  17. Theoretical predictions of properties and volatility of chlorides and oxychlorides of group-4 elements. II. Adsorption of tetrachlorides and oxydichlorides of Zr, Hf, and Rf on neutral and modified surfaces

    Science.gov (United States)

    Pershina, V.; Borschevsky, A.; Iliaš, M.; Türler, A.

    2014-08-01

    With the aim to interpret results of gas-phase chromatography experiments on volatility of group-4 tetrachlorides and oxychlorides including those of Rf, adsorption enthalpies of these species on neutral, and modified quartz surfaces were estimated on the basis of relativistic, two-component Density Functional Theory calculations of MCl4, MOCl2, MCl6-, and MOCl42 with the use of adsorption models. Several mechanisms of adsorption were considered. In the case of physisorption of MCl4, the trend in the adsorption energy in the group should be Zr > Hf > Rf, so that the volatility should change in the opposite direction. The latter trend complies with the one in the sublimation enthalpies, ΔHsub, of the Zr and Hf tetrachlorides, i.e., Zr Hf > Rf, as defined by the complex formation energies. In the case of adsorption of MCl4 on a chlorinated quartz surface, formation of the MCl62- surface complexes can occur, so that the trend in the adsorption strength should be ZrHf < Rf. All the predicted sequences, showing a smooth change of the adsorption energy in the group, are in disagreement with the reversed trend Zr ≈ Rf < Hf, observed in the "one-atom-at-a-time" gas-phase chromatography experiments. Thus, currently no theoretical explanation can be found for the experimental observations.

  18. Phase transformations in the rapidly solidified Ti{sub 40}Zr{sub 20}Hf{sub 20}Pd{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N. [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Yao Kefu [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: kfyao@tsinghua.edu.cn; Louzguine-Luzgin, D.V. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Qiu Shengbao [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India); Inoue, A. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2007-10-15

    We report that an approximant phase was initially obtained in amorphous Ti{sub 40}Zr{sub 20}Hf{sub 20}Pd{sub 20} alloy. In the initial stage of the devitrification process, the approximant phase transforms into an icosahedral (I) phase with a high thermal stability while the cF96 Zr{sub 2}Ni-type (space group Fd3-bar m with a=1.25nm and 96 atoms cell{sup -1}) particles precipitate from the amorphous matrix. Eventually the I phase grows to several hundred nanometers when annealed at about 1000K and then transforms into the Zr{sub 2}Ni-type phase with an endothermic reaction.

  19. Tunneling current in HfO2 and Hf0.5Zr0.5O2-based ferroelectric tunnel junction

    Science.gov (United States)

    Dong, Zhipeng; Cao, Xi; Wu, Tong; Guo, Jing

    2018-03-01

    Ferroelectric tunnel junctions (FTJs) have been intensively explored for future low power data storage and information processing applications. Among various ferroelectric (FE) materials studied, HfO2 and H0.5Zr0.5O2 (HZO) have the advantage of CMOS process compatibility. The validity of the simple effective mass approximation, for describing the tunneling process in these materials, is examined by computing the complex band structure from ab initio simulations. The results show that the simple effective mass approximation is insufficient to describe the tunneling current in HfO2 and HZO materials, and quantitative accurate descriptions of the complex band structures are indispensable for calculation of the tunneling current. A compact k . p Hamiltonian is parameterized to and validated by ab initio complex band structures, which provides a method for efficiently and accurately computing the tunneling current in HfO2 and HZO. The device characteristics of a metal/FE/metal structure and a metal/FE/semiconductor (M-F-S) structure are investigated by using the non-equilibrium Green's function formalism with the parameterized effective Hamiltonian. The result shows that the M-F-S structure offers a larger resistance window due to an extra barrier in the semiconductor region at off-state. A FTJ utilizing M-F-S structure is beneficial for memory design.

  20. Pb, U, Ti, Hf and Zr distributions in zircons determined by proton microprobe and fission track techniques

    International Nuclear Information System (INIS)

    Clark, G.J.; Gulson, B.L.; Cookson, J.A.

    1979-01-01

    A proton microprobe has been used to determine Pb, Tl, Hf and Zr distributions across four single zircon crystals separated from a 'rapakivi' granite. The Pb and Zr data are quantitative: Pb and Tl concentrations were below the measurable limits for determinations in situ by most other techniques. The distribution of U in the same crystals was determined by the fission track technique. Limits on precision of U allow only a qualitative correlation of U and Pb, whereas the Tl and Pb correlation is more exactly determined. Zircons with distinct cores and overgrowths exhibited uniform Zr and Hf concentrations across the crystals, whereas the high U rims and 'inclusions' (domains) also had high Tl and Pb contents. Since almost all the Pb in these zircons is derived by radioactive decay of U, the Tl substitution has paralleled that of U. The results indicate that the high U domains are 'hot spots' rather than a separate mineral phase. The strong positive correlation of U and Pb indicates that there is little U daughter product migration relative to U, within the crystal. However, for the zircon population investigated here, the data are equivocal on the question of whether U addition to zircon crystals is associated with new zircon growth or not. In either case, the heterogeneous U and Pb distributions complicate any interpretations of U-Pb isotopic analysis for such zircon populations. (author)

  1. TiNiSn and Zr{sub 0.5}Hf{sub 0.5}NiSn superlattices for thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Tino; Jakob, Gerhard [Institut fuer Physik, Universitaet Mainz, 55099 Mainz (Germany); Schwall, Michael; Kozina, Xeniya; Balke, Benjamin; Felser, Claudia [Institut fuer Analytische und Anorganische Chemie, Universitaet Mainz, 55099 Mainz (Germany); Populoh, Sascha; Weidenkaff, Anke [EMPA, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland)

    2012-07-01

    In order to increase the attractiveness of thermoelectric devices, their efficiency must be increased. Beside others, the properties of the thermoelectric material can be improved. That can be achieved by either increasing Seebeck coefficient or conductivity or by a depressed thermal conductivity along the thermal gradient. For thin films, superlattices or multilayers can be used to lower the cross plane thermal conductivity. As a bottom up approach, artificially layered films with a periodicity of about 5-6 nm are assumed to generate the most phonon scattering at the interfaces. If electrical properties remain unchanged or less effected, the thermoelectric efficiency is enhanced. Semiconducting Half-Heuslers are well studied thermoelectric bulk materials. Among others, TiNiSn and Zr{sub 0.5}Hf{sub 0.5}NiSn are potential candidates. Essentially, their similar lattice constants enable epitaxial layers on top of each other. Furthermore, varied atomic masses of Ti, Zr and Hf generate the aspired alternating mass distribution. By rotating the substrate in between simultaneously burning cathodes, significant film thicknesses can be achieved by sputter deposition.

  2. Experimental charge density determination in iso-structural Tellurides: Hf0.85GeTe4 and ZrGeTe4

    International Nuclear Information System (INIS)

    Israel, S.; Saravana Kumar, S.; Sheeba, R.A.J.R.; Saravanan, R.

    2012-01-01

    Hf 0.85 GeTe 4 is isostructural with stoichiometric ZrGeTe 4 and their crystal structure adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face sharing Hf/Zr-centered bicapped trigonal prisms and corner sharing Ge- centered tetrahedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps. Single crystal XRD is used for the refinement of the structural parameters. The space group Cmc2 1 was considered and the structure was the refined using the harmonic model by the software called JANA2006. The refined structure factors were then subsequently used in MEM (Maximum Entropy Method) technique for the construction of the charge density in the unit cell using software called PRIMA and then visualized with the help of visualization software called VESTA

  3. Thermoelectric and Structural Properties of Zr-/Hf-Based Half-Heusler Compounds Produced at a Large Scale

    Science.gov (United States)

    Zillmann, D.; Waag, A.; Peiner, E.; Feyand, M.-H.; Wolyniec, A.

    2018-02-01

    The half-Heusler (HH) systems are promising candidates for thermoelectric (TE) applications since they have shown high figures of merit ( zT) of ˜ 1, which are directly related to the energy conversion efficiency. To use HH compounds for TE devices, the materials must be phase-stable at operating temperatures up to 600°C. Currently, only a few HH compositions are available in large quantities. Hence, we focus on the TE and structural properties of three commercially available Zr-/Hf-based HH compounds in this publication. In particular, we evaluate the thermal conductivities and the figures of merit and critically discuss uncertainties and propagation error in the measurements. We find thermal conductivities of less than 6.0 W K^{-1}m^{-1} for all investigated materials and notably high figures of merit of 0.93 and 0.60 for n- and p-type compounds, respectively, at 600°C. Additionally, our investigations reveal that the grain structures of all materials also contain secondary phases like HfO2, Sn-Ni and Ti-Zr-Sn rich phases while an additional SnO_2 phase was found following several hours of harsh heat treatment at 800°C.

  4. Thermoelectric Performance of the MXenes M2CO2 (M = Ti, Zr, or Hf)

    KAUST Repository

    Gandi, Appala

    2016-02-21

    We present the first report in which the thermoelectric properties of two-dimensional MXenes are calculated by considering both the electron and phonon transport. Specifically, we solve the transport equations of the electrons and phonons for three MXenes, M2CO2, where M = Ti, Zr, or Hf, in order to evaluate the effect of the metal M on the thermoelectric performance. The lattice contribution to the thermal conductivity, obtained from the phonon life times, is found to be lowest in Ti2CO2 and highest in Hf2CO2 in the temperature range from 300 K to 700 K. The highest figure of merit is predicted for Ti2CO2 . The heavy mass of the electrons due to flat conduction bands results in a larger thermopower in the case of n-doping in these compounds.

  5. Half-Heusler (TiZrHf)NiSn Unileg Module with High Powder Density.

    Science.gov (United States)

    Populoh, Sascha; Brunko, Oliver C; Gałązka, Krzysztof; Xie, Wenjie; Weidenkaff, Anke

    2013-03-27

    (TiZrHf)NiSn half-Heusler compounds were prepared by arc melting and their thermoelectric properties characterized in the temperature range between 325 K and 857 K, resulting in a Figure of Merit ZT ≈ 0.45. Furthermore, the prepared samples were used to construct a unileg module. This module was characterized in a homemade thermoelectric module measurement stand and yielded 275 mW/cm² and a maximum volumetric power density of 700 mW/cm³. This was reached using normal silver paint as a contacting material; from an improved contacting, much higher power yields are to be expected.

  6. A comparison of the microstructure and high temperature tensile properties of a novel P/M Mo-Hf-Zr-Ta-C alloy and TZM

    International Nuclear Information System (INIS)

    Warren, J.; Reznikov, G.

    2001-01-01

    The microstructure and elevated temperature quasi-static tensile yield and ultimate strength observed in a novel, forged Mo-based alloy (Mo-0.25 Hf-0.25 Zr-0.25 Ta-0.025 C) has been analyzed and compared to a standard forged TZM composition (Mo-0.50 Ti-0.08 Zr-0.02 C). The novel material exhibits the desirable forging characteristics typical of the widely used TZM composition yet possess a higher ultimate strength and 0.2 % offset yield strength in both the stress-relieved and recrystallized conditions over a 400 o -1200 o C temperature range. The greater strength measured in the novel composition has been attributed to the combined effects of precipitation of Hf, Zr and Mo-(carbide) precipitates that strengthen the matrix in the classical Orowan fashion and improved resistance to recrystallization after high temperature exposure. Elevated temperature creep behavior, not addressed in the study presented here, will be reported on in a subsequent analysis. (author)

  7. Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys

    KAUST Repository

    Gandi, Appala

    2016-05-09

    We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit. © The Owner Societies 2016.

  8. Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys

    KAUST Repository

    Gandi, Appala; Schwingenschlö gl, Udo

    2016-01-01

    We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit. © The Owner Societies 2016.

  9. Phase diagrams for pseudo-binary carbide systems TiC-NbC, TiC-TaC, ZrC-NbC, ZrC-TaC and HfC-TaC

    International Nuclear Information System (INIS)

    Gusev, A.I.

    1985-01-01

    Parameters of interaction and energy of mutual exchange in the liquid and solid phases of pseudobinary TiC-NbC, TiC-TaC, ZrC-NbC, ZrC-TaC, HfC-TaC systems are calculated with account of dependence on composition and temperature. Positions of liquidus-solidus phase boundaries on the phase diagrams of the mentioned systems are calculated on the basis of the determined mutual exchange energies in approximati.on of subregular solutions. The existance of latent decomposition ranges in the solid phase on the phase diagrams of the investgated systems is established

  10. Low temperature plasma-enhanced ALD TiN ultrathin films for Hf{sub 0.5}Zr{sub 0.5}O{sub 2}-based ferroelectric MIM structures

    Energy Technology Data Exchange (ETDEWEB)

    Kozodaev, M.G.; Chernikova, A.G.; Markeev, A.M. [Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region 141700 (Russian Federation); Lebedinskii, Y.Y. [Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region 141700 (Russian Federation); National Research Nuclear University MEPhI, Moscow Engineering Physics Institute, Kashirskoye Shosse 31, 115409 Moscow (Russian Federation); Polyakov, S.N. [Technological Institute for Superhard and Novel Carbon Materials, Tsentral' naya str. 7a, 142190, Troitsk, Moscow (Russian Federation)

    2017-06-15

    In this work chemical and electrical properties of TiN films, grown by low temperature plasma-enhanced atomic layer deposition (PE-ALD) process from TiCl{sub 4} and NH{sub 3}, were investigated. Electrical resistivity as low as 250 μOhm x cm, as well as the lowest Cl impurity content, was achieved at 320 C. Full-ALD Hf{sub 0.5}Zr{sub 0.5}O{sub 2}-based metal-ferroelectric-metal capacitor with TiN electrodes was fabricated and its electrical properties were investigated. It was also shown that the proposed PE-ALD process provides an early film continuity, which was confirmed by ultrathin fully continuous film growth. Such ultrathin (3 nm) and fully continuous TiN film was also successfully implemented as the top electrode to Hf{sub 0.5}Zr{sub 0.5}O{sub 2}-based ferroelectric capacitor. Angle-resolved X-ray photoelectron spectroscopy (AR-XPS) was used for its thickness determination and a visible wake-up effect in underlying Hf{sub 0.5}Zr{sub 0.5}O{sub 2} layer was clearly observed. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Electrical and structural properties of group-4 transition-metal nitride (TiN, ZrN, and HfN) contacts on Ge

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Keisuke; Nakashima, Hiroshi, E-mail: nakasima@astec.kyushu-u.ac.jp [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Noguchi, Ryutaro; Wang, Dong [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Mitsuhara, Masatoshi; Nishida, Minoru [Department of Engineering Sciences for Electronics and Materials, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Hara, Toru [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-09-21

    Electrical and structural properties were investigated for group-4 transition-metal nitride contacts on Ge (TiN/Ge, ZrN/Ge, and HfN/Ge), which were prepared by direct sputter depositions using nitride targets. These contacts could alleviate the intrinsic Fermi-level pinning (FLP) position toward the conduction band edge. It was revealed that this phenomenon is induced by an amorphous interlayer (a-IL) containing nitrogen atoms at the nitride/Ge interfaces. The strength of FLP alleviation positively depended on the thickness of a-IL. TiN/Ge and ZrN/Ge contacts with ∼2 nm-thick a-ILs showed strong FLP alleviations with hole barrier heights (Φ{sub BP}) in the range of 0.52–56 eV, and a HfN/Ge contact with an ∼1 nm-thick a-IL showed a weaker one with a Φ{sub BP} of 0.39 eV. However, TaN/Ge contact without a-IL did not show such FLP alleviation. Based on the results of depth distributions for respective elements, we discussed the formation kinetics of a-ILs at TiN/Ge and ZrN/Ge interfaces. Finally, we proposed an interfacial dipole model to explain the FLP alleviation.

  12. Thermoelectric Properties of the XCoSb (X: Ti,Zr,Hf) Half-Heusler Alloys

    KAUST Repository

    Gandi, Appala

    2017-09-18

    We investigate the thermoelectric properties of the half-Heusler alloys XCoSb (X: Ti,Zr,Hf) by solving Boltzmann transport equations and discuss them in terms of the electronic band structure. The rigid band approximation is employed to address the effects of doping. While many half-Heuser alloys show excellent thermoelectric performance, the materials under study are special by supporting both n- and p-doping. We identify the reasons for this balanced thermoelectric transport and explain why experimentally p-doping is superior to n-doping. We also determine the spectrum of phonon mean free paths to guide grain refinement methods to enhance the thermoelectric figure of merit.

  13. Thermal and electric conductivity of Cu50Zr35Ti8Hf5Nb2 volume amorphous alloy

    International Nuclear Information System (INIS)

    Gavrenko, O.A.; Merisov, B.A.; Mikhajlova, T.N.; Molokanov, V.V.; Sologubenko, A.V.; Khadzhaj, G.Ya.

    1996-01-01

    The temperature dependences of thermal conductivity and electric resistance of the Cu 50 Zr 35 Ti 8 Hf 5 Nb 2 volume amorphous alloy experimentally studied within the temperature range of 1.8-240 K. The temperature dependence of electrical resistance is well described by the ratio, taking into account the electron scattering on the phonons and in the two-level systems

  14. First principles study the stability and mechanical properties of MC (M = Ti, V, Zr, Nb, Hf and Ta) compounds

    International Nuclear Information System (INIS)

    Liu, YangZhen; Jiang, YeHua; Zhou, Rong; Feng, Jing

    2014-01-01

    Highlights: • The stability and elastic constants of carbides are studied by first principles. • The rules of modulus of MC compounds are discussed by their group. • The hardness of carbides is estimated in this paper at the first time. -- Abstract: The first principles calculations based on density functional theory (DFT) were adopted to investigate the stability, elastic constants, chemical bonding, Debye temperature and hardness of MC (M = Ti, V, Zr, Nb, Hf and Ta) compounds. The cohesive energy and formation enthalpy of these carbides indicate that they are thermodynamically stable structures. The population analysis was used to discuss the chemical bonding of these carbides. The elastic constants and moduli of these compounds were calculated. The results show that the bulk moduli of the carbides of transition metals from the fourth group (TiC, ZrC, HfC) are lower than the fifth group (VC, NbC, TaC). However, the Young’s moduli of the carbides from fourth group are higher than the fifth group. The hardness of compounds was estimated using a semi empirical hardness theory

  15. A comparative study of charge trapping in HfO{sub 2}/Al{sub 2}O{sub 3} and ZrO{sub 2}/Al{sub 2}O{sub 3} based multilayered metal/high-k/oxide/Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Spassov, D., E-mail: d_spassov@abv.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Skeparovski, A. [Institute of Physics, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, Arhimedova 3, 1000 Skopje (Macedonia, The Former Yugoslav Republic of); Paskaleva, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Novkovski, N. [Institute of Physics, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, Arhimedova 3, 1000 Skopje (Macedonia, The Former Yugoslav Republic of)

    2016-09-01

    The electrical properties of multilayered HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2}/SiO{sub 2} and ZrO{sub 2}/Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} metal-oxide semiconductor capacitors were investigated in order to evaluate the possibility of their application in charge-trapping non-volatile memory devices. The stacks were deposited by reactive radiofrequency magnetron sputtering on Si substrates with thermal SiO{sub 2} with a thickness ranging from 2 to 5 nm. Both types of stacks show negative initial oxide charge and its density is higher for HfO{sub 2}-based structures. Memory window up to 6V at sweeping voltage range of ± 16V was obtained for HfO{sub 2}-based stacks. The hysteresis in these structures is mainly due to a trapping of electrons injected from the Si substrate. The charge-trapping properties of ZrO{sub 2}-based samples are compromised by the high leakage currents and the dielectric breakdown. The conduction through the capacitors at low applied voltages results from hopping of thermally excited electrons from one isolated state to another. The energy depth of the traps participating in the hopping conduction was determined as ~ 0.7 eV for the HfO{sub 2}-based layers and ~ 0.6 eV for ZrO{sub 2}-based ones, originating from negatively charged oxygen vacancies. At high electric fields, the current voltage characteristics were interpreted in terms of space charge limited currents, Fowler–Nordheim tunneling, Schottky emission, and Poole–Frenkel mechanism. The charge retention characteristics do not depend on the thickness of the tunnel SiO{sub 2}. - Highlights: • Sputtered HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2} and ZrO{sub 2}/Al{sub 2}O{sub 3}/ZrO{sub 2} charge-trapping layers were studied. • HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2} stacks show memory window up to 6 V and good retention times. • Negatively charged oxygen vacancies were identified as main defects in the stacks. • Electrical breakdown compromise the charge-trapping properties

  16. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    Science.gov (United States)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  17. Chlorination of UO2, PuO2, and rare-earth oxides using ZrCl4

    International Nuclear Information System (INIS)

    Sakamura, Yoshiharu; Inoue, Tadashi; Iwai, Takashi; Moriyama, Hirotake

    2001-01-01

    A new chlorination method using ZrCl 4 , which has a high reactivity with oxygen, has been investigated for more efficient oxide treatment. After actinide oxides are chlorinated and dissolved in a molten salt bath, actinide metals can be selectively collected using the electrorefining process. This process is well suited for pyrochemical reprocessing of metallic fuels. In LiCl-KCI eutectic melts, rare-earth oxides (Y 2 O 3 , La 2 O 3 , CeO 2 , and Nd 2 O 3 ) and actinide oxides (UO 2 and PuO 2 ) were chlorinated by adding ZrCl 4 . As a result, rare-earth and actinide elements were dissolved into the salt as trivalent ions and ZrO 2 was precipitated. When an excess of ZrCI 4 was added, oxides in powder form were completely chlorinated in five hours. It was demonstrated that the ZrCI 4 chlorination method, free from corrosive gas such as chlorine, was very simple and useful. (author)

  18. Effects of Rh on the thermoelectric performance of the p-type Zr0.5Hf0.5Co1-xRhxSb0.99Sn0.01 half-Heusler alloys

    International Nuclear Information System (INIS)

    Maji, Pramathesh; Takas, Nathan J.; Misra, Dinesh K.; Gabrisch, Heike; Stokes, Kevin; Poudeu, Pierre F.P.

    2010-01-01

    We show that Rh substitution at the Co site in Zr 0.5 Hf 0.5 Co 1-x Rh x Sb 0.99 Sn 0.01 (0≤x≤1) half-Heusler alloys strongly reduces the thermal conductivity with a simultaneous, significant improvement of the power factor of the materials. Thermoelectric properties of hot-pressed pellets of several compositions with various Rh concentrations were investigated in the temperature range from 300 to 775 K. The Rh 'free' composition shows n-type conduction, while Rh substitution at the Co site drives the system to p-type semiconducting behavior. The lattice thermal conductivity of Zr 0.5 Hf 0.5 Co 1-x Rh x Sb 0.99 Sn 0.01 alloys rapidly decreased with increasing Rh concentration and lattice thermal conductivity as low as 3.7 W/m*K was obtained at 300 K for Zr 0.5 Hf 0.5 RhSb 0.99 Sn 0.01 . The drastic reduction of the lattice thermal conductivity is attributed to mass fluctuation induced by the Rh substitution at the Co site, as well as enhanced phonon scattering at grain boundaries due to the small grain size of the synthesized materials. - Graphical abstract: Significant reduction of the lattice thermal conductivity with increasing Rh concentration in the p-type Zr 0.5 Hf 0.5 Co 1-x Rh x Sb 0.99 Sn 0.01 half-Heusler materials prepared by solid state reaction at 1173 K.

  19. Efficient UV-emitting X-ray phosphors: octahedral Zr(PO4)6 luminescence centers in potassium hafnium-zirconium phosphates K2Hf1-xZrx(PO4)2 and KHf2(1-x)Zr2x(PO4)3

    International Nuclear Information System (INIS)

    Torardi, C.C.; Miao, C.R.; Li, J.

    2003-01-01

    Potassium hafnium-zirconium phosphates, K 2 Hf 1-x Zr x (PO 4 ) 2 and KHf 2(1-x) Zr 2x (PO 4 ) 3 , are broad-band UV-emitting phosphors. At room temperature, they have emission peak maxima at approximately 322 and 305 nm, respectively, under 30 kV peak molybdenum X-ray excitation. Both phosphors demonstrate luminescence efficiencies that make them up to ∼60% as bright as commercially available CaWO 4 Hi-Plus. The solid-state and flux synthesis conditions, and X-ray excited UV luminescence of these two phosphors are discussed. Even though the two compounds have different atomic structures, they contain zirconium in the same active luminescence environment as that found in highly efficient UV-emitting BaHf 1-x Zr x (PO 4 ) 2 . All the three materials have hafnium and zirconium in octahedral coordination via oxygen-atom corner sharing with six separate PO 4 tetrahedra. This octahedral Zr(PO 4 ) 6 moiety appears to be an important structural element for efficient X-ray excited luminescence, as are the edge-sharing octahedral TaO 6 chains for tantalate emission

  20. Analysis of sodium metal by X-ray fluorescence spectrometry (I). Determination of Hf, Mo, Nb, Ta, Ti, V and Zr; Analisis de sodio metal por espectrometria de fluorescencia de rayos X. Determinacion de Hf, Mo, Nb, Ta, Ti, V y Zr

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Guerra, J P

    1981-07-01

    A method allowing the determination of trace quantities of Hf, Mo, Nb, Ta, Ti, Vi and Zr in sodium metal previous transformation into Na{sub 2}S0{sub 4} is described. The enrichment of the impurities is performed through a coprecipitation technique in sulfuric medium by using Fe{sup 3}+ as a collector and cupferron or phenyfluorone as the precipitating reagent. The matrix influence and the best concentration of the collector (10/{mu}/ml), adequate pH (1,3 or 4, respectively) and optimum filter type (Millipore BSWP02500 or BDWP04700, respectively) have been studied, as well as the precipitation recoveries corresponding to the reagent above. It has been demonstrated the batter efficiency of the cupferron for determining all the Impurities. Detection limits range from 0.01 to 0.2 ppm., depending on the element, for samples 4 g in weight. An automatic spectrometer attached to a 16 K minicomputer and X-ray tube with a gold anode (2250-2700 W) are used. The Interferences between the lines ZrK{alpha} (2{sup n}d order) - HfL{alpha} and TiK{beta} - VK {alpha} have been studied and the respective correction coefficients have been deduced. (Author) 8 refs.

  1. Detection of nanocrystallinity by X-ray absorption spectroscopy in thin film transition metal/rare-earth atom, elemental and complex oxides

    International Nuclear Information System (INIS)

    Edge, L.F.; Schlom, D.G.; Stemmer, S.; Lucovsky, G.; Luning, J.

    2006-01-01

    Nanocrystallinity has been detected in the X-ray absorption spectra of transition metal and rare-earth oxides by (i) removal of d-state degeneracies in the (a) Ti and Sc L 3 spectra of TiO 2 and LaScO 3 , respectively, and (b) O K 1 spectra of Zr(Hf)O 2 , Y 2 O 3 , LaScO 3 and LaAlO 3 , and by the (ii) detection of the O-atom vacancy in the O K 1 edge ZrO 2 -Y 2 O 3 alloys. Spectroscopic detection is more sensitive than X-ray diffraction with a limit of ∼2 nm as compared to >5 mm. Other example includes detection of ZrO 2 nanocrystallinity in phase-separated Zr(Hf) silicate alloys

  2. Superconducting nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I)

    Energy Technology Data Exchange (ETDEWEB)

    Schurz, Christian M.; Shlyk, Larysa; Schleid, Thomas; Niewa, Rainer [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2011-07-01

    Two different polymorphs of the metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I) are known to crystallize in layered structures. The two crystal structures differ in the way {sub {infinity}}{sup 2}{l_brace}X[M{sub 2}N{sub 2}]X{r_brace} slabs are stacked along the c-axes. Metal atoms and/or organic molecules can be intercalated into the van-der-Waals gap between these layers. After such an electron-doping via intercalation the prototypic band insulators change into superconductors with moderate high critical temperatures T{sub c} up to 25.5 K. This review gathers information on synthesis routes, structural characteristics and properties of the prototypic nitride halides and the derivatives after electron-doping with a focus on superconductivity. (orig.)

  3. Thermal and electronic charge transport in bulk nanostructured Zr0.25Hf0.75NiSn composites with full-Heusler inclusions

    International Nuclear Information System (INIS)

    Makongo, Julien P.A.; Misra, Dinesh K.; Salvador, James R.; Takas, Nathan J.; Wang, Guoyu; Shabetai, Michael R.; Pant, Aditya; Paudel, Pravin; Uher, Ctirad; Stokes, Kevin L.; Poudeu, Pierre F.P.

    2011-01-01

    Bulk Zr 0.25 Hf 075 NiSn half-Heusler (HH) nanocomposites containing various mole fractions of full-Heusler (FH) inclusions were prepared by solid state reaction of pre-synthesized HH alloy with elemental Ni at 1073 K. The microstructures of spark plasma sintered specimens of the HH/FH nanocomposites were investigated using transmission electron microscopy and their thermoelectric properties were measured from 300 K to 775 K. The formation of coherent FH inclusions into the HH matrix arises from solid-state Ni diffusion into vacant sites of the HH structure. HH(1-y)/FH(y) composites with mole fraction of FH inclusions below the percolation threshold, y∼0.2, show increased electrical conductivity, reduced Seebeck coefficient and increased total thermal conductivity arising from gradual increase in the carrier concentration for composites. A drastic reduction (∼55%) in κ l was observed for the composite with y=0.6 and is attributed to enhanced phonon scattering due to mass fluctuations between FH and HH, and high density of HH/FH interfaces. - Graphical abstract: Large reduction in the lattice thermal conductivity of bulk nanostructured half-Heusler/full-Heusler (Zr 0.25 Hf 075 NiSn/ Zr 0.25 Hf 075 Ni 2 Sn) composites, obtained by solid-state diffusion at 1073 K of elemental Ni into vacant sites of the half-Heusler structure, arising from the formation of regions of spinodally decomposed HH and FH phases with a spatial composition modulation of ∼2 nm. Highlights: → Bulk composites from solid state transformation of half-Heusler matrix through Ni diffusion. → Formation of coherent phase boundaries between half-Heusler matrix and full-Heusler inclusion. → Alteration of thermal and electronic transports with increasing full-Heusler inclusion. → Enhanced phonon scattering at half-Heusler/ full-Heusler phase boundaries.

  4. Determination of Nb and Zr in U-Nb-Zr alloys by ICP-AES

    International Nuclear Information System (INIS)

    Wang Cuiping; Dong Shizhe; Li Lin; He Meiying

    2003-01-01

    The U-Nb-Zr alloy sample is dissolved by HNO 3 , H 2 O 2 and HF, and the contents of Nb and Zr in the sample are determined on the JY-70 II type ICP-AES by using the internal standard synchronous dilution method. The range of determination is 1%-10% and 0.33%-3.33%, respectively for Nb and Zr. The relative standard deviation is better than 3.2% for Nb, and 2.5% for Zr. The method is rapid and convenient for determining Nb and Zr in U-Nb-Zr alloy sample

  5. Quaternary chalcogenides of the IVa metals with layered structures: preparation and crystal structures of TlCuTIVQ3 (T=Zr, Hf; Q=S, Se) and their relation to the Re3B structure type

    International Nuclear Information System (INIS)

    Klepp, K.O.; Gurtner, D.

    1996-01-01

    The new compounds TlCuT IV Q 3 (T = Zr, Hf; Q = S, Se) were prepared by reacting intimate mixtures of Tl 2 S or TlSe with stoichiometric amounts of the corresponding Group IV metal, Cu and the corresponding chalcogen at 870 . The four compounds are isostructural and crystallize in Cmcm, Z = 4 with a 3.726(4) A, b = 13.987(9) A, c = 9.783(4) A for TlCuZrS 3 ; a = 3.847(1) A, b 14.381(6) A, c = 10.150(1) A for TlCuZrSe 3 ; a = 3.694(1) A, b = 14.030(3) A, c = 9.750(3) A for TlCuHfS 3 ; and a = 3.831(1) A, b = 14.409(9) A, c = 10.124(2) A for TlCuHfSe 3 . Their crystal structures were determined from single crystal diffractometer data (Mo Kα radiation, ambient temperature) and refined to conventional R values of 0.016, 0.040, 0.019 and 0.031 respectively. An outstanding feature of their crystal structures is the formation of infinite anionic layers, 2 ∞ -[CuT IV Q 3 ] - parallel to (010), which are separated by Tl + cations. These layers are built up by edge sharing TQ 6 octahedra and distorted CuQ 4 tetrahedra. Average T-Q distances are anti d(Zr-S) = 2.586(1) A, anti d(Zr-Se) = 2.707(1) A, anti d(Hf-S) = 2.569(2) A and anti d(Hf-Se) = 2.694(1) A. Cu-chalcogen distances are anti d(Cu-S) = 2.318(2) A and anti d(Cu-Se) = 2.432(3) A respectively. The thallium ions are in bicapped trigonal prismatic chalcogen coordinations. The atomic arrangement corresponds to that of KCuZrS 3 ; based on the thallium-chalcogen partial structure it can be regarded as a filled variant of an anti-Re 3 B structure type. (orig.)

  6. Analysis of sodium metal by X-ray fluorescence spectrometry (I). Determination of Hf, Mo, Nb, Ta, Ti, V and Zr

    International Nuclear Information System (INIS)

    Diaz-Guerra, J. P.

    1981-01-01

    A method allowing the determination of trace quantities of Hf, Mo, Nb, Ta, Ti, Vi and Zr in sodium metal previous transformation into Na 2 S0 4 is described. The enrichment of the impurities is performed through a coprecipitation technique in sulfuric medium by using Fe 3 + as a collector and cupferron or phenyfluorone as the precipitating reagent. The matrix influence and the best concentration of the collector (10/μ/ml), adequate pH (1,3 or 4, respectively) and optimum filter type (Millipore BSWP02500 or BDWP04700, respectively) have been studied, as well as the precipitation recoveries corresponding to the reagent above. It has been demonstrated the batter efficiency of the cupferron for determining all the Impurities. Detection limits range from 0.01 to 0.2 ppm., depending on the element, for samples 4 g in weight. An automatic spectrometer attached to a 16 K minicomputer and X-ray tube with a gold anode (2250-2700 W) are used. The Interferences between the lines ZrKα (2 n d order) - HfLα and TiKβ - VK α have been studied and the respective correction coefficients have been deduced. (Author) 8 refs

  7. Rare-earths influence in the thermoluminescent response of monoclinic ZrO{sub 2}; Influencia de tierras raras en la respuesta termoluminiscente de ZrO{sub 2} monoclinico

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza A, D.; Gonzalez M, P.R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Vasquez L, M.J.; Rubio R, E. [Centro Universitario de Vinculacion, BUAP, 72000 Puebla (Mexico)

    2005-07-01

    Zirconium oxide (ZrO{sub 2}) with rare-earths (Nd, Dy, Eu and Y) as dopant were prepared by sol gel method and irradiated with gamma radiation. The thermoluminescent (TL) signal was studied as function of the impurities present for temperatures from 50 to 350 C. Pure ZrO{sub 2} produces a strong TL signal induced by gamma radiation, with a maximum located at 150 C, while ZrO{sub 2} doped with Nd, Dy and Y showed a TL signal with minor intensity, but with a maximum like to pure ZrO{sub 2}. However, when Eu is present as impurity the TL signal is much smaller than pure ZrO{sub 2}, with a maximum very enlarged. These results indicate that exits a strong influence of the rare-earths presents in the TL response and opens the possibility to control the TL signal in a wide range of dosages allowing to use these systems as a wide range dosimeter. Details of the thermoluminescent behavior of pure and doped ZrO{sub 2} will be discussed. (Author)

  8. Effect on Al:MO{sub 2}/In{sub 0.53}Ga{sub 0.47}As interface (M = Hf, Zr) of trimethyl-aluminum pre-treatment during atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lamperti, A., E-mail: alessio.lamperti@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, 20864 Agrate Brianza, MB (Italy); Molle, A.; Cianci, E.; Wiemer, C.; Spiga, S. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, 20864 Agrate Brianza, MB (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, 20864 Agrate Brianza, MB (Italy); Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Milano (Italy)

    2014-07-31

    For the fabrication of n-type metal–oxide–semiconductor field-effect transistor based on high mobility III–V compound semiconductors as channel materials, a major requirement is the integration of high quality gate oxides on top of the III–V substrates. A detailed knowledge of the interface between the oxide layer and the substrate is mandatory to assess the relevance of interdiffusion and related defects, which are detrimental. Here we grow high dielectric constant (k) Al:MO{sub 2} (M = Hf, Zr) gate materials on In{sub 0.53}Ga{sub 0.47}As substrates by atomic layer deposition, after an Al{sub 2}O{sub 3} pre-treatment based on trimethylaluminum is performed to properly passivate the substrate surface. Time of flight secondary ion mass spectrometry depth profiles reveal not only the film integrity and the chemical composition of the high-k oxide but also well elucidate the effect of the Al{sub 2}O{sub 3} pre-treatment on Al:MO{sub 2}/In{sub 0.53}Ga{sub 0.47}As interface. Even though the chemical profile is well defined in both cases, a broader interface is detected for Al:ZrO{sub 2}. X-ray photoemission spectroscopy evidenced the presence of As{sup 3+} states in Al:ZrO{sub 2} only. Accordingly, preliminary capacitance–voltage measurements point out to a better field effect modulation in the capacitor incorporating Al:HfO{sub 2}. Based on the above considerations Al:HfO{sub 2} looks as a preferred candidate with respect to Al:ZrO{sub 2} for the integration on top of In{sub 0.53}Ga{sub 0.47}As substrates. - Highlights: • Al:MO{sub 2} (M = Hf, Zr) thin films are grown on In{sub 0.53}Ga{sub 0.47}As substrates. • Trimethylaluminum (TMA) pre-treatment properly passivates the substrate surface. • ToF-SIMS depth profiles reveal the chemical composition of the high-k films. • Depth profiles well elucidate the effect of TMA on Al:MO{sub 2}/In{sub 0.53}Ga{sub 0.47}As substrates. • XPS evidences the presence of As{sup 3+} state in Al:ZrO{sub 2}/In{sub 0

  9. Hybrid HF-DFT comparative study of SrZrO{sub 3} and SrTiO{sub 3}(001) surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Evarestov, R.A.; Bandura, A.V.; Alexandrov, V.E. [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetskii Prospekt, Stary Petergof, 198504 St. Petersburg (Russian Federation)

    2006-10-15

    Hybrid HF-DFT LCAO simulations of SrZrO{sub 3} and SrTiO{sub 3}(001) surface properties are performed in a single-slab model framework. The SrZrO{sub 3}(001) surface was studied by an ab initio method for the first time. Three slab models with different surface terminations including up to 8 atomic planes were used for calculation of the various surface characteristics (surface energies, atomic charges, density of electronic states). The dependence of the results on the chosen model and on the kind of d-element is analyzed. The dissimilarity in the surface oxygen atom contributions to the total density of states of two crystals is attributed to the more ionic nature of Zr-O bonds compared to Ti-O bonds. It is found that in the case of SrZrO{sub 3} the electronic density is biased towards the SrO-terminated surface and this surface should be more basic in nature than the SrO surface of SrTiO{sub 3} crystal. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Luminescence and scintillation properties of Rb2HfCl6 crystals

    International Nuclear Information System (INIS)

    Saeki, Keiichiro; Wakai, Yuki; Fujimoto, Yutaka; Koshimizu, Masanori; Asai, Keisuke; Yanagida, Takayuki; Nakauchi, Daisuke

    2016-01-01

    We developed a scintillator based on a Rb 2 HfCl 6 crystal as a ternary halide crystal with intrinsic luminescence. In the photoluminescence spectra, two emission bands are observed at 383 and 434 nm. The 434 nm emission band for Rb 2 HfCl 6 may be attributed to [HfCl 6 ] 2- complex ion or [ZrCl 6 ] 2- impurity, since the Rb 2 HfCl 6 contained Zr as impurity at 0.62 mol %. The radioluminescence band is observed at 420 nm and can be attributed to the same origin as the photoluminescence band at 434 nm. The scintillation decay-time constants were 0.84 and 5.4 μs. The light yield was estimated to be 24,100 photons/MeV. (author)

  11. Isothermal cross-sections of Hf-Sc-Ga(800 deg C) and Hf-Ti-Ga (750 deg C) phase diagrams

    International Nuclear Information System (INIS)

    Markiv, V.Ya.; Belyavina, N.N.

    1981-01-01

    Isothermal cross sections of Hf-Sc-Ga (800 deg C) and Hf-Ti-Ga (750 deg C) state diagrams are plotted. The existence of two ternary Hfsub(0.1-0.8)Scsub(0.9)-sub(0.2)Ga and Hfsub(0.8)Scsub(0.2)Gasub(3) phases is stated in the Hf-Sc-Ga system. The crystal structure of these compounds investigated by the powder method belongs to the structural α-MoB and ZrAl 3 types respectively. Continuous rows of (Hf, Sc 5 Ga 5 , (Hf, Ti)Ga 3 and (Hf, Ti)Ga 2 solid solutions are formed in the investigated systems. Essential quantity of the third component dissolve binary Sc 5 Ga 4 , Sc 2 Ga 3 (15 and 30 at % Hf respectively), Hf 5 Ga 4 , HfGa 2 (20, 10 at. % Sc), Hf 5 Ga 4 , HfGa, Hf 5 Ga 3 , Hf 2 Ga 3 (48, 30, 46, 20 at. % Ti) gallides [ru

  12. Crystal structure and thermal expansion of the low- and high-temperature forms of Ba MIV(PO 4) 2 compounds ( M=Ti, Zr, Hf and Sn)

    Science.gov (United States)

    Bregiroux, D.; Popa, K.; Jardin, R.; Raison, P. E.; Wallez, G.; Quarton, M.; Brunelli, M.; Ferrero, C.; Caciuffo, R.

    2009-05-01

    The crystal structure of β-BaZr(PO 4) 2, archetype of the high-temperature forms of Ba M(PO 4) 2 phosphates (with M=Ti, Zr, Hf and Sn), has been solved ab initio by Rietveld analysis from synchrotron X-ray powder diffraction data. The phase transition appears as a topotactic modification of the monoclinic (S.G. C2/m) lamellar α-structure into a trigonal one (S.G. P3¯m1) through a simple mechanism involving the unfolding of the [Zr)]n2- layers. The thermal expansion is very anisotropic (e.g., -4.1< α i<34.0×10 -6 K -1 in the case of α-BaZr(PO 4) 2) and quite different in the two forms, as a consequence of symmetry. It stems from a complex combination of several mechanisms, involving bridging oxygen rocking in M-O-P linkages, and "bond thermal expansion".

  13. Very large phase shift of microwave signals in a 6 nm Hf x Zr1-x O2 ferroelectric at ±3 V

    Science.gov (United States)

    Dragoman, Mircea; Modreanu, Mircea; Povey, Ian M.; Iordanescu, Sergiu; Aldrigo, Martino; Romanitan, Cosmin; Vasilache, Dan; Dinescu, Adrian; Dragoman, Daniela

    2017-09-01

    In this letter, we report for the first time very large phase shifts of microwaves in the 1-10 GHz range, in a 1 mm long gold coplanar interdigitated structure deposited over a 6 nm Hf x Zr1-x O2 ferroelectric grown directly on a high resistivity silicon substrate. The phase shift is larger than 60° at 1 GHz and 13° at 10 GHz at maximum applied DC voltages of ±3 V, which can be supplied by a simple commercial battery. In this way, we demonstrate experimentally that the new ferroelectrics based on HfO2 could play an important role in the future development of wireless communication systems for very low power applications.

  14. Crystal structure and thermal expansion of the low- and high-temperature forms of BaMIV(PO4)2 compounds (M=Ti, Zr, Hf and Sn)

    International Nuclear Information System (INIS)

    Bregiroux, D.; Popa, K.; Jardin, R.; Raison, P.E.; Wallez, G.; Quarton, M.; Brunelli, M.; Ferrero, C.; Caciuffo, R.

    2009-01-01

    The crystal structure of β-BaZr(PO 4 ) 2 , archetype of the high-temperature forms of BaM(PO 4 ) 2 phosphates (with M=Ti, Zr, Hf and Sn), has been solved ab initio by Rietveld analysis from synchrotron X-ray powder diffraction data. The phase transition appears as a topotactic modification of the monoclinic (S.G. C2/m) lamellar α-structure into a trigonal one (S.G. P3-barm1) through a simple mechanism involving the unfolding of the [Zr(PO 4 ) 2 ] n 2- layers. The thermal expansion is very anisotropic (e.g., -4.1 i -6 K -1 in the case of α-BaZr(PO 4 ) 2 ) and quite different in the two forms, as a consequence of symmetry. It stems from a complex combination of several mechanisms, involving bridging oxygen rocking in M-O-P linkages, and 'bond thermal expansion'. - Graphical abstract: The layered high-temperature form of BaM(PO 4 ) 2 , only expands along the c-axis.

  15. Phase stability predictions of Cr1−x, Mx)2(Al1−y, Ay)(C1−z, Xz) (M = Ti, Hf, Zr; A = Si, X = B)

    International Nuclear Information System (INIS)

    Shang, Lin; Music, Denis; Baben, Moritz to; Schneider, Jochen M

    2014-01-01

    The phase stability of (Cr 1−x , M x ) 2 (Al 1−y , A y )(C 1−z , X z ) (M = Ti, Hf, Zr; A = Si, X = B, space group P6 3 /mmc, prototype Cr 2 AlC) was studied using ab initio calculations. Based on the energy of mixing data as well as the density of states (DOS) analysis, (Cr 1−x , Zr x ) 2 AlC and (Cr 1−x , Hf x ) 2 AlC are predicted to be unstable, whereas (Cr 1−x , Ti x ) 2 AlC, Cr 2 (Al 1−y , Si y )C and Cr 2 Al(C 1−z , B z ) are predicted to be stable or metastable. The density of states analysis reveals that small differences in the position of the Fermi level alters the phase stability: (Cr 1−x , Zr x ) 2 AlC and (Cr 1−x , Hf x ) 2 AlC are predicted to be unstable or metastable as the Fermi level lies at a peak position. While the Cr dominated DOS for (Cr 1−x , Ti x ) 2 AlC plateaus at the Fermi level indicating stability. Implications of these results for the vapour phase condensation of self-healing Cr 2 AlC based materials are discussed. (paper)

  16. Activation of Zr-Co-rare earth getter films: An XPS study

    International Nuclear Information System (INIS)

    Petti, D.; Cantoni, M.; Leone, M.; Bertacco, R.; Rizzi, E.

    2010-01-01

    Thin films of non-evaporable getters are employed in the field of electronic devices packaging, as they provide a simple and effective solution for pumping in sealed applications. In particular thin films of Zr-Co-rare earth alloys deposited by sputtering have been developed for this purpose and successfully employed in industrial applications. In this paper we present an X-ray photoelectron spectroscopy investigation of the effect of thermal activation of the getter from the point of view of the induced surface chemical modification as seen by such a surface sensitive technique. We find that the activation process reflects in a clear reduction of Zr, accompanied by a decrease of the oxygen concentration at surface, which is fully accomplished already at 350 deg. C; while at 450 deg. C there is a significant increase of the cobalt concentration at surface.

  17. Distribution of impurity states and charge transport in Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 1−y}Sb{sub y} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuanfeng; Makongo, Julien P.A. [Laboratory for Emerging Energy and Electronic Materials, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Page, Alexander [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Sahoo, Pranati [Laboratory for Emerging Energy and Electronic Materials, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Uher, Ctirad [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Stokes, Kevin [The Advanced Materials Research Institute, Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States); Poudeu, Pierre F.P., E-mail: ppoudeup@umich.edu [Laboratory for Emerging Energy and Electronic Materials, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-02-15

    Energy filtering of charge carriers in a semiconducting matrix using atomically coherent nanostructures can lead to a significant improvement of the thermoelectric figure of merit of the resulting composite. In this work, several half-Heusler/full-Heusler (HH/FH) nanocomposites with general compositions Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 1−y}Sb{sub y} (0≤x≤0.15 and y=0.005, 0.01 and 0.025) were synthesized in order to investigate the behavior of extrinsic carriers at the HH/FH interfaces. Electronic transport data showed that energy filtering of carriers at the HH/FH interfaces in Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 1−y}Sb{sub y} samples strongly depends on the doping level (y value) as well as the energy levels occupied by impurity states in the samples. For example, it was found that carrier filtering at HH/FH interfaces is negligible in Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 1−y}Sb{sub y} (y=0.01 and 0.025) composites where donor states originating from Sb dopant dominate electronic conduction. However, we observed a drastic decrease in the effective carrier density upon introduction of HH/FH interfaces for the mechanically alloyed Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 0.995}Sb{sub 0.005} samples where donor states from unintentional Fe impurities contribute the largest fraction of conduction electrons. This work demonstrates the ability to synergistically integrate the concepts of doping and energy filtering through nanostructuring for the optimization of electronic transport in semiconductors. - Graphical abstract: Electronic transport in semiconducting half-Heusler (HH) matrices containing full-Heusler (FH) nanoinclusions strongly depends on the energy distribution of impurity states within the HH matrix with respect to the magnitude of the potential energy barrier at the HH/FH interfaces. - Highlights: • Coherent nanostructures enhanced thermoelectric behavior of half-Heusler alloys. • Nanostructures act as energy filter of

  18. Zr, Hf, Mo and W-containing oxide phases as pinning additives in Bi-2212 superconductor

    International Nuclear Information System (INIS)

    Makarova, M.V.; Kazin, P.E.; Tretyakov, Yu.D.; Jansen, M.; Reissner, M.; Steiner, W.

    2005-01-01

    Phase formation was investigated in Bi-Sr-Ca-Cu-M-O (M = Mo, W) systems at 850-900 deg C. It was found that Sr 2 CaMO 6 phases were chemically compatible with Bi-2212. The composites Bi-2212-Sr 2 CaMO 6 and Bi-2212-SrAO 3 (A = Zr, Hf) were obtained from a sol-gel precursor using crystallisation from the melt. The materials consisted of Bi-2212 matrix and submicron or micron grains of the corresponding dispersed phase. T c was equal or exceeded that for undoped Bi-2212, reaching T c = 97 K in the Mo-containing composite. The composites exhibited enhanced pinning in comparison with similar prepared pure Bi-2212, especially at T = 60 K. The best pinning parameters were observed for the Bi-2212-Sr 2 CaWO 6 composite

  19. Large Magnetic Anisotropy in HfMnP

    Science.gov (United States)

    Parker, David; Lamichhane, Tej; Taufour, Valentin; Masters, Morgan; Thimmaiah, Srinivasa; Bud'Ko, Ser'gey; Canfield, Paul

    We present a theoretical and experimental study of two little-studied manganese phosphide ferromagnets, HfMnP and ZrMnP, with Curie temperatures above room temperature. We find an anisotropy field in HfMnP approaching 10 T - larger than that of the permanent magnet workhorse NdFeB magnets. From theory we determine the source of this anisotropy. Our results show the potential of 3d-element-based magnetic materials for magnetic applications.

  20. The water adsorption on the surfaces of SrMO3 (M= Ti, Zr, and Hf) crystalline oxides: quantum and classical modelling

    International Nuclear Information System (INIS)

    Evarestov, R A; Bandura, A V; Blokhin, E N

    2007-01-01

    Hybrid HF-DFT LCAO simulations of (001) surface properties and water adsorption on cubic SrTiO 3 , SrZrO 3 , and SrHfO 3 perovskites are performed in a single-slab model framework. The optimized atomic structures and water adsorption energies have been calculated for a single water molecule per the surface unit cell. The possibility of the water molecular dissociation was investigated. Basing on the experimental data and results of the ab initio calculations the new interatomic potentials have been developed to describe the bulk and surface properties of the binary and ternary titanium and zirconium oxides. The proposed force-field takes into account the polarization effects via the shell model. The force-field suggested was used in the molecular mechanics calculations with the extended unit cells to study the possible surface reconstruction upon relaxation and hydroxylation of cubic perovskites

  1. Thermoelectric properties of TiNiSn and Zr0.5Hf0.5NiSn thin films and superlattices with reduced thermal conductivities

    International Nuclear Information System (INIS)

    Jaeger, Tino

    2013-01-01

    Rising energy costs and enhanced CO 2 emission have moved research about thermoelectric (TE) materials into focus. The suitability of a material for usage in TE devices depends on the figure of merit ZT and is equal to α 2 σTκ -1 including Seebeck coefficient α, conductivity σ, temperature T and thermal conductivity κ. Without affecting the power factor α 2 σ, using nanostructuring, ZT should here be increased by a depressed thermal conductivity. As half-Heusler (HH) bulk materials, the TE properties of TiNiSn and Zr 0.5 Hf 0.5 NiSn have been extensively studied. Here, semiconducting TiNiSn and Zr 0.5 Hf 0.5 NiSn thin films were fabricated for the first time by dc magnetron sputtering. On MgO (100) substrates, strongly textured polycrystalline films were obtained at substrate temperatures of about 450 C. The film consisted of grains with an elongation perpendicular to the surface of 55 nm. These generated rocking curves with FWHMs of less than 1 . Structural analyses were performed by X ray diffraction (XRD). Having deposition rates of about 1 nms -1 within shortest time also films in the order of microns were fabricated. For TiNiSn the highest in-plane power factor of about 0.4 mWK -2 m -1 was measured at about 550 K. In addition, at room temperature a cross-plane thermal conductivity of 2.8 Wm -1 K -1 was observed by the differential 3ω method. Because the reduction of thermal conductivity by mass fluctuation is well-known and interface scattering of phonons is expected, superlattices (SL) were fabricated. Therefore, TiNiSn and Zr 0.5 Hf 0.5 NiSn were successively deposited. While the sputter cathodes were continuously running, for fabrication of SLs the substrates were moved from one to another. The high crystal quality of the SLs and the sharp interfaces were proven by satellite peaks (XRD) and Scanning Transmission Electron Microscopy (STEM). For a SL with a periodicity of 21 nm (TiNiSn and Zr 0.5 Hf 0.5 NiSn each 15 nm) at a temperature of 550 K an

  2. Thermal Conductivity and Water Vapor Stability of Ceramic HfO2-Based Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    HfO2-Y2O3 and La2Zr2O7 are candidate thermal/environmental barrier coating materials for gas turbine ceramic matrix composite (CMC) combustor liner applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature phase stability of plasma-sprayed coatings and/or hot-pressed HfO2-5mol%Y2O3, HfO2-15mol%Y2O3 and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC Hexoloy or CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications will also be discussed.

  3. Mineralogy and mineral chemistry of rare-metal pegmatites at Abu Rusheid granitic gneisses, South Eastern Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed Fahmy Raslan

    2011-12-01

    -site where it ranges from 12.72 to 16.49% with an average of 14.84%. The calculated formula of the studied fergusonite is A(Y0.303 ΣREE0.014 U0.135 Th0.063 Ca0.013 Pb0.006 Si0.213 Zr0.035 Hf0.048 Fe0.105Σ0.935 B(Nb0.61 Ta0.084 Ti0.01Σ0.704 O4.The presence of uraninite (high Th, and REE contents and thorite, indicates that these minerals magmatic processes and followed by hydrothermal processes which are responsible for the precipitation of Nb-Ta multioxide minerals. Uranophane and kasolite of Abu Rusheid pegmatites are most probably originated from hydrothermalalterations of the primary uraninite. Abu Rushied pegmatites are characterized by being of ZNF-type due to their marked enrichement in Zr, Nb, and F, with a typical geochemical signature: Zr, Nb >>Ta, LREE, Th, P, F. Accordingly, the mineralized Abu Rushied pegmatite can be considered as a promising target ore for its rare metal mineralization that includes mainly Nb, Ta, Y, U, and REE together with Zr, Hf, Sn and Th.

  4. Influence of boron vacancies on phase stability, bonding and structure of MB2 (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) with AlB2 type structure

    International Nuclear Information System (INIS)

    Dahlqvist, Martin; Rosen, Johanna; Jansson, Ulf

    2015-01-01

    Transition metal diborides in hexagonal AlB 2 type structure typically form stable MB 2 phases for group IV elements (M  =  Ti, Zr, Hf). For group V (M  =  V, Nb, Ta) and group VI (M  =  Cr, Mo, W) the stability is reduced and an alternative hexagonal rhombohedral MB 2 structure becomes more stable. In this work we investigate the effect of vacancies on the B-site in hexagonal MB 2 and its influence on the phase stability and the structure for TiB 2 , ZrB 2 , HfB 2 , VB 2 , NbB 2 , TaB 2 , CrB 2 , MoB 2 , and WB 2 using first-principles calculations. Selected phases are also analyzed with respect to electronic and bonding properties. We identify trends showing that MB 2 with M from group V and IV are stabilized when introducing B-vacancies, consistent with a decrease in the number of states at the Fermi level and by strengthening of the B–M interaction. The stabilization upon vacancy formation also increases when going from M in period 4 to period 6. For TiB 2 , ZrB 2 , and HfB 2 , introduction of B-vacancies have a destabilizing effect due to occupation of B–B antibonding orbitals close to the Fermi level and an increase in states at the Fermi level. (paper)

  5. The water adsorption on the surfaces of SrMO{sub 3} (M= Ti, Zr, and Hf) crystalline oxides: quantum and classical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Evarestov, R A; Bandura, A V; Blokhin, E N [Department of Quantum Chemistry, St. Petersburg State University 26 University Ave., Petergoff, St. Petersburg, 198504 (Russian Federation)

    2007-12-15

    Hybrid HF-DFT LCAO simulations of (001) surface properties and water adsorption on cubic SrTiO{sub 3}, SrZrO{sub 3}, and SrHfO{sub 3} perovskites are performed in a single-slab model framework. The optimized atomic structures and water adsorption energies have been calculated for a single water molecule per the surface unit cell. The possibility of the water molecular dissociation was investigated. Basing on the experimental data and results of the ab initio calculations the new interatomic potentials have been developed to describe the bulk and surface properties of the binary and ternary titanium and zirconium oxides. The proposed force-field takes into account the polarization effects via the shell model. The force-field suggested was used in the molecular mechanics calculations with the extended unit cells to study the possible surface reconstruction upon relaxation and hydroxylation of cubic perovskites.

  6. Remote plasma-assisted nitridation (RPN): applications to Zr and Hf silicate alloys and Al2O3

    International Nuclear Information System (INIS)

    Hinkle, Chris; Lucovsky, Gerry

    2003-01-01

    Remote plasma-assisted nitridation or RPN is demonstrated to be a processing pathway for nitridation of Zr and Hf silicate alloys, and for Al 2 O 3 , as well. The dependence of nitrogen incorporation on the process pressure is qualitatively similar to what has been reported for the plasma-assisted nitridation of SiO 2 , the lower the process pressure the greater the nitrogen incorporation in the film. The increased incorporation of nitrogen has been correlated with the penetration of the plasma-glow into the process chamber, and the accompanying increase in the concentration of N 2 + ions that participate in the reactions leading to bulk incorporation. The nitrogen incorporation as been studied by Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS) and X-ray absorption spectroscopy (XAS)

  7. Beta decomposition processes in Hf-rich Hf--Nb alloys

    International Nuclear Information System (INIS)

    Jones, W.B.; Taggart, R.; Polonis, D.H.

    1978-01-01

    The decomposition of the bcc β-phase by both athermal and isothermal processes has been investigated in Hf-rich Hf--Nb alloys. An all β-phase structure is retained in chill-cast alloys containing 30 to 50 at.% Nb (Cb), although electron diffraction streaking effects and the behavior of the temperature coefficient of electrical resistivity indicate the presence of a bcc lattice instability similar to that reported in solute lean Ti and Zr alloys. Aging a Hf 0 . 65 Nb 0 . 35 alloy at 400 and 600 0 C resulted in the direct precipitation of a fine dispersion of α-phase needles; this morphology differs from the discs of transition α (α/sub t/) which Carpenter et al observed in Nb-rich Nb 0 . 68 Hf 0 . 32 . During continued aging, the needles grow selectively to form colonies or groups of needles in which both the individual needles and the groups of needles have major axes aligned along (110)/sub β/ type directions. The initial α-phase particles exhibit the Burgers orientation relationship with the parent matrix; continued aging changes the electron diffraction patterns in a way that is similar to that observed in aged Ti--Mo and Ti--Mo--Al alloys where they were attributed to the α-phase having a different crystallographic relationship to the β-phase (Type 2 α-phase). The observed changes in the electron diffraction patterns of aged Hf 0 . 65 Nb 0 . 35 cannot be described as resulting from strained Burgers α-phase

  8. Microstructure and mechanical properties of a single crystal NiAl alloy with Zr or Hf rich G-phase precipitates

    Science.gov (United States)

    Locci, I. E.; Noebe, R. D.; Bowman, R. R.; Miner, R. V.; Nathal, M. V.; Darolia, R.

