WorldWideScience

Sample records for zones groundwater treatment

  1. Use of Interface Treatment to Reduce Emissions from Residuals in Lower Permeability Zones to Groundwater flowing Through More Permeable Zones (Invited)

    Science.gov (United States)

    Johnson, P.; Cavanagh, B.; Clifton, L.; Daniels, E.; Dahlen, P.

    2013-12-01

    Many soil and groundwater remediation technologies rely on fluid flow for contaminant extraction or reactant delivery (e.g., soil vapor extraction, pump and treat, in situ chemical oxidation, air sparging, enhanced bioremediation). Given that most unconsolidated and consolidated settings have permeability contrasts, the outcome is often preferential treatment of more permeable zones and ineffective treatment of the lower permeability zones. When this happens, post-treatment contaminant emissions from low permeability zone residuals can cause unacceptable long-term impacts to groundwater in the transmissive zones. As complete remediation of the impacted lower permeability zones may not be practicable with conventional technologies, one might explore options that lead to reduction of the contaminant emissions to acceptable levels, rather than full remediation of the lower permeability layers. This could be accomplished either by creating a sustained emission reaction/attenuation zone at the high-low permeability interface, or by creating a clean soil zone extending sufficiently far into the lower permeability layer to cause the necessary reduction in contaminant concentration gradient and diffusive emission. These options are explored in proof-of-concept laboratory-scale physical model experiments. The physical models are prepared with two layers of contrasting permeability and either dissolved matrix storage or nonaqueous phase liquid (NAPL) in the lower permeability layer. A dissolved oxidant is then delivered to the interface via flow across the higher permeability layer and changes in contaminant emissions from the low permeability zone are monitored before, during, and after oxidant delivery. The use of three oxidants (dissolved oxygen, hydrogen peroxide and sodium persulfate) for treatment of emissions from petroleum hydrocarbon residuals is examined.

  2. Prediction of Groundwater Quality Improvement Down-Gradient of In Situ Permeable Treatment Barriers and Fully-Remediated Source Zones. ESTCP Cost and Performance Report

    National Research Council Canada - National Science Library

    Johnson, Paul C; Carlson, Pamela M; Dahlen, Paul

    2008-01-01

    In situ permeable treatment barriers (PTB) are designed so that contaminated groundwater flows through an engineered treatment zone within which contaminants are eliminated or the concentrations are significantly reduced...

  3. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.

    Science.gov (United States)

    Chong, Andrea D; Mayer, K Ulrich

    2017-09-01

    Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO 2 ) in the case of ISCO using permanganate, CO 2 and methane (CH 4 ) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C 2 Cl 3 H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings

  4. Particle tracking for unsaturated-zone groundwater travel time analysis at Yucca Mountain

    International Nuclear Information System (INIS)

    Arnold, B.W.; Skinner, L.H.; Zieman, N.B.

    1995-01-01

    A particle tracking code developed to link numerical modeling of groundwater flow in the unsaturated zone to the analysis of groundwater travel times was used to produce preliminary estimates of the distribution of groundwater-travel time from a potential repository at Yucca Mountain, Nevada to the water table. Compliance with 10CFR960 requires the demonstration that pre-waste-emplacement groundwater travel time from the disturbed zone to the accessible environment is expected to exceed 1,000 years along any path of likely and significant radionuclide travel. The use of multiple particles and multiple realizations of the geology and parameter distributions in the unsaturated zone allows a probabilistic analysis of groundwater travel times that may be applied for evaluating compliance

  5. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  6. Groundwater composition fluctuation within technogenic zones (case study: flooded coal mines in Primorsky Krai, Russia)

    Science.gov (United States)

    Tarasenko, I. A.; Zinkov, A. V.; Vakh, E. A.; Vetoshkina, A. V.; Strelnikova, A. B.

    2016-03-01

    The paper considers groundwater composition fluctuation within technogenic zones based on evidence from the flooded coal mines of Primorye. The authors have determined the regularities of hydrogeochemical processes, specified the groundwater composition fluctuation within the technogenic complexes located in the liquidated mine areas, and identified the equilibrium phases between the studied waters and specific secondary minerals. It has been proved that water within natural-technogenic complexes in the liquidated mine areas are saturated with silicates, carbonates, sulfates, oxides, and hydroxides, which should be taken into account when designing technologies for groundwater treatment.

  7. Assessment of groundwater recharge potential zone using GIS approach in Purworejo regency, Central Java province, Indonesia

    Science.gov (United States)

    Aryanto, Daniel Eko; Hardiman, Gagoek

    2018-02-01

    Floods and droughts in Purworejo regency are an indication of problems in groundwater management. The current development progress has led to land conversion which has an impact on the problem of water infiltration in Purworejo regency. This study aims to determine the distribution of groundwater recharge potential zones by using geographic information system as the basis for ground water management. The groundwater recharge potential zone is obtained by overlaying all the thematic maps that affect the groundwater infiltration. Each thematic map is weighted according to its effect on groundwater infiltration such as land-use - 25%, rainfall - 20%, litology - 20%, soil - 15%, slope - 10%, lineament - 5%, and river density - 5% to find groundwater recharge potential zones. The groundwater recharge potential zones thus obtained were divided into five categories, viz., very high, high, medium, low and very low zones. The results of this study may be useful for better groundwater planning and management.

  8. Quantification of groundwater recharge through application of pilot techniques in the unsaturated zone.

    Science.gov (United States)

    Kallioras, Andreas; Piepenbrink, Matthias; Schuth, Christoph; Pfletschinger, Heike; Dietrich, Peter; Koeniger, Franz; Rausch, Randolf

    2010-05-01

    Accurate determination of groundwater recharge is a key issue for the "smart mining" of groundwater resources. Groundwater recharge estimation techniques depend on the investigated hydrologic zone, and therefore main approaches are based on (a) unsaturated zone, (b) saturated zone and (c) surface water studies. This research contributes to the determination of groundwater recharge by investigating the infiltration of groundwater through the unsaturated zone. The investigations are conducted through the application of a combination of different pilot field as well as lab techniques. The field techniques include the installation of specially designed Time Domain Reflectometry (TDR) sensors, at different depths within the unsaturated zone for in-situ and continuous measurements of the volumetric pore water content. Additionally, the extraction of pore water -for analysis of its isotopic composition- from multilevel undisturbed soil samples through significant depths within the unsaturated zone column, enables the dating of the groundwater age through the determination of its isotopic composition. The in-situ investigation of the unsaturated zone is complemented by the determination of high resolution temperature profiles. The installation of the pilot TDR sensors is achieved by using direct push methods at significant depths within the unsaturated zone, providing continuous readings of the soil moisture content. The direct push methods are also ideal for multilevel sampling of undisturbed -without using any drilling fluids which affect the isotopic composition of the containing pore water- soil and consequent extraction of the included pore water for further isotopic determination. The pore water is extracted by applying the method of azeotropic distillation; a method which has the least isotopic fractionation effects on groundwater samples. The determination of different isotopic signals such as 18O, 2H, 3H, and 36Cl, aims to the investigation of groundwater transit

  9. Arid-zone groundwater recharge and palaeorecharge: insights from the radioisotope chlorine-36

    International Nuclear Information System (INIS)

    Jacobson, G.; Wischusen, J.; Cresswell, R.; Fifield, K.

    1998-01-01

    AGSO's collaborative 'Western water' study of groundwater resources in Aboriginal lands in the southwest Northern Territory arid zone, has applied the radioisotope 36 CI and 14 C to investigate the sustainability of community water supplies drawn from shallow aquifers in the Papunya-Kintore-Yuendumu area. The 36 CI results have important implications for groundwater management throughout the arid zone, because substantial recharge occurs only during favourable, wet, interglacial climatic regimes. this has important implications for groundwater management in this area and elsewhere in central Australia, where most of the community water supplies depend on 'old' stored groundwater

  10. Numerical modeling for saturated-zone groundwater travel time analysis at Yucca Mountain

    International Nuclear Information System (INIS)

    Arnold, B.W.; Barr, G.E.

    1996-01-01

    A three-dimensional, site-scale numerical model of groundwater flow in the saturated zone at Yucca Mountain was constructed and linked to particle tracking simulations to produce an estimate of the distribution of groundwater travel times from the potential repository to the boundary of the accessible environment. This effort and associated modeling of groundwater travel times in the unsaturated zone were undertaken to aid in the evaluation of compliance of the site with 10CFR960. These regulations stipulate that pre-waste-emplacement groundwater travel time to the accessible environment shall exceed 1,000 years along any path of likely and significant radionuclide travel

  11. Isotope Investigations of Groundwater Movement in a Coarse Gravel Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    Mali, N. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Kozar-Logar, J. [Jozef Stefan Institute, Ljubljana (Slovenia); Leis, A. [Institute of Water Resources Management, Hydrogeology and Geophysics, Joanneum Research Forschungsgesellschaft mbH, Graz (Austria)

    2013-07-15

    The unsaturated zone above an aquifer serves as a water reservoir which discharges water and possible pollution to the saturated zone. This paper presents the application of oxygen-18 and tritium isotope methods in the study of groundwater transport processes in the unsaturated zone of Selniska Dobrava coarse gravel aquifer. The Selniska Dobrava gravel aquifer is an important water resource for Maribor and its surroundings, therefore the determination of transport processes in the unsaturated zone is important regarding its protection. Groundwater flow characteristics were estimated using isotopes and based on experimental work in a lysimeter. Tritium investigation results were compared with the results of long term oxygen-18 isotope investigation. In this paper the analytical approach, results and interpretation of {delta}{sup 18}O and tritium measurements in the unsaturated zone are presented. (author)

  12. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer, E-mail: odahan@bgu.ac.il; Ronen, Zeev, E-mail: zeevrone@bgu.ac.il

    2017-02-15

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10{sup 5} to 10{sup 7} copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  13. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    International Nuclear Information System (INIS)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-01-01

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10"5 to 10"7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  14. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques

    Directory of Open Access Journals (Sweden)

    N.S. Magesh

    2012-03-01

    Full Text Available Integration of remote sensing data and the geographical information system (GIS for the exploration of groundwater resources has become a breakthrough in the field of groundwater research, which assists in assessing, monitoring, and conserving groundwater resources. In the present paper, various groundwater potential zones for the assessment of groundwater availability in Theni district have been delineated using remote sensing and GIS techniques. Survey of India toposheets and IRS-1C satellite imageries are used to prepare various thematic layers viz. lithology, slope, land-use, lineament, drainage, soil, and rainfall were transformed to raster data using feature to raster converter tool in ArcGIS. The raster maps of these factors are allocated a fixed score and weight computed from multi influencing factor (MIF technique. Moreover, each weighted thematic layer is statistically computed to get the groundwater potential zones. The groundwater potential zones thus obtained were divided into four categories, viz., very poor, poor, good, and very good zones. The result depicts the groundwater potential zones in the study area and found to be helpful in better planning and management of groundwater resources.

  15. Deciphering groundwater potential zones in hard rock terrain using geospatial technology.

    Science.gov (United States)

    Dar, Imran A; Sankar, K; Dar, Mithas A

    2011-02-01

    Remote sensing and geographical information system (GIS) has become one of the leading tools in the field of groundwater research, which helps in assessing, monitoring, and conserving groundwater resources. This paper mainly deals with the integrated approach of remote sensing and GIS to delineate groundwater potential zones in hard rock terrain. Digitized vector maps pertaining to chosen parameters, viz. geomorphology, geology, land use/land cover, lineament, relief, and drainage, were converted to raster data using 23 m×23 m grid cell size. Moreover, curvature of the study area was also considered while manipulating the spatial data. The raster maps of these parameters were assigned to their respective theme weight and class weights. The individual theme weight was multiplied by its respective class weight and then all the raster thematic layers were aggregated in a linear combination equation in Arc Map GIS Raster Calculator module. Moreover, the weighted layers were statistically modeled to get the areal extent of groundwater prospects with respect to each thematic layer. The final result depicts the favorable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.

  16. Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone.

    Science.gov (United States)

    Tsunomori, Fumiaki; Shimodate, Tomoya; Ide, Tomoki; Tanaka, Hidemi

    2017-06-01

    Groundwater radon concentrations around the Tachikawa fault zone were surveyed. The radon concentrations in shallow groundwater samples around the Tachikawa fault segment are comparable to previous studies. The characteristics of the radon concentrations on both sides of the segment are considered to have changed in response to the decrease in groundwater recharge caused by urbanization on the eastern side of the segment. The radon concentrations in deep groundwater samples collected around the Naguri and the Tachikawa fault segments are the same as those of shallow groundwater samples. However, the radon concentrations in deep groundwater samples collected from the bedrock beside the Naguri and Tachikawa fault segments are markedly higher than the radon concentrations expected from the geology on the Kanto plane. This disparity can be explained by the development of fracture zones spreading on both sides of the two segments. The radon concentration distribution for deep groundwater samples from the Naguri and the Tachikawa fault segments suggests that a fault exists even at the southern part of the Tachikawa fault line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Interpretation of environmental isotopic groundwater data. Arid and semi-arid zones

    International Nuclear Information System (INIS)

    Geyh, M.A.

    1980-01-01

    Various hydrodynamic aspects are discussed in order to show their implication for the hydrogeological interpretation of environmental isotope and hydrochemical groundwater data. Special attention is drawn to radiocarbon and tritium studies carried out in arid and semi-arid zones. An exponential model has been utilized to determine the mean residence time of the long-term water from springs in karst and crystalline regions. Hydrogeological parameters such as the porosity can be checked by this result. In addition, the exponential model offers the possibility of determining the initial 14 C content of spring water, which is sensitively dependent on the soil of the recharge area. A base-flow model has been introduced to interpret the 14 C and 3 H data of groundwater samples from older karst regions. Differences between pumped and drawn samples exist with respect to the groundwater budget. Owing to pumping, the old base flow is accelerated and becomes enriched in pumped groundwater in comparison to the short-term water. Radiocarbon ages of groundwater in alluvium may be dubious because of isotope exchange with the CO 2 in the root zone along the river bank. Under confined conditions 14 C groundwater ages are diminished if the hydraulic head of the confined aquifer is lower than that of the shallow one. This is due to the radiocarbon downwards transport by convection of shallow groundwater. The same effect occurs, though much faster, if the groundwater table is depleted by groundwater withdrawal. The decrease of the radiocarbon groundwater ages in time can be used to determine the hydraulic transmissibility coefficient of the aquitarde. According to the practical and theoretic results obtained the hydrodynamic aspects require at least the same attention for the interpretation of environmental isotope and hydrochemical data of groundwater as do hydrochemical and isotope fractionation processes. (author)

  18. Identification of groundwater prospective zones by using remote ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 5. Identification of groundwater prospective zones by using remote sensing and geoelectrical methods in Jharia and Raniganj coalfields, Dhanbad district, Jharkhand state. Basudeo Rai A Tiwari V S Dubey. Volume 114 Issue 5 October 2005 pp 515-522 ...

  19. Vadose zone processes delay groundwater nitrate reduction response to BMP implementation as observed in paired cultivated vs. uncultivated potato rotation fields

    Science.gov (United States)

    Jiang, Y.; Nyiraneza, J.; Murray, B. J.; Chapman, S.; Malenica, A.; Parker, B.

    2017-12-01

    Nitrate leaching from crop production contributes to groundwater contamination and subsequent eutrophication of the receiving surface water. A study was conducted in a 7-ha potato-grain-forages rotation field in Prince Edward Island (PEI), Canada during 2011-2016 to link potato rotation practices and groundwater quality. The field consists of fine sandy loam soil and is underlain by 7-9 m of glacial till, which overlies the regional fractured ;red-bed; sandstone aquifer. The water table is generally located in overburden close to the bedrock interface. Field treatments included one field zone taken out of production in 2011 with the remaining zones kept under a conventional potato rotation. Agronomy data including crop tissue, soil, and tile-drain water quality were collected. Hydrogeology data including multilevel monitoring of groundwater nitrate and hydraulic head and data from rock coring for nitrate distribution in overburden and bedrock matrix were also collected. A significant amount of nitrate leached below the soil profile after potato plant kill (referred to as topkill) in 2011, most of it from fertilizer N. A high level of nitrate was also detected in the till vadose zone through coring in December 2012 and through multilevel groundwater sampling from January to May 2014 in both cultivated and uncultivated field zones. Groundwater nitrate concentrations increased for about 2.5 years after the overlying potato field was removed from production. Pressure-driven uniform flow processes dominate water and nitrate transport in the vadose zone, producing an apparently instant water table response but a delayed groundwater quality response to nitrate leaching events. These data suggest that the uniform flow dominated vadose zone in agricultural landscapes can cause the accumulation of a significant amount of nitrate originated from previous farming activities, and the long travel time of this legacy nitrate in the vadose zone can result in substantially delayed

  20. Hydrological mediated denitrification in groundwater below a seasonal flooded restored riparian zone

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn; Engesgaard, Peter; Johnsen, Anders R.

    2017-01-01

    nitrate removal in groundwater primarily by two mechanisms. First, by creating a stagnant flow zone beneath the flooded area thereby increasing the residence time and leaving more time for nitrate removal. Secondly, nitrate removal is increased by enhancing upward flow into the highly reactive organic......A restored riparian zone was characterized to understand the effects of flooding on subsurface hydrological flow paths and nitrate removal in groundwater. Field and laboratory investigations were combined with numerical modeling of dynamic flow and reactive nitrate transport. Flooding enhances...

  1. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab.

    Science.gov (United States)

    Singh, Amanpreet; Panda, S N; Kumar, K S; Sharma, Chandra Shekhar

    2013-07-01

    Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty's analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under "poor," "moderate," "good," and "very good" groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.

  2. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  3. Decomposition of groundwater level fluctuations using transfer modelling in an area with shallow to deep unsaturated zones

    Science.gov (United States)

    Gehrels, J. C.; van Geer, F. C.; de Vries, J. J.

    1994-05-01

    Time series analysis of the fluctuations in shallow groundwater levels in the Netherlands lowlands have revealed a large-scale decline in head during recent decades as a result of an increase in land drainage and groundwater withdrawal. The situation is more ambiguous in large groundwater bodies located in the eastern part of the country, where the unsaturated zone increases from near zero along the edges to about 40 m in the centre of the area. As depth of the unsaturated zone increases, groundwater level reacts with an increasing delay to fluctuations in climate and influences of human activities. The aim of the present paper is to model groundwater level fluctuations in these areas using a linear stochastic transfer function model, relating groundwater levels to estimated precipitation excess, and to separate artificial components from the natural groundwater regime. In this way, the impact of groundwater withdrawal and the reclamation of a 1000 km 2 polder area on the groundwater levels in the adjoining higher ground could be assessed. It became evident that the linearity assumption of the transfer functions becomes a serious drawback in areas with the deepest groundwater levels, because of non-linear processes in the deep unsaturated zone and the non-synchronous arrival of recharge in the saturated zone. Comparison of the results from modelling the influence of reclamation with an analytical solution showed that the lowering of groundwater level is partly compensated by reduced discharge and therefore is less than expected.