    1991-01-01

    The possibility of producing NiAl reinforced with the G-phase (Ni16X6Si7), where X is Zr or Hf, has been investigated. The microstructure of these NiAl alloys have been characterized in the as-cast and annealed conditions. The G-phases are present as fine cuboidal precipitates (10 to 40 nm) and have lattice parameters almost four times that of NiAl. They are coherent with the matrix and fairly resistant to coarsening during annealing heat treatments. Segregation and nonuniform precipitate distribution observed in as-cast materials were eliminated by homogenization at temperatures near 1600 K. Slow cooling from these temperatures resulted in large plate shaped precipitates, denuded zones, and a loss of coherency in some of the large particles. Faster cooling produced a homogeneous fine distribution of cuboidal G-phase particles in the matrix. Preliminary mechanical properties for the Zr-doped alloy are presented and compared to binary single crystal NiAl. The presence of these precipitates appears to have an important strengthening effect at temperatures not less than 1000 K compared to binary NiAl single crystals.

  9. Microstructure and mechanical properties of a single crystal NiAl alloy with Zr or Hf rich G-phase precipitates

    International Nuclear Information System (INIS)

    Locci, I.E.; Noebe, R.D.; Bowman, R.R.; Miner, R.V.; Nathal, M.V.

    1991-01-01

    In this paper the possibility of producing NiAl reinforced with the G-phase (Ni 16 X 6 Si 7 ), where X is Zr or Hf, has been investigated. The microstructures of these NiAl alloys have been characterized in the as-cast and annealed conditions. The G-phases are present as fine cuboidal precipitates (10 to 40 nm) and have lattice parameters almost four times that of NiAl. They are coherent with the matrix and fairly resistant to coarsening during annealing heat treatments. Segregation and non-uniform precipitate distribution observed in as-cast materials were eliminated by homogenization at temperatures near 1600 K. Slow cooling from these temperatures resulted in large plate shaped precipitates, denuded zones, and a loss of coherency in some of the large particles. Faster cooling produced a homogeneous fine distribution of cuboidal G-phase particles (≤10 nm) in the matrix. Preliminary mechanical properties for the Zr-doped alloy are presented and compared to binary single crystal NiAl. The presence of these precipitates appears to have an important strengthening effect at temperatures ≥1000 K compared to binary NiAl single crystals

  10. Stabilisation of ZrO/sub 2/ with rare-earth oxides with atomic numbers from 58 to 71

    Energy Technology Data Exchange (ETDEWEB)

    Tcheivili, L; Passarino de Marques, M N [Instituto Nacional de Tecnologia Industrial, Buenos Aires (Argentina)

    1978-01-01

    In the present work, the stabilisation of ZrO/sub 2/ with 14 rare earths (58 to 71) was investigated. The aim was to carry out the experiments at a temperature of 1550/sup 0/C, at which many oxides do not exist in the cubic form and the others, such as PrO/sub 2/ and Lu/sub 2/O/sub 3/, have not yet been studied. All the experiments of the series were carried out under constant conditions, in order to determine if there was any difference in principle between them. All the oxides stabilise ZrO/sub 2/, but those with the lower atomic numbers (58, 59, 60) show some deviation. The minimum and maximum mol% limits were ascertained, between which ZrO/sub 2/ is fully stabilised, and the phases are given which occur with the various mol% proportions. In conclusion, an experiment was carried out with all oxides having di- tri- and quadri-valent cations, which belong to the cubic system. In view of their difference in ionic radius to the Zr/sup 4 +/ ion, the conclusion can be drawn that all oxides which can stabilise ZrO/sub 2/ have larger cation radii than that of the Zr/sup 4 +/ ion.

  11. A model for Nb-Zr-REE-Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes

    Science.gov (United States)

    Dai, Shifeng; Nechaev, Victor P.; Chekryzhov, Igor Yu.; Zhao, Lixin; Vysotskiy, Sergei V.; Graham, Ian; Ward, Colin R.; Ignatiev, Alexander V.; Velivetskaya, Tatyana A.; Zhao, Lei; French, David; Hower, James C.

    2018-03-01

    Clay-altered volcanic ash with highly-elevated concentrations of Nb(Ta), Zr(Hf), rare earth elements (REE), and Ga, is a new type of critical metal deposit with high commercial prospects that has been discovered in Yunnan Province, southwest China. Previous studies showed that the volcanic ashes had been subjected to hydrothermal fluids, the nature of which, however, is not clear. Here we show that the volcanic ashes were originated from alkaline magmatism, followed by a continuous hydrothermal-weathering process. Heated meteoric waters, which were sourced from acidic rains and mixed with CO2 from degassing of the Emeishan plume, have caused partial, but widespread, acidic leaching of Nb, Ta, Zr, Hf, REE, and Ga into ground water and residual enrichment of these elements, along with Al and Ti, in the deeply altered rocks. Subsequent alteration occurring under cooler, neutral or alkaline conditions, caused by water-rock interaction, resulted in precipitation of the leached critical metals in the deposit. Polymetallic mineralization of similar origin may be found in other continental regions subjected to explosive alkaline volcanism associated with deep weathering in humid conditions.

  12. Pressure-induced phase transformation of HfO2

    International Nuclear Information System (INIS)

    Arashi, H.

    1992-01-01

    This paper reports on the pressure dependence of the Raman spectra of HfO 2 that was measured by a micro-Raman technique using a single-crystal specimen in the pressure range from 0 to 10 GPa at room temperature. The symmetry assignment of Raman bands of the monoclinic phase was experimentally accomplished from the polarization measurements for the single crystal. With increased pressure, a phase transformation for the monoclinic phase took place at 4.3 ± 0.3 GPa. Nineteen Raman bands were observed for the high-pressure phase. The spectral structure of the Raman bands for the high-pressure phase was similar with those reported previously for ZrO 2 . The space group for the high pressure phase of HfO 2 was determined as Pbcm, which was the same as that of the high-pressure phase for ZrO 2 on the basis of the number and the spectral structure of the Raman bands

  13. First results on the sorption behaviour of Rutherfordium from HCl/HF containing aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, D.; Nitsche, H. [Technische Univ. Dresden (Germany); Taut, S. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany); Jost, D.T.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Yakushev, A.B.; Buklanov, G.V.; Domanov, V.P.; Lien Din Thi [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Kubica, B.; Misiak, R.; Szeglowski, Z. [NINP Cracow (Poland)

    1997-09-01

    Rutherfordium shows strong sorption on the cation exchanger DOWEX 50x8 at a concentration of 0.1 M HCl/10{sup -2} M HF. This shows that Rf behaves under these conditions differently from Hf and Zr and more like Th under these conditions. (author) 1 fig., 5 refs.

  14. Anodic Fabrication of Ti-Nb-Zr-O Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2014-01-01

    Full Text Available Highly ordered Ti-Nb-Zr-O nanotube arrays were fabricated through pulse anodic oxidation of Ti-Nb-Zr alloy in 1 M NaH2PO4 containing 0.5 wt% HF electrolytes. The effect of anodization parameters and Zr content on the microstructure and composition of Ti-Nb-Zr-O nanotubes was investigated using a scanning electron microscope equipped with energy dispersive X-ray analysis. It was found that length of the Ti-Nb-Zr-O nanotubes increased with increase of Zr contents. The diameter and the length of Ti-Nb-Zr-O nanotubes could be controlled by pulse voltage. XRD analysis of Ti-Nb-Zr-O samples annealed at 500°C in air indicated that the (101 diffraction peaks shifted from 25.78° to 25.05° for annealed Ti-Nb-Zr-O samples with different Zr contents because of larger lattice parameter of Ti-Nb-Zr-O compared to that of undoped TiO2.

  15. PAC study in the HfO2-SiO2 system

    International Nuclear Information System (INIS)

    Chain, C.Y.; Damonte, L.C.; Ferrari, S.; Munoz, E.; Torres, C. Rodriguez; Pasquevich, A.F.

    2010-01-01

    A high-k HfO 2 /SiO 2 gate stack is taking the place of SiO 2 as a gate dielectric in field effect transistors. This fact makes the study of the solid-state reaction between these oxides very important. Nanostructure characterization of a high-energy ball milled and post-annealed equimolar HfO 2 and amorphous SiO 2 powder mixture has been carried out by perturbed angular correlations (PAC) technique. The study was complemented with X-ray diffraction and positron annihilation lifetime spectroscopy (PALS). The experimental results revealed that the ball milling of equimolar mixtures increases the defects concentration in hafnium oxide. No solid-state reaction occurred even after 8 h of milling. The formation of HfSiO 4 (hafnon) was observed in the milled blends annealed at high temperatures.The PAC results of the milled samples are compared with those obtained for pure m-ZrO 2 subjected to high-energy ball milling and with reported microstructure data for the system ZrO 2 -SiO 2 .

  16. Multiple excitation modes in 163Hf

    DEFF Research Database (Denmark)

    Yadav, Rachita; Ma, J.C.; Marsh, J.C.

    2014-01-01

    Excited states of Hf163 were populated using the Zr94(Ge74,5n) reaction and the decay γ rays were measured with the Gammasphere spectrometer. Two previously known bands were extended to higher spins, and nine new bands were identified. In addition to bands associated with three- and five-quasiparticle...

  17. Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy

    Science.gov (United States)

    Senkov, O. N.; Pilchak, A. L.; Semiatin, S. L.

    2018-05-01

    The microstructure and tensile properties of HfNbTaTiZr after cold working and annealing were investigated. Cold work was introduced by axial compression followed by rolling resulting in a total thickness reduction of 89 pct without any evidence of cracking. The cold-worked material retained a single-phase microstructure and had a room temperature tensile yield stress σ 0.2 = 1438 MPa, peak true stress σ p = 1495 MPa, and true fracture strain ɛ f = 5 pct. Annealing at 800 °C for up to 256 hours resulted in the precipitation of Nb and Ta rich particles with a BCC crystal structure inside a Hf-and-Zr-enriched BCC matrix. The second phase particles nucleated heterogeneously inside deformation bands and slip lines and coarsened during annealing. Analysis of the coarsening behavior suggested that kinetics were controlled by the diffusion of Nb and Ta. In the two-phase material, σ 0.2 and σ p decreased from 1159 to 1071 MPa and from 1174 to 1074 MPa, respectively, with an increase in particle diameter from 0.18 to 0.72 μm, while ɛ f remained between 5 and 8 pct. Full recrystallization and normal grain growth, with the activation energy of 238 kJ/mol and activation volume of 5.3 to 9.6 m3/mol, occurred during annealing above 1000 °C. After heat treatment at this temperature, the alloy was characterized by a single-phase BCC structure with σ 0.2 = 1110 to 1115 MPa, σ p = 1160 to 1195 MPa, and ɛ f = 12 to 19 pct with the maximum values attained after annealing for 1 hour.

  18. Effect of rare-earth composition on microstructure and pinning properties of Zr-doped (Gd,Y)Ba2Cu3Ox superconducting tapes

    International Nuclear Information System (INIS)

    Selvamanickam, V; Zhang, Y; Guevara, A; Shi, T; Yao, Y; Majkic, G; Galtsyan, E; Chen, Y; Lei, C; Miller, D J

    2012-01-01

    The effect of changing Gd + Y content from 1.2 to 1.6 in the precursor of (Gd,Y)Ba 2 Cu 3 O 7 superconducting thin film tapes made by metal organic chemical vapor deposition (MOCVD) at a constant Gd:Y ratio and a fixed Zr content of 7.5% has been studied. The influence of changing the Gd:Y ratio from Gd = 0 to Y= 0 in 0.2 mol steps at a constant Gd + Y content of 1.2 in the precursor has also been investigated at a fixed Zr content of 7.5%. The critical current of these films is found to vary significantly as a function of rare-earth content as well as a function of rare-earth type. Even for a fixed Zr content, it is found that the critical current in the orientation of magnetic field parallel to the a–b plane and that in the orientation of field perpendicular to the a–b plane can be systematically varied with changing Gd + Y content as well as with changing Gd:Y ratio. The nanoscale defect structures along the a–b plane and along the c-axis are found to be sensitive to these changes in rare-earth content and type. (paper)

  19. Raman spectroscopy used for structural investigations of anodically formed ZrO2

    International Nuclear Information System (INIS)

    Koneska, Zagorka; Arsova, Irena

    2003-01-01

    The structure of the oxide formed on Zr(99% + Hf) with anodic oxidation at different potentials in 1 mol/dm 3 H 3 PO 4 and 2 mol/dm 3 KOH solutions were investigated using Raman spectroscopy. Normally the anodic oxides of Zr form only crystals. Under certain circumstances, amorphous anodic ZrO 2 can be observed. Amorphous phase is observed for the anodically formed zirconium oxides in H 3 PO 4 . The oxide formed in KOH at potential of 80 V, where sparks appears on the Zr electrode showed crystalline structure. (Original)

  20. Lu-Hf isotope systematics of fossil biogenic apatite and their effects on geochronology

    Science.gov (United States)

    Herwartz, Daniel; Münker, Carsten; Tütken, Thomas; Hoffmann, J. Elis; Wittke, Andreas; Barbier, Bruno

    2013-01-01

    Reliable methods for direct dating of biogenic apatite from pre-Pleistocene fossils are currently not available, and recent attempts using the Lu-Hf decay system yielded highly inaccurate ages for both bones and teeth. The geological processes accounting for this poor accuracy of Lu-Hf chronometry are not yet understood. Here we explore Lu-Hf systematics in fossil bones and teeth in detail, by applying five different sample digestion techniques that are tested on bones and composites of bone and sediment. Our current dataset implies that dissolution methods only slightly affect the resulting Lu-Hf ages, while clear differences between the individual digestion techniques became apparent for element concentrations. By analysing the insoluble leftovers from incomplete sample dissolution, four main reservoirs of Hf in fossil bones were identified: (1) a radiogenic end-member associated with apatite; (2) an unradiogenic end-member represented by the authigenic minerals or the embedding sediment; (3) a highly unradiogenic end-member that can be attributed to detrital zircon; and (4) a moderately soluble phase (probably a Zr(Hf)-phosphate) that yielded very low Lu/Hf but a highly radiogenic Hf isotope composition at the same time. This Zr(Hf)-phase must have been precipitated within the fossil bone sample at a late stage of burial history, thereby incorporating radiogenic 176Hf released from apatite surfaces over geological timescales. A second focus of our study is the effect of different sediment matrices and of crystal size on the preservation of pristine Lu-Hf isotope compositions in bioapatite. Because near-depositional Lu-Hf ages of phosphate fossils have previously been reported for the London Clay (England) and a calcareous marl from Tendaguru (Tanzania), we herein investigate specimens fossilised in carbonate matrices (calcareous marl from Oker, Germany; carbonate concretions from the Santana Formation, Brazil; carbonate from the Eifel, Germany) and argillaceous

  1. 2,3,4-Trihydroxyflourones immobilized on cellulose matrices in test methods for determining rare elements

    International Nuclear Information System (INIS)

    Amelin, V.G.; Abramenkova, O.I.

    2008-01-01

    It was shown that 2,3,7-trihydroxyfluorones immobilized by adsorption on cellulose matrices can be used as reagents for the test determination of Mo(Vl), Ti(lV), Ge(lV), Hf(lV), Nb(V), Ta(V), W(VI), Bi(III), V(IV), and Zr(IV). The change of the protolytic and complexing properties of trihydroxyfluorones immobilized on cellulose matrices was considered in comparison to corresponding properties in a solution. It was found that the reactions of trihydroxyfluorones with rare elements on cellulose matrices and in a solution exhibit similar effects upon the addition of cetylpyridinium. These effects are the bathochromic shift of the absorption maxima of the reagents and their complexes with analytes and the extension of the range of optimum acidity for complex formation. The complexation of salicylfluorones with the titanium(IV) in solution and on cellulose paper was studied by IR spectrometry. Phenylfluorone immobilized on a mixed-fiber cloth as used in test determinations of (mg/L) 0.05-5 Ti(IV), V(IV), Hf(IV), Nb(V), and Mo(VI); 0.01-5 Ge(IV) and Zr(IV); 0.05-1 Bi(III) and W(VI); and 0.1-5 Ta(V) by the color intensity of the indicator matrix after passing through 20 mL of a analyzable solution. It was shown that phenylfluorone immobilized on cellulose paper can be used to determine (mg/L) 0.05-50 Ti(IV), 0.5-1000 Ge(IV), 0.5-500 Zr(IV), 5-200 Bi(III), 0.1-50 Mo(VI), 0.1-1000 V(IV), 0.1-100 Nb(V), 0.1-800 Hf(IV), 1-100 Ta(V), and 1-800 W(VI) by the length of the colored zone of a test strip after it was brought into contact with a test solution [ru

  2. Indirect phase transition of TiC, ZrC, and HfC crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Abavare, Eric K.K.; Dodoo, Samuel N.A. [Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Uchida, Kazuyuki; Oshiyama, Atsushi [Department of Applied Physics, The University of Tokyo, Hongo, Tokyo (Japan); Nkurumah-Buandoh, George K.; Yaya, Abu [Department of Physics, University of Ghana, Legon (Ghana)

    2016-06-15

    We have performed first-principles calculations to analyze the electronic structures, static, and dynamical structural stabilities of the pressure-induced phase transformation of refractory compounds (transition-metal carbides) from NaCl-type (B1) to CsCl-type (B2) via zinc-blende phase using the plane-wave pseudopotential approach in the framework of the generalized gradient approximation (GGA) for the exchange and correlation functional. The ground-state properties, equilibrium lattice constant, bulk moduli, and band structures are determined for the stoichiometry of the compounds and compared with known experimental and theoretical values. We find that the phase-transition pressure for the indirect phase transition from B1→B2 via zinc-blende structure is about 17-fold for TiC, 12-fold for both ZrC and HfC, respectively, when compared with the direct phase transition. Calculated phonon instability exists for the CsCl-B2 phase, which can prevent the structures from forming and contrary to the zinc-blende and the NaCl-B1 phases. The band dispersion and electronic density of states for B1 and B2 crystal phases were explored and found to indicate metallic character in contrast with the zinc-blende phase, which has a pseudogap opening in the bandgap region suggesting a semiconducting property and also a frequency gap in the phonon spectrum. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. OMS, OM(η2-SO), and OM(η2-SO)(η2-SO2) molecules (M = Ti, Zr, Hf): infrared spectra and density functional calculations.

    Science.gov (United States)

    Liu, Xing; Wang, Xuefeng; Wang, Qiang; Andrews, Lester

    2012-07-02

    Infrared spectra of the matrix isolated OMS, OM(η(2)-SO), and OM(η(2)-SO)(η(2)-SO(2)) (M = Ti, Zr, Hf) molecules were observed following laser-ablated metal atom reactions with SO(2) during condensation in solid argon and neon. The assignments for the major vibrational modes were confirmed by appropriate S(18)O(2) and (34)SO(2) isotopic shifts, and density functional vibrational frequency calculations (B3LYP and BPW91). Bonding in the initial OM(η(2)-SO) reaction products and in the OM(η(2)-SO)(η(2)-SO(2)) adduct molecules with unusual chiral structures is discussed.

  4. Preparation of HfC single crystals by a floating zone technique

    International Nuclear Information System (INIS)

    Otani, S.; Tanaka, T.

    1981-01-01

    HfC single crystals have been prepared using a floating zone technique by controlling the compositions of the initial molten zone and the feed rod. The obtained crystal rods were 6 cm long and 0.9 cm in diameter. The various parts of the crystal rods have nearly constant compositions (C/Hf(ZR) = 0.956-0.977), and do not contain any free carbon. The impurities in the crystal, evaporation product, and starting material were examined by fluorescence X-ray spectroscopy. The refining effect due to evaporation was discussed. (orig.)

  5. Thermoluminescence on ZrO{sub 2} films with different dopants; Termoluminiscencia en peliculas de ZrO{sub 2} con distintos impurificantes

    Energy Technology Data Exchange (ETDEWEB)

    Ceron R, P. V.; Rivera M, T.; Ramos G, A. I.; Guzman M, J.; Montes R, E., E-mail: victceronr@hotmail.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: The metal oxides doped with rare earths have presented good thermoluminescent properties for certain wavelengths in the UV. With respect to zirconium oxide exist several studies in which were incorporated impurities and their properties as dosimeter in several regions of the electromagnetic spectrum were analyzed. Because of this background, in this material thermoluminescent glow curves induced by UV in films of ZrO{sub 2}:Eu and ZrO{sub 2}:Tb were studied for comparison with the response of the material doped with two rare earths (ZrO{sub 2}:Eu + Tb). Samples were deposited on glass by ultrasonic spray pyrolysis technique with different synthesis parameters. It was found that the strongest Tl response was to ZrO{sub 2} film doped with terbium (14 times more intense than the film of ZrO{sub 2}:Eu and 6 times the response of ZrO{sub 2}:Eu + Tb). (Author)

  6. Structural, mechanical and electronic properties of OsTM and TMOs{sub 2} (TM = Ti, Zr and Hf): First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi-Jun, E-mail: qijunliu@home.swjtu.edu.cn [Bond and Band Engineering Group, Institute of High Temperature and High Pressure Physics, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhang, Ning-Chao; Liu, Fu-Sheng [Bond and Band Engineering Group, Institute of High Temperature and High Pressure Physics, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liu, Zheng-Tang [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China)

    2014-03-15

    Highlights: • OsTM and TMOs{sub 2} compounds have no superhard character. • These compounds are mechanically stable and behave in ductile manner. • OsTM has a mixture of covalent-ionic and metallic character. -- Abstract: The first-principles calculations have been performed to study the structural, elastic, mechanical and electronic properties of cubic OsTM (TM = Ti, Zr, and Hf) and hexagonal TMOs{sub 2} compounds. The calculated structural parameters are in good agreement with the available experimental data. To the best of our knowledge, the elastic constants of OsTM and TMOs{sub 2} compounds have been obtained for the first time. The calculated elastic and mechanical properties show that these compounds have no superhard character. These compounds are mechanically stable and behave in ductile manner. The electronic band structures and densities of states of OsTM and TMOs{sub 2} compounds have been analysed. OsTM has a mixture of covalent-ionic and metallic character, and TMOs{sub 2} has strong metallic nature.

  7. Effect of rare-earth composition on microstructure and pinning properties of Zr-doped (Gd, Y)Ba{sub 2}Cu{sub 3}O{subx} superconducting tapes.

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V.; Chen, Y.; Zhang, Y.; Guevara, A.; Shi, T.; Yao, Y.; Majkic, G.; Lei, C.; Galtsyan, E.; Miller, D. J. (Materials Science Division); (Univ. Houston); (SuperPower Inc.)

    2012-01-01

    The effect of changing Gd + Y content from 1.2 to 1.6 in the precursor of (Gd,Y)Ba{sub 2}Cu{sub 3}O{sub 7} superconducting thin film tapes made by metal organic chemical vapor deposition (MOCVD) at a constant Gd:Y ratio and a fixed Zr content of 7.5% has been studied. The influence of changing the Gd:Y ratio from Gd = 0 to Y= 0 in 0.2 mol steps at a constant Gd + Y content of 1.2 in the precursor has also been investigated at a fixed Zr content of 7.5%. The critical current of these films is found to vary significantly as a function of rare-earth content as well as a function of rare-earth type. Even for a fixed Zr content, it is found that the critical current in the orientation of magnetic field parallel to the a-b plane and that in the orientation of field perpendicular to the a-b plane can be systematically varied with changing Gd + Y content as well as with changing Gd:Y ratio. The nanoscale defect structures along the a-b plane and along the c-axis are found to be sensitive to these changes in rare-earth content and type.

  8. Analysis of local regions near the interfaces in nanostructured multicomponent cathodic – arc – vapor – deposition (CAVD) coatings (Ti-Zr-Hf-V-Nb)N

    International Nuclear Information System (INIS)

    Kraus-Rekhberg, R.; Pogrebnyak, A. D.; Borisyuk, V. N.; Kaverin, M. V.; Belokur, M.A.; Ponomarev, G.; Ojoshi, K.; Takeda, J.; Beresnev, V. M.; Sobol', O. V.

    2013-01-01

    Multicomponent, nanostructure (Ti- Zr-Hf-V-Nb)N coatings derived using cathodic – Arc – Vapor – Deposition method, were characterized by applying SPB, (μ-PIXE), EDS and SEM-analysis), XRD methods, including ''a-sin 2 φ'' procedure. It was found that through the creation of high elastic strains of compression in coating it is possible to a significant extent enhance its oxidation resistance under high-temperature annealing. During the characterization of coatings the elements and defects’ redistribution was discovered, its segregation through thermally-stimulated diffusion and the spinoidal segregation process end, in the neighborhood of the interfaces, around grains and subgrains, without substantial change of the average nanograin dimension. (authors)

  9. Exploration of R2XM2 (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge): Structural Motifs, the novel Compound Gd2AlGe2 and Analysis of the U3Si2 and Zr3Al2 Structure Types

    Energy Technology Data Exchange (ETDEWEB)

    McWhorter, Sean William [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    In the process of exploring and understanding the influence of crystal structure on the system of compounds with the composition Gd5(SixGe1-x)4 several new compounds were synthesized with different crystal structures, but similar structural features. In Gd5(SixGe1-x)4, the main feature of interest is the magnetocaloric effect (MCE), which allows the material to be useful in magnetic refrigeration applications. The MCE is based on the magnetic interactions of the Gd atoms in the crystal structure, which varies with x (the amount of Si in the compound). The crystal structure of Gd5(SixGe1-x)4 can be thought of as being formed from two 32434 nets of Gd atoms, with additional Gd atoms in the cubic voids and Si/Ge atoms in the trigonal prismatic voids. Attempts were made to substitute nonmagnetic atoms for magnetic Gd using In, Mg and Al. Gd2MgGe2 and Gd2InGe2 both possess the same 32434 nets of Gd atoms as Gd5(SixGe1-x)4, but these nets are connected differently, forming the Mo2FeB2 crystal structure. A search of the literature revealed that compounds with the composition R2XM2 (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge) crystallize in one of four crystal structures: the Mo2FeB2, Zr3Al2, Mn2AlB2 and W2CoB2 crystal structures. These crystal structures are described, and the relationships between them are highlighted. Gd2AlGe2 forms an entirely new crystal structure, and the details of its synthesis and characterization are given. Electronic structure calculations are performed to understand the nature of bonding in this compound and how

  10. 6-Peroxo-6-zirconium crown and its hafnium analogue embedded in a triangular polyanion: [M6(O2)6(OH)6(gamma-SiW10O36)3]18- (M = Zr, Hf).

    Science.gov (United States)

    Bassil, Bassem S; Mal, Sib Sankar; Dickman, Michael H; Kortz, Ulrich; Oelrich, Holger; Walder, Lorenz

    2008-05-28

    We have synthesized and structurally characterized the unprecedented peroxo-zirconium(IV) containing [Zr6(O2)6(OH)6(gamma-SiW10O36)3]18- (1). Polyanion 1 comprises a cyclic 6-peroxo-6-zirconium core stabilized by three decatungstosilicate units. We have also prepared the isostructural hafnium(IV) analogue [Hf6(O2)6(OH)6(gamma-SiW10O36)3]18- (2). We investigated the acid/base and redox properties of 1 by UV-vis spectroscopy and electrochemistry studies. Polyanion 1 represents the first structurally characterized Zr-peroxo POM with side-on, bridging peroxo units. The simple, one-pot synthesis of 1 and 2 involving dropwise addition of aqueous hydrogen peroxide could represent a general procedure for incorporating peroxo groups into a large variety of transition metal and lanthanide containing POMs.

  11. Reconciliation of the excess 176Hf conundrum in meteorites: Recent disturbances of the Lu-Hf and Sm-Nd isotope systematics

    Science.gov (United States)

    Bast, Rebecca; Scherer, Erik E.; Sprung, Peter; Mezger, Klaus; Fischer-Gödde, Mario; Taetz, Stephan; Böhnke, Mischa; Schmid-Beurmann, Hinrich; Münker, Carsten; Kleine, Thorsten; Srinivasan, Gopalan

    2017-09-01

    The long-lived 176Lu-176Hf and 147Sm-143Nd radioisotope systems are commonly used chronometers, but when applied to meteorites, they can reveal disturbances. Specifically, Lu-Hf isochrons commonly yield dates up to ∼300 Myr older than the solar system and varying initial 176Hf/177Hf values. We investigated this problem by attempting to construct mineral and whole rock isochrons for eucrites and angrites. Meteorites from different parent bodies exhibit similar disturbance features suggesting that a common process is responsible. Minerals scatter away from isochron regressions for both meteorite classes, with low-Hf phases such as plagioclase and olivine typically being most displaced above (or left of) reference isochrons. Relatively Hf-rich pyroxene is less disturbed but still to the point of steepening Lu-Hf errorchrons. Using our Lu-Hf and Sm-Nd data, we tested various Hf and Lu redistribution scenarios and found that decoupling of Lu/Hf from 176Hf/177Hf must postdate the accumulation of significant radiogenic 176Hf. Therefore early irradiation or diffusion cannot explain the excess 176Hf. Instead, disturbed meteorite isochrons are more likely caused by terrestrial weathering, contamination, or common laboratory procedures. The partial dissolution of phosphate minerals may predominantly remove rare earth elements including Lu, leaving relatively immobile and radiogenic Hf behind. Robust Lu-Hf (and improved Sm-Nd) meteorite geochronology will require the development of chemical or physical methods for removing unsupported radiogenic Hf and silicate-hosted terrestrial contaminants without disturbing parent-daughter ratios.

  12. Anomalous structural evolution and liquid fragility signatures in Cu–Zr and Cu–Hf liquids and glasses

    International Nuclear Information System (INIS)

    Mauro, N.A.; Vogt, Adam J.; Johnson, Mark L.; Bendert, James C.; Soklaski, Ryan; Yang, Li; Kelton, K.F.

    2013-01-01

    The results of high energy X-ray scattering studies of equilibrium and supercooled Cu 100−x Zr x (x = 46 and 54) and Cu x Hf 100−x (x = 55 and 60.8) liquids and the corresponding glasses are presented. The liquid data were obtained in a containerless environment using the beamline electrostatic levitation (BESL) technique. The total structure factor and total pair correlation functions were measured as a function of temperature for the liquids, and for the glasses at room temperature. A developing asymmetry in the peak of the first coordination shell in the total pair correlation function suggests chemical ordering in the liquids with cooling. This asymmetry takes the form of two prominent peaks, suggesting two prominent ordering length scales. When the magnitudes of these peaks are extrapolated to the glass transition temperature a discontinuity is observed, indicating that an abrupt increase in the magnitude is required to match the observed peak heights in the glass. This suggests that the structure of the supercooled liquid orders more rapidly near the glass transition temperature, a conclusion that is supported by molecular dynamics simulations. This observed structural evolution of the liquid indicates that the concept of fragility, typically defined from the behavior of viscosity with temperature, has a measurable structural signature as well, which can be observed in X-ray diffraction studies

  13. Superconductivity of Ta{sub 34}Nb{sub 33}Hf{sub 8}Zr{sub 14}Ti{sub 11} high entropy alloy from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jasiewicz, K.; Wiendlocha, B.; Korben, P.; Kaprzyk, S.; Tobola, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059, Krakow (Poland)

    2016-05-15

    The Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA) is applied to study the first superconducting high entropy alloy (HEA) Ta{sub 34}Nb{sub 33}Hf{sub 8}Zr{sub 14}Ti{sub 11} (discovered in 2014 with T{sub c}=7.3 K), focusing on estimations of the electron-phonon coupling constant λ. The electronic part of λ has been calculated using the rigid muffin-tin approximation (RMTA), while the phonon part has been approximated using average atomic mass and experimental Debye temperature. The estimated λ=1.16 is close to the value determined from specific heat measurements, λ=0.98, and suggests rather strong electron-phonon coupling in this material. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Multiscale Modeling of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2: Application to Lattice Thermal Conductivity

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  15. Theoretical prediction of ion conductivity in solid state HfO2

    Science.gov (United States)

    Zhang, Wei; Chen, Wen-Zhou; Sun, Jiu-Yu; Jiang, Zhen-Yi

    2013-01-01

    A theoretical prediction of ion conductivity for solid state HfO2 is carried out in analogy to ZrO2 based on the density functional calculation. Geometric and electronic structures of pure bulks exhibit similarity for the two materials. Negative formation enthalpy and negative vacancy formation energy are found for YSH (yttria-stabilized hafnia) and YSZ (yttria-stabilized zirconia), suggesting the stability of both materials. Low activation energies (below 0.7 eV) of diffusion are found in both materials, and YSH's is a little higher than that of YSZ. In addition, for both HfO2 and ZrO2, the supercells with native oxygen vacancies are also studied. The so-called defect states are observed in the supercells with neutral and +1 charge native vacancy but not in the +2 charge one. It can give an explanation to the relatively lower activation energies of yttria-doped oxides and +2 charge vacancy supercells. A brief discussion is presented to explain the different YSH ion conductivities in the experiment and obtained by us, and we attribute this to the different ion vibrations at different temperatures.

  16. Effect of Nb aggregates on Zr2Fe

    International Nuclear Information System (INIS)

    Ramos, Cinthia P.

    2001-01-01

    The binary Zr-Fe phase diagram revision, performed by Arias et al., accepted the intermetallic Zr 2 Fe crystalline structure as tetragonal and determined that the presence of a third element like oxygen, nitrogen or carbon, stabilizes a cubic phase. Nevitt et al. studying Ti, Zr and Hf alloys with transition metals as second or third element and ternary systems with oxygen as third element, systematized the occurrence of phases with a cubic Ti 2 Ni type crystalline structure. From previous studies in the Zr-Nb-Fe system, it is an agreed fact that Nb presence in the Zr 2 Fe intermetallic stabilizes a cubic Ti 2 Ni type phase. The purpose of the present work is to determine the stability range of the Zr 2 Fe intermetallic with Nb contents, the existence range of the ternary cubic Ti 2 Ni type phase (designated Λ) and the corresponding two-phase region. We analyze as cast and heat treated (800 C degrees) Zr-Nb-Fe alloys with 35 atomic % Fe and Nb contents between 0.5 and 15 atomic %. The determination and characterization of the phases is made by optical and scanning electron microscopy, X-ray diffraction microprobe analysis and Moessbauer Spectroscopy. Joining these techniques together it is found, among many other things, that the Zr 2 Fe phase would accept up to around 0.5 atomic % Nb in solution and that the two-phase region Zr 2 Fe+Λ would be stable in the (0.5 - 3.5) Nb atomic % range. It is proposed as well a 800 C degrees section of the ternary (Zr-Nb-Fe) in the studied region. (author) [es

  17. Coulomb-nuclear interference measurements of 168Yb, 176Hf, 178Hf, and 180Hf and lifetime measurements in 186Hg

    International Nuclear Information System (INIS)

    Nettles, W.G.

    1979-01-01

    Alpha scattering measurements were performed at center-of-mass energies near the Coulomb barrier. These energies allow for nuclear as well as pure Coulomb forces to play a significant role in the excitation process. The interference of these two forces is very sensitive to the sign of the E4 ground-state moment, whereas pure Coulomb excitation is not. Systematics of the E4 moments of the rare earth mass region indicate a transition in the magnitude and sign of the reduced matrix element of the M(E4) operator between 0 + and 4 + states from small and positive to large and negative between Yb and W. Previous Coulomb-nuclear interference measurements show that this reduced matrix element for 180 Hf is large and negative. The present results agree with that conclusion. It is also shown that the above reduced matrix element for 178 Hf, like that of 180 Hf, is large and negative. The small and positive moment (matrix element) for 168 Yb is seen to be consistent with the experimental data. No conclusions are drawn for the E4 moment in 176 Hf. The measurement of nuclear lifetimes shorter than 500 ps requires the use of plastic scintilltor detectors. These detectors, however have very poor energy resolution. A system is described that uses plastic scintillators with a magnetic lens spectrometer for energy selection. The system was used to measure the lifetime of the 522-keV 0 + sate in 186 Hf. A data analysis method using higher-order distribution moments is also presented

  18. Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: A reaction path model

    Science.gov (United States)

    Gysi, Alexander P.; Williams-Jones, Anthony E.

    2013-12-01

    Petrological and geochemical observations of pegmatites in the Strange Lake pluton, Canada, have been combined with numerical simulations to improve our understanding of fluid-rock interaction in peralkaline granitic systems. In particular, they have made it possible to evaluate reaction paths responsible for hydrothermal mobilization and mineralization of rare earth elements (REE) and Zr. The focus of the study was the B-Zone in the northwest of the pluton, which contains a pegmatite swarm and is the target of exploration for an economically exploitable REE deposit. Many of the pegmatites are mineralogically zoned into a border consisting of variably altered primary K-feldspar, arfvedsonite, quartz, and zirconosilicates, and a core rich in quartz, fluorite and exotic REE minerals. Textural relationships indicate that the primary silicate minerals in the pegmatites were leached and/or replaced during acidic alteration by K-, Fe- and Al-phyllosilicates, aegirine, hematite, fluorite and/or quartz, and that primary zirconosilicates (e.g., elpidite) were replaced by gittinsite and/or zircon. Reaction textures recording coupled dissolution of silicate minerals and crystallization of secondary REE-silicates indicate hydrothermal mobilization of the REE. The mobility of the light (L)REE was limited by the stability of REE-F-(CO2)-minerals (basnäsite-(Ce) and fluocerite-(Ce)), whereas zirconosilicates and secondary gadolinite-group minerals controlled the mobility of Zr and the heavy (H)REE. Hydrothermal fluorite and fluorite-fluocerite-(Ce) solid solutions are interpreted to indicate the former presence of F-bearing saline fluids in the pegmatites. Numerical simulations show that the mobilization of REE and Zr in saline HCl-HF-bearing fluids is controlled by pH, ligand activity and temperature. Mobilization of Zr is significant in both saline HF- and HCl-HF-bearing fluids at low temperature (250 °C). In contrast, the REE are mobilized by saline HCl-bearing fluids

  19. Nanostructured multielement (TiHfZrNbVTa)N coatings before and after implantation of N+ ions (10{sup 18} cm{sup −2}): Their structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Pogrebnjak, A.D., E-mail: alexp@i.ua [Sumy State University, Department of Nanoelectronics, 40007, R.-Korsakova 2, Sumy (Ukraine); Bondar, O.V., E-mail: oleksandr.v.bondar@gmail.com [Sumy State University, Department of Nanoelectronics, 40007, R.-Korsakova 2, Sumy (Ukraine); Borba, S.O. [Sumy State University, Department of Nanoelectronics, 40007, R.-Korsakova 2, Sumy (Ukraine); Abadias, G. [Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, F86962 Futuroscope Chasseneuil (France); Konarski, P. [Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw (Poland); Plotnikov, S.V. [D. Serikbaev East-Kazakhstan State Technical University, 070004, Ust-Kamenogorsk, 69 Protozanov St. (Kazakhstan); Beresnev, V.M. [V.N. Karazin Kharkiv National University, 61022, Svobody Sq. 4, Kharkiv (Ukraine); Kassenova, L.G. [Kazakh University of Economics, Finance and International Trade, St. Zhubanov 7, 010005 Astana (Kazakhstan); Drodziel, P. [Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

    2016-10-15

    Highlights: • (TiZrHfVNbTa)N coatings were deposited by vacuum–arc evaporation of a cathode. • Nanostructured coatings were investigated experimentally and by MD simulations. • Good correlation between experimental data and simulation results is observed. • Ion implantation formed amorphous, nanocrystalline and nanostructured layers. • Hardness changed from 12 GPa in the implanted layer to 38 GPa with the depth. - Abstract: Multielement high entropy alloy (HEA) nitride (TiHfZrNbVTa)N coatings were deposited by vacuum arc and their structural and mechanical stability after implantation of high doses of N{sup +} ions, 10{sup 18} cm{sup −2}, were investigated. The crystal structure and phase composition were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy, while depth-resolved nanoindentation tests were used to determine the evolution of hardness and elastic modulus along the implantation depth. XRD patterns show that coatings exhibit a main phase with fcc structure, which preferred orientation varies from (1 1 1) to (2 0 0), depending on the deposition conditions. First-principles calculations reveal that the presence of Nb atoms could favor the formation of solid solution with fcc structure in multielement HEA nitride. TEM results showed that amorphous and nanostructured phases were formed in the implanted coating sub-surface layer (∼100 nm depth). Concentration of nitrogen reached 90 at% in the near-surface layer after implantation, and decreased at higher depth. Nanohardness of the as-deposited coatings varied from 27 to 38 GPa depending on the deposition conditions. Ion implantation led to a significant decrease of the nanohardness to 12 GPa in the implanted region, while it reaches 24 GPa at larger depths. However, the H/E ratio is ⩾0.1 in the sub-surface layer due to N{sup +} implantation, which is expected to have beneficial effect on the wear properties.

  20. Water mass circulation and weathering inputs in the Labrador Sea based on coupled Hf-Nd isotope compositions and rare earth element distributions

    Science.gov (United States)

    Filippova, Alexandra; Frank, Martin; Kienast, Markus; Rickli, Jörg; Hathorne, Ed; Yashayaev, Igor M.; Pahnke, Katharina

    2017-02-01

    The Labrador Sea is one of the key areas for deep water formation driving the Atlantic thermohaline circulation and thus plays an important role in Northern Hemisphere climatic fluctuations. In order to better constrain the overturning processes and the origins of the distinct water masses, combined dissolved Hf-Nd isotopic compositions and rare earth element (REE) distribution patterns were obtained from four water depth profiles along a section across the Labrador Sea. These were complemented by one surface sample off the southern tip of Greenland, three shallow water samples off the coast of Newfoundland, and two deep water samples off Nova Scotia. Although light REEs are markedly enriched in the surface waters off the coast of Newfoundland compared to north Atlantic waters, the REE concentration profiles are essentially invariant throughout the water column across the Labrador Sea. The hafnium concentrations of surface waters exhibit a narrow range between 0.6 and 1 pmol/kg but are not significantly higher than at depth. Neodymium isotope signatures (ɛNd) vary from unradiogenic values between -16.8 and -14.9 at the surface to more radiogenic values near -11.0 at the bottom of the Labrador Sea mainly reflecting the advection of the Denmark Strait Overflow Water and North East Atlantic Deep Water, the signatures of which are influenced by weathering contributions from Icelandic basalts. Unlike Nd, water column radiogenic Hf isotope signatures (ɛHf) are more variable representing diverse weathering inputs from the surrounding landmasses. The least radiogenic seawater ɛHf signatures (up to -11.7) are found in surface waters close to Greenland and near the Canadian margin. This reflects the influence of recirculating Irminger Current Waters, which are affected by highly unradiogenic inputs from Greenland. A three to four ɛHf unit difference is observed between Denmark Strait Overflow Water (ɛHf ∼ -4) and North East Atlantic Deep Water (ɛHf ∼ -0

  1. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  2. Lattice vibrational properties of transition metal carbides (TiC, ZrC

    Indian Academy of Sciences (India)

    Lattice vibrational properties of transition metal carbides (TiC, ZrC and HfC) have been presented by including the effects of free-carrier doping and three-body interactions in the rigid shell model. The short-range overlap repulsion is operative up to the second neighbour ions. An excellent agreement has been obtained ...

  3. Bipolar resistive switching properties of Hf{sub 0.5}Zr{sub 0.5}O{sub 2} thin film for flexible memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhipeng; Zhu, Jun; Zhou, Yunxia; Liu, Xingpeng [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu (China)

    2018-01-15

    An Au/Ni/Hf{sub 0.5}Zr{sub 0.5}O{sub 2}/Au flexible memory device fabricated on a polyethylene terephthalate substrate was studied for flexible resistive random access memory applications. A typical bipolar resistive switching behavior was revealed with an OFF/ON ratio of approximately 15. The reproducibility and uniformity were investigated using 100 repetitive write/erase cycles. The retention property did not degrade for up to 5 x 10{sup 4} s, and the resistive switching properties did not degrade even under bending conditions, which indicated good mechanical flexibility. The current-voltage characteristics of the memory device show a Poole-Frenkel emission conduction mechanism in the high-voltage region in the high-resistance state, while in the low-voltage region, the Ohmic contact and space charge limit current responded to the low-resistance state and high-resistance state, respectively. Combined with the conductance mechanism, the resistive switching behavior is attributed to conductive filaments forming and rupturing due to oxygen vacancies migrating under the external driving electric field. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Fabrication of Metal Nanoparticle Arrays in the ZrO2(Y, HfO2(Y, and GeOx Films by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Oleg Gorshkov

    2017-01-01

    Full Text Available The single sheet arrays of Au nanoparticles (NPs embedded into the ZrO2(Y, HfO2(Y, and GeOx (x≈2 films have been fabricated by the alternating deposition of the nanometer-thick dielectric and metal films using Magnetron Sputtering followed by annealing. The structure and optical properties of the NP arrays have been studied, subject to the fabrication technology parameters. The possibility of fabricating dense single sheet Au NP arrays in the matrices listed above with controlled NP sizes (within 1 to 3 nm and surface density has been demonstrated. A red shift of the plasmonic optical absorption peak in the optical transmission spectra of the nanocomposite films (in the wavelength band of 500 to 650 nm has been observed. The effect was attributed to the excitation of the collective surface plasmon-polaritons in the dense Au NP arrays. The nanocomposite films fabricated in the present study can find various applications in nanoelectronics (e.g., single electronics, nonvolatile memory devices, integrated optics, and plasmonics.

  5. TbNb6Sn6: the first ternary compound from the rare earth–niobium–tin system

    Directory of Open Access Journals (Sweden)

    Viktor Hlukhyy

    2010-12-01

    Full Text Available The title compound, terbium hexaniobium hexastannide, TbNb6Sn6, is the first ternary compound from the rare earth–niobium–tin system. It has the HfFe6Ge6 structure type, which can be analysed as an intergrowth of the Zr4Al3 and CaCu5 structures. All the atoms lie on special positions; their coordination geometries and site symmetries are: Tb (dodecahedron 6/mmm; Nb (distorted icosahedron 2mm; Sn (Frank–Caspar polyhedron, CN = 14–15 6mm and overline{6}m2; Sn (distorted icosahedron overline{6}m2. The structure contains a graphite-type Sn network, Kagome nets of Nb atoms, and Tb atoms alternating with Sn2 dumbbells in the channels.

  6. Electric field gradient at the Nb3M(M = Al, In, Si, Ge, Sn) and T3Al (T = Ti, Zr, Hf, V, Nb, Ta) alloys by perturbed angular correlation method

    International Nuclear Information System (INIS)

    Junqueira, Astrogildo de Carvalho

    1999-01-01

    The electric field gradient (efg) at the Nb site in the intermetallic compounds Nb 3 M (M = Al, Si, Ge, Sn) and at the T site in the intermetallic compounds T 3 Al (T = Ti, Zr, Hf, V, Nb, Ta) was measured by Perturbed Angular Correlation (PAC) method using the well known gamma-gamma cascade of 133-482 keV in 181 Ta from the β - decay of 181 Hf. The compounds were prepared by arc melting the constituent elements under argon atmosphere along with radioactive 181 Hf substituting approximately 0.1 atomic percent of Nb and T elements. The PAC measurements were carried out at 295 K for all compounds and the efg was obtained for each alloy. The results for the efg in the T 3 Al compounds showed a strong correlation with the number of conduction electrons, while for the Nbs M compounds the efg behavior is influenced mainly by the p electrons of the M elements. The so-called universal correlation between the electronic and lattice contribution for the efg in metals was not verified in this work for all studied compounds. Measurements of the quadrupole frequency in the range of 100 to 1210 K for the Nb 3 Al compound showed a linear behaviour with the temperature. Superconducting properties of this alloys may probably be related with this observed behaviour. The efg results are compared to those reported for other binary alloys and discussed with the help of ab-initio methods. (author)

  7. Quaternary sulphides Cu2Zn(Ti, Zr, Hf)S4, the new type of photovoltaic materials%四元硫化物Cu2Zn(Ti,Zr,Hf)S4:一类新颖光伏材料∗

    Institute of Scientific and Technical Information of China (English)

    范巍; 曾雉

    2016-01-01

    采用第一性原理电子结构方法研究了四价过渡金属Ti, Zr和Hf替代Cu2ZnSnS4(CZTS)中Sn原子以及Se替代S原子所得到的四元硫族化合物的电子结构、光学性质和晶体结构的稳定性。实验上用Se替代CZTS中部分S得到的Cu2ZnSnS4−xSex(CZTSSe)作为光吸收材料,可以进一步提高光伏效率。我们计算表明用Se替代S后, CZTSe的价带顶明显下移,并接近Cu(In, Ga) Se2(CIGS)价带顶位置。与CZTSe的电子结构特征一样, Cu2Zn(Ti, Zr, Hf)S4四元硫化物的价带顶与母体材料CZTS相比也向低能移动,并接近CIGS价带顶位置。由于高光伏效率要求窗口材料ZnO、缓冲层材料和光吸收材料的价带顶和带隙满足一定的渐进的变化关系,因此可以预见用Cu2Zn(Ti, Zr, Hf)S4作光吸收材料可以有效地提高甚至接近CIGS的光伏效率。通过计算弹性常数和声子谱,以及有限温度下第一性原理分子动力学模拟,发现Cu2Zn(Ti, Zr, Hf)S4的结构稳定性与CZTS相近。进一步计算Cu2Zn(Ti, Zr, Hf)S4与不同缓冲层间和窗口材料与缓冲层间的反射系数,并讨论了ZnSe, In2S3, ZnS作为缓冲层材料和TiO2作为窗口材料对光伏效率可能的影响。%Based on the first-principles electronic-structure method, we study the electronic structures, optical properties, and the structural stabilities of the quaternary sulphides Cu2Zn(Ti, Zr, Hf) S4, which are obtained via substituting Ti, Zr, and Hf elements for Sn elements in Cu2ZnSnS4 (CTZS). It is well known that the photovoltaic efficiency of CZTS(Se) will be improved if the Se atoms partially substitute S atoms in CZTS. Our results show that the valence-band top of CZTSe shifts to lower energy and accesses to the valence-band top of Cu(InGa) Se2 (CIGS). Similar to CZTSe, the valence-band tops of Cu2Zn(Ti, Zr, Hf)S4 also shift to lower energies and access to the top of valence-band of CIGS. The high photovoltaic efficiency requires the smooth changes of the

  8. Investigation into the magnetic properties of pyrochlore-type rare-earth hafnates

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Jung Hwan; Kremer, Reinhard K.; Lin, Chengtian [MPI for Solid State Research, Stuttgart (Germany)

    2015-07-01

    Cubic rare-earths transition metal pyrochlores with composition R{sub 2}TM{sub 2}O{sub 7} have attracted broad attention because of their unusual magnetic ground state properties related to geometrical frustration of the pyrochlores lattice. So far, the investigation focused mainly on 3d and 4d transition metal systems. The magnetic properties of rare-earths 5d TM pyrochlores are comparatively less well studied. Here we report on the single-crystal growth and the magnetic properties of some rare-earth hafnates (R =Nd, Gd, Dy; TM = Hf) of composition R{sub 2}Hf{sub 2}O{sub 7}. Nd{sub 2}Hf{sub 2}O{sub 7} and Gd{sub 2}Hf{sub 2}O{sub 7} crystallize with the cubic pyrochlores structure whereas diverging reports on the structure of Dy{sub 2}Hf{sub 2}O{sub 7} are available in literature. Crystals of R{sub 2}Hf{sub 2}O{sub 7} have been grown and their structural and magnetic properties have been investigated. Our investigations confirm Nd{sub 2}Hf{sub 2}O{sub 7} and Gd{sub 2}Hf{sub 2}O{sub 7} to crystallize in the cubic pyrochlores structure. Antiferromagnetic ordering below ∝0.5 K has been observed by magnetic susceptibility and heat capacity measurements for both compounds.

  9. Low electron density of states at the boron site of TMB{sub 2} (TM = Ti, Zr, Hf, and Nb): a {sup 11}B NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, S.; Zogal, O.J.; Peshev, P

    2004-11-30

    The local density of states at the boron site in TMB{sub 2} (TM=Ti, Zr, Hf, and Nb) has been examined using the solid-state {sup 11}B NMR technique. The magic angle spinning (MAS) NMR spectra at room temperature and the spin-lattice relaxation rates have been measured as functions of temperature (30-293 K). The resonance line shifts are small and become more negative in the direction from 3d- to 5d-elements. The relaxation rates follow a linear law characteristic of hyperfine magnetic interaction with conduction electrons. With borides of IV group metals the data can be understood in terms of a very low s-electron density of states and absence of a p-character of the conduction electron wave function at the Fermi level while in the case of NbB{sub 2} a small partial p-electron density of states is assumed. Then, the results are in good agreement with the earlier theoretical prediction.

  10. Advancing Understanding of the +4 Metal Extractant Thenoyltrifluoroacetonate (TTA-); Synthesis and Structure of MIVTTA4 (MIV = Zr, Hf, Ce, Th, U, Np, Pu) and MIII(TTA)4- (MIII = Ce, Nd, Sm, Yb).

    Science.gov (United States)

    Cary, Samantha K; Livshits, Maksim; Cross, Justin N; Ferrier, Maryline G; Mocko, Veronika; Stein, Benjamin W; Kozimor, Stosh A; Scott, Brian L; Rack, Jeffrey J

    2018-04-02

    Thenoyltrifluoroacetone (HTTA)-based extractions represent popular methods for separating microscopic amounts of transuranic actinides (i.e., Np and Pu) from macroscopic actinide matrixes (e.g. bulk uranium). It is well-established that this procedure enables +4 actinides to be selectively removed from +3, + 5, and +6 f-elements. However, even highly skilled and well-trained researchers find this process complicated and (at times) unpredictable. It is difficult to improve the HTTA extraction-or find alternatives-because little is understood about why this separation works. Even the identities of the extracted species are unknown. In addressing this knowledge gap, we report here advances in fundamental understanding of the HTTA-based extraction. This effort included comparatively evaluating HTTA complexation with +4 and +3 metals (M IV = Zr, Hf, Ce, Th, U, Np, and Pu vs M III = Ce, Nd, Sm, and Yb). We observed +4 metals formed neutral complexes of the general formula M IV (TTA) 4 . Meanwhile, +3 metals formed anionic M III (TTA) 4 - species. Characterization of these M(TTA) 4 x- ( x = 0, 1) compounds by UV-vis-NIR, IR, 1 H and 19 F NMR, single-crystal X-ray diffraction, and X-ray absorption spectroscopy (both near-edge and extended fine structure) was critical for determining that Np IV (TTA) 4 and Pu IV (TTA) 4 were the primary species extracted by HTTA. Furthermore, this information lays the foundation to begin developing and understanding of why the HTTA extraction works so well. The data suggest that the solubility differences between M IV (TTA) 4 and M III (TTA) 4 - are likely a major contributor to the selectivity of HTTA extractions for +4 cations over +3 metals. Moreover, these results will enable future studies focused on explaining HTTA extractions preference for +4 cations, which increases from Np IV to Pu IV , Hf IV , and Zr IV .

  11. On fluorozirconates and fluorohafnates of rare earths

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Antipov, P.I.; Novoselova, A.V.

    1980-01-01

    It has been shown by the method of X-ray phase analysis that on interaction between rare-earth fluorides and zirconium and hafnium tetrafluorides, compounds with 1:1, 1:2, 1:3 molar ratios of components are formed. Compounds of the LnHfF 4 type are prepared for all rare-earths. Fluoro-metals of the LnHf 2 F 11 composition are typical only of light lanthanides from lanthanum to neodymium, while pentafluorated salts Ln(EF 5 ) 3 are formed in the reaction between EF 4 with fluorides of heavy rare-earth elements from samarium to lutecium, as well as with yttrium trifluoride. Parameters of unit cells of heptafluohafnates and pentafluometallates are determined

  12. Thermal evolution of CaO-doped HfO{sub 2} films and powders

    Energy Technology Data Exchange (ETDEWEB)

    Barolin, S A; Sanctis, O A de [Lab. Materiales Ceramicos, FCEIyA, Universidad Nacional de Rosario, IFIR-CONICET (Argentina); Caracoche, M C; Martinez, J A; Taylor, M A; Pasquevich, A F [Departamento de Fisica, FCE, Universidad Nacional de La Plata, IFLP-CONICET (Argentina); Rivas, P C, E-mail: oski@fceia.unr.edu.a [Facultad de Ciencias Agronomicas y Forestales, Universidad Nacional de La Plata, IFLP (Argentina)

    2009-05-01

    Solid solutions of ZrO2 and HfO2 are potential electrolyte materials for intermediate-temperature SOFC because both are oxygen-ion conductors. The main challenge for these compounds is to reduce the relatively high value of the activation energies vacancies diffusion, which is influenced by several factors. In this work the thermal evolution of CaO-HfO{sub 2} materials have been investigated. (CaO)y-Hf(1-y)O(2-y) (y = 0.06, 0.14 y 0.2) coatings and powders were synthesized by chemical solution deposition (CSD). Films were deposited onto alumina substrates by Dip Coating technique, the burning of organic waste was carried out at 500 deg. C under normal atmosphere and then the films were thermally treated at intervals of temperature rising to a maximum temperature of 1250 deg. C. By means Glazing Incidence X-ray Diffraction (rho-2theta configuration) the phases were studied in the annealed films. On the other hand, the thermal evolution and crystallization process of powders were analyzed in-situ by HT-XRD. The phenomena crystallization occurred in films and powders were analyzed. The activation energies of diffusion of oxygen vacancies of HfO2-14 mole% CaO and HfO2-20 mole% CaO films were measured from the thermal evolution of the relaxation constant measured by Perturbed Angular Correlation Technique.

  13. Zr-92(d,p)Zr-93 and Zr-92(d,t)Zr-91

    Science.gov (United States)

    Baron, N.; Fink, C. L.; Christensen, P. R.; Nickels, J.; Torsteinsen, T.

    1972-01-01

    The structures of Zr-93 and Zr-91 were studied by the stripping reaction Zr-92(d,p)Zr-93 and the pick-up reaction Zr-92(d,t)Zr-91 using 13 MeV incident deuterons. The reaction product particles were detected by counter telescope. Typical spectra from the reactions were analyzed by a nonlinear least squares peak fitting program which included a background search. Spin and parity assignments to observed excited levels were made by comparing experimental angular distributions with distorted wave Born approximation calculations.

  14. Fabrication of U-Pu-Zr metallic fuel containing minor actinides

    International Nuclear Information System (INIS)

    Kurata, Masaki; Sasahara, Akihiro; Inoue, Tadashi; Betti, M.; Babelot, J.F.; Spirlet, J.C.; Koch, L.

    1997-01-01

    Rods of UPuZr alloy containing 5% minor actinides, 2% minor actinides and 2% rare-earth elements, and 5% minor actinides and 5% rare-earth elements have been fabricated by casting in yttria molds. Parts of the ingots were cut off for quantitative analysis and the rods characterized to the required extent, which included measurement of length, weight, diameter, and bending. For selected samples, metallographic study was carried out to examine the dispersion of the various phases contained in the alloy. Finally, the rods were encapsulated in stainless steel pin with the UPuZr reference after sodium bonding for the irradiation study. (author)

  15. Rare Mineralogy in Alkaline Ultramafic Rocks, Western Kentucky Fluorspar District

    Science.gov (United States)

    Anderson, W.

    2017-12-01

    The alkaline ultramafic intrusive dike complex in the Western Kentucky Fluorspar District contains unusual mineralogy that was derived from mantle magma sources. Lamprophyre and peridotite petrologic types occur in the district where altered fractionated peridotites are enriched in Rare Earth Elements (REE) and some lamprophyre facies are depleted in incompatible elements. Unusual minerals in dikes, determined by petrography and X-ray diffraction, include schorlomite and andradite titanium garnets, astrophyllite, spodumene, niobium rutile, wüstite, fluoro-tetraferriphlogopite, villiaumite, molybdenite, and fluocerite, a REE-bearing fluoride fluorescent mineral. Mixing of MVT sphalerite ore fluids accompanies a mid-stage igneous alteration and intrusion event consistent with paragenetic studies. The presence of lithium in the spodumene and fluoro-tetraferriphlogopite suggests a lithium phase in the mineral fluids, and the presence of enriched REE in dikes and fluorite mineralization suggest a metasomatic event. Several of these rare minerals have never been described in the fluorspar district, and their occurrence suggests deep mantle metasomatism. Several REE-bearing fluoride minerals occur in the dikes and in other worldwide occurrences, they are usually associated with nepheline syenite and carbonatite differentiates. There is an early and late stage fluoride mineralization, which accompanied dike intrusion and was also analyzed for REE content. One fluorite group is enriched in LREE and another in MREE, which suggests a bimodal or periodic fluorite emplacement. Whole-rock elemental analysis was chondrite normalized and indicates that some of the dikes are slightly enriched in light REE and show a classic fractionation enrichment. Variations in major-element content; high titanium, niobium, and zirconium values; and high La/Yb, Zr/Y, Zr/Hf, and Nb/Ta ratios suggest metasomatized lithospheric-asthenospheric mantle-sourced intrusions. The high La/Yb ratios in some

  16. High pressure phase transitions and compressibilities of Er2Zr2O7 and Ho2Zr2O7

    Science.gov (United States)

    Zhang, F. X.; Lang, M.; Becker, U.; Ewing, R. C.; Lian, J.