  4. Groundwater/Vadose Zone Integration Project Management Plan

    International Nuclear Information System (INIS)

    Hughes, M. C.

    1999-01-01

    This Project Management Plan (PMP) defines the authorities, roles, and responsibilities of the US Department of Energy (DOE), Richland Operations Office (RL) and those contractor organizations participating in the Hanford Site' s Groundwater/Vadose Zone (GW/VZ) Integration Project. The PMP also describes the planning and control systems, business processes, and other management tools needed to properly and consistently conduct the Integration Project scope of work

  5. Analysis on groundwater evolution and interlayer oxidation zone position at the southern margin of Yilin basin

    International Nuclear Information System (INIS)

    Zhang Guanghui

    2007-01-01

    This paper discusses the development and evolution history of groundwater and its reworking to the interlayer oxidation zone, hydrogeochemical zonation of interlayer oxidation zone, mechanism of water-rock interaction and transportation pattern of uranium in the water in Yili Basin. It is suggested that groundwater is one of the important factors to control the development of interlayer oxidation zone and uranium mineralization. (authors)

  6. 14C age reassessment of groundwater from the discharge zone due to cross-flow mixing in the deep confined aquifer

    Science.gov (United States)

    Mao, Xumei; Wang, Hua; Feng, Liang

    2018-05-01

    In a groundwater flow system, the age of groundwater should gradually increase from the recharge zone to the discharge zone within the same streamline. However, it is occasionally observed that the groundwater age becomes younger in the discharge zone in the piedmont alluvial plain, and the oldest age often appears in the middle of the plain. A new set of groundwater chemistry and isotopes was employed to reassess the groundwater 14C ages from the discharge zone in the North China Plain (NCP). Carbonate precipitation, organic matter oxidation and cross-flow mixing in the groundwater from the recharge zone to the discharge zone are recognized according to the corresponding changes of HCO3- (or DIC) and δ13C in the same streamline of the third aquifer of the NCP. The effects of carbonate precipitation and organic matter oxidation are calibrated with a 13C mixing model and DIC correction, but these corrected 14C ages seem unreasonable because they grow younger from the middle plain to the discharge zone in the NCP. The relationship of Cl- content and the recharge distance is used to estimate the expected Cl- content in the discharge zone, and ln(a14C)/Cl is proposed to correct the a14C in groundwater for the effect of cross-flow mixing. The 14C ages were reassessed with the corrected a14C due to the cross-flow mixing varying from 1.25 to 30.58 ka, and the groundwater becomes older gradually from the recharge zone to the discharge zone. The results suggest that the reassessed 14C ages are more reasonable for the groundwater from the discharge zone due to cross-flow mixing.

  7. Radiotracer technique to study pollutant behavior in the vadose zone for groundwater protection

    International Nuclear Information System (INIS)

    Kulkarni, U.P.; Sinha, U.K.; Navada, S.V.; Datta, P.S.; Sud, Y.K.; Kulkarni, K.M.; Aggrawal, P.; )

    2004-01-01

    Pollutants are generated either by industrial or agricultural activity. Pollutants produced due to industrial activities fall into point source category and those generated from agricultural are grouped into extended source category. Under an International Atomic Energy Agency/Coordinated Research Program study, emphasis has been given on transport of pollutants, generated from agricultural activities, in particular, due to the application of fertilizer inputs to a variety of crops. Pollutants take entry through the vadose zone and ultimately join the saturated zone. Once groundwater is polluted it is rather difficult or impossible to take remedial measures for groundwater protection. Groundwater being an important natural resource, it is important to protect it from getting polluted. It is hence essential to have a clear understanding of the complex processes (physical, biological and chemical etc.) undergoing in the unsaturated zone. Radiotracers give good insight about the pollutant behavior in the vadose zone. Tritiated water and 60 Co (a gamma emitting tracer in the cyanide complex form) were used as tracers and were injected at 60 cm depth in the vadose zone of IARI farm for pollutant transport study. Tritium and 60 Co tracer displacements were measured by liquid scintillation and sodium iodide scintillation method respectively. It was found that the tritium tracer moved up to 2.4 meters in six months and part of the tritium tracer was exchanged with immobile water in the soil, as three distinct peaks were observed in tritium profile. 60 Co and tritium tracers were found to move with the same velocity in the vadose zone. These tracer studies indicate that the pollutants may reach the groundwater in about three years. (author)

  8. Groundwater quality for irrigation of deep aquifer in southwestern zone of Bangladesh

    Directory of Open Access Journals (Sweden)

    Mirza A.T.M. Tanvir Rahman

    2012-07-01

    Full Text Available In coastal regions of Bangladesh, sources of irrigation are rain, surface and groundwater. Due to rainfall anomaly andsaline contamination, it is important to identify deep groundwater that is eligible for irrigation. The main goal of the study wasto identify deep groundwater which is suitable for irrigation. Satkhira Sadar Upazila, at the southwestern coastal zone ofBangladesh, was the study area, which was divided into North, Center and South zones. Twenty samples of groundwaterwere analyzed for salinity (0.65-4.79 ppt, sodium absorption ratio (1.14-11.62, soluble sodium percentage (32.95-82.21, electricalconductivity (614-2082.11 μS/cm, magnesium adsorption ratio (21.96-26.97, Kelly’s ratio (0.48-4.62, total hardness(150.76-313.33 mg/l, permeability index (68.02-94.16 and residual sodium bi-carbonate (79.68-230.72 mg/l. Chemical constituentsand values were compared with national and international standards. Northern deep groundwater has the highest salinityand chemical concentrations. Salinity and other chemical concentrations show a decreasing trend towards the south. Lowchemical concentrations in the southern region indicate the best quality groundwater for irrigation.

  9. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques.

    Science.gov (United States)

    Thilagavathi, N; Subramani, T; Suresh, M; Karunanidhi, D

    2015-04-01

    This study proposes to introduce the remote sensing and geographic information system (GIS) techniques in mapping the groundwater potential zones. Remote sensing and GIS techniques have been used to map the groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India. Charnockites and fissile hornblende biotite gneiss are the major rock types in this region. Dunites and peridodites are the ultramafic rocks which cut across the foliation planes of the gneisses and are highly weathered. It comprises magnesite and chromite deposits which are excavated by five mining companies by adopting bench mining. The thickness of weathered and fracture zone varies from 2.2 to 50 m in gneissic formation and 5.8 to 55 m in charnockite. At the contacts of gneiss and charnockite, the thickness ranges from 9.0 to 90.8 m favoring good groundwater potential. The mine lease area is underlined by fractured and sheared hornblende biotite gneiss where groundwater potential is good. Water catchment tanks in this area of 5 km radius are small to moderate in size and are only seasonal. They remain dry during summer seasons. As perennial water resources are remote, the domestic and agricultural activities in this region depend mainly upon the groundwater resources. The mines are located in gently slope area, and accumulation of water is not observed except in mine pits even during the monsoon period. Therefore, it is essential to map the groundwater potential zones for proper management of the aquifer system. Satellite imageries were also used to extract lineaments, hydrogeomorphic landforms, drainage patterns, and land use, which are the major controlling factors for the occurrence of groundwater. Various thematic layers pertaining to groundwater existence such as geology, geomorphology, land use/land cover, lineament, lineament density, drainage, drainage density, slope, and soil were generated using GIS tools. By integrating all the above thematic layers based on the ranks and

  10. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  11. Groundwater chemistry of shallow aquifers in the coastal zones of Cochin, India

    Digital Repository Service at National Institute of Oceanography (India)

    Laluraj, C.M.; Gopinath, G.; DineshKumar, P.K.

    Laluraj et al.: Groundwater chemistry of shallow aquifers - 133 - APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 3(1): 133-139. http://www.ecology.kee.hu ● ISSN 1589 1623  2005, Penkala Bt., Budapest, Hungary GROUNDWATER CHEMISTRY OF SHALLOW AQUIFERS... post monsoon (November 2003) in the coastal zones of Cochin. Laluraj et al.: Groundwater chemistry of shallow aquifers - 134 - APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 3(1): 133-139. http://www.ecology.kee.hu ● ISSN 1589 1623  2005, Penkala...

  12. Vadose Zone Nitrate Transport Dynamics Resulting from Agricultural Groundwater Banking

    Science.gov (United States)

    Murphy, N. P.; McLaughlin, S.; Dahlke, H. E.

    2017-12-01

    In recent years, California's increased reliance on groundwater resources to meet agricultural and municipal demands has resulted in significant overdraft and water quality issues. Agricultural groundwater banking (AGB) has emerged as a promising groundwater replenishment opportunity in California; AGB is a form of managed aquifer recharge where farmland is flooded during the winter using excess surface water in order to recharge the underlying groundwater. Suitable farmland that is connected to water delivery systems is available for AGB throughout the Central Valley. However, questions remain how AGB could be implemented on fertilized agricultural fields such that nitrate leaching from the root zone is minimized. Here, we present results from field and soil column studies that investigate the transport dynamics of nitrogen in the root and deeper vadose zone during flooding events. We are specifically interested in estimating how timing and duration of flooding events affect percolation rates, leaching and nitrification/denitrification processes in three soil types within the Central Valley. Laboratory and field measurements include nitrogen (NO3-, NH4+, NO2-, N2O), redox potentials, total organic carbon, dissolved oxygen, moisture content and EC. Soil cores are collected in the field before and after recharge events up to a depth of 4m, while other sensors monitor field conditions continuously. Preliminary results from the three field sites show that significant portions of the applied floodwater (12-62 cm) infiltrated below the root zone: 96.1% (Delhi), 88.6% (Modesto) and 76.8% (Orland). Analysis of the soil cores indicate that 70% of the residual nitrate was flushed from the sandy soil, while the fine sandy loam showed only a 5% loss and in some cores even an increase in soil nitrate (in the upper 20cm). Column experiments support these trends and indicate that increases in soil nitrate in the upper root zone might be due to organic nitrogen mineralization and

  13. Implementation of a permeable reactive barrier for treatment of groundwater impacted by strontium-90

    International Nuclear Information System (INIS)

    Przepiora, A.; Bodine, D.; Dollar, P.; Smith, P.

    2014-01-01

    A funnel and gate permeable reactive barrier (PRB) system was constructed to treat strontium-90 (Sr- 90) in groundwater migrating from a legacy waste disposal area into an adjacent wetland. The PRB system was designed to contain and direct the Sr-90 impacted groundwater into treatment 'gates' containing zeolite using a low permeability 'funnel' sections constructed with soil-bentonite slurry. The constructed PRB met all dimension and permeability specifications. Initial performance monitoring results indicate that the PRB captured the Sr-90 impacted groundwater plume and the beta radiation values in groundwater emerging from the treatment gates ranged from 35 to 86 Becquerel's per litre (Bq/L), equivalent to a reduction by 88% to 99% from the influent values. Those initial performance results were influenced by residual impacts present in the aquifer material prior to PRB installation. It is anticipated that the clean-up target of 5 Bq/L will be achieved with time as treated groundwater emerging from the PRB flushes through the downgradient aquifer zone. (author)

  14. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone

    Science.gov (United States)

    Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan E.; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steve B.

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of

  15. Regional variability of nitrate fluxes in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant

    2018-01-01

    Process-based modeling of regional NO3− fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3− reactive transport processes make implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3− in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3−, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3−, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3− front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g. limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  16. Regional Variability of Nitrate Fluxes in the Unsaturated Zone and Groundwater, Wisconsin, USA

    Science.gov (United States)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant C.

    2018-01-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3- reactive transport processes makes implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3- in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams, (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3-, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3- front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g., limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  17. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  18. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer.

    Science.gov (United States)

    Baram, S; Kurtzman, D; Ronen, Z; Peeters, A; Dahan, O

    2014-01-01

    Dairy waste lagoons are considered to be point sources of groundwater contamination by chloride (Cl(-)), different nitrogen-species and pathogens/microorganisms. The objective of this work is to introduce a methodology to assess the past and future impacts of such lagoons on regional groundwater quality. The method is based on a spatial statistical analysis of Cl(-) and total nitrogen (TN) concentration distributions in the saturated and the vadose (unsaturated) zones. The method provides quantitative data on the relation between the locations of dairy lagoons and the spatial variability in Cl(-) and TN concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that despite the small surface area covered by the dairy lagoons in this region (0.8%), leachates from lagoons have contributed 6.0% and 12.6% of the total mass of Cl(-) and TN (mainly as NO3(-)-N) added to the aquifer. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl(-) and TN to the groundwater. A low spatial correlation between the Cl(-) and NO3(-)-N concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl(-) and NO3(-)-N. Mass balance calculations, for the vadose zone of the entire region, indicated that drying of the lagoons would decrease the regional groundwater salinization process (11% of the total Cl(-) load is stored under lagoons). A more considerable reduction in the groundwater contamination by NO3(-)-N is expected (25% of the NO3(-)-N load is stored under lagoons). Results

  19. Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal

    Science.gov (United States)

    Thapa, Raju; Gupta, Srimanta; Guin, Shirshendu; Kaur, Harjeet

    2017-11-01

    Remote sensing and GIS play a vital role in exploration and assessment of groundwater and has wide application in detection, monitoring, assessment, conservation and various other fields of groundwater-related studies. In this research work, delineation of groundwater potential zone in Birbhum district has been carried out. Various thematic layers viz. geology, geomorphology, soil type, elevation, lineament and fault density, slope, drainage density, land use/land cover, soil texture, and rainfall are digitized and transformed into raster data in ArcGIS 10.3 environment as input factors. Thereafter, multi-influencing factor (MIF) technique is employed where ranks and weights, assigned to each factor are computed statistically. Finally, groundwater potential zones are classified into four categories namely low, medium, high and very high zone. It is observed that 18.41% (836.86 km2) and 34.41% (1563.98 km2) of the study area falls under `low' and `medium' groundwater potential zone, respectively. Approximately 1601.19 km2 area accounting for 35.23% of the study area falls under `high' category and `very high' groundwater potential zone encompasses an area of 542.98 km2 accounting for 11.95% of the total study area. Finally, the model generated groundwater potential zones are validated with reported potential yield data of various wells in the study area. Success and prediction rate curve reveals an accuracy achievement of 83.03 and 78%, respectively. The outcome of the present research work will help the local authorities, researchers, decision makers and planners in formulating better planning and management of groundwater resources in the study area in future perspectives.

  20. A Groundwater Model to Assess Water Resource Impacts at the Brenda Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Bowen, Esther E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support utility-scale solar energy development at the Brenda Solar Energy Zone (SEZ), as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program.

  1. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India.

    Science.gov (United States)

    Rashid, Mehnaz; Lone, Mahjoor Ahmad; Ahmed, Shakeel

    2012-08-01

    The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.

  2. Prediction of groundwater flowing well zone at An-Najif Province, central Iraq using evidential belief functions model and GIS.

    Science.gov (United States)

    Al-Abadi, Alaa M; Pradhan, Biswajeet; Shahid, Shamsuddin

    2015-10-01

    The objective of this study is to delineate groundwater flowing well zone potential in An-Najif Province of Iraq in a data-driven evidential belief function model developed in a geographical information system (GIS) environment. An inventory map of 68 groundwater flowing wells was prepared through field survey. Seventy percent or 43 wells were used for training the evidential belief functions model and the reset 30 % or 19 wells were used for validation of the model. Seven groundwater conditioning factors mostly derived from RS were used, namely elevation, slope angle, curvature, topographic wetness index, stream power index, lithological units, and distance to the Euphrates River in this study. The relationship between training flowing well locations and the conditioning factors were investigated using evidential belief functions technique in a GIS environment. The integrated belief values were classified into five categories using natural break classification scheme to predict spatial zoning of groundwater flowing well, namely very low (0.17-0.34), low (0.34-0.46), moderate (0.46-0.58), high (0.58-0.80), and very high (0.80-0.99). The results show that very low and low zones cover 72 % (19,282 km(2)) of the study area mostly clustered in the central part, the moderate zone concentrated in the west part covers 13 % (3481 km(2)), and the high and very high zones extended over the northern part cover 15 % (3977 km(2)) of the study area. The vast spatial extension of very low and low zones indicates that groundwater flowing wells potential in the study area is low. The performance of the evidential belief functions spatial model was validated using the receiver operating characteristic curve. A success rate of 0.95 and a prediction rate of 0.94 were estimated from the area under relative operating characteristics curves, which indicate that the developed model has excellent capability to predict groundwater flowing well zones. The produced map of groundwater

  3. Mapping of groundwater potential zones in the musi basin using remote sensing data and gis

    NARCIS (Netherlands)

    Ganapuram, Sreedhar; Vijaya Kumar, G.T.; Murali Krishna, I.V.; Kahya, Ercan; Demirel, M.C.

    2009-01-01

    The objective of this study is to explore the groundwater availability for agriculture in the Musi basin. Remote sensing data and geographic information system were used to locate potential zones for groundwater in the Musi basin. Various maps (i.e., base, hydrogeomorphological, geological,

  4. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.

    Science.gov (United States)

    Zachara, John M; Long, Philip E; Bargar, John; Davis, James A; Fox, Patricia; Fredrickson, Jim K; Freshley, Mark D; Konopka, Allan E; Liu, Chongxuan; McKinley, James P; Rockhold, Mark L; Williams, Kenneth H; Yabusaki, Steve B

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of

  5. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach.