    2008-01-01

    Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of ˜22 and ˜30GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.

  17. High Pressure Phase Transitions and Compressibilities of Er2Zr2O7 and Ho2Zr2O7

    Energy Technology Data Exchange (ETDEWEB)

    Zhang,F.; Lang, M.; Becker, U.; Ewing, R.; Lian, J.

    2008-01-01

    Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of {approx} 22 and {approx} 30 GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.

  18. Quantum oscillation evidence for a topological semimetal phase in ZrSnTe

    Science.gov (United States)

    Hu, Jin; Zhu, Yanglin; Gui, Xin; Graf, David; Tang, Zhijie; Xie, Weiwei; Mao, Zhiqiang

    2018-04-01

    The layered WHM-type (W =Zr /Hf /La , H =Si /Ge /Sn /Sb , M =S /Se /Te ) materials represent a large family of topological semimetals, which provides an excellent platform to study the evolution of topological semimetal state with the fine tuning of spin-orbit coupling and structural dimensionality for various combinations of W , H , and M elements. In this work, through high field de Haas-van Alphen (dHvA) quantum oscillation studies, we have found evidence for the predicted topological nontrivial bands in ZrSnTe. Furthermore, from the angular dependence of quantum oscillation frequency, we have revealed the three-dimensional Fermi surface topologies of this layered material owing to strong interlayer coupling.

  19. Systematic study on the electronic structure and mechanical properties of X2BC (X = Mo, Ti, V, Zr, Nb, Hf, Ta and W)

    International Nuclear Information System (INIS)

    Bolvardi, H; Emmerlich, J; To Baben, M; Music, D; Schneider, J M; Von Appen, J; Dronskowski, R

    2013-01-01

    In this work the electronic structure and mechanical properties of the phases X 2 BC with X =Ti, V, Zr, Nb, Mo, Hf, Ta, W (Mo 2 BC-prototype) were studied using ab initio calculations. As the valence electron concentration (VEC) per atom is increased by substitution of the transition metal X, the six very strong bonds between the transition metal and the carbon shift to lower energies relative to the Fermi level, thereby increasing the bulk modulus to values of up to 350 GPa, which corresponds to 93% of the value reported for c-BN. Systems with higher VEC appear to be ductile as inferred from both the more positive Cauchy pressure and the larger value of the bulk to shear modulus ratio (B/G). The more ductile behavior is a result of the more delocalized interatomic interactions due to larger orbital overlap in smaller unit cells. The calculated phase stabilities show an increasing trend as the VEC is decreased. This rather unusual combination of high stiffness and moderate ductility renders X 2 BC compounds with X = Ta, Mo and W as promising candidates for protection of cutting and forming tools.

  20. Influence of some metal substitutions on the superconducting behaviour of molybdenum borocarbide. [Mo/sub 2-x/M/sub x/BC; M = Zr, Nb, Rh, Hf, Ta, or W

    Energy Technology Data Exchange (ETDEWEB)

    Lejay, P.; Chevalier, B.; Etourneau, J.; Hagenmuller, P. [Bordeaux-1 Univ., 33 - Talence (France)

    1981-11-15

    The superconducting properties of the Mosub(2-x)Msub(x)BC borocarbides (M equivalent to Zr, Nb, Rh, Hf, Ta, W) are reported. They have an Mo/sub 2/BC-type structure with orthorhombic symmetry and the space group Cmcm. Stoichiometric powder samples were prepared by arc melting. A large single crystal of Mo/sub 2/BC was obtained by a Czochralski-type method. The upper limit of x depends mainly on the size of the M atoms. A study of the magnetization as a function of field at different temperatures shows that all borocarbides are type II superconductors. Resistivity measurements give generally a critical temperature Tsub(cr) above 4.2 K. Tsub(cr) and the critical fields Hsub(c2) increase for rhodium substitution but decrease in other cases. For comparison the superconducting properties are discussed in terms of the valence electron concentration and the molar volume.

  1. Hf-Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii

    Science.gov (United States)

    Bizimis, Michael; Sen, Gautam; Salters, Vincent J. M.

    2004-01-01

    We present a detailed geochemical investigation on the Hf, Nd and Sr isotope compositions and trace and major element contents of clinopyroxene mineral separates from spinel lherzolite xenoliths from the island of Oahu, Hawaii. These peridotites are believed to represent the depleted oceanic lithosphere beneath Oahu, which is a residue of a MORB-related melting event some 80-100 Ma ago at a mid-ocean ridge. Clinopyroxenes from peridotites from the Salt Lake Crater (SLC) show a large range of Hf isotopic compositions, from ɛHf=12.2 (similar to the Honolulu volcanics series) to extremely radiogenic, ɛHf=65, at nearly constant 143Nd/ 144Nd ratios ( ɛNd=7-8). None of these samples show any isotopic evidence for interaction with Koolau-type melts. A single xenolith from the Pali vent is the only sample with Hf and Nd isotopic compositions that falls within the MORB field. The Hf isotopes correlate positively with the degree of depletion in the clinopyroxene (e.g. increasing Mg#, Cr#, decreasing Ti and heavy REE contents), but also with increasing Zr and Hf depletions relative to the adjacent REE in a compatibility diagram. The Lu/Hf isotope systematics of the SLC clinopyroxenes define apparent ages of 500 Ma or older and these compositions cannot be explained by mixing between any type of Hawaiian melts and the depleted Pacific lithosphere. Metasomatism of an ancient (e.g. 1 Ga or older) depleted peridotite protolith can, in principle, explain these apparent ages and the Nd-Hf isotope decoupling, but requires that the most depleted samples were subject to the least amount of metasomatism. Alternatively, the combined isotope, trace and major element compositions of these clinopyroxenes are best described by metasomatism of the 80-100 Ma depleted oceanic lithosphere by melts products of extensive mantle-melt interaction between Honolulu Volcanics-type melts and the depleted lithosphere.

  2. Epitaxial YBa2Cu3O7-x nanocomposite films and coated conductors from BaMO3 (M = Zr, Hf) colloidal solutions

    Science.gov (United States)

    Obradors, X.; Puig, T.; Li, Z.; Pop, C.; Mundet, B.; Chamorro, N.; Vallés, F.; Coll, M.; Ricart, S.; Vallejo, B.; Pino, F.; Palau, A.; Gázquez, J.; Ros, J.; Usoskin, A.

    2018-04-01

    Superconducting nanocomposites are the best material choice to address the performance required in power applications and magnets working under high magnetic fields. However, it is still challenging to sort out how to achieve the highest superconducting performance using attractive and competitive manufacturing processes. Colloidal solutions have been recently developed as a novel and very promising low cost route to manufacture nanocomposite coated conductors. Well dispersed and stabilized preformance nanoparticle solutions are first prepared with high concentrations and then mixed with the YBa2Cu3O7 metalorganic precursor solutions to generate colloidal solutions to grow the nanocomposite films. Here we demonstrate, for the first time, that non-reactive BaZrO3 and BaHfO3 perovskite preformed nanoparticles are suitable for growing high quality thin and thick films, and coated conductors with a homogeneous distribution and controlled particle size using this fabrication method. Additionally, we extend the nanoparticle content of the nanocomposites up to 20%-25% mol without any degradation of the superconducting properties. Thick nanocomposite films, up to 0.8 μm, have been prepared with a single deposition of low-fluorine solutions using an ink jet printing dispenser and we demonstrate that the preformed nanoparticles display only a very limited coarsening during the growth process and so high critical current densities J c (B) under high magnetic fields. These films show the highest critical currents achieved so far based on the colloidal solution approach, I c = 220 A/cm-w at 77 K and self-field, and they still have a high potential for further increase in the film thickness. Finally, we also show that nanocomposite YBa2Cu3O7-BaZrO3 coated conductors based on an alternating beam assisted deposited YSZ buffer layer on stainless steel metallic substrates can be developed based on these novel colloidal solutions. Non-reactive preformed oxide perovskite

  3. Interfacial and Electrical Properties of Ge MOS Capacitor by ZrLaON Passivation Layer and Fluorine Incorporation

    Science.gov (United States)

    Huang, Yong; Xu, Jing-Ping; Liu, Lu; Cheng, Zhi-Xiang; Lai, Pui-To; Tang, Wing-Man

    2017-09-01

    Ge Metal-Oxide-Semiconductor (MOS) capacitor with HfTiON/ZrLaON stacked gate dielectric and fluorine-plasma treatment is fabricated, and its interfacial and electrical properties are compared with its counterparts without the ZrLaON passivation layer or the fluorine-plasma treatment. Experimental results show that the sample exhibits excellent performances: low interface-state density (3.7×1011 cm-2eV-1), small flatband voltage (0.21 V), good capacitance-voltage behavior, small frequency dispersion and low gate leakage current (4.41×10-5 A/cm2 at Vg = Vfb + 1V). These should be attributed to the suppressed growth of unstable Ge oxides on the Ge surface during gate-dielectric annealing by the ZrLaON interlayer and fluorine incorporation, thus greatly reducing the defective states at/near the ZrLaON/Ge interface and improving the electrical properties of the device.

  4. Report on the Fracture Analysis of HfB(sub 2)-SiC and ZrB(sub 2)-SiC Composites; TOPICAL

    International Nuclear Information System (INIS)

    MECHOLSKY, JR. JOHN J.

    2001-01-01

    Hafnium diboride-silicon carbide (HS) and zirconium diboride-silicon carbide (ZS) composites are potential materials for high temperature, thermal shock applications such as for components on re-entry vehicles. In order to establish material constants necessary for evaluation of in situ fracture, bars fractured in four-point flexure were examined using fractographic principles. The fracture toughness was determined from measurements of the critical crack sizes and the strength values and the crack branching constants were established to use in forensic fractography for future in-flight tests. The fracture toughnesses range from about 13 MPam(sup 1/2) at room temperature to about 6 MPam(sup 1/2) at 1400 C for ZrB(sub 2)-Sic composites and from about 13 MPam(sup 1/2) at room temperature to about 4 MPam(sup 1/2) at 1400 C for HfB(sub 2)-SiC composites. Thus, the toughnesses of either the HS or ZS composites have the potential for use in thermal shock applications. Processing and manufacturing defects limited the strength of the test bars. However, examination of the microstructure on the fracture surfaces shows that the processing of these composites can be improved. There is potential for high toughness composites with high strength to be used in thermal shock conditions if the processing and handling are controlled

  5. Geochemical characteristics of trace and rare earth elements in Xiangyangping uranium deposit of Guangxi

    International Nuclear Information System (INIS)

    Chen Qi; Xiao Jianjun; Fan Liting; Wen Cheng

    2013-01-01

    The trace and rare earth elements analysis were performed on two kinds ore-hosting rocks (Xiangcaoping granite and Douzhashan granite), alternated cataclastic granite and uranium ores in Xiangyangping uranium deposit of Guangxi. The results show that both of the two kinds granites display similar maturity features of highly evolved crust with the enrichment of Rb, Th, U, Ta and Pb, the depletion of Ba and Sr, high Rb/Sr and low Nb/Ta ratio, moderately rich light rare earth elements, strong negative Eu anomaly. Moreover, Douzhashan granite have higher Rb/Sr ratio and U content, which indicate it experienced more sufficient magma evolution and have higher potential of uranium source. There are almost no change in the content of trace and rare earth elements and distribution patterns during chloritization, hydromicazation and potash feldspathization of granite, but there occurred uranium enrichment and mineralization and REE remobilization while hematitization was superposed. This suggest that hematitization is most closely correlated with uranium mineralization in the working area. Because Most hematitization cataclastic rocks and uranium ore display similar geochemical characteristics to Douzhashan granite with relative high Rb/Sr and low Nb/Ta, Zr/Hf, ΣREE, LREE/HREE ration, and the trace and rare earth elements content and distribution patterns of some Xiangcaoping hematitization cataclastic rocks are between the two kinds of granite, therefore it can be concluded that the mineralization materials were mainly from Douzhashan granite and partly from Xiangcaoping granite. (authors)

  6. Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget

    Science.gov (United States)

    Kim, Si Joon; Narayan, Dushyant; Lee, Jae-Gil; Mohan, Jaidah; Lee, Joy S.; Lee, Jaebeom; Kim, Harrison S.; Byun, Young-Chul; Lucero, Antonio T.; Young, Chadwin D.; Summerfelt, Scott R.; San, Tamer; Colombo, Luigi; Kim, Jiyoung

    2017-12-01

    We report on atomic layer deposited Hf0.5Zr0.5O2 (HZO)-based capacitors which exhibit excellent ferroelectric (FE) characteristics featuring a large switching polarization (45 μC/cm2) and a low FE saturation voltage (˜1.5 V) as extracted from pulse write/read measurements. The large FE polarization in HZO is achieved by the formation of a non-centrosymmetric orthorhombic phase, which is enabled by the TiN top electrode (TE) having a thickness of at least 90 nm. The TiN films are deposited at room temperature and annealed at 400 °C in an inert environment for at least 1 min in a rapid thermal annealing system. The room-temperature deposited TiN TE acts as a tensile stressor on the HZO film during the annealing process. The stress-inducing TiN TE is shown to inhibit the formation of the monoclinic phase during HZO crystallization, forming an orthorhombic phase that generates a large FE polarization, even at low process temperatures.

  7. Pure and Y-substituted BaZrO3 ceramics. A possible support material for fabrication of YBa2Cu3O7-x high-Tc superconductors

    International Nuclear Information System (INIS)

    Wang Xiandong.

    1993-01-01

    This thesis concerns the preparation and characterization of cuprate based high-T c superconductors (Y-123 and Bi-2223) and especially development and testing of BaZrO 3 based materials. The formation of YBa 2 Cu 3 O y (Y-123) by a CO 2 -free route involving reaction sintering of stoichiometric mixtures of chemically prepared fine powders of Y 2 BaCuO 5 , BaCuO 2 and CuO have been studied by thermal and XRD analysis. The synthesis and sintering of BaZrO 3 powders prepared by the hydroxide-alkoxide-methanol sol-gel route have been studied. The phase relations in the system BaO-Y 2 O 3 -ZrO 2 have been studied to determine the solid solubility limits for the perovskite phase Ba X Y Y Zr Z O N (X+X+Z=3) at 1500 deg. C. In the binary system Y 2 O 3 -BaZrO 3 the solubility limit was found to be ≅19 mol% Y 2 O 3 , i.e. Ba 0.81 Y 0. 4 2 Zr 0.81 O 3 . along the joint BaYO 2.5 -Ba the boundary was determined to be at BaY 0.21 Zr 0 . 79 O 2.895 . evidence for a new solid solution series between Ba 3 Y 4 O 9 and ZrO 2 are given, and a partial 1500 deg. C phase diagram for the ternary system BaO-Y 2 O 3 -ZrO 2 is presented. The growth of BaZrO 3 single crystals have been attempted both by a laser zone floating technique and flux methods. The compatibility between YBa 2 Cu 3 O 7 -X and BaZrO 3 , Ba X Y Y Zr Z O 3-δ as well as BaHfO 3 have been studied at 950 deg. and 1050 deg. C. The results show the four most promising candidates as support materials for fabrication of YBa 2 Cu 3 O y to be BaHfO 3 , BaY 0.05 Zr 0.95 O 2.975 , , BaZrO 3 and BaY 0.1 Zr 0.9 O 2.95 . (EG)

  8. Rare Earth-Activated Silica-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    C. Armellini

    2007-01-01

    Full Text Available Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented.

  9. Capacitor Property and Leakage Current Mechanism of ZrO2 Thin Dielectric Films Prepared by Anodic Oxidation

    Science.gov (United States)

    Kamijyo, Masahiro; Onozuka, Tomotake; Shinkai, Satoko; Sasaki, Katsutaka; Yamane, Misao; Abe, Yoshio

    2003-07-01

    Polycrystalline ZrO2 thin film capacitors were prepared by anodizing sputter-deposited Zr films. Electrical measurements are performed for the parallel-plate anodized capacitors with an Al-ZrO2-Zr (metal-insulator-metal) structure, and a high capacitance density (0.6 μF/cm2) and a low dielectric loss of nearly 1% are obtained for a very thin-oxide capacitor anodized at 10 V. In addition, the leakage current density of this capacitor is about 1.8 × 10-8 A/cm2 at an applied voltage of 5 V. However, the leakage current is somewhat larger than that of a low-loss HfO2 capacitor. The leakage current density (J) of ZrO2 capacitors as a function of applied electric field (E) was investigated for several capacitors with different oxide thicknesses, by plotting \\ln(J) vs E1/2 curves. As a result, it is revealed that the conduction mechanism is due to the Poole-Frenkel effect, irrespective of the oxide thickness.

  10. Improved method for Hf separation from silicate rocks for isotopic analysis using Ln-spec resin column

    International Nuclear Information System (INIS)

    Shinjo, Ryuichi; Ginoza, Yuko; Meshesha, Daniel

    2010-01-01

    An improved chemical separation method for Hf isotope ratio measurement using both the thermal ionization mass spectrometer (TIMS) and the multiple collector-inductively coupled plasma-mass spectrometer (MC-ICP-MS) is presented in this paper. In the first column (2.5-ml Eichrom Ln-spec resin), Hf cut was collected with 2M HCl-0.2M HF after washing the major elements, HREE, Ti, Nb, and Zr. For further Hf purification, the second column (1-ml Ln-spec resin) chemistry was conducted in a manner similar to that of the first column. The first column is designed for treatment with a 0.5-g silicate rock sample for TIMS analysis. Thus, because the Hf amount required for MC-ICP-MS analysis is much lesser than that required for TIMS analysis, the column chemistry for MC-ICP-MS analysis can be scaled down, depending on the amount of digested sample. Although there is a need to improve the TIMS technique, the TIMS Hf data obtained for geological reference rocks and Ethiopian flood basalts after the application of the proposed separation methods are consistent, within analytical error, with the previously reported data obtained using the MC-ICP-MS. The advantages of the proposed method include a reduction in the amount of reagents used (hence, a consequent reduction in the blank contribution), reduction in the time required, and a simplified preparation requiring a fewer number of acids. (author)

  11. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya

    2014-01-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  12. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  13. Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China

    Science.gov (United States)

    Jiang, Shao-Yong; Chen, Yong-Quan; Ling, Hong-Fei; Yang, Jing-Hong; Feng, Hong-Zhen; Ni, Pei

    2006-08-01

    The Lower Cambrian black shale sequence of the Niutitang Formation in the Yangtze Platform, South China, hosts an extreme metal-enriched sulfide ore bed that shows >10,000 times enrichment in Mo, Ni, Se, Re, Os, As, Hg, and Sb and >1,000 times enrichment in Ag, Au, Pt, and Pd, when compared to average upper continental crust. We report in this paper trace- and rare-earth-element concentrations and Pb-Pb isotope dating for the Ni-Mo-PGE-Au sulfide ores and their host black shales. Both the sulfide ores and their host black shales show similar trace-element distribution patterns with pronounced depletion in Th, Nb, Hf, Zr, and Ti, and extreme enrichment in U, Ni, Mo, and V compared to average upper crust. The high-field-strength elements, such as Zr, Hf, Nb, Ta, Sc, Th, rare-earth elements, Rb, and Ga, show significant inter-element correlations and may have been derived mainly from terrigenous sources. The redox sensitive elements, such as V, Ni, Mo, U, and Mn; base metals, such as Cu, Zn, and Pb; and Sr and Ba may have been derived from mixing of seawater and venting hydrothermal sources. The chondrite-normalized REE patterns, positive Eu and Y anomalies, and high Y/Ho ratios for the Ni-Mo-PGE-Au sulfide ores are also suggestive for their submarine hydrothermal-exhalative origin. A stepwise acid-leaching Pb-Pb isotope analytical technique has been employed for the Niutitang black shales and the Ni-Mo-PGE-Au sulfide ores, and two Pb-Pb isochron ages have been obtained for the black shales (531±24 Ma) and for the Ni-Mo-PGE-Au sulfide ores (521±54 Ma), respectively, which are identical and overlap within uncertainty, and are in good agreement with previously obtained ages for presumed age-equivalent strata.

  14. Transmission electron microscopic study of pyrochlore to defect-fluorite transition in rare-earth pyrohafnates

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Chinnathambi, E-mail: Karthikchinnathambi@boisestate.edu [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415 (United States); Anderson, Thomas J. [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Gout, Delphine [Oak Ridge National Lab, Neutron Scattering Science Division, Oak Ridge, TN (United States); Ubic, Rick [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415 (United States)

    2012-10-15

    A structural transition in rare earth pyrohafnates, Ln{sub 2}Hf{sub 2}O{sub 7} (Ln=Y, La, Pr, Nd, Tb, Dy, Yb and Lu), has been identified. Neutron diffraction showed that the structure transforms from well-ordered pyrochloric to fully fluoritic through the lanthanide series from La to Lu with a corresponding increase in the position parameter x of the 48f (Fd3{sup Macron }m) oxygen site from 0.330 to 0.375. As evidenced by the selected area electron diffraction, La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} exhibited a well-ordered pyrocholoric structure with the presence of intense superlattice spots, which became weak and diffuse (in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}) before disappearing completely as the series progressed towards the Lu end. High resolution electron microscopic studies showed the breakdown of the pyrochlore ordering in the form of antiphase domains resulting in diffused smoke-like superlattice spots in the case of Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. - Graphical abstract: Transmission electron microscopic studies showed the ordered pyrochlore to defect fluorite transition in rare-earth pyrohafnates to occur via the formation of anti-phase domains to start with. Highlights: Black-Right-Pointing-Pointer Pyrochlore to fluorite structural transition in rare earth pyrohafnates. Black-Right-Pointing-Pointer La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} showed well ordered pyrochlore structure. Black-Right-Pointing-Pointer Short range ordering in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Break down of pyrochlore ordering due to antiphase boundaries. Black-Right-Pointing-Pointer Rest of the series showed fluoritic structure.

  15. Dosimetry of ultraviolet radiation with BaHfO{sub 3} powders; Dosimetria de radiacion ultravioleta con polvos de BaHfO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Barrera A, A. A.; Aguilar D, G. A.; Guzman M, J.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Ciudad de Mexico (Mexico); Ceron R, V., E-mail: abalba1@hotmail.com [Universidad de Guanajuato, 37670 Leon, Guanajuato (Mexico)

    2016-10-15

    Ceramic materials based on pure barium hafnate (BaHfO{sub 3}) have been obtained as a powder by the co-precipitation method. The powders obtained have a cubic structure that favors the thermoluminescent and optical properties, through which a better detection of the non-ionizing radiation is allowed. With these powders various tests were performed in the ultraviolet range at different exposure times. These thermoluminescent (Tl) studies were carried out using a Tl 3500 hand held reader which yielded a brightness curve that ranged from room temperature to the 350 degrees Celsius. This BaHfO{sub 3} response exhibits a broad brightness curve with a single peak centered around 225 degrees Celsius. Finally, is reported that there are materials of barium hafnate (BaHfO{sub 3}) doped with some rare earths (Eu, Tb) which, instead of improving the performance of the powders, decrease it, so that the use of intrinsic barium hafnate is the most appropriate. (Author)

  16. Hf layer thickness dependence of resistive switching characteristics of Ti/Hf/HfO2/Au resistive random access memory device

    Science.gov (United States)

    Nakajima, Ryo; Azuma, Atsushi; Yoshida, Hayato; Shimizu, Tomohiro; Ito, Takeshi; Shingubara, Shoso

    2018-06-01

    Resistive random access memory (ReRAM) devices with a HfO2 dielectric layer have been studied extensively owing to the good reproducibility of their SET/RESET switching properties. Furthermore, it was reported that a thin Hf layer next to a HfO2 layer stabilized switching properties because of the oxygen scavenging effect. In this work, we studied the Hf thickness dependence of the resistance switching characteristics of a Ti/Hf/HfO2/Au ReRAM device. It is found that the optimum Hf thickness is approximately 10 nm to obtain good reproducibility of SET/RESET voltages with a small RESET current. However, when the Hf thickness was very small (∼2 nm), the device failed after the first RESET process owing to the very large RESET current. In the case of a very thick Hf layer (∼20 nm), RESET did not occur owing to the formation of a leaky dielectric layer. We observed the occurrence of multiple resistance states in the RESET process of the device with a Hf thickness of 10 nm by increasing the RESET voltage stepwise.

  17. Crystal chemistry and magnetic properties of ternary rare earth sulfides

    International Nuclear Information System (INIS)

    Plug, C.M.; Rijksuniversiteit Leiden

    1977-01-01

    The results of magnetic measurements on two groups of ternary rare earth sulphides are described, the MLnS 2 (M=Li, Na, K) type of compounds and the series Ln 2 ZrS 5 , where Ln denotes one of the rare earths. None of these compounds is metallic, excluding the possibility of RKKY-interaction. In chapter II a survey of the relevant theory on magnetic properties and crystal field splitting is given. In spite of the similarity in chemical properties of the rare earths, the crystal chemistry of their compounds is rather complex. This is due to the lanthanide contraction. The third chapter deals with the description and classification of the numerous crystal structures of both ternary and binary rare earth sulphides that have been observed. Rather simple relations between various structures are presented using a new method of structure classification. The magnetic interactions expected to be based on superexchange via the anions, which is usually very structure dependent. Experiments to study the crystallographic ordering, applying both X-ray and electron diffraction methods and the results of the magnetic measurements on the compounds MLnS 2 are reported in chapter IV. The compounds Ln 2 ZrS 5 are candidates for a systematic study of the variation of the magnetic properties along the rare earth series. The results of magnetic measurements on these compounds are presented in chapter V, combined with the results of specific heat measurements. Also the magnetic structure of two representatives, Tb 2 ZrS 5 and Dy 2 ZrS 5 , determined by neutron diffraction experiments below the ordering temperature, is reported

  18. Magnetic properties of amorphous alloys of Fe with La, Lu, Y, and Zr

    International Nuclear Information System (INIS)

    Heiman, N.; Kazama, N.

    1979-01-01

    In order to study the systematics of the Fe-Fe exchange in amorphous rare-earth--Fe alloys, without the complications associated with the magnetic characteristics of the rare-earth elements, amorphous films of Fe alloyed with La, Lu, Y, and Zr have been prepared with a wide range of Fe concentrations. Magnetization and Moessbauer-effect measurements were made. The magnetic properties of the alloys depended critically on the choice of rare earth (or rare-earth-like element). YFe and LuFe alloys were found to have spin-glass characteristics while LaFe and ZrFe alloys were found to be ferromagnetic, but with evidence that exchange fluctuations were nearly as large as the average exchange. Thus the nature of the Fe-Fe exchange interaction depends critically upon the species of the rare earth. The most important parameter in determining the magnetic behavior of these alloys appears to be the size of the rare-earth atom, with large rare-earth atoms resulting in a smaller ratio of exchange fluctuations to exchange. The same dependence of the magnetic properties upon rare-earth size appears to be important in the case of magnetic-rare-earth atoms; however, the effect of rare-earth--Fe exchange also becomes important and these effects are discussed

  19. Properties of phases in HfO2-TiO2 system

    International Nuclear Information System (INIS)

    Red'ko, V.P.; Terekhovskij, P.B.; Majster, I.M.; Shevchenko, A.V.; Lopato, L.M.; Dvernyakova, A.A.

    1990-01-01

    A study was made on axial and linear coefficients of thermal expansion (CTE) of HfO 2 -TiO 2 system samples in concentration range of 25-50 mol% TiO 2 . Samples, containing 35 and 37 mol% TiO 2 , are characterized by the lowest values of linear CTE. Dispersion of the basic substances doesn't affect CTE value. Correlation with axial and linear CTE of samples in ZrO 2 -TiO 2 system was conducted. Presence of anisotropy of change of lattice parameters was supported for samples, containing 37.5 and 40 mol% TiO 2 . Polymorphous transformations for hafnium titanate were not revealed

  20. Comparison of HfCl4, HfI4, TEMA-Hf, and TDMA-Hf as precursors in early growing stages of HfO2 films deposited by ALD: A DFT study

    International Nuclear Information System (INIS)

    Cortez-Valadez, M.; Fierro, C.; Farias-Mancilla, J.R.; Vargas-Ortiz, A.; Flores-Acosta, M.; Ramírez-Bon, R.; Enriquez-Carrejo, J.L.

    2016-01-01

    Highlights: • Hafnium oxide growth on Si(100) by atomic layer deposition was simulated. • The interface structure was considered as silicate and silicide. • The interface was studied employing DFT. • TDMA-Hf precursor show better interface stability. - Abstract: The final structure of HfO 2 films grown by atomic layer deposition (ALD) after reaction with OH − ions has been analyzed by DFT (density functional theory). The interaction of the precursors: HfCl 4 (hafnium tetrachloride), HfI 4 (hafnium tetraiodide), TEMA-Hf (tetrakis-ethylmethylamino hafnium), and TDMA-Hf (tetrakis-dimethylamino hafnium) with HO–H was studied employing the B3LYP (Becke 3-parameter, Lee–Yang–Parr) hybrid functional and the PBE (Perdew–Burke–Ernzerhof) generalized gradient functional. The structural evolution at the Si(100) surface has been analyzed by LDA (local density approximation). The structural parameters: bond length and bond angle, and the vibrational parameters for the optimized structures are also reported. The presence of hafnium silicate at the interface was detected. The infrared spectra and structural parameters obtained in this work agree with previously reported experimental results.

  1. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics

    Science.gov (United States)

    Kogarko, L. N.; Lahaye, Y.; Brey, G. P.

    2010-03-01

    The two world’s largest complexes of highly alkaline nepheline syenites and related rare metal loparite and eudialyte deposits, the Khibina and Lovozero massifs, occur in the central part of the Kola Peninsula. We measured for the first time in situ the trace element concentrations and the Sr, Nd and Hf isotope ratios by LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) in loparite, eudialyte an in some other pegmatitic minerals. The results are in aggreement with the whole rock Sr and Nd isotope which suggests the formation of these superlarge rare metal deposits in a magmatic closed system. The initial Hf, Sr, Nd isotope ratios are similar to the isotopic signatures of OIB indicating depleted mantle as a source. This leads to the suggestion that the origin of these gigantic alkaline intrusions is connected to a deep seated mantle source—possibly to a lower mantle plume. The required combination of a depleted mantle and high rare metal enrichment in the source can be explained by the input of incompatible elements by metasomatising melts/fluids into the zones of alkaline magma generation shortly before the partial melting event (to avoid ingrowth of radiogenic isotopes). The minerals belovite and pyrochlore from the pegmatites are abnormally high in 87Sr /86Sr ratios. This may be explained by closed system isotope evolution as a result of a significant increase in Rb/Sr during the evolution of the peralkaline magma.

  2. Comparison of HfCl4, HfI4, TEMA-Hf, and TDMA-Hf as precursors in early growing stages of HfO2 films deposited by ALD: A DFT study

    Science.gov (United States)

    Cortez-Valadez, M.; Fierro, C.; Farias-Mancilla, J. R.; Vargas-Ortiz, A.; Flores-Acosta, M.; Ramírez-Bon, R.; Enriquez-Carrejo, J. L.; Soubervielle-Montalvo, C.; Mani-Gonzalez, P. G.

    2016-06-01

    The final structure of HfO2 films grown by atomic layer deposition (ALD) after reaction with OH- ions has been analyzed by DFT (density functional theory). The interaction of the precursors: HfCl4 (hafnium tetrachloride), HfI4 (hafnium tetraiodide), TEMA-Hf (tetrakis-ethylmethylamino hafnium), and TDMA-Hf (tetrakis-dimethylamino hafnium) with HO-H was studied employing the B3LYP (Becke 3-parameter, Lee-Yang-Parr) hybrid functional and the PBE (Perdew-Burke-Ernzerhof) generalized gradient functional. The structural evolution at the Si(100) surface has been analyzed by LDA (local density approximation). The structural parameters: bond length and bond angle, and the vibrational parameters for the optimized structures are also reported. The presence of hafnium silicate at the interface was detected. The infrared spectra and structural parameters obtained in this work agree with previously reported experimental results.

  3. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when

  4. Ln3+ (Ln=Ce, Tb, Dy) and Hf doping of LuI3 powders – A material and spectroscopic study

    International Nuclear Information System (INIS)

    Wiatrowska, Aneta; Keur, Wilco; Ronda, Cees

    2016-01-01

    The moisture sensitivity of LuI 3 :Ce,Hf and luminescent properties of undoped LuI 3 and LuI 3 :M (M=Ce 3+ , Tb 3+ , Dy 3+ ) powders were investigated. The possibility of improving the air and moisture stability of LuI 3 :Ce by Hf doping was tested. It was proven that the Hf contribution to the LuI 3 :Ce stability is very limited and is insignificant to render LuI 3 :Ce scintillator powders suitable for applications. Photoluminescence results of LuI 3 without dopants added on purpose showed luminescence due to a plurality of rare-earth elements' impurities. Two types of self-trapped luminescence were found. Energy transfer between host lattice, self-trapped excitons and rare-earth ions was investigated.

  5. Hf Isotope Evidence for Subducted Basalt and Sediment Contributions to the Eastern Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Cai, Y.; Tuena, A. G.; Capra, L.; Straub, S. M.; Goldstein, S. L.; Langmuir, C. H.

    2005-12-01

    Magmas generated at thick crust continental arcs often have enriched continental crust-like trace element patterns and Pb-Sr-Nd isotope ratios that are intermediate to both upper mantle and crustal compositions. Thus it is difficult to distinguish between contributions from (a) the subducted basalt and the upper mantle wedge, and (b) subducted sediment and the continental crust. These issues have been the focus of major controversy. Here we show evidence for subduction contributions to lavas in a classic thick crust environment. In Eastern Trans-Mexican Volcanic Belt, the upper continental crust is 30 km to 45 km thick. However, primitive mafic lavas erupt on many sites across the arc. We have analyzed the subducting sediments as represented by DSDP 487, located seaward of the trench, where the lower third of the sediment column has strongly hydrothermal pelagic features and the upper two-thirds is composed of terrigenous sediments. The pelagic sediments have distinctive features that could be used to identify a subduction component in the volcanics, including high REE/Hf, negative Ce anomalies, and Nd-Hf isotopes that lie on the "seawater array" and offset from the "mantle-crust" array. We have focused on a unique series of lavas from volcano Nevado de Toluca, located southwest of Mexico City. These lavas show negative Ce anomalies coupled with low REE/Hf and Zr/Nd ratios. Hf-Nd isotope ratios show a shallow trend compared to the mantle-crust array, consistent with a pelagic component. In addition, Hf isotopes show a striking positive correlation with Ce anomalies that trend toward the pelagic sediment compositions. These and other observations provide clear evidence for a component from subducted sediment in the lavas. In addition, there is a negative correlation of Lu/Hf and Hf isotopes that requires a mixing endmember with MORB-like Hf isotope ratios but with lower than MORB Lu/Hf. This indicates a melt from eclogitic subducted basalt. Compared to other

  6. Dosimetry of ultraviolet radiation with BaHfO_3 powders

    International Nuclear Information System (INIS)

    Barrera A, A. A.; Aguilar D, G. A.; Guzman M, J.; Rivera M, T.; Ceron R, V.

    2016-10-01

    Ceramic materials based on pure barium hafnate (BaHfO_3) have been obtained as a powder by the co-precipitation method. The powders obtained have a cubic structure that favors the thermoluminescent and optical properties, through which a better detection of the non-ionizing radiation is allowed. With these powders various tests were performed in the ultraviolet range at different exposure times. These thermoluminescent (Tl) studies were carried out using a Tl 3500 hand held reader which yielded a brightness curve that ranged from room temperature to the 350 degrees Celsius. This BaHfO_3 response exhibits a broad brightness curve with a single peak centered around 225 degrees Celsius. Finally, is reported that there are materials of barium hafnate (BaHfO_3) doped with some rare earths (Eu, Tb) which, instead of improving the performance of the powders, decrease it, so that the use of intrinsic barium hafnate is the most appropriate. (Author)

  7. A new ion source for fission-yield measurements of rare-earth isotopes

    International Nuclear Information System (INIS)

    Pilzer, E.H.; Engler, G.

    1987-01-01

    A new integrated target-ion source for fission-yield measurements of rare-earth isotopes has been developed for the Soreq on-line isotope separator (SOLIS). The source is heated by electron bombardment to a temperature of 2400 0 C and ionization takes place in a rhenium hot cavity. To overcome the problem of impurities which reduce the ionization efficiency, a ZrC disk was inserted in the cavity. Calculations show that because of its high thermionic emission, ZrC enhances ionization performance considerably. For example, in the presence of 10 -5 mbar of cesium impurity, the ionization efficiency of a rhenium hot cavity for the rare-earth terbium is 6%. However, with a ZrC disk, the efficiency increases to 97%. (orig.)

  8. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shen, H.H.; Liu, L.; Liu, X.Z.; Guo, Q.; Meng, T.X.; Wang, Z.X.; Yang, H.J.; Liu, X.P., E-mail: liuxiaoping@tyut.edu.cn

    2016-12-01

    Highlights: • A Zr/ZrC modified layer was formed on AISI 440B stainless steel using plasma surface Zr-alloying. • The thickness of the modified layer increases with alloying temperature and time. • Formation mechanism of the modified layer is dependent on the mutual diffusion of Zr and substrate elements. • The modified surface shows an improved wear resistance. - Abstract: The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  9. Structural and morphological properties of HfxZr 1-xO2 thin films prepared by Pechini route

    KAUST Repository

    García-Cerda, L. A.

    2010-03-01

    In this study, HfxZr1-xO2 (0 < x < 1) thin films were deposited on silicon wafers using a dip-coating technique and by using a precursor solution prepared by the Pechini route. The effects of annealing temperature on the structure and morphological properties of the proposed films were investigated. HfxZr1-xO2 thin films with 1, 3 and 5 layers were annealed in air for 2 h at 600 and 800 °C and the structural and morphological properties studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results show that the films have monoclinic and tetragonal structure depending of the Hf and Zr concentration. SEM photographs show that all films consist of nanocrystalline grains with sizes in the range of 6 - 13 nm. The total film thickness is about 90 nm. © (2010) Trans Tech Publications.

  10. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    Science.gov (United States)

    Shen, H. H.; Liu, L.; Liu, X. Z.; Guo, Q.; Meng, T. X.; Wang, Z. X.; Yang, H. J.; Liu, X. P.

    2016-12-01

    The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  11. Greatly enhanced flux pinning properties of fluorine-free metal-organic decomposition YBCO films by co-addition of halogens (Cl, Br) and metals (Zr, Sn, Hf)

    Science.gov (United States)

    Motoki, Takanori; Ikeda, Shuhei; Nakamura, Shin-ichi; Honda, Genki; Nagaishi, Tatsuoki; Doi, Toshiya; Shimoyama, Jun-ichi

    2018-04-01

    Additive-free YBCO films, as well as those with halogen (X) added, metal (M) added and (X, M) co-added, have been prepared by the fluorine-free metal-organic decomposition method on SrTiO3(100) single crystalline substrates, where X = Cl, Br and M = Zr, Sn, Hf. It was revealed that the addition of both Cl and Br to the starting solution resulted in the generation of oxyhalide, Ba2Cu3O4 X 2, in the YBCO films, and that the oxyhalide was found to promote the bi-axial orientation of the YBCO crystals. By adding a decent amount of Cl or Br, highly textured YBCO films with high J c were reproducibly obtained, even when an impurity metal, M, was co-added, while the addition of M without X did not greatly improve J c owing to the poor bi-axial orientation of the YBCO crystals. Our results suggest that the addition of Br more effectively enhances J c than the addition of Cl. The pinning force density at 40 K in 4.8 T reached ˜55 GN m-3 with the co-addition of (Br, M). This value is much larger than that of the pure YBCO film, reaching ˜17 GN m-3.

  12. HF i dag

    DEFF Research Database (Denmark)

    Lindstrøm, Maria Duclos; Simonsen, Birgitte

    2008-01-01

    Notatet er lavet på baggrund af uddannelsesbiografiske dybdeinterviews med kursister på toårigt HF. Indenfor rammerne af en pilotundersøgelse identificerer notatet fire gennemgående profiler: De pragmatiske, de fagligt usikre, second chance-kursisterne, og de HF-kursister, som har HF som first...

  13. Strong broad green UV-excited photoluminescence in rare earth (RE = Ce, Eu, Dy, Er, Yb) doped barium zirconate

    Energy Technology Data Exchange (ETDEWEB)

    Borja-Urby, R. [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico); Diaz-Torres, L.A., E-mail: ditlacio@cio.mx [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro, Qro. 76000 (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Ciudad de Mexico, D. F. 07730 (Mexico); Meza, O. [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico)

    2011-10-25

    Highlights: > Trivalent rare earth (RE) substitution on Zr{sup 4+} sites in BaZrO{sub 3} lead to band gap narrowing. > RE substitution lead to enhanced blue-green intrinsic emission of nanocrystalline BaZrO{sub 3} > Blue-green hue of BaZrO3:RE depends on RE dopant and excitation UV wavelength > BaZrO3: Dy{sup 3+} PL chromatic coordinates correspond to pure white color coordinates of CIE 1931 model - Abstract: The wet synthesis hydrothermal method at 100 deg. C was used to elaborate barium zirconate (BaZrO{sub 3}) unpurified with 0.5 mol% of different rare earth ions (RE = Yb, Er, Dy, Eu, Ce). Morphological, structural and UV-photoluminescence properties depend on the substituted rare earth ionic radii. While the crystalline structure of RE doped BaZrO{sub 3} remains as a cubic perovskite for all substituted RE ions, its band gap changes between 4.65 and 4.93 eV. Under 267 nm excitation the intrinsic green photoluminescence of the as synthesized BaZrO{sub 3}: RE samples is considerably improved by the substitution on RE ions. For 1000 deg. C annealed samples, under 267 nm, the photoluminescence is dominated by the intrinsic BZO emission. It is interesting to notice that Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+} doped samples present whitish emissions that might be useful for white light generation under 267 nm excitation. CIE color coordinates are reported for all samples.

  14. Ionic exchange of Hf donor impurities in the wide-gap semiconductor Tm2O3

    International Nuclear Information System (INIS)

    Munoz, E.L.; Darriba, G.N.; Bibiloni, A.G.; Errico, L.A.; Renteria, M.

    2010-01-01

    The ionic exchange of Hf donor impurities in substitutional cationic sites of the cubic (bixbyite) phase of the wide-gap semiconductor Tm 2 O 3 was studied. The doping process was performed by ball-milling-assisted solid-state reaction of Tm 2 O 3 and neutron-activated m-HfO 2 . 181 Ta atoms, obtained by the β-decay of the 181 Hf-isotope, were used as probes in time-differential perturbed-angular-correlation (TDPAC) experiments carried out after each step of the doping process. The measured hyperfine interactions at 181 Ta sites enabled the electric-field gradient (EFG) characterization at representative Hf impurity sites of each step of the process. The efficiency and substitutional character of the exchange process is discussed and elucidated in the framework of an empirical EFG systematic established in isostructural rare-earth bixbyite sesquioxides.

  15. Separation and Recycling for Rare Earth Elements by Homogeneous Liquid-Liquid Extraction (HoLLE Using a pH-Responsive Fluorine-Based Surfactant

    Directory of Open Access Journals (Sweden)

    Shotaro Saito

    2015-08-01

    Full Text Available A selective separation and recycling system for metal ions was developed by homogeneous liquid-liquid extraction (HoLLE using a fluorosurfactant. Sixty-two different elemental ions (e.g., Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, Ir, La, Lu, Mg, Mn, Mo, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Re, Rh, Ru, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn, and Zr were examined. By changing pH from a neutral or alkaline solution (pH ≥ 6.5 to that of an acidic solution (pH < 4.0, gallium, zirconium, palladium, silver, platinum, and rare earth elements were extracted at >90% efficiency into a sedimented Zonyl FSA® (CF3(CF2n(CH22S(CH22COOH, n = 6–8 liquid phase. Moreover, all rare earth elements were obtained with superior extraction and stripping percentages. In the recycling of rare earth elements, the sedimented phase was maintained using a filter along with a mixed solution of THF and 1 M sodium hydroxide aqueous solution. The Zonyl FSA® was filtrated and the rare earth elements were recovered on the filter as a hydroxide. Furthermore, the filtrated Zonyl FSA was reusable by conditioning the subject pH.

  16. Comparison of HfCl{sub 4}, HfI{sub 4}, TEMA-Hf, and TDMA-Hf as precursors in early growing stages of HfO{sub 2} films deposited by ALD: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Cortez-Valadez, M. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190 Hermosillo, Son. (Mexico); Fierro, C.; Farias-Mancilla, J.R. [Instituto de Ingeniería y Tecnología, Departamento de Física y Matemáticas, Universidad Autónoma de Ciudad Juárez, Av. del Charro 450, Cd. Juárez C.P. 32310, Chihuahua (Mexico); Vargas-Ortiz, A. [Universidad Autónoma de Sinaloa, Facultad de Ingeniería Mochis, Ciudad Universitaria, C.P. 81223 Los Mochis, Sinaloa (Mexico); Flores-Acosta, M. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190 Hermosillo, Son. (Mexico); Ramírez-Bon, R. [Centro de Investigación y Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, 76001 Querétaro, Qro. (Mexico); Enriquez-Carrejo, J.L. [Instituto de Ingeniería y Tecnología, Departamento de Física y Matemáticas, Universidad Autónoma de Ciudad Juárez, Av. del Charro 450, Cd. Juárez C.P. 32310, Chihuahua (Mexico); and others

    2016-06-15

    Highlights: • Hafnium oxide growth on Si(100) by atomic layer deposition was simulated. • The interface structure was considered as silicate and silicide. • The interface was studied employing DFT. • TDMA-Hf precursor show better interface stability. - Abstract: The final structure of HfO{sub 2} films grown by atomic layer deposition (ALD) after reaction with OH{sup −} ions has been analyzed by DFT (density functional theory). The interaction of the precursors: HfCl{sub 4} (hafnium tetrachloride), HfI{sub 4} (hafnium tetraiodide), TEMA-Hf (tetrakis-ethylmethylamino hafnium), and TDMA-Hf (tetrakis-dimethylamino hafnium) with HO–H was studied employing the B3LYP (Becke 3-parameter, Lee–Yang–Parr) hybrid functional and the PBE (Perdew–Burke–Ernzerhof) generalized gradient functional. The structural evolution at the Si(100) surface has been analyzed by LDA (local density approximation). The structural parameters: bond length and bond angle, and the vibrational parameters for the optimized structures are also reported. The presence of hafnium silicate at the interface was detected. The infrared spectra and structural parameters obtained in this work agree with previously reported experimental results.

  17. Genesis of apocarbonatitic titanium metasomatites of the Petyayan-vara rare-earth occurrence (Vuoriyarvi, the Kola Region

    Directory of Open Access Journals (Sweden)

    Kozlov E. N.

    2018-03-01

    Full Text Available The objects of the study are apocarbonatitic titanium metasomatites ("titanium carbonatites" associated with the rare earth carbonatites of the Petyayan-Vara area of the Vuoriyarvi complex (the Kola region. In this paper, the following mechanism for the formation of these rocks has been substantiated based on the agreed results of mineralogical and geochemical studies. Prior to the onset of carbonatite genesis, a fluorine-enriched fluid phase originated in the lower horizons of the complex passed along the deep-permeating fracture system of several hundred meters length up to the level of the modern erosion surface. It transported Al, Fe2+, Mg, Ti, P into the pyroxenites and Si, Ca and Na out of them, as a result of which the pyroxenites were transformed into giant-grained phlogopite rocks – glimmerites. The most probable source of this fluid is alkaline aluminosilicate magma. Then carbonate melts intruded along the same fractures. In the course of carbonatite genesis, F-fluid caused a local migration of K, Al, Si, Fe, P, Ti, Nb, Ta, Zr, Hf and HREE out of glimmerites into igneous dolomite carbonatites, which led to the formation of apocarbonatitic titanium metasomatites. They represent several paragenetic associations superimposed on each other, the mineral composition and the formation sequence of which correspond to the metasomatic column zones directly observed within the contact "carbonatite – altered pyroxenite". The separation of HFSE and REE is controlled by the same metasomatic column: Ti, Nb and Ta were accumulated in titanium carbonatites, i. e. in associations of the frontal and intermediate zones, and Zr, Hf and HREE – in apatitized fields corresponding to the rear zone of the column. Accordingly, the fractionation of these elements occurred due to the "fluid – rock" interaction. Subsequently, the same long-lived fractures served as a channel for REE-Sr-Ba-S fluids, but the recrystallization caused by K

  18. Wet etching characteristics of a HfSiON high-k dielectric in HF-based solutions

    International Nuclear Information System (INIS)

    Li Yongliang; Xu Qiuxia

    2010-01-01

    The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 0 C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N 2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case. (semiconductor technology)

  19. Microhardness evaluation alloys Hf-Si-B; Avaliacao de microdureza de ligas Hf-Si-B

    Energy Technology Data Exchange (ETDEWEB)

    Gigolotti, Joao Carlos Janio; Costa, Eliane Fernandes Brasil [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Rocha, Elisa Gombio; Coelho, Gilberto Carvalho, E-mail: carlosjanio@uol.com.br, E-mail: eliane-costabrasi@hotmail.com, E-mail: cnunes@demar.eel.usp.br, E-mail: elisarocha@alunos.eel.usp.br, E-mail: coelho@demar.eel.usp.br [Universidade de Sao Paulo (USP), Lorena, SP (Brazil)

    2014-08-15

    The technological advance has generated increasing demand for materials that can be used under high temperature, what includes intermetallic MR-Si-B (MR = refractory metal) alloys with multiphase structures, that can also be applied in oxide environments. Thus, this work had for objective the micro hardness study of the Hf-Si-B system alloys, heat treated at 1600 deg C, in the Hf rich region. Hf-Si-B alloys had been produced with blades of Hf (min. 99.8%), Si (min. 99.998%) and B (min. 99.5%), in the voltaic arc furnace and heat treated at 1600 deg C under argon atmosphere. The relationship of the phases had been previously identified by X-ray diffraction and contrast in backscattered electron imaging mode. The alloys had their hardness analyzed by method Vickers (micro hardness) with load of 0.05 kgf and 0.2 kgf and application time of 20 s. The results, obtained from the arithmetic mean of measurements for each alloy on the heterogeneous region, showed a mean hardness of 11.08 GPA, with small coefficient of variation of 3.8%. The borides HfB2 (19.34 GPa) e HfB - 11.76 GPa, showed the hardness higher than the silicides Hf2Si (8.57 GPa), Hf5Si3 (9.63 GPa), Hf3Si2 (11.66 GPa), Hf5Si4 (10.00 GPa), HfSi (10.02 GPa) e HfSi2 (8.61 GPa). (author)

  20. Ab initio study of mechanical and thermo-acoustic properties of tough ceramics: applications to HfO2 in its cubic and orthorhombic phase

    International Nuclear Information System (INIS)

    Ponce, C A; Casali, R A; Caravaca, M A

    2008-01-01

    By means of the ab initio all-electron new full-potential linear-muffin-tin orbitals method, calculations were made for elastic constants C 11 , C 12 and C 44 for Si, ZrO 2 and HfO 2 in their cubic phase, and constants C 11 , C 22 , C 33 , C 12 , C 13 , C 23 , C 44 , C 55 and C 66 for HfO 2 in its orthorhombic phase. Using the Voigt and Reuss theory, estimations were made for polycrystals of their bulk, shear and Young moduli, and Poisson coefficients. The speed of elastic wave propagations and Debye temperatures were estimated for polycrystals built from Si and the above mentioned compounds. The semicore 4f 14 electrons should be included in the valence set of Hf atom in this all-electron approach if accurate results for elastic properties under pressures are looked for

  1. The 91Zr(d,t)90Zr reaction

    International Nuclear Information System (INIS)

    Gomes, L.C.

    1975-01-01

    Sixteen levels populated in the 91 Zr(d,t) 90 Zr pick-up reaction were studied with 16 MeV deuterons. Distorted waves Born approximation calculations were compared to the data, and yielded spectroscopic factors and l values. Particle-hole states in 90 Zr were observed. Some significant errors were found in Zr(d,t) reactions Q values recently compiled [pt

  2. Order-disorder phase transition in ZrV2Dsub(3.6)

    International Nuclear Information System (INIS)

    Didisheim, J.-J.; Yvon, K.; Tissot, P.

    1981-01-01

    The deuterated C15-type Laves phase ZrV 2 Dsub(3.6) undergoes a structural phase transition near room temperature (T of the order of 325 K). In the cubic high-temperature phase the deuterium atoms are disordered over two types of tetrahedral interstices, the centres of which are 1.3 A apart. In the tetragonal low-temperature phase the D atoms are ordered and occupy only the energetically more favourable interstices. The tetragonal structure is isotypic with the low-temperature phase of HfV 2 D 4 . The shortest D-D distance is 2.1 A. (author)

  3. Picture analysis in CT-HF and its CT photographs

    International Nuclear Information System (INIS)

    Kubota, Kazuo; Kohirasawa, Hideo; Shinojima, Masayasu; Tokui, Mitsuru; Seo, Kunihiko.

    1980-01-01

    CT (computed tomography) apparatus is rarely used yet in the field of dentistry, though it seems useful. It is possibly because of the artefacts caused by the metallic parts attached to teeth, the large partial volume effect due to many bones and the problems of positioning and reproducibility. After considering the various requirements of the CT apparatuses in dental field, CT-HF (of T/R type) was chosen as such apparatus, and installed as the first in dentistry. In the CT-HF apparatus, the inner diameter of the gantry is up to 300 mm, and the position of a tomographic plane is only 40 mm away from the front of gantry. Mainly the usefulness of scanography in positioning and the usefulness of the CT apparatus in the picture analysis and processing in dental field are described. (J.P.N.)

  4. Roles of texture of Zr alloys in ZrO{sub 2} film formation and δ-hydride orientation near ZrO{sub 2}/Zr interface

    Energy Technology Data Exchange (ETDEWEB)

    Qin, W.; Szpunar, J.A., E-mail: weq565@mail.usask.ca, E-mail: jerzy.szpunar@usask.ca [Univ. of Saskatchewan, Dept. of Mechanical Engineering, Saskatoon, SK (Canada); Kozinski, J., E-mail: janusz.kozinski@lassonde.yorku.ca [York Univ., Faculty of Science and Engineering, Toronto, ON (Canada)

    2014-07-01

    Oxidation and hydrogen embrittlement are related to formation of cracks and failure of Zr alloys used in nuclear reactor applications. An in-depth understanding of the formation of ZrO{sub 2} film and the hydride precipitation and orientation is important for improving the corrosion resistance of zirconium alloys. In this work a theoretical model is developed to analyze the microstructure of ZrO{sub 2} film formed on Zr alloys and the effect of stress that results from ZrO{sub 2} formation on hydride reorientation in the region near oxide/metal interface. Our work shows that the macroscopic stress produced due to Pilling-Bedworth ratio for ZrO{sub 2}/Zr could lead to the hydride re-orientation in the region near ZrO{sub 2}/Zr interface. Whether or not this effect can occur is dependent on the texture of the zirconium alloys. Control of texture of zirconium alloys can affect the microstructure of ZrO{sub 2} film and can be responsible for change of hydride orientation. (author)

  5. Determination of Hf, Sc and Y in geological samples together with the rare-earth elements

    International Nuclear Information System (INIS)

    Lihareva, N.; Delaloye, M.

    1997-01-01

    A method is described for the determination of Hf, Sc and Y simultaneously with the REE in geological materials. An earlier method for REE separation from major elements was studied with the aim to apply it also to the determination of Hf, Sc and Y. Sample decomposition was carried out by melting with LiBO 2 . The method involves separation and concentration stages, using the cation-exchange resin DOWEX AG 50W-X8. Matrix elements were eluted with 2 mol/l HCl, whereas 6 mol/l HNO 3 with oxalic acid and 8 mol/l HNO 3 were used to elute the elements to be determined. Some of the matrix elements could not be completely removed. This effect as well as the recovery rates of the determined elements were investigated. The measurements were performed by ICP-AES. Spectral interferences were also tested. (orig.). With 1 tab

  6. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    Science.gov (United States)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  7. Antibacterial activity and cell compatibility of TiZrN, TiZrCN, and TiZr-amorphous carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Heng-Li [School of Dentistry, China Medical University, Taichung 404, Taiwan (China); Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@nfu.edu.tw [Department of Mechanical and Computer-aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Liu, Jia-Xu [Department of Mechanical and Computer-aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Tsai, Ming-Tzu [Department of Biomedical Engineering, Hungkuang University, Taichung 433, Taiwan (China); Lai, Chih-Ho [Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan (China)

    2015-12-01

    A cathodic-arc evaporation system with plasma-enhanced duct equipment was used to deposit TiZrN, TiZrCN, and TiZr/a-C coatings. Reactive gases (N{sub 2} and C{sub 2}H{sub 2}) activated by the Ti and Zr plasma in the evaporation process was used to deposit the TiZrCN and TiZr/a-C coatings with different C and nitrogen contents. The crystalline structures and bonding states of coatings were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. The microbial activity of the coatings was evaluated against Staphylococcus aureus (Gram-positive bacteria) and Actinobacillus actinomycetemcomitans (Gram-negative bacteria) by in vitro antibacterial analysis using a fluorescence staining method employing SYTO9 and a bacterial-viability test on an agar plate. The cell compatibility and morphology related to CCD-966SK cell-line human skin fibroblast cells on the coated samples were also determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, reverse-transcriptase-polymerase chain reaction, and scanning electron microscopy. The results suggest that the TiZrCN coatings not only possess better antibacterial performance than TiZrN and TiZr/a-C coatings but also maintain good compatibility with human skin fibroblast cells. - Highlights: • TiZrN, TiZrCN, and TiZr/a-C coatings were deposited using cathodic arc evaporation. • The TiZrCN showed a composite structure containing TiN, ZrN, and a-C. • The TiZrCN-coated Ti showed the least hydrophobicity among the samples. • The TiZrCN-coated Ti showed good human skin fibroblast cell viability. • The TiZrCN-coated Ti exhibited good antibacterial performance.

  8. Phase equilibria in the Zr-Si-B ternary system (Zr-Si-ZrB{sub 2} region) at 1 173 K

    Energy Technology Data Exchange (ETDEWEB)

    Han, Feng; Luo, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Lab. of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Lab. of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry

    2017-10-15

    The isothermal section of the Zr-Si-B ternary system (Zr-Si-ZrB{sub 2} region) at 1 173 K has been experimentally determined. All equilibrated alloys were characterized via X-ray powder diffraction and scanning electron microscopy equipped with energy-dispersive X-ray analysis. A ternary phase Zr{sub 5}(Si{sub 0.86}B{sub 0.14}){sub 3} was found at 1 173 K. The experimental results show that the isothermal section consists of 11 single-phase regions, 26 two-phase regions and 13 three-phase regions. The existence of eight compounds, i.e. ZrSi{sub 2}, ZrSi, Zr{sub 5}Si{sub 4}, Zr{sub 3}Si{sub 2}, Zr{sub 2}Si, ZrB, ZrB{sub 2} and Zr{sub 5}(Si{sub 0.86}B{sub 0.14}){sub 3} in this system has been confirmed in the Zr-Si-ZrB{sub 2} region at 1 173 K.

  9. Hf-Nd Isotopic Correlation in the Deccan Flood Basalt Province

    Science.gov (United States)

    Saha, A.; Basu, A. R.; Barling, J.; Anbar, A. D.; Hooper, P. R.

    2001-12-01

    Hafnium isotopes along with other isotopic and geochemical characteristics, including incompatible trace elements, of several of the lower formations of the Deccan Flood Basalt Province were analyzed to characterize petrogenesis of different tholeiitic lava suites, especially with respect to potential mantle and crustal sources. The rare earth elements of the different formations (from top to bottom- Mahabaleshwar, Ambenali, Bushe, Khandala and Neral) all show an LREE-enriched signature, concentrations varying between 30 to 60 times chondrite for La. (La/Lu)n values range from 4.1 to above 8 with the exception of Ambenali, which has a less LREE-enriched signature with (La/Lu)n values ranging between 3.6 to 5.3. Hafnium isotopic data of the lower formations of the Deccan show initial \\epsilonHf(T) values covering a range from -3 to -28. 176Lu/177Hf varies between 0.20 to 0.70. f(Lu/Hf) varies within a narrow range, between -0.90 to -0.97 while f(Sm/Nd) ranges from -0.84 to -0.86. Bushe gives the lowest range of \\epsilonHf(T) from -21 to -28 with the corresponding \\epsilonNd(T) varying between -4.0 and -16.9, while Khandala for almost the same range of neodymium isotopic values has \\epsilonHf(T) between -11 and -15. The \\epsilonHf(T) values of Neral is in between those of Khandala and Bushe, around -19. Ambenali, has the narrowest range with \\epsilonHf(T) of -3 and \\epsilonNd(T) between 3 and 5. The Ambenali suite reflects the least contaminated of the Deccan suite of lavas as analyzed here and previously confirmed by other isotopic studies. In Hf-Nd isotope correlation plot, the lower Deccan formations of Neral, Khandala and Bushe define individual subparallel arrays that are shallower than the oceanic basalt array and the overall terrestrial array, including the crustal array, although the bulk of the lower formation data fall within the crustal array of Vervoort et al (1999). From these subparallel Hf-Nd arrays, it is evident that the other end

  10. HF/DF chemical labs

    International Nuclear Information System (INIS)

    Meinzer, R.A.

    1987-01-01

    This paper provides the essential details to understand and design HF/DF and related types of chemical lasers. The basic operation of the HF/DF chemical laser is described. The details of the excitation chemistry are presented and the pertinent laser physics is described. A description of the various laser components is given and the analytical models for the HF/DF chemical laser are discussed. A brief description of the chain reaction HF/DF chemical laser is offered

  11. HF laser

    International Nuclear Information System (INIS)

    Suzuki, Kazuya; Iwasaki, Matae

    1977-01-01

    A review is made of the research and development of HF chemical laser and its related work. Many gaseous compounds are used as laser media successfully; reaction kinetics and technological problems are described. The hybrid chemical laser of HF-CO 2 system and the topics related to the isotope separation are also included. (auth.)

  12. Oxidation kinetics of some zirconium alloys in flowing carbon dioxide at high temperatures

    International Nuclear Information System (INIS)

    Kohli, R.

    1980-01-01

    The oxidation kinetics of three zirconium alloys (Zr-2.2 wt% Hf, Zr-2.5 wt% Nb, and Zr-3 wt% Nb-1 wt% Sn) have been measured in flowing carbon dioxide in the temperature range from 873 to 1173 K to 120 ks (2000 min). At all oxidation temperatures, Zr-2.5 Nb and Zr-3 Nb-1 Sn showed a transition to rapid linear kinetics after initial parabolic oxidation. The Zr-2.2 Hf showed this transition at temperatures in the range from 973 to 1173 K; at 873 K, no transition was observed within the oxidation times reported. The Zr-2.2 Hf showed the smallest weight gains, followed in order by Zr-2.5 Nb and Zr-3 Nb-1 Sn. Increased oxidation rates and shorter times-to-rate-transition of Zr-2.2 Nb and Zr-1 Sn as compared with Zr-2.2 Hf can be attributed to the presence of niobium, tin, and hafnium in the alloys. This is considered in terms of the Nomura-Akutsu model, according to which hafnium should delay the rate transition, while niobium and tin lead to shorter times-to-rate-transition. The scale on Zr-2.2 Hf was identified as monoclinic zirconia, while the tetragonal phase, 6ZrO 2 .Nb 2 O 5 , was contained in the monoclinic zirconia scales on both other alloys

  13. States in 94Zr from 94Zr(d,d')94Zr* at 15.5 Mev

    International Nuclear Information System (INIS)

    Frota-Pessoa, E.; Joffily, S.

    1986-01-01

    94 energy levels up to approx. 4.3 Mev excitation energy are studied in the 94 Zr(d,d') 94 Zr* reaction. Deuterons had a bombarding energy of 15.5 MeV. The emergent deuterons were analysed by a magnetic spectrograph and the detector was nuclear emulsion. The resolution in energy was about 11 KeV. The distorted-wave analysis was used to determine the l transferred, the β 2 l and J Π values for some 94 Zr excited states. These results are compared with previous ones. 32 levels of excitation energy in 94 Zr were found which did not appear in previous 94 Zr(d,d') reactions. 20 levels do not correspond to the ones. (Author) [pt

  14. Ablation behavior of rare earth La-modified ZrC coating for SiC-coated carbon/carbon composites under an oxyacetylene torch

    International Nuclear Information System (INIS)

    Jia, Yujun; Li, Hejun; Feng, Lei; Sun, Jiajia; Li, Kezhi; Fu, Qiangang

    2016-01-01

    Highlights: • La-modified ZrC coating was prepared by supersonic atmosphere plasma spraying. • The oxyacetylene ablation behavior of La-modified ZrC/SiC coating was evaluated. • The coating shows a good ablation resistance under heat flux of 2.4 MW/m"2. • La promotes the liquid phase sintering of ZrO_2 and the formation of a compact scale. • The protection of the scale results in retaining elemental C in its inner layer. - Abstract: To improve the ablation resistance of carbon/carbon (C/C) composites at ultra-high temperature, La-modified ZrC coating was prepared on SiC-coated C/C composites by supersonic atmosphere plasma spraying. The coating shows a significant improvement on the ablation resistance compared with ZrC coating and could protect C/C composites for more than 120 s under heat flux of 2.4 MW/m"2. La acted as a role in promoting the liquid phase sintering of ZrO_2 and forming a compact scale with high thermal stability, improving the ablation resistance of C/C composites.

  15. SEMICONDUCTOR TECHNOLOGY: Wet etching characteristics of a HfSiON high-k dielectric in HF-based solutions

    Science.gov (United States)

    Yongliang, Li; Qiuxia, Xu

    2010-03-01

    The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 °C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case.

  16. Ab initio study of mechanical and thermo-acoustic properties of tough ceramics: applications to HfO{sub 2} in its cubic and orthorhombic phase

    Energy Technology Data Exchange (ETDEWEB)

    Ponce, C A [Departamento de Fisica, Facultad de Ciencias Exactas, y Naturales y Agrimensura, UNNE, Campus Universitario, Avenida Libertad 5600, CP 3400, Corrientes (Argentina); Casali, R A [Departamento de Fisica, Facultad de Ciencias Exactas, y Naturales y Agrimensura, UNNE, Campus Universitario, Avenida Libertad 5600, CP 3400, Corrientes (Argentina); Caravaca, M A [Departamento de Fisico, Quimica, Facultad de Ingenieria, UNNE, Avenida Las Heras 727, CP 3500, Resistencia (Argentina)

    2008-01-30

    By means of the ab initio all-electron new full-potential linear-muffin-tin orbitals method, calculations were made for elastic constants C{sub 11}, C{sub 12} and C{sub 44} for Si, ZrO{sub 2} and HfO{sub 2} in their cubic phase, and constants C{sub 11}, C{sub 22}, C{sub 33}, C{sub 12}, C{sub 13}, C{sub 23}, C{sub 44}, C{sub 55} and C{sub 66} for HfO{sub 2} in its orthorhombic phase. Using the Voigt and Reuss theory, estimations were made for polycrystals of their bulk, shear and Young moduli, and Poisson coefficients. The speed of elastic wave propagations and Debye temperatures were estimated for polycrystals built from Si and the above mentioned compounds. The semicore 4f{sup 14} electrons should be included in the valence set of Hf atom in this all-electron approach if accurate results for elastic properties under pressures are looked for.

  17. Effect of chemistry modifications and heat treatments on the mechanical properties of DS Mar-M200 superalloy

    International Nuclear Information System (INIS)

    Yunrong, Z.; Yuping, W.; Jizhou, X.; Caron, P.; Khan, T.

    1988-01-01

    This paper discusses how Hf and Zr can promote the formation of eutectic (γ + γ), MC 2 , and Ni 5 M phases. In the alloy with equal atomic percent Zr and Hf, the solubility of Zr in eutectic γ is lower than that of Hf, and Zr content in Ni 5 M is much higher than Hf. This distribution of Zr is beneficial to the formation of Ni 5 M and lowers the strengthening efficiency of Zr. A pretreatment of 1130 degrees C/3hr efficiently eliminates Ni 5 M and, as a consequence, increases the incipient melting temperature of the alloy. The precipitation treatment of 1100 degrees C/4hr leads to cuboidal γ precipitation of about 0.5 μm size and causes the Hf-containing alloy to have a much higher creep strength than the Hf-free alloy in the temperature range of 760 to 1050 degrees C. The Hf-containing alloy showed greater LCF (low cycle fatigue) life in comparison to the Hf-free alloy. A similar tendency was found when Zr was either partially or totally substituted for Hf. A higher rate of solidification facilitates enhanced LCF life due to a finer structure and more perfect orientation. Surface slip analysis showed that intersection of two sets of slip in adjacent grains occurred in the Hf-free and HF-containing alloys, but cracking at the columnar grain boundary easily took place in the Hf-free alloy. The number of surface cracks of LCF specimens and their length per unit area are much higher in the Mar-M200 alloy. Mc cracking preferentially occurs at long rod-shaped carbides perpendicular to the stress axis, and then propagates through the interdendritic region. The Hf-containing alloy cracks along the crystallographic planes by separation of slip bands

  18. Conductivity ageing studies on 1M10ScSZ (M4+=Ce, Hf)

    DEFF Research Database (Denmark)

    Omar, Shobit; Bin Najib, Waqas; Bonanos, Nikolaos

    2011-01-01

    The long-term conductivity stability is tested on zirconia based electrolyte materials for solid oxide fuel cell applications. The ageing studies have been performed on the samples of ZrO2 co-doped with 10mol% of Sc2O3 and 1mol% MO2, where M = Ce or Hf (denoted respectively 1Ce10ScSZ and 1Hf10Sc......SZ) in oxidising and reducing atmospheres, at 600°C for 3000h. At 600°C, these compositions show initial conductivity of around 9–12mS∙cm−1 in air. After 3000h of ageing, no phase transitions are observed in any of the samples. For the first 1000h, the degradation rate is higher than in the subsequent 2000h......; thereafter, conductivity degrades linearly with time for all samples. In air, the loss in the conductivity is lower than in reducing conditions. The 1Ce10ScSZ shows the highest degradation rate of 3.8%/1000h in wet H2/N2 after the first 1000h of ageing. A colour change of the 1Ce10ScSZ sample from white...

  19. Subduction Contributions in the Trans-Mexican Volcanic Belt: Implications from Lava Chemistry and Hf-Nd-Pb Isotopes

    Science.gov (United States)

    Cai, Y.; Goldstein, S. L.; Langmuir, C. H.; Gómez-Tuena, A.; Lagatta, A.; Straub, S. M.; Martín Del Pozzo, A.

    2007-05-01

    Despite thick continental crust, near primitive lavas erupt throughout the Trans-Mexican Volcanic Belt (TMVB). In order to distinguish and better constrain subduction contributions and effects of crustal contamination, we analyzed samples representing subducting sediments from DSDP Site 487, and Quaternary lavas from stratovolcanoes and cinder cones, including alkaline "high-Nb" lavas from the Sierra Chichinautzin Volcanic Field (SCVF) showing negligible subduction signature in its trace element chemistry and representing melts of the mantle wedge. Our primary observations and implications are: (1) The high-Nb SCVF `intraplate' lavas define a linear trend along the "Nd-Hf mantle-crust array", defining the composition of the mantle wedge. (2) Popocatepetl and Nevado de Toluca stratovolcanoes show the highest Nd and Hf isotope ratios, higher than the `intraplate' lavas, indicating their sources are more "depleted mantle-like" than the regional mantle wedge. (3) The Popo and Toluca chemical and isotopic trends sharply contrast with Pico de Orizaba, which shows classic indications of crustal contamination (e.g. high 207Pb/204Pb, low Nd-Hf isotope ratios), consistent with contamination by local Precambrian crust. (4) Higher Nd-Hf isotopes in Popo and Toluca lavas also correlate with lower Pb isotope ratios, and lower Lu/Hf and Zr/Hf. Together, these data indicate contributions from subducted Pacific oceanic crust and hydrothermal sediment. (5) Popo and Toluca are also enriched in Th/LREE compared with `intraplate' lavas, reflecting subducted sediment contributions. (6) Nd-Hf isotope ratios of hydrothermal sediment from DSDP Site 487 lie on the "seawater array", with high Hf isotope ratios compared to the "mantle-crust array". Popo and Toluca Nd-Hf isotopes display a shallower slope than the "intraplate lava Nd-Hf array", reflecting contributions from hydrothermal sediment. Popocatepetl and Toluca lavas therefore avoid substantial crustal contamination of mantle wedge

  20. HF-laser program

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Sandia's HF-laser program for FY 77 and FY 78 was revised in June 1977 in order to meet several new program milestones. Research progress is reported on: objective of HF oscillator-amplifier studies using H 2 -F 2 gas mixtures; characteristics of large-volume oscillator using H 2 -F 2 mixtures; characteristics of large-volume amplifier using H 2 -F 2 mixtures; experimental results of the oscillator-amplifier study; objective of high-quality discharge-initiated SF 6 -HI oscillator-preamplifier system; pin-discharge-initiated oscillator and first beam expander; fast-discharge-initiated preamplifiers; reflecting beam expanders for oscillator-preamplifier system; beam quality of discharge-initiated oscillator-preamplifier system; short pulse option for discharge initiated SF 6 -HI system; H 2 -F 2 electron-beam-initiated oscillator-preamplifier system; chamber for HF-laser focusing experiments; computer study of parasitic oscillations in HF amplifiers and oscillators; kinetics upgrade of HF-laser code; repetitivey ignited flowing H 2 -F 2 -O 2 mixtures; spontaneous detonations in multiatmosphere H 2 -F 2 -O 2 mixtures; high-pressure H 2 -F 2 laser studies; and time sequenced energy extraction on the high xenon laser

  1. High-aspect-ratio HfC nanobelts accompanied by HfC nanowires: Synthesis, characterization and field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Song, E-mail: tiansong22@126.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Zhang, Yulei; Ren, Jincui; Qiang, Xinfa; Zhang, Shouyang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Hejun, E-mail: lihejun@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China)

    2017-04-30

    Highlights: • HfC naobelts accompanied by HfC nanowires were synthesized by a catalytic CVD method. • HfC nanobelts as a novel structure of HfC ceramic are reported for the first time. • HfC nanobelts have 100–200 μm in lengths and reach up to 10 μm in widths. • The synthesized product is promising field nanoemitters. - Abstract: As a key refractory carbide, hafnium carbide (HfC) is commonly used as structural materials while the field emission (FE) application of HfC in the field of vacuum microelectronics is almost the only one for functional material purposes. Based on its outstanding physical and chemical characteristics, HfC is identified as a potential candidate with satisfactory mechanical properties and long-term and/or high-temperature FE stability for future applications in high-performance field emitters. However, the development of HfC in various FE applications is hindered because it is not facile to fabricate large-scale low-dimensional HfC field nanoemitters. Herein, High-aspect-ratio HfC nanobelts accompanied by HfC nanowires were synthesized on a large scale by a traditional and simple catalytic chemical vapor deposition (CVD) method. Classical vapor–liquid–solid (VLS) theory was employed to explain the growth of the HfC nanowires and nanobelts along axial direction. The thin HfO{sub 2} shell and thin C layer surrounding the nanostructures might give rise to the diameter fluctuation of HfC nanowires and the width increase of HfC nanobelts in lateral direction. Field emission results show that the high-aspect-ratio HfC nanobelts accompanied by the nanowires are promising field nanoemitters, which exhibit excellent field emission properties with a fairly low turn-on field of ∼1.5 V μm{sup −1} and a low current fluctuation less than ∼10%. This suggests that HfC ceramics with high-aspect-ratio nanostructures are ideal cathode material for various field emission applications.

  2. Determination of the rate of HF hydration and the effects of HF on moisture condensation

    International Nuclear Information System (INIS)

    McCulla, W.H.

    1982-01-01

    There were four basic questions addressed in this report that relate to the HF interaction in the environment. As to whether HF hydrates in the vapor phase and what the rate of that hydration is, there seems ample evidence that HF hydrates readily in the vapor phase and the rate of that hydration is very fast, i.e., dHF/dt greater than or equal to 25 torr sec -1 . Concerning under what conditions condensation of the hydrate will occur and whether a third body is required for condensation, it was found that HF does effect the dew point or condensation of water and data was presented indicating the extent of that effect. It was also determined that condensation will occur without a third body present. Thus, in attempting to model an HF release for the Safety Analysis Report the hydration of HF and the subsequent heat released may be treated as occurring instantaneously; but the ultimate disposition of the HF will be strongly dependent upon the environmental conditions at the time of the release

  3. Determination of the rate of HF hydration and the effects of HF on moisture condensation

    Energy Technology Data Exchange (ETDEWEB)

    McCulla, W H

    1982-04-30

    There were four basic questions addressed in this report that relate to the HF interaction in the environment. As to whether HF hydrates in the vapor phase and what the rate of that hydration is, there seems ample evidence that HF hydrates readily in the vapor phase and the rate of that hydration is very fast, i.e., dHF/dt greater than or equal to 25 torr sec/sup -1/. Concerning under what conditions condensation of the hydrate will occur and whether a third body is required for condensation, it was found that HF does effect the dew point or condensation of water and data was presented indicating the extent of that effect. It was also determined that condensation will occur without a third body present. Thus, in attempting to model an HF release for the Safety Analysis Report the hydration of HF and the subsequent heat released may be treated as occurring instantaneously; but the ultimate disposition of the HF will be strongly dependent upon the environmental conditions at the time of the release.

  4. Preparation and characterization of segmented p-type Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2/Ca3Co4O9

    DEFF Research Database (Denmark)

    Le, Thanh Hung; Han, Li; Stamate, Eugen

    with HH using an electrically conductive adhesive and brazing joining technique. The thermoelectric properties of the component materials as well as the interfacial resistance at high temperatures were characterized as a function of temperature up to 1100 K, and the results are discussed in details.......Misfit-layered cobaltite Ca3Co4O9+δ is considered as good p-type thermoelectric material in high temperature region (950 - 1100 K), while half-Heusler (HH) Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 is high performance p-type material at temperatures below 950 K. In this work, oxide Ca3Co4O9+δ is segmented...

  5. High-K rotational bands in {sup 174}Hf and {sup 175}Hf

    Energy Technology Data Exchange (ETDEWEB)

    Gjoerup, N L; Sletten, G [The Niels Bohr Institute, Roskilbe (Denmark); Walker, P M [Surrey Univ., Guildford (United Kingdom). Dept. of Physics; Bentley, M A [Daresbury Lab. (United Kingdom); Cullen, D M; Sharpey-Schafer, J F; Fallon, P; Smith, G [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.

    1992-08-01

    High sensitivity experiments with {sup 48}Ca, {sup 18}O and {sup 9}Be induced reactions using the ESSA-30, TESSA-3 and NORDBALL arrays have provided extensive new information on the high spin level structures of {sup 174}Hf and {sup 175}Hf. During the series of experiments, several new bands have been found and most known bands have been extended considerably. Spin and excitation energy ranges for {sup 174}Hf are now {approx} 35 {Dirac_h} and {approx} 13 MeV, respectively, and for {sup 175}Hf ranges are {approx} 30 {Dirac_h} and {approx} 7 MeV. respectively. Several new high-K structures have been found in {sup 174}Hf and the structure of these and the already known high-K bands in both nuclei together with the new Tilted Axis Cranking approach might explain the small K-hindrances observed for K-isomers in this region. (author). 8 refs., 2 figs.

  6. Comparison of results analysis of chemical composition of alloys inside the U-Zr-Nb by XRF and AAS techniques

    International Nuclear Information System (INIS)

    Masrukan; Tri Yulianto; Anwar Muchsin

    2011-01-01

    U-Zr-Nb alloy chemical composition analysis using X Ray Fluorescence (XRF) and Atomic Absorption Spectroscopy (AAS) techniques have been conducted, where U-Zr- Nb alloy was chosen as candidates for new high-density fuel for future research reactors . Composition analysis is necessary because the composition of elements in the fuel will determine the characteristics of fuel during the fabrication process and in the reactor. The use of two kinds of analysis techniques were designed to obtain accurate analysis results. The experiment was conducted to determine the major element composition and impurities in the alloy U-Zr-Nb. First U-Zr-Nb varying alloy composition Nb were respectively 1%, 4%, 7% (U10% Zr1% Nb, U10% Zr4% Nb and U10% 7% Nb) as results of the melting process of measuring the diameter of 120 mm crushed on the surface bottom. Once on the bottom surface is smooth, then analyzed using XRF techniques. To analyze the elements using AAS techniques, alloy U-Zr-Nb cut into 10 mm x 5 mm then dissolved using HF and nitric acid. Solution that occurred were analyzed using AAS technique. From the analysis using the XRF technique is obtained the alloy U-10% Zr-1% Nb, U-10% Zr-4% Nb and Zr-10% U-7% Nb) had a content of each element as follows: U (87.8858%), Zr (2.6097%) and Nb (0.2206%), U (87.8556%), Zr (2.6302%), and Nb (0.6573%); U (84.6334%), Zr (2.5773%), and Nb (1.0940) weight. Results of analysis using AAS techniques on samples obtained third consecutive Zr content of 9.25%, 8.90% and 9.80% while the content of Nb was not detected. Meanwhile, the results of elemental analysis of impurities in all three samples showed that almost all the elements are still qualify as fuel except Zn element. Element Zn at the three samples of each alloys U-10% Zr-1% Nb, U-10% Zr-4% Nb and U-10% Zr-7%Nb is 1.3266%, 3.2756% and 1.0927% weight. It could be concluded that the results of analysis of elemental content and impurities in the alloy U-Nb-Zr using both XRF and AAS visible

  7. Ionic exchange of Hf donor impurities in the wide-gap semiconductor Tm{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, E.L.; Darriba, G.N. [Departamento de Fisica-IFLP (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Bibiloni, A.G. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Errico, L.A. [Departamento de Fisica-IFLP (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Universidad Nacional del Noroeste Bonaerense (UNNOBA), Monteagudo 2772, 2700 Pergamino, Buenos Aires (Argentina); Renteria, M., E-mail: renteria@fisica.unlp.edu.a [Departamento de Fisica-IFLP (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina)

    2010-04-16

    The ionic exchange of Hf donor impurities in substitutional cationic sites of the cubic (bixbyite) phase of the wide-gap semiconductor Tm{sub 2}O{sub 3} was studied. The doping process was performed by ball-milling-assisted solid-state reaction of Tm{sub 2}O{sub 3} and neutron-activated m-HfO{sub 2}. {sup 181}Ta atoms, obtained by the {beta}-decay of the {sup 181}Hf-isotope, were used as probes in time-differential perturbed-angular-correlation (TDPAC) experiments carried out after each step of the doping process. The measured hyperfine interactions at {sup 181}Ta sites enabled the electric-field gradient (EFG) characterization at representative Hf impurity sites of each step of the process. The efficiency and substitutional character of the exchange process is discussed and elucidated in the framework of an empirical EFG systematic established in isostructural rare-earth bixbyite sesquioxides.

  8. Nanocrystallization in Cu-Zr-Al-Sm Bulk Metallic Glasses

    Science.gov (United States)

    Sikan, Fatih; Yasar, Bengisu; Kalay, Ilkay

    2018-04-01

    The effect of rare-earth element (Sm) microalloying on the thermal stability and crystallization kinetics of melt-spun ribbons and suction-cast rods of Zr48Cu38.4Al9.6Sm4 alloy were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). The XRD results of constant heating rate annealing indicated that amorphous Zr48Cu38.4Al9.6Sm4 melt-spun ribbons devitrifies into Cu2Sm at 673 K (400 °C). The sequence continues with the precipitation of Cu10Zr7 and then these two phases coexist. XRD and TEM studies on 1 mm diameter as suction-cast rods indicated the precipitation of 30-nm-mean size Cu2Sm crystals during solidification. TEM investigation of the isothermal crystallization sequence of melt-spun ribbons and 1-mm-diameter suction-cast rods revealed the precipitation of Cu2Sm nanocrystals at the onset of crystallization and the restriction of the growth of these nanocrystals up to 10 nm diameter with further annealing. APT analysis of 1-mm-diameter suction-cast rods showed that the limited growth of Cu2Sm nanocrystals is due to sluggish diffusion of Sm and Al-Zr pile up at the interface.

  9. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  10. Effect of pH and fluoride on behavior of dental ZrO2 ceramics in artificial saliva

    International Nuclear Information System (INIS)

    Mukaeda, L.E.; Robin, A.; Santos, C.; Taguchi, S.P.; Borges Junior, L.A.

    2009-01-01

    A considerable increase in the ceramic products demand occurred due to the evolution of dental restoration techniques and these materials must resist to the complex mouth environment. The pH of saliva can decrease significantly due to the ingestion of acidic foods and beverages and mainly due to reactions occurring during bacteria metabolism that lead to the formation of organic acids. Fluorides are also present in the mouth since fluorides are usually added in drinking water, mouth washes, tooth pastes and gels for the prevention of plaque and caries formation. The combination of low pH and presence of fluorides can lead to the formation of HF and HF 2 - which are detrimental to metallic and probably to ceramic devices. In this work, commercial blocks of ZrO 2 ceramics (ProtMat Materiais Avancados® and Ivoclar®) were immersed in Fusayama artificial saliva of different pHs and fluoride concentrations. The properties of the as-produced ceramics (crystalline phases (XRD), microstructure (SEM), roughness (3D surface topography AFM) and mechanical resistance - Vickers hardness (Hv) and fracture toughness (KIC) were evaluated. Some of these properties were also determined after the immersion tests as well as the mass variation of the samples in order to evaluate the resistance of these ZrO 2 ceramics to degradation under these conditions. (author)

  11. High resolution TDPAC measurements on 181Ta in Hf2Fe, Hf2Co and Hf2Rh at high temperature

    International Nuclear Information System (INIS)

    Cekic, B.; Koicki, S.; Ivanovic, N.; Manasijevic, M.; Koteski, V.; Marjanovic, D.

    1998-01-01

    The time differential perturbed angular correlation measurements (TDPAC-method ) on 181 Ta ion probe in Hf 2 Co, Hf 2 Fe and Hf 2 Rh intermetallic compounds have been performed at 1170 K, using a fast - slow time spectrometer consisting of two BaF 2 detectors. The results of the measurements show the presence of two independent electric quadrupole interactions, compatible with the crystalline structure of these polycrystalline compounds. (authors)

  12. High-temperature x-ray diffraction study of HfTiO4-HfO2 solid solutions

    International Nuclear Information System (INIS)

    Carpenter, D.A.

    1975-01-01

    High-temperature x-ray diffraction techniques were used to determine the axial thermal expansion curves of HfTiO 4 -HfO 2 solid solutions as a function of composition. Data show increasing anisotropy with increasing HfO 2 content. An orthorhombic-to-monoclinic phase transformation was detected near room temperature for compositions near the high HfO 2 end of the orthorhombic phase field and for compositions within the two-phase region (HfTiO 4 solid solution plus HfO 2 solid solution). An orthorhombic-to-cubic phase transformation is indicated by data from oxygen-deficient materials at greater than 1873 0 K. (U.S.)

  13. Reduction behaviors of Zr for LiCl-KCl-ZrCl4 and LiCl-KCl-ZrCl4-CdCl2

    International Nuclear Information System (INIS)

    Kim, Si Hyung; Yoon, Jongho; Kim, Gha Young; Kim, Tack Jin; Shim, Joon Bo; Kim, Kwang Rag; Jung, Jae Hoo; Ahn, Do Hee; Paek, Seungwoo

    2013-01-01

    The reduction potentials of most of the zirconium ions on the solid cathode are smaller (about 0.4V) than that of uranium, and thus zirconium can be recovered prior to uranium during the reduction stage. In the case of a liquid cadmium cathode, which is one of the major cathodes, the reduction potential can be changed because zirconium reacts with the liquid cadmium. Up to now, it has not been well known what the reduction potential of Zr was on the liquid Cd cathode. According to the Cd-Zr phase diagram, there are four intermetallic compounds between cadmium and zirconium. It is easier to use the solid cathode than the liquid cadmium cathode in LiCl-KCl-ZrCl 4 containing CdCl 2 to identify the formation of the Cd-Zr phase. In this study, the reduction behaviors of zirconium were compared in the LiCl-KCl-ZrCl 4 and LiCl-KCl-ZrCl 4 -CdCl 2 solutions when using a solid cathode. The reduction behavior of Zr at a solid W cathode and a Cd-coated W cathode was compared in a LiCl-KCl-ZrCl 4 solution at 500 .deg. C. It was observed from the results using a solid W cathode that Zr 4+ ions were gradually oxidized to Zr 2+ , Zr, and ZrCl during the reduction sweep, but the final oxidation peak of Zr 2+ to Zr 4+ seemed to be unclear during the oxidation sweep. In the case of the Cd-coated W electrode, only a Cd 2 Zr phase was formed at 500 .deg. C, which seemed to be related to the melting point of Cd-Zr intermetallics. Through additional studies at different temperatures, the formation behavior will be studied

  14. Tuning ZrFe{sub 4}Si{sub 2} by Ge and Y substitution

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Katharina [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Institute of Solid State Physics, TU Dresden (Germany); Mufti, Nandang; Bergmann, Christoph; Rosner, Helge; Geibel, Christoph [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Goltz, Til; Klauss, Hans-Henning [Institute of Solid State Physics, TU Dresden (Germany); Woike, Theo [Institute for Structural Physics, TU Dresden (Germany)

    2016-07-01

    The intermetallic compound series AFe{sub 4}X{sub 2} (A = Y, Lu, Zr; X = Si, Ge) presents a rare case of magnetic frustrated metallic systems. In particular ZrFe{sub 4}Si{sub 2} is of strong interest because our results indicate this system to be very close to a quantum critical point (QCP) where Fe magnetic order disappears. To get a deeper insight into its ground state, we performed a detailed study of Ge and Y substituted ZrFe{sub 4}Si{sub 2}. The isovalent substitution of Ge for Si induces a negative chemical pressure as Ge is larger than Si. As expected from this, the substitution results in the formation of a well-defined antiferromagnetic order with Neel temperatures increasing up to 25 K at 40 % Ge. This confirms ZrFe{sub 4}Si{sub 2} to be extremely close to the QCP, just on the magnetic side of it. With the second substitution series Y{sub x}Zr{sub 1-x}Fe{sub 4}Si{sub 2} we investigate the development from the highly reduced antiferromagnetic order in ZrFe{sub 4}Si{sub 2} towards the two magnetic transitions at 56 K and 76 K, which we see in YFe{sub 4}Si{sub 2}.

  15. Cu-Zr-Ag bulk metallic glasses based on Cu8Zr5 icosahedron

    International Nuclear Information System (INIS)

    Xia Junhai; Qiang Jianbing; Wang Yingmin; Wang Qing; Dong Chuang

    2007-01-01

    Based on the cluster line criterion, the Ag addition into the Cu 8 Zr 5 cluster composition is investigated for the search of ternary Cu-Zr-Ag bulk metallic glasses with high glass forming abilities. Two initial binary compositions Cu 0.618 Zr 0.382 and Cu 0.64 Zr 0.36 are selected. The former one corresponds to a deep eutectic point; it is also the composition of the Cu 8 Zr 5 icosahedron, which is derived from the Cu 8 Zr 3 structure. The latter one, which can be regarded as the Cu 8 Zr 5 cluster plus a glue atom Cu, is the best glass-forming composition in the Cu-Zr binary system. Two composition lines (Cu 0.618 Zr 0.382 ) 1-x Ag x and (Cu 0.64 Zr 0.36 ) 1-x Ag x are thus constructed in the Cu-Zr-Ag system by linking these two compositions with the third constitute Ag. A series of Cu-Zr-Ag bulk metallic glasses are found with 2-8 at.% Ag contents in both composition lines. The optimum composition (Cu 0.618 Zr 0.382 ) 0.92 Ag 0.08 within the searched region with the highest T g /T l = 0.633, is located along the cluster line (Cu 0.618 Zr 0.382 ) 1-x Ag x , where the deep eutectic Cu 0.618 Zr 0.382 exactly corresponds to the dense packing cluster Cu 8 Zr 5 . The alloying mechanism is discussed in the light of atomic size and electron concentration factors

  16. Self-diffusion of Er and Hf inpure and HfO2-doped polycrystalline Er2O3

    International Nuclear Information System (INIS)

    Scheidecker, R.W.

    1979-01-01

    Using a tracer technique, self-diffusion of Er and Hf was measured over the approximate temperature interval of 1600 to 1970 0 C in pure and HfO 2 -doped polycryatalline Er 2 O 3 . Up to about 10 m/o HfO 2 dopant level, the Er self-diffusion coefficients followed a relationship based on cation vacancies. Above 10 m/o HfO 2 , deviation from this relationship occurred, apparently due to clustering of cation vacancies and oxygen interstitials around the dopant hafnia ion. The activation energy for the self-diffusion of Er in pure Er 2 O 3 was 82.2 Kcal/mole and increased with the HfO 2 dopant level present. Self-diffusion of Hf was measured in pure Er 2 O 3 having two impurity levels, and a separation of the grain boundary. The volume diffusion of Hf showed both extrinsic and intrinsic behavior with the transition temperature increasing with the impurity level present in Er 2 O 3 . The activation energy for Hf volume diffusion in the intrinsic region was high, i.e. 235 -+ 9.5 Kcal/mole. The grain boundary diffusion was apparently extrinsic over the entire temperature interval Very low Hf self diffusion rates were found in both pure and HfO 2 doped Er 2 O 3 compositions. Despite a clustering effect, the HfO 2 dopant increased the Hf volume diffusion coefficients

  17. Corrosion of high Ni-Cr alloys and Type 304L stainless steel in HNO3-HF

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; McLaughlin, B.D.

    1980-04-01

    Nineteen alloys were evaluated as possible materials of construction for steam heating coils, the dissolver vessel, and the off-gas system of proposed facilities to process thorium and uranium fuels. Commercially available alloys were found that are satisfactory for all applications. With thorium fuel, which requires HNO 3 -HF for dissolution, the best alloy for service at 130 0 C when complexing agents for fluoride are used is Inconel 690; with no complexing agents at 130 0 C, Inconel 671 is best. At 95 0 C, six other alloys tested would be adequate: Haynes 25, Ferralium, Inconel 625, Type 304L stainless steel, Incoloy 825, and Haynes 20 (in order of decreasing preference); based on composition, six untested alloys would also be adequate. The ions most effective in reducing fluoride corrosion were the complexing agents Zr 4+ and Th 4+ ; Al 3+ was less effective. With uranium fuel, modestly priced Type 304L stainless steel is adequate. Corrosion will be most severe in HNO 3 -HF used occasionally for flushing and in solutions of HNO 3 and corrosion products (ferric and dichromate ions). HF corrosion can be minimized by complexing the fluoride ion and by passivation of the steel with strong nitric acid. Corrosion caused by corrosion products can be minimized by operating at lower temperatures

  18. In situ synthesis and formation mechanism of ZrC and ZrB2 by combustion synthesis from the Co-Zr-B4C system

    Directory of Open Access Journals (Sweden)

    Mengxian Zhang

    2015-09-01

    Full Text Available ZrC-ZrB2-based composites were prepared by combustion synthesis (CS reaction from 10 wt.% to 50 wt.% Co-Zr-B4C powder mixtures. With increasing Co contents, the particle sizes of near-spherical ZrC and platelet-like ZrB2 decreased from 1 μm to 0.5 μm and from 5 μm to 2 μm, respectively. In addition, the formation mechanism of ZrC and ZrB2 was explored by the phase transition and microstructure evolution on the combustion wave quenched sample in combination with differential scanning calorimeter analysis. The results showed that the production of ZrC was ascribed to the solid-solid reaction between Zr and C and the precipitation from the Co-Zr-B-C melt, while ZrB2 was prepared from the saturated liquid. The low B concentration in the Co-Zr-B-C liquid and high cooling rate during the CS process led to the presence of Co2B and ZrCo3B2 in the composites. The addition of Co in the Co-Zr-B4C system not only prevented ZrC and ZrB2 particulates from growing, but also promoted the occurrence of ZrC-ZrB2-forming reaction.

  19. Zr-rich corner of the Zr-Sn-O diagram

    International Nuclear Information System (INIS)

    Roberti, L.A.; Arias, D.E.

    1993-01-01

    The understanding of the effect of light elements (in particular oxygen, nitrogen and hydrogen) on the behaviour of alloys for nuclear use is necessary because of its technological importance. The Zr-Sn-O system is perhaps the most representative of all possible ternary systems which can be used to simulate a simplified Zircaloy-type alloy in which the effect of O can be studied. However, in the specialized literature experimental data on phase equilibria and thermophysical properties of this system are not easily found. In the present work, the equilibrium compositions of the α and β phases of the Zr-Sn-O system at temperatures between 1150 and 1323 K are calculated, using the scarce available information. First results of the calculations show satisfactory coincidences with experimental data. Future work will be oriented towards the proposal of isothermal cross-sections calculated by a modelling of phases with wider Sn and O composition ranges, and involving equilibria with the phases Zr 4 Sn, Zr 5 Sn 3 , ZrO 2 , ZrSnO 4 . (Author)

  20. Hf-Nd Isotopes in West Philippine Basin Basalts: Results from International Ocean Discovery Program (IODP) Site U1438 and Implications for the Early History of the Izu-Bonin-Mariana (IBM) Subduction System

    Science.gov (United States)

    Yogodzinski, G. M.; Hocking, B.; Bizimis, M.; Hickey-Vargas, R.; Ishizuka, O.; Bogus, K.; Arculus, R. J.

    2015-12-01

    Drilling at IODP Site U1438, located immediately west of Kyushu-Palau Ridge (KPR), the site of IBM subduction initiation, penetrated 1460 m of volcaniclastic sedimentary rock and 150 m of underlying basement. Biostratigraphic controls indicate a probable age for the oldest sedimentary rocks at around 55 Ma (51-64 Ma - Arculus et al., Nat Geosci in-press). This is close to the 48-52 Ma time period of IBM subduction initiation, based on studies in the forearc. There, the first products of volcanism are tholeiitic basalts termed FAB (forearc basalt), which are more depleted than average MORB and show subtle indicators of subduction geochemical enrichment (Reagan et al., 2010 - Geochem Geophy Geosy). Shipboard data indicate that Site U1438 basement basalts share many characteristics with FABs, including primitive major elements (high MgO/FeO*) and strongly depleted incompatible element patterns (Ti, Zr, Ti/V and Zr/Y below those of average MORB). Initial results thus indicate that FAB geochemistry may have been produced not only in the forearc, but also in backarc locations (west of the KPR) at the time of subduction initiation. Hf-Nd isotopes for Site 1438 basement basalts show a significant range of compositions from ɛNd of 7.0 to 9.5 and ɛHf of 14.5 to 19.8 (present-day values). The data define a well-correlated and steep array in Hf-Nd isotope space. Relatively radiogenic Hf compared to Nd indicates an Indian Ocean-type MORB source, but the dominant signature, with ɛHf >16.5, is more radiogenic than most Indian MORB. The pattern through time is from more-to-less radiogenic and more variable Hf-Nd isotopes within the basement section. This pattern culminates in basaltic andesite sills, which intrude the lower parts of the sedimentary section. The sills have the least radiogenic compositions measured so far (ɛNd ~6.6, ɛHf ~13.8), and are similar to those of boninites of the IBM forearc and modern IBM arc and reararc rocks. The pattern within the basement

  1. Effect of pH and fluoride on behavior of dental ZrO{sub 2} ceramics in artificial saliva

    Energy Technology Data Exchange (ETDEWEB)

    Mukaeda, L.E.; Robin, A.; Santos, C.; Taguchi, S.P.; Borges Junior, L.A., E-mail: luizamukaeda@gmail.com, E-mail: alain@demar.eel.usp.br, E-mail: claudinei@demar.eel.usp.br, E-mail: simone@demar.eel.usp.br, E-mail: borges.jr@itelefonica.com.br [Universidade de Sao Paulo (EEL/DEMAR/USP), Lorena, SP (Brazil). Escola de Engenharia; Machado, J.P.B., E-mail: joaopaulo@las.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2009-07-01

    A considerable increase in the ceramic products demand occurred due to the evolution of dental restoration techniques and these materials must resist to the complex mouth environment. The pH of saliva can decrease significantly due to the ingestion of acidic foods and beverages and mainly due to reactions occurring during bacteria metabolism that lead to the formation of organic acids. Fluorides are also present in the mouth since fluorides are usually added in drinking water, mouth washes, tooth pastes and gels for the prevention of plaque and caries formation. The combination of low pH and presence of fluorides can lead to the formation of HF and HF{sub 2}{sup -} which are detrimental to metallic and probably to ceramic devices. In this work, commercial blocks of ZrO{sub 2} ceramics (ProtMat Materiais Avancados® and Ivoclar®) were immersed in Fusayama artificial saliva of different pHs and fluoride concentrations. The properties of the as-produced ceramics (crystalline phases (XRD), microstructure (SEM), roughness (3D surface topography AFM) and mechanical resistance - Vickers hardness (Hv) and fracture toughness (KIC) were evaluated. Some of these properties were also determined after the immersion tests as well as the mass variation of the samples in order to evaluate the resistance of these ZrO{sub 2} ceramics to degradation under these conditions. (author)

  2. Separation of zirconium from hafnium by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, Elaine C.B.; Palhares, Hugo G.; Ladeira, Ana Claudia Q., E-mail: elainecfelipe@yahoo.com.br, E-mail: hugopalhares@gmail.com, E-mail: ana.ladeira@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Zirconium and hafnium are two of the most important metals for the nuclear industry. Hafnium occurs in all zirconium ores usually in the range 2 - 3%. However, for the most nuclear industry applications, it is necessary to use a zirconium of extremely pure level. The current work consists in the separation of zirconium and hafnium by the ion exchange method in order to obtain a zirconium concentrate of high purity. The zirconium and hafnium liquors were produced from the leaching of the Zr(OH){sub 4} and Hf(OH){sub 4} with nitric acid for 24 hours. From these two liquors it was prepared one solution containing 7.5 x 10{sup -2} mol L{sup -1} of Zr and 5.8 x 10{sup -3} mol L{sup -1} of Hf with acidity of 1 M. Ion exchange experiments were carried out in batch with the resins Dowex 50WX4, Dowex 50WX8 100, Dowex 50WX8 50, Amberlite IR-120 and Marathon C at constant temperature 28 deg C. Other variables such as, acidity and agitation were kept constant. The data were adjusted to Langmuir equation in order to calculate the maximum loading capacity (q{sub max}) of the resins, the distribution coefficient (K{sub d}) for Zr and Hf and the separation factor (α{sub Hf}{sup Zr} ). The results of maximum loading capacity (q{sub max}) for Zr and Hf, in mmol g{sup -}1, showed that the most suitable resins for columns experiments are: Dowex 50WX4 50 (q{sub max} Z{sub r} = 2.21, Hf = 0.18), Dowex 50WX8 50 (q{sub max} Zr = 1.89, Hf = 0.13) and Amberlite (q{sub max} Zr = 1.64, Hf = 0.12). However, separations factors, α{sub Hf}{sup Zr}, showed that the resins are not selective. (author)

  3. Zirconium tetrafluoride complexing with imidotetraphenyldiphosphinic acid in DMSO. Crystal structure of {ZrF2[Ph2P(O)NP(O)Ph2]2}. Trans effect of fluorine ion

    International Nuclear Information System (INIS)

    Il'in, E.G.; Kovalev, V.V.; Aleksandrov, G.G.; Shmidpeter, A.; Buslaev, Yu.A.

    2000-01-01

    The structure of complexes formed during interaction between ZrF 4 and imidotetraphenyldiphosphinic acid (HL) in mixed DMSO-CH 2 Cl 2 solvent (DMSO=dimethylsulfoxide) at temperatures of 218-273 K was studied by the method of 19 F and 31 P NMR. For complex [ZrF 2 L 2 ]·2HF cis configuration was ascertained, which is confirmed by the study of its monocrystals by the method of X-ray diffraction analysis. The revealed non-equivalence of chemical bonds of chelate cycle oxygen atoms in the complex suggests manifestation of trans-effect by fluorine ion [ru

  4. Determination of rare earth elements, hafnium and cadmium in sintered pellets of mixed thorium and uranium oxides by neutron activation

    International Nuclear Information System (INIS)

    Cardoso, S.N.M.

    1987-01-01

    This work shows the development of a method for determination of the rare-earth elements (Eu, Sm, Dy and Gd), Hf and Cd contents in sinterized U and Th mixed oxides by neutron activation analysis. The sample is dissolved in nitric/fluoridric (0,1% HF) medium, to dryness and redissolved in 6N HCl solution. The Hf is extracted into organic phase (0,5 M TTA/benzene), irradiated and analysed through 181 Hf isotope energy peak. The aqueous phase is treated with NH 4 OH for the precipitation of hidroxides. Then, these are dissolved in 6N HNO 3 solution. The extraction of U and Th is made in two steps, one with TBP/CCl 4 and another with 0,5 M TTA/C 6 H 6 . Then the rare-earth elements and Cd are irradiated and determined by gamma spectrometry. (author) [pt

  5. Orientation control and domain structure analysis of {100}-oriented epitaxial ferroelectric orthorhombic HfO{sub 2}-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Kiliha [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Shimizu, Takao [Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Sakata, Osami [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Shiraishi, Takahisa; Nakamura, Shogo; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Uchida, Hiroshi [Department of Materials and Life Sciences, Sophia University, Chiyoda, Tokyo 102-8554 (Japan); Funakubo, Hiroshi, E-mail: funakubo.h.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2016-04-07

    Orientation control of {100}-oriented epitaxial orthorhombic 0.07YO{sub 1.5}-0.93HfO{sub 2} films grown by pulsed laser deposition was investigated. To achieve in-plane lattice matching, indium tin oxide (ITO) and yttria-stabilized zirconia (YSZ) were selected as underlying layers. We obtained (100)- and (001)/(010)-oriented films on ITO and YSZ, respectively. Ferroelastic domain formation was confirmed for both films by X-ray diffraction using the superlattice diffraction that appeared only for the orthorhombic symmetry. The formation of ferroelastic domains is believed to be induced by the tetragonal–orthorhombic phase transition upon cooling the films after deposition. The present results demonstrate that the orientation of HfO{sub 2}-based ferroelectric films can be controlled in the same manner as that of ferroelectric films composed of conventional perovskite-type material such as Pb(Zr, Ti)O{sub 3} and BiFeO{sub 3}.

  6. Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys

    International Nuclear Information System (INIS)

    Witusiewicz, V.T.; Sommer, F.

    2000-01-01

    Since the Al-Cu-Ni-Zr system is a basis for the production of bulk amorphous materials by rapid solidification techniques from the liquid state, it is of great scientific interest to determine the partial and the integral thermodynamic functions of liquid and undercooled liquid alloys. Such data, as was pointed out previously, are important in order to understand their extremely good glass-forming ability in multicomponent metallic systems as well as for processing improvements. In order to measure the thermodynamic properties of the Al-Cu-Ni-Zr quaternary, it is necessary to have reliable thermochemical data for its constituent canaries and ternaries first. In a series of articles, the authors have reported in detail the thermodynamic properties of liquid Al-Cu, Al-Ni, Cu-Ni, Cu-Zr, Al-Zr, Al-Cu-Ni, and Al-Cu-Zr alloys. This article deals with the direct calorimetric measurements of the partial and the integral enthalpies of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys and the heat capacity of liquid Ni 26 Zr 74 . In a subsequent article, the authors will present similar data for the liquid ternary Al-Ni-Zr and for the liquid quaternary Al-Cu-Ni-Zr alloys

  7. The studies of the martensite transformations in a Ti36.5Ni48.5Hf15 alloy

    International Nuclear Information System (INIS)

    Han, S.; Jin, S.; Chinese Academy of Sciences, Beijing; Zou, W.; Zhang, Z.; Yang, D.

    1995-01-01

    In recent years, high temperature shape memory alloy (SMA) has attracted much interest by many groups of researchers. Many kinds of alloys, such as TiNiPd and NiAL alloys were reported to have shape memory effect in high temperatures. But for different kinds of reasons, these alloys were not put to practical use. TiNi alloys have been considered the best shape memory materials until now. Adding a third element whose characteristics are similar to Ti or Ni in TiNi binary alloys can produce a new style SMA, which has been done in many cases. In most circumstances, Ni was substituted and only a few investigations on the TiNi alloys was Ti replaced. But in recent years, many investigators have given more attention to this subject. In 1976, Eckelmeyer showed that Zr was one of the element that can raise the phase transformation temperatures of TiNi alloys. In 1990, Krupp obtained a patent on TiNiZr SMA with high transformation temperatures for TiNi alloys. J.H. Mulder also published his work on TiNiZr alloys in 1992. In their previous work, a new type of high temperature SMA Ti 36.5 Ni 48.5 Hf 15 alloy were investigated in more detail by DSC measurement, TEM and high-resolution observations

  8. Formation and Applications of Bulk Glassy Alloys in Late Transition Metal Base System

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Shen Baolong

    2006-01-01

    This paper reviews our recent results of the formation, fundamental properties, workability and applications of late transition metal (LTM) base bulk glassy alloys (BGAs) developed since 1995. The BGAs were obtained in Fe-(Al,Ga)-(P,C,B,Si), Fe-(Cr,Mo)-(C,B), Fe-(Zr,Hf,Nb,Ta)-B, Fe-Ln-B(Ln=lanthanide metal), Fe-B-Si-Nb and Fe-Nd-Al for Fe-based alloys, Co-(Ta,Mo)-B and Co-B-Si-Nb for Co-based alloys, Ni-Nb-(Ti,Zr)-(Co,Ni) for Ni-based alloys, and Cu-Ti-(Zr,Hf), Cu-Al-(Zr,Hf), Cu-Ti-(Zr,Hf)-(Ni,Co) and Cu-Al-(Zr,Hf)-(Ag,Pd) for Cu-based alloys. These BGAs exhibit useful properties of high mechanical strength, large elastic elongation and high corrosion resistance. In addition, Fe- and Co-based glassy alloys have good soft magnetic properties which cannot be obtained for amorphous and crystalline type magnetic alloys. The Fe- and Ni-based BGAs have already been used in some application fields. These LTM base BGAs are promising as new metallic engineering materials

  9. Clinical trials update from the Heart Failure Society of America Meeting 2009: FAST, IMPROVE-HF, COACH galectin-3 substudy, HF-ACTION nuclear substudy, DAD-HF, and MARVEL-1.

    Science.gov (United States)

    Lainscak, Mitja; Coletta, Alison P; Sherwi, Nasser; Cleland, John G F

    2010-02-01

    This article presents findings and a commentary on late-breaking trials presented during the meeting of the Heart Failure Society of America in September 2009. Unpublished reports should be considered as preliminary, since analyses may change in the final publication. The FAST trial showed somewhat better performance of intrathoracic impedance for prediction of deterioration in patients with heart failure (HF) when compared with daily weighing. The IMPROVE-HF study reported the benefits of education on the management of patients with systolic HF. Galectin-3 appeared a useful method for improving risk stratification of patients with chronic HF in a substudy of the COACH trial. A nuclear substudy of the HF-ACTION trial failed to demonstrate that resting myocardial perfusion imaging, a measure of myocardial scar and viability, was clinically useful. A small randomized controlled trial (DAD-HF) suggested that the use of low-dose dopamine in patients with acutely decompensated HF was associated with less deterioration in renal function and less hypokalaemia. The MARVEL-1 trial raises further concerns about the safety of myoblast transplantation in ischaemic HF.

  10. Ab initio theoretical study of dipole-bound anions of molecular complexes: (HF)3- and (HF)4- anions

    Science.gov (United States)

    Ramaekers, Riet; Smith, Dayle M. A.; Smets, Johan; Adamowicz, Ludwik

    1997-12-01

    Ab initio calculations have been performed to determine structures and vertical electron detachment energy (VDE) of the hydrogen fluoride trimer and tetramer anions, (HF)3- and (HF)4-. In these systems the excess electron is bound by the dipole field of the complex. It was determined that, unlike the neutral complexes which prefer the cyclic structures, the equilibrium geometries of the anions have "zig-zag" shapes. For both complexes the predicted VDEs are positive [210 meV and 363 meV for (HF)3- and (HF)4-, respectively], indicating that the anions are stable systems with respect to the vertical electron detachment. These results were obtained at the coupled-cluster level of theory with single, double and triple excitations [CCSD(T) method; the triple-excitation contribution in this method is calculated approximately using the perturbation approach] with the anion geometries obtained using the second-order Møller-Plesset perturbation theory (MP2) method. The same approach was also used to determine the adiabatic electron affinities (AEA) of (HF)3 and (HF)4. In addition to the electronic contribution, we also calculated the contributions (using the harmonic approximation) resulting from different zero-point vibration energies of the neutral and anionic clusters. The calculations predicted that while the AEA of (HF)3 is positive (44 meV), the AEA for (HF)4 is marginally negative (-16 meV). This suggests that the (HF)3- anion should be a stable system, while the (HF)4- is probably metastable.

  11. Ab initio study of the elastic properties of single and polycrystal TiO2, ZrO2 and HfO2 in the cotunnite structure

    International Nuclear Information System (INIS)

    Caravaca, M A; Mino, J C; Perez, V J; Casali, R A; Ponce, C A

    2009-01-01

    In this work, we study theoretically the elastic properties of the orthorhombic (Pnma) high-pressure phase of IV-B group oxides: titania, zirconia and hafnia. By means of the self-consistent SIESTA code, pseudopotentials, density functional theory in the LDA and GGA approximations, the total energies, hydrostatic pressures and stress tensor components are calculated. From the stress-strain relationships, in the linear regime, the elastic constants C ij are determined. Derived elastic constants, such as bulk, Young's and shear modulus, Poisson coefficient and brittle/ductile behavior are estimated with the polycrystalline approach, using Voigt-Reuss-Hill theories. We have found that C 11 , C 22 and C 33 elastic constants of hafnia and zirconia show increased strength with respect to the experimental values of the normal phase, P 2 1 /c. A similar situation applies to titania if these constants are compared with its normal phase, rutile. However, shear elastic constants C 44 , C 55 and C 66 are similar to the values found in the normal phase. This fact increases the compound anisotropy as well as its ductile behavior. The dependence of unit-cell volumes under hydrostatic pressures is also analyzed. P-V data, fitted to third-order Birch-Murnaghan equations of state, provide the bulk modulus B 0 and its pressure derivatives B' 0 . In this case, LDA estimations show good agreement with respect to recent measured bulk moduli of ZrO 2 and HfO 2 . Thermo-acoustic properties, e.g. the propagation speed of transverse, longitudinal elastic waves together with associated Debye temperatures, are also estimated.

  12. Nuclear orientation of 9597Nb and 95Zr in ZrFe2

    International Nuclear Information System (INIS)

    Krane, K.S.; Olsen, C.E.; Rosenblum, S.S.; Steyert, W.A.

    1976-01-01

    The angular distribution anisotropies of γ rays were measured following the decays of 95 , 97 Nb and 95 Zr oriented at low temperatures in the ferromagnetic Laves phase compound ZrFe 2 . The magnetic hyperfine field of Nb in ZrFe 2 was deduced to be 9.4+-1.6 T; that of Zr in ZrFe 2 was estimated to be 15+-4 T. The nuclear magnetic moment of 97 Nb was deduced to be μ = (7.5+-1.4) μ/subN/

  13. Chemical vapor deposited monolayer MoS2 top-gate MOSFET with atomic-layer-deposited ZrO2 as gate dielectric

    Science.gov (United States)

    Hu, Yaoqiao; Jiang, Huaxing; Lau, Kei May; Li, Qiang

    2018-04-01

    For the first time, ZrO2 dielectric deposition on pristine monolayer MoS2 by atomic layer deposition (ALD) is demonstrated and ZrO2/MoS2 top-gate MOSFETs have been fabricated. ALD ZrO2 overcoat, like other high-k oxides such as HfO2 and Al2O3, was shown to enhance the MoS2 channel mobility. As a result, an on/off current ratio of over 107, a subthreshold slope of 276 mV dec-1, and a field-effect electron mobility of 12.1 cm2 V-1 s-1 have been achieved. The maximum drain current of the MOSFET with a top-gate length of 4 μm and a source/drain spacing of 9 μm is measured to be 1.4 μA μm-1 at V DS = 5 V. The gate leakage current is below 10-2 A cm-2 under a gate bias of 10 V. A high dielectric breakdown field of 4.9 MV cm-1 is obtained. Gate hysteresis and frequency-dependent capacitance-voltage measurements were also performed to characterize the ZrO2/MoS2 interface quality, which yielded an interface state density of ˜3 × 1012 cm-2 eV-1.

  14. Grain boundary sinks in neutron-irradiated Zr and Zr-alloys

    International Nuclear Information System (INIS)

    Griffiths, M.; Gilbert, R.W.; Coleman, C.E.

    1988-01-01

    Samples of annealed sponge and crystal-bar Zr and Zircaloy-2 have been examined following irradiation in EBR-II at temperatures ≅ 700 K. Loop analysis shows that there is selective denuding of interstitial loops near to some grain boundaries indicating that such boundaries are net sinks for interstitial point defects. Furthermore, in sponge Zr and Zircaloy-2, vacancy c-component loops are observed running into the grain boundaries showing that the grain boundaries are not preferred sinks for vacancies. Cavities are observed in all samples. In crystal-bar Zr and sponge Zr they are mostly observed adjacent to grain boundaries. They are also sometimes found within grains associated with precipitates. The cavities are more common in the crystal-bar Zr and this is probably because both the sponge Zr and Zircaloy-2 contain vacancy c-component loops which compete for vacancies (assuming that the cavities are vacancy sinks). Only some of the grain boundaries have cavities adjacent to them and this may be related to the orientation of the boundary. (orig.)

  15. Microstructure Characteristics of High Lift Factor MOCVD REBCO Coated Conductors With High Zr Content

    Energy Technology Data Exchange (ETDEWEB)

    Galstyan, E; Gharahcheshmeh, MH; Delgado, L; Xu, AX; Majkic, G; Selvamanickam, V

    2015-06-01

    We report the microstructural characteristics of high levels of Zr-added REBa2Cu3O7-x (RE = Gd, Y rare earth) coated conductors fabricated by Metal Organic Chemical Vapor Deposition (MOCVD). The enhancements of the lift factor defined as a ratio of the in-field (3 T, B parallel to c-axis) critical current density (J(c)) at 30 K and self-field J(c) at 77 K have been achieved for Zr addition levels of 20 and 25 mol% via optimization of deposition parameters. The presence of strong flux pinning is attributed to the aligned nanocolumns of BaZrO3 and nanoprecipitates embedded in REBa2Cu3O7-x matrix with good crystal quality. A high density of BZO nanorods with a typical size 6-8 nm and spacing of 20 nm has been observed. Moreover, the high Zr content was found to induce a high density of intrinsic defects, including stacking faults and dislocations. The correlation between in-field performance along the c-axis and microstructure of (Gd, Y) BCO film with a high level of Zr addition is discussed.

  16. Zircon U–Pb–Hf isotopic and geochemical characteristics of the Xierzi biotite monzogranite pluton, Linxi, Inner Mongolia and its tectonic implications

    Directory of Open Access Journals (Sweden)

    Qing-Bin Guan

    2018-03-01

    Full Text Available The opening, subduction and final closure of the Paleo-Asian Ocean led to the formation of the Central Asian Orogenic Belt. Controversy has long surrounded the timing of final closure of the Paleo-Asian Ocean. Here we present zircon U–Pb ages and petrological, geochemical and in situ Hf isotope data for the Xierzi biotite monzogranite pluton, Linxi, SE Inner Mongolia. U–Pb dating of zircon by LA-ICP-MS yields a middle Permian emplacement age (268.7 ± 2.3 Ma for the Xierzi pluton that is dominated by biotite monzogranites with high SiO2 (71.2–72.8 wt.%, alkali (Na2O + K2O = 8.05–8.44 wt.%, Al2O3 (14.4–15.2 wt.% and Fe2O3T relative to low MgO contents, yielding Fe2O3T/MgO ratios of 2.87–3.44, and plotting within the high-K calc-alkaline field on a SiO2 vs. K2O diagram. The aluminum saturation indexes (A/CNK of the biotite monzogranites range from 1.06 to 1.19, corresponding to weakly to strongly peraluminous. They are enriched in rare earth elements (REE, high field strength elements (HFSEs; Zr, Hf, and large ion lithophile elements (LILEs; Rb, U, Th. The LREEs are enriched relative to the HREEs, with a distinct negative Eu anomaly in a chondrite–normalized REE diagram. Geochemically, the Xierzi biotite monzogranite is classified as an aluminous A-type granite, with all samples plotting within the A2-type granite field on a Y/Nb vs. Rb/Nb diagram. Zircon εHf(t values and two-stage modal ages of the zircons within the pluton range from +4.80 to +13.65 and from 983 to 418 Ma, respectively, indicating that the primary magma was generated through partial melting of felsic rocks from juvenile crust. Consequently, these results demonstrate that the Xierzi pluton formed under the post-orogenic extensional setting after arc–continent collision in the middle Permian.

  17. Nanotube morphology changes for Ti-Zr alloys as Zr content increases

    International Nuclear Information System (INIS)

    Kim, Won-Gi; Choe, Han-Cheol; Ko, Yeong-Mu; Brantley, William A.