    Science.gov (United States)

    Freitas, Juliana G; Rivett, Michael O; Roche, Rachel S; Durrant Neé Cleverly, Megan; Walker, Caroline; Tellam, John H

    2015-02-01

    The typically elevated natural attenuation capacity of riverbed-hyporheic zones is expected to decrease chlorinated hydrocarbon (CHC) groundwater plume discharges to river receptors through dechlorination reactions. The aim of this study was to assess physico-chemical processes controlling field-scale variation in riverbed-hyporheic zone dechlorination of a TCE groundwater plume discharge to an urban river reach. The 50-m long pool-riffle-glide reach of the River Tame in Birmingham (UK) studied is a heterogeneous high energy river environment. The shallow riverbed was instrumented with a detailed network of multilevel samplers. Freeze coring revealed a geologically heterogeneous and poorly sorted riverbed. A chlorine number reduction approach provided a quantitative indicator of CHC dechlorination. Three sub-reaches of contrasting behaviour were identified. Greatest dechlorination occurred in the riffle sub-reach that was characterised by hyporheic zone flows, moderate sulphate concentrations and pH, anaerobic conditions, low iron, but elevated manganese concentrations with evidence of sulphate reduction. Transient hyporheic zone flows allowing input to varying riverbed depths of organic matter are anticipated to be a key control. The glide sub-reach displayed negligible dechlorination attributed to the predominant groundwater baseflow discharge condition, absence of hyporheic zone, transition to more oxic conditions and elevated sulphate concentrations expected to locally inhibit dechlorination. The tail-of-pool-riffle sub-reach exhibited patchy dechlorination that was attributed to sub-reach complexities including significant flow bypass of a low permeability, high organic matter, silty unit of high dechlorination potential. A process-based conceptual model of reach-scale dechlorination variability was developed. Key findings of practitioner relevance were: riverbed-hyporheic zone CHC dechlorination may provide only a partial, somewhat patchy barrier to CHC

  6. Determination of protection zones for Dutch groundwater wells against virus contamination--uncertainty and sensitivity analysis.

    Science.gov (United States)

    Schijven, J F; Mülschlegel, J H C; Hassanizadeh, S M; Teunis, P F M; de Roda Husman, A M

    2006-09-01

    Protection zones of shallow unconfined aquifers in The Netherlands were calculated that allow protection against virus contamination to the level that the infection risk of 10(-4) per person per year is not exceeded with a 95% certainty. An uncertainty and a sensitivity analysis of the calculated protection zones were included. It was concluded that protection zones of 1 to 2 years travel time (206-418 m) are needed (6 to 12 times the currently applied travel time of 60 days). This will lead to enlargement of protection zones, encompassing 110 unconfined groundwater well systems that produce 3 x 10(8) m3 y(-1) of drinking water (38% of total Dutch production from groundwater). A smaller protection zone is possible if it can be shown that an aquifer has properties that lead to greater reduction of virus contamination, like more attachment. Deeper aquifers beneath aquitards of at least 2 years of vertical travel time are adequately protected because vertical flow in the aquitards is only 0.7 m per year. The most sensitive parameters are virus attachment and inactivation. The next most sensitive parameters are grain size of the sand, abstraction rate of groundwater, virus concentrations in raw sewage and consumption of unboiled drinking water. Research is recommended on additional protection by attachment and under unsaturated conditions.

  7. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); O' Connor, Ben L. [Argonne National Lab. (ANL), Argonne, IL (United States); Tompson, Andrew F.B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  8. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    Directory of Open Access Journals (Sweden)

    S. Peter

    2012-11-01

    Full Text Available For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3 removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3 concentration (> 50% was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3 pool (by up to 22‰ for δ15N and up to 12‰ for δ18O provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3 removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3 concentration with a rate of ~21 μmol N l−1 d−1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3 removal rates were lower (~6 μmol l−1 d−1. Hence, discharge-modulated vegetation–soil–groundwater coupling was found to be a key driver for riparian NO3 removal. We estimated that

  9. Qualitative zoning of groundwater for drinking purposes in Lenjan plain using GQI method through GIS

    Directory of Open Access Journals (Sweden)

    Amin Mohebbi Tafreshi

    2017-09-01

    Full Text Available Background: A new method has been presented specifically for zoning the quality of groundwater for drinking purposes; this method is the groundwater quality index (GQI method. The present research used the GQI method to qualitatively zoning of the Lenjan groundwater for drinking purposes. Methods: Three phases were applied in this research. In the first phase, working on the quality data of 38 wells within the studied plain, the raster map of quality concentration parameters, including pH, TDS, Cl, SO4, Ca, Mg, and Na parameters, was provided by interpolation using the kriging method in the ArcGIS software. In the second phase, the mentioned maps were standardized so that various bits of data can follow a common standard and scale. In the third phase, weight was applied to each standardized map, and ultimately the classification map for each parameter was drawn. The final GQI map was created by combining the mentioned classification maps. Results: The GQI values for Lenjan plain were rated from the minimum (67.48 to the maximum (90.05. The results showed an average to acceptable level of quality for drinking water. Conclusion: According to the final map, the central and southern parts of Lenjan plain, which have acceptable GQI rankings, are the best zones from which to use groundwater for drinking purposes.

  10. Flow pathways in the evolving critical zone - insights from hydraulic groundwater theory

    Science.gov (United States)

    Harman, C. J.; Cosans, C.; Kim, M.

    2017-12-01

    The geochemical signatures of the evolving critical zone are delivered into streams via saturated lateral flow through hillslopes. Here we will draw on hydraulic groundwater theory and scaling arguments to obtain insights into the first-order controls on the transition from vertical infiltration to lateral flow in the critical zone. Hydraulic groundwater theory aims to provide a simplified description of unconfined, saturated groundwater flow in systems that are substantially larger in lateral than vertical extent. The theory rests on the Dupuit assumptions, which are often erroneously stated as including an assumption of exclusively lateral flow. In fact the full three-dimensional flow field can be approximated from these assumptions. Building on this theory, we examine how overall hillslope structure (slope, permeability, convergence/divergence etc.) determines the direction and magnitude of flow in the vicinity of weathering fronts in the critical zone, and how weathering products are delivered to the hillslope base. The results demonstrate that under certain conditions the mere presence of lateral flow will not disturb the lateral symmetry of reaction fronts along the hillslope. Furthermore, coupling to a simple reaction model with porosity/permeability feedback allows us to examine the implications for weathering front advance where saturated lateral flow occurs as a transient perched aquifer at the weathering front. The overall rate of weathering front advance is found to be primarily determined by the component of flow normal to the weathering front, and only significantly accelerated by the lateral component above the weathering front when parent rock permeability is very low.

  11. An isotopic view of water and nitrate transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    Science.gov (United States)

    Brooks, J. R.; Pearlstein, S.; Hutchins, S.; Faulkner, B. R.; Rugh, W.; Willard, K.; Coulombe, R.; Compton, J.

    2017-12-01

    Groundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variable over time, lysimeter water isotopes were surprisingly consistent, more closely resembling long-term precipitation isotope means rather than recent precipitation isotopic signatures. However, some particularly large precipitation events with unique isotopic signatures revealed high spatial variability in transport, with some lysimeters showing greater proportions of recent precipitation inputs than others. In one installation where we have groundwater wells and lysimeters at multiple depths, nitrate/nitrite concentrations decreased with depth. N concentrations

  12. Conceptual Models for Migration of Key Groundwater Contaminants Through the Vadose Zone and Into the Upper Unconfined Aquifer Below the B-Complex

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Keller, Jason M.; Thorne, Paul D.; Lanigan, David C.; Christensen, J. N.; Thomas, Gregory S.

    2010-07-01

    The B-Complex contains 3 major crib and trench disposal sites and 3 SST farms that have released nearly 346 mega-liters of waste liquids containing the following high groundwater risk drivers: ~14,000 kg of CN, 29,000 kg of Cr, 12,000 kg of U and 145 Ci of Tc-99. After a thorough review of available vadose zone sediment and pore water, groundwater plume, field gamma logging, field electrical resistivity studies, we developed conceptual models for which facilities have been the significant sources of the contaminants in the groundwater and estimated the masses of these contaminants remaining in the vadose zone and currently present in the groundwater in comparison to the totals released. This allowed us to make mass balance calculations on how consistent our knowledge is on the current deep vadose zone and groundwater distribution of contaminants. Strengths and weaknesses of the conceptual models are discussed as well as implications on future groundwater and deep vadose zone remediation alternatives. Our hypothesized conceptual models attribute the source of all of the cyanide and most of the Tc-99 currently in the groundwater to the BY cribs. The source of the uranium is the BX-102 tank overfill event and the source of most of the chromium is the B-7-A&B and B-8 cribs. Our mass balance estimates suggest that there are much larger masses of U, CN, and Tc remaining in the deep vadose zone within ~20 ft of the water table than is currently in the groundwater plumes below the B-Complex. This hypothesis needs to be carefully considered before future remediation efforts are chosen. The masses of these groundwater risk drivers in the the groundwater plumes have been increasing over the last decade and the groundwater plumes are migrating to the northwest towards the Gable Gap. The groundwater flow rate appears to flucuate in response to seasonal changes in hydraulic gradient. The flux of contaminants out of the deep vadose zone from the three proposed sources also

  13. Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar, Eastern India.

    Science.gov (United States)

    Saha, Dipankar; Dhar, Y R; Vittala, S S

    2010-06-01

    A part of the Gangetic Alluvial Plain covering 2,228 km(2), in the state of Bihar, is studied for demarcating groundwater development potential zones. The area is mainly agrarian and experiencing intensive groundwater draft to the tune of 0.12 million cubic metre per square kilometres per year from the Quaternary marginal alluvial deposits, unconformably overlain northerly sloping Precambrian bedrock. Multiparametric data on groundwater comprising water level, hydraulic gradient (pre- and post-monsoon), aquifer thickness, permeability, suitability of groundwater for drinking and irrigation and groundwater resources vs. draft are spatially analysed and integrated on a Geographical Information System platform to generate thematic layers. By integrating these layers, three zones have been delineated based on groundwater development potential. It is inferred that about 48% of the area covering northern part has high development potential, while medium and low development potential category covers 41% of the area. Further increase in groundwater extraction is not recommended for an area of 173 km(2), affected by over-exploitation. The replenishable groundwater resource available for further extraction has been estimated. The development potential enhances towards north with increase in thickness of sediments. Local deviations are due to variation of-(1) cumulative thickness of aquifers, (2) deeper water level resulting from localised heavy groundwater extraction and (3) aquifer permeability.

  14. Characteristic groundwater level regimes in the capture zones of radial collector wells and importance of identification (Case study of Belgrade Groundwater Source

    Directory of Open Access Journals (Sweden)

    Božović Đorđije

    2016-01-01

    Full Text Available Assessment of the operating modes of radial collector wells reveals that the pumping levels in the well caissons are very low relative to the depth/elevation of the laterals, which is a common occurrence at Belgrade Groundwater Source. As a result, well discharge capacities vary over a broad range and groundwater levels in the capture zones differ even when the rate of discharge is the same. Five characteristic groundwater level regimes are identified and their origin is analyzed using representative wells as examples. The scope and type of background information needed to identify the groundwater level regime are presented and an interpretation approach is proposed for preliminary assessment of the aquifer potential at the well site for providing the needed amount of groundwater. [Projekat Ministarstva nauke Republike Srbije, br. OI176022, br. TR33039 i br. III43004

  15. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater.

    Science.gov (United States)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-02-15

    In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than -200mV. Perchlorate was reduced continuously from ∼1150mg/L at the inlet to ∼300mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10 5 to 10 7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Integration of ground-water and vadose-zone geochemistry to investigate hydrochemical evolution

    International Nuclear Information System (INIS)

    Fisher, R.S.; Mullican, W.F.

    1990-01-01

    This paper summarizes the results of an extensive groundwater-sampling program conducted in the Hueco Bolson and Diablo Plateau area of West Texas. The origin, hydrochemical evolution, and age of groundwater in arid lands of Trans-Pecos Texas were investigated by combining mineralogic analyses of soils and aquifer matrix, chemical analyses of readily soluble materials in soils and water extracted from the thick, unsaturated zone, and chemical and isotopic analyses of groundwater from three principal aquifers, the Diablo Plateau, Hueco Bolson, and Rio Grande alluvial aquifers. Repeated groundwater sampling over a 3-year period and quarterly sampling of selected wells revealed no significant short-term chemical or isotopic variability. Groundwater ages range from recent to nearly 28,000 years; the distribution of ages reflects relative permeability (transmissivity) of the aquifers. Most groundwaters evolve from calcium-bicarbonate to sodium-sulfate types because of carbonate and sulfate mineral dissolution coupled with exchange of aqueous calcium and magnesium for sodium on clay minerals. Water in the Rio Grande alluvial aquifer evolved to a sodium-chloride type as a result of extensive evapotranspiration on irrigated fields. The appendices list detailed results of field measurements of temperature, pH, Eh, dissolved oxygen, and major ion concentrations

  17. Application of a GIS-/remote sensing-based approach for predicting groundwater potential zones using a multi-criteria data mining methodology.

    Science.gov (United States)

    Mogaji, Kehinde Anthony; Lim, Hwee San

    2017-07-01

    This study integrates the application of Dempster-Shafer-driven evidential belief function (DS-EBF) methodology with remote sensing and geographic information system techniques to analyze surface and subsurface data sets for the spatial prediction of groundwater potential in Perak Province, Malaysia. The study used additional data obtained from the records of the groundwater yield rate of approximately 28 bore well locations. The processed surface and subsurface data produced sets of groundwater potential conditioning factors (GPCFs) from which multiple surface hydrologic and subsurface hydrogeologic parameter thematic maps were generated. The bore well location inventories were partitioned randomly into a ratio of 70% (19 wells) for model training to 30% (9 wells) for model testing. Application results of the DS-EBF relationship model algorithms of the surface- and subsurface-based GPCF thematic maps and the bore well locations produced two groundwater potential prediction (GPP) maps based on surface hydrologic and subsurface hydrogeologic characteristics which established that more than 60% of the study area falling within the moderate-high groundwater potential zones and less than 35% falling within the low potential zones. The estimated uncertainty values within the range of 0 to 17% for the predicted potential zones were quantified using the uncertainty algorithm of the model. The validation results of the GPP maps using relative operating characteristic curve method yielded 80 and 68% success rates and 89 and 53% prediction rates for the subsurface hydrogeologic factor (SUHF)- and surface hydrologic factor (SHF)-based GPP maps, respectively. The study results revealed that the SUHF-based GPP map accurately delineated groundwater potential zones better than the SHF-based GPP map. However, significant information on the low degree of uncertainty of the predicted potential zones established the suitability of the two GPP maps for future development of

  18. Determining flow, recharge, and vadose zone drainage in an unconfined aquifer from groundwater strontium isotope measurements, Pasco Basin, WA

    International Nuclear Information System (INIS)

    2004-01-01

    Strontium isotope compositions (87Sr/86Sr) measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. The impact of millions of cubic meters of wastewater discharged to the vadose zone (103-105 times higher than ambient drainage) shows up strikingly on maps of groundwater 87Sr/86Sr. Extensive access through the many groundwater monitoring wells at the site allows for an unprecedented opportunity to evaluate the strontium geochemistry of a major aquifer, hosted primarily in unconsolidated sediments, and relate it to both long term properties and recent disturbances. Groundwater 87Sr/86Sr increases systematically from 0.707 to 0.712 from west to east across the Hanford Site, in the general direction of groundwater flow, as a result of addition of Sr from the weathering of aquifer sediments and from diffuse drainage through the vadose zone. The lower 87Sr/86Sr groundwater reflects recharge waters that have acquired Sr from Columbia River Basalts. Based on a steady-state model of Sr reactive transport and drainage, there is an average natural drainage flux of 0-1.4 mm/yr near the western margin of the Hanford Site, and ambient drainage may be up to 30 mm/yr in the center of the site assuming an average bulk rock weathering rate of 10-7.5 g/g/yr

  19. Two passive groundwater treatment installations at DOE facilities

    International Nuclear Information System (INIS)

    Barton, W.D.; Craig, P.M.; Stone, W.C.

    1997-01-01

    Groundwater is being successfully treated by reactive media at two DOE sites. Passive treatment utilizing containerized treatment media has been installed on a radioactive groundwater seep at Oak Ridge National Lab, Oak Ridge, Tennessee, and on a TCE plume at the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio. In both applications, flow is conducted by gravity through canisters of reactive treatment media. The canister-based treatment installation at ORNL utilizes a natural sodium-chabazite zeolite to remove radiological cations (Sr, Cs) from contaminated groundwater at greater than 99.9% efficiency. Portsmouth is currently conducting tests on three different types of treatment media for reductive dehalogenation of TCE

  20. Groundwater monitoring and modelling of the “Vector” site for near-surface radioactive waste disposal in the Chornobyl exclusion zone

    Directory of Open Access Journals (Sweden)

    D. Bugai

    2017-12-01

    Full Text Available Results of purposeful groundwater monitoring and modelling studies are presented, which were carried out in order to better understand groundwater flow patterns from the “Vector” site for near-surface radioactive waste disposal and storage in the Chornobyl exclusion zone towards river network. Both data of observations at local-scale monitoring well network at “Vector” site carried out in 2015 - 2016 and modelling analyses using the regional groundwater flow model of Chornobyl exclusion zone suggest that the groundwater discharge contour for water originating from “Vector” site is Sakhan River, which is the tributary to Pripyat River. The respective groundwater travel time is estimated at 210 - 340 years. The travel times in subsurface for 90Sr, 137Cs, and transuranium radionuclides (Pu isotopes, 241Am are estimated respectively at thousands, tenths of thousands, hundreds of thousands – million of years. These results, as well as presented data of analyses of lithological properties of the geological deposits of the unsaturated zone at “Vector” site, provide evidence for good protection of surface water resources from radioactivity sources (e.g., radioactive wastes to be disposed in the near-sursface facilities at “Vector” site.

  1. Response to recharge variation of thin rainwater lenses and their mixing zone with underlying saline groundwater

    Directory of Open Access Journals (Sweden)

    S. Eeman

    2012-10-01

    Full Text Available In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. In this paper, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens characteristics by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominantly influence the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalised lens volume and the main lens and recharge characteristics, enabling an empirical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase and the increase of recharge frequency causes a decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the centre of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of daily recharge data. Starting from a step response function, convolution can be used to determine the effect of variable recharge in time. For a sinusoidal curve, we can determine delay of lens movement compared to the recharge curve as well as the lens amplitude, derived from the convolution integral. Together the proposed equations provide us with a first order approximation of lens

  2. Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux

    Science.gov (United States)

    Akbariyeh, Simin; Bartelt-Hunt, Shannon; Snow, Daniel; Li, Xu; Tang, Zhenghong; Li, Yusong

    2018-04-01

    Contamination of groundwater from nitrogen fertilizers in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have considered a controlled field work to investigate the influence of soil heterogeneity and groundwater flow on nitrate-N distribution in both root zone and deep vadose zone. In this work, a numerical model was developed to simulate nitrate-N transport and transformation beneath a center pivot-irrigated corn field on Nebraska Management System Evaluation area over a three-year period. The model was based on a realistic three-dimensional sediment lithology, as well as carefully controlled irrigation and fertilizer application plans. In parallel, a homogeneous soil domain, containing the major sediment type of the site (i.e. sandy loam), was developed to conduct the same water flow and nitrate-N leaching simulations. Simulated nitrate-N concentrations were compared with the monitored nitrate-N concentrations in 10 multi-level sampling wells over a three-year period. Although soil heterogeneity was mainly observed from top soil to 3 m below the surface, heterogeneity controlled the spatial distribution of nitrate-N concentration. Soil heterogeneity, however, has minimal impact on the total mass of nitrate-N in the domain. In the deeper saturated zone, short-term variations of nitrate-N concentration correlated with the groundwater level fluctuations.