    2009-01-01

    Nanotube morphology changes in Ti-Zr alloys as Zr content increases have been investigated. Ti-Zr (10, 20, 30 and 40 wt.%) alloys were prepared by arc melting and heat treated for 24 h at 1000 o C in an argon atmosphere. TiO 2 nanotubes were formed on the Ti-Zr alloys by anodization in H 3 PO 4 containing 0.5 wt.% NaF. Electrochemical experiments were performed using a conventional three-electrode configuration with a platinum counter electrode and a saturated calomel reference electrode. Samples were embedded in epoxy resin, leaving an area of 10 mm 2 exposed to the electrolyte. Anodization was carried out using a scanning potentiostat, and all experiments were conducted at room temperature. Microstructures of the alloys were examined by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and x-ray diffraction (XRD). The Ti-Zr alloy microstructures observed by OM and FE-SEM changed from a lamellar structure to a needle-like structure with increasing Zr content. The microstructures also changed from β phase to increasing amounts of α phase as the Zr content increased. The number of large nanotubes formed by anodization decreased, and the number of small nanotubes increased, as the Zr content increased. The mean inner diameter ranged from approximately 150 to 200 nm with a tube-wall thickness of about 20 nm. The interspace between the nanotubes was approximately 60, 70, 100 and 130 nm for Zr contents of 10, 20, 30 and 40 wt.%, respectively.

  18. MO-HF-C alloy composition

    International Nuclear Information System (INIS)

    Whelan, E.P.; Kalns, E.

    1987-01-01

    This patent describes, as an article of manufacture, a cast ingot of a molybdenum-hafnium-carbon alloy consisting essentially by weight of about 0.6% to about 1% Hf, about 0.045% to about 0.08% C, and the balance essentially molybdenum. The amount of Hf and C present are substantially stoichiometric with respect to HfC and within about +-15% of stoichiometry. The ingot is characterized in that it has a substantially less tendency to crack compared to alloys containing Hf in excess of about 1% by weight and carbon in excess of 0.08% by weight, without substantial diminution in strength properties of the alloy

  19. Microwave-assisted Extraction of Rare Earth Elements from Petroleum Refining Catalysts and Ambient Fine Aerosols Prior to Inductively Coupled Plasma - Mass Spectrometry

    Science.gov (United States)

    Mittlefehldt, David W.; Kulkarni, Pranav; Chellam, Shankar

    2006-01-01

    In the absence of a certified reference material, a robust microwave-assisted acid digestion procedure followed by inductively coupled plasma - mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 C), high pressure (200 psig), acid digestion (HNO3, HF, and H3BO3) with 20 minute dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst, and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb, and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy, and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu, and Dy in ambient PM2.5 in an industrial area of Houston, TX.

  20. Microwave-assisted extraction of rare earth elements from petroleum refining catalysts and ambient fine aerosols prior to inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Kulkarni, Pranav; Chellam, Shankararaman; Mittlefehldt, David W.

    2007-01-01

    A robust microwave-assisted acid digestion procedure followed by inductively coupled plasma-mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM 2.5 ). High temperature (200 deg. C), high pressure (200 psig), acid digestion (HNO 3 , HF and H 3 BO 3 ) with 20 min dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst and PM 2.5 . This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115 In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu and Dy in ambient PM 2.5 in an industrial area of Houston, TX

  1. The Structural Evolution of (Gd, Y)Ba2Cu3Ox Tapes With Zr Addition Made by Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lei, CH; Galstyan, E; Chen, YM; Shi, T; Liu, YH; Khatri, N; Liu, JF; Xiong, XM; Majkic, G; Selvamanickam, V

    2013-06-01

    Structural analysis of (Gd, Y) Ba2Cu3Ox tapes with Zr addition made by metal organic chemical vapor deposition has been conducted with transmission electron microscopy and X-ray diffraction. Zr content in the films was varied from 0 to 25% in the precursor. In all Zr-doped films, self-assembled nanocolumnar structures of BaZrO3 (BZO) were observed along the c-axis. The amount of BaZrO3 was found to increase steadily with Zr content. Additionally, planar BZO plates were found on the (001) plane of (Gd, Y) Ba2Cu3Ox film. The size and thickness of BZO plates were seen to increase with Zr doping level. Rare-earth copper oxide phases were observed to begin to emerge in the 20% Zr-doped film. Cross-sectional study of the interface between (Gd, Y)Ba2Cu3Ox and LaMnO3 cap layer revealed a thin discrete BZO layer on the LaMnO3 in the 20% Zr doped film.

  2. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Zhiping Zhang

    2017-11-01

    Full Text Available Zr2WP2O12/ZrO2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr2WP2O12/ZrO2 composites with different mass ratio. Relative densities of all the resulting Zr2WP2O12/ZrO2 samples were also tested by Archimedes' methods. The obtained Zr2WP2O12/ZrO2 composites were comprised of orthorhombic Zr2WP2O12 and monoclinic ZrO2. As the increase of the Zr2WP2O12, the relative densities of Zr2WP2O12/ZrO2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr2WP2O12/ZrO2 composites can be tailored from 4.1 × 10−6 K−1 to −3.3 × 10−6 K−1 by changing the content of Zr2WP2O12. The 2:1 Zr2WP2O12/ZrO2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of −0.09 × 10−6 K−1. These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  3. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion.

    Science.gov (United States)

    Zhang, Zhiping; Sun, Weikang; Liu, Hongfei; Xie, Guanhua; Chen, Xiaobing; Zeng, Xianghua

    2017-01-01

    Zr 2 WP 2 O 12 /ZrO 2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr 2 WP 2 O 12 /ZrO 2 composites with different mass ratio. Relative densities of all the resulting Zr 2 WP 2 O 12 /ZrO 2 samples were also tested by Archimedes' methods. The obtained Zr 2 WP 2 O 12 /ZrO 2 composites were comprised of orthorhombic Zr 2 WP 2 O 12 and monoclinic ZrO 2 . As the increase of the Zr 2 WP 2 O 12 , the relative densities of Zr 2 WP 2 O 12 /ZrO 2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr 2 WP 2 O 12 /ZrO 2 composites can be tailored from 4.1 × 10 -6 K -1 to -3.3 × 10 -6 K -1 by changing the content of Zr 2 WP 2 O 12 . The 2:1 Zr 2 WP 2 O 12 /ZrO 2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of -0.09 × 10 -6 K -1 . These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  4. Zr inclusions in actinide—Zr alloys: New data and ideas about how they form

    International Nuclear Information System (INIS)

    Janney, Dawn E.; O'Holleran, Thomas P.

    2015-01-01

    High-Zr inclusions are common in actinide—Zr alloys despite phase diagrams indicating that these alloys should not contain a high-Zr phase. The inclusions may contain enough Zr to cause significant differences between bulk compositions and those of inclusion-free areas, leading to possible errors in interpreting data if the inclusions are not considered. This paper presents data from high-Zr inclusions in a complex U—Np—Pu—Am—Zr—RE alloy. It is suggested that the high-Zr inclusions nucleated as high-Zr solid solutions at interfaces with high-actinide RE liquids, then unmixed to form nanometer-scale high-actinide sub-inclusions.

  5. The rotational excitation of HF by H

    Science.gov (United States)

    Desrousseaux, Benjamin; Lique, François

    2018-06-01

    The HF molecule is a key tracer of molecular hydrogen in diffuse interstellar medium (ISM). Accurate modelling of the HF abundance in such media requires one to model its excitation by both radiation and collisions. In diffuse ISM, the dominant collisional partners are atomic and molecular hydrogen. We report quantum time-independent calculations of collisional cross-sections and rate coefficients for the rotational excitation of HF by H. The reactive hydrogen exchange channels are taken into account in the scattering calculations. For the first time, HF-H rate coefficients are provided for temperature ranging from 10 to 500 K. The strongest collision-induced rotational HF transitions are those with Δj = 1, and the order of magnitude of the new HF-H rate coefficients is similar to that of the HF-H2 ones previously computed. As a first application, we simulate the excitation of HF by both H and H2 in typical diffuse ISM. We show that, depending on the rotational transition, hydrogen atoms increase or decrease the simulated excitation temperatures compared to collisional excitation only due to H2 molecules. Such results suggest that the new HF-H collisional data have to be used for properly modelling the abundance of HF in diffuse ISM.

  6. Interaction of zirconium and hafnium tetrachlorides with cesium, rubidium and potassium chlorides and Raman spectra of reaction products

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Vovkotrub, Eh.G.; Strekalovskij, V.N.

    2008-01-01

    Raman spectroscopy was used to reveal the formation of novel complexes involving [Zr 2 Cl 9 ] - and [Hf 2 Cl 9 ] - anions in molten mixtures of ZrCl 4 and HfCl 4 with CsCl, RbCl, and KCl. A prediction is made about the presence of the above-mentioned complex anions in poorly investigated melts of the corresponding binary systems at high concentrations of ZrCl 4 or HfCl 4 [ru

  7. Experimental investigation of the Zr corner of the ternary Zr-Nb-Fe phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, M.S. E-mail: granovsk@cnea.gov.ar; Canay, M.; Lena, E.; Arias, D

    2002-04-01

    Intermediate phases in the Zr-rich region of the Zr-Nb-Fe system have been investigated by X-ray diffraction, optical and electron microscopy and electron microprobe analysis. The chemical composition ranges covered by the alloys studied here are: (41-97) at.% Zr, (32-0.9) at.% Nb and (0.6-38) at.% Fe. The phases found in this region were: the solid solutions {alpha}-Zr and {beta}-Zr, the intermetallic Zr{sub 3}Fe with less than 0.2 at.% Nb in solution, two new ternary intermetallic compounds (Zr+Nb){sub 2}Fe '{lambda}{sub 1}' with a cubic Ti{sub 2}Ni-type structure in the composition range (2.4-13) at.% Nb and (31-33) at.% Fe, and (Fe+Nb){sub 2}Zr '{lambda}{sub 2}' indexed as hexagonal Laves phase MgZn{sub 2} type (C14) with a wide range of compositions close to (35-37) at.% Zr, (12-31) at.% Nb and (32-53) at.% Fe.

  8. Experimental investigation of the Zr corner of the ternary Zr-Nb-Fe phase diagram

    International Nuclear Information System (INIS)

    Granovsky, M.S.; Canay, M.; Lena, E.; Arias, D.

    2002-01-01

    Intermediate phases in the Zr-rich region of the Zr-Nb-Fe system have been investigated by X-ray diffraction, optical and electron microscopy and electron microprobe analysis. The chemical composition ranges covered by the alloys studied here are: (41-97) at.% Zr, (32-0.9) at.% Nb and (0.6-38) at.% Fe. The phases found in this region were: the solid solutions α-Zr and β-Zr, the intermetallic Zr 3 Fe with less than 0.2 at.% Nb in solution, two new ternary intermetallic compounds (Zr+Nb) 2 Fe 'λ 1 ' with a cubic Ti 2 Ni-type structure in the composition range (2.4-13) at.% Nb and (31-33) at.% Fe, and (Fe+Nb) 2 Zr 'λ 2 ' indexed as hexagonal Laves phase MgZn 2 type (C14) with a wide range of compositions close to (35-37) at.% Zr, (12-31) at.% Nb and (32-53) at.% Fe

  9. Simultaneous analysis of rotational and vibrational-rotational spectra of DF and HF to obtain irreducible molecular constants for HF

    International Nuclear Information System (INIS)

    Horiai, Koui; Uehara, Hiromichi

    2011-01-01

    Graphical abstract: Available rotational and vibrational-rotational spectral lines of DF and HF are analyzed simultaneously using a non-Born-Oppenheimer effective Hamiltonian. Research highlights: → Simultaneous analysis of DF and HF spectral data. → Application of a non-Born-Oppenheimer effective Hamiltonian. → Twenty irreducible molecular constants for HF have been determined. - Abstract: Analytic expressions of corrections for the breakdown of the Born-Oppenheimer approximation to Dunham's Y ij with optimal parameters, i.e., determinable clusters of expansion coefficients, are applied to a data analysis of the rotational and vibrational-rotational transitions of HF reported in the literature. All the available spectral lines of the two isotopologues, DF and HF, are simultaneously fitted to a single set of molecular parameters of HF within experimental errors. Fitting of a data set of 595 spectral transitions for DF and HF has generated only 20 minimal independent parameter values, i.e., 'irreducible' molecular constants of HF, that are sufficient to precisely generate 82 Y ij coefficients and 144 band constants in total: 41 Y ij and 72 band constants each for DF and HF.

  10. Microcracking and mechanical properties of Hafnia-Zirconia toughened alumina composites

    International Nuclear Information System (INIS)

    Li, H.P.S.; Stevens, R.

    1995-01-01

    Despite the remarkably similar crystal structures and phase transformations of HfO 2 and ZrO 2 , the tetragonal to monoclinic transformation temperature for HfO 2 takes place six hundred degrees higher than that for ZrO 2 . This suggests the potential for HfO 2 as an engineering material for use at elevated temperatures (>700 C). Alloying HfO 2 with ZrO 2 has been suggested a feasible high-temperature toughening strategy for ZrO 2 -toughened ceramics. The role of ZrO 2 as a second phase toughening agent for ceramic composites has long been recognised and a considerable number of studies reported. In contrast, HfO 2 -toughened ceramics, have not been investigated in detail. This paper gives an account of composite ceramics consisting of an Al 2 O 3 matrix, mixed with unstabilised (Zr-Hf)O 2 inclusions containing volume fractions, of 0, 1, 5, 10, 15, and 25 vol. %, developed to investigate the effects of the second phase content on the microstructure and mechanical properties. A simple cubic packing model of microcracking, based on an ''end-point'' thermodynamic approach, is discussed with respect to microcrack extension for a critical volume fraction of second phase content. The results show an Al 2 O 3 matrix containing 5 vol. % of Hf 0.25 Zr 0.75 O 2 inclusions to give the optimum properties. Using the packing model, the critical volume fraction is predicted at 10 vol. %, which is in a good agreement with experimental results. (orig.)

  11. Precise simultaneous determination of zirconium and hafnium in silicate rocks, meteorites and lunar samples. [Neutron reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P A; Garg, A N; Ehmann, W D [Kentucky Univ., Lexington (USA). Dept. of Chemistry

    1977-01-01

    A precise, sensitive and rapid analytical technique has been developed for the simultaneous determination of Zr and Hf in natural silicate matrices. The technique is based on radiochemical neutron activation analysis and employs a rapid fusion dissolution of the sample and simultaneous precipitation of the Zr-Hf pair with p-hydroxybenzene arsenic acid in an acidic medium. The indicator radionuclides, /sup 95/Zr and /sup 181/Hf, are counted and the /sup 95/Zr activity is corrected for the contribution from U fission. The chemical yields of the radiochemical separation are based on Hf carrier. The yield is determined by reactivation of the processed samples and standards with a /sup 252/Cf isotopic neutron source and by counting the 18.6 sec half-life sup(179m)Hf. The RNAA procedure for Zr and Hf has been shown to be precise and accurate for natural silicate samples, based on replicate analyses of samples containing Zr in the range of 1 ..mu..g/g to over 600 ..mu..g/g. The procedure is relatively rapid with a total chemical processing time of approximately 3 hours. At least 4 samples are processed simultaneously. Ten additional elements (Fe, Cr, Co, Sc, Eu, La, Lu, Ce, Th and Tb) can be determined by direct Ge(Li) spectrometry (INAA) on the samples prior to dissolution for the RNAA determination of Zr and Hf. Corrections for the U fission contribution can be made on the basis of the known U content or from the INAA Th content, based on the relatively constant natural Th/U ratio.

  12. The effect of Nb and Zr addition on the microstructural features and magnetic properties of Tb0.3Dy0.7Fe1.95

    International Nuclear Information System (INIS)

    Palit, Mithun; Arout Chelvane, J.; Basumatary, Himalay; Pandian, S.; Chandrasekaran, V.

    2009-01-01

    Alloys of Tb 0.3 Dy 0.7 Fe 1.95-x Nb x and Tb 0.3 Dy 0.7 Fe 1.95-x Zr x , with x = 0-0.075, were prepared by conventional melting and casting under vacuum. The magnetostriction improved remarkably with the individual addition of Nb and Zr. It is seen from the microstructural features that Nb addition results in the formation of NbFe 2 as the primary phase while Zr addition results in the depletion of (Tb,Dy)Fe 3 phase owing to the substitution of Zr for rare earths in the main phase

  13. Magnetic properties improvement of melt spun Co{sub 86.5}Hf{sub 11.5}B{sub 2} nanocomposites by refractory elements substitution

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.W. [Department of Applied Physics, Tunghai University, Taichung 407, Taiwan (China); Lin, Y.H.; Shih, C.W.; Liao, M.C.; Lee, Y.I. [Department of Physics, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Chang, W.C., E-mail: phywcc@ccu.edu.tw [Department of Physics, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Yang, C.C. [Department of Physics, Chung-Yuan Christian University, Chungli 320, Taiwan (China); Shaw, C.C. [Superrite Electronics Co. Ltd., Taipei 111, Taiwan (China)

    2016-03-01

    Magnetic properties of melt spun Co{sub 86.5}Hf{sub 10.5}MB{sub 2} ribbons with refractory elements substitution (M=Cr, Nb, Ti, Zr) have been studied. For ternary Co{sub 86.5}Hf{sub 11.5}B{sub 2} ribbon, permanent magnetic properties of B{sub r}=0.71 T, {sub i}H{sub c}=192 kA/m, and (BH){sub max}=34.4 kJ/m{sup 3} are obtained, and they are significantly improved to B{sub r}=0.73–0.76 T, {sub i}H{sub c}=136–216 kA/m and (BH){sub max}=38.4–52.8 kJ/m{sup 3} with M substitution. Summarized with the results of x-ray diffraction refinement, thermal magnetic analysis, and transmission electron microscopy, the Co{sub 86.5}Hf{sub 10.5}MB{sub 2} nanocomposites following the optimal crystallization treatment mainly consist of orthorhombic 7:1 and face-center-cubic Co phases. Fine microstructure with average grain size in the range of 12.5−19.6 nm promotes exchange coupling effect between magnetic grains, thus improving permanent magnetic properties. The magnetic field dependence of coercivity reveals that coercivity of the studied Co{sub 86.5}Hf{sub 10.5}MB{sub 2} nonocomposites is mainly governed by the reverse domain nucleation mechanism. - Highlights: • M substitution refines the grain size. • M substitution strengthens the exchange coupling effect between grains. • M substitution improves hard magnetic properties of Co{sub 86.5}Hf{sub 10.5}MB{sub 2} ribbons. • The coercivity is mainly governed by the reverse domain nucleation mechanism. • Co{sub 86.5}Hf{sub 10.5}MB{sub 2} ribbons are relevant candidate for RE free permanent magnets.

  14. Integration of geophysical and geological data for delimitation of mineralized zones in Um Naggat area, Central Eastern Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Ibrahim Gaafar

    2015-06-01

    Interpretations of the aeromagnetic maps delineated four regional structural trends oriented due NNW, NW, ENE and E–W directions. They are identified as strike-slip faults, which coincide well with field observations, where NW-trending faults cut and displace right laterally ENE-trending older ones. The interaction between these two strike-slip fault systems confining the albite granite is easily identified on the regional data presenting longer wavelength anomalies, implying deep-seated structures. They could represent potential pathways for migration of enriched mineralized fluids. Geochemically, albite granites of peraluminous characteristics that had suffered extensive post-magmatic metasomatic reworking, resulted into development of (Zr, Hf, Nb, Ta, U, Th, Sn and albite-enriched and greisenized granite body of about 600 m thick, and more than 3 km in strike length. The albite granite is characterized by sharp increase in average rare metal content: Zr (830 ppm, Hf (51 ppm, Nb (340 ppm, Ta (44 ppm, and U (90 ppm. Thorite, uranothorite, uraninite and zircon are the main uranium-bearing minerals of magmatic origin within the enclosing granite. However, with respect to Zr, Nb, and Ta, the albitized granite can be categorized as rare metal granite. The integration of airborne geophysical (magnetic and γ-ray spectrometric, geological, geochemical and mineralogical data succeeded in assigning the albite granite of Um Naggat pluton as a mineralized zone. This zone is characterized by its high thorium and uranium of hydrothermal origin as indicated by its low Th/U ratio, with rare metals mineralization controlled by two main structural trends in the NW- and ENE-directions.

  15. Development of AL_2O_3 - ZrO_2 ceramic composite reinforced with rare earth oxides (Y_2O)3) for inert coating of storage and transport systems of crude petroleum

    International Nuclear Information System (INIS)

    Silva, J.C.; Yadava, Y.P.; Sanguinetti Ferreira, R.A.; Albuquerque, L.T.

    2014-01-01

    The advancement of the oil sector has generated the need for the use of materials resistant to aggressive environments to oil. Although ceramics have high melting point and high hardness is, on the other hand, more fragile and less tough, which can cause damage to the metal structure. The Al_2O_3 based ceramics reinforced with rare earth oxide can improve tenaciousness and makes the ceramic material more resistant. This article aims to present the production of composite Al_2O_3 - Y_2O_3 stabilized ZrO_2 by uniaxial pressing, following sintering (1200-1350 deg C). Structural and microstructural characterizations as XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscopy) and mechanical tests as Vickers hardness, % absorption and % linear shrinkage were conducted to evaluate the feasibility of using the composite and ceramic coating for storage and transportation of oil tanks. The results indicate that the proportions of 5%, 10% and 30% ZrO_2 make it suitable as a good composite suitable coating. (author)

  16. Microstructure and Phase Analysis in Mn-Al and Zr-Co Permanent Magnets

    Science.gov (United States)

    Lucis, Michael J.

    In America's search for energy independence, the development of rare-earth free permanent magnets is one hurdle that still stands in the way. Permanent magnet motors provide a higher efficiency than induction motors in applications such as hybrid vehicles and wind turbines. This thesis investigates the ability of two materials, Mn-Al and Zr-Co, to fill this need for a permanent magnet material whose components are readily available within the U.S. and whose supply chain is more stable than that of the rare-earth materials. This thesis focuses on the creation and optimization of these two materials to later be used as the hard phase in nanocomposites with high energy products (greater than 10 MGOe). Mn-Al is capable of forming the pure L10 structure at a composition of Mn54Al43C3. When Mn is replaced by Fe or Cu using the formula Mn48Al43C3T6 the anisotropy constant is lowered from 1.3·107 ergs/cm3 to 1.0·107 ergs/cm3 and 0.8·10 7 ergs/cm3 respectively. Previous studies have reported a loss in magnetization in Mn-Al alloys during mechanical milling. The reason for this loss in magnetization was investigated and found to be due to the formation of the equilibrium beta-Mn phase of the composition Mn3Al2 and not due to oxidation or site disorder. It was also shown that fully dense Mn-Al permanent magnets can be created at hot pressing temperatures at or above 700°C and that the epsilon-phase to tau-phase transition and consolidation can be combined into a single processing step. The addition of small amounts of Cu to the alloy, 3% atomic, can increase the compaction density allowing high densities to be achieved at lower pressing temperatures. While the structure is still under debate, alloys at the composition Zr2Co11 in the Zr-Co system have been shown to have hard magnetic properties. This thesis shows that multiple structures exist at this Zr2Co11 composition and that altering the cooling rate during solidification of the alloy affects the ratio of the phase

  17. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS.

    Science.gov (United States)

    Singha, Ratnadwip; Pariari, Arnab Kumar; Satpati, Biswarup; Mandal, Prabhat

    2017-03-07

    Whereas the discovery of Dirac- and Weyl-type excitations in electronic systems is a major breakthrough in recent condensed matter physics, finding appropriate materials for fundamental physics and technological applications is an experimental challenge. In all of the reported materials, linear dispersion survives only up to a few hundred millielectronvolts from the Dirac or Weyl nodes. On the other hand, real materials are subject to uncontrolled doping during preparation and thermal effect near room temperature can hinder the rich physics. In ZrSiS, angle-resolved photoemission spectroscopy measurements have shown an unusually robust linear dispersion (up to [Formula: see text]2 eV) with multiple nondegenerate Dirac nodes. In this context, we present the magnetotransport study on ZrSiS crystal, which represents a large family of materials ( WHM with W = Zr, Hf; H = Si, Ge, Sn; M = O, S, Se, Te) with identical band topology. Along with extremely large and nonsaturating magnetoresistance (MR), [Formula: see text]1.4 [Formula: see text] 10 5 % at 2 K and 9 T, it shows strong anisotropy, depending on the direction of the magnetic field. Quantum oscillation and Hall effect measurements have revealed large hole and small electron Fermi pockets. A nontrivial [Formula: see text] Berry phase confirms the Dirac fermionic nature for both types of charge carriers. The long-sought relativistic phenomenon of massless Dirac fermions, known as the Adler-Bell-Jackiw chiral anomaly, has also been observed.

  18. Effect of ZrB{sub 2} particles on the microstructure and mechanical properties of hybrid (ZrB{sub 2} + Al{sub 3}Zr)/AA5052 insitu composites

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Gaurav, E-mail: gauravgautamm1988@gmail.com; Mohan, Anita, E-mail: amohan.app@iitbhu.ac.in

    2015-11-15

    Present study outlines the effect of ZrB{sub 2} particles variation on the morphology and mechanical properties of (ZrB{sub 2}+Al{sub 3}Zr)/AA5052Al alloy composites. Composites with varying amount of ZrB{sub 2} particles have been produced by direct melt reaction (DMR) technique. These composites have been characterized by X-ray diffractometer (XRD) and energy-dispersive spectroscopy (EDS) to confirm the presence of ZrB{sub 2} and Al{sub 3}Zr particles. Optical microscopy (OM) and scanning-electron microscopy (SEM) have been used to understand the morphology. To see the effect of ZrB{sub 2} variation on mechanical properties, hardness and tensile properties have been evaluated. The XRD and EDS results confirm the successful formation of ZrB{sub 2} particles in matrix of AA5052Al alloy. SEM and TEM studies exhibit that ZrB{sub 2} particles are mostly in hexagonal and some rectangular shape while Al{sub 3}Zr particles are in polyhedron and rectangular shapes. Most of ZrB{sub 2} particles are within a size range of 10–190 nm. Interface region is free of any impurity. OM studies show grain refinement of AA5052Al alloy matrix with formation of second phase ZrB{sub 2} particles. Tensile results indicate that the UTS and YS improve up to 3 vol.% of ZrB{sub 2} but beyond this composition a decreasing trend is observed. The strength coefficient increases with increase in ZrB{sub 2} particles up to 3 vol.% in the Al{sub 3}Zr/Al alloy composites, whereas strain hardening decreases. While beyond 3 vol.% ZrB{sub 2} particles in the Al{sub 3}Zr/Al alloy composite, opposite trend is observed in strength coefficient and strain hardening. Percentage elongation also improves with 1vol.% ZrB{sub 2}, but further addition of ZrB{sub 2} shows an adverse effect. However, a continuous increasing trend has been observed in bulk hardness. Fracture studies show facets of Al{sub 3}Zr particles and dimples of matrix, but with inclusion of ZrB{sub 2} dimple size decreases. Increase in Zr

  19. Calculation of Gibbs energy of Zr-Al-Ni, Zr-Al-Cu, Al-Ni-Cu and Zr-Al-Ni-Cu liquid alloys based on quasiregular solution model

    International Nuclear Information System (INIS)

    Li, H.Q.; Yang, Y.S.; Tong, W.H.; Wang, Z.Y.

    2007-01-01

    With the effects of electronic structure and atomic size being introduced, the mixing enthalpy as well as the Gibbs energy of the ternary Zr-Al-Cu, Ni-Al-Cu, Zr-Ni-Al and quaternary Zr-Al-Ni-Cu systems are calculated based on quasiregular solution model. The computed results agree well with the experimental data. The sequence of Gibbs energies of different systems is: G Zr-Al-Ni-Cu Zr-Al-Ni Zr-Al-Cu Cu-Al-Ni . To Zr-Al-Cu, Ni-Al-Cu and Zr-Ni-Al, the lowest Gibbs energy locates in the composition range of X Zr 0.39-0.61, X Al = 0.38-0.61; X Ni = 0.39-0.61, X Al = 0.38-0.60 and X Zr = 0.32-0.67, X Al = 0.32-0.66, respectively. And to the Zr-Ni-Al-Cu system with 66.67% Zr, the lowest Gibbs energy is obtained in the region of X Al = 0.63-0.80, X Ni = 0.14-0.24

  20. Development of HF-systems for electron storage systems

    International Nuclear Information System (INIS)

    Androsov, V.P.; Karnaukhov, I.M.; Popkov, Yu.P.; Reva, S.N.; Telegin, Yu.N.

    1999-01-01

    Development of HF systems for electron storages is described. Its final task is construction of 100 kW HF station at 699,3 MHz frequency consisting from low-power HF system, klystron amplifier, wave line for HF power transmission and accelerating section. Functional parameters of HF station are given

  1. Magnetic properties of FeZr{sub 2} and Fe{sub 2}Zr intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Prajapat, C. L., E-mail: prajapat@barc.gov.in; Singh, M. R.; Mishra, P. K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Chattaraj, D. [Product Development Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Mishra, R. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Ravikumar, G. [Scientific Information Resources Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India)

    2016-05-23

    Magnetic properties of Fe-Zr system, viz., FeZr{sub 2} and Fe{sub 2}Zr have been studied. Both the compounds show soft ferromagnetic behavior. Curie temperature is well above the room temperature. Lower saturation magnetization for the zirconium rich sample, FeZr{sub 2}, could be due to possible donation of electrons from the Zr-rich neighbors to Fe atoms or diminution of long range magnetic order by defects.

  2. Effect of component substitution on the atomic dynamics in glass-forming binary metallic melts

    Science.gov (United States)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Evenson, Z.; Hansen, T. C.; Meyer, A.

    2017-08-01

    We investigate the substitution of early transition metals (Zr, Hf, and Nb) in Ni-based binary glass-forming metallic melts and the impact on structural and dynamical properties by using a combination of neutron scattering, electrostatic levitation (ESL), and isotopic substitution. The self-diffusion coefficients measured by quasielastic neutron scattering (QENS) identify a sluggish diffusion as well as an increased activation energy by almost a factor of 2 for Hf35Ni65 compared to Zr36Ni64 . This finding can be explained by the locally higher packing density of Hf atoms in Hf35Ni65 compared to Zr atoms in Zr36Ni64 , which has been derived from interatomic distances by analyzing the measured partial structure factors. Furthermore, QENS measurements of liquid Hf35Ni65 prepared with 60Ni , which has a vanishing incoherent scattering cross section, have demonstrated that self-diffusion of Hf is slowed down compared to the concentration weighted self-diffusion of Hf and Ni. This implies a dynamical decoupling between larger Hf and smaller Ni atoms, which can be related to a saturation effect of unequal atomic nearest-neighbor pairs, that was observed recently for Ni-rich compositions in Zr-Ni metallic melts. In order to establish a structure-dynamics relation, measured partial structure factors have been used as an input for mode-coupling theory (MCT) of the glass transition to calculate self-diffusion coefficients for the different atomic components. Remarkably, MCT can reproduce the increased activation energy for Hf35Ni65 as well as the dynamical decoupling between Hf and Ni atoms.

  3. Aqueous corrosion behaviour of Zr-1 Nb and Zr-20 Nb with different heat treatments

    International Nuclear Information System (INIS)

    Jaime Solis, F.; Bordoni, Roberto; Olmedo, Ana M.; Villegas, Marina; Miyagusuku, Marcela

    2003-01-01

    The corrosion behaviour of Zr-1 Nb and Zr-20 Nb coupons annealed at 850 C degrees during 1 hour and afterwards aged at different temperatures and time periods was studied. The Zr-1 Nb samples were aged at 400 and 500 C degrees and the Zr-20 Nb samples at 265 and 550 C degrees. The results have shown that ageing increases the corrosion resistance because the aged microstructure is somewhat closer to the equilibrium one. This was not the case of Zr-1 Nb aged 72 hs at 400 C degrees. The presence of the ω-phase does not have a deleterious effect in the corrosion behaviour of Zr-20 Nb. Also, an ageing of 2200 h at 265 C degrees induced a relevant decrease in the corrosion rate of Zr-20 Nb indicating a decomposition of the β- Zr phase. This effect was observed at the inlet of pressure tubes in CANDU reactors. The results obtained will be used to establish the relative importance of the α-Zr and β-Zr phases in the corrosion behaviour of pressure tubes. (author)

  4. Blue and red emission in wide band gap BaZrO{sub 3}:Yb{sup 3+},Tm{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Borja-Urby, R. [Centro de Investigaciones en Optica, A. C., C. P. 37150 Leon, Gto. (Mexico); Diaz-Torres, L.A., E-mail: ditlacio@cio.mx [Centro de Investigaciones en Optica, A. C., C. P. 37150 Leon, Gto. (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A. P. 1-1010, Queretaro 76000 (Mexico); Vega-Gonzalez, M. [Centro de Geociencias-Universidad Nacional Autonoma de Mexico, A. P. 1-1010, Queretaro 76000 (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Cd. Mexico D.F. 07730 (Mexico)

    2010-10-25

    Under NIR excitation at 967 intense blue and red photoluminescence (PL) emissions are observed at room temperature in codoped Tm{sup 3+}-Yb{sup 3+} barium zirconate (BaZrO{sub 3}:Yb,Tm) powders. Powders were prepared by a simple hydrothermal method, and present a wide band gap that depends on the total rare earth content due to the degree of disorder induced in the BaZrO{sub 3} lattice by the substitution of the rare earth ions. Rietveld refinements of the XRD patterns indicated the presence of primary nanocrystallites with sizes between 50 and 70 nm depending on the Tm{sup 3+} content. Scanning transmission electron microscopy (STEM) shows that these primary particles self-aggregated in larger secondary particles which present a regular morphology with sizes around 1 {mu}m. The intense blue and red PL emissions in BaZrO{sub 3} powders under 967 nm excitation are governed by energy transfer processes from Yb{sup 3+} ions to Tm{sup 3+} ions and crossrelaxation among Tm{sup 3+} ions.

  5. X-Ray fluorescence of microquantities of hafnium in zirconium by precipitation as thin film

    International Nuclear Information System (INIS)

    Vigoda de Leyt, Dora; Caridi, A.F.; Deibe, Jorge

    1988-01-01

    The importance of Zr and Hf in the nuclear industry represents and increasing need for the development of reliable chemical methods to determine Hf traces in Zr matrix. A precipitation method in amoniacal medium was developed. A thin film is obtained where matrix effects are absent or minimized. Hf in the range of 5-70.10 -9 Kg in a 5.10 -6 Kg Zr matrix was studied. Fluorescence Hf Lα and Hf Lβ X-rays are excited by a W-anode tube 17 kV-25mA and 50kV-25mA. Radiation scattered by the tube was used as internal standard. Bartlett criterion was used for the regression analysis. Determination limit was fixed in 5±4. 10 -9 Kg Hf at a 95 % probability. (Author) [es

  6. A study of the diffusion mechanisms in amorphous metallic alloys: diffusion and diffusion under high pressure in an amorphous NiZr alloy; Contribution a l`etude des mecanismes de transport dans les materiaux metalliques amorphes: diffusion et diffusion sous pression dans NiZr amorphe

    Energy Technology Data Exchange (ETDEWEB)

    Grandjean, A.

    1996-03-01

    The aim of this work is a better understanding of the diffusion mechanism in amorphous metallic alloys. Then interdiffusion and hafnium diffusion in amorphous NiZr alloy have been studied. Samples used are made by sputtering co-deposition under vacuum and are well relaxed before the diffusion measurements. The time evolution of resistivity during annealing due to the decay of a composition modulated film has been measured and from this change in resistivity interdiffusion coefficients have been determined. Dependence of Hf diffusion on temperature and pressure has been studied using (SIMS). In this two cases, the diffusion process obeys an Arrhenius law and gives an activation energy of 1.33 eV for interdiffusion, and 0.76 eV for Hf diffusion. An effect of pressure on Hf diffusion has been found leading to an activation volume of 8.5 angstrom{sup 3}. Thanks to these results, two approaches of the diffusion mechanisms in these systems have been proposed. The first comes from a comparison with the diffusion mechanisms in crystalline metals, that is to say by point defects. The second is an hypothesis of collective motions in these non crystalline alloys. (author).

  7. ZrC zone structure and features of electronic structure of solid solutions on the base ZrC, ZrN, TiC and TiN

    International Nuclear Information System (INIS)

    Mokhracheva, L.P.; Gel'd, P.V.; Tskhaj, V.A.

    1983-01-01

    The results of ZrC zone structure calculation conducted using the strong bond method in the three-centre variant are given. Essentially higher degree of M-C chemical bond ionicity than in TiC is shown to take place for it. Solid solution formation in TiC-ZrC, TiN-ZrC and ZrC-ZrN systems differing from TiC-TiN, TiN-ZrN and TiC-TiN is stated to be followed by essential deformation of component zone structures that, obviously, should prevent formation of solid solutions without vacancies in sublatices in these systems

  8. A flexible, high-performance magnetoelectric heterostructure of (001) oriented Pb(Zr0.52Ti0.48)O3 film grown on Ni foil

    Science.gov (United States)

    Palneedi, Haribabu; Yeo, Hong Goo; Hwang, Geon-Tae; Annapureddy, Venkateswarlu; Kim, Jong-Woo; Choi, Jong-Jin; Trolier-McKinstry, Susan; Ryu, Jungho

    2017-09-01

    In this study, a flexible magnetoelectric (ME) heterostructure of PZT/Ni was fabricated by depositing a (001) oriented Pb(Zr0.52Ti0.48)O3 (PZT) film on a thin, flexible Ni foil buffered with LaNiO3/HfO2. Excellent ferroelectric properties and large ME voltage coefficient of 3.2 V/cmṡOe were realized from the PZT/Ni heterostructure. The PZT/Ni composite's high performance was attributed to strong texturing of the PZT film, coupled with the compressive stress in the piezoelectric film. Besides, reduced substrate clamping in the PZT film due to the film on the foil structure and strong interfacial bonding in the PZT/LaNiO3/HfO2/Ni heterostructure could also have contributed to the high ME performance of PZT/Ni.

  9. TiNi shape memory alloys: effects of the fabrication route, the oxygen content and the zirconium or hafnium additions on the metallurgical characteristics and the thermomechanical properties; Alliages a memoires de forme de base TiNi: influence du mode de fabrication de la teneur en oxygene et de l`ajout de Zr ou Hf sur les caracteristiques metallurgiques et les proprietes mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    Olier, P.

    1996-12-31

    In order to promote the development of Ti-Ni shape memory alloys, we have studied the correlation between the fabrication route, the chemical composition (O{sub 2} content, Zr or Hf additions), the metallurgical characteristics and the thermomechanical properties. A conventional sintering does not allow to obtain a homogeneous compound of pure Ti{sub 50}Ni{sub 50} alloy because of the occurrence of Kirkendall porosities which act as a diffusion barrier. An original process including combustion synthesis and hot-extrusion was successfully developed. Resulting products exhibit a smaller grain size (15-20{mu}m) and an enhanced workability in comparison with products obtained by arc-melting and subsequent hot rolling. The presence of oxygen in equiatomic Ti-Ni alloy induces the oxide precipitation of Ti{sub 4}Ni{sub 2}O{sub x} type (with x {<=} 1). The precipitated particle fraction is proportional to the oxygen nominal content of the alloy. We show that the decrease of the transformation temperatures is correlated with the decrease of Ti in solid solution due to Ti{sub 4}Ni{sub 2}O precipitation. Moreover, we find that a fine and homogenous oxide dispersion is suitable to decrease the grain size during hot rolling and to enhance to the one way shape memory properties. An increase of the typical transformation temperatures is obtained through of Zr or Hf (in substitution to Ti). But, an increase of the hardness is measured, and consequently the workability of the ternary alloys becomes reduced. However, it is worthwhile to point out that a Ti{sub 38}Ni{sub 50}Hf{sub 12} product obtained by arc melting and hot extrusion is able to fully recover an apparent plastic strain of more than 4% during tensile tests performed under special loading conditions. Such as behaviour is of great interest with respect to potential applications in a temperature range higher that 100 deg. C. (author). 105 refs.

  10. Interaction of zirconium and hafnium tetrachlorides with cesium, rubidium and potassium chlorides and Raman spectra of reaction products; Vzaimodejstvie tetrakhloridov tsirkoniya i gafniya s khloridami tseziya, rubidiya i kaliya i spektry KRS produktov reaktsij

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Vovkotrub, Eh G; Strekalovskij, V N [UrO RAN, Inst. Vysokotemperaturnoj Ehlektrokhimii, Ekaterinburg (Russian Federation)

    2008-05-15

    Raman spectroscopy was used to reveal the formation of novel complexes involving [Zr{sub 2}Cl{sub 9}]{sup -} and [Hf{sub 2}Cl{sub 9}]{sup -} anions in molten mixtures of ZrCl{sub 4} and HfCl{sub 4} with CsCl, RbCl, and KCl. A prediction is made about the presence of the above-mentioned complex anions in poorly investigated melts of the corresponding binary systems at high concentrations of ZrCl{sub 4} or HfCl{sub 4}.

  11. A spanish mineral of zirconium and hafnium. Separation of the two elements by liquid-liquid extraction, using tributyl phosphate as chelating agent

    International Nuclear Information System (INIS)

    Ruiz Sanchez, F.; Cruz Castillo, F. de la; Fernandez Cellini, R.

    1962-01-01

    The zirconium and Hafnium oxides are obtained from a Spanish mineral of zircon with an average contest of 55% in ZrO 2 -HfO 2 . An alkaline fusion to open the mineral, followed by a purification by crystallization as (Zr O-Hf O)Cl 2 H 2 O or as (Zr-Hf) (SO 4 ) 2 . 4H 2 O, is used. A discussion of the best experimental conditions for opening the mineral and of the purification method is made. (Author) 45 refs

  12. Anisotropy of the irreversibility field for Zr-doped $(Y,Gd)Ba_2Cu_3O_{7-x}$ thin films up to 45T

    OpenAIRE

    Tarantini, C.; Jaroszynski, J.; Kametani, F.; Zuev, Y. L.; Gurevich, A.; Chen, Y.; Selvamanickam, V.; Larbalestier, D. C.; Christen, D. K.

    2012-01-01

    The anisotropic irreversibility field B$_{Irr}$ of two $YBa_2Cu_3O_{7-x}$ thin films doped with additional rare earth (RE)=(Gd,Y) and Zr and containing strong correlated pins (splayed BaZrO$_{3}$ nanorods, and $RE_2O_3$ nanoprecipitates), has been measured over a very broad range up to 45T at temperatures 56 K

  13. Effect of component substitution on the magnetic properties of Zr2Co11 phase and rapidly quenched Zr2Co11 - based alloys

    International Nuclear Information System (INIS)

    Gabaj, A.M.; Shchegoleva, N.N.; Gaviko, V.S.; Ivanova, G.V.

    2003-01-01

    Magnetic properties of homogenized ingots and rapidly quenched ribbons of (Zr 1-x M x ) 16.4 Co 83.6 with M=Ti, Nb, Y, Gd and Zr 16.4 (Co 1-y M* y ) 83.6 with M*= Mn, Fe, Ni, Cu, Al, Ga, Si are studied. The phase composition of the alloys is determined with the help of thermomagnetic analysis and, in specific cases, with the use of X-ray diffraction analysis and electron microscopical data. It is ascertained that a part of zirconium in a phase Zr 2 Co 11 can be replaced by titanium and niobium. The solubility of rare earth elements is noted to be not revealed. Cobalt is partially replaced by Al, Cu, Ga, Si, Ni and Fe in a 2:11 phase, and Mn stabilizes the structure of a Laves phase with unexpectedly strong ferromagnetic properties. For magnetic hardness of the rapidly quenched alloys the introduction of Ti is appeared to be most beneficial. This element enhances noticeably the coercive force and hysteresis loop rectangularity and, as it takes place, it does not change practically magnetic properties of a 2:11 phase but suppresses the formation of dendrites on its crystallization. A small increase of the coercive force is also observed on addition of Cu and Al [ru

  14. Structure of zirconium-93 and zirconium-91 as shown by the reactions Zr-92(d,p)Zr-93 and Zr-92(d,t)Zr-91

    Science.gov (United States)

    Baron, N.; Leonard, R. F.; Stewart, W. M.; Fink, C. L.; Christensen, P. R.; Nickles, J.; Thorsteinsen, T. F.

    1972-01-01

    Deuterons of 13-MeV incident energy were scattered from Zr-92(d,p)Zr-93. The Zr-92(d,p)Zr-93 data analysis resulted in the location of 47 levels up to an excitation energy of 4.84 MeV, and the spins of 43 of these levels were identified. Essentially all the strength of the 2d5/2, 3s1/2, 2d3/2, and 1g7/2 shells was observed; and the excitation energy of their centroids was computed to be 0.00, 1.21, 2.23, and 2.37 MeV, respectively. Also, 43 percent of the 1h11/2 strength, 21 percent of the 2f7/2 strength, and 3 percent of the 3p3/2 strength were observed. In addition, the Zr-92(d,t)Zr-91 data analysis resulted in the location of 26 levels up to an excitation energy of 4.01 MeV, and the spins of 21 of these levels were identified. Most of the expected strength of the 2d5/2 and 1g9/2 shells was obtained, and the excitation energy of their centroids was computed to be 0.31 and 3.19 MeV, respectively. In addition, six l=1 states are populated belonging to either the 2p1/2 or 2p3/2 shells.

  15. Mechanochemical synthesis of magnetically hard anisotropic RFe{sub 10}Si{sub 2} powders with R representing combinations of Sm, Ce and Zr

    Energy Technology Data Exchange (ETDEWEB)

    Gabay, A.M., E-mail: gabay@udel.edu; Hadjipanayis, G.C.

    2017-01-15

    Alloy synthesis consisting of mechanical activation followed by annealing was explored as a method of manufacturing medium-grade permanent magnet materials with a reduced content of the critical rare earth elements. Four R{sub x}Fe{sub 10}Si{sub 2} alloys with R=Sm, Sm{sub 0.7}Zr{sub 0.3}, Sm{sub 0.3}Ce{sub 0.3}Zr{sub 0.4} and Ce{sub 0.6}Zr{sub 0.4} (nominal compositions) were prepared from mixtures of Sm{sub 2}O{sub 3}, CeO{sub 2}, ZrO{sub 2}, Fe{sub 2}O{sub 3} and Si powders in the presence of a reducing agent Ca and a CaO dispersant. The collected alloy particles typically consisted of few joined submicron crystals. For R=Sm, X-ray diffraction analysis reveals a significant amount of the unwanted Th{sub 2}Zn{sub 17}-type compound forming alongside the desired ThMn{sub 12}-type 1:12 compound. A more pure 1:12 phase could be obtained for R=Ce{sub 0.6}Zr{sub 0.4}, but it exhibited a room-temperature coercivity of less than 1 kOe. The most pure 1:12 phase and the highest values of the coercivity (10.8 kOe) and calculated maximum energy product (13.8 MGOe) were obtained for R=Sm{sub 0.7}Zr{sub 0.3} processed at 1150 °C. The calculated maximum energy products of the Sm{sub 0.3}Ce{sub 0.3}Zr{sub 0.4}Fe{sub 10}Si{sub 2} particles, with half of their rare earths constituents represented by the relatively abundant Ce, was 10.1 MGOe. - Highlights: • 30% Zr substitution for Sm improves prospects of the alloys as permanent magnets. • Pure ThMn{sub 12}-type structure could only be obtained in the Zr-substituted alloys. • Obtained powders exhibit better properties than nanocrystalline Sm(Fe,M){sub 12} alloys. • If fully dense, alloy containing only 2.3 at% Sm would energy product of 10 MGOe.

  16. New ternary superconducting germanides

    Science.gov (United States)

    Moschalkov, V. V.; Muttik, I. G.; Samarin, N. A.; Seropegin, Yu. D.; Rudometkina, M. V.

    1991-12-01

    We have studied the structure, electrical and magnetic properties of new ternary compounds with germanium and transition metals of IV and V groups (Ti 0.7V 0.3Ge 3, Hf 2V 3Ge, Zr 32-36V 32-36Ge 30-32, Hf 2Nb 3Ge 4, HfVGe, Zr 15-17V 39-40Ge 44-45, Hf 10.8-21.7V 36.0-42.8). The homogeneity fields for all new phases are determined. Resistivity (T) and magnetic susceptibility χ(T) are investigated at T=4.2…300 K. Two new superconductors have been found - Zr 32-36V 32-36Ge 30-32 and HfVGe with T c=4.7 K and 5.7 K, respectively.

  17. Hf på VUC

    DEFF Research Database (Denmark)

    Pless, Mette; Hansen, Niels-Henrik Møller

    . Konkret har forskningsprojektet 3 mål: At afdække hf-kursisternes tidligere uddannelsesforløb og -erfaringer, før de starter på hf på VUC.At afdække, hvordan mødet med uddannelsens studiemiljø opleves af kursisterne, og ikke mindst kursisternes oplevelse af undervisningsformer, lærere mm.At afdække, hvad...

  18. Phase relations in the systems M2MoO4-Cr2(MoO4)3-Zr(MoO4)2 (M=Li, Na, or Rb)

    International Nuclear Information System (INIS)

    Bazarov, B.G.; Chimitova, O.D.; Bazarova, Ts.T.; Arkhincheeva, S.I.; Bazarova, Zh.G.

    2008-01-01

    Phase equilibria in the systems M 2 MoO 4 -Cr 2 (MoO 4 ) 3 -Zr(MoO 4 ) 2 (M=Li, Na, or Rb) were investigated by X-ray powder diffraction analysis, DTA, and IR spectroscopy. The subsolidus structure of the phase diagrams of the systems under study was established. Two phases are formed in the Rb 2 MoO 4 -Cr 2 (MoO 4 ) 3 -Zr(MoO 4 ) 2 system with the molar ratios of the starting components equal to 5:1:1 (S 2 ) and 1:1:1 (S 1 ). Proceeding from isostructural character of Rb 5 FeHf(MoO 4 ) 6 and S 2 , the unit cell parameters are determined for S 2 [ru

  19. Structural study of Zr-based metallic glasses

    International Nuclear Information System (INIS)

    Matsubara, E.; Ichitsubo, T.; Saida, J.; Kohara, S.; Ohsumi, H.

    2007-01-01

    Structures of Zr 70 Ni 20 Al 10 , Zr 70 Cu 20 Al 10 , Zr 70 Cu 30 and Zr 70 Ni 30 amorphous alloys were analyzed by high-energy X-ray diffraction. The relatively stable Zr 2 Cu amorphous alloy shows a local atom arrangement different from the Zr 2 Cu crystalline phase. By contrast, the less stable Zr 70 Ni 30 amorphous alloy has a structure similar to Zr 2 Ni. In the Zr 70 Cu 20 Al 10 metallic glass, Zr-Al nearest neighbor pairs are introduced in the amorphous structure. In the Zr 70 Ni 20 Al 10 metallic glass, the strong correlation between Zr-Ni pairs is drastically modified by the formation of Zr-Al pairs. The presence of Zr-Al pairs in the ternary alloys suppresses the crystallization and stabilizes the glassy state

  20. Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, AX; Khatri, N; Liu, YH; Majkic, G; Galstyan, E; Selvamanickam, V; Chen, YM; Lei, CH; Abraimov, D; Hu, XB; Jaroszynski, J; Larbalestier, D

    2015-06-01

    BaZrO3 (BZO) nanocolumns have long been shown to be very effective for raising the pinning force F-p of REBa2Cu3Ox (REBCO, where RE = rare earth) films at high temperatures and recently at low temperatures too. We have successfully incorporated a high density of BZO nanorods into metal organic chemical vapor deposited (MOCVD) REBCO coated conductors via Zr addition. We found that, compared to the 7.5% Zr-added coated conductor, dense BZO nanorod arrays in the 15% Zr-added conductor are effective over the whole temperature range from 77 K down to 4.2 K. We attribute the substantially enhanced J(c) at 30 K to the weak uncorrelated pinning as well as the strong correlated pinning. Meanwhile, by tripling the REBCO layer thickness to similar to 2.8 mu m, the engineering critical current density J(e) at 30 K exceeds J(e) of optimized Nb-Ti wires at 4.2 K.

  1. Surface layers in the 4A group metals with implanted silicon ions

    International Nuclear Information System (INIS)

    Kovneristyj, Yu.K.; Vavilova, V.V.; Krasnopevtsev, V.V.; Galkin, L.N.; Kudyshev, A.N.; Klechkovskaya, V.V.

    1987-01-01

    A study was made on the change of structure and phase composition of fine near the surface layers of 4A group metals (Hf, Zr, Ti) during ion Si implantation and successive thermal annealing at elevated temperatures. Implantation of Si + ions with 30 or 16 keV energy in Ti, Zr and Hf at room temperature results to amorphization of metal surface layer. The surface hafnium and titanium layer with implanted Si atoms due to interaction with residual atmosphere of oxygen turns during annealing at 870 K to amorphous solid solution of HfO 2m or TiO 2 with Si, preventing further metal oxidation; layers of amorphous alloy are characterized by thermal stability up to 1270 K. Oxidation of the surface amorphous layer in residual oxygen atmosphere and its crystallization in ZrO 2 take place in result of Zr annealing with implanted Si ions at temperature not exceeding 870 K. Similar phenomena are observed in the case of hafnium with implanted oxygen ions or small dose of silicon ions. Thermal stability of amorphous layers produced during ion implantation of Si in Ti, Zr and Hf corresponds to scale resistance of monolithic alloys in Ti-Si, Zr-Si and Hf-Si systems

  2. Rare-earth-free luminescent non-stoichiometric phases formed in SrO-HfO.sub.2./sub. ternary compositions

    Czech Academy of Sciences Publication Activity Database

    Boháček, Pavel; Trunda, Bohumil; Beitlerová, Alena; Drahokoupil, Jan; Jarý, Vítězslav; Studnička, Václav; Nikl, Martin

    2013-01-01

    Roč. 580, Dec (2013), s. 468-474 ISSN 0925-8388 R&D Projects: GA AV ČR KAN300100802 Institutional support: RVO:68378271 Keywords : solid state sintering * nonstoichiometric phase * SrHfO3 * X-ray phosphor * luminescence Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.726, year: 2013

  3. Thermodynamic modeling of the Pt-Zr system

    International Nuclear Information System (INIS)

    Gao Yongliang; Guo Cuiping; Li Changrong; Du Zhenmin

    2010-01-01

    By means of the CALPHAD (CALculation of PHAse Diagram) technique, the Pt-Zr system was critically assessed. The solution phases (liquid, bcc, fcc and hcp) are described with the substitutional model. The intermetallic compounds Pt 4 Zr, Pt 4 Zr 3 , αPtZr and Pt 3 Zr 5 are treated as the formula (Pt,Zr) m (Pt,Zr) n by a two-sublattice model with the elements Pt and Zr on the first and the second sublattices, respectively. A two-sublattice model (Pt,Zr) 0.5 (Pt,Zr) 0.5 is applied to describe the compound βPtZr with CsCl-type structure (B2) in order to cope with the order-disorder transition between bcc solution (A2) and βPtZr (B2). Another two-sublattice model (Pt,Zr) 0.75 (Pt,Zr) 0.25 with Ni 3 Ti-type structure (D0 24 ) is applied to describe the compound Pt 3 Zr in order to cope with the order-disorder transition between hexagonal close-packed (A3) and Pt 3 Zr (D0 24 ). The compound Pt 10 Zr 7 is treated as a stoichiometric compound. A set of self-consistent thermodynamic parameters of the Pt-Zr system was obtained. (orig.)

  4. Influence of 45S5 Bioglass addition on microstructure and properties of ultrafine grained (Mg-4Y-5.5Dy-0.5Zr) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: kamil.kowalski@put.poznan.pl [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland); Jurczyk, M.U. [Division of Mother’s and Child’s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan (Poland); Wirstlein, P.K. [Department of Gynecology and Obstetrics, Division of Reproduction, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan (Poland); Jakubowicz, J.; Jurczyk, M. [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland)

    2017-05-15

    Highlights: • Ultrafine grained composites were formed by consolidating mechanically alloyed powders. • Mechanical properties were sensitive to the content of 45S5 Bioglass in Mg-4Y-5.5Dy-0.5Zr alloy. • Fluoride treated composites displayed superior corrosion resistance in Ringer solution. • Composites modified with MgF{sub 2} have a higher degree of biocompatibility in comparison with the unmodified reference material. - Abstract: Bulk samples of an ultrafine grained (Mg-4Y-5.5Dy-0.5Zr)-x wt% 45S5 Bioglass (x = 0, 5) and (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass-1 wt% Ag composites have been synthesized by consolidating mechanically alloyed powders. The influence of the chemical composition on the microstructure, mechanical properties and corrosion behavior of bulk composites were studied. The sintering of (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass powders led to the formation of a bulk composite with grain size of approx. 95 nm. The corrosion behavior of Mg-based composites before and after hydrofluoric acid treatment was also investigated. The ultrafine grained (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass composite was more corrosion resistant than the bulk Mg-4Y-5.5Dy-0.5Zr alloy after HF treatment. The in vitro biocompatibility of synthesized composites was evaluated and compared with microcrystalline magnesium. Magnesium, (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass and (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass-1 wt% Ag composites modified with MgF{sub 2} have a higher degree of biocompatibility in comparison with the unmodified reference material.

  5. Development of a mixed seawater-hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (∼2.7 Ga) Abitibi Greenstone Belt, Canada

    Science.gov (United States)

    Brengman, Latisha A.; Fedo, Christopher M.

    2018-04-01

    We investigated a group of silicified volcanic rocks from the ∼2.72 Ga Hunter Mine Group (HMG), Abitibi Greenstone Belt, Canada, in order to document progressive compositional change associated with alteration in a subaqueous caldera system. Rocks of the HMG divide into three groups based on mineralogy and texture for petrographic and geochemical analyses. Volcanic features (phenocrysts, pseudomorphs after primary glass shards, lapilli, volcanic clasts) are preserved in all groups, despite changing mineralogy from primarily quartz, feldspar, chlorite (Groups 1 and 2), to quartz, hematite and carbonate (Groups 2 and 3). Compositionally, Group 1 rocks resemble volcanic rocks in the region, while Group 2 and 3 rocks show a change in mineralogy to iron, silica, and carbonate minerals, which is associated with depletion of many major and trace elements associated with volcanic rocks (Al2O3, Na2O, K2O, Zr). In addition, rare earth elements display a clear progression from volcanic signatures in Group 1 (PrSN/YbSN = 1.7-2.96, EuSN/EuSN∗ = 0.84-1.72, Y/Ho = 25.20-27.41, LaSN/LaSN∗ = 0.97-1.29, and Zr/Hf = 38.38-42.09) to transitional mixed volcanic, hydrothermal, and seawater signatures in Group 2 (PrSN/YbSN 1.33-2.89, EuSN/EuSN∗ 1.33-2.5, Y/Ho = 23.94-30, LaSN/LaSN∗ 0.93-1.34, and Zr/Hf = 40-70), to mixed hydrothermal and seawater signatures in Group 3 (PrSN/YbSN 0.62-2.88, EuSN/EuSN∗ 1.30-7.15, LaSN/LaSN∗ 1.02-1.86, Y/Ho = 25.56-55, and Zr/Hf = 35-50). We interpret that silicification of volcanic rocks (Group 1) produced transitional altered volcanic rocks (Group 2), and siliceous and jaspilitic rocks (Group 3), based on preservation of delicate volcanic features. Building on this explanation, we interpret that major, trace- and rare-earth element mobility occurred during the process of silicification, during which siliceous and jaspilitic rocks (Group 3) acquired aspects of the rare-earth element geochemical signatures of marine chemical precipitates. We

  6. First principles and phonon calculations of ZrCo and ZrCo-H systems

    International Nuclear Information System (INIS)

    Chattaraj, D.; Parida, S.C.; Dash, Smruti; Majumder, C.

    2012-01-01

    The intermetallic ZrCo is a potential material for the storage and release of hydrogen isotopes because of its high gravimetric capacity and its low hydrogen equilibrium pressure. This intermetallic is a proposed material for the safe storage, supply and delivery of hydrogen isotope in the ITER project. To investigate the suitability of ZrCo as a getter material for the storage of hydrogen isotope it is essential to know in detail the structure-property relationships in both ZrCo and its hydride. Hence, in this study, we have investigated the structural, electronic, vibrational and thermodynamic properties of ZrCo and ZrCoH 3 using the first principles and phonon calculations

  7. Structural investigations of zirconia powders obtained by hf-plasmochemical denitration

    International Nuclear Information System (INIS)

    Dedov, N.V.; Ivanov, Yu.F.; Dorda, F.A.; Paul', A.V.; Zav'yalov, A.V.; Koneva, N.A.; Korobtsev, V.P.; Kutyavin, E.M.; Mazin, V.I.; Matyukha, V.A.