  3. Climate change impact on groundwater levels in the Guarani Aquifer outcrop zone

    Science.gov (United States)

    Melo, D. D.; Wendland, E.

    2013-12-01

    The unsustainable use of groundwater in many countries might cause water availability restrictions in the future. Such issue is likely to worsen due to predicted climate changes for the incoming decades. As numerous studies suggest, aquifers recharge rates will be affected as a result of climate change. The Guarani Aquifer System (GAS) is one of the most important transboundary aquifer in the world, providing drinkable water for millions of people in four South American countries (Brazil, Argentina, Uruguay and Paraguay). Considering the GAS relevance and how its recharge rates might be altered by climatic conditions anomalies, the objective of this work is to assess possible climate changes impacts on groundwater levels in this aquifer outcrop zone. Global Climate Models' (GCM) outputs were used as inputs in a transient flux groundwater model created using the software SPA (Simulation of Process in Aquifers), enabling groundwater table fluctuation to be evaluated under distinct climatic scenarios. Six monitoring wells, located in a representative basin (Ribeirão da Onça basin) inside a GAS outcrop zone (ROB), provided water table measurements between 2004 and 2011 to calibrate the groundwater model. Using observed climatic data, a water budget method was applied to estimate recharge in different types of land uses. Statistically downscaled future climate scenarios were used as inputs for that same recharge model, which provided data for running SPA under those scenarios. The results show that most of the GCMs used here predict temperature arises over 275,15 K and major monthly rainfall mean changes to take place in the dry season. During wet seasons, those means might experience around 50% decrease. The transient model results indicate that water table variations, derived from around 70% of the climate scenarios, would vary below those measured between 2004 and 2011. Among the thirteen GCMs considered in this work, only four of them predicted more extreme

  4. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    Science.gov (United States)

    Christensen, N. K.; Minsley, B. J.; Christensen, S.

    2017-02-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  5. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    Science.gov (United States)

    Christensen, Nikolaj K; Minsley, Burke J.; Christensen, Steen

    2017-01-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  6. A Low-Level Real-Time In Situ Monitoring System for Tritium in Groundwater and Vadose Zone

    Science.gov (United States)

    Santo, J. T.; Levitt, D. G.

    2002-12-01

    Tritium is a radioactive isotope of hydrogen produced as a by-product of the nuclear fuel cycle. It is also an integral part of the nuclear weapons industry and has been released into the environment through both the production and testing of nuclear weapons. There are many sites across the DOE complex where tritium has been released into the subsurface through the disposal of radioactive waste and at the Nevada Test Site, through the underground testing of nuclear weapons. Numerous DOE facilities have an on-going regulatory need to be able to monitor tritium concentrations in groundwater within deep hydrologic zones and in the shallower non-saturated vadose zone beneath waste disposal pits and shafts and other release sites. Typical access to groundwater is through deep monitoring wells and situated in remote locations. In response to this need, Science and Engineering Associates, Inc. (SEA) and its subcontractor, the University of Nevada Las Vegas (UNLV) Harry Reid Center (HRC) for Environmental Studies has conducted the applied research and engineering and produced a real time, in situ monitoring system for the detection and measurement of low levels of tritium in the groundwater and in the shallower vadose zone. The monitoring system has been deployed to measure tritium in both the vadose zone near a subsurface radioactive waste package and the groundwater in a deep hydrologic reservoir at the Nevada Test Site. The monitoring system has been designed to detect tritium in the subsurface below federal and/or state regulatory limits for safe drinking water and has been successfully demonstrated. The development effort is being funded through the U.S. Department of Energy, National Energy Technology Laboratory and the DOE Nevada Operations Office Advanced Monitoring Systems Initiative (AMSI).

  7. Field evaluation of a horizontal well recirculation system for groundwater treatment: Pilot test at the Clean Test Site Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Muck, M.T.; Kearl, P.M.; Siegrist, R.L.

    1998-01-01

    This report presents the results of field testing a horizontal well recirculation system at the Portsmouth Gaseous Diffusion Plant (PORTS). The recirculation system uses a pair of horizontal wells, one for groundwater extraction and treatment and the other for reinjection of treated groundwater, to set up a recirculation flow field. The induced flow field from the injection well to the extraction well establishes a sweeping action for the removal and treatment of groundwater contaminants. The overall purpose of this project is to study treatment of mixed groundwater contaminants that occur in a thin water-bearing zone not easily targeted by traditional vertical wells. The project involves several research elements, including treatment-process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and pilot testing at a contaminated site. The results of the pilot test at an uncontaminated site, the Clean Test Site (CTS), are presented in this report

  8. Unsaturated-zone fast-path flow calculations for Yucca Mountain groundwater travel time analyses (GWTT-94)

    International Nuclear Information System (INIS)

    Arnold, B.W.; Altman, S.J.; Robey, T.H.

    1995-08-01

    Evaluation of groundwater travel time (GWTT) is required as part of the investigation of the suitability of Yucca Mountain as a potential high-level nuclear-waste repository site. The Nuclear Regulatory Commission's GWTT regulation is considered to be a measure of the intrinsic ability of the site to contain radionuclide releases from the repository. The work reported here is the first step in a program to provide an estimate of GWTT at the Yucca Mountain site in support of the DOE's Technical Site Suitability and as a component of a license application. Preliminary estimation of the GWTT distribution in the unsaturated zone was accomplished using a numerical model of the physical processes of groundwater flow in the fractured, porous medium of the bedrock. Based on prior investigations of groundwater flow at the site, fractures are thought to provide the fastest paths for groundwater flow; conditions that lead to flow in fractures were investigated and simulated. Uncertainty in the geologic interpretation of Yucca Mountain was incorporated through the use of geostatistical simulations, while variability of hydrogeologic parameters within each unit was accounted for by the random sampling of parameter probability density functions. The composite-porosity formulation of groundwater flow was employed to simulate flow in both the matrix and fracture domains. In this conceptualization, the occurrence of locally saturated conditions within the unsaturated zone is responsible for the initiation of fast-path flow through fractures. The results of the GWTT-94 study show that heterogeneity in the hydraulic properties of the model domain is an important factor in simulating local regions of high groundwater saturation. Capillary-pressure conditions at the surface boundary influence the extent of the local saturation simulated

  9. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Science.gov (United States)

    Watlet, Arnaud; Kaufmann, Olivier; Triantafyllou, Antoine; Poulain, Amaël; Chambers, Jonathan E.; Meldrum, Philip I.; Wilkinson, Paul B.; Hallet, Vincent; Quinif, Yves; Van Ruymbeke, Michel; Van Camp, Michel

    2018-03-01

    Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL) site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT) monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets) and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1) upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2) deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3) a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of the sources of drip

  10. [Relationship between groundwater quality index of nutrition element and organic matter in riparian zone and water quality in river].

    Science.gov (United States)

    Hua-Shan, Xu; Tong-Qian, Zhao; Hong-Q, Meng; Zong-Xue, Xu; Chao-Hon, Ma

    2011-04-01

    Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that there will be great risk of nitrogen, phosphorus, nitrate nitrogen and organic matter permeating into the groundwater if floodplain changes into farmland. As the special control unit of nitrogen pollution between rivers and artificial wetlands, dry fanning areas near the river play a very important role in nitrogen migration between river and groundwater. Farm manure as base fertilizer may he an important source of phosphorus leak and loss at the artificial wetlands. Phosphorus leaks into the groundwater and is transferred along the hydraulic gradient, especially during the period of regulation for water and sediment at the Xiaolangdi Reservoir. The land use types and farming systems of the riparian floodplain have a major impact on the nitrate nitrogen contents of the groundwater. Nitrogen can infiltrate and accumulate quickly at anaerobic conditions in the fish pond area, and the annual nitrogen achieves a relatively balanced state in lotus area. In those areas, the soil is flooded and at anaerobic condition in spring and summer, nitrogen infiltrates and denitrification significantly, but soil is not flooded and at aerobic condition in the autumn and winter, and during these time, a significant nitrogen nitrification process occurs. In the area between 50 m and 200 m from the river

  11. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  12. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Shane [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom); McCarthy, Valerie; Rafferty, Patrick [Department of Applied Sciences, Dundalk Institute of Technology, Dublin Road, Dundalk (Ireland); Orr, Alison; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom)

    2015-08-01

    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  13. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer

    International Nuclear Information System (INIS)

    Donohue, Shane; McCarthy, Valerie; Rafferty, Patrick; Orr, Alison; Flynn, Raymond

    2015-01-01

    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  14. Permeable Reactive Barriers: a multidisciplinary approach of a new emerging sustainable groundwater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Diels, L.; Bastiaens, L. [Vito, Mol (BL); O' Hannessin, S. [EnviroMetal Technologies Inc., Ontario (Canada); Cortina, J.L. [Univ. Politecnica de Catalunya, Barcelona (Spain). Dept. d' Enginyeria Quimica; Alvarez, P.J. [Univ. of Iowa, Iowa-City (United States). Center for Biocatalysis and Bioprocessing; Ebert, M. [Christian-Albrechts Univ. Kiel (Germany). Inst. fuer Geowissenschaften; Schad, H. [I.M.E.S. GmbH, Amtzell (Germany)

    2003-07-01

    Permeable reactive barriers or zones are becoming an interesting sustainable and cost-effective technology for in situ treatment of contaminated groundwater. The technology is based on chemical processes as the dehalogenating activity of zerovalent iron, biological processes in bioscreens or reactive zones and on sorption technology (e.g. heavy metal adsorption or adsorption on granular activated carbon). Three technical sessions will be devoted to this nowadays becoming mature technology. This special session intends to pay attention to the discussion about some questions related to PRBs. These include the sustainability (e.g. life time and clogging) especially for zerovalent iron barriers, the need and quality of feasibility tests, drawbacks and restrictions of PRBs. Combined with long term performance monitoring os these systems will be discussed. Further attention will be paid to cost evaluation and the relationship between zerovalent barriers and bacterial growth. Also attention will be paid to new reactive materials (e.g. activated carbon for organics and inorganic materials for heavy metals) and consequences (e.g. environmental impact). Finally the session will combine al these approaches in a discussion about combined barriers or multibarriers for treatment of mixed pollution (e.g. landfill leachates contaminated groundwater). Specialists involved in these subjects will introduce these topics and allow for a large and intensive discussion to improve future applications of this technology. (orig.)

  15. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.

    Science.gov (United States)

    Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T

    2010-02-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.

  16. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.

    2010-01-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  17. Aquifer recharge with stormwater runoff in urban areas: Influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater.

    Science.gov (United States)

    Voisin, Jérémy; Cournoyer, Benoit; Vienney, Antonin; Mermillod-Blondin, Florian

    2018-05-16

    Stormwater infiltration systems (SIS) have been built in urban areas to reduce the environmental impacts of stormwater runoff. Infiltration basins allow the transfer of stormwater runoff to aquifers but their abilities to retain contaminants depend on vadose zone properties. This study assessed the influence of vadose zone thickness (VZT) on the transfer of inorganic nutrients (PO 4 3- , NO 3 - , NH 4 + ), dissolved organic carbon (total -DOC- and biodegradable -BDOC-) and bacteria. A field experiment was conducted on three SIS with a thin vadose zone (zone (>10 m). Water samples were collected at three times during a rainy period of 10 days in each infiltration basin (stormwater runoff), in the aquifer impacted by infiltration (impacted groundwater) and in the same aquifer but upstream of the infiltration area (non-impacted groundwater). Inorganic nutrients, organic matter, and dissolved oxygen (DO) were measured on all water samples. Bacterial community structures were investigated on water samples through a next-generation sequencing (NGS) scheme of 16S rRNA gene amplicons (V5-V6). The concentrations of DO and phosphate measured in SIS-impacted groundwaters were significantly influenced by VZT due to distinct biogeochemical processes occurring in the vadose zone. DOC and BDOC were efficiently retained in the vadose zone, regardless of its thickness. Bacterial transfers to the aquifer were overall low, but data obtained on day 10 indicated a significant bacterial transfer in SIS with a thin vadose zone. Water transit time and water saturation of the vadose zone were found important parameters for bacterial transfers. Most bacterial taxa (>60%) from impacted groundwaters were not detected in stormwater runoff and in non-impacted groundwaters, indicating that groundwater bacterial communities were significantly modified by processes associated with infiltration (remobilization of bacteria from vadose zone and/or species sorting). Copyright © 2018 Elsevier B

  18. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    Science.gov (United States)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only

  19. Geochemical investigation of groundwater in the Tono area, Japan. Chemical characteristics and groundwater evolution

    International Nuclear Information System (INIS)

    Iwatsuki, Teruki; Hama, Katsuhiro; Yoshida, Hidekazu

    1997-01-01

    Geochemical investigations form an important part of the R and D program at the Tono study site, central Japan. Detailed geological structure and groundwater chemistry have been studied to understand the geochemical environment in the sedimentary and crystalline rocks distributed in this area. The chemical evolution of the groundwater in the sedimentary rocks is characterized with the variation in Na + , Ca 2+ and HCO 3 - concentrations, and ion exchange and dissolution of calcite are dominant reactions in the evolution of groundwater. Geological investigation shows that a fracture system of crystalline rock can be classified into:intact zone, moderately fractured zone and intensely fractured zone, according to the frequency and the width of fractures and fractured zones. The groundwater in the intact and fractured zones of crystalline rock are characterized by Na + -Ca 2+ -HCO 3 - or Na + -HCO 3 - dominated water, and Na + -Ca 2+ -Fe 2+ -HCO 3 - dominated water. The chemical evolution of groundwater is, generally, controlled by water-rock interaction between plagioclase, iron minerals and groundwater. The groundwater at depth of G.L.-186m in the crystalline rock at the Tono area is characterized by the mixture between the oxidized surface water and the reduced groundwater. The investigation based on correlation between geological structures and groundwater chemistry can be applied to understand the geochemical environment in deep crystalline rock, and will support the development of a realistic hydrogeochemical model. (author)

  20. Characterizing multiple sources and interaction in the critical zone through Sr-isotope tracing of surface and groundwater

    Science.gov (United States)

    Negrel, Philippe; Pauwels, Hélène

    2017-04-01

    The Critical Zone (CZ) is the lithosphere-atmosphere boundary where complex physical, chemical and biological processes occurs and control the transfer and storage of water and chemical elements. This is the place where life-sustaining resources are, where nutrients are being released from the rocks. Because it is the place where we are living, this is a fragile zone, a critical zone as a perturbed natural ecosystem. Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Here, we first report on Sr isotope data as well as major ions, from shallow and deep groundwater in several granite and schist areas over France with intensive agriculture covering large parts of these catchments. In three granite and Brioverian 'schist' areas of the Armorican Massif, the range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are partly related to agricultural practices and water rock interaction. The relationship between Sr- isotope and Mg/Sr ratios allow defining the different end-members, mainly rain, agricultural practice and water-rock interaction. The data from the Armorican Massif and other surface and groundwater for catchment draining silicate bedrocks (300-450Ma) like the Hérault, Seine, Moselle, Garonne, Morvan, Margeride, Cantal, Pyrénées and Vosges are scattered between at least three geochemical signatures. These include fertilizer and

  1. Potassium ferrate treatment of RFETS' contaminated groundwater

    International Nuclear Information System (INIS)

    1995-01-01

    The potassium ferrate treatment study of Rocky Flats Environmental Technology Site (RFETS) groundwater was performed under the Sitewide Treatability Studies Program (STSP). This study was undertaken to determine the effectiveness of potassium ferrate in a water treatment system to remove the contaminants of concern (COCS) from groundwater at the RFETS. Potassium ferrate is a simple salt where the iron is in the plus six valence state. It is the iron at the plus six valence state (Fe +6 ) that makes it an unique water treatment chemical, especially in waters where the pH is greater than seven. In basic solutions where the solubility of the oxides/hydroxides of many of the COCs is low, solids are formed as the pH is raised. By using ferrate these solids are agglomerated so they can be effectively removed by sedimentation in conventional water treatment equipment. The objective of this study was to determine the quality of water after treatment with potassium ferrate and to determine if the Colorado Water Quality Control Commission (CWQCC) discharge limits for the COCs listed in Table 1.0-1 could be met. Radionuclides in the groundwater were of special concern

  2. The influence of the unsaturated zone on the high fluoride contents in groundwater in the middle voltaian aquifers-the Gusghegu District, Northern Region

    International Nuclear Information System (INIS)

    Salifu, M.

    2012-01-01

    Elevated levels of fluoride have been reported to occur in some groundwater in the Gushegu district of the Northern region of Ghana leading to the closure of some boreholes in the area. Hydrochemical data from 21 water, soil and some rock samples were used to evaluate water quality, water types and to identify whether the unsaturated zone has influence on the elevated fluoride levels in groundwater as well as the processes that control fluoride level in the groundwater. Water samples were extracted from soil sample for flouride analysis using the cryogenic vacuum extraction set-up. Results of the water quality analysis showed that the groundwater in the study area were generally potable. A plot of Gibbs diagram revealed that rock weathering and rainfall were the major hydrogeochemical processes regulating the water chemistry of the study area. Two different water types were identified in the study area, namely: Na-HCO 3 - , which happened to be the major water type in the study area and Na-Ca-Mg-HCO 3 - water type. The fluoride concentration in the groundwater varied from 0.0 to 1.97 mg/L while that of the unsaturated zone ranged from 0.0 to 2.08 mg/L. The elevated fluoride levels in the groundwater strongly correlated with that of fluoride levels in the unsaturated zone (r 2 =0.76). Petrographic analysis of rock samples (siltstones) identified the minerals present to be muscovite, plagioclase feldspars, quartz, sericite and iron oxide. Other clay minerals such as montmorillonite, illite and chloride were identified. The elevated fluoride levels recorded in the groundwater may be due to leaching, as a result of the weathering and dissolution of muscovite, sericite as well as the presence of other clay minerals in the unsaturated zone. Application of phosphate fertilizers may also account for the the elevated fluoride concentrations recorded in the study area. Stable isotopic composition of the waters revealed that most of the groundwater were of meteoric origin

  3. Performance assessment techniques for groundwater recovery and treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, G.L. [Environmental Resources Management, Inc., Exton, PA (United States)

    1993-03-01

    Groundwater recovery and treatment (pump and treat systems) continue to be the most commonly selected remedial technology for groundwater restoration and protection programs at hazardous waste sites and RCRA facilities nationwide. Implementing a typical groundwater recovery and treatment system includes the initial assessment of groundwater quality, characterizing aquifer hydrodynamics, recovery system design, system installation, testing, permitting, and operation and maintenance. This paper focuses on methods used to assess the long-term efficiency of a pump and treat system. Regulatory agencies and industry alike are sensitive to the need for accurate assessment of the performance and success of groundwater recovery systems for contaminant plume abatement and aquifer restoration. Several assessment methods are available to measure the long-term performance of a groundwater recovery system. This paper presents six assessment techniques: degree of compliance with regulatory agency agreement (Consent Order of Record of Decision), hydraulic demonstration of system performance, contaminant mass recovery calculation, system design and performance comparison, statistical evaluation of groundwater quality and preferably, integration of the assessment methods. Applying specific recovery system assessment methods depends upon the type, amount, and quality of data available. Use of an integrated approach is encouraged to evaluate the success of a groundwater recovery and treatment system. The methods presented in this paper are for engineers and corporate management to use when discussing the effectiveness of groundwater remediation systems with their environmental consultant. In addition, an independent (third party) system evaluation is recommended to be sure that a recovery system operates efficiently and with minimum expense.

  4. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Directory of Open Access Journals (Sweden)

    A. Watlet

    2018-03-01

    Full Text Available Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1 upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2 deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3 a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of

  5. U1/U2 crib groundwater biological treatment demonstration project

    International Nuclear Information System (INIS)

    Koegler, S.S.; Brouns, T.M.; Heath, W.O.

    1989-11-01

    The primary objective of the biological treatment project is to develop and demonstrate a process for Hanford groundwater remediation. Biodenitrification using facultative anaerobic microorganisms is a promising technology for the simultaneous removal of nitrates and organics from contaminated aqueous streams. During FY 1988, a consortium of Hanford groundwater microorganisms was shown to degrade both nitrates and carbon tetrachloride (CC1 4 ). A pilot-scale treatment system was designed and constructed based on the results of laboratory-and-bench-scale testing. This report summarizes the results of biological groundwater treatment studies performed during FY 1989 at the pilot-scale. These tests were conducted using a simulated Hanford groundwater with a continuous stirred-tank bioreactor, and a fluidized-bed bioreactor that was added to the pilot-scale treatment system in FY 1989. The pilot-scale system demonstrated continuous degradation of nitrates and CC1 4 in a simulated groundwater. 4 refs., 7 figs., 1 tab

  6. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-04-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3-) input functions by characterizing unsaturated zone NO3- transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous "vertical flux method" (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3- source concentration factor (which determines the local NO3- input concentration); unsaturated zone travel time; NO3- concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3- "extinction depth", the eventual steady state depth of the NO3- front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 - 0.86 and 0.22 - 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing

  7. Regional groundwater modeling of the saturated zone in the vicinity of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ahola, M.; Sagar, B.

    1992-10-01

    Results of groundwater modeling of the saturated zone in the vicinity of Yucca Mountain are presented. Both a regional (200 x 200 km) and subregional (50 x 50 km) model were used in the analyses. Simulations were conducted to determine the impact of various disruptive that might take place over the life span of a proposed Yucca Mountain geologic conditions repository on the groundwater flow field, as well as changes in the water-table elevations. These conditions included increases in precipitation and groundwater recharge within the regional model, changes in permeability of existing hydrogeologic barriers, a:nd the vertical intrusion of volcanic dikes at various orientations through the saturated zone. Based on the regional analysis, the rise in the water-table under Yucca Mountain due to various postulated conditions ranged from only a few meters to 275 meters. Results of the subregional model analysis, which was used to simulate intrusive dikes approximately 4 kilometers in length in the vicinity of Yucca Mountain, showed water-table rises ranging from a few meters to as much as 103 meters. Dikes oriented approximately north-south beneath Yucca Mountain produced the highest water-table rises. The conclusions drawn from this analysis are likely to change as more site-specific data become available and as the assumptions in the model are improved

  8. Application of remote sensing, GIS and MCA techniques for delineating groundwater prospect zones in Kashipur block, Purulia district, West Bengal

    Science.gov (United States)

    Nag, S. K.; Kundu, Anindita

    2018-03-01

    Demand of groundwater resources has increased manifold with population expansion as well as with the advent of modern civilization. Assessment, planning and management of groundwater resource are becoming crucial and extremely urgent in recent time. The study area belongs to Kashipur block, Purulia district, West Bengal. The area is characterized with dry climate and hard rock terrain. The objective of this study is to delineate groundwater potential zone for the assessment of groundwater availability using remote sensing, GIS and MCA techniques. Different thematic layers such as hydrogeomorphology, slope and lineament density maps have been transformed to raster data in TNT mips pro2012. To assign weights and ranks to different input factor maps, multi-influencing factor (MIF) technique has been used. The weights assigned to each factor have been computed statistically. Weighted index overlay modeling technique was used to develop a groundwater potential zone map with three weighted and scored parameters. Finally, the study area has been categorized into four distinct groundwater potential zones—excellent 1.5% (6.45 sq. km), good 53% (227.9 sq. km), moderate 45% (193.5 sq. km.) and poor 0.5% (2.15 sq. km). The outcome of the present study will help local authorities, researchers, decision makers and planners in formulating proper planning and management of groundwater resources in different hydrogeological situations.

  9. Underground mining of the lower 163 zone through groundwater drainage at the Eagle Point Mine

    International Nuclear Information System (INIS)

    Robson, D.M.; Bashir, R.; Thomson, J.; Klemmer, S.; Rigden, A.

    2010-01-01

    The Eagle Point Mine is part of the Cameco Rabbit Lake Operation. The mine produces uranium ore using the long-hole, vertical and horizontal retreat mining method. The majority of the mine workings are under Wollaston Lake and cementitious grouting is used as one of the water control measures. Historical groundwater table in the mining area was close to ground surface. The Lower 163 Zone encompasses an estimated 4.2 million pounds U_3O_8 geological resource that was not considered feasible to mine due to the expected groundwater flows in the area. Cross-hole testing was conducted to better understand the groundwater flow through various geologic units. A local depressurization test was conducted to assess the potential for lowering the water table. Following testing an active depressurization was conducted to lower the groundwater table below the planned mining areas. This resulted in safe and drier mining conditions and allowed for the successful extraction of the ore body. (author)

  10. Mapping potential zones for groundwater recharge and its evaluation in arid environments using a GIS approach: Case study of North Gafsa Basin (Central Tunisia)

    Science.gov (United States)

    Mokadem, Naziha; Boughariou, Emna; Mudarra, Matías; Ben Brahim, Fatma; Andreo, Bartolome; Hamed, Younes; Bouri, Salem

    2018-05-01

    With the progressive evolution of industrial sector, agricultural, urbanization, population and drinking water supply, the water demand continuously increases which necessitates the planning of groundwater recharge particularly in arid and semi-arid regions. This paper gives a comprehensive review of various recharges studies in the North Gafsa basin (South Tunisia). This latter is characterized by a natural groundwater recharge that is deeply affected by the lack of precipitations. The aim of this study is to determine the recharge potential zones and to quantify (or estimate) the rainfall recharge of the shallow aquifers. The mapping of the potential recharge zones was established in North Gafsa basin, using geological and hydrological parameters such as slope, lithology, topography and stream network. Indeed, GIS provide tools to reclassify these input layers to produce the final map of groundwater potential zones of the study area. The final output map reveals two distinct zones representing moderate and low groundwater potential recharge. Recharge estimations were based on the four methods: (1) Chloride Method, (2) ERAS Method, (3) DGRE coefficient and (4) Fersi equations. Therefore, the overall results of the different methods demonstrate that the use of the DGRE method applying on the potential zones is more validated.

  11. Environmental isotope and geophysical techniques to identify groundwater potential zones in drought prone areas of Amravati District, Maharashtra, India

    International Nuclear Information System (INIS)

    Jacob, Noble

    2017-01-01

    The groundwater potential of Anjangaon village in Amaravati district of Maharashtra is generally poor and the water quality is saline in most of the places. Farmers dig open wells (up to 30 m depth) and drill bore wells (100-150 m depth) for domestic and irrigation purposes. Most of the wells failed and farmers are struggling for fresh water in this region. To evaluate the groundwater recharge and to identify the groundwater potential zones an environmental isotope and geophysical study was carried out. Water samples were collected from rain, springs, open wells, bore wells and detention tanks and measured for environmental isotopes such as "1"8O, "2H and "3H. Isotope results indicate that the groundwater is getting modern component of recharge from the rain as well as from the detention tanks. The percentage contributions from the detention tanks were estimated to be about 40 to 90 %. In the southern part of the Anjagaon village, an electrical resistivity survey of the geological formation was carried out and a groundwater potential zone was delineated at 45m depth. The farmers were asked to drill bore wells at the identified depth. The drilled five bore wells yielded perennial source of good quality water

  12. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    Science.gov (United States)

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  13. Arsenic transport in groundwater, surface water, and the hyporheic zone of a mine-influenced stream-aquifer system

    OpenAIRE

    Brown, Brendan

    2005-01-01

    We investigated the transport of dissolved arsenic in groundwater, surface water and the hyporheic zone in a stream-aquifer system influenced by an abandoned arsenopyrite mine. Mine tailing piles consisting of a host of arsenic-bearing minerals including arsenopyrite and scorodite remain adjacent to the stream and represent a continuous source of arsenic. Arsenic loads from the stream, springs, and groundwater were quantified at the study reach on nine dates from January to August 2005 and ...

  14. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements

    International Nuclear Information System (INIS)

    Burnett, William C.; Dulaiova, Henrieta

    2003-01-01

    Submarine groundwater discharge (SGD) into the coastal zone has received increased attention in the last few years as it is now recognized that this process represents an important pathway for material transport. Assessing these material fluxes is difficult, as there is no simple means to gauge the water flux. To meet this challenge, we have explored the use of a continuous radon monitor to measure radon concentrations in coastal zone waters over time periods from hours to days. Changes in the radon inventories over time can be converted to fluxes after one makes allowances for tidal effects, losses to the atmosphere, and mixing with offshore waters. If one assumes that advective flow of radon-enriched groundwater (pore waters) represent the main input of 222 Rn in the coastal zone, the calculated radon fluxes may be converted to water fluxes by dividing by the estimated or measured 222 Rn pore water activity. We have also used short-lived radium isotopes ( 223 Ra and 224 Ra) to assess mixing between near-shore and offshore waters in the manner pioneered by . During an experiment in the coastal Gulf of Mexico, we showed that the mixing loss derived from the 223 Ra gradient agreed very favorably to the estimated range based on the calculated radon fluxes. This allowed an independent constraint on the mixing loss of radon--an important parameter in the mass balance approach. Groundwater discharge was also estimated independently by the radium isotopic approach and was within a factor of two of that determined by the continuous radon measurements and an automated seepage meter deployed at the same site

  15. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-01-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3−) input functions by characterizing unsaturated zone NO3− transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous “vertical flux method” (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3− source concentration factor (which determines the local NO3− input concentration); unsaturated zone travel time; NO3− concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3− “extinction depth”, the eventual steady state depth of the NO3−front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 – 0.86 and 0.22 – 0.38, respectively, and predictions were compiled as maps of the above

  16. Simplified Method for Groundwater Treatment Using Dilution and Ceramic Filter

    Science.gov (United States)

    Musa, S.; Ariff, N. A.; Kadir, M. N. Abdul; Denan, F.

    2016-07-01

    Groundwater is one of the natural resources that is not susceptible to pollutants. However, increasing activities of municipal, industrial, agricultural or extreme land use activities have resulted in groundwater contamination as occured at the Research Centre for Soft Soil Malaysia (RECESS), Universiti Tun Hussein Onn Malaysia (UTHM). Thus, aims of this study is to treat groundwater by using rainwater and simple ceramic filter as a treatment agent. The treatment uses rain water dilution, ceramic filters and combined method of dilute and filtering as an alternate treatment which are simple and more practical compared to modern or chemical methods. The water went through dilution treatment processes able to get rid of 57% reduction compared to initial condition. Meanwhile, the water that passes through the filtering process successfully get rid of as much as 86% groundwater parameters where only chloride does not pass the standard. Favorable results for the combination methods of dilution and filtration methods that can succesfully eliminate 100% parameters that donot pass the standards of the Ministry of Health and the Interim National Drinking Water Quality Standard such as those found in groundwater in RECESS, UTHM especially sulfate and chloride. As a result, it allows the raw water that will use clean drinking water and safe. It also proves that the method used in this study is very effective in improving the quality of groundwater.

  17. Conceptual and numerical models of groundwater flow and solute transport in fracture zones: Application to the Aspo Island (Sweden)

    International Nuclear Information System (INIS)

    Molinero, J.; Samper, J.

    2003-01-01

    Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding

  18. Fate of sulfamethoxazole, 4-nonylphenol, and 17beta-estradiol in groundwater contaminated by wastewater treatment plant effluent.

    Science.gov (United States)

    Barber, Larry B; Keefe, Steffanie H; Leblanc, Denis R; Bradley, Paul M; Chapelle, Francis H; Meyer, Michael T; Loftin, Keith A; Kolpin, Dana W; Rubio, Fernando

    2009-07-01

    Organic wastewater contaminants (OWCs) were measured in samples collected from monitoring wells located along a 4.5-km transect of a plume of groundwater contaminated by 60 years of continuous rapid infiltration disposal of wastewater treatment plant effluent. Fifteen percent of the 212 OWCs analyzed were detected, including the antibiotic sulfamethoxazole (SX), the nonionic surfactant degradation product 4-nonylphenol (NP), the solvent tetrachloroethene (PCE), and the disinfectant 1,4-dichlorobenzene (DCB). Comparison of the 2005 sampling results to data collected from the same wells in 1985 indicates that PCE and DCB are transported more rapidly in the aquiferthan NP, consistent with predictions based on compound hydrophobicity. Natural gradient in situ tracer experiments were conducted to evaluate the subsurface behavior of SX, NP, and the female sex hormone 17beta-estradiol (E2) in two oxic zones in the aquifer: (1) a downgradient transition zone at the interface between the contamination plume and the overlying uncontaminated groundwater and (2) a contaminated zone located beneath the infiltration beds, which have not been loaded for 10 years. In both zones, breakthrough curves for the conservative tracer bromide (Br-) and SX were nearly coincident, whereas NP and E2 were retarded relative to Br- and showed mass loss. Retardation was greater in the contaminated zone than in the transition zone. Attenuation of NP and E2 in the aquifer was attributed to biotransformation, and oxic laboratory microcosm experiments using sediments from the transition and contaminated zones show that uniform-ring-labeled 14C 4-normal-NP was biodegraded more rapidly 130-60% recovered as 14CO2 in 13 days) than 4-14C E2 (20-90% recovered as 14CO2 in 54 days). There was little difference in mineralization potential between sites.

  19. Fate of sulfamethoxazole, 4-nonylphenol, and 17β-estradiol in groundwater contaminated by wastewater treatment plant effluent

    Science.gov (United States)

    Barber, Larry B.; Keefe, Steffanie H.; LeBlanc, Denis R.; Bradley, Paul M.; Chapelle, Francis H.; Meyer, Michael T.; Loftin, Keith A.; Koplin, Dana W.; Rubio, Fernando

    2009-01-01

    Organic wastewater contaminants (OWCs) were measured in samples collected from monitoring wells located along a 4.5-km transect of a plume of groundwater contaminated by 60 years of continuous rapid infiltration disposal of wastewater treatment plant effluent. Fifteen percent of the 212 OWCs analyzed were detected, including the antibiotic sulfamethoxazole (SX), the nonionic surfactant degradation product 4-nonylphenol (NP), the solvent tetrachloroethene (PCE), and the disinfectant 1,4-dichlorobenzene (DCB). Comparison of the 2005 sampling results to data collected from the same wells in 1985 indicates that PCE and DCB are transported more rapidly in the aquifer than NP, consistent with predictions based on compound hydrophobicity. Natural gradient in situ tracer experiments were conducted to evaluate the subsurface behavior of SX, NP, and the female sex hormone 17β-estradiol (E2) in two oxic zones in the aquifer: (1) a downgradient transition zone at the interface between the contamination plume and the overlying uncontaminated groundwater and (2) a contaminated zone located beneath the infiltration beds, which have not been loaded for 10 years. In both zones, breakthrough curves for the conservative tracer bromide (Br−) and SX were nearly coincident, whereas NP and E2 were retarded relative to Br− and showed mass loss. Retardation was greater in the contaminated zone than in the transition zone. Attenuation of NP and E2 in the aquifer was attributed to biotransformation, and oxic laboratory microcosm experiments using sediments from the transition and contaminated zones show that uniform-ring-labeled 14C 4-normal-NP was biodegraded more rapidly (30−60% recovered as 14CO2 in 13 days) than 4-14C E2 (20−90% recovered as 14CO2in 54 days). There was little difference in mineralization potential between sites.

  20. Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    B. Arnold; T. Corbet

    2001-12-18

    The purpose of the flow boundary conditions analysis is to provide specified-flux boundary conditions for the saturated zone (SZ) site-scale flow and transport model. This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the SZ site-scale model domain, both as recharge at the upper (water table) boundary and as underflow at the lateral boundaries. The objective is to provide consistency at the boundaries between the SZ site-scale flow model and other groundwater flow models. The scope of this analysis includes extraction of the volumetric groundwater flow rates simulated by the SZ regional-scale flow model to occur at the lateral boundaries of the SZ site-scale flow model and the internal qualification of the regional-scale model for use in this analysis model report (AMR). In addition, the scope includes compilation of information on the recharge boundary condition taken from three sources: (1) distributed recharge as taken from the SZ regional-scale flow model, (2) recharge below the area of the unsaturated zone (UZ) site-scale flow model, and (3) focused recharge along the Fortymile Wash channel.

  1. In Situ Groundwater Denitrification in the Riparian Zone of a Short-Rotation Woody Crop Experimental Watershed

    Science.gov (United States)

    Jeffers, J. B.; Jackson, C. R.; Rau, B.; Pringle, C. M.; Matteson, C.