    1992-01-01

    Results are presented of structural and physicochemical investigations of unstabilized and stabilized (using yttria, magnesia, calcium oxide and alumina) zirconia, obtained from nitrate solutions on pilot HF-plasmochemical equipment with an electric rating of 63 kW. The phase composition of the ultradispersed powder is shown. Morphological and grain-size analyses were carried out on the EM-125K electron diffraction microscope. specimens were prepared by applying powder to a carbon film obtained in a VUP-4 vacuum cell. The phase composition was studied by x-ray analysis on the DRON-3 diffractometer. These studies established that the main morphological constituents of the ZrO 2 powder are polycrystalline hollow spheres and fragments of films. The average sizes (diameter) of the spheres in 0.77 μ (mean square deviation σ n = 0.57μ) and for the grains in them 31 nm (σ n = 9.5 nm). There exists a certain correlation between the dimensions of the polycrystalline spheres and their grain structure - the coarser the powders, the larger the grains observed

  8. Structural study of Zr-based metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, E. [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)]. E-mail: e.matsubara@materials.mbox.media.kyoto-u.ac.jp; Ichitsubo, T. [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Saida, J. [Center of Interdisciplinary Research, Tohoku University, Sendai 980-8578 (Japan); Kohara, S. [JASRI, SPring-8, Sayo-gun, Hyogo 679-5198 (Japan); Ohsumi, H. [JASRI, SPring-8, Sayo-gun, Hyogo 679-5198 (Japan)

    2007-05-31

    Structures of Zr{sub 70}Ni{sub 20}Al{sub 10}, Zr{sub 70}Cu{sub 20}Al{sub 10}, Zr{sub 70}Cu{sub 30} and Zr{sub 70}Ni{sub 30} amorphous alloys were analyzed by high-energy X-ray diffraction. The relatively stable Zr{sub 2}Cu amorphous alloy shows a local atom arrangement different from the Zr{sub 2}Cu crystalline phase. By contrast, the less stable Zr{sub 70}Ni{sub 30} amorphous alloy has a structure similar to Zr{sub 2}Ni. In the Zr{sub 70}Cu{sub 20}Al{sub 10} metallic glass, Zr-Al nearest neighbor pairs are introduced in the amorphous structure. In the Zr{sub 70}Ni{sub 20}Al{sub 10} metallic glass, the strong correlation between Zr-Ni pairs is drastically modified by the formation of Zr-Al pairs. The presence of Zr-Al pairs in the ternary alloys suppresses the crystallization and stabilizes the glassy state.

  9. Zr-ZrO sub 2 cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    CERN Document Server

    Zhang Qi Chu; Lee, K D; Shen, Y G

    2003-01-01

    High solar performance Zr-ZrO sub 2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO sub 2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO sub 2 or Al sub 2 O sub 3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80 deg. C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO sub 2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coating film w...

  10. Microstructural evolution of Ni40Zr60 alloy during early stage of mechanical alloying of intermetallic compounds NiZr2 and Ni11Zr9

    International Nuclear Information System (INIS)

    Lee Peeyew; Koch, C.C.

    1994-01-01

    The microstructural change of Ni 40 Zr 60 alloy during mechanical alloying of mixtures of the intermetallic compounds NiZr 2 and Ni 11 Zr 9 has been studied by transmission electron microscopy. A specific ''cauliflower'' phase was formed during early stage of mechanical alloying process. It is suggested that the solid state reaction between intermetallic compounds NiZr 2 and Ni 11 Zr 9 is not the only origin for the formation of the ''cauliflower'' phase. ((orig.))

  11. Physical properties of molten core materials: Zr-Ni and Zr-Cr alloys measured by electrostatic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Ohishi, Yuji, E-mail: ohishi@see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University (Japan); Kondo, Toshiki [Graduate School of Engineering, Osaka University (Japan); Ishikawa, Takehiko [Japan Aerospace Exploration Agency (Japan); SOKEN-DAI (Graduate University for Advanced Studies) (Japan); Okada, Junpei T. [Institute for Materials Research, Tohoku University (Japan); Watanabe, Yuki [Advanced Engineering Services Co. Ltd. (Japan); Muta, Hiroaki; Kurosaki, Ken [Graduate School of Engineering, Osaka University (Japan); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University (Japan); Research Institute of Nuclear Engineering, University of Fukui (Japan)

    2017-03-15

    It is important to understand the behaviors of molten core materials to investigate the progression of a core meltdown accident. In the early stages of bundle degradation, low-melting-temperature liquid phases are expected to form via the eutectic reaction between Zircaloy and stainless steel. The main component of Zircaloy is Zr and those of stainless steel are Fe, Ni, and Cr. Our group has previously reported physical property data such as viscosity, density, and surface tension for Zr-Fe liquid alloys using an electrostatic levitation technique. In this study, we report the viscosity, density, and surface tension of Zr-Ni and Zr-Cr liquid alloys (Zr{sub 1-x}Ni{sub x} (x = 0.12 and 0.24) and Zr{sub 0.77}Cr{sub 0.23}) using the electrostatic levitation technique. - Highlights: • The physical properties of Zr-Ni and Zr-Cr liquid alloys have been measured Zr{sub 1-x}Ni{sub x} (x = 0.12 and 0.24) and Zr{sub 77}Cr{sub 23}. • The measurement was conducted using the electrostatic levitation technique. • The density, viscosity, and surface tension of each liquid alloy were measured.

  12. Physical properties of molten core materials: Zr-Ni and Zr-Cr alloys measured by electrostatic levitation

    International Nuclear Information System (INIS)

    Ohishi, Yuji; Kondo, Toshiki; Ishikawa, Takehiko; Okada, Junpei T.; Watanabe, Yuki; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2017-01-01

    It is important to understand the behaviors of molten core materials to investigate the progression of a core meltdown accident. In the early stages of bundle degradation, low-melting-temperature liquid phases are expected to form via the eutectic reaction between Zircaloy and stainless steel. The main component of Zircaloy is Zr and those of stainless steel are Fe, Ni, and Cr. Our group has previously reported physical property data such as viscosity, density, and surface tension for Zr-Fe liquid alloys using an electrostatic levitation technique. In this study, we report the viscosity, density, and surface tension of Zr-Ni and Zr-Cr liquid alloys (Zr 1-x Ni x (x = 0.12 and 0.24) and Zr 0.77 Cr 0.23 ) using the electrostatic levitation technique. - Highlights: • The physical properties of Zr-Ni and Zr-Cr liquid alloys have been measured Zr 1-x Ni x (x = 0.12 and 0.24) and Zr 77 Cr 23 . • The measurement was conducted using the electrostatic levitation technique. • The density, viscosity, and surface tension of each liquid alloy were measured.

  13. Surface Passivation of Silicon Using HfO2 Thin Films Deposited by Remote Plasma Atomic Layer Deposition System.

    Science.gov (United States)

    Zhang, Xiao-Ying; Hsu, Chia-Hsun; Lien, Shui-Yang; Chen, Song-Yan; Huang, Wei; Yang, Chih-Hsiang; Kung, Chung-Yuan; Zhu, Wen-Zhang; Xiong, Fei-Bing; Meng, Xian-Guo

    2017-12-01

    Hafnium oxide (HfO 2 ) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO 2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N 2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO 2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO 2 , resulting in a better chemical passivation. The deposited HfO 2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 μs) to up to 67 μs.

  14. Zr3NiSb7: a new antimony-enriched ZrSb2 derivative

    Directory of Open Access Journals (Sweden)

    V. Romaka

    2008-08-01

    Full Text Available Single crystals of trizirconium nickel heptaantimonide were synthesized from the constituent elements by arc-melting. The compound crystallizes in a unique structure type and belongs to the family of two-layer structures. All crystallographically unique atoms (3 × Zr, 1 × Ni and 7 × Sb are located at sites with m symmetry. The structure contains `Zr2Ni2Sb5' and `Zr4Sb9' fragments and might be described as a new ZrSb2 derivative with a high Sb content.

  15. Diffusion and chemical activity of Zr-Sn and Zr-Ti systems

    International Nuclear Information System (INIS)

    Zee, R.H.; Watters, J.F.; Davidson, R.D.

    1986-01-01

    A modified evaporation method was used to determine the diffusion coefficients and the emission rates of Sn and Ti in Zr-Sn and Zr-Ti, respectively, at temperatures between 1605 and 1970 K. Results show that both Sn and Ti diffuse in their respective alloys via a vacancy mechanism. Comparison with data in the literature reveals that the activation energy for diffusion of Sn in Zr-Sn, with Sn content between 3 and 5 at.X is relatively constant from 1200 to 1970 K. From the measured emission rates, values of 103 and 98 kcal/mol were obtained for the enthalpies of sublimation for Sn and Ti in their alloys. With a comparison of the solute vapor pressures with those of the pure elements, partial molar free energies, entropies, and enthalpies for the two systems were determined in the temperature range investigated. The Zr-Sn system shows a very large negative heat of formation (-33 kcal/mol) whereas the Zr-Ti system behaves quite ideally, in agreement with phase-diagram predictions

  16. A spanish mineral of zirconium and hafnium. Separation of the two elements by liquid-liquid extraction, using tributyl phosphate as chelating agent; Beneficio de un mineral espanol de circonio-hafnio. Separacion de ambos elementos por extraccion liquido-liquido, empleando fosfato de tributilo como agente de quelacion

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Sanchez, F; Cruz Castillo, F. de la; Fernandez Cellini, R

    1962-07-01

    The zirconium and Hafnium oxides are obtained from a Spanish mineral of zircon with an average contest of 55% in ZrO{sub 2}-HfO{sub 2}. An alkaline fusion to open the mineral, followed by a purification by crystallization as (Zr O-Hf O)Cl{sub 2} H{sub 2}O or as (Zr-Hf) (SO{sub 4}){sub 2}. 4H{sub 2}O, is used. A discussion of the best experimental conditions for opening the mineral and of the purification method is made. (Author) 45 refs.

  17. Optical properties of Ar ions irradiated nanocrystalline ZrC and ZrN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C. [Ramapo College of New Jersey, Mahwah, NJ 07430 (United States); Miller, K.H. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Makino, H. [Research Institute, Kochi University of Technology, Kami, Kochi, 782-8502 (Japan); Craciun, D. [National Institute for Laser, Plasma, and Radiation Physics, Bucharest-Magurele (Romania); Simeone, D. [CEA/DEN/DANS/DM2S/SERMA/LEPP-LRC CARMEN CEN Saclay France & CNRS/ SPMS UMR8785 LRC CARMEN, Ecole Centrale de Paris, F92292, Chatenay Malabry (United States); Craciun, V., E-mail: valentin.craciun@inflpr.ro [National Institute for Laser, Plasma, and Radiation Physics, Bucharest-Magurele (Romania)

    2017-05-15

    Employing wide spectral range (0.06–6 eV) optical reflectance measurements and high energy X-ray photoemission spectroscopy (HE-XPS), we studied the effect of 800 keV Ar ion irradiation on optical and electronic properties of nanocrystalline ZrC and ZrN thin films, which were obtain by the pulsed laser deposition technique. Both in ZrC and ZrN, we observed that irradiation affects the optical properties of the films mostly at low frequencies, which is dominated by the free carriers response. In both materials, we found a significant reduction in the free carriers scattering rate and an increase of the zero frequency conductivity, i.e. possible increase in mobility, at higher irradiation fluence. This is consistent with our previous findings that irradiation affects the crystallite size and the micro-strain, but it does not induce major changes in the chemical bonding. HE-XPS investigations further confirms the stability of the Zr-C and Zr-N bonds, despite a small increase in the surface region of the Zr-O bonds fraction with increasing irradiation fluence.

  18. Local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys investigated by EXAFS method

    International Nuclear Information System (INIS)

    Antonowicz, J.; Pietnoczka, A.; Zalewski, W.; Bacewicz, R.; Stoica, M.; Georgarakis, K.; Yavari, A.R.

    2011-01-01

    Research highlights: → Coordination number, interatomic distances and mean square atomic displacement in Zr-Cu and Zr-Cu-Al glasses. → Icosahedral symmetry in local atomic structure. → Deviation from random mixing behavior resulting from Al addition. - Abstract: We report on extended X-ray absorption fine structure (EXAFS) study of rapidly quenched Zr-Cu and Zr-Cu-Al glassy alloys. The local atomic order around Zr and Cu atoms was investigated. From the EXAFS data fitting the values of coordination number, interatomic distances and mean square atomic displacement were obtained for wide range of compositions. It was found that icosahedral symmetry rather than that of corresponding crystalline analogs dominates in the local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys. Judging from bonding preferences we conclude that addition of Al as an alloying element results in considerable deviation from random mixing behavior observed in binary Zr-Cu alloys.

  19. Oxidation of Zr and thin (0.2-4 nm) Zr films on Ag: An ESCA investigation

    International Nuclear Information System (INIS)

    Steiner, P.; Sander, I.; Siegwart, B.; Huefner, S.

    1987-01-01

    The oxidation of polycrystalline Zr under 10 -8 -10 -3 mbar oxygen pressure in the temperature range 25 0 -350 0 C is obtained from ESCA experiments. Changes in the ESCA spectra for thin Zr films on Ag oxidized at 250 0 C are observed and compared to the bulk Zr-metal. Thin Ag overlayers on Zr show a catalytic increase of the room temperature oxidation of Zr. (orig.)

  20. Value determination of ZrO2 in-house reference material (RM) candidate

    International Nuclear Information System (INIS)

    Susanna Tuning Sunanti; Samin; Supriyanto C

    2013-01-01

    The value determination of zirconium oxide in-house reference materials (RM) candidate has been done by referring to ISO:35-2006 standard. The raw material of RM was 4 kg of ZrO 2 , Merck, that was dried at 90°C for 2×6 hours in a closed room. The samples were crushed with stainless steel (SS) pestle to pass ≤ 200 mesh sieve, homogenized in a homogenizer for 3×6 hours to obtain the powdered, dried and homogenous samples. The gravimetric method was performed to test the moisture content, while XRF and AAS methods were used to test the homogeneity and stability of samples candidates. Reference material (RM) candidates of ZrO 2 powder were put into polyethylene bottles, each weighing 100 g. Samples were distributed to 10 testing laboratories that have been accredited for testing the composition of the oxide contents and loss of ignition (LOI) using variety of analytical methods that have been validated such as AAS, XRF, NAA, and UV-Vis. The testing results of oxide content and loss of ignition parameters from various laboratories were analyzed using statistical methods. The testing data of oxide concentration in zirconium oxide RM candidates obtained from various laboratories were ZrO 2 : 97.7334 ± 0.0016%, HfO 2 : 1.7329 ± 0.0024%, SiO 2 : 30.1224 ± 0.0053%, Al 2 O 3 : 0.0245 ± 0.0015%, TiO 2 : 0.0153 ± 0.0006%, Fe 2 O 3 : 0.0068 ± 0.0005%, CdO: 3.1798 ± 0.00006 ppm, and the LOI results was = 0.0217 ± 0.00022%. (author)

  1. Creep properties of Nb-1Zr and Nb-1Zr-0.1C

    International Nuclear Information System (INIS)

    Horak, J.A.; Egner, L.K.

    1994-12-01

    In the early 1980s a compact, lithium cooled, fast-energy spectrum nuclear reactor was selected for space applications requiring prolonged uninterrupted electrical power. This reactor was to be capable of generating up to 100 kilowatts of electricity for times up to seven years in space and thus was given the acronym SP-100. The material selected for the fuel cladding, reactor heat transport systems and structural components was Nb-1 wt % Zr (Nb-1Zr). In addition to commercial Nb-1Zr, modified alloys containing 100--200 wt ppM each of carbon and nitrogen and 900 ± 150 wt ppM carbon were also included, Type B Nb-1Zr and PWC-11, respectively. The SP-100 reactor was designed to operate at temperatures of 1290--1425 K. At these temperatures the principal mode of deformation for Nb-1Zr is creep, and creep strain of the fuel cladding limits the useful reactor lifetime. To develop a creep data base for design, safety and reliability analyses, uniaxial creep testing of Nb-1Zr, Type B Nb-1Zr and PWC-11 was conducted from 1250--1450 K at stresses from 5.0 MPa to 41.4 MPa. Methodology and test results are presented

  2. Oxidative mobilization of cerium and uranium and enhanced release of "immobile" high field strength elements from igneous rocks in the presence of the biogenic siderophore desferrioxamine B

    Science.gov (United States)

    Kraemer, Dennis; Kopf, Sebastian; Bau, Michael

    2015-09-01

    Polyvalent trace elements such as the high field strength elements (HFSE) are commonly considered rather immobile during low-temperature water-rock interaction. Hence, they have become diagnostic tools that are widely applied in geochemical studies. We present results of batch leaching experiments focused on the mobilization of certain HFSE (Y, Zr, Hf, Th, U and rare earth elements) from mafic, intermediate and felsic igneous rocks in the presence and absence, respectively, of the siderophore desferrioxamine B (DFOB). Our data show that DFOB strongly enhances the mobility of these trace elements during low-temperature water-rock interaction. The presence of DFOB produces two distinct features in the Rare Earths and Yttrium (REY) patterns of leaching solutions, regardless of the mineralogical and chemical composition or the texture of the rock type studied. Bulk rock-normalized REY patterns of leaching solutions with DFOB show (i) a very distinct positive Ce anomaly and (ii) depletion of La and other light REY relative to the middle REY, with a concave downward pattern between La and Sm. These features are not observed in experiments with hydrochloric acid, acetic acid or deionized water. In DFOB-bearing leaching solutions Ce and U are decoupled from and selectively enriched relative to light REY and Th, respectively, due to oxidation to Ce(IV) and U(VI). Oxidation of Ce3+ and U4+ is promoted by the significantly higher stability of the Ce(IV) and U(VI) DFOB complexes as compared to the Ce(III) and U(IV) DFOB complexes. This is similar to the relationship between the Ce(IV)- and Ce(III)-pentacarbonate complexes that cause positive Ce anomalies in alkaline lakes. However, while formation of Ce(IV) carbonate complexes is confined to alkaline environments, Ce(IV) DFOB complexes may produce positive Ce anomalies even in mildly acidic and near-neutral natural waters. Siderophore-promoted dissolution processes also significantly enhance mobility of other 'immobile' HFSE

  3. Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5 ceramics

    International Nuclear Information System (INIS)

    Lin, Z.J.; Zhuo, M.J.; He, L.F.; Zhou, Y.C.; Li, M.S.; Wang, J.Y.

    2006-01-01

    The microstructures of bulk Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 ceramics have been investigated using transmission electron microscopy and scanning transmission electron microscopy. These two carbides were determined to have a point group 6/mmm and a space group P6 3 /mmc using selected-area electron diffraction and convergent beam electron diffraction. The atomic-scale microstructures of Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 were investigated through high-resolution imaging and Z-contrast imaging. Furthermore, intergrowth between Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 was identified. Stacking faults in Zr 3 Al 3 C 5 were found to result from the insertion of an additional Zr-C layer. Cubic ZrC was occasionally identified to be incorporated in elongated Zr 3 Al 3 C 5 grains. In addition, Al may induce a twinned ZrC structure and lead to the formation of ternary zirconium aluminum carbides

  4. Fundamental Thermal and Mechanical Properties of Boride Ceramics

    Science.gov (United States)

    2014-02-28

    Zr ,Y)B2 ( Zr ,Hf)B2 ( Zr ,Ti)B2 ZrB2 El ec tri ca l R es is tiv ity (µ Ω -c m ) Temperature (°C) Figure 17. Electrical resistivity as a function...family as Zr , namely Ti and Hf, had minimal effect on thermal conductivity, while others such as Nb , Ta, and W had an increasing impact based on their...diffusivity (α), heat capacity (Cp) from the NIST-JANAF tables, and bulk density (ρ) using Equation 6. (5) (6) Electrical resistivity

  5. Comparative study of the core level photoemission of the ZrB{sub 2} and ZrB{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Huerta, L. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico); Duran, A. [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 2681, Ensenada, Baja California 22800 (Mexico); Falconi, R. [Division Academica de Ciencias Basicas, Universidad Juarez Autonoma de Tabasco, Cunduacan, Tabasco, CP 86690, AP 24 (Mexico); Flores, M. [Departamento de Ingenieria de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, Zapopan Jal 45101 (Mexico); Escamilla, R., E-mail: rauleg@servidor.unam.m [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico)

    2010-05-01

    X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) were used to investigate the binding energies and valence band for ZrB{sub 2} and ZrB{sub 12}. The Zr 3d and B 1s core levels were identified. The Zr 3d core level shows a spin-orbit split 3d{sub 5/2} and 3d{sub 3/2} while that for B 1s core level exhibited a single symmetric peak, these being typical of zirconium and boride signals. Comparing the Zr 3d and B 1s core levels with metallic Zr, B{sub 2}O{sub 3} and ZrO{sub 2} reference materials only a negative chemical shift for Zr 3d associated to ZrB{sub 2} was observed, which suggests that the charge transfer model based on the concept of electronegativity was not applicable to explain the superconductivity in the ZrB{sub 12} sample. The measured valence band using UPS is consistent with the band-structure calculations indicating a higher density of states (DOS) at E{sub F} for ZrB{sub 12} respect to ZrB{sub 2}. Finally, we found that the weak mixed B-p and Zr-d states for ZrB{sub 12} is crucial for the superconductivity due to the state population increased the DOS at the E{sub F}.

  6. Quantitative microanalysis of hafnium - zirconium system by X-ray fluorescence

    International Nuclear Information System (INIS)

    Majid, C.A.; Hussain, M.A.; Saeed, K.

    1986-01-01

    X-ray fluorescence technique has been used for the analysis of Hf in the presence of Zr by developing a method. In this method the spectral interference of Hf lines by Zr is eliminated completely and the Hf detection is accomplished using the most efficient Li line of its L-series. The principle of the method is based on the extinction properties of crystals for some orders of reflection. Ge(III) is used as the analyzing crystal. This method can be used accurately to detect Hf in any concentration of Zr at least from about 20 ppm to 100%. Also no information about the expected range of the analyte sample, is required in advance. (authors)

  7. The preparation of Zr-deuteride and phase stability studies of the Zr-D system

    Science.gov (United States)

    Maimaitiyili, T.; Steuwer, A.; Bjerkén, C.; Blomqvist, J.; Hoelzel, M.; Ion, J. C.; Zanellato, O.

    2017-03-01

    Deuteride phases in the zirconium-deuterium system in the temperature range 25-286 °C have been studied in-situ by high resolution neutron diffraction. The study primarily focused on observations of δ→γ transformation at 180 °C, and the peritectoid reaction α + δ ↔ γ at 255 °C in commercial grade Zr powder that was deuterated to a deuterium/Zr ratio of one to one. A detailed description of the zirconium deuteride preparation route by high temperature gas loading is also described. The lattice parameters of α-Zr, δ-ZrDx and ε-ZrDx were determined by whole pattern crystal structure analysis, using Rietveld and Pawley refinements, and are in good agreement with values reported in the literature. The controversial γ-hydride phase was observed both in-situ and ex-situ in deuterated Zr powder after a heat treatment at 286 °C and slow cooling.

  8. A study of the diffusion mechanisms in amorphous metallic alloys: diffusion and diffusion under high pressure in an amorphous NiZr alloy

    International Nuclear Information System (INIS)

    Grandjean, A.

    1996-01-01

    The aim of this work is a better understanding of the diffusion mechanism in amorphous metallic alloys. Then interdiffusion and hafnium diffusion in amorphous NiZr alloy have been studied. Samples used are made by sputtering co-deposition under vacuum and are well relaxed before the diffusion measurements. The time evolution of resistivity during annealing due to the decay of a composition modulated film has been measured and from this change in resistivity interdiffusion coefficients have been determined. Dependence of Hf diffusion on temperature and pressure has been studied using (SIMS). In this two cases, the diffusion process obeys an Arrhenius law and gives an activation energy of 1.33 eV for interdiffusion, and 0.76 eV for Hf diffusion. An effect of pressure on Hf diffusion has been found leading to an activation volume of 8.5 angstrom 3 . Thanks to these results, two approaches of the diffusion mechanisms in these systems have been proposed. The first comes from a comparison with the diffusion mechanisms in crystalline metals, that is to say by point defects. The second is an hypothesis of collective motions in these non crystalline alloys. (author)

  9. Positron annihilation studies in Hf doped YBCO

    International Nuclear Information System (INIS)

    Gopalan, P.; Priya, E.R.; Premila, M.; Sundar, C.S.; Gopinathan, K.P.

    1992-01-01

    The variation of positron lifetime and oxygen stoichiometry as a function of quench temperature has been measured in undoped and 0.5at%, 0.75at%, and 1.0 at% Hf doped YBCO. In both the undoped and Hf doped samples, the lifetime decreases and the oxygen content increases as the quench temperature is lowered from 900degC to 300degC. The lifetime in the tetragonal phase (900degC) decreases with the increase in Hf content, whereas in the orthorhombic phase (450degC) it increases. The difference in lifetime between the tetragonal and orthorhombic phases decreases with the increase in the Hf content. These trends are discussed in terms of the influence of Hf doping on the oxygen content and the positron density distribution in YBCO

  10. Ge interactions on HfO2 surfaces and kinetically driven patterning of Ge nanocrystals on HfO2

    International Nuclear Information System (INIS)

    Stanley, Scott K.; Joshi, Sachin V.; Banerjee, Sanjay K.; Ekerdt, John G.

    2006-01-01

    Germanium interactions are studied on HfO 2 surfaces, which are prepared through physical vapor deposition (PVD) and by atomic layer deposition. X-ray photoelectron spectroscopy and temperature-programed desorption are used to follow the reactions of germanium on HfO 2 . Germanium chemical vapor deposition at 870 K on HfO 2 produces a GeO x adhesion layer, followed by growth of semiconducting Ge 0 . PVD of 0.7 ML Ge (accomplished by thermally cracking GeH 4 over a hot filament) also produces an initial GeO x layer, which is stable up to 800 K. PVD above 2.0 ML deposits semiconducting Ge 0 . Temperature programed desorption experiments of ∼1.0 ML Ge from HfO 2 at 400-1100 K show GeH 4 desorption below 600 K and GeO desorption above 850 K. These results are compared to Ge on SiO 2 where GeO desorption is seen at 550 K. Exploiting the different reactivity of Ge on HfO 2 and SiO 2 allows a kinetically driven patterning scheme for high-density Ge nanoparticle growth on HfO 2 surfaces that is demonstrated

  11. Electric Field Gradients at Hf and Fe Sites in Hf2Fe Recalculated

    International Nuclear Information System (INIS)

    Belosevic-Cavor, J.; Cekic, B.; Novakovic, N.; Koteski, V.; Milosevic, Z.

    2004-01-01

    The electric field gradients (EFG) of the Hf 2 Fe intermetallic compound were calculated using the full-potential linearized augmented plain-wave (FP-LAPW) method as embodied in the WIEN 97 code. The obtained values are compared with other ab-initio calculations and on a qualitative basis with the previously reported experimental data obtained from TDPAC. The calculated results, -23.1.10 21 V/m 2 and 2.7.10 21 V/m 2 for Hf 48f and Fe 32e position, respectively, are in excellent agreement with experimental data (23.4.10 21 V/m 2 and 2.7.10 21 V/m 2 ), better than those reported in earlier calculations. The calculated EFG for Hf 16c position (4.2.10 21 V/m 2 ) is stronger than the experimental one (1.1.10 21 V/m 2 ).

  12. Microstructural characterization of as-cast hf-b alloys

    Directory of Open Access Journals (Sweden)

    João Carlos Jânio Gigolotti

    2012-04-01

    Full Text Available An accurate knowledge of several metal-boron phase diagrams is important to evaluation of higher order systems such as metal-silicon-boron ternaries. The refinement and reassessment of phase diagram data is a continuous work, thus the reevaluation of metal-boron systems provides the possibility to confirm previous data from an investigation using higher purity materials and better analytical techniques. This work presents results of rigorous microstructural characterization of as-cast hafnium-boron alloys which are significant to assess the liquid composition associated to most of the invariant reactions of this system. Alloys were prepared by arc melting high purity hafnium (minimum 99.8% and boron (minimum 99.5% slices under argon atmosphere in water-cooled copper crucible with non consumable tungsten electrode and titanium getter. The phases were identified by scanning electron microscopy, using back-scattered electron image mode and X-ray diffraction. In general, a good agreement was found between our data and those from the currently accepted Hafnium-Boron phase diagram. The phases identified are αHfSS and B-RhomSS, the intermediate compounds HfB and HfB2 and the liquide L. The reactions are the eutectic L ⇔ αHfSS + HfB and L ⇔ HfB2 + B-Rhom, the peritectic L + HfB2 ⇔ HfB and the congruent formation of HfB2.

  13. High energy HF pulsed lasers

    International Nuclear Information System (INIS)

    Patterson, E.L.; Gerber, R.A.

    1976-01-01

    Recent experiments show that pulsed HF lasers are capable of producing high energy with good efficiency. Preliminary experiments show that the laser radiation from the high-gain medium can be controlled with a low-power probe laser beam or with low-level feedback. These results indicate that the HF laser may have potential for second-generation laser fusion experiments

  14. Ni-free Zr-Cu-Al-Nb-Pd bulk metallic glasses with different Zr/Cu ratios for biomedical applications.

    Science.gov (United States)

    Huang, Lu; Yokoyama, Yoshihiko; Wu, Wei; Liaw, Peter K; Pang, Shujie; Inoue, Akihisa; Zhang, Tao; He, Wei

    2012-08-01

    Zr-based bulk metallic glasses (BMGs) possess attractive properties for prospective biomedical applications. The present study designs Ni-free Zr-Cu-Al-Nb-Pd BMGs and investigates their in vitro biocompatibility by studying mechanical properties, bio-corrosion resistance, and cellular responses. The Ti-6Al-4V alloy is used as a reference material. It is found that the Zr-based BMGs exhibit good mechanical properties, including high strengths above 1600 MPa, high hardness over 4700 MPa, and low elastic moduli of 85-90 GPa. The Zr-based BMGs are corrosion resistant in a simulated body environment, as revealed by wide passive regions, low passive current densities, and high pitting overpotentials. The formation of ZrO(2)-rich surface passive films of the Zr-based BMGs contributes to their high corrosion resistance, whereas their pitting corrosion in the phosphate buffered saline solution can be attributed to the sensitivity of the ZrO(2) films to the chloride ion. The general biosafety of the Zr-based BMGs is revealed by normal cell adhesions and cell morphologies. Moreover, the Zr/Cu content ratio in the alloy composition affects the biocompatibility of the Zr-based BMGs, by increasing their corrosion resistance and surface wettability with the increase of the Zr/Cu ratio. Effects of Zr/Cu ratios can be used to guide the future design of biocompatible Zr-based BMGs. Copyright © 2012 Wiley Periodicals, Inc.

  15. Corrosion Behaviour of New Zr Alloys

    DEFF Research Database (Denmark)

    Tolksdorf, E.

    1974-01-01

    Corrosion studies have indicated that the most promising replacements for Zicaloy-2 are ZrCrFe, ZrVFe and probably ZrNbTa, provided they are in their optimized condition. These alloys are conventionally manufactured alloys. An internally oxidized ZrMgO alloy is even superior, from the corrosion...

  16. Nano ZrO{sub 2} particles in nanocrystalline Fe–14Cr–1.5Zr alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.Z.; Li, L.L.; Saber, M.; Koch, C.C.; Zhu, Y.T., E-mail: ytzhu@ncsu.edu; Scattergood, R.O.

    2014-09-15

    Here we report on the formation of nano ZrO{sub 2} particles in Fe–14Cr–1.5Zr alloy powders synthesized by mechanical alloying. The nano ZrO{sub 2} particles were found uniformly dispersed in the ferritic matrix powders with an average size of about 3.7 nm, which rendered the alloy powders so stable that it retained nanocrystalline structure after annealing at 900 °C for 1 h. The ZrO{sub 2} nanoparticles have a tetragonal crystal structure and the following orientation relationship with the matrix: (0 0 2){sub ZrO2}//(0 0 2){sub Matrix} and [0 1 0]{sub ZrO2}//[1 2 0]{sub Matrix}. The size and dispersion of the ZrO{sub 2} particles are comparable to those of Y–Ti–O enriched oxides reported in irradiation-resistant ODS alloys. This suggests a potential application of the new alloy powders for nuclear energy applications.

  17. Study of Direct-Contact HfO2/Si Interfaces

    Directory of Open Access Journals (Sweden)

    Noriyuki Miyata

    2012-03-01

    Full Text Available Controlling monolayer Si oxide at the HfO2/Si interface is a challenging issue in scaling the equivalent oxide thickness of HfO2/Si gate stack structures. A concept that the author proposes to control the Si oxide interface by using ultra-high vacuum electron-beam HfO2 deposition is described in this review paper, which enables the so-called direct-contact HfO2/Si structures to be prepared. The electrical characteristics of the HfO2/Si metal-oxide-semiconductor capacitors are reviewed, which suggest a sufficiently low interface state density for the operation of metal-oxide-semiconductor field-effect-transistors (MOSFETs but reveal the formation of an unexpected strong interface dipole. Kelvin probe measurements of the HfO2/Si structures provide obvious evidence for the formation of dipoles at the HfO2/Si interfaces. The author proposes that one-monolayer Si-O bonds at the HfO2/Si interface naturally lead to a large potential difference, mainly due to the large dielectric constant of the HfO2. Dipole scattering is demonstrated to not be a major concern in the channel mobility of MOSFETs.

  18. Thermoelectric properties of doped BaHfO_3

    International Nuclear Information System (INIS)

    Dixit, Chandra Kr.; Bhamu, K. C.; Sharma, Ramesh

    2016-01-01

    We have studied the structural stability, electronic structure, optical properties and thermoelectric properties of doped BaHfO_3 by full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure of BaHfO_3 doped with Sr shows enhances the indirect band gaps of 3.53 eV, 3.58 eV. The charge density plots show strong ionic bonding in Ba-Hf, and ionic and covalent bonding between Hf and O. Calculations of the optical spectra, viz., the dielectric function, refractive index and extinction coefficient are performed for the energy range are calculated and analyzed. Thermoelectric properties of semi conducting are also reported first time. The doped BaHfO_3 is approximately wide band gap semiconductor with the large p-type Seebeck coefficient. The power factor of BaHfO_3 is increased with Sr doping, decreases because of low electrical resistivity and thermal conductivity.

  19. Thermodynamics of HfCl4-KCl molten mixtures containing HfCl4 up to 33.3 mol. per cent

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Salyulev, A.B.; Kudyakov, V.Ya.

    1980-01-01

    Based on measurements of saturated vapour pressure in components of melted mixtures of HfCl 4 -KCl, depending on temperature and concentration, calculated are the results of changes in activity coefficients of hafnium tetrachloride and potassium chloride on transition from diluted solutions, where the Henry law is met, to those concentrated where the law is disobeyed. Growth in the activity coefficient of HfCl 4 is due to dissociation of complex groups of HfCl 6 2- into complexes with a lesser number of ligands and decreasing relative binding energy of Hf 4+ -Cl - there. In this case, marked changes take place in partial enthalpy and entropy of hafnium tetrachloride mixing. Similar dependences are observed for potassium chloride, but they are expressed considerably weaker. Evaporation enthalpy and entropy are calculated for HfCl 4 and KCl monomers from their melted mixtures of various concentrations

  20. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: compositional optimization for potential biomedical applications.

    Science.gov (United States)

    Hua, Nengbin; Huang, Lu; Chen, Wenzhe; He, Wei; Zhang, Tao

    2014-11-01

    The present study designs and prepares Ni-free Zr60+xTi2.5Al10Fe12.5-xCu10Ag5 (at.%, x=0, 2.5, 5) bulk metallic glasses (BMGs) by copper mold casting for potential biomedical application. The effects of Zr content on the in vitro biocompatibility of the Zr-based BMGs are evaluated by investigating mechanical properties, bio-corrosion behavior, and cellular responses. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high notch toughness. Electrochemical measurements demonstrate that the Zr-based BMGs are corrosion resistant in a phosphate buffered saline solution. The bio-corrosion resistance of BMGs is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. Regular cell responses of mouse MC3T3-E1 cells, including cell adhesion and proliferation, are observed on the Zr-Ti-Al-Fe-Cu-Ag BMGs, which reveals their general biosafety. The high-Zr-based BMGs exhibit a higher cell proliferation activity in comparison with that of pure Zr and Ti-6Al-4V alloy. The effects of Zr content on the in vitro biocompatibility can be used to guide the future design of biocompatible Zr-based BMGs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Crystal structures of KM(AsF6)3 (M2+ = Mg, Co, Mn, Zn), KCu(SbF6)3 and [Co(HF)2]Sr[Sr(HF)]2-[Sr(HF)2]2[AsF6]12

    International Nuclear Information System (INIS)

    Mazej, Zoran; Goreshnik, Evgeny

    2015-01-01

    The KM(AsF 6 ) 3 (M 2+ = Mg, Co, Mn, Zn) and KCu(SbF 6 ) 3 compounds crystallize isotypically to previously known KNi(AsF 6 ) 3 . The main features of the structure of these compounds are rings of MF 6 octahedra sharing apexes with AsF 6 octahedra connected into infinite tri-dimensional frameworks. In this arrangement cavities are formed where K + cations are placed. Single crystals of CoSr 5 (AsF 6 ) 12 .8HF were obtained as one of the products after the crystallization of 3KF/CoF 2 /SrF 2 mixture in the presence of AsF 5 in anhydrous HF. The CoSr 5 (AsF 6 ) 12 .8HF is monoclinic, C/2c (No.15), with a = 26.773(5) Aa, b = 10.087(2) Aa, c = 21.141(5) Aa, β = 93.296(13) circle , V = 5699.9(19) Aa 3 at 200 K, and Z = 4. There are three crystallographically non-equivalent Sr 2+ cations in the crystal structure of CoSr 5 (AsF 6 ) 12 .8HF. The Sr1 is coordinated by ten fluorine atoms from eight different [AsF 6 ]- anions, meanwhile Sr2 and Sr3 are bound to nine fluorine atoms provided by one HF and eight AsF 6 units or by two HF and six AsF 6 units, respectively. The Co 2+ is coordinated distorted-octahedrally by six fluorine atoms from two HF molecules and four different AsF 6 units. All those moieties in the crystal structure of [Co(HF) 2 ]Sr[Sr(HF)] 2 [Sr(HF) 2 ] 2 [AsF 6 ] 12 are connected into tridimensional framework. The CoSr 5 (AsF 6 ) 12 .8HF is a unique example of compound where HF molecules are directly bound via fluorine atoms to two different metal centres.

  2. Preparation and dielectric properties of Dy, Er-doped BaZr0.2Ti0.8O3 ceramics

    International Nuclear Information System (INIS)

    Hao Sue; Sun Liang; Huang Jinxiang

    2008-01-01

    Ba(Zr x Ti 1-x )O 3 nanopowders and ceramics with different Zr/Ti ratios of 1:9; 2:8; 2.5:7.5; 3.5:6.5 and 4:6 (x = 0.1, 0.2, 0.25, 0.35, 0.4) have been prepared by sol-gel technology using inorganic zirconium as raw materials, and Zr/Ti ratio of 2:8 is determined as the best one according to the measurements of dielectric properties. So the modified Ba(Zr 0.2 ,Ti 0.8 )O 3 ceramics doped by Dy and Er (the additive content is 0.10%, 0.15%, 0.20%, 0.30% and 0.50% molar ratio, respectively) have been prepared, and the effects of rare earth on the microstructure and dielectric properties of Ba(Zr 0.2 ,Ti 0.8 )O 3 ceramics have been studied. The experimental results show that the effect of Er is better than that of Dy in improving the dielectric properties of BaZr 0.2 Ti 0.8 O 3 ceramics. When the content of Er is 0.15 mol%, the dielectric constant is the highest of 12767, while the dielectric loss is lowered to 0.011; the frequency stabilities and the temperature dependence are also better, which is suitable for application in condenser field

  3. Passive behaviour of zirconium, hafnium and niobium

    International Nuclear Information System (INIS)

    Hornkjoel, S.

    1990-01-01

    The paper deals mainly with the results of stationary and transient polarization measurements together with capacitance measurements on passive electrodes of Zr, Hf and Nb over the entire pH-scale. The passive current densities are exstremely low, and essentially both pH and potential independent, exept for Nb at high pH. The extrapolated potential of zero inverse capacitance seems to be different from the extrapolated potential of zero film thickness for Zr and Hf, but not for Nb. The potential versus time curves at constant current show a downwards bending for Zr and Hf. It is shown that the pitting potentials of Zr and Hf are dependent of the concentration of halide ions and the type of halide ion, but not on pH. It is also shown that the pitting induction is second-order stimulated by chloride ions and first-order hindered by sulphate ions. Results from electron transfer reactions on passive niobium are reported. 9 refs

  4. Luminescent determination of zirconium and hafnium with myricetin

    International Nuclear Information System (INIS)

    Talipov, Sh.T.; Zel'tser, L.E.; Morozova, L.A.; Tashkhodzhaev, A.T.

    1978-01-01

    Reaction of formation of 3, 5, 7, 3', 4', 5' - hexaoxiflavone - myricetin complexes with zirconium and hafnium ions has been the basis for development of luminescent method of determining these elements. Optimum conditions for complexing have been determined. For Hf they are : 8-9 HCl concentration, maximum fluorescence wave length (lambda fl.)of 520 nm, wave length of exciting light (lambda el) of 436 nm, for Zr lambda fl = 536nm, lambda el = 436 nm. Stable fluorescence establishes after 25 min. for Zr and after 15 min for Hf in the presence of 40% ethanol. Usage of various camouflage agents has permitted to attain high selectivity of the method. Possibility for determination of Zr with myricetin in the presence of a 10-time excess of Hf, Cr, Cu, 50-time excess of Mo and Ti is shown. Sensitivity of Zr determination is 2.0x10 μg -2 /ml, for Hf it is 9.0x10 μg -3 and mineral waters

  5. Structural and photoluminescence study of Er-Yb codoped nanocrystalline ZrO{sub 2}-B{sub 2}O{sub 3} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro 76000 (Mexico); Borja-Urby, R. [Grupo de Espectroscopia de Materiales Avanzados y nanoestructurados (EMANA), Centro de Investigaciones en Optica, A. C., Loma del Bosque 115, Col. Lomas del Campestre, C.P. 37150 Leon, Gto. (Mexico); Diaz-Torres, L.A., E-mail: ditlacio@cio.mx [Grupo de Espectroscopia de Materiales Avanzados y nanoestructurados (EMANA), Centro de Investigaciones en Optica, A. C., Loma del Bosque 115, Col. Lomas del Campestre, C.P. 37150 Leon, Gto. (Mexico); Rodriguez, G. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro 76000 (Mexico); Vega, M. [Centro de Geociencias, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro 76000 (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, A.P. 14-805, 07730 Mexico, DF (Mexico)

    2012-09-20

    Codoped Er{sup 3+} and Yb{sup 3+} nanocrystalline ZrO{sub 2}-B{sub 2}O{sub 3} phosphor obtained by a modified sol-gel method is demonstrated. The addition of up to 2.5 mol% B{sub 2}O{sub 3} to nanocrystalline ZrO{sub 2}:Yb(2%), Er(1%) keep the tetragonal rare-earth stabilized ZrO{sub 2} phase; whereas higher B{sub 2}O{sub 3} content destabilize the tetragonal phase, leading to the tetragonal to monoclinic transition with no tetragonal ZrO{sub 2} phase segregation. Visible upconversion of the luminescent active ions, Er{sup 3+} and Yb{sup 3+}, depend strongly on B{sub 2}O{sub 3} content. The PL intensity is strongly quenched for high B{sub 2}O{sub 3} content due to increasing multiphonon relaxation processes related to B-O and B-O-B vibronic modes.

  6. Effects of Sm addition on electromagnetic interference shielding property of Mg-Zn-Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chubin [Chongqing University, College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloy, Chongqing (China); Gannan Normal University, Jiangxi Provincial Engineering Research Center for Magnesium Alloy, Ganzhou (China); Pan, Fusheng; Chen, Xianhua [Chongqing University, College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloy, Chongqing (China); Luo, Ning [Gannan Normal University, Jiangxi Provincial Engineering Research Center for Magnesium Alloy, Ganzhou (China)

    2017-06-15

    The electromagnetic interference (EMI) shielding of Sm-containing magnesium alloys in the 30-1500 MHz testing frequency range was investigated by coaxial cable method. The results demonstrated that Mg-3Zn alloys displayed the best electromagnetic shielding property. When 0.5 wt% of Zr was added for crystal grain refinement, the shielding effectiveness (SE) was apparently reduced. The addition of the rare earth element Sm in ZK magnesium alloys can improve the electromagnetic interference shielding of magnesium alloys. The main reason for the differences in electromagnetic interference shielding of magnesium alloys was the change in conductivity. The addition of Zr in Mg-Zn alloys can refine the grains and consequently improve the grain boundary area significantly. Therefore, the number of irregularly arranged atoms at the grain boundaries increased, decreasing the conductivity of magnesium alloys and leading to a decrease in the electromagnetic interference shielding. Following the Sm addition, the Mg-Zn-Sm phase was precipitated at the grain boundaries and in cores. The precipitation of Sm-containing rare earth phases could consume the solid-soluted Zn atoms within the Mg, resulting in an increase in electrical conductivity and electromagnetic interference shielding improvement. (orig.)

  7. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: Compositional optimization for potential biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Nengbin, E-mail: flower1982cn@126.com [Department of Materials Science and Engineering, Fujian University of Technology, 350118 Fuzhou (China); Department of Materials Science and Engineering, Fuzhou University, 350116 Fuzhou (China); Huang, Lu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2100 (United States); Chen, Wenzhe [Department of Materials Science and Engineering, Fujian University of Technology, 350118 Fuzhou (China); Department of Materials Science and Engineering, Fuzhou University, 350116 Fuzhou (China); He, Wei [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2100 (United States); Department of Mechanical, Aerospace and Biomedical Engineering, The University of Tennessee, Knoxville, TN 37996-2200 (United States); Zhang, Tao [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, 100191 Beijing (China)

    2014-11-01

    The present study designs and prepares Ni-free Zr{sub 60+x}Ti{sub 2.5}Al{sub 10}Fe{sub 12.5−x}Cu{sub 10}Ag{sub 5} (at.%, x = 0, 2.5, 5) bulk metallic glasses (BMGs) by copper mold casting for potential biomedical application. The effects of Zr content on the in vitro biocompatibility of the Zr-based BMGs are evaluated by investigating mechanical properties, bio-corrosion behavior, and cellular responses. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high notch toughness. Electrochemical measurements demonstrate that the Zr-based BMGs are corrosion resistant in a phosphate buffered saline solution. The bio-corrosion resistance of BMGs is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. Regular cell responses of mouse MC3T3-E1 cells, including cell adhesion and proliferation, are observed on the Zr–Ti–Al–Fe–Cu–Ag BMGs, which reveals their general biosafety. The high-Zr-based BMGs exhibit a higher cell proliferation activity in comparison with that of pure Zr and Ti-6Al-4V alloy. The effects of Zr content on the in vitro biocompatibility can be used to guide the future design of biocompatible Zr-based BMGs. - Highlights: • Ni-free Zr{sub 60+x}Ti{sub 2.5}Al{sub 10}Fe{sub 12.5−x}Cu{sub 10}Ag{sub 5} (at.%, x = 0, 2.5, 5) BMGs were fabricated. • Plasticity and notch toughness of BMGs are enhanced by high-Zr-content. • The high-Zr-based BMGs exhibit excellent bio-corrosion resistance in PBS solution. • The biosafety of BMGs is revealed by regular cell adhesion and proliferation. • High-Zr-bearing BMGs are favorable for potential applications as biomaterials.

  8. Studies on third phase formation in the extraction of Zr(NO3)4 by solutions of tri-iso-amyl phosphate and tri-n-butyl phosphate in n-dodecane

    International Nuclear Information System (INIS)

    Benadict Rakesh, K.; Suresh, A.; Vasudeva Rao, P.R.

    2015-01-01

    The knowledge about Limiting Organic Concentration (LOC) and Critical aqueous concentration (CAC) as a function of equilibrium aqueous phase HNO 3 concentration and extractant concentration is essential to restrict the metal ion concentration in the feed and loading of metal ion in to the organic phase to avoid third phase formation. Due to the lesser third phase formation tendency of tri-iso-amyl phosphate (TiAP) compared to tri-n-butyl phosphate (TBP) in the extraction of tetravalent metal ions, TiAP can be used as an alternate extractant to TBP for Zr/Hf separation. In this regard, the LOC and CAC values in the extraction of Zr(IV) by 1.1 M solutions of TiAP and TBP in n-dodecane from Zr(NO 3 ) 4 solutions with various concentrations of HNO 3 have been measured as a function of (HNO 3 ) aq,eq at 303K. The LOC and the CAC values decrease with increase in (HNO 3 ) aq,eq in all the cases. An increase in TBP concentration from 1.1 M to 2.2 M in the organic phase increases the LOC and the CAC. It is also observed that loading of Zr(IV) in 2.2 M TiAP/n-dodecane is much higher than Zr(IV) loading in 2.2 M TBP/n-dodecane under identical conditions. For example, 0.521 mol/L Zr(IV) can be loaded in 2.2 M TiAP/n-dodecane without third phase formation at 303K (corresponding CAC is 0.736 mol/L at 7.12 M HNO 3 ). It can be concluded that the third phase formation tendency is higher for TBP/n-dodecane-Zr(NO 3 ) 4 /HNO 3 system as compared to TiAP/n-dodecane- Zr(NO 3 ) 4 /HNO 3 system under identical conditions. (author)

  9. Arsenic and fluoride removal from contaminated drinking water with Haix-Fe-Zr and Haix-Zr resin beads.

    Science.gov (United States)

    Phillips, Debra H; Sen Gupta, Bhaskar; Mukhopadhyay, Soumyadeep; Sen Gupta, Arup K

    2018-06-01

    The objective of the study was to carry-out batch tests to examine the effectiveness of Haix-Fe-Zr and Haix-Zr resin beads in the removal of As(III), As(V) and F - from groundwater with a similar geochemistry to a site where a community-based drinking water plant has been installed in West Bengal, India. The groundwater was spiked separately with ∼200 μg/L As(III) and As(V) and 5 mg/L F - . Haix-Zr resin beads were more effective than Haix-Fe-Zr resin beads in removing As(III) and As(V). Haix-Zr resin beads showed higher removal of As(V) compared to As(III). Haix-Zr resin beads removed As(V) below the WHO (10 μg/L) drinking water standards at 8.79 μg/L after 4 h of shaking, while As(III) was reduced to 7.72 μg/L after 8 h of shaking. Haix-Fe-Zr resin beads were more effective in removing F - from the spiked groundwater compared to Haix-Zr resin beads. Concentrations of F - decreased from 6.27 mg/L to 1.26 mg/L, which is below the WHO drinking water standards (1.5 mg/L) for F - , after 15 min of shaking with Haix-Fe-Zr resin beads. After 20 min of shaking in groundwater treated with Haix-Zr resin beads, F - concentrations decreased from 6.27 mg/L to 1.43 mg/L. In the removal of As(III), As(V), and F - from the groundwater, Haix-Fe-Zr and Haix-Zr resin beads fit the parabolic diffusion equation (PDE) suggesting that adsorption of these contaminants was consistent with inter-particle diffusion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.

    Science.gov (United States)

    Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan

    2017-07-01

    The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Safe management of actinides in the nuclear fuel cycle: Role of mineralogy

    International Nuclear Information System (INIS)

    Ewing, R.C.

    2011-01-01

    During the past 60 years, more than 1800 metric tonnes of Pu, and substantial quantities of the 'minor' actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g., 239 Pu), a source of fissile material for nuclear weapons (e.g., 239 Pu and 237 Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., 239 Pu and 237 Np). There are two basic strategies for the disposition of these heavy elements: (1) to 'burn' or transmute the actinides using nuclear reactors or accelerators; (2) to 'sequester' the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A 2 B 2 O 7 (A rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage. Recent developments in our understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms. (author)

  12. Relationship between CCR and NT-proBNP in Chinese HF patients, and their correlations with severity of HF.

    Science.gov (United States)

    Lu, Zhigang; Wang, Bo; Wang, Yunliang; Qian, Xueqing; Zheng, Wei; Wei, Meng

    2014-01-01

    To evaluate the relationship between creatinine clearance rate (CCR) and the level of N-terminal pro-B-type natriuretic peptide (NT-proBNP) in heart failure (HF) patients and their correlations with HF severity. Two hundred and one Chinese patients were grouped according to the New York Heart Association (NYHA) classification as NYHA 1-2 and 3-4 groups and 135 cases out of heart failure patients as control group. The following variables were compared among these three groups: age, sex, body mass index (BMI), smoking status, hypertension, diabetes, NT-proBNP, creatinine (Cr), uric acid (UA), left ventricular end-diastolic diameter (LVEDD), and CCR. The biomarkers of NT-proBNP, Cr, UA, LVEDD, and CCR varied significantly in the three groups, and these variables were positively correlated with the NHYA classification. The levels of NT-proBNP and CCR were closely related to the occurrence of HF and were independent risk factors for HF. At the same time, there was a significant negative correlation between the levels of NT-proBNP and CCR. The area under the receiver operating characteristic curve suggested that the NT-proBNP and CCR have high accuracy for diagnosis of HF and have clinical diagnostic value. NT-proBNP and CCR may be important biomarkers in evaluating the severity of HF.

  13. Effect of Si and Zr on the Microstructure and Properties of Al-Fe-Si-Zr Alloys

    Directory of Open Access Journals (Sweden)

    Anna Morozova

    2017-11-01

    Full Text Available The effects of Si and Zr on the microstructure, microhardness and electrical conductivity of Al-Fe-Si-Zr alloys were studied. An increase in the Zr content over 0.3 wt. % leads to the formation of primary Al3Zr inclusions and also decreases mechanical properties. Therefore, the Zr content should not be more than 0.3 wt. %, although the smaller content is insufficient for the strengthening by the secondary Al3Zr precipitates. The present results indicate that high content of Si significantly affects the hardness and electrical conductivity of the investigated alloys. However, the absence of Si led to the formation of harmful needle-shaped Al3Fe particles in the microstructure of the investigated alloys after annealing. Therefore, the optimum amount of Si was 0.25–0.50 wt. % due to the formation of the Al8Fe2Si phase with the preferable platelet morphology. The maximum microhardness and strengthening effects in Al-1% Fe-0.25% Si-0.3% Zr were observed after annealing at 400–450 °C due to the formation of nanosized coherent Al3Zr (L12 dispersoids. The effect of the increasing of the electrical conductivity can be explained by the decomposition of the solid solution. Thus, Al-1% Fe-0.25% Si-0.3% Zr alloy annealed at 450 °C has been studied in detail as the most attractive with respect to the special focus on transmission line applications.

  14. Synthesis and characterization of a polyborosilazane/Cp2ZrCl2 hybrid precursor for the Si-B-C-N-Zr multinary ceramic.

    Science.gov (United States)

    Long, Xin; Shao, Changwei; Wang, Hao; Wang, Jun

    2015-09-21

    A novel zirconium-contained polyborosilazane (PBSZ-Zr) was synthesized by chemical modification of a liquid polyborosilazane (LPBSZ) with Cp2ZrCl2. A Si-B-C-N-Zr multinary ceramic was prepared via pyrolysis of PBSZ-Zr. The properties and the ceramization process of PBSZ-Zr, as well as the microstructural development and properties of the derived SiBCN-Zr ceramic, were well studied. The active Si-H and N-H groups in LPBSZ react with Zr-Cl in Cp2ZrCl2 to form PBSZ-Zr polymers. The Zr content of the SiBCN-Zr ceramic was 3.39 wt% when the weight ratio of Cp2ZrCl2 to LPBSZ was 20 : 100. The SiBCN-Zr ceramic remains amorphous when pyrolyzed below 1600 °C, but the crystal phases of Zr2CN, ZrC, BN, SiC, and Si3N4 were detected from a 1600 °C treated sample. Due to the low activity of free carbon at the interface of the SiBCN-Zr ceramic, the oxidation resistance of the SiBCN-Zr ceramic under air was improved compared with the SiBCN ceramic.

  15. Determination of hafnium at the 10−4% level (relative to zirconium content) using neutron activation analysis, inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Smolik, Marek; Polkowska-Motrenko, Halina; Hubicki, Zbigniew; Jakóbik-Kolon, Agata; Danko, Bożena

    2014-01-01

    Graphical abstract: -- Highlights: •We worked out ICP-MS method of Hf determination in Zr and Zr compounds. •We used NAA method as reference one. •We obtained pure zirconium matrix by ion exchange (Diphonix ® resin). •These permit to determine ≥1 × 10 −4 % Hf in Zr sample by ICP MS with good precision and accuracy. -- Abstract: Hafnium at the very low level of 1–8 ppm (in relation to zirconium) was determined in zirconium sulfate solutions (originating from investigations of the separation of ca. 44 ppm Hf from zirconium by means of the ion exchange method) by using three independent methods: inductively coupled plasma mass spectrometry (ICP MS), neutron activation analysis (NAA) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results of NAA and ICP MS determinations were consistent with each other across the entire investigated range (the RSD of both methods did not exceed 38%). The results of ICP-AES determination were more diverse, particularly at less than 5 ppm Hf (RSD was significantly higher: 29–253%). The ion exchange method exploiting Diphonix ® resin proved sufficient efficiency in Zr–Hf separation when the initial concentration ratio of the elements ([Zr] 0 /[Hf] 0 ) ranged from 1200 to ca. 143,000

  16. Mechanical and dynamical behaviors of ZrSi and ZrSi{sub 2} bulk metallic glasses: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Shin-Pon, E-mail: jushin-pon@mail.nsysu.edu.tw [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China); Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Wu, Tsang-Yu; Liu, Shih-Hao [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China)

    2015-03-14

    The mechanical and dynamical properties of ZrSi and ZrSi{sub 2} bulk metallic glasses (BMGs) have been investigated by molecular dynamics simulation. The Honeycutt-Anderson (HA) index analysis indicates that the major indexes in ZrSi and ZrSi{sub 2} bulk metallic glasses are 1551, 1541, and 1431, which refers to the liquid structure. For uniaxial tension, the results show that the ZrSi and ZrSi{sub 2} BMGs are more ductile than their crystal counterparts. The evolution of the distribution of atomic local shear strain clearly shows the initialization of shear transformation zones (STZs), the extension of STZs, and the formation of shear bands along a direction 45° from the tensile direction when the tensile strain gradually increases. The self-diffusion coefficients of ZrSi and ZrSi{sub 2} BMGs at temperatures near their melting points were calculated by the Einstein equation according to the slopes of the MSD profiles at the long-time limit. Because the HA fraction summation of icosahedral-like structures of ZrSi BMG is higher than that of ZrSi{sub 2} BMG, and these local structures are more dense, the self-diffusion coefficients of the total, Zr, and Si atoms of ZrSi{sub 2} BMG are larger than those of ZrSi BMG. This can be attributed to the cage effect, where a denser local structure has a higher possibility of atoms jumping back to form a backflow and then suppress atomic diffusivity. For ZrSi{sub 2} BMG, the self-diffusion coefficient of Si increases with temperature more significantly than does that of Zr, because more open packing rhombohedra structures are formed by the Si-Si pair.

  17. Moessbauer spectroscopy of the Zr-rich region in Zr-Nb-Fe alloys with low Nb content

    International Nuclear Information System (INIS)

    Ramos, C.; Saragovi, C.; Granovsky, M.; Arias, D.

    1999-01-01

    Intermetallic phases and solid solutions in the Zr-rich region of the Zr-Nb-Fe system with low Nb content are studied by Moessbauer spectroscopy complemented with X-ray diffraction, optical and scanning electron microscopy and electron microprobe analysis. The phases found in each sample were those expected from the corresponding binary Zr-Fe system. Furthermore, one of the samples showed a ternary cubic Ti 2 Ni type phase with a similar stoichiometry to the tetragonal Zr 2 Fe compound. Moessbauer parameters were suggested to this phase (IS: - 0.12 mm/s, QS: 0.30 mm/s), to the bcc Zr(β) phase (IS: (-0.11 α 0.01) mm/s, QS: (0.23 α 0.02) mm/s), and to the hcp Zr(β T ) phase (IS: (-0.24 α 0.02) mm/s, QS: (0.45 α 0.02) mm/s)

  18. Action mechanism of hydrogen gas on deposition of HfC coating using HfCl{sub 4}-CH{sub 4}-H{sub 2}-Ar system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yalei, E-mail: yaleipm@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); School of Metallurgy and Environment, Central South University, Changsha, 410083 (China); Li, Zehao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Xiong, Xiang, E-mail: xiongx@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Li, Xiaobin [School of Metallurgy and Environment, Central South University, Changsha, 410083 (China); Chen, Zhaoke; Sun, Wei [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China)

    2016-12-30

    Highlights: • HfC coatings were deposited on C/C composites by LPCVD using HfCl4-CH4-H2-Ar system. • Action mechanism of H2 on structure and growth behavior of HfC coating was studied. • Increased H2 concentration leads to transformation in growth mechanism of coating. - Abstract: Hafnium carbide coatings were deposited on carbon/carbon composites by low pressure chemical vapor deposition using HfCl{sub 4}-CH{sub 4}-H{sub 2}-Ar system. The microstructure, mechanical and ablation resistance performance of HfC coatings deposited with various H{sub 2} concentrations were investigated. The effect of hydrogen gas on the deposition of HfC coating was also discussed. Results show that all of the deposited coatings are composed of single cubic HfC phase, the hydrogen gas acted as a crucial role in determining the preferred orientation, microstructure and growth behavior of HfC coatings. During the deposition process, the gas phase supersaturation of the reaction species can be controlled by adjusting the hydrogen gas concentration. When deposited with low hydrogen gas concentration, the coating growth was dominated by the nucleation of HfC, which results in the particle-stacked structure of HfC coating. Otherwise, the coating growth was dominated by the crystal growth at high hydrogen gas concentration, which leads to the column-arranged structure of HfC coating. Under the ablation environment, the coating C2 exhibits better configurational stability and ablation resistance. The coating structure has a significant influence on the mechanical and ablation resistance properties of HfC coating.

  19. Improvement of the thermoplastic formability of Zr65Cu17.5Ni10Al7.5 bulk metallic glass by minor addition of Erbium

    International Nuclear Information System (INIS)

    Hu, Q.; Zeng, X.R.; Fu, M.W.; Chen, S.S.; Jiang, J.

    2016-01-01

    The softness of Zr 65 Cu 17.5 Ni 10 Al 7.5 bulk metallic glass (BMG) in the super-cooled liquid range (SCLR) is obviously improved by minor addition of 2% Er, which makes (Zr 65 Cu 17.5 Ni 10 Al 7.5 ) 98 Er 2 (Zr65Er2) to be a very formable Be-free Zr-based BMG. It is found the lower glass transition temperature of Zr65Er2 has an important contribution to the improvement of formability, which is contrary to the general understanding that the larger fragility and wider super-cooled liquid region (SCLR) are the major reasons for better thermoplastic formability. This finding is well explained by using the linear simplification of the SCLR in Angell plot. Zr65Er2 also has lower crystallization temperature and melting temperature, which is believed to be related to the formation of short-range ordering with lower transition energy rather than the composition shift to near eutectic. The above results help understand the effect of minor addition of rare-earth to the formability of Zr-based bulk metallic glasses.

  20. Ab initio study of the elastic properties of single and polycrystal TiO{sub 2}, ZrO{sub 2} and HfO{sub 2} in the cotunnite structure

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, M A; Mino, J C; Perez, V J [Departamento de Fisico-Quimica, Facultad de Ingenieria, UNNE, Avenida Las Heras 727, CP 3500, Resistencia (Argentina); Casali, R A; Ponce, C A [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales y Agrimensura UNNE, Avenida Libertad 5600, CP 3400, Corrientes (Argentina)

    2009-01-07

    In this work, we study theoretically the elastic properties of the orthorhombic (Pnma) high-pressure phase of IV-B group oxides: titania, zirconia and hafnia. By means of the self-consistent SIESTA code, pseudopotentials, density functional theory in the LDA and GGA approximations, the total energies, hydrostatic pressures and stress tensor components are calculated. From the stress-strain relationships, in the linear regime, the elastic constants C{sub ij} are determined. Derived elastic constants, such as bulk, Young's and shear modulus, Poisson coefficient and brittle/ductile behavior are estimated with the polycrystalline approach, using Voigt-Reuss-Hill theories. We have found that C{sub 11}, C{sub 22} and C{sub 33} elastic constants of hafnia and zirconia show increased strength with respect to the experimental values of the normal phase, P 2{sub 1}/c. A similar situation applies to titania if these constants are compared with its normal phase, rutile. However, shear elastic constants C{sub 44}, C{sub 55} and C{sub 66} are similar to the values found in the normal phase. This fact increases the compound anisotropy as well as its ductile behavior. The dependence of unit-cell volumes under hydrostatic pressures is also analyzed. P-V data, fitted to third-order Birch-Murnaghan equations of state, provide the bulk modulus B{sub 0} and its pressure derivatives B'{sub 0}. In this case, LDA estimations show good agreement with respect to recent measured bulk moduli of ZrO{sub 2} and HfO{sub 2}. Thermo-acoustic properties, e.g. the propagation speed of transverse, longitudinal elastic waves together with associated Debye temperatures, are also estimated.

  1. The magnetic properties of $^{\\rm 177}$Hf and $^{\\rm 180}$Hf in the strong coupling deformed model

    OpenAIRE

    Muto, S.; Stone, N. J.; Bingham, C. R.; Stone, J. R.; Walker, P. M.; Audi, G.; Gaulard, C.; Köster, U.; Nikolov, J.; Nishimura, K.; Ohtsubo, T.; Podolyak, Z.; Risegari, L.; Simpson, G. S.; Veskovic, M.

    2014-01-01

    This paper reports NMR measurements of the magnetic dipole moments of two high-K isomers, the 37/2$^-$, 51.4 m, 2740 keV state in $^{\\rm 177}$Hf and the 8$^-$, 5.5 h, 1142 keV state in $^{\\rm 180}$Hf by the method of on-line nuclear orientation. Also included are results on the angular distributions of gamma transitions in the decay of the $^{\\rm 177}$Hf isotope. These yield high precision E2/M1 multipole mixing ratios for transitions in bands built on the 23/2$^+$, 1.1 s, isomer at 1315 keV ...

  2. Hf isotope evidence for a hidden mantle reservoir

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Simonetti, A.; Stevenson, R.K.

    2002-01-01

    High-precision Hf isotopic analyses and U-Pb ages of carbonatites and kimberlites from Greenland and eastern North America, including Earth's oldest known carbonatite (3 Ga), indicate derivation from an enriched mantle source. This previously unidentified mantle reservoir-marked by an unradiogenic...... Hf isotopic composition and preserved in the deep mantle for at least 3 b.y.-may account for the mass imbalance in Earth's Hf-Nd budget. The Hf isotopic data presented here support a common mantle source region and genetic link between carbonatite and some oceanic-island basalt volcanoes....

  3. Magnetic properties of Hf177 and Hf180 in the strong-coupling deformed model

    Science.gov (United States)

    Muto, S.; Stone, N. J.; Bingham, C. R.; Stone, J. R.; Walker, P. M.; Audi, G.; Gaulard, C.; Köster, U.; Nikolov, J.; Nishimura, K.; Ohtsubo, T.; Podolyak, Z.; Risegari, L.; Simpson, G. S.; Veskovic, M.; Walters, W. B.

    2014-04-01

    This paper reports NMR measurements of the magnetic dipole moments of two high-K isomers, the 37/2-, 51.4 m, 2740 keV state in Hf177 and the 8-, 5.5 h, 1142 keV state in Hf180 by the method of on-line nuclear orientation. Also included are results on the angular distributions of γ transitions in the decay of the Hf177 isotope. These yield high precision E2/M1 multipole mixing ratios for transitions in bands built on the 23/2+, 1.1 s, isomer at 1315 keV and on the 9/2+, 0.663 ns, isomer at 321 keV. The new results are discussed in the light of the recently reported finding of systematic dependence of the behavior of the gR parameter upon the quasiproton and quasineutron make up of high-K isomeric states in this region.

  4. The preparation of Zr-deuteride and phase stability studies of the Zr-D system

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitiyili, T., E-mail: tuerdi.maimaitiyili@mah.se [Materials Science and Applied Mathematics, Malmö University, Nordenskiöldsgatan 1, 20506 Malmö (Sweden); Steuwer, A. [Nelson Mandela Metropolitan University, Gardham Avenue, 6031 Port Elizabeth (South Africa); Bjerkén, C.; Blomqvist, J. [Materials Science and Applied Mathematics, Malmö University, Nordenskiöldsgatan 1, 20506 Malmö (Sweden); Hoelzel, M. [Forschungsneutronenquelle Heinz-Maier-Leibnitz (FRM II), Technische Universität Muünchen, Lichtenbergstr. 1, D-85747 Garching (Germany); Ion, J.C. [Materials Science and Applied Mathematics, Malmö University, Nordenskiöldsgatan 1, 20506 Malmö (Sweden); Zanellato, O. [PIMM, Ensam - Cnam - CNRS, 151 Boulevard de l' Hôpital, 75013 Paris (France)

    2017-03-15

    Deuteride phases in the zirconium-deuterium system in the temperature range 25–286 °C have been studied in-situ by high resolution neutron diffraction. The study primarily focused on observations of δ→γ transformation at 180 °C, and the peritectoid reaction α + δ ↔ γ at 255 °C in commercial grade Zr powder that was deuterated to a deuterium/Zr ratio of one to one. A detailed description of the zirconium deuteride preparation route by high temperature gas loading is also described. The lattice parameters of α-Zr, δ-ZrD{sub x} and ε-ZrD{sub x} were determined by whole pattern crystal structure analysis, using Rietveld and Pawley refinements, and are in good agreement with values reported in the literature. The controversial γ-hydride phase was observed both in-situ and ex-situ in deuterated Zr powder after a heat treatment at 286 °C and slow cooling. - Highlights: • Controversial γ phase observed both in-situ and ex-situ after heat treatments. • γ-ZrD is observed at room temperature after 5 h of heat treatment at 286 °C. • Presence of α + δ ↔ γ at 255 °C was not observed. • It was observed that there is a δ → γ transformation present around 150 °C.

  5. The determination of the rare earth elements in naturally-occurring materials zy flame spectroscopy

    International Nuclear Information System (INIS)

    Watts, J.C.

    1975-01-01

    Because the quantitative collection of the rare-earth elements retains natural abundance ratios, adequate analytical methodology incorporates their individual sensitivities, and tolerates their mutual contamination. To achieve these ends, the sensitivities of 15 rare-earths in flame emission were determined in the unseparated nitrous oxide/acetylene flame, their mutual interference ascertained at practical concentrations, and useful emission lines selected for their determination in natural materials. Sources of atomic emission interference were extraneous in origin. Fe in the determination of Dy and Zr in the determination of Nd. Inter-element interferences of the rare-earth elements were minimal after wavelength selection and reduction of the spectral band width. For comparison, five rare earths were determined by flame AAS. (author)

  6. Optimization of film synthesized rare earth transition metal permanent magnet systems

    International Nuclear Information System (INIS)

    Cadieu, F.J.

    1992-01-01

    Progress is reported in three areas: high coercivity Sm-Fe-Ti-V, Sm-Fe-Zr, and two element Sm-Fe Sm 5 (Fe,T) 17 type crystalline phases; ThMn 12 type pseudobinary SmFe 12-x T x (0≤x≤1.5); and sputter process control for the synthesis of precisely textured rare earth-transition metal magnetic films

  7. Creep properties of annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe cladding tubes and their performance comparison

    International Nuclear Information System (INIS)

    Ko, S.; Hong, S.I.; Kim, K.T.

    2010-01-01

    Creep properties of annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe cladding tubes were studied and compared. The creep rates of the annealed Zr-Nb-O alloy were found to be greater than those of the stress-relieved Zr-Nb-Sn-Fe alloy. Zr-Nb-O alloy was found to have stress exponents of 5-7 independent of stress level whereas Zr-Nb-Sn-Fe alloy exhibited the transition of the stress exponent from 6.5 to 7.5 in the lower stress region to ∼4.2 in the higher stress region. The reduction of stress exponent at high stresses in Zr-Nb-Sn-Fe can be explained in terms of the dynamic solute-dislocation effect caused by Sn atoms. The constancy of stress exponent without the transition was observed in Zr-Nb-O alloy, supporting that the decrease of the stress exponent with increasing stress in Zr-Nb-Sn-Fe is associated with Sn atoms. The difference of creep life between annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe is not large considering the large difference of strength level between annealed Zr-Nb-O and annealed stress-relieved Zr-Nb-Sn-Fe. The better-than-expected creep life of annealed Zr-Nb-O alloy can be attributable to the combined effects of creep ductility enhancement associated with softening and the decreased contribution of grain boundary diffusion due to the increased grain size.

  8. Moessbauer spectroscopy of the Zr-rich region in Zr-Nb-Fe alloys with low Nb content

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, C. [Universidad de Buenos, Facultad de Ciencias Exactas y Naturales (Argentina); Saragovi, C. [Departamento de Fisica, Comision Nacional de Energia Atomica (Argentina); Granovsky, M.; Arias, D. [Departamento de Materiales, Comision Nacional de Energia Atomica (Argentina)

    1999-11-15

    Intermetallic phases and solid solutions in the Zr-rich region of the Zr-Nb-Fe system with low Nb content are studied by Moessbauer spectroscopy complemented with X-ray diffraction, optical and scanning electron microscopy and electron microprobe analysis. The phases found in each sample were those expected from the corresponding binary Zr-Fe system. Furthermore, one of the samples showed a ternary cubic Ti{sub 2}Ni type phase with a similar stoichiometry to the tetragonal Zr{sub 2}Fe compound. Moessbauer parameters were suggested to this phase (IS: - 0.12 mm/s, QS: 0.30 mm/s), to the bcc Zr({beta}) phase (IS: (-0.11 {alpha} 0.01) mm/s, QS: (0.23 {alpha} 0.02) mm/s), and to the hcp Zr({beta}{sup T}) phase (IS: (-0.24 {alpha} 0.02) mm/s, QS: (0.45 {alpha} 0.02) mm/s)

  9. Thermodynamic description of the Ta-W-Zr system

    International Nuclear Information System (INIS)

    Guo, Cuiping; Li, Changrong; Du, Zhenmin; Shang, Shunli

    2014-01-01

    The Ta-W, W-Zr and Ta-W-Zr systems are critically reviewed and modeled using the CALPHAD technique. The enthalpy of formation of the stoichiometric compound W 2 Zr in the W-Zr system is predicted from first-principles calculations. The solution phases (liquid, bcc and hcp) are modeled by the substitutional solution model. The compound W 2 Zr is treated with the formula (Ta,W) 2 Zr in the Ta-W-Zr system because of a significant solid solubility of Ta in W 2 Zr. All experimental data, including the Gibbs energy of formation, enthalpy of formation, activity of Ta and W of bcc phase at 1 200 K, Ta-W and W-Zr phase diagrams, and three isothermal sections of the Ta-W-Zr system at 1 073, 1 098, and 1 873 K, are reproduced in the present work. A set of self-consistent thermodynamic parameters of the Ta-W-Zr system is obtained.

  10. Oxidation behavior of Hf-modified platinum aluminide coatings during thermal cycling

    Directory of Open Access Journals (Sweden)

    Liya Ye

    2018-02-01

    Full Text Available Platinum aluminide coatings with different Hf contents were fabricated by using HfCl4. The oxidation kinetics and the rumpling behavior of oxide scale were investigated. After thermal cycling, the coating with 0.46 wt% Hf showed least weight gain. With the increase of Hf content, rumpling extent of the scale decreased. Meanwhile, HfO2 preferentially formed in the scale resulting in the increase of scale thickness. The oxidation of excessive Hf even caused the spallation of the scale. The results in the present study indicate that although Hf plays an important role in decreasing rumpling extent of TGO, the oxidation of Hf decreases the adhesion of the scale. Keywords: Pt-Al coating, Hf, Oxidation, Rumpling

  11. Arc melting and homogenization of ZrC and ZrC + B alloys

    Science.gov (United States)

    Darolia, R.; Archbold, T. F.

    1973-01-01

    A description is given of the methods used to arc-melt and to homogenize near-stoichiometric ZrC and ZrC-boron alloys, giving attention to the oxygen contamination problem. The starting material for the carbide preparation was ZrC powder with an average particle size of 4.6 micron. Pellets weighing approximately 3 g each were prepared at room temperature from the powder by the use of an isostatic press operated at 50,000 psi. These pellets were individually melted in an arc furnace containing a static atmosphere of purified argon. A graphite resistance furnace was used for the homogenization process.

  12. Ternary semiconductors NiZrSn and CoZrBi with half-Heusler structure: A first-principles study

    Science.gov (United States)

    Fiedler, Gregor; Kratzer, Peter

    2016-08-01

    The ternary semiconductors NiZrSn and CoZrBi with C 1b crystal structure are introduced by calculating their basic structural, electronic, and phononic properties using density functional theory. Both the gradient-corrected PBE functional and the hybrid functional HSE06 are employed. While NiZrSn is found to be a small-band-gap semiconductor (Eg=0.46 eV in PBE and 0.60 eV in HSE06), CoZrBi has a band gap of 1.01 eV in PBE (1.34 eV in HSE06). Moreover, effective masses and deformation potentials are reported. In both materials A B C , the intrinsic point defects introduced by species A (Ni or Co) are calculated. The Co-induced defects in CoZrBi are found to have a higher formation energy compared to Ni-induced defects in NiZrSn. The interstitial Ni atom (Nii) as well as the VNiNii complex introduce defect states in the band gap, whereas the Ni vacancy (VNi) only reduces the size of the band gap. While Nii is electrically active and may act as a donor, the other two types of defects may compensate extrinsic doping. In CoZrBi, only the VCoCoi complex introduces a defect state in the band gap. Motivated by the reported use of NiZrSn for thermoelectric applications, the Seebeck coefficient of both materials, both in the p -type and the n -type regimes, is calculated. We find that CoZrBi displays a rather large thermopower of up to 500 μ V /K when p doped, whereas NiZrSn possesses its maximum thermopower in the n -type regime. The reported difficulties in achieving p -type doping in NiZrSn could be rationalized by the unintended formation of Nii2 + in conjunction with extrinsic acceptors, resulting in their compensation. Moreover, it is found that all types of defects considered, when present in concentrations as large as 3%, tend to reduce the thermopower compared to ideal bulk crystals at T =600 K. For NiZrSn, the calculated thermodynamic data suggest that additional Ni impurities could be removed by annealing, leading to precipitation of a metallic Ni2ZrSn phase.

  13. Biological Properties of Ti-Nb-Zr-O Nanostructures Grown on Ti35Nb5Zr Alloy

    Directory of Open Access Journals (Sweden)

    Zhaohui Li

    2012-01-01

    Full Text Available Surface modification of low modulus implant alloys with oxide nanostructures is one of the important ways to achieve favorable biological behaviors. In the present work, amorphous Ti-Nb-Zr-O nanostructures were grown on a peak-aged Ti35Nb5Zr alloy through anodization. Biological properties of the Ti-Nb-Zr-O nanostructures were investigated through in vitro bioactivity testings, stem cell interactions, and drug release experiments. The Ti-Nb-Zr-O nanostructures demonstrated a good capability of inducing apatite formation after immersion in simulated body fluids (SBFs. Drug delivery experiment based on gentamicin and the Ti-Nb-Zr-O nanostructures indicated that a high drug loading content could result in a prolonged release process and a higher quantity of drug residues in the oxide nanostructures after drug release. Quick stem cell adhesion and spreading, as well as fast formation of extracellular matrix materials on the surfaces of the Ti-Nb-Zr-O nanostructures, were found. These findings make it possible to further explore the biomedical applications of the Ti-Nb-Zr-O nanostructure modified alloys especially clinical operation of orthopaedics by utilizing the nanostructures-based drug-release system.

  14. Effects of HfB2 and HfN Additions on the Microstructures and Mechanical Properties of TiB2-Based Ceramic Tool Materials

    Science.gov (United States)

    An, Jing; Song, Jinpeng; Liang, Guoxing; Gao, Jiaojiao; Xie, Juncai; Cao, Lei; Wang, Shiying; Lv, Ming

    2017-01-01

    The effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials were investigated. The results showed that the HfB2 additive not only can inhibit the TiB2 grain growth but can also change the morphology of some TiB2 grains from bigger polygons to smaller polygons or longer ovals that are advantageous for forming a relatively fine microstructure, and that the HfN additive had a tendency toward agglomeration. The improvement of flexural strength and Vickers hardness of the TiB2-HfB2 ceramics was due to the relatively fine microstructure; the decrease of fracture toughness was ascribed to the formation of a weaker grain boundary strength due to the brittle rim phase and the poor wettability between HfB2 and Ni. The decrease of the flexural strength and Vickers hardness of the TiB2-HfN ceramics was due to the increase of defects such as TiB2 coarse grains and HfN agglomeration; the enhancement of fracture toughness was mainly attributed to the decrease of the pore number and the increase of the rim phase and TiB2 coarse grains. The toughening mechanisms of TiB2-HfB2 ceramics mainly included crack bridging and transgranular fracture, while the toughening mechanisms of TiB2-HfN ceramics mainly included crack deflection, crack bridging, transgranular fracture, and the core-rim structure. PMID:28772821

  15. Effects of HfB2 and HfN Additions on the Microstructures and Mechanical Properties of TiB2-Based Ceramic Tool Materials

    Directory of Open Access Journals (Sweden)

    Jing An

    2017-04-01

    Full Text Available The effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials were investigated. The results showed that the HfB2 additive not only can inhibit the TiB2 grain growth but can also change the morphology of some TiB2 grains from bigger polygons to smaller polygons or longer ovals that are advantageous for forming a relatively fine microstructure, and that the HfN additive had a tendency toward agglomeration. The improvement of flexural strength and Vickers hardness of the TiB2-HfB2 ceramics was due to the relatively fine microstructure; the decrease of fracture toughness was ascribed to the formation of a weaker grain boundary strength due to the brittle rim phase and the poor wettability between HfB2 and Ni. The decrease of the flexural strength and Vickers hardness of the TiB2-HfN ceramics was due to the increase of defects such as TiB2 coarse grains and HfN agglomeration; the enhancement of fracture toughness was mainly attributed to the decrease of the pore number and the increase of the rim phase and TiB2 coarse grains. The toughening mechanisms of TiB2-HfB2 ceramics mainly included crack bridging and transgranular fracture, while the toughening mechanisms of TiB2-HfN ceramics mainly included crack deflection, crack bridging, transgranular fracture, and the core-rim structure.

  16. Study on technology for laboratory scale production of Zirconium Chloride (ZrCl4) by chlorinating Zirconium dioxide (ZrO2)

    International Nuclear Information System (INIS)

    Nguyen Van Sinh

    2007-01-01

    ZrCl 4 is used as a main material for producing metallic zirconium. There are four methods for obtaining ZrCl 4 . The method of chlorination of ZrO 2 was selected and some instruments have been made for the study (to produce ZrCl 4 in laboratory scale). A procedure of preparing ZrCl 4 on the obtained instruments was set up and a small amount of ZrCl 4 was successfully obtained. (author)

  17. Oxidation study of Ta–Zr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Chen, Sin-Min

    2013-02-01

    Refractory metal alloy coatings, such as Mo–Ru and Ta–Ru coatings, have been developed to protect glass molding dies. Forming intermetallic compounds in the coatings inhibits grain growth in high temperature environments when mass producing optical components. After annealing in oxygen containing atmospheres, a surface roughening of the Mo–Ru coatings and a soft oxide layer on the Ta–Ru coatings have been observed in our previous works. Oxidation resistance becomes critical in high-temperature applications. In this study, Ta–Zr coatings were deposited with a Ti interlayer on silicon wafers using direct current magnetron sputtering at 400 °C. The as-deposited Ta–Zr coatings possessed nanocrystallite or amorphous states, depending on the chemical compositions. The annealing treatments were conducted at 600 °C under atmospheres of 50 ppm O{sub 2}–N{sub 2} or 1% O{sub 2}–Ar, respectively. After the annealing treatment, this study investigated variations in crystalline structure, hardness, surface roughness, and chemical composition profiles. Preferential oxidation of Zr in the Ta–Zr coatings was verified using X-ray photoelectron spectroscopy, and the microstructure was observed using transmission electron microscopy. - Highlights: ►The as-deposited Ta-rich Ta–Zr coatings revealed an amorphous structure. ►The Zr-rich coatings presented a crystalline β-Zr phase and an amorphous matrix. ►Zr oxidized preferentially as Ta–Zr coatings annealed at 600 °C. ►The hardness of coatings revealed a parabolic relationship with the oxygen content. ►A protective oxide scale formed on the surface of the crystallized Zr-rich coatings.

  18. Neutron separation energies of Zr isotopes

    International Nuclear Information System (INIS)

    Gomes, L.C.; Dietzsch, O.

    1976-01-01

    Q values are reported for (d,t) reactions on all the stable isotopes of zirconium. The neutron separation energies of 94 Zr and 96 Zr differ greatly (by 27.5 and 22.1 keV, respectively) from the values in the 1971 Atomic Mass Evaluation. These results combined with those from other authors seem to indicate that the 1971 values for the masses of 93 Zr and 95 Zr are in error. (orig.) [de

  19. Design of Refractory High-Entropy Alloys

    Science.gov (United States)

    Gao, M. C.; Carney, C. S.; Doğan, Ö. N.; Jablonksi, P. D.; Hawk, J. A.; Alman, D. E.

    2015-11-01

    This report presents a design methodology for refractory high-entropy alloys with a body-centered cubic (bcc) structure using select empirical parameters (i.e., enthalpy of mixing, atomic size difference, Ω-parameter, and electronegativity difference) and CALPHAD approach. Sixteen alloys in equimolar compositions ranging from quinary to ennead systems were designed with experimental verification studies performed on two alloys using x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. Two bcc phases were identified in the as-cast HfMoNbTaTiVZr, whereas multiple phases formed in the as-cast HfMoNbTaTiVWZr. Observed elemental segregation in the alloys qualitatively agrees with CALPHAD prediction. Comparisons of the thermodynamic mixing properties for liquid and bcc phases using the Miedema model and CALPHAD are presented. This study demonstrates that CALPHAD is more effective in predicting HEA formation than empirical parameters, and new single bcc HEAs are suggested: HfMoNbTiZr, HfMoTaTiZr, NbTaTiVZr, HfMoNbTaTiZr, HfMoTaTiVZr, and MoNbTaTiVZr.

  20. The magnetic hyperfine field in the 181Ta site in the Co2HfAl and Co2HfGa Heusler alloys

    International Nuclear Information System (INIS)

    Silva, R. da.

    1979-01-01

    The hyperfine magnetic fields at 181 Ta nuclei in Heusler alloys Co 2 HfZ (Z=Al, Ga) have been measured using the time differential perturbed gamma-gamma angular correlation (TDPAC) method. The hyperfine fields obtained from these measurements at the liquid nitrogen temperature are -189 and +- 150 kOersted for Co 2 HfAl and Co 2 HfGa, respectively. The concept that the hyperfine field at the Y site is similar to the solute fields in Fe, Co, Ni and Gd matrices is corroborated. We have verified that ratios H sub(hf) sub(Ta)/T sub(c) and H sub(hf) sub(Ta)μ sub(Co) in Co 2 HfZ compounds (Z=Al, Ga, Sn) do not depend on the nature of Z element. However a dependence in the value of observed field with the s-p element in Z site was noticed. We feel that the samples are not completely ordered cubic as observed by the quadrupole interaction measurements. The results are interpreted in terms of the Campbell-Blandin formalism, and it is shown that the spin polarization of conduction electrons at Hf and Ta have opposite signs. (Author) [pt

  1. New technique for producing the alloys based on transition metals

    International Nuclear Information System (INIS)

    Dolukhanyan, S.K.; Aleksanyan, A.G.; Shekhtman, V.Sh.; Mantashyan, A.A.; Mayilyan, D.G.; Ter-Galstyan, O.P.

    2007-01-01

    In principle new technique was elaborated for obtaining the alloys of refractory metals by their hydrides compacting and following dehydrogenation. The elaborated technique is described. The conditions of alloys formation from different hydrides of appropriate metals was investigated in detail. The influence of the process parameters such as: chemical peculiarities, composition of source hydrides, phase transformation during dehydrogenation, etc. on the alloys formation were established. The binary and tertiary alloys of α and ω phases: Ti 0 .8Zr 0 .8; Ti 0 .66Zr 0 .33; Ti 0 .3Zr 0 .8; Ti 0 .2Zr 0 .8; Ti 0 .8Hf 0 .2; Ti 0 .6Hf 0 .4Ti 0 .66Zr 0 .23Hf 0 .11; etc were recieved. Using elaborated special hydride cycle, an earlier unknown effective process for formation of alloys of transition metals was realized. The dependence of final alloy structure on the composition of initial mixture and hydrogen content in source hydrides was established

  2. Um estudo teórico de propriedades moleculares em complexos de hidrogênio trimoleculares C2H4···2HF, C2H2···2HF e C3h6···2HF A theoretical study of molecular properties of C2H4···2HF, C2H2···2HF AND C3H6···2HF trimolecular hydrogen-bonded complexes

    Directory of Open Access Journals (Sweden)

    Boaz G. Oliveira

    2008-01-01

    Full Text Available We present a theoretical study of molecular properties in C2H4···2HF, C2H2···2HF and C3H6···2HF trimolecular hydrogen-bonded complexes. From B3LYP/6-311++G(d,p calculations, the most important structural deformations are related to the C=C (C2H4, C≡C (C2H2, C-C (C3H6 and HF bond lengths. According to the Bader's atoms in molecules and CHELPG calculations, it was identified a tertiary interaction between the fluorine atom of the second hydrofluoric acid molecule and hydrogen atoms of the ethylene and acetylene within the C2H4···2HF and C2H2···2HF complexes, respectively. Additionally, the evaluation of the infrared spectrum characterized the new vibrational modes and bathochromic effect of the HF molecules.

  3. Some properties of low-vapor-pressure braze alloys for thermionic converters

    Science.gov (United States)

    Bair, V. L.

    1978-01-01

    Density, dc electrical resistivity, thermal conductivity, and linear thermal expansion are measured for arc-melted rod-shaped samples of binary eutectics of Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W selected as very-low-pressure braze fillers for thermionic converters. The first two properties are measured at 296 K for Zr-21.7 at% Ru, Zr-13 wt% W, Zr-19 wt% W, Zr-22.3 at% Nb, Nb-66.9 at% Ru, Hf-25.3 wt% Re, Zr-25.7 at% Ta, Hf-22.5 at% W, and Nb-35 wt% Mo. The last property is measured from 293 K to 2/3 melting point for specified alloys of different compositions. Resistivities of 0.000055 to 0.000181 ohm-cm are observed with the alloys having resistivities about ten times that of the less resistive constituent metal and about three times that of the more resistive constituent metal, except for Zr-19 wt% W and Nb-35 wt% Mo (greater resistivities). Thermal expansion coefficients vary from 0.000006 to 0.0000105/K. All brazes exhibit linear thermal expansion near that of their constituent metals.

  4. Al2TiO5-ZrTiO4-ZrO2 composites

    International Nuclear Information System (INIS)

    Parker, F.J.

    1990-01-01

    The characterization and properties of ceramic composites containing the phases Al 2 TiO 5 , ZrTiO 4 , and ZrO 2 are described. The low thermal expansions are apparently due to a combination of microcracking by the titanate phases and a contractive phase transformation by the ZrO 2 . The crystal chemistry and microstructure of the product are processing dependent. Although the composites represent a complex microcracking system, the low thermal expansions and high-temperature stability make them potential candidates for commercial application requiring thermal shock resistance

  5. Effect of rare earth elements on deformation behavior of an extruded Mg–10Gd–3Y–0.5Zr alloy during compression

    International Nuclear Information System (INIS)

    Mirza, F.A.; Chen, D.L.; Li, D.J.; Zeng, X.Q.

    2013-01-01

    Highlights: ► The alloy studied has threefold higher compressive yield strength than AM30 alloy. ► Formation of twins is less extensive than that in the RE-free extruded Mg alloys. ► Deformation of the RE-containing Mg alloy is characterized by three distinct stages. ► Rare earth elements effectively increase the strain hardening rate in stage A. ► Fairly flat and linear strain hardening occurs in stage B over an extended range. - Abstract: The aim of this study was to identify the influence of rare-earth (RE) elements on the strain hardening behavior in an extruded Mg–10Gd–3Y–0.5Zr magnesium alloy via compression in the extrusion direction at room temperature. The plastic deformation behavior of this RE-containing alloy was characterized by a rapidly decreasing strain hardening rate up to a strain level of about 4% (stage A), followed by a fairly flat linear strain hardening rate over an extended strain range from ∼4% to ∼18% (stage B). Stage C was represented by a decreasing strain hardening rate just before failure. The extent of twinning in this alloy was observed to be considerably less extensive than that in the RE-free extruded Mg alloys. The weaker crystallographic texture, refined grain size, and second-phase particles arising from the addition of RE elements were responsible for the much higher strain hardening rate in stage A due to the increased difficulty on the formation of twins and the slip of dislocations at lower strains, and for the occurrence of quite flat linear strain hardening in stage B at higher strains which was likely related to the dislocation debris and twin debris (or residual twins) stemming from dislocation–twin interactions as well as the interactions between dislocations/twins and second-phase particles and grain boundaries

  6. Observations of a Cast Cu-Cr-Zr Alloy

    Science.gov (United States)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  7. Ultra-thin zirconia films on Zr-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joong Il Jake; Mayr-Schmoelzer, Wernfried; Mittendorfer, Florian; Redinger, Josef; Diebold, Ulrike; Schmid, Michael [Institute of Applied Physics, Vienna University of Technology (Austria); Li, Hao; Rupprechter, Guenther [Institute of Materials Chemistry, Vienna University of Technology (Austria)

    2014-07-01

    Zirconia ultra-thin films have been prepared by oxidation of Pt{sub 3}Zr(0001) and showed a structure equivalent to (111) of cubic zirconia. Following previous work, we have prepared ultra-thin zirconia by oxidation of a different alloy, Pd{sub 3}Zr(0001), which resulted in a similar structure with a slightly different lattice parameter, 351.2 ±0.4 pm. Unlike the oxide on Pt{sub 3}Zr, where Zr of the oxide binds to Pt in the substrate, here the oxide binds to substrate Zr via oxygen. This causes stronger distortion of the oxide structure, i.e. a stronger buckling of Zr in the oxide. After additional oxidation of ZrO{sub 2}/Pt{sub 3}Zr, a different ultra-thin zirconia phase is observed. A preliminary structure model for this film is based on (113)-oriented cubic zirconia. 3D oxide clusters are also present after growing ultra-thin zirconia films. They occur at the step edges, and the density is higher on Pd{sub 3}Zr. These clusters also appear on terraces after additional oxidation. XPS reveals different core level shifts of the oxide films, bulk, and oxide clusters.

  8. Study of the mechanical and magnetic properties of Fe{sub 61}Co{sub 10}Zr{sub 5-x}Hf{sub x}W{sub 2}Y{sub 2}B{sub 20} (x = 0 or 3) bulk amorphous and crystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nabialek, Marcin G. [Institute of Physics, Czestochowa University of Technology, 19 Armii Krajowej Av., 42-200 Czestochowa (Poland); Szota, Michal [Institute of Materials Engineering, Czestochowa University of Technology, 19 Armii Krajowej Av., 42-200 Czestochowa (Poland); Dospial, Marcin J.

    2010-05-15

    The microstructure, thermal stability, mechanical and magnetic properties of Fe{sub 61}Co{sub 10}Zr{sub 5-x}Hf{sub x}W{sub 2}Y{sub 2}B{sub 20} (where x = 0 or 3) bulk metallic glasses (BMG) and their crystalline equivalents were investigated. The crystalline materials were smelted on a copper mould using an electric arc; their amorphous equivalents were prepared using the induction suction casting method (ISC). All samples investigated were in the form of plates with dimensions of 10x10x0.5mm. From X-ray diffraction and Moessbauer spectroscopy, it was found that both investigated alloys prepared using this method have an amorphous structure. From magnetic measurements obtained by a vibrating sample magnetometer (VSM), it was shown that all measured samples displayed soft magnetic properties with relatively high saturation of the magnetization. The thermal stability and glass-forming ability (GFA) for investigated alloys were derived from differential scanning calorimetry (DSC) curves. The measurements of mechanical properties for amorphous alloys were found to be better than those for crystalline alloys with the same atomic composition. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Influence of Temperature to Thermal Properties of U-Zr Alloy With The Zr Content Variation

    International Nuclear Information System (INIS)

    Aslina-Br-Ginting; Masrukan; M-Husna-Al-Hasa

    2007-01-01

    Have been done thermal of characteristic covering heat stability, heat capacities, enthalpy and also phase changes from uranium, zirkonium and U-Zr alloy with the Zr content variation of Zr 2 %, 6 %, 10% and 14% weight. Change of the temperature and composition anticipated will cause the characteristic of thermal to uranium metal, zirkonium and also U-Zr alloy. Therefore at this research was conducted using analysis influence of temperature to thermal of characteristic of uranium, zirkonium and U-Zr alloy with the Zr content variation by using DTA and DSC. Result of analysis indicate that the uranium metal at temperature 662 o C stable in phase α. Above at temperature, uranium metal experience of the phase change indicated by formed the thermochemical reaction as much 3 endothermic peak. At temperature 667.16 o C, happened by the phase change of α become the phase β with the enthalpy 2,3034 cal/g, at temperature 773.05 o C happened by the phase change β becoming phase γ 2,8725 cal/g and also at temperature 1125.26 the o C uranium metal experience the phenomenon become to melt with the enthalpy 2,1316 cal/g. (author)

  10. Microstructures and mechanical properties of Gd{sub 2}Zr{sub 2}O{sub 7}/ZrO{sub 2}(3Y) ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lei [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819 (China); Key Laboratory for Advanced Ceramics and Application of Shenyang, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142 (China); Ma, Weimin, E-mail: maleisy2003@163.com [Key Laboratory for Advanced Ceramics and Application of Shenyang, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142 (China); Sun, Xudong, E-mail: xdsun@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819 (China); Ji, Lianyong; Liu, Jianan; Hang, Kai [Key Laboratory for Advanced Ceramics and Application of Shenyang, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142 (China)

    2015-09-25

    Highlights: • Gd{sub 2}Zr{sub 2}O{sub 7}/ZrO{sub 2}(3Y) composites were prepared using vacuum sintering. • The phase composition and microstructure are studied. • Gd{sub 2}Zr{sub 2}O{sub 7}/ZrO{sub 2}(3Y) materials show superior mechanical properties. • The solid solution strengthening and stress-induced phase transformation toughening mechanism are proposed. • Two kinds of mechanisms explain the improvement of mechanical properties. - Abstract: Gd{sub 2}Zr{sub 2}O{sub 7}/ZrO{sub 2}(3Y) composite ceramics were prepared by vacuum sintering using Gd{sub 2}Zr{sub 2}O{sub 7} and ZrO{sub 2}(3Y) nanoparticles. The ceramics were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), the three-point-bending technique and single-edge-notched-beam tests. The effect of various proportions of ZrO{sub 2}(3Y) on the phase composition, microstructure, bending strength and fracture toughness of the final Gd{sub 2}Zr{sub 2}O{sub 7}/ZrO{sub 2}(3Y) composite ceramics was also analyzed. The change from m-ZrO{sub 2} to t-ZrO{sub 2} phase contents, before and after fracture, was measured using XRD quantitative phase analysis. The results confirm that, with the increasing content of ZrO{sub 2}(3Y), a phase transition from solid solution to saturated precipitation occurs and the bending strength and fracture toughness of the samples increase gradually. When the content of ZrO{sub 2}(3Y) reached 95 vol.%, the Gd{sub 2}Zr{sub 2}O{sub 7}/ZrO{sub 2}(3Y) composite ceramics had a bending strength of 547 MPa and a fracture toughness of 5.5 MPa m{sup 1/2}, indicating that stress-induced phase transformation toughening was an efficient way to increase the mechanical properties of the Gd{sub 2}Zr{sub 2}O{sub 7} ceramics.

  11. Collision-Induced Dissociation Study of Strong Hydrogen-Bonded Cluster Ions Y-(HF) n (Y=F, O2) Using Atmospheric Pressure Corona Discharge Ionization Mass Spectrometry Combined with a HF Generator.

    Science.gov (United States)

    Sakamoto, Kenya; Sekimoto, Kanako; Takayama, Mitsuo

    2017-01-01

    Hydrogen fluoride (HF) was produced by a homemade HF generator in order to investigate the properties of strong hydrogen-bonded clusters such as (HF) n . The HF molecules were ionized in the form of complex ions associated with the negative core ions Y - produced by atmospheric pressure corona discharge ionization (APCDI). The use of APCDI in combination with the homemade HF generator led to the formation of negative-ion HF clusters Y - (HF) n (Y=F, O 2 ), where larger clusters with n ≥4 were not detected. The mechanisms for the formation of the HF, F - (HF) n , and O 2 - (HF) n species were discussed from the standpoints of the HF generator and APCDI MS. By performing energy-resolved collision-induced dissociation (CID) experiments on the cluster ions F - (HF) n ( n =1-3), the energies for the loss of HF from F - (HF) 3 , F - (HF) 2 , and F - (HF) were evaluated to be 1 eV or lower, 1 eV or higher, and 2 eV, respectively, on the basis of their center-of-mass energy ( E CM ). These E CM values were consistent with the values of 0.995, 1.308, and 2.048 eV, respectively, obtained by ab initio calculations. The stability of [O 2 (HF) n ] - ( n =1-4) was discussed on the basis of the bond lengths of O 2 H-F - (HF) n and O 2 - H-F(HF) n obtained by ab initio calculations. The calculations indicated that [O 2 (HF) 4 ] - separated into O 2 H and F - (HF) 3 .

  12. Investigation of new type Cu-Hf-Al bulk glassy alloys

    International Nuclear Information System (INIS)

    Nagy, E; Ronto, V; Solyom, J; Roosz, A

    2009-01-01

    In the last years new type Cu-Hf-Al ternary alloys were developed with high glass forming ability and ductility. The addition of Al to Cu-Hf alloys results in improvements in glass formation, thermal stability and mechanical properties of these alloys. We have investigated new Cu-based bulk amorphous alloys in Cu-Hf-Al ternary system. The alloys with Cu 49 Hf 42 Al 9 , Cu 46 Hf 45 Al 9 , Cu 50 Hf 42.5 Al 7.5 and Cu 50 Hf 45 Al 5 compositions were prepared by arc melting. The samples were made by centrifugal casting and were investigated by X-ray diffraction method. Thermodynamic properties were examined by differential scanning calorimetry and the structure of the crystallising phases by scanning electron microscopy. The determination of liquidus temperatures of alloys were measured by differential thermal analysis.

  13. In Situ Synchrotron Radiation X-ray Diffraction Study on Phase and Oxide Growth during a High Temperature Cycle of a NiTi-20 at.% Zr High Temperature Shape Memory Alloy

    Science.gov (United States)

    Carl, Matthew; Van Doren, Brian; Young, Marcus L.

    2018-02-01

    Ternary additions to binary NiTi shape memory alloys are known to significantly affect the characteristic martensite-to-austenite phase transformation, i.e., decrease or increase transformation temperatures. High temperature shape memory alloys can be created by adding Au, Pt, Pd, Hf, or Zr to binary NiTi in appropriate amounts; however, the majority of these ternary additions are exceedingly expensive, unfortunately making them impractical for most commercial applications. Zr is the exception of the group, but it is often disregarded because of its poor workability and thermal stability. In an effort to find a temperature range that allows for the potential workability of NiTiZr alloys in normal atmosphere environments and to gain understanding as to the cause of failure during processing, a NiTi-20 at.% Zr was subjected to a thermal cycle ranging from RT to 1000 °C with short 15 min holds at select temperatures during both heating and cooling while simultaneously collecting high-energy synchrotron radiation X-ray diffraction measurements. This study provides valuable insight into the kinetics of precipitation and oxide formation and its relationship to processing. In addition, scanning electron microscopy was performed on five samples, each isothermally held to examine precipitation and oxide structure and growth.

  14. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys

    International Nuclear Information System (INIS)

    Ning Congqin; Zhai Wanyin; Chen Lei; Ding Dongyan; Dai Kerong

    2010-01-01

    β-type low elastic modulus alloys of the Ti-Nb-Zr system have recently attracted much attention for both orthopedic and dental applications. In the present study, meta-stable β alloys of Ti-35Nb-xZr with different Zr contents were developed. The effect of Zr content on the microstructure, mechanical properties and cell attachment was investigated. It was found that the addition of Zr improved the tensile strength and elongation of Ti-35Nb-xZr alloys, and simultaneously reduced the elastic modulus. Moreover, the Zr element helped to stabilize the β phase. Cell culture work indicated that the addition of Zr enhanced the attachment and spreading of bone marrow stem cells. Cell attachment and spreading on the surface of titanium alloys were dominated not only by the wettability but also by the inherent biocompatibility of alloying elements. The peak-aged alloy with 5 wt% Zr had a highest tensile strength of 874 MPa, while its elastic modulus was only 65 GPa, presenting a much higher strength/modulus ratio than Ti-6Al-4V. The Ti-35Nb-5Zr alloy exhibited a great potential for orthopedic and dental applications.

  15. Synthetic of Zr2Al3C5 material

    International Nuclear Information System (INIS)

    Leela-Adisorn, U.; Yamaguchi, A.

    2005-01-01

    Synthesis method of Zr 2 Al 3 C 5 via solid state reaction between Al, ZrC and carbon powder was studied. Al-ZrC-C compact with equivalent mol ratio of Zr 2 Al 3 C 5 was heated up to 1600 C in Ar atmosphere for 1 h and 4 h but ZrC phase still existed as major phase with very small amount of Zr 2 Al 3 C 5 . Because ZrC started to oxidize at low temperature under very low oxygen partial pressure, the same mol ratio of Al-ZrC-C compact was heated at 1600 C in vacuum for 1 h as parallel test. After firing in vacuum, some carbon still exist with small amount of AlZrC 2 occurred with Zr 2 Al 3 C 5 as a main phase, but no ZrC was found. Different result from firing in Ar atmosphere and in vacuum had been discussed here. It was believed that very small amount of impurities in Ar had some effect on the formation of Al-Zr-C compound. The effect of very small amount of impurities in Ar was studied by thermal analysis (DTA/TG) and XRD. It was found that very small amount of impurities in Ar has effect on the reaction between Al, ZrC and carbon by diffusion through the surface and form Zr-C-O-N solid solution. This solid solution cannot differentiate from ZrC by XRD. With help of thermal analysis method (DTA/TG), Zr-C-O-N solid solution can be differentiated from ZrC. Therefore, synthesis of Al-Zr-C compound should be done in vacuum. Zr 2 Al 3 C 5 can be prepared from mixture of Al-ZrC-C with excess amount of Al at 1600 C for 1 h. (orig.)

  16. The factors affecting the 95Nb/95Zr and 140La/95Zr-cooling time correlations

    International Nuclear Information System (INIS)

    Haddad, Kh

    2005-03-01

    The factors affecting the 95 Nb/ 95 Zr and 140 La/ 95 Zr-cooling time correlations were studied by analysing the gamma scanning results of the IRT fuel assemblies. the results showed that, these ratios are stable along the fuel assembly regardless of the position of the measured section. This allow to limit gamma scanning of the whole assembly on the measurement of the central section. The effects of irradiation history and conditions, burnup, control rods on the 95 Nb/ 95 Zr and 140 La/ 95 Zr-cooling time correlations were studied. The results showed the following: the identical irradiation history and conditions during the last irradiation, whose period is comparable with half lives of the used fission products, is fundamental condition for fission product ratio-cooling time correlation. The background resulting from burnup cause high systematic error in the measured results and it does not cause arbitrary error; whereas control rods cause high arbitrary error. The 95 Nb/ 95 Zr-cooling time correlation is more sensitive than the 140 La/ 95 Zr-cooling time correlation. (author)

  17. Self-propagating high temperature synthesis as a method of determination of formation heat of refractory compounds

    International Nuclear Information System (INIS)

    Maslov, V.M.; Neganov, A.S.; Borovinskaya, I.P.; Merzhanov, A.G.

    1978-01-01

    Determination possibility of formation heats of refractory compounds in the process of direct synthesis from elements in a special calorimeter in the combustion regime is studied. Determined are formation heats of carbides - ZrCsub(0.92), Hf Csub(0.93), TaCsub(0.86), borides - ZrB 2 , HfB 2 NbB, NbB 2 , TaB, TaB 2 , MoB and silicides - ZrSi, ZrSi 2 , MoSi 2 . The results of chemical and x-ray phase analyses of the synthesized compounds are also given. Total error of formation heat determination methods does not surpass 2.0%

  18. Determination of zirconium

    International Nuclear Information System (INIS)

    Iha, C.; Sood, S.P.; Sato, I.M.

    1985-01-01

    The analysis of Zr and Hf by X-ray fluorescence was studied. The thin film technique for sample preparation by deposition of precipitate on the filter paper was used. The K sub(α) line of Zr and L sub(β) 1 line of Hf were considered for the analysis. The behaviour of fluorescence intensity ratio with the corresponding mass ratio was also studied. The direct determination of Hf in concentrations between 2 and 95% in samples without any separation was investigated. For Hf concentrations lower than 2%, a method for its enrichment was standardized. (Author) [pt

  19. The preparation and testing of Nb-Zr and Nb-ZrO2 single crystals for deformation studies

    International Nuclear Information System (INIS)

    Botta Filho, W.J.; Christian, J.W.; Taylor, G.

    1987-01-01

    The difficulties to obtain adequate single crystals of Nb-Zr and Nb-ZrO 2 alloys for deformation studies are discussed. Low-temperature internal oxidation of Nb-Zr alloys followed by ageing at higher temperatures resulted in the precipitation of ZrO 2 particles. However, the effect of this treatment on the particles size and distribution and on the crystallographic structure of the particle was not completely understood. Compression tests in the temperature range 4.2K to 373K showed a small effect of zirconia particles on the mechanical properties of Nb-Zr solid solutions and a significative effect of the amount of oxygen remaining in solid solution after the oxidation treatment. (author) [pt

  20. Enhanced resistive switching and multilevel behavior in bilayered HfAlO/HfAlO{sub x} structures for non-volatile memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Faita, F. L., E-mail: fabriciofaita@gmail.com [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Departamento de Física, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Silva, J. P. B., E-mail: josesilva@fisica.uminho.pt [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto (Portugal); Pereira, M.; Gomes, M. J. M. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-12-14

    In this work, hafnium aluminum oxide (HfAlO) thin films were deposited by ion beam sputtering deposition technique on Si substrate. The presence of oxygen vacancies in the HfAlO{sub x} layer deposited in oxygen deficient environment is evidenced from the photoluminescence spectra. Furthermore, HfAlO(oxygen rich)/HfAlO{sub x}(oxygen poor) bilayer structures exhibit multilevel resistive switching (RS), and the switching ratio becomes more prominent with increasing the HfAlO layer thickness. The bilayer structure with HfAlO/HfAlO{sub x} thickness of 30/40 nm displays the enhanced multilevel resistive switching characteristics, where the high resistance state/intermediate resistance state (IRS) and IRS/low resistance state resistance ratios are ≈10{sup 2} and ≈5 × 10{sup 5}, respectively. The switching mechanisms in the bilayer structures were investigated by the temperature dependence of the three resistance states. This study revealed that the multilevel RS is attributed to the coupling of ionic conduction and the metallic conduction, being the first associated to the formation and rupture of conductive filaments related to oxygen vacancies and the second with the formation of a metallic filament. Moreover, the bilayer structures exhibit good endurance and stability in time.

  1. Zr-Sn-Nb alloys. Preliminary studies

    International Nuclear Information System (INIS)

    Danon, C.A.; Arias, D.E.

    1993-01-01

    Studies of the Zr-Sn-Nb diagram have been started, focussing on the Zr-rich corner, near the composition of Zirlo commercial alloy, Zr-1Sn-1Nb, and with Fe and O contents usual in nuclear grade materials. Three alloys were melted, namely Zr-4Sn-2.4Nb (A), Zr-1Sn-3Nb (B) and Zr-2.1Sn-1Nb (C). α/β transformation temperatures were measured through the variation of electrical resistivity(p) vs temperature (T). Values of 560 deg C, 670 deg C and 750 deg C were measured for the α→α+β reaction and 980 deg C, 910 deg C and 1000 deg C for the α+β→β reaction, for the A, B and C alloys, respectively in that order. Some samples were submitted to heat treatments (62 and 216 hours at 825 deg C, 120 hours at 875 deg C). Optical and scanning electronic microscopy of those samples confirmed our resistivity results. (Author)

  2. Thermodynamics of HfCl/sub 4/-KCl molten mixtures containing HfCl/sub 4/ up to 33. 3 mol. per cent

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, M V; Salyulev, A B; Kudyakov, V Ya [AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii

    1980-05-01

    Based on measurements of saturated vapour pressure in components of melted mixtures of HfCl/sub 4/-KCl, depending on temperature and concentration, calculated are the results of changes in activity coefficients of hafnium tetrachloride and potassium chloride on transition from diluted solutions, where the Henry law is met, to those concentrated where the law is disobeyed. Growth in the activity coefficient of HfCl/sub 4/ is due to dissociation of complex groups of HfCl/sub 6//sup 2 -/ into complexes with a lesser number of ligands and decreasing relative binding energy of Hf/sup 4 +/-Cl/sup -/ there. In this case, marked changes take place in partial enthalpy and entropy of hafnium tetrachloride mixing. Similar dependences are observed for potassium chloride, but they are expressed considerably weaker. Evaporation enthalpy and entropy are calculated for HfCl/sub 4/ and KCl monomers from their melted mixtures of various concentrations.

  3. In-situ atomic layer deposition growth of Hf-oxide

    International Nuclear Information System (INIS)

    Karavaev, Konstantin

    2010-01-01

    We have grown HfO 2 on Si(001) by atomic layer deposition (ALD) using HfCl 4 , TEMAHf, TDMAHf and H 2 O as precursors. The early stages of the ALD were investigated with high-resolution photoelectron spectroscopy and X-ray absorption spectroscopy. We observed the changes occurring in the Si 2p, O 1s, Hf 4f, Hf 4d, and Cl 2p (for HfCl 4 experiment) core level lines after each ALD cycle up to the complete formation of two layers of HfO 2 . The investigation was carried out in situ giving the possibility to determine the properties of the grown film after every ALD cycle or even after a half cycle. This work focused on the advantages in-situ approach in comparison with ex-situ experiments. The study provides to follow the evolution of the important properties of HfO 2 : contamination level, density and stoichiometry, and influence of the experimental parameters to the interface layer formation during ALD. Our investigation shows that in-situ XPS approach for ALD gives much more information than ex-situ experiments. (orig.)

  4. In-situ atomic layer deposition growth of Hf-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Karavaev, Konstantin

    2010-06-17

    We have grown HfO{sub 2} on Si(001) by atomic layer deposition (ALD) using HfCl{sub 4}, TEMAHf, TDMAHf and H{sub 2}O as precursors. The early stages of the ALD were investigated with high-resolution photoelectron spectroscopy and X-ray absorption spectroscopy. We observed the changes occurring in the Si 2p, O 1s, Hf 4f, Hf 4d, and Cl 2p (for HfCl{sub 4} experiment) core level lines after each ALD cycle up to the complete formation of two layers of HfO{sub 2}. The investigation was carried out in situ giving the possibility to determine the properties of the grown film after every ALD cycle or even after a half cycle. This work focused on the advantages in-situ approach in comparison with ex-situ experiments. The study provides to follow the evolution of the important properties of HfO{sub 2}: contamination level, density and stoichiometry, and influence of the experimental parameters to the interface layer formation during ALD. Our investigation shows that in-situ XPS approach for ALD gives much more information than ex-situ experiments. (orig.)

  5. Effect of the Zr elements with thermal properties changes of U-7Mo-xZr/Al dispersion fuel

    International Nuclear Information System (INIS)

    Supardjo; Agoeng Kadarjono; Boybul; Aslina Br Ginting

    2016-01-01

    Thermal properties data of nuclear fuel is required as input data to predict material properties change phenomenon during the fabrication process and irradiated in a nuclear reactor. Study the influence of Zr element in the U-7Mo-xZr/Al (x = 1%, 2% and 3%) fuel dispersion to changes in the thermal properties at various temperatures have been stiffened. Thermal analysis includes determining the melting temperature, enthalpy, and phase changes made using Differential Thermal Analysis (DTA) in the temperature range between 30 °C up to 1400 °C, while the heat capacity of U-7Mo-xZr alloy and U-7Mo-xZr/Al dispersion fuel using Differential Scanning Calorimeter (DSC) at room temperature up to 450 °C. Thermal analyst data DTA shows that Zr levels of all three compositions showed a similar phenomenon. At temperatures between 565.60 °C - 584.98 °C change becomes α + δ to α + γ phase and at 649.22 °C – 650.13 °C happen smelting Al matrix Occur followed by a reaction between Al matrix with U-7Mo-xZr on 670.38 °C - 673.38 °C form U (Al, Mo)x Zr. Furthermore a phase change α + β becomes β + γ Occurs at temperatures 762.08 °C - 776.33 °C and diffusion between the matrix by U-7Mo-xZr/Al on 853.55 °C - 875.20 °C. Every phenomenon that Occurs, enthalpy posed a relative stable. Consolidation of uranium Occur in 1052.42 °C - 1104.99 °C and decomposition reaction of U (Al, Mo)x and U (Al, Zr)_x becomes (UAl_4, UAl_3, UAl_2), U-Mo, and UZr on 1328,34 °C - 1332,06 °C , The existence of Zr in U-Mo alloy increases the heat capacity of the U-7Mo-xZr/Al, dispersion fuel and the higher heat capacity of Zr levels increased due to interactions between the atoms of Zr with Al matrix so that the heat absorbed by the fuel increase. (author)

  6. Site preference of Zr in Ti 3 Al and phase stability of Ti 2 ZrAl

    Indian Academy of Sciences (India)

    Calculated values of equilibrium lattice parameters, heat of formation and bulk modulus of Ti2ZrAl are presented. The basis for the structural stability and bonding are analysed in terms of the density of states. Between the two possible 2-like structures, Ti2ZrAl shows enhanced stability for the one where Zr is substituted in ...

  7. Thermoelectric properties of doped BaHfO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Chandra Kr., E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com [Dept. of Physics, Dr. Shakuntala Misra National Rehabilitation University, Lucknow-229001, U.P India (India); Bhamu, K. C. [Department of Physics, Goa University, Goa-403 206 (India); Sharma, Ramesh, E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com [Dept. of Physics, Feroze Gandhi Institute of Engineering & Technology, Raebareli-229001, U.P India (India)

    2016-05-06

    We have studied the structural stability, electronic structure, optical properties and thermoelectric properties of doped BaHfO{sub 3} by full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure of BaHfO{sub 3} doped with Sr shows enhances the indirect band gaps of 3.53 eV, 3.58 eV. The charge density plots show strong ionic bonding in Ba-Hf, and ionic and covalent bonding between Hf and O. Calculations of the optical spectra, viz., the dielectric function, refractive index and extinction coefficient are performed for the energy range are calculated and analyzed. Thermoelectric properties of semi conducting are also reported first time. The doped BaHfO{sub 3} is approximately wide band gap semiconductor with the large p-type Seebeck coefficient. The power factor of BaHfO{sub 3} is increased with Sr doping, decreases because of low electrical resistivity and thermal conductivity.

  8. Electron paramagnetic resonance study of Ce doped partially stabilized ZrO2 crystals

    Directory of Open Access Journals (Sweden)

    Mikhail А. Borik

    2017-09-01

    Full Text Available ZrO2 (PSZ solid solutions crystals stabilized with yttrium and cerium oxides have been studied using electron paramagnetic resonance (EPR in the X and Q ranges. Zr3+ have been observed centers in the as-annealed ZrO2 crystals stabilized only by yttrium oxide (2.8 mol% Y2O3. Another type of paramagnetic-O-centers appear as a result of CeO2 addition to ZrO2 crystals along with yttrium oxide. To estimate the concentration of Ce3+ ions in PZS crystals, we recorded the EPR spectra in the presence of a reference at 7 K. Paramagnetic Ce3+ ions have been identified and their relative amount in the PSZ crystals before and after high-temperature heat treatment has been assessed. Annealing in air leads decreases the concentration of Ce3+ ions for all the test compositions and changes the color of the crystals from red to white. After annealing of the sample 2.0Y0.8Ce3Zr, the amount of paramagnetic Ce3+ ions decreased approximately twofold. Paramagnetic centers from Ce3+ have not been detected in the specimen with a low cerium content of 0.1 mol% after annealing which indicates the complete transition of Ce3+ to the Ce4+ state. We show that the forming cerium paramagnetic centers are bound by strong exchange interactions. No angular dependence of the EPR lines of the paramagnetic Ce3+ cations on the applied external magnetic field has been observed. Probable origin of the absence of angular dependence is that the impurity rare-earth ions are located close to one another, forming impurity clusters with an effective spin of Seff=1/2.

  9. Study of oxidation behaviour of Zr-based bulk amorphous alloy Zr 65 ...

    Indian Academy of Sciences (India)

    The oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 has been studied in air environment at various temperatures in the temperature range 591–684 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy in the amorphous phase obeys the parabolic rate law for oxidation ...