    2017-12-01

    The southeastern United States has potential to become a major producer of short rotation woody crops (SRWC) for the production of biofuels, but this will require converting to more intensive forest management practices that will increase nitrate (NO3-) loading and alter nitrogen cycling in nearby freshwater ecosystems. Water quality monitoring in an experimental short-rotation woody crop watershed in the Coastal Plain of South Carolina has shown increased concentrations of NO3- in groundwater but no evidence of increased NO3- in riparian groundwater or surface waters. Forested riparian areas established as streamside management zones (SMZ) are known to act as buffers to surface water bodies by mitigating nutrients. The objectives of this study were to quantify denitrification by measuring dinitrogen (N2) and nitrous oxide (N2O) concentrations along groundwater flow paths and analyze relationships between denitrification estimates, nutrients, and water chemistry parameters. A network of piezometers has been established in the Fourmile Experimental Watershed at the Department of Energy - Savannah River Site. Water samples were collected monthly and were analyzed for concentrations of nutrients (temperature, specific conductivity, dissolved oxygen, pH, dissolved organic carbon) and dissolved gases (N2, Ar, N2O). Preliminary data showed greater dissolved N2O concentrations than dissolved N2 concentrations in groundwater. The ratios of N2O to combined end products of denitrification (N2O / N2O+N2) ranged from 0.33 to 0.99. Mean N2O+N2 concentrations were greater in groundwater samples in the SRWC plot and along the SMZ boundary than along the ephemeral stream within the riparian zone. Correlations between water chemistry parameters and N2 concentrations are indicative of known biogeochemical driving factors of denitrification. Continued monthly sampling will be coupled with analysis of nutrient concentrations (NO3-, NH4+, TN) to help determine transport and processing

  2. Practical problems of groundwater model ages for groundwater protection studies

    International Nuclear Information System (INIS)

    Matthess, G.; Muennich, K.O.; Sonntag, C.

    1976-01-01

    Water authorities in the Federal Republic of Germany have established a system of protection zones for the protection of groundwater supplies from pollution. One zone (Zone II) is defined by an outer boundary from which the groundwater needs 50 days to flow to the well. 50 days is the period accepted for the elimination of pathogenic germs. However, within Zone II carbon-14 measurements of water may give model ages of several thousand years, which may lead to some confusion in the legal and practical aspects of this scheme. These model ages may result from uncertainties in the chemical model, or from mixing of waters of different ages, either within the aquifer or during extraction at the well. The paper discusses scientific aspects of the establishment of protection zones. Two processes affecting the model age determinations are examined in detail. First, the mechanism of diffusion transport downwards through porous, but impermeable, aquicludes is examined for stable trace substances and radioactive isotopes. Secondly, examples are given of model ages resulting from mixtures of new and old waters. It is recommended that such model ages should not be reported as 'ages' since they may be misinterpreted in groundwater protection applications. (author)

  3. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

  4. Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Park, Koung Woo; Ji, Sung Hoon; Kim, Chun Soo; Kim, Kyoung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Ji Yeon [Korea Hydro and Nuclear Power Co. Ltd., Seoul (Korea, Republic of)

    2008-12-15

    Based on the site characterization works in a low and intermediate level waste (LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network (DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  5. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2012-15

    Science.gov (United States)

    Bartholomay, Roy C.; Maimer, Neil V.; Rattray, Gordon W.; Fisher, Jason C.

    2017-04-10

    Since 1952, wastewater discharged to in ltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater-monitoring networks at the INL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from the ESRP aquifer, multilevel monitoring system (MLMS) wells in the ESRP aquifer, and perched groundwater wells in the USGS groundwater monitoring networks during 2012-15.

  6. 100-D Area In Situ Redox Treatability Test for Chromate-Contaminated Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mark D.; Vermeul, Vincent R.; Szecsody, James E.; Fruchter, Jonathan S.

    2000-10-12

    A treatability test was conducted for the In Situ Redox Manipulation (ISRM) technology at the 100 D Area of the U. S. Department of Energy's Hanford Site. The target contaminant was dissolved chromate in groundwater. The ISRM technology creates a permeable subsurface treatment zone to reduce mobile chromate in groundwater to an insoluble form. The ISRM permeable treatment zone is created by reducing ferric iron to ferrous iron within the aquifer sediments, which is accomplished by injecting aqueous sodium dithionite into the aquifer and then withdrawing the reaction products. The goal of the treatability test was to create a linear ISRM barrier by injecting sodium dithionite into five wells. Well installation and site characterization activities began in spring 1997; the first dithionite injection took place in September 1997. The results of this first injection were monitored through the spring of 1998. The remaining four dithionite injections were carried out in May through July of 1998.These five injections created a reduced zone in the Hanford unconfined aquifer approximately 150 feet in length (perpendicular to groundwater flow) and 50 feet wide. The reduced zone extended over the thickness of the unconfined zone. Analysis of post-emplacement groundwater samples showed concentrations of chromate, in the reduced zone decreased from approximately 1.0 mg/L before the tests to below analytical detection limits (<0.007 mg/L). Chromate concentrations also declined in downgradient monitoring wells to as low as 0.020 mg/L. These data, in addition to results from pre-test reducible iron characterization, indicate the barrier should be effective for 20 to 25 years. The 100-D Area ISRM barrier is being expanded to a length of up to 2,300 ft to capture a larger portion of the chromate plume.

  7. Electromagnetic exploration in high-salinity groundwater zones: case studies from volcanic and soft sedimentary sites in coastal Japan

    Science.gov (United States)

    Suzuki, Koichi; Kusano, Yukiko; Ochi, Ryota; Nishiyama, Nariaki; Tokunaga, Tomochika; Tanaka, Kazuhiro

    2017-01-01

    Estimating the spatial distribution of groundwater salinity in coastal plain regions is becoming increasingly important for site characterisation and the prediction of hydrogeological environmental conditions resulting from radioactive waste disposal and underground CO2 storage. In previous studies of the freshwater-saltwater interface, electromagnetic methods were used for sites characterised by unconsolidated deposits or Neocene soft sedimentary rocks. However, investigating the freshwater-saltwater interface in hard rock sites (e.g. igneous areas) is more complex, with the permeability of the rocks greatly influenced by fractures. In this study, we investigated the distribution of high-salinity groundwater at two volcanic rock sites and one sedimentary rock site, each characterised by different hydrogeological features. Our investigations included (1) applying the controlled source audio-frequency magnetotelluric (CSAMT) method and (2) conducting laboratory tests to measure the electrical properties of rock core samples. We interpreted the 2D resistivity sections by referring to previous data on geology and geochemistry of groundwater. At the Tokusa site, an area of inland volcanic rocks, low resistivity zones were detected along a fault running through volcanic rocks and shallow sediments. The results suggest that fluids rise through the Tokusa-Jifuku Fault to penetrate shallow sediments in a direction parallel to the river, and some fluids are diluted by rainwater. At the Oki site, a volcanic island on a continental shelf, four resistivity zones (in upward succession: low, high, low and high) were detected. The results suggest that these four zones were formed during a transgression-regression cycle caused by the last glacial period. At the Saijo site, located on a coastal plain composed of thick sediments, we observed a deep low resistivity zone, indicative of fossil seawater remnant from a transgression after the last glacial period. The current coastal

  8. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J.; Houk, T.

    1998-01-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3 1/2 year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc 99 ) (activities up to 926 pCi/L)

  9. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J. [Oak Ridge National Lab., TN (United States); Houk, T. [Lockheed Martin Energy Systems, Piketon, OH (United States). Portsmouth Gaseous Diffusion Plant

    1998-08-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).

  10. Submarine Groundwater Discharge in the Coastal Zone

    Science.gov (United States)

    Bakti, Hendra

    2018-02-01

    Indonesia is one of the archipelagic countries that has the longest coastline in the world. Because it is located in the tropics, in general it has a very high rainfall. Each island has a different morphology which is composed of a variety of rocks with different hydrogeological properties. This natural condition allows for the presence of groundwater in different amount in each island. The difference in groundwater hydraulics gradients in aquifer continuous to the sea has triggered the discharge of groundwater to offshore known as submarine groundwater discharge (SGD). Its presence can be as seepage or submarine springs with components derived from land and sea and a mixture between them. The understanding of SGD phenomenon is very important because it can be useful as a source of clean water in coastal areas, affecting marine health, and improving marine environment.

  11. The vadose zone as a geoindicator of environmental change and groundwater quality in water-scarce areas

    Science.gov (United States)

    Edmunds, W. M.; Baba Goni, I.; Gaye, C. B.; Jin, L.

    2013-12-01

    Inert and reactive tracers in moisture profiles provide considerable potential for the vadose zone to be used as an indicator of rapid environmental change. This indicator is particularly applicable in areas of water stress where long term (decade to century) scale records may be found in deep unsaturated zones in low rainfall areas and provide insights into recent recharge, climate variation and water-rock interactions which generate groundwater quality. Unsaturated zone Cl records obtained by elutriation of moisture are used widely for estimating recharge and water balance studies; isotope profiles (3H, δ2H, δ18O) from total water extraction procedures are used for investigation of residence times and hydrological processes. Apart from water taken using lysimeters, little work has been conducted directly on the geochemistry of pore fluids. This is mainly due to the difficulties of extraction of moisture from unsaturated material with low water contents (typically 2-6 wt%) and since dilution methods can create artifacts. Using immiscible liquid displacement techniques it is now possible to directly investigate the geochemistry of moisture from unsaturated zone materials. Profiles up to 35m from Quaternary sediments from dryland areas of the African Sahel (Nigeria, Senegal) as well as Inner Mongolia, China are used to illustrate the breadth of information obtainable from vadose zone profiles. Using pH, major and trace elements and comparing with isotopic data, a better understanding is gained of timescales of water movement, aquifer recharge, environmental records and climate history as well as water-rock interaction and contaminant behaviour. The usefulness of tritium as residence time indicator has now expired following cessation of atmospheric thermonuclear testing and through radioactive decay. Providing the rainfall Cl, moisture contents and bulk densities of the sediments are known, then Cl accumulation can be substituted to estimate timescales. Profiles

  12. Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: A tool for dating groundwater movement in agricultural settings.

    Science.gov (United States)

    Rice, Clifford P; McCarty, Gregory W; Bialek-Kalinski, Krystyna; Zabetakis, Kara; Torrents, Alba; Hapeman, Cathleen J

    2016-08-01

    To better address how much groundwater contributes to the loadings of pollutants from agriculture we developed a specific dating tool for groundwater residence times. This tool is based on metolachlor ethane sulfonic acid, which is a major soil metabolite of metolachlor. The chiral forms of metolachlor ethane sulfonic acid (MESA) and the chiral forms of metolachlor were examined over a 6-year period in samples of groundwater and water from a groundwater-fed stream in a riparian buffer zone. This buffer zone bordered cropland receiving annual treatments with metolachlor. Racemic (rac) metolachlor was applied for two years in the neighboring field, and subsequently S-metolachlor was used which is enriched by 88% with the S-enantiomer. Chiral analyses of the samples showed an exponential increase in abundance of the S-enantiomeric forms for MESA as a function of time for both the first order riparian buffer stream (R(2)=0.80) and for groundwater within the riparian buffer (R(2)=0.96). However, the S-enrichment values for metolachlor were consistently high indicating different delivery mechanisms for MESA and metolachlor. A mean residence time of 3.8years was determined for depletion of the initially-applied rac-metolachlor. This approach could be useful in dating groundwater and determining the effectiveness of conservation measures. A mean residence time of 3.8years was calculated for groundwater feeding a first-order stream by plotting the timed-decay for the R-enantiomer of metolachlor ethane sulfonic acid. Published by Elsevier B.V.

  13. In situ treatment of mixed contaminants in groundwater: Application of zero-valence iron and palladized iron for treatment of groundwater contaminated with trichloroethene and technetium-99

    International Nuclear Information System (INIS)

    Korte, N.E.; Muck, M.T.; Zutman, J.L.; Schlosser, R.M.; Liang, L.; Gu, B.; Houk, T.C.; Fernando, Q.

    1997-04-01

    The overall goal of this portion of the project was to package one or more unit processes, as modular components in vertical and/or horizontal recirculation wells, for treatment of volatile organic compounds (VOCs) [e.g., trichloroethene (TCE)] and radionuclides [e.g., technetium (Tc) 99 ] in groundwater. The project was conceived, in part, because the coexistence of chlorinated hydrocarbons and radionuclides has been identified as the predominant combination of groundwater contamination in the US Department of Energy (DOE) complex. Thus, a major component of the project was the development of modules that provide simultaneous treatment of hydrocarbons and radionuclides. The project objectives included: (1) evaluation of horizontal wells for inducing groundwater recirculation, (2) development of below-ground treatment modules for simultaneous removal of VOCs and radionuclides, and (3) demonstration of a coupled system (treatment module with recirculation well) at a DOE field site where both VOCs and radionuclides are present in the groundwater. This report is limited to the innovative treatment aspects of the program. A report on pilot testing of the horizontal recirculation system was the first report of the series (Muck et al. 1996). A comprehensive report that focuses on the engineering, cost and hydrodynamic aspects of the project has also been prepared (Korte et al. 1997a)

  14. In situ treatment of mixed contaminants in groundwater: Application of zero-valence iron and palladized iron for treatment of groundwater contaminated with trichloroethene and technetium-99

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.; Muck, M.T.; Zutman, J.L.; Schlosser, R.M. [Oak Ridge National Lab., Grand Junction, CO (United States); Liang, L.; Gu, B. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Siegrist, R.L. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.]|[Colorado School of Mines, Golden, CO (United States); Houk, T.C. [Portsmouth Gaseous Diffusion Plant, Piketon, OH (United States); Fernando, Q. [Univ. of Arizona, Tucson, AZ (United States)

    1997-04-01

    The overall goal of this portion of the project was to package one or more unit processes, as modular components in vertical and/or horizontal recirculation wells, for treatment of volatile organic compounds (VOCs) [e.g., trichloroethene (TCE)] and radionuclides [e.g., technetium (Tc){sup 99}] in groundwater. The project was conceived, in part, because the coexistence of chlorinated hydrocarbons and radionuclides has been identified as the predominant combination of groundwater contamination in the US Department of Energy (DOE) complex. Thus, a major component of the project was the development of modules that provide simultaneous treatment of hydrocarbons and radionuclides. The project objectives included: (1) evaluation of horizontal wells for inducing groundwater recirculation, (2) development of below-ground treatment modules for simultaneous removal of VOCs and radionuclides, and (3) demonstration of a coupled system (treatment module with recirculation well) at a DOE field site where both VOCs and radionuclides are present in the groundwater. This report is limited to the innovative treatment aspects of the program. A report on pilot testing of the horizontal recirculation system was the first report of the series (Muck et al. 1996). A comprehensive report that focuses on the engineering, cost and hydrodynamic aspects of the project has also been prepared (Korte et al. 1997a).

  15. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were 99% disappeared (primarily nitrified) in the vadose zone (20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the groundwater nitrate-N was elevated upto 19.2 mg/L after wastewater delivery in tradional systems. Total P in the wastewater was ~10 mg/L, but low in all lysimeters (0.046-1.72 mg/L) and piezometers (0.01-0.78 mg

  16. Groundwater Flow and Radionuclide Transport in Fault Zones in Granitic Rock

    International Nuclear Information System (INIS)

    Geier, Joel Edward

    2004-12-01

    Fault zones are potential paths for release of radioactive nuclides from radioactive-waste repositories in granitic rock. This research considers detailed maps of en echelon fault zones at two sites in southern Sweden, as a basis for analyses of how their internal geometry can influence groundwater flow and transport of radioactive nuclides. Fracture intensity within these zones is anisotropic and correlated over scales of several meters along strike, corresponding to the length and spacing of the en echelon steps. Flow modeling indicates these properties lead to correlation of zone transmissivity over similar scales. Intensity of fractures in the damage zone adjoining en echelon segments decreases exponentially with distance. These fractures are linked to en echelon segments as a hierarchical pattern of branches. Echelon steps also show a hierarchical internal structure. These traits suggest a fractal increase in the amount of pore volume that solute can access by diffusive mass transfer, with increasing distance from en echelon segments. Consequences may include tailing of solute breakthrough curves, similar to that observed in underground tracer experiments at one of the mapping sites. The implications of echelon-zone architecture are evaluated by numerical simulation of flow and solute transport in 2-D network models, including deterministic models based directly on mapping data, and a statistical model. The simulations account for advection, diffusion-controlled mixing across streamlines within fractures and at intersections, and diffusion into both stagnant branch fractures and macroscopically unfractured matrix. The simulations show that secondary fractures contribute to retardation of solute, although their net effect is sensitive to assumptions regarding heterogeneity of transmissivity and transport aperture. Detailed results provide insight into the function of secondary fractures as an immobile domain affecting mass transfer on time scales relevant to

  17. Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel

    Science.gov (United States)

    Zilberbrand, M.; Rosenthal, E.; Shachnai, E.

    2001-08-01

    The coastal city of Tel Aviv was founded at the beginning of the 20th century. The number of its inhabitants and its water consumption increased rapidly. This study analyses a 15-year record (1934-1948) of pre-industrial development of groundwater chemistry in the urban area. Archive data on concentrations of major ions, dissolved gases (CO 2 and O 2), organic matter, and pH were available for each half-year during the period of 1934-1948. The major factors causing changes in the chemistry of groundwater flowing in three sandy sub-aquifers have been seawater encroachment due to overpumping, and infiltration of effluents from pit-latrine collectors. Influence of these factors decreases with depth. Landward-penetrating seawater passed through clayey coastal sediments, interbedded among sands and calcareous sandstones, and spread into the Kurkar Group aquifer. This has led to exchange of sodium (dominant in seawater) with calcium adsorbed on clay particles, enriching groundwater with calcium. Intensity of cation exchange decreases inland and with depth. Infiltration of pit-latrine effluents has introduced large amounts of ammonium into the unsaturated zone. Its rapid oxidation in unsaturated sediments has caused massive nitrate production, accompanied by pore-water acidification. This process induces dissolution of vadose carbonate, resulting in enrichment of groundwater recharge in calcium. Anthropogenically induced dissolution of calcite in the unsaturated zone has been the major factor for the increase of Ca 2+ concentration in groundwater, accounting for about 80% of this increase. In the interface zone, an additional 20% of calcium has been supplied by cation exchange. Owing to pH increase caused by denitrification in the aquifer, Ca 2+-rich waters supersaturated with calcite could be formed, especially in the capillary fringe of the uppermost sub-aquifer, which could induce calcite precipitation and ultimately lead to the cementation of sandy aquifers. Urban

  18. An Update of the Analytical Groundwater Modeling to Assess Water Resource Impacts at the Afton Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John J. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.

  19. Remote sensing for assessing the zone of benefit where deep drains improve productivity of land affected by shallow saline groundwater.

    Science.gov (United States)

    Kobryn, H T; Lantzke, R; Bell, R; Admiraal, R

    2015-03-01

    The installation of deep drains is an engineering approach to remediate land salinised by the influence of shallow groundwater. It is a costly treatment and its economic viability is, in part, dependent on the lateral extent to which the drain increases biological productivity by lowering water tables and soil salinity (referred to as the drains' zone of benefit). Such zones may be determined by assessing the biological productivity response of adjacent vegetation over time. We tested a multi-temporal satellite remote sensing method to analyse temporal and spatial changes in vegetation condition surrounding deep drainage sites at five locations in the Western Australian wheatbelt affected by dryland salinity-Morawa, Pithara, Beacon, Narembeen and Dumbleyung. Vegetation condition as a surrogate for biological productivity was assessed by Normalised Difference Vegetation Index (NDVI) during the peak growing season. Analysis was at the site scale within a 1000 m buffer zone from the drains. There was clear evidence of NDVI increasing with elevation, slope and distance from the drain. After accounting for elevation, slope and distance from the drain, there was a significant increase in NDVI across the five locations after installation of deep drains. Changes in NDVI after drainage were broadly consistent with measured changes at each site in groundwater levels after installation of the deep drains. However, this study assessed the lateral extent of benefit for biological productivity and gave a measure of the area of benefit along the entire length of the drain. The method demonstrated the utility of spring NDVI images for rapid and relatively simple assessment of the change in site condition after implementation of drainage, but approaches for further improvement of the procedure were identified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Remedial Process Optimization and Green In-Situ Ozone Sparging for Treatment of Groundwater Impacted with Petroleum Hydrocarbons

    Science.gov (United States)

    Leu, J.

    2012-12-01

    A former natural gas processing station is impacted with TPH and BTEX in groundwater. Air sparging and soil vapor extraction (AS/AVE) remediation systems had previously been operated at the site. Currently, a groundwater extraction and treatment system is operated to remove the chemicals of concern (COC) and contain the groundwater plume from migrating offsite. A remedial process optimization (RPO) was conducted to evaluate the effectiveness of historic and current remedial activities and recommend an approach to optimize the remedial activities. The RPO concluded that both the AS/SVE system and the groundwater extraction system have reached the practical limits of COC mass removal and COC concentration reduction. The RPO recommended an in-situ chemical oxidation (ISCO) study to evaluate the best ISCO oxidant and approach. An ISCO bench test was conducted to evaluate COC removal efficiency and secondary impacts to recommend an application dosage. Ozone was selected among four oxidants based on implementability, effectiveness, safety, and media impacts. The bench test concluded that ozone demand was 8 to 12 mg ozone/mg TPH and secondary groundwater by-products of ISCO include hexavalent chromium and bromate. The pH also increased moderately during ozone sparging and the TDS increased by approximately 20% after 48 hours of ozone treatment. Prior to the ISCO pilot study, a capture zone analysis (CZA) was conducted to ensure containment of the injected oxidant within the existing groundwater extraction system. The CZA was conducted through a groundwater flow modeling using MODFLOW. The model indicated that 85%, 90%, and 95% of an injected oxidant could be captured when a well pair is injecting and extracting at 2, 5, and 10 gallons per minute, respectively. An ISCO pilot test using ozone was conducted to evaluate operation parameters for ozone delivery. The ozone sparging system consisted of an ozone generator capable of delivering 6 lbs/day ozone through two ozone

  1. Phosphate interference during in situ treatment for arsenic in groundwater.

    Science.gov (United States)

    Brunsting, Joseph H; McBean, Edward A

    2014-01-01

    Contamination of groundwater by arsenic is a problem in many areas of the world, particularly in West Bengal (India) and Bangladesh, where reducing conditions in groundwater are the cause. In situ treatment is a novel approach wherein, by introduction of dissolved oxygen (DO), advantages over other treatment methods can be achieved through simplicity, not using chemicals, and not requiring disposal of arsenic-rich wastes. A lab-scale test of in situ treatment by air sparging, using a solution with approximately 5.3 mg L(-1) ferrous iron and 200 μg L(-1) arsenate, showed removal of arsenate in the range of 59%. A significant obstacle exists, however, due to the interference of phosphate since phosphate competes for adsorption sites on oxidized iron precipitates. A lab-scale test including 0.5 mg L(-1) phosphate showed negligible removal of arsenate. In situ treatment by air sparging demonstrates considerable promise for removal of arsenic from groundwater where iron is present in considerable quantities and phosphates are low.

  2. Hydrogeologic data and water-quality data from a thick unsaturated zone at a proposed wastewater-treatment facility site, Yucca Valley, San Bernardino County, California, 2008-11

    Science.gov (United States)

    O'Leary, David; Clark, Dennis A.; Izbicki, John A.

    2015-01-01

    The Hi-Desert Water District, in the community of Yucca Valley, California, is considering constructing a wastewater-treatment facility and using the reclaimed water to recharge the aquifer system through surface spreading. The Hi-Desert Water District is concerned with possible effects of this recharge on water quality in the underlying groundwater system; therefore, an unsaturated-zone monitoring site was constructed by the U.S. Geological Survey (USGS) to characterize the unsaturated zone, monitor a pilot-scale recharge test, and, ultimately, to monitor the flow of reclaimed water to the water table once the treatment facility is constructed.

  3. Seasonal variations in groundwater upwelling zones in a Danish lowland stream analyzed using Distributed Temperature Sensing (DTS)

    DEFF Research Database (Denmark)

    Matheswaran, Karthikeyan; Blemmer, Morten; Rosbjerg, Dan

    2014-01-01

    –night temperature difference were applied to three DTS datasets representing stream temperature responses to the variable meteorological and hydrological conditions prevailing in summer, winter and spring. The standard deviation criterion was useful to identify groundwater discharge zones in summer and spring......-term deployment covering variable meteorological and hydrological scenarios. Copyright © 2012 John Wiley & Sons, Ltd....

  4. Scale-Up Information for Gas-Phase Ammonia Treatment of Uranium in the Vadose Zone at the Hanford Site Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomle, Jonathan N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Uranium is present in the vadose zone at the Hanford Central Plateau and is of concern for protection of groundwater. The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau identified gas-phase treatment and geochemical manipulation as potentially effective treatment approaches for uranium and technetium in the Hanford Central Plateau vadose zone. Based on laboratory evaluation, use of ammonia vapor was selected as the most promising uranium treatment candidate for further development and field testing. While laboratory tests have shown that ammonia treatment effectively reduces the mobility of uranium, additional information is needed to enable deployment of this technology for remediation. Of importance for field applications are aspects of the technology associated with effective distribution of ammonia to a targeted treatment zone, understanding the fate of injected ammonia and its impact on subsurface conditions, and identifying effective monitoring approaches. In addition, information is needed to select equipment and operational parameters for a field design. As part of development efforts for the ammonia technology for remediation of vadose zone uranium contamination, field scale-up issues were identified and have been addressed through a series of laboratory and modeling efforts. This report presents a conceptual description for field application of the ammonia treatment process, engineering calculations to support treatment design, ammonia transport information, field application monitoring approaches, and a discussion of processes affecting the fate of ammonia in the subsurface. The report compiles this information from previous publications and from recent research and development activities. The intent of this report is to provide technical information about these scale-up elements to support the design and operation of a field test for the ammonia treatment technology.

  5. Vertical Hydraulic Conductivity of Unsaturated Zone by Infiltrometer Analysis of Shallow Groundwater Regime (KUISG

    Directory of Open Access Journals (Sweden)

    Arkan Radhi Ali

    2018-02-01

    Full Text Available A hydrogeologic model was developed and carried out in Taleaa district of 67km2 . The study adopted a determination of KUISG depends upon the double rings infiltrometer model. The tests were carried out in a part of Mesopotamian  Zone which is covered with quaternary deposits  . In general the groundwater levels are about one meter below ground surface.  Theoretically, the inclination angle of the saturated water phase plays an important role in the determination of KUISG. The experimental results prove that the angle of inclination of the saturated phase is identical to the angle of internal friction of the soil. This conclusion is supported by the comparison of the results that obtained from falling head test and infiltrometer measurements for estimating the hydraulic conductivitiy values for ten locations within the study area. The determination of vertical hydraulic conductivity by current infiltrometer model is constrained to only the shallow groundwater regime.7

  6. Groundwater resource exploration in Salem district, Tamil Nadu ...

    Indian Academy of Sciences (India)

    Hence, proper assessment of groundwater potential and management practices are ..... Total. 8.33 3.67 5.58 12.50 11.50 17.00 5.83. Table 3. Relative weight matrix – thematic layers. ...... potential zones and zones of groundwater quality suit-.

  7. Groundwater movements around a repository

    International Nuclear Information System (INIS)

    Burgess, A.

    1977-10-01

    Based on regional models of groundwater flow, the regional hydraulic gradient at depth is equal to the regional topographic gradient. As a result, the equipotentials are near vertical. The permeability distribution with depth influences the groundwater flow patterns. A zone of sluggish flows, the quiescent zone is developed when the permeability decreases with depth. This feature is accentuated when horizontal anisotropy, with the horizontal permeability higher then the vertical permeability, is included. The presence of an inactive zone will be a prerequesite for a satisfactory repository site. The effect of an inclined discontinuity representing a singular geological feature such as a fault plane or shear zone has been modelled. The quiescent zone does not appear to be unduly disturbed by such a feature. However, meaningful quantitative predictions related to the flows in a typical singular feature cannot be made without more specific data on their hydraulic properties. Two dimensional analysis has been made for a site specific section of a candidate repository site at Forsmark, Sweden. The lateral extent of the model was defined by major tectonic features, assumed vertical. Potential gradients and pore velocities have been computed for a range of boundary conditions and assumed material properties. The potential gradients for the model with anisotropic permeability approach the average potential gradient between the boundaries. The result of this study of the initial groundwater conditions will be used as input data for the analyses of the thermomechanical perturbations of the groundwater regime. In the long term, the groundwater flow will return to the initial conditions. The residual effects of the repository on the flow will be discussed in part 2 of this report. (author)

  8. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-01-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  9. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  10. Identification of groundwater potential zones in the Machuca River in the Central Pacific of Costa Rica using a GIS-Multi-criteria analysis

    Science.gov (United States)

    Bonilla, J. P.; Stefan, C.

    2015-12-01

    Water supply systems in the Machuca River basin in the Central Pacific of Costa Rica are subject to fluctuations in their production capacity at the end of the dry season; especially in the lower part of the basin. The urban development - and water demand -- is expected to increase because of a newly build highway. In order to understand the actual water resources and to asses new ones, the identification of groundwater potential zones is done using a geographical information system (GIS) based on thematic raster using fixed score and weight computed by the multi influencing factor (MIF) technique. The thematic layers used in the analysis are lithology, slope, land-use, lineament, drainage, soil and rainfall. The results were compared with the results of the Modified Thornthwaite-Mather model used to perform the water balance on a monthly scale. The groundwater potential was divided into three categories: no suitable, suitable, and very suitable zones. The resulting map is a decision support tool for the planning and management of groundwater resources in the Machuca River basin.

  11. Validation on groundwater flow model including sea level change. Modeling on groundwater flow in coastal granite area

    International Nuclear Information System (INIS)

    Hasegawa, Takuma; Miyakawa, Kimio

    2009-01-01

    It is important to verify the groundwater flow model that reproduces pressure head, water chemistry, and groundwater age. However, water chemistry and groundwater age are considered to be influenced by historical events. In this study, sea level change during glacial-interglacial cycle was taken into account for simulating salinity and groundwater age at coastal granite area. As a result of simulation, salinity movement could not catch up with sea level changes, and mixing zone was formed below the fresh-water zone. This mixing zone was observed in the field measurement, and the observed salinities were agreed with simulated results including sea level change. The simulated residence time including sea level change is one-tenth of steady state. The reason is that the saline water was washed out during regression and modern sea-water was infiltrated during transgression. As mentioned before, considering sea level change are important to reproduce salinity and helium age at coastal area. (author)

  12. Spatial and temporal variation of nutrients in groundwater and associated processes in the coastal zone of the Pearl River Delta, China

    Science.gov (United States)

    Chen, J.

    2017-12-01

    Rapid urbanization has occurred in the Pearl River Delta since 1980s, resulting in tremendous accumulation of population and material in an area of around 1.1x104 km2. Massive nutrients were released to the coastal zone either via the Pearl River or the aquifer, and effects of these nutrients on ecosystem and drinking water supply are a big public concern. Field campaigns to collect groundwater samples were implemented in rainy (April- September) and dry seasons (October - March) during the period of 2005-2016, and samples were analyzed for major ions, nutrients, multiple isotopes, N2O and microbiological DNA. Seasonal and spatial pattern of nutrients from the recharge to the discharge zone in two case study areas were identified and compared regarding relevant N transformation processes. Main sources of nutrients in groundwater and major mechanisms, e.g. denitrification, nitrification and etc., involved in these processes were raised by integrating microbiological, isotopic and geochemical evidences. Driven forces of the change in nutrients in the past 10 years were investigated based on statistical data, and total nutrient load in groundwater in the delta was estimated.

  13. Simulation of groundwater flow pathlines and freshwater/saltwater transition zone movement, Manhasset Neck, Nassau County, New York

    Science.gov (United States)

    Misut, Paul; Aphale, Omkar

    2014-01-01

    A density-dependent groundwater flow and solute transport model of Manhasset Neck, Long Island, New York, was used to analyze (1) the effects of seasonal stress on the position of the freshwater/saltwater transition zone and (2) groundwater flowpaths. The following were used in the simulation: 182 transient stress periods, representing the historical record from 1920 to 2011, and 44 transient stress periods, representing future hypothetical conditions from 2011 to 2030. Simulated water-level and salinity (chloride concentration) values are compared with values from a previously developed two-stress-period (1905–1944 and 1945–2005) model. The 182-stress-period model produced salinity (chloride concentration) values that more accurately matched the observed salinity (chloride concentration) values in response to hydrologic stress than did the two-stress-period model, and salinity ranged from zero to about 3 parts per thousand (equivalent to zero to 1,660 milligrams per liter chloride). The 182-stress-period model produced improved calibration statistics of water-level measurements made throughout the study area than did the two-stress-period model, reducing the Lloyd aquifer root mean square error from 7.0 to 5.2 feet. Decreasing horizontal and vertical hydraulic conductivities (fixed anisotropy ratio) of the Lloyd and North Shore aquifers by 20 percent resulted in nearly doubling the simulated salinity(chloride concentration) increase at Port Washington observation well N12508. Groundwater flowpath analysis was completed for 24 production wells to delineate water source areas. The freshwater/saltwater transition zone moved toward and(or) away from wells during future hypothetical scenarios.

  14. Measurements of HFC-134a and HCFC-22 in groundwater and unsaturated-zone air: implications for HFCs and HCFCs as dating tracers

    Science.gov (United States)

    Haase, Karl B.; Busenberg, Eurybiades; Plummer, Niel; Casile, Gerolamo; Sanford, Ward E.

    2014-01-01

    A new analytical method using gas chromatography with an atomic emission detector (GC–AED) was developed for measurement of ambient concentrations of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) in soil, air, and groundwater, with the goal of determining their utility as groundwater age tracers. The analytical detection limits of HCFC-22 (difluorochloromethane, CHClF2) and HFC-134a (1,2,2,2-tetrafluoroethane, C2H2F4) in 1 L groundwater samples are 4.3 × 10− 1 and 2.1 × 10− 1 pmol kg− 1, respectively, corresponding to equilibrium gas-phase mixing ratios of approximately 5–6 parts per trillion by volume (pptv). Under optimal conditions, post-1960 (HCFC-22) and post-1995 (HFC-134a) recharge could be identified using these tracers in stable, unmixed groundwater samples. Ambient concentrations of HCFC-22 and HFC-134a were measured in 50 groundwater samples from 27 locations in northern and western parts of Virginia, Tennessee, and North Carolina (USA), and 3 unsaturated-zone profiles were collected in northern Virginia. Mixing ratios of both HCFC-22 and HFC-134a decrease with depth in unsaturated-zone gas profiles with an accompanying increase in CO2 and loss of O2. Apparently, ambient concentrations of HCFC-22 and HFC-134a are readily consumed by methanotrophic bacteria under aerobic conditions in the unsaturated zone. The results of this study indicate that soils are a sink for these two greenhouse gases. These observations contradict the previously reported results from microcosm experiments that found that degradation was limited above-ambient HFC-134a. The groundwater HFC and HCFC concentrations were compared with concentrations of chlorofluorocarbons (CFCs, CFC-11, CFC-12, CFC-113) and sulfur hexafluoride (SF6). Nearly all samples had measured HCFC-22 or HFC-134a that were below concentrations predicted by the CFCs and SF6, with many samples showing a complete loss of HCFC-22 and HFC-134a. This study indicates that HCFC-22 and HFC-134

  15. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-01-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  16. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-06-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  17. In situ treatment of arsenic-contaminated groundwater by air sparging.

    Science.gov (United States)

    Brunsting, Joseph H; McBean, Edward A

    2014-04-01

    Arsenic contamination of groundwater is a major problem in some areas of the world, particularly in West Bengal (India) and Bangladesh where it is caused by reducing conditions in the aquifer. In situ treatment, if it can be proven as operationally feasible, has the potential to capture some advantages over other treatment methods by being fairly simple, not using chemicals, and not necessitating disposal of arsenic-rich wastes. In this study, the potential for in situ treatment by injection of compressed air directly into the aquifer (i.e. air sparging) is assessed. An experimental apparatus was constructed to simulate conditions of arsenic-rich groundwater under anaerobic conditions, and in situ treatment by air sparging was employed. Arsenic (up to 200 μg/L) was removed to a maximum of 79% (at a local point in the apparatus) using a solution with dissolved iron and arsenic only. A static "jar" test revealed arsenic removal by co-precipitation with iron at a molar ratio of approximately 2 (iron/arsenic). This is encouraging since groundwater with relatively high amounts of dissolved iron (as compared to arsenic) therefore has a large theoretical treatment capacity for arsenic. Iron oxidation was significantly retarded at pH values below neutral. In terms of operation, analysis of experimental results shows that periodic air sparging may be feasible. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Proven Alternatives for Aboveground Treatment of Arsenic in Groundwater

    Science.gov (United States)

    This issue paper, developed for EPA's Engineering Forum, identifies and summarizes experiences with proven aboveground treatment alternatives for arsenic in groundwater, and provides information on their relative effectiveness and cost.