  10. HF-START: A Regional Radio Propagation Simulator

    Science.gov (United States)

    Hozumi, K.; Maruyama, T.; Saito, S.; Nakata, H.; Rougerie, S.; Yokoyama, T.; Jin, H.; Tsugawa, T.; Ishii, M.

    2017-12-01

    HF-START (HF Simulator Targeting for All-users' Regional Telecommunications) is a user-friendly simulator developed to meet the needs of space weather users. Prediction of communications failure due to space weather disturbances is of high priority. Space weather users from various backgrounds with high economic impact, i.e. airlines, telecommunication companies, GPS-related companies, insurance companies, international amateur radio union, etc., recently increase. Space weather information provided by Space Weather Information Center of NICT is, however, too professional to be understood and effectively used by the users. To overcome this issue, I try to translate the research level data to the user level data based on users' needs and provide an immediate usable data. HF-START is positioned to be a space weather product out of laboratory based truly on users' needs. It is originally for radio waves in HF band (3-30 MHz) but higher frequencies up to L band are planned to be covered. Regional ionospheric data in Japan and southeast Asia are employed as a reflector of skywave mode propagation. GAIA (Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy) model will be used as ionospheric input for global simulation. To evaluate HF-START, an evaluation campaign for Japan region will be launched in coming months. If the campaign successes, it will be expanded to southeast Asia region as well. The final goal of HF-START is to provide the near-realtime necessary radio parameters as well as the warning message of radio communications failure to the radio and space weather users.

  11. A multi-component Zr alloy with comparable strength and Higher plasticity than Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Liang, S.X.; Yin, L.X.; Ma, M.Z.; Jing, R.; Yu, P.F.; Zhang, Y.F.; Wang, B.A.; Liu, R.P.

    2013-01-01

    Zirconium (Zr)-based bulk metallic glass possesses the highest potential as a structural material among metallic glasses. Although Zr-based bulk metallic glass exhibits extremely high strength, its potential application has been restricted by a number of issues, such as fragility, small size, difficult fabrication into different shapes and poisonous beryllium content, among others. In this paper, a Zr-based crystal alloy with comparable strength and higher plasticity than Zr-based bulk metallic glass is presented. The proposed Zr-based alloy has a tensile strength greater than 1600 MPa. That value is comparable to the 1500 MPa to 2000 MPa strength of Zr-based bulk metallic glasses (BMGs). The ductility in terms of elongation reached 6.2%; at the same time, the 1400 MPa tensile strength was retained. This phenomenon is not possible for Zr-based BMGs. XRD results show that the proposed ultrahigh-strength Zr-based crystal alloy has two-phase structures: an hcp-structured α phase and a bcc-structured β phase. The forged specimen exhibits a typical basket-weave microstructure, which is characterised by the interlaced plate α phase separated from the β phase matrix. Fine, short bar-shaped α phases precipitated along the original β grain boundary together with ultrafine dot-shaped α phases that presented inside the original β grain when the ageing temperature was between 500 °C and 525 °C. As the ageing temperature increased, the dot-shaped α phase grew into plate shapes, decreasing the material's strength and increasing its plasticity. The ultrafine dot-shaped and short bar-shaped α phases in the original β phase matrix are the main strengthening mechanisms of the ultrahigh-strength Zr-based crystal alloy.

  12. Density functional study of vibrational, thermodynamic and elastic properties of ZrCo and ZrCoX3 (X = H, D and T) compounds

    International Nuclear Information System (INIS)

    Chattaraj, D.; Parida, S.C.; Dash, Smruti; Majumder, C.

    2015-01-01

    Highlights: • The physico-chemical properties of ZrCo and its hydrides were studied. • The isotope effect on vibrational and thermodynamic properties was investigated. • The changes in elastic properties due to hydrogenation of ZrCo were investigated. • Thermodynamics properties of ZrCo and its hydrides were calculated. - Abstract: The dynamical, thermodynamic and elastic properties of ZrCo and its hydrides ZrCoX 3 (X = H, D and T) are reported. While the electronic structure calculations are performed using plane wave pseudopotential approach, the effect of isotopes on the vibrational and thermodynamic properties has been demonstrated through frozen phonon approach. The results reveal significant difference between the ZrCoH 3 and its isotopic analogs in terms of phonon frequencies and zero point energies. For example, the energy gap between optical and acoustic modes reduces in the order of ZrCoT 3 > ZrCoD 3 > ZrCoH 3 . The vibrational properties shows that the intermetallic ZrCo is dynamically stable whereas ZrCoX 3 (X = H, D and T) are dynamically unstable. The calculated formation energies of ZrCoX 3 , including the ZPE, are −146.7, −158.3 and −164.1 kJ/(mole of ZrCoX 3 ) for X = H, D and T, respectively. In addition, the changes in elastic properties of ZrCo upon hydrogenation have also been investigated. The results show that both ZrCo and ZrCoH 3 are mechanically stable at ambient pressure. The Debye temperatures of both ZrCo and ZrCoH 3 are determined using the calculated elastic moduli

  13. Valence electron structure and properties of stabilized ZrO2

    Institute of Scientific and Technical Information of China (English)

    LI JinPing; HAN JieOai; MENG SongHe; ZHANG XingHong

    2008-01-01

    To reveal the properties of stabilizers in ZrO2 on nanoscopic levels,the valence elec-tron structures of four stable ZrO2 phases and c-ZrO2 were analyzed on the basis of the empirical electron theory of solids and molecules.The results showed that the hybridization levels of Zr atoms in c-ZrO2 doped with Ca and Mg dropped from B17 to B13,the hybridization levels of Zr atoms in c-ZrO2 doped with Y and Ce dropped from B17 to B15,and that the four stabilizing atoms all made the hybridization levels of O atoms drop from level 4 to level 2.The numbers of covalent electrons in the strongest covalent bond in the descending order are c-ZrO2>ZrCeO2>ZrYOZrMgO>ZrCaO.The bond energies of the strongest covalent bond and the melting points of the solid solutions in the descending order are ZrCeO2>c-ZrO2>ZrYO>ZrMgO>ZrCaO.The percent-ages of the total number of covalent electrons in the descending order arec-ZrO2>ZrYO> ZrCeO2>ZrMgO> ZrCaO.From the above analysis,it can be concluded that the stabilizing degrees of the four stabilizers in the descending order are CaO> MgO>Y2O3>CeO2.

  14. Ferromagnetic characteristics of HfFe2

    International Nuclear Information System (INIS)

    Novakovic, N.; Belosevic-Cavor, J.; Cekic, B.; Manasijevic, M.; Milosevic, Z. . E-mail address of correspoding author: novnik@rt270.vin.bg.ac.yu; Novakovic, N.)

    2003-01-01

    The magnetic hyperfine fields at 181 Ta ion-probe sites in the HfFe 2 polycrystalline binary compound were measured using the time-differential perturbed angular correlation (TDPAC) method. Measurements were performed in the absence of polarizing external magnetic field, at room temperature. The existence of two different structures, dominant cubic MgCu 2 -type and hexagonal MgZn 2 -type in our HfFe 2 sample was refined. Both structures are ferromagnetic with Curie temperatures, which differ significantly (588 K for MgCu 2 and 427 K for MgZn 2 ). The corresponding values of hyperfine fields are H hf 13.8±0.1 T for MgCu 2 -type structure and H hf = 8.0±0.2 T for MgZn 2 -type structure. Calculations using LAPW-Wien 97 program package are in progress and preliminary results are in good agreement with experiment. The analysis includes qualitative explanation of the exchange interactions mechanism between magnetic dipole moment of the observed 181 Ta ion-probe and magnetic dipole moments of the nearest neighbours on the corresponding coordination polyhedra. All these results will be published recently. (author)

  15. Experimental phases diagram Zr-Fe and Zr-Sn-Fe of the Fe rich zone at a temperature of 1100oC

    International Nuclear Information System (INIS)

    Nieva, N.; Jimenez, J.; Gomez, A; Granovsky, M.S

    2010-01-01

    Zr-based alloys are frequently used in the nuclear energy industry; among these are the Zr-based Zircaloys whose main alloys are Sn and Fe. In order to experimentally evaluate part of the diagram of the binary Zr-Fe phases and the ternary Zr-Sn-Fe in the Fe-rich zone, different binary alloys in the area closest to the composition of the ZrFe 2 and Zr 6 Fe 23 compounds were designed as well as a ternary alloy of Zr-Sn-Fe in the Fe-rich region of the ternary system. All the alloys underwent a two month heat treatment at a temperature of 1100 o C. Later the phases that were present were identified using different complementary techniques (mainly X-ray diffraction and microanalysis). The clear presence of the Zr 6 Fe 23 phase was not observed in any of the alloys. A new ternary phase consisting approximately of Zr 2 0Sn 14 Fe 66 was verified in the ternary alloy

  16. Evidence of icosahedral short-range order in Zr70Cu30 and Zr70Cu29Pd1 metallic glasses

    DEFF Research Database (Denmark)

    Saksl, K.; Franz, H.; Jovari, P.

    2003-01-01

    Change in local atomic environment during crystallization of Zr-based glassy alloys was studied by extended x-ray absorption fine structure (EXAFS) spectroscopy. The formation of icosahedral quasicrystalline phase followed by crystallization of tetragonal CuZr2 has been observed in the Zr70Cu29Pd1...... glassy alloy during annealing up to 850 K. On the other hand, the binary Zr70Cu30 alloy shows a single glassy to crystalline CuZr2 phase transformation. The local atomic environment of as-quenched Zr70Cu30 alloy is matched to an icosahedral local atomic configuration, which is similar to that of the as......-quenched Zr70Cu29Pd1 alloy and the alloy annealed at 593 K containing icosahedral phase. Considering that the supercooled liquid region appears prior to crystallization in the Zr70Cu30 glassy alloy, the observed results support the theory claiming a strong correlation between the existence of local...

  17. Superconducting properties of Zr1+xNi2-xGa and Zr1-xNi2+xGa Heusler compounds

    Directory of Open Access Journals (Sweden)

    Saad Alzahrani

    2017-05-01

    Full Text Available The superconducting properties of a series of Zr1+xNi2-xGa and Zr1-xNi2+xGa compounds have been investigated by x-ray diffraction, electrical resistivity, dc magnetization, and ac susceptibility measurements. While the parent compound, ZrNi2Ga, exhibited the cubic L21 Heusler structure, multiple non-cubic structures formed in the Zr and Ni rich doped materials. For x ≤ 0.3, all Zr1-xNi2+xGa compounds demonstrated superconducting behavior, but no superconductivity was observed in the Zr1+xNi2-xGa alloys for x > 0.2. The magnetization data revealed that all materials in both Zr1+xNi2-xGa and Zr1-xNi2+xGa series exhibited type-II superconductivity. With increasing doping concentration x, the paramagnetic ordering were enhanced in both systems while the superconducting properties were found to weaken. The observations are discussed considering the structural disorders in the systems.

  18. Luminescent nanocrystals in the rare-earth niobate–zirconia system formed via hydrothermal method

    International Nuclear Information System (INIS)

    Hirano, Masanori; Dozono, Hayato

    2013-01-01

    Luminescent nanocrystals based on the rare-earth niobates (Ln 3 NbO 7 , Ln=Y, Eu) and zirconia (ZrO 2 ) that were composed of 50 mol% Ln 3 NbO 7 and 50 mol% ZrO 2 , were hydrothermally formed as cubic phase under weakly basic conditions at 240 °C. The lattice parameter of the as-prepared nanoparticles corresponding to the composition of Y 3−x Eu x NbO 7 –4ZrO 2 that was estimated as a single phase of cubic gradually increased as the content of europium x increased. The existence of small absorbance peaks at 395 and 466 nm corresponding to the Eu 3+7 F 0 → 5 L 6 , and 7 F 0 → 5 D 2 excitation transition, respectively, was clearly observed in the diffuse reflectance spectra of the as-prepared samples containing europium. The optical band gap of the as-prepared samples was in the range from 3.5 to 3.7 eV. The photoluminescence spectra of the as-prepared nanocrystals containing europium showed orange and red luminescences with main peaks at 590 and 610 nm, corresponding to 5 D 0 → 7 F 1 and 5 D 0 → 7 F 2 transitions of Eu 3+ , respectively, under excitation at 395 nm Xe lamp. The emission intensity corresponding to 5 D 0 → 7 F 2 transition increased as heat-treatment temperature rose from 800 to 1200 °C. - Graphical abstract: This graphical abstract shows the excitation and emission spectra and a transmission electron microscopy image of nanocrystals (with composition based on the rare-earth niobates (Ln 3 NbO 7 , Ln=Y, Eu) and zirconia (ZrO 2 ) that were composed of 50 mol% Ln 3 NbO 7 and 50 mol% ZrO 2 ) formed via hydrothermal route. Display Omitted - Highlights: • Nanocrystals composed of 50 mol% Y 3−x Eu x NbO 7 and 50 mol% ZrO 2 was directly formed. • The nanocrystals were hydrothermally formed under weakly basic conditions at 240 °C. • The Y 3 NbO 7 showed an UV-blue and broad-band emission under excitation at 240 nm. • The emission is originated from the niobate octahedral group [NbO 6 ] 7− . • The nanocrystals showed orange and

  19. Mineralogy and geochemistry of trace and Rare Earth Element from the Manaila massive sulphide deposit (Eastern Carpathians, Romania)

    Science.gov (United States)

    Moldoveanu, S.; Iancu, O. G.; Kasper, H. U.

    2012-04-01

    Keywords: Eastern Carpathians, Mănăila deposit, REE, trace elements, pyrite The present paper deal with the mineralogy and trace elements geochemistry of sulphide deposits from Mănăila mine field located in NE area of Eastern Carpathians Mountains (Romania). The mineralization occurs within metamorphic rocks of Tulgheş terrane, part of Crystalline-Mezozoic zone of the Eastern Carpathians. The metamorphic rocks in Mănăila area consist of felsic metavolcanics rocks with quartzites and quartz-feldspathic rocks as prevailing types. The P-T metamorphic conditions are typical of greenschis facies with biotite and garnet (Mn-Grt) in mineral assemblage. The mineralogical study was performed using reflected light microscope and Scanning Electron Microscopy (SEM) methods. Thus, the both methods show that the main sulphides minerals are represented by pyrite and chalcopyrite, being followed by sphalerite, galena and little amount of Cu sulphosalts (tetrahedrite and bournonite) and also by gangue minerals (quartz and carbonates). Pyrite occurs as large euhedral to subhedral grains in quartz and small rounded inclusion in chalcopyrite. The trace elements analysis was achieved on whole-rock samples and involved the determination of REE, LIL (Rb, Ba, Sr) and HFS (Y, Zr, Hf, U, Th, Nb, Ta) by ICP-MS method. The concentration of LIL and HFS trace elements in mineralized rocks decrease as follows: Ba > Bi > As > Sb > Co > Ga > Ni > Cd. Even if the barium contents in Mănăila ore is high, baritina (BaSO4) was not identified throught the mineralogical analyses carried out so far. The total rare earth element content (REE) of the samples from Mănăila range from 26.84 to 246.46 ppm. Chondrite - normalized REE patterns of the mineralized rocks show that the LREE are enriched in relation to the HREE. Also a positive Ce anomalies and negative Eu anomalies are present. Y/Ho and Zr/Hf ratios are close to the chondritic ratios indicating Charge-and-Radius-Controlled (CHARAC

  20. Structure of Zr-Hf alloys

    International Nuclear Information System (INIS)

    Dobromyslov, A.V.; Taluts, N.I.

    1991-01-01

    Structure of quenched zirconium-hafnium alloy system containing up to 2.5 at. % was studied. Existence of three morphological forms of α-phase was presented: lath, twinned, laminated. Twinning plane in the system was identified. Formation model of packet structure of lath martensite was suggested

  1. Nanosized Hydroxyapatite Precipitation on the Ti—30Ta—xHf Alloys.

    Science.gov (United States)

    Lee, Kang; Jang, Jae- In; Han-Cheol, Choe

    2017-04-01

    In this study, we prepared hydroxyapatite (HAp) layer on the alkali treated Ti–30Ta–xHf alloys using electrochemical deposition method. Ti–30Ta–xHf alloys was anodized in 5 M NaOH solution at 0.3 A for 10 min. Alkali treated Ti–30Ta–xHf surface formed by anodization step which acted as templates and anchorage for growth of the HAp during subsequent pulsed electrochemical deposition process at 85 °C. The phase and morphologies of deposited HAp layer were affected by the Hf contents of Ti–30Ta–xHf alloys. The nano-scale rod-like HAp layer was formed on untreated Ti–30Ta–xHf alloys with partially low crystallinity. In the case of alkali treated Ti–30Ta–xHf, nano-sized needle-like layers were transferred to nano-flake surface and denser morphology as Hf content increased.

  2. HF-voltage testing of accelerating system functional model

    International Nuclear Information System (INIS)

    Gladkov, A.V.; Stepanov, V.B.

    1989-01-01

    Owing to ambiguity in interpreting the notion of the electron strength of the operating HF device in an acceleator a technique of measurements and result processing, based on statistical analysis of the data is suggested. Experimental testing on electric strength of structures with HF focusing was carried out using a bench in the form of a cylindrical vacuum container inside which a double H-resonator with HF quadrupole electrodes without surface modulation was installed. The dependences obtained permit to evaluate the bahaviour of the HF device from the viewpoint of electric strength and radiation hazard for the whole range of possible values of voltage on the basis of data on the frequency of breakdowns and radiation situation only in one experimental point. 12 refs.; 8 figs

  3. Time-temperature-transformation diagram of Zr-based Zr-Al-Cu-Ni metallic glasses

    International Nuclear Information System (INIS)

    Goh, T.T.; Li, Y.; Ng, S.C.

    1996-01-01

    The critical cooling rates R c for glass formation in four Zr-based Zr-Al-Cu-Ni alloys were determined using techniques developed by Uhlmann based on theories of homogeneous nucleation, crystal growth and transformation kinetics. It involves the construction of a time-temperature-transformation curve which requires the knowledge of the viscosity-temperature curve of the alloys. Two types of viscosity-temperature expressions, namely Andrade expression and Doolittle expression, were used to model the viscosity of the Zr-based alloys and the choice of the viscosity-temperature expression which gives the best estimate of the calculated time-temperature-transformation curve is discussed. (author)

  4. A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic Compounds in Methanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Norbert Köpfle

    2017-02-01

    Full Text Available The activation and catalytic performance of two representative Zr-containing intermetallic systems, namely Cu-Zr and Pd-Zr, have been comparatively studied operando using methanol steam reforming (MSR as test reaction. Using an inverse surface science and bulk model catalyst approach, we monitored the transition of the initial metal/intermetallic compound structures into the eventual active and CO2-selective states upon contact to the methanol steam reforming mixture. For Cu-Zr, selected nominal stoichiometries ranging from Cu:Zr = 9:2 over 2:1 to 1:2 have been prepared by mixing the respective amounts of metallic Cu and Zr to yield different Cu-Zr bulk phases as initial catalyst structures. In addition, the methanol steam reforming performance of two Pd-Zr systems, that is, a bulk system with a nominal Pd:Zr = 2:1 stoichiometry and an inverse model system consisting of CVD-grown ZrOxHy layers on a polycrystalline Pd foil, has been comparatively assessed. While the CO2-selectivity and the overall catalytic performance of the Cu-Zr system is promising due to operando formation of a catalytically beneficial Cu-ZrO2 interface, the case for Pd-Zr is different. For both Pd-Zr systems, the low-temperature coking tendency, the high water-activation temperature and the CO2-selectivity spoiling inverse WGS reaction limit the use of the Pd-Zr systems for selective MSR applications, although alloying of Pd with Zr opens water activation channels to increase the CO2 selectivity.

  5. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Yue, Xishan; Xie, Zonghong; Jing, Yongjuan

    2017-01-01

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell (n_A"u"-"v) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n_A"u"-"v represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5 ∝ 45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2 ∝ 10 wt%. Thus, Ti-based filler metal with Zr content being 2 ∝ 10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n_A"u"-"v showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface. (orig.)

  6. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xishan [Northwestern Polytechnical University, School of Astronautics, Xi' an (China); AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Aeronautical Key Laboratory for Welding and Joining Technology, Beijing (China); Xie, Zonghong [Northwestern Polytechnical University, School of Astronautics, Xi' an (China); Jing, Yongjuan [AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Aeronautical Key Laboratory for Welding and Joining Technology, Beijing (China)

    2017-07-15

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell (n{sub A}{sup u-v}) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n{sub A}{sup u-v} represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5 ∝ 45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2 ∝ 10 wt%. Thus, Ti-based filler metal with Zr content being 2 ∝ 10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n{sub A}{sup u-v} showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface. (orig.)

  7. Rare-earth, yttrium and zirconium mobility associated with the uranium mineralisation at Okrouhla Radoun, Bohemian Massif, Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Milos, Rene [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Rock Structure and Mechanics

    2015-01-15

    The mobility of rare-earth elements (REE), Y and Zr during the Late-Variscan and post-Variscan mineralisation event in the Okrouhla Radoun. uranium deposit has been investigated to elucidate their behaviour during the hydrothermal alteration of leucogranites and high-grade metamorphic rocks in the Moldanubian Zone (Bohemian Massif). The alteration of leucogranites has caused enrichment in Na, Ca, Fe{sup 3+}, Zr and the bulk of REE while depleting K, Fe{sup 2+}, Si, Th, Rb and Ba. The alteration of high-grade metasediments has also led to an enrichment in Na and Ca while depleting K, Si, Rb and Ba. However, this change is connected to the depletion of REE, as well as the enrichment of P and Th in the bulk. The high mobility of Y and Zr during formation of the uranium mineralisation is supported by the occurrence of Y- and Zr-rich coffinite (up to 3.4 wt.% Y{sub 2}O{sub 3} and 13.8 wt.% ZrO{sub 2}). The massive hydrothermal alteration of host rocks, as well as the high mobility of REE, Y and Zr indicate an influx of oxidised basinal fluids in the Permian to the crystalline rocks of the Moldanubian Zone.

  8. The isobutylene-isobutane alkylation process in liquid HF revisited.

    Science.gov (United States)

    Esteves, P M; Araújo, C L; Horta, B A C; Alvarez, L J; Zicovich-Wilson, C M; Ramírez-Solís, A

    2005-07-07

    Details on the mechanism of HF catalyzed isobutylene-isobutane alkylation were investigated. On the basis of available experimental data and high-level quantum chemical calculations, a detailed reaction mechanism is proposed taking into account solvation effects of the medium. On the basis of our computational results, we explain why the density of the liquid media and stirring rates are the most important parameters to achieve maximum yield of alkylate, in agreement with experimental findings. The ab initio Car-Parrinello molecular dynamics calculations show that isobutylene is irreversibly protonated in the liquid HF medium at higher densities, leading to the ion pair formation, which is shown to be a minimum on the potential energy surface after optimization using periodic boundary conditions. The HF medium solvates preferentially the fluoride anion, which is found as solvated [FHF](-) or solvated F(-.)(HF)(3). On the other hand, the tert-butyl cation is weakly solvated, where the closest HF molecules appear at a distance of about 2.9 Angstrom with the fluorine termination of an HF chain.

  9. Sequential sputtered Co-HfO{sub 2} granular films

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M.; Ng, V.

    2017-03-15

    A systematic study of magnetic, magneto-transport and micro-structural properties of Co-HfO{sub 2} granular films fabricated by sequential sputtering is presented. We demonstrate reduction in ferromagnetic-oxide formation by using HfO{sub 2} as the insulting matrix. Microstructure evaluation of the films showed that the film structure consisted of discrete hcp-Co grains embedded in HfO{sub 2} matrix. Films with varying compositions were prepared and their macroscopic properties were studied. We correlate the variation in these properties to the variation in film microstructure. Our study shows that Co-HfO{sub 2} films with reduced cobalt oxide and varying properties can be prepared using sequential sputtering technique. - Highlights: • Co-HfO{sub 2} granular films were prepared using sequential sputtering. • A reduction in ferromagnetic-oxide formation is observed. • Co-HfO{sub 2} films display superparamagnetism and tunnelling magneto-resistance. • Varying macroscopic properties were achieved by changing film composition. • Applications can be found in moderate MR sensors and high –frequency RF devices.

  10. Influence of ZrO2 nanoparticles and thermal treatment on the properties of PMMA/ZrO2 hybrid coatings

    International Nuclear Information System (INIS)

    Reyes-Acosta, M.A.; Torres-Huerta, A.M.; Domínguez-Crespo, M.A.; Flores-Vela, A.I.; Dorantes-Rosales, H.J.; Ramírez-Meneses, E.

    2015-01-01

    Highlights: • PMMA/ZrO 2 nanocomposites were prepared by melt blending in a single screw extruder. • The nanoparticles of m-, t-ZrO 2 were successfully synthesized using sol–gel technique. • The prepared PMMA/ZrO 2 nanocomposites have better UV protection than pure PMMA. • The thermal stability of the PMMA increases with low amount of ZrO 2 nanoparticles. • PMMA/ZrO 2 nanocomposites show superior values of elastic modulus and hardness. - Abstract: In this work, ZrO 2 nanoparticles were synthesized by the sol–gel method, treated thermally at different temperatures (400, 600 and 800 °C), and added to a polymer matrix in two different weight percentages (0.5 and 1) by single screw extrusion in order to determine the influence of these parameters on the thermal stability and UV radiation resistance of PMMA/ZrO 2 composites. Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), ultraviolet–visible spectroscopy (UV–Vis), thermogravimetric analysis (TGA) and nanoindentation techniques were used to evaluate the structural, morphological, optical, thermal and mechanical properties of as-prepared composites. The average crystallite sizes for ZrO 2 sintered at 600 and 800 °C were about 17 and 26 nm, respectively. It was found that the incorporation of a low percentage of ZrO 2 nanoparticles increased the thermal properties of PMMA as well as its hardness and elastic modulus. The degradation temperature at 10 wt.% loss of the PMMA/ZrO 2 (0.5 wt.%, 400 °C) nanocomposite was approximately 48 °C higher than that of pure PMMA. The absorption in the UV region was increased according to the ZrO 2 heat treatment temperature and amount added to the polymer matrix

  11. ZIRCONIUM—HAFNIUM ISOTOPE EVIDENCE FROM METEORITES FOR THE DECOUPLED SYNTHESIS OF LIGHT AND HEAVY NEUTRON-RICH NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Akram, W.; Schönbächler, M. [School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Sprung, P. [Institut für Planetologie, Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Vogel, N. [Institute for Geochemistry and Petrology, ETH, Clausiusstrasse 25, 8092 Zürich (Switzerland)

    2013-11-10

    Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope {sup 96}Zr (≤1ε in {sup 96}Zr/{sup 90}Zr) for bulk chondrites and CAIs (∼2ε). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the {sup 96}Zr isotope variations are of nucleosynthetic origin. The {sup 96}Zr enrichments are coupled with {sup 50}Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A ≤ 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. {sup 96}Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M{sub ☉}) SNII.

  12. The egyptian placer deposits - A potential source for nuclear raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Dabbour, G A [Nuclear materials authority, Cairo, (Egypt)

    1995-10-01

    The extensive black sands placer deposits are disconsolately distributed along the northern Mediterranean castle plain of the Nile Delta and Sinai Peninsula. These sediments contain strategic and economic heavy minerals which are required for the industrial exploitation whether for nuclear industry or other metallurgical and engineering industries. They comprise huge reserves of monazite, Zircon, magnetite, ilmenite and garnet. The first three economic minerals contain U, Th, Zr, Hf, Ti and REEs. Thus, monazite assays 0.48% U{sub 3} O{sub 8}, 6.04% (Zr+Hf) 02, 0.06% U{sub 3} O{sub 8} and 0.04% Th O{sub 2}. The beach rutile has 98.64% Ti O{sub 2}. Therefore, the estimated geological reserves of the nuclear materials are enormous. In the light of these data, the nuclear materials Authority has its own programmes for physical and chemical processing of the Egyptian black sands. In the mean time, zircon as a mineral would be used in ceramic industry while rutile as a mineral would be used in welding rods industry. The rare earths oxides cake could be used ferro-silicon alloy. 2 figs., 5 tabs.

  13. HF Interference, Procedures and Tools (Interferences HF, procedures et outils)

    Science.gov (United States)

    2007-06-01

    the actual ambient noise floor situation. Besides these HF radio links, special units such as crisis reaction forces are using low power radios for...the origin point on the ground. For ease of arithmetic and typography , the latter option is preferable. The dipole-modelled PLT is located at x = H1

  14. Safe management of actinides in the nuclear fuel cycle: Role of mineralogy; La gestion des actinides dans le cycle du combustible nucleaire: le role de la mineralogie

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C. [Department of Nuclear Engineering and Radiological Sciences, Department of Geological Sciences, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-1005 (United States)

    2011-02-15

    During the past 60 years, more than 1800 metric tonnes of Pu, and substantial quantities of the 'minor' actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g., {sup 239}Pu), a source of fissile material for nuclear weapons (e.g., {sup 239}Pu and {sup 237}Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., {sup 239}Pu and {sup 237}Np). There are two basic strategies for the disposition of these heavy elements: (1) to 'burn' or transmute the actinides using nuclear reactors or accelerators; (2) to 'sequester' the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A{sub 2}B{sub 2}O{sub 7} (A rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage. Recent developments in our understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms. (author)

  15. Improvement of the thermoplastic formability of Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5} bulk metallic glass by minor addition of Erbium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q. [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zeng, X.R., E-mail: zengxier@szu.edu.cn [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); JANUS Precision Components Co., LTD., Dongguan 523000 (China); Fu, M.W., E-mail: mmmwfu@polyu.edu.hk [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Chen, S.S. [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Jiang, J. [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China)

    2016-12-01

    The softness of Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5} bulk metallic glass (BMG) in the super-cooled liquid range (SCLR) is obviously improved by minor addition of 2% Er, which makes (Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5}){sub 98}Er{sub 2} (Zr65Er2) to be a very formable Be-free Zr-based BMG. It is found the lower glass transition temperature of Zr65Er2 has an important contribution to the improvement of formability, which is contrary to the general understanding that the larger fragility and wider super-cooled liquid region (SCLR) are the major reasons for better thermoplastic formability. This finding is well explained by using the linear simplification of the SCLR in Angell plot. Zr65Er2 also has lower crystallization temperature and melting temperature, which is believed to be related to the formation of short-range ordering with lower transition energy rather than the composition shift to near eutectic. The above results help understand the effect of minor addition of rare-earth to the formability of Zr-based bulk metallic glasses.

  16. Search for chemical separations of the element 106 homologues in HF and HF-HCl media

    International Nuclear Information System (INIS)

    Trubert, D.; Monroy-Guzman, F.; Hussonnois, M.; Brillard, L.; Le Naour, C.; Constantinescu, O.

    1996-01-01

    In order to study the chemical properties of element 263 106 in aqueous media, fast, efficient and reproducible chromatographic separations were tested on its assumed homologous: Mo, W and U. Corroborative static and dynamic off-line experiments have shown that after fixation of these three elements on anion-exchange resin in HF medium, selective elution could be achieved by using suitable concentration of HCl - HF and HCl solutions. Separations of short-lived W isotopes, produced through heavy ion irradiation were also performed on-line. (author). 27 refs., 14 figs

  17. Extreme Hf-Os Isotope Compositions in Hawaiian Peridotite Xenoliths: Evidence for an Ancient Recycled Lithosphere

    Science.gov (United States)

    Bizimis, M.; Lassiter, J. C.; Salters, V. J.; Sen, G.; Griselin, M.

    2004-12-01

    ) melt depletion event recorded by both the low 187Os/186Os and high 176Hf/177Hf ratios in the SLC peridotites can be explained with two different scenarios. First, the SLC peridotites may represent ancient depleted lithosphere that survived subduction, remained "rafting" in the upper mantle and is now sampled beneath Oahu. However, the lack of such unradiogenic Os isotopes in both MORBs and abyssal peridotites suggests that such peridotites are rare in the upper mantle and makes their exclusive presence under Oahu a rather fortuitous coincidence. Alternatively, the SLC peridotites may represent ancient depleted recycled lithosphere brought up by the Hawaiian plume. A recycled oceanic crust origin has been previously invoked for the Koolau shield lavas. It is then conceivable that fragments of the lithospheric portion of that subducted package have remained coupled with the oceanic crust and are being brought up by the plume from the deep, but because they were previously depleted, these peridotites contribute minimally, if at all, to Hawaiian volcanism. The presence of microdiamonds and majoritic garnets in some SLC pyroxenites also corroborates a deep origin. In this case, the SLC peridotites represent the first-ever direct evidence that subducted material actually makes it back on the surface, essentially closing the subduction cycle.

  18. Synthesis and characterization of nanostructured CaZrO{sub 3} and BaZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ibiapino, Amanda Laura; Figueiredo, Laysa Pires de [Departamento de Quimica, Instituto de Ciencias Exatas e da Terra, Universidade Federal do Mato Grosso, MT (Brazil); Lascalea, Gustavo E. [LISAMEN/CONICET, Ciudad de Mendoza (Argentina); Prado, Rogerio Junqueira, E-mail: rjprado@ufmt.br [Instituto de Fisica, Universidade Federal do Mato Grosso, Cuiaba - MT (Brazil)

    2013-09-01

    In this work, nanostructured samples of barium zirconate (BaZrO{sub 3}) and calcium zirconate (CaZrO{sub 3}) were synthesized by the gel-combustion method, using glycine as fuel. The ceramic powders were calcined at 550 Degree-Sign C for 2 h and subsequently heat treated at 1350 Degree-Sign C for 10 min (fast-firing). The X-ray diffraction technique was employed to identify and characterize the crystalline phases present in the synthesized powders, using the Rietveld method. Monophasic nanostructured samples of BaZrO{sub 3} and CaZrO{sub 3} presenting average crystallite sizes of around 8.5 and 10.3 nm, respectively, were found after fast-firing. (author)

  19. HF band filter bank multi-carrier spread spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Laraway, Stephen Andrew; Moradi, Hussein; Farhang-Boroujeny, Behrouz

    2015-10-01

    Abstract—This paper describes modifications to the filter bank multicarrier spread spectrum (FB-MC-SS) system, that was presented in [1] and [2], to enable transmission of this waveform in the HF skywave channel. FB-MC-SS is well suited for the HF channel because it performs well in channels with frequency selective fading and interference. This paper describes new algorithms for packet detection, timing recovery and equalization that are suitable for the HF channel. Also, an algorithm for optimizing the peak to average power ratio (PAPR) of the FBMC- SS waveform is presented. Application of this algorithm results in a waveform with low PAPR. Simulation results using a wide band HF channel model demonstrate the robustness of this system over a wide range of delay and Doppler spreads.

  20. Nuclear quadrupole interactions in ferroelectric compounds of HF181

    International Nuclear Information System (INIS)

    Kunzler, J.V.

    1971-01-01

    Measurements of nuclear quadrupole interaction constants in perovkite-type compounds of PbHfO 3 , SnhfO 3 , CaHfO 3 e SrHfO 3 have been performed using the perturbed angular correlation technique. A range of fundamental frequencies from 150 to 550 Megaradians persecond was determined. The variation of quadrupole constants has been discussed through the molecular orbital theory

  1. Valence electron structure and properties of stabilized ZrO2

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To reveal the properties of stabilizers in ZrO2 on nanoscopic levels, the valence electron structures of four stable ZrO2 phases and c-ZrO2 were analyzed on the basis of the empirical electron theory of solids and molecules. The results showed that the hybridization levels of Zr atoms in c-ZrO2 doped with Ca and Mg dropped from B17 to B13, the hybridization levels of Zr atoms in c-ZrO2 doped with Y and Ce dropped from B17 to B15, and that the four stabilizing atoms all made the hybridization levels of O atoms drop from level 4 to level 2. The numbers of covalent electrons in the strongest covalent bond in the descending order are c-ZrO2>Zr0.82Ce0.18O2> Zr0.82Y0.18O1.91>Zr0.82Mg0.18O1.82>Zr0.82Ca0.18O1.82. The bond energies of the strongest covalent bond and the melting points of the solid solutions in the descending order are Zr0.82Ce0.18O2> c-ZrO2>Zr0.82Y0.18O1.91>Zr0.82Mg0.18O1.82>Zr0.82Ca0.18O1.82. The percent-ages of the total number of covalent electrons in the descending order are c-ZrO2>Zr0.82Y0.18O1.91> Zr0.82Ce0.18O2>Zr0.82Mg0.18O1.82> Zr0.82Ca0.18O1.82. From the above analysis, it can be concluded that the stabilizing degrees of the four stabilizers in the descending order are CaO> MgO>Y2O3>CeO2.

  2. Lu-Hf and Sm-Nd garnet geochronology

    DEFF Research Database (Denmark)

    Smit, Matthijs Arjen; Scherer, Erik E.; Mezger, Klaus

    2013-01-01

    To investigate the systematics of the 176Lu–176Hf and 147Sm–143Nd garnet chronometers, we performed REE and isotope analyses on garnet crystals of different size (0.55–3.1 mm radius) from a single granulite specimen (Archean Pikwitonei Granulite Domain, Manitoba, Canada). The Lu–Hf dates are simi...

  3. Density functional study of vibrational, thermodynamic and elastic properties of ZrCo and ZrCoX{sub 3} (X = H, D and T) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Chattaraj, D., E-mail: debchem@barc.gov.in [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Parida, S.C.; Dash, Smruti [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Majumder, C. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-04-25

    Highlights: • The physico-chemical properties of ZrCo and its hydrides were studied. • The isotope effect on vibrational and thermodynamic properties was investigated. • The changes in elastic properties due to hydrogenation of ZrCo were investigated. • Thermodynamics properties of ZrCo and its hydrides were calculated. - Abstract: The dynamical, thermodynamic and elastic properties of ZrCo and its hydrides ZrCoX{sub 3} (X = H, D and T) are reported. While the electronic structure calculations are performed using plane wave pseudopotential approach, the effect of isotopes on the vibrational and thermodynamic properties has been demonstrated through frozen phonon approach. The results reveal significant difference between the ZrCoH{sub 3} and its isotopic analogs in terms of phonon frequencies and zero point energies. For example, the energy gap between optical and acoustic modes reduces in the order of ZrCoT{sub 3} > ZrCoD{sub 3} > ZrCoH{sub 3}. The vibrational properties shows that the intermetallic ZrCo is dynamically stable whereas ZrCoX{sub 3} (X = H, D and T) are dynamically unstable. The calculated formation energies of ZrCoX{sub 3}, including the ZPE, are −146.7, −158.3 and −164.1 kJ/(mole of ZrCoX{sub 3}) for X = H, D and T, respectively. In addition, the changes in elastic properties of ZrCo upon hydrogenation have also been investigated. The results show that both ZrCo and ZrCoH{sub 3} are mechanically stable at ambient pressure. The Debye temperatures of both ZrCo and ZrCoH{sub 3} are determined using the calculated elastic moduli.

  4. Diffusion studies in amorphous NiZr alloys

    International Nuclear Information System (INIS)

    Hahn, H.; Averback, R.S.; Hoshino, K.; Rothman, S.J.

    1987-06-01

    Tracer impurity and self diffusion measurements have been made on amorphous (a-) NiZr alloys using radioactive tracer, Secondary Ion Mass Spectrometry and Rutherford backscattering techniques. The temperature dependence of diffusion in a-NiZr can be represented in the form D = D 0 exp(-Q/kT), with no structural relaxation effects being observed. The mobility of an atom in a-NiZr increased dramatically with decreasing atomic radius of the diffusing atom and also with decreasing Ni content for Ni concentrations below ≅40 at. %. These diffusion characteristics in a-NiZr are remarkably similar to those in α-Zr and α-Ti. These mechanisms assume that Zr and Ti provide a close packed structure, either crystalline or amorphous, through which small atoms diffuse by an interstitial mechanism and large atoms diffuse by a vacancy mechanism. 12 refs., 2 figs., 2 tabs

  5. Microstructural investigation of as-cast uranium rich U–Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuting, E-mail: zhangyuting@caep.cn [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China); School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China); Wang, Xin [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China); Zeng, Gang [Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan (China); Wang, Hui [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China); Jia, Jianping [Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan (China); Sheng, Liusi [School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China); Zhang, Pengcheng, E-mail: zpc113@sohu.com [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China)

    2016-04-01

    The present study evaluates the microstructure in as-cast uranium rich U–Zr alloys, an important subsystem of U–Pu–Zr ternary metallic nuclear reactor fuel, as a function of the Zr content, from 2wt.% to 15wt.%Zr. It has been previously suggested that the unique intermetallic compound δ phase in U–Zr alloys is only present in as-cast U–Zr alloys with a Zr content exceeding 10wt.%Zr. However, our analysis of transmission electron microscopy (TEM) data shows that the δ phase is common to all as-cast alloys studied in this work. Furthermore, specific coherent orientation relationship is found between the α and δ phases, consistent with previous findings, and a third variant is discovered in this paper. - Highlights: • Initially, lattice parameter of as-cast U–Zr alloys decrease with the increasing Zr content, and then increase. • XRD data show the presence of δ-UZr{sub 2} phase in as-cast U–Zr alloys with a Zr content of more than 8wt.% Zr. • Finding δ-UZr{sub 2} phase exists in all as-cast uranium rich U–Zr alloys, even for alloys with a lean Zr content. • Three kinds of preferential orientations of the δ phase grow.

  6. First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al-TM (TM = Ti, Zr and Hf) systems: A comparison of cluster expansion and supercell methods

    International Nuclear Information System (INIS)

    Ghosh, G.; Walle, A. van de; Asta, M.

    2008-01-01

    The thermodynamic properties of solid solutions with body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures in the Al-TM (TM = Ti, Zr and Hf) systems are calculated from first-principles using cluster expansion (CE), Monte-Carlo simulation and supercell methods. The 32-atom special quasirandom structure (SQS) supercells are employed to compute properties at 25, 50 and 75 at.% TM compositions, and 64-atom supercells have been employed to compute properties of alloys in the dilute concentration limit (one solute and 63 solvent atoms). In general, the energy of mixing (Δ m E) calculated by CE and dilute supercells agree very well. In the concentrated region, the Δ m E values calculated by CE and SQS methods also agree well in many cases; however, noteworthy discrepancies are found in some cases, which we argue originate from inherent elastic and dynamic instabilities of the relevant parent lattice structures. The importance of short-range order on the calculated values of Δ m E for hcp Al-Ti alloys is demonstrated. We also present calculated results for the composition dependence of the atomic volumes in random solid solutions with bcc, fcc and hcp structures. The properties of solid solutions reported here may be integrated within the CALPHAD formalism to develop reliable thermodynamic databases in order to facilitate: (i) calculations of stable and metastable phase diagrams of binary and multicomponent systems, (ii) alloy design, and (iii) processing of Al-TM-based alloys

  7. A two-phase model to describe the dissolution of ZrO2 by molten Zr

    International Nuclear Information System (INIS)

    Belloni, J.; Fichot, F.; Goyeau, B.; Gobin, D.; Quintard, M.

    2007-01-01

    In case of a hypothetical severe accident in a nuclear Pressurized Water Reactor (PWR), the fuel elements in the core may reach very high temperatures (more than 2000 K). UO 2 (Uranium dioxide) pellets are enclosed by a cladding mainly composed of Zircaloy (Zr). If the temperature became higher than 2100 K (melting temperature of Zr), the UO 2 pellets would be in contact with molten Zr, resulting in the dissolution and liquefaction of UO 2 at a lower temperature than its melting points (3100 K). Several experimental and numerical investigations have led to a better understanding of this phenomenon but a comprehensive and consistent modeling is still missing. The goal of this paper is to propose a two-phase macroscopic model describing the dissolution of a solid alloy by a liquid. The model is limited to binary alloys and it is applied to the particular case of the dissolution of ZrO 2 by liquid Zr, for which experimental data are available (Hofmann et al., 1999). The model was established by using a volume averaging method. Numerical simulations are compared to experimental results and show a good agreement. (authors)

  8. Bis-ligated Ti and Zr complexes of chelating N-heterocyclic carbenes

    KAUST Repository

    El-Batta, Amer

    2011-07-01

    In this communication we report the synthesis of novel titanium and zirconium complexes ligated by bidentate "salicylaldimine-like" N-heterocyclic carbenes (NHC). Double addition of the NHC chelate to either TiCl4(thf)2 or ZrCl4 forms bis-ligated organometallic fragments with a distorted octahedral geometry. These complexes are rare examples of group IV transition-metal NHC adducts. Preliminary catalytic tests demonstrate that in the presence of methylaluminoxane (MAO) these complexes are useful initiators for the polymerization of ethylene and the copolymerization of ethylene with norbornene and 1-octene. © 2011 Elsevier B.V. All rights reserved.

  9. The effect of sintering conditions and ZrN volume fraction on the mechanical properties of spark plasma sintered W/ZrN composites

    International Nuclear Information System (INIS)

    Lee, Dongju; Umer, Malik Adeel; Shin, Yoochul; Jeon, Seokwoo; Hong, Soonhyung

    2012-01-01

    Highlights: ► Effect of sintering conditions on properties of W composites was investigated. ► Effect of ZrN volume fraction on properties of W composites was investigated. ► The grain size and relative density increased with increasing sintering temperature. ► ZrN particles led to an increase in strength of W and a decrease in grain size. ► Highest flexural strength was obtained for 10 vol.% W/ZrN with lowest agglomeration. - Abstract: In an effort to improve the room temperature mechanical properties of tungsten, W/ZrN composites were fabricated by high energy ball milling followed by spark plasma sintering at temperatures in a range of 1200–1700 °C under a pressure of 50 MPa. The effects of sintering conditions and ZrN volume fraction on the mechanical properties of the W/ZrN composites were studied and the results were compared to the properties of monolithic tungsten. The grain size of monolith tungsten and W/ZrN composites was found to increase with an increase in sintering temperature and time. In the case of the W/ZrN composites, ZrN particles led to an increase in the compressive strength of tungsten and a decrease in grain size. The increase in compressive strength of the composites was attributed to a reinforcement effect of ZrN particles as well as grain size refinement according to the Hall–Petch relation. Compressive strength of the composites increased with increasing ZrN content while the flexural strength decreased for samples with ZrN content exceeding 10 vol.%. This was attributed to the effects of ZrN agglomeration within the tungsten matrix.

  10. Nanoindentation of ZrO{sub 2} and ZrO{sub 2}/Zr systems by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zizhe; Chernatynskiy, Aleksandr; Noordhoek, Mark J.; Sinnott, Susan B.; Phillpot, Simon R., E-mail: sphil@mse.ufl.edu

    2017-04-01

    The deformation behaviors of cubic zirconia and a cubic zirconia thin film on top of an hcp zirconium substrate are investigated using molecular dynamics nanoindentation simulation. Interatomic interactions are described by the previously developed Charge Optimized Many Body (COMB) potential for the Zr-ZrO{sub 2}-O{sub 2} system. The load-displacement curves, deformation processes and hardnesses of zirconia and the zirconia/zirconium systems are characterized. In addition, by comparing with a previous nanoindentation simulation on zirconium, the effects of the zirconia layer on top on the mechanical properties of the zirconium substrate are determined.

  11. Bubble point measurement and high pressure distillation column design for the environmentally benign separation of zirconium from hafnium for nuclear power reactor

    International Nuclear Information System (INIS)

    Minh, Le Quang; Kim, Gyeongmin; Lee, Moonyong; Park, Jongki

    2015-01-01

    We examined the feasible separation of ZrCl 4 and HfCl 4 through high pressure distillation as environmentally benign separation for structural material of nuclear power reactor. The bubble point pressures of ZrCl 4 and HfCl 4 mixtures were determined experimentally by using an invariable volume equilibrium cell at high pressure and temperature condition range of 2.3-5..6MPa and 440-490 .deg. C. The experimental bubble point pressure data were correlated with Peng-Robinson equation of state with a good agreement. Based on the vapor-liquid equilibrium properties evaluated from the experimental data, the feasibility of high pressure distillation process for the separation of ZrCl 4 and HfCl 4 was investigated with its main design condition through rigorous simulation using a commercial process simulator, ASPEN Hysys. An enhanced distillation configuration was also proposed to improve energy efficiency in the distillation process. The result showed that a heat-pump assisted distillation with a partial bottom flash could be a promising option for commercial separation of ZrCl 4 and HfCl 4 by taking into account of both energy and environmental advantages

  12. Towards the accurate electronic structure descriptions of typical high-constant dielectrics

    Science.gov (United States)

    Jiang, Ting-Ting; Sun, Qing-Qing; Li, Ye; Guo, Jiao-Jiao; Zhou, Peng; Ding, Shi-Jin; Zhang, David Wei

    2011-05-01

    High-constant dielectrics have gained considerable attention due to their wide applications in advanced devices, such as gate oxides in metal-oxide-semiconductor devices and insulators in high-density metal-insulator-metal capacitors. However, the theoretical investigations of these materials cannot fulfil the requirement of experimental development, especially the requirement for the accurate description of band structures. We performed first-principles calculations based on the hybrid density functionals theory to investigate several typical high-k dielectrics such as Al2O3, HfO2, ZrSiO4, HfSiO4, La2O3 and ZrO2. The band structures of these materials are well described within the framework of hybrid density functionals theory. The band gaps of Al2O3, HfO2, ZrSiO4, HfSiO4, La2O3 and ZrO2are calculated to be 8.0 eV, 5.6 eV, 6.2 eV, 7.1 eV, 5.3 eV and 5.0 eV, respectively, which are very close to the experimental values and far more accurate than those obtained by the traditional generalized gradient approximation method.

  13. The secondary electron yield of TiZr and TiZrV non evaporable getter thin film coatings

    CERN Document Server

    Scheuerlein, C; Hilleret, Noël; Taborelli, M

    2001-01-01

    The secondary electron yield (SEY) of two different non evaporable getter (NEG) samples has been measured 'as received' and after thermal treatment. The investigated NEGs are TiZr and TiZrV thin film coatings of 1 mm thickness, which are sputter deposited onto copper substrates. The maximum SEY dmax of the air exposed TiZr and TiZrV coating decreases from above 2.0 to below 1.1 during a 2 hour heat treatment at 250 °C and 200 °C, respectively. Saturating an activated TiZrV surface under vacuum with the gases typically present in ultra high vacuum systems increases dmax by about 0.1. Changes in elemental surface composition during the applied heat treatments were monitored by Auger electron spectroscopy (AES). After activation carbon, oxygen and chlorine were detected on the NEG surfaces. The potential of AES for detecting the surface modifications which cause the reduction of SE emission during the applied heat treatments is critically discussed.

  14. Amorphous Ti-Zr

    International Nuclear Information System (INIS)

    Rabinkin, A.; Liebermann, H.; Pounds, S.; Taylor, T.

    1991-01-01

    This paper is the first report on processing, properties and potential application of amorphous titanium/zirconium-base alloys produced in the form of a good quality continuous and ductile ribbon having up to 12.5 mm width. To date, the majority of titanium brazing is accomplished using cooper and aluminum-base brazing filler metals. The brazements produced with these filler metals have rather low (∼300 degrees C) service temperature, thus impeding progress in aircraft and other technologies and industries. The attempt to develop a generation of high temperature brazing filler metals was made in the late sixties-early seventies studies in detail were a large number of Ti-, Zr-Ti-Zr, Ti-V and Zr-V-Ti based alloys. The majority of these alloys has copper and nickel as melting temperature depressants. The presence of nickel and copper converts them into eutectic alloys having [Ti(Zr)] [Cu(Ni)], intermetallic phases as major structural constituents. This, in turn, results in high alloy brittleness and poor, if any, processability by means of conventional, i.e. melting-ingot casting-deformation technology. In spite of good wettability and high joint strength achieved in dozens of promising alloys, only Ti-15Cu-15Ni is now widely used as a brazing filler metal for high service temperature. Up until now this material could not be produced as a homogeneous foil and is instead applied as a clad strip consisting of three separate metallic layers

  15. Co-sputtered amorphous Nb–Ta, Nb–Zr and Ta–Zr coatings for corrosion protection of cyclotron targets for [{sup 18}F] production

    Energy Technology Data Exchange (ETDEWEB)

    Skliarova, Hanna, E-mail: Hanna.Skliarova@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); University of Ferrara, Ferrara (Italy); Azzolini, Oscar, E-mail: Oscar.Azzolini@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); Johnson, Richard R., E-mail: richard.johnson@teambest.com [BEST Cyclotron Systems Inc., 8765 Ash Street Unit 7, Vancouver, BC V6P 6T3 (Canada); Palmieri, Vincenzo, E-mail: Vincenzo.Palmieri@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); University of Padua, Padua (Italy)

    2015-08-05

    Highlights: • Nb–Ta, Nb–Zr and Ta–Zr alloy films were deposited by co-sputtering. • Co-sputtered Nb–Zr and Nb–Ta alloy coatings had crystalline microstructures. • Diffusion barrier efficiency of Nb–Zr and Nb–Ta decreased with the increase of Nb %. • Co-sputtered Ta–Zr films with 30–73 at.% Ta were amorphous. • Sputtered amorphous Ta–Zr films showed superior diffusion barrier efficiency. - Abstract: Protective corrosion resistant coatings serve for decreasing the amount of ionic contaminants from Havar® entrance foils of the targets for [{sup 18}F] production. The corrosion damage of coated entrance foils is caused mainly by the diffusion of highly reactive products of water radiolysis through the protective film toward Havar® substrate. Since amorphous metal alloys (metallic glasses) are well-known to perform a high corrosion resistance, the glass forming ability, microstructure and diffusion barrier efficiency of binary alloys containing chemically inert Nb, Ta, Zr were investigated. Nb–Ta, Nb–Zr and Ta–Zr films of different alloy composition and ∼1.5 μm thickness were co-deposited by magnetron sputtering. Diffusion barrier efficiency tests used reactive aluminum underlayer and protons of acid solution and gallium atoms at elevated temperature as diffusing particles. Though co-sputtered Nb–Ta and Nb–Zr alloy films of different contents were crystalline, Ta–Zr alloy was found to form dense amorphous microstructures in a range of composition with 30–73% atomic Ta. The diffusion barrier efficiency of Nb–Zr and Nb–Ta alloy coatings decreased with increase of Nb content. The diffusion barrier efficiency of sputtered Ta–Zr alloy coatings increased with the transition from nanocrystalline columnar microstructure to amorphous for coatings with 30–73 at.% Ta.

  16. Pentamethylcyclopentadienyl Zirconium and Hafnium Polyhydride Complexes : Synthesis, Structure, and Reactivity

    NARCIS (Netherlands)

    Visser, Cindy; Hende, Johannes R. van den; Meetsma, Auke; Hessen, Bart; Teuben, Jan H.

    2001-01-01

    The half-sandwich zirconium and hafnium N,N-dimethylaminopropyl complexes Cp*M[(CH2)3NMe2]Cl2 (Cp* = η5-C5Me5, M = Zr, 1; Hf, 2) and Cp*M[(CH2)3NMe2]2Cl (M = Zr, 3; Hf, 4) were synthesized by mono- or dialkylation of Cp*MCl3 with the corresponding alkyllithium and Grignard reagents. Hydrogenolysis

  17. Development of Zr alloys - Fabrication of Zr-Nb alloy used in PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang In; Kim, Won Baek; Choi, Guk Sun; Lee, Chul Kyung; Jang, Dae Kyu; Seo, Chang Yeol; Sim, Kun Joo; Lee, Jae Cheon [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-07-01

    The manufacture of Zr-Nb alloy ingot by EB melting process is carried out to meet the chemical composition and mechanical and property specifications and to ensure that the ingots are free of unacceptable defects through this study. It was established that Zr-Nb alloy was made by EB melting technique including the control of adding elements, melting power and melting and cast device. 28 refs., 13 tabs., 26 figs., 23 ills. (author)

  18. New Trident Molecule with Phosphoric Acid Functionality for Trivalent Rare Earth Extraction

    Directory of Open Access Journals (Sweden)

    Keisuke Ohto

    2017-11-01

    Full Text Available Tripodal extraction reagent with three phosphoric acid groups, together with the corresponding monopodal molecule has been prepared to investigate some metals extraction behavior, in particular, trivalent rare earth elements (REEs. The tripodal reagent exhibited extremely high selectivity for metals with high valency such as Zr(IV, In(III, Lu(III, and Fe(III. Tripodal reagent also exhibited exceptionally high extraction ability compared with the corresponding monopodal one in the extraction of trivalent rare earths. The result for the stoichiometry of tripodal reagent to heavy rare earths showed the inflection point between Er (2:1 for a ligand with ion and Tm (1:1. The extraction reactions were determined for all rare earths with both reagents. The extraction equilibrium constants (Kex, the separation factors (β, half pH values (pH1/2, difference half pH values (ΔpH1/2 for extraction of REEs with both reagents are estimated.

  19. X-ray study of rapidly cooled ribbons of Al-Cr-Zr and Al-Ni-Y-Cr-Zr alloys

    International Nuclear Information System (INIS)

    Betsofen, S.Ya.; Osintsev, O.E.; Lutsenko, A.N.; Konkevich, V.Yu.

    2002-01-01

    One investigated into phase composition, lattice spacing and structure of rapidly cooled 25-200 μm gauge strips made of Al-4,1Cr-3,2Zr and Al-1,5Cr-1,5Zr-4Ni-3Y alloys, wt. %, produced by melt spinning to a water-cooled copper disk. In Al-4,1Cr-3,2Zr alloy one detected intermetallic phases: Al 3 Zr and two Al 86 Cr 14 composition icosahedral phases apart from aluminium solid solution with 4.040-4.043 A lattice spacing. In Al-1,5Cr-1,5Zr-4Ni-3Y alloy one identified two Al 86 Cr 14 icosahedral phases and two AlNiY and Al 3 Y yttrium-containing ones, lattice spacing of aluminium solid solution was equal to 4.052-4.053 A [ru

  20. Solid phase crystallisation of HfO2 thin films

    International Nuclear Information System (INIS)

    Modreanu, M.; Sancho-Parramon, J.; O'Connell, D.; Justice, J.; Durand, O.; Servet, B.

    2005-01-01

    In this paper, we report on the solid phase crystallisation of carbon-free HfO 2 thin films deposited by plasma ion assisted deposition (PIAD). After deposition, the HfO 2 films were annealed in N 2 ambient for 3 h at 350, 550 and 750 deg. C. Several characterisation techniques including X-ray reflectometry (XRR), X-ray diffraction (XRD), spectroscopic ellipsometry (SE) and atomic force microscopy (AFM) were used for the physical characterisation of as-deposited and annealed HfO 2 . XRD has revealed that the as-deposited HfO 2 film is in an amorphous-like state with only traces of crystalline phase and that the annealed films are in a highly crystalline state. These results are in good agreement with the SE results showing an increase of refractive index by increasing the annealing temperature. XRR results show a significant density gradient over the as-deposited film thickness, which is characteristic of the PIAD method. The AFM measurements show that the HfO 2 layers have a smooth surface even after annealing at 750 deg. C. The present study demonstrates that the solid phase crystallisation of HfO 2 PIAD thin films starts at a temperature as low as 550 deg. C

  1. Behavior of LASL-made graphite, ZrC, and ZrC-containing coated particles in irradiation tests HT-28 and HT-29

    International Nuclear Information System (INIS)

    Reiswig, R.D.; Wagner, P.; Hollabaugh, C.M.; White, R.W.; O'Rourke, J.A.; Davidson, K.V.; Schell, D.H.

    1976-01-01

    Three types of materials, extruded graphite, hot-pressed ZrC, and particles with ZrC coatings, were irradiated in ORNL High Fluence Isotope Reactor Irradiation tests HT-28 and HT-29. The ZrC seemed unaffected. The graphite changed in dimensions, x-ray diffraction parameters, and thermal conductivity. The four types of coated particles tested all resisted the irradiation well, except one set of particles with double-graded C-ZrC-C coats. Overall, the results were considered encouraging for use of ZrC and extruded graphite fuel matrices. 16 fig

  2. Mechanical alloying of Hf and Fe powders

    International Nuclear Information System (INIS)

    Mendoza Zelis, L.; Crespo, E.; Creus, M.; Damonte, L.C.; Sanchez, F.H.; Punte, G.

    1994-01-01

    Pure crystalline Hf and Fe powders were mixed and milled under an argon atmosphere. The evolution of the system with milling time was followed with Moessbauer effect spectroscopy and X-ray diffraction. The results indicate that in the first stages an amorphous Fe-rich alloy was gradually formed together with a solid solution of Hf in Fe beyond the solubility limit. (orig.)

  3. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    International Nuclear Information System (INIS)

    Kim, Ki Hwan; Lee, Chong Tak; Lee, Chan Bock; Fielding, R.S.; Kennedy, J.R.

    2013-01-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 °C showed that HfN, TiC, ZrC, and Y 2 O 3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by