  19. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India

    Science.gov (United States)

    Thapa, Raju; Gupta, Srimanta; Gupta, Arindam; Reddy, D. V.; Kaur, Harjeet

    2018-05-01

    Dwarka River basin in Birbhum, West Bengal (India), is an agriculture-dominated area where groundwater plays a crucial role. The basin experiences seasonal water stress conditions with a scarcity of surface water. In the presented study, delineation of groundwater potential zones (GWPZs) is carried out using a geospatial multi-influencing factor technique. Geology, geomorphology, soil type, land use/land cover, rainfall, lineament and fault density, drainage density, slope, and elevation of the study area were considered for the delineation of GWPZs in the study area. About 9.3, 71.9 and 18.8% of the study area falls within good, moderate and poor groundwater potential zones, respectively. The potential groundwater yield data corroborate the outcome of the model, with maximum yield in the older floodplain and minimum yield in the hard-rock terrains in the western and south-western regions. Validation of the GWPZs using the yield of 148 wells shows very high accuracy of the model prediction, i.e., 89.1% on superimposition and 85.1 and 81.3% on success and prediction rates, respectively. Measurement of the seasonal water-table fluctuation with a multiplicative model of time series for predicting the short-term trend of the water table, followed by chi-square analysis between the predicted and observed water-table depth, indicates a trend of falling groundwater levels, with a 5% level of significance and a p-value of 0.233. The rainfall pattern for the last 3 years of the study shows a moderately positive correlation ( R 2 = 0.308) with the average water-table depth in the study area.

  20. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

    Science.gov (United States)

    Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.

    2016-09-01

    Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on

  1. Neural Network approach to assess the thermal affected zone around the injection well in a groundwater heat pump system

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Verda, Vittorio

    2014-05-01

    The common use of well doublets for groundwater-sourced heating or cooling results in a thermal plume of colder or warmer re-injected groundwater known as the Thermal Affected Zone(TAZ). The plumes may be regarded either as a potential anthropogenic geothermal resource or as pollution, depending on downstream aquifer usage. A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. Temperature anomalies are detected through numerical methods. Crucial elements in the process of thermal impact assessment are the sizes of installations, their position, the heating/cooling load of the building, and the temperature drop/increase imposed on the re-injected water flow. For multiple-well schemes, heterogeneous aquifers, or variable heating and cooling loads, numerical models that simulate groundwater and heat transport are needed. These tools should consider numerous scenarios obtained considering different heating/cooling loads, positions, and operating modes. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump, depending on the characteristics of the subsurface and the heat pump. Nevertheless, these models require large computational efforts, and therefore their use may be limited to a reasonable number of scenarios. Neural networks could represent an alternative to CFD for assessing the TAZ under different scenarios referring to a specific site. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple

  2. Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain

    Science.gov (United States)

    Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.

  3. Quantifying shallow and deep groundwater inputs to rivers with groundwater dating in hydrological observatories.

    Science.gov (United States)

    Aquilina, Luc; Marçais, Jean; Gauvain, Alexandre; Kolbe, Tamara; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Benjamin W.; Vergnaud, Virginie; Chatton, Eliot; Thomas, Zahra; Ruiz, Laurent; Bour, Olivier; Pinay, Gilles

    2017-04-01

    River water derives in part from groundwater—water that has spent some time in the subsurface (e.g. soil, unsaturated zone, saturated zone). However, because groundwater residence times vary from months to millennia, determining the proportion of shallow and deep groundwater contribution can be challenging. Groundwater dating with anthropogenic gases and natural geochemical tracers can decipher the origin of groundwater contribution to rivers, particularly when repeat samplings are carried out in different hydrological conditions. Here, we present two different applications of this approach from three hydrological observatories (H+ hydrogeological network; Aghrys and Armorique observatories) in western France, all these observatories belonging to the OZCAR national network. We carried out a regional investigation of mean groundwater ages in hard rock aquifers in Brittany, using long-term chronicles from hydrological observatories and regional monitoring sites. We determined the mean residence-time (RT) and annual renewal rate (RR) of four compartments of these aquifers: the direct contribution of a very young water component (i.e. RT less than 1-2 yr), the upper variably saturated zone (RR 27-33%), the weathered layer (RR 1.8-2.1%) and the fractured zone (RR 0.1%). From these values and a nitrate chronicle, we were able to determine the respective contributions of each compartment to the largest river in Brittany, the Vilaine, which drains 30% of the region. We found that the deep fractured compartment with very slow renewal times contributed to 25-45% of river water in winter and 30-60% in summer. The very young water which includes direct precipitation and soil fluxes constituted 40-65% of the winter river water (Aquilina et al., 2012). To complement these estimates, we investigated the relationship between dissolved silica and groundwater age in the Armorique hydrological observatory in northern Brittany. We computed the silica concentration expected along the

  4. Groundwater Potential

    African Journals Online (AJOL)

    big timmy

    4Department of Geology, Ekiti State University, Ado-Ekiti, Nigeria. Corresponding ... integrated for the classification of the study area into different groundwater potential zones. .... table is mainly controlled by subsurface movement of water into ...

  5. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2006-08

    Science.gov (United States)

    Davis, Linda C.

    2010-01-01

    Since 1952, radiochemical and chemical wastewater discharged to infiltration ponds (also called percolation ponds), evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched groundwater wells in the USGS groundwater monitoring networks during 2006-08. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2005 to March-May 2008, water levels in wells generally remained constant or rose slightly in the southwestern corner of the INL. Water levels declined in the central and northern parts of the INL. The declines ranged from about 1 to 3 feet in the central part of the INL, to as much as 9 feet in the northern part of the INL. Water levels in perched groundwater wells around the Advanced Test Reactor Complex (ATRC) also declined. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2006-08. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In April

  6. Groundwater vulnerability maps for pesticides for Flanders

    Science.gov (United States)

    Dams, Jef; Joris, Ingeborg; Bronders, Jan; Van Looy, Stijn; Vanden Boer, Dirk; Heuvelmans, Griet; Seuntjens, Piet

    2017-04-01

    Pesticides are increasingly being detected in shallow groundwater and and are one of the main causes of the poor chemical status of phreatic groundwater bodies in Flanders. There is a need for groundwater vulnerability maps in order to design monitoring strategies and land-use strategies for sensitive areas such as drinking water capture zones. This research focuses on the development of generic vulnerability maps for pesticides for Flanders and a tool to calculate substance-specific vulnerability maps at the scale of Flanders and at the local scale. (1) The generic vulnerability maps are constructed using an index based method in which maps of the main contributing factors in soil and saturated zone to high concentrations of pesticides in groundwater are classified and overlain. Different weights are assigned to the contributing factors according to the type of pesticide (low/high mobility, low/high persistence). Factors that are taken into account are the organic matter content and texture of soil, depth of the unsaturated zone, organic carbon and redox potential of the phreatic groundwater and thickness and conductivity of the phreatic layer. (2) Secondly a tool is developed that calculates substance-specific vulnerability maps for Flanders using a hybrid approach where a process-based leaching model GeoPEARL is combined with vulnerability indices that account for dilution in the phreatic layer. The GeoPEARL model is parameterized for Flanders in 1434 unique combinations of soil properties, climate and groundwater depth. Leaching is calculated for a 20 year period for each 50 x 50 m gridcell in Flanders. (3) At the local scale finally, a fully process-based approach is applied combining GeoPEARL leaching calculations and flowline calculations of pesticide transport in the saturated zone to define critical zones in the capture zone of a receptor such as a drinking water well or a river segment. The three approaches are explained more in detail and illustrated

  7. Delineation of a wellhead protection zone and determination of flowpaths from potential groundwater contaminant source areas at Camp Ripley, Little Falls, Minnesota.

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, J. J.; Environmental Science Division

    2006-12-22

    Groundwater at Camp Ripley, Minnesota, is recharged both on post and off site and discharged to rivers, wetlands, and pumping wells. The subsurface geologic materials have a wide range of permeabilities and are arranged in a complex fashion as a result of the region's multiple glacial advances. Correlation of individual glacial geologic units is difficult, even between nearby boreholes, because of the heterogeneities in the subsurface. This report documents the creation of a numerical model of groundwater flow for Camp Ripley and hydrologically related areas to the west and southwest. The model relies on a hydrogeological conceptual model built on the findings of a University of Minnesota-Duluth drilling and sampling program conducted in 2001. Because of the site's stratigraphic complexity, a geostatistical approach was taken to handle the uncertainty of the subsurface correlation. The U.S. Geological Survey's MODFLOW code was used to create the steady-state model, which includes input data from a variety of sources and is calibrated to water levels in monitoring wells across much of the site. This model was used for several applications. Wellhead protection zones were delineated for on-site production wells H, L, and N. The zones were determined on the basis of a probabilistic assessment of the groundwater captured by these wells; the assessment, in turn, had been based on multiple realizations of the study area's stratigraphy and groundwater flowfield. An additional application of the model was for estimating flowpaths and times of travel for groundwater at Camp Ripley's range areas and waste management facilities.

  8. TECHNICAL BASIS FOR EVALUATING SURFACE BARRIERS TO PROTECT GROUNDWATER FROM DEEP VADOSE ZONE CONTAMINATION

    International Nuclear Information System (INIS)

    Fayer, J.M.; Freedman, V.L.; Ward, A.L.; Chronister, G.B.

    2010-01-01

    tasks to achieve those outcomes. Full understanding of contaminant behavior in the deep vadose zone is constrained by four key data gaps: limited access; limited data; limited time; and the lack of an accepted predictive capability for determining whether surface barriers can effectively isolate deep vadose zone contaminants. Activities designed to fill these data gaps need to have these outcomes: (1) common evaluation methodology that provides a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination; (2) deep vadose zone data that characterize the lithology, the spatial distribution of moisture and contaminants, the physical, chemical, and biological process that affect the mobility of each contaminant, and the impacts to the contaminants following placement of a surface barrier; (3) subsurface monitoring to provide subsurface characterization of initial conditions and changes that occur during and following remediation activities; and (4) field observations that span years to decades to validate the evaluation methodology. A set of six proposed tasks was identified to provide information needed to address the above outcomes. The proposed tasks are: (1) Evaluation Methodology - Develop common evaluation methodology that will provide a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination. (2) Case Studies - Conduct case studies to demonstrate the applicability ofthe common evaluation methodology and provide templates for subsequent use elsewhere. Three sites expected to have conditions that would yield valuable information and experience pertinent to deep vadose zone contamination were chosen to cover a range of conditions. The sites are BC Cribs and Trenches, U Plant Cribs, and the T Farm Interim Cover. (3) Subsurface Monitoring Technologies - Evaluate minimally invasive

  9. Groundwater Hydrology and Chemistry in and near an Emulsified Vegetable-Oil Injection Zone, Solid Waste Management Unit 17, Naval Weapons Station Charleston, North Charleston, South Carolina, 2004-2009

    Science.gov (United States)

    Vroblesky, Don A.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Casey, Clifton C.

    2010-01-01

    of the pH to near-neutral values in well 17PS-02 may have made that well relatively favorable to VC production compared with much of the rest of the injection zone, possibly accounting for acceleration of VC production at that well. Following a Phase-II injection in which Solutions-IES, Inc., injected pH-buffered emulsified vegetable oil with an improved efficiency injection approach, 1,1-dichloroethene, TCE, and cDCE rapidly decreased in concentration and are now (2009) undetectable in the injection zone, with the exception of a low concentration (43 micrograms per liter, August 2009) of cDCE in well 17PS-01. In August 2009, VC was still present in groundwater at the test wells in concentrations ranging from 150 to 640 micrograms per liter. The Phase-II injection, however, appears to have locally decreased aquifer permeability, possibly resulting in movement of contamination around, rather than through, the treatment area.

  10. Origin of increased sulfate in groundwater at the ETF disposal site

    International Nuclear Information System (INIS)

    Thornton, E.C.

    1997-09-01

    Treated effluent being discharged to the vadose zone from the C-018H Effluent Treatment Facility (ETF) at the Hanford Site has infiltrated vertically to the unconfined aquifer, as indicated by increasing tritium activity levels in the groundwater. Well 699-48-77A, in particular, exhibits increased levels of tritium and also sulfate in the groundwater. The origin of increased sulfate levels in the groundwater is attributed to the dissolution of gypsum as the effluent flows through the vadose zone. This is supported by the observation that sulfate was found to be present in soils collected from the vadose zone at an average value of about 10.6 ppm. The maximum observed sulfate concentration of 190 mg/L from well 699-48-77A was observed on August 6, 1996, and is less than the maximum value of 879 mg/L that potentially could be achieved if water in the vadose zone was to attain saturation with respect to gypsum and calcite. It is suggested that infiltration rates were high enough that the effluent did not completely equilibrate with gypsum in the vadose zone, and thus, sulfate levels remained below gypsum saturation levels. Sulfate levels appear to be dropping, which may be attributed to the completion of the dissolution of the bulk of gypsum present along the vadose zone flow path traversed by the effluent. Geochemical modeling was undertaken to evaluate the influence of effluent chemistry on sulfate concentration levels in the presence of excess calcite and gypsum. In general, the effect is fairly minor for dilute solutions, but becomes more significant for concentrated solutions

  11. Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood

    Science.gov (United States)

    Briody, Alyse C.; Cardenas, M. Bayani; Shuai, Pin; Knappett, Peter S. K.; Bennett, Philip C.

    2016-06-01

    Periodic releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River near Austin, Texas, USA. These daily pulses modulate fluid exchange and residence times in the hyporheic zone where biogeochemical reactions are typically pronounced. The effects of a small flood pulse under low-flow conditions on surface-water/groundwater exchange and biogeochemical processes were studied by monitoring and sampling from two dense transects of wells perpendicular to the river. The first transect recorded water levels and the second transect was used for water sample collection at three depths. Samples were collected from 12 wells every 2 h over a 24-h period which had a 16-cm flood pulse. Analyses included nutrients, carbon, major ions, and stable isotopes of water. The relatively small flood pulse did not cause significant mixing in the parafluvial zone. Under these conditions, the river and groundwater were decoupled, showed potentially minimal mixing at the interface, and did not exhibit any discernible denitrification of river-borne nitrate. The chemical patterns observed in the parafluvial zone can be explained by evaporation of groundwater with little mixing with river water. Thus, large pulses may be necessary in order for substantial hyporheic mixing and exchange to occur. The large regulated river under a low-flow and small flood pulse regime functioned mainly as a gaining river with little hydrologic connectivity beyond a narrow hyporheic zone.

  12. Electrical Resistivity Technique for Groundwater Exploration in Quaternary Deposit

    Science.gov (United States)

    Aziman, M.; Hazreek, Z. A. M.; Azhar, A. T. S.; Fahmy, K. A.; Faizal, T. B. M.; Sabariah, M.; Ambak, K.; Ismail, M. A. M.

    2018-04-01

    The water security for University Tun Hussein Onn (UTHM) campus was initiated to find alternative sources of water supply. This research began with finding the soil profiles using the geophysical electrical resistivity method across UTHM campus. The resistivity results were calibrated with previous borehole data as well as via groundwater drilling. The drilling work was discovered the groundwater aquifer characterized by the fractured fresh igneous rock at a depth between 43 meter and 55 meter. Further drilling was continued until 100 meter in depth. However, due to not encounter a new rock fractured zone causes the groundwater quantity did not improve even was drilled up to 100 meter depth. In the perspective of water resources, it showed a good potential for water resources for local usages at 104 m3 per day. In addition, the groundwater quality showed the water treatment was required to fulfil the criterion of the national drinking water standards. This study concluded that the first layer of fractured bedrock at UTHM was able to produce significant amounts of groundwater for local consumption usage.

  13. Contrasting patterns of groundwater evapotranspiration in grass and tree dominated riparian zones of a temperate agricultural catchment

    Science.gov (United States)

    Satchithanantham, Sanjayan; Wilson, Henry F.; Glenn, Aaron J.

    2017-06-01

    Consumptive use of shallow groundwater by phreatophytic vegetation is a significant part of the water budget in many regions, particularly in riparian areas. The influence of vegetation type on groundwater level fluctuations and evapotranspiration has rarely been quantified for contrasting plant communities concurrently although it has implications for downstream water yield and quality. Hourly groundwater evapotranspiration (ETG) rates were estimated for grass and tree riparian vegetation in southwestern Manitoba, Canada using two modified White methods. Groundwater table depth was monitored in four 21 m transects of five 3 m deep monitoring wells in the riparian zone of a stream reach including tree (Acer negundo; boxelder) and grass (Bromus inermis; smooth brome) dominated segments. The average depths to the groundwater table from the surface were 1.4 m and 1 m for the tree and grass segments, respectively, over the two-year study. During rain free periods of the growing season ETG was estimated for a total of 70 days in 2014 and 79 days in 2015 when diurnal fluctuations were present in groundwater level. Diurnal groundwater level fluctuations were observed during dry periods under both segments, however, ETG was significantly higher (p < 0.001) under trees compared to grass cover in 2014 (a wet year with 72% higher than normal growing season precipitation) and 2015 (a drier year with 15% higher than normal growing season precipitation). The two methods used to estimate ETG produced similar daily and seasonal values for the two segments. In 2014, total ETG was approximately 50% (148 mm) and 100% (282-285 mm) of reference evapotranspiration (ETref, 281 mm) for the grass and tree segments, respectively. In 2015, total ETG was approximately 40% (106-127 mm) and 120% (369-374 mm) of ETref (307 mm) for the grass and tree segments, respectively. Results from the study show the tree dominated portions of the stream reach consumed approximately 2.4 ML ha-1 yr-1 more

  14. Proven Alternatives for Aboveground Treatment of Arsenic in Groundwater

    Science.gov (United States)

    2002-10-01

    issue paper does not address three technologies that have been used to treat water containing arsenic: • Biological treatment • Phytoremediation ...arsenic in water, and no aboveground treatments of groundwater conducted at full scale were found. Phytoremediation and electrokinetics are not...Roundtable. September 1998. http://www.frtr.gov/costperf.htm. 1.16 U.S. EPA. Office of Research and Development. Arsenic & Mercury - Workshop on Removal

  15. Sampling and treatment of rock cores and groundwater under reducing environments of deep underground

    International Nuclear Information System (INIS)

    Ebashi, Katsuhiro; Yamaguchi, Tetsuji; Tanaka, Tadao

    2005-01-01

    A method of sampling and treatment of undisturbed rock cores and groundwater under maintained reducing environments of deep underground was developed and demonstrated in a Neogene's sandy mudstone layer at depth of GL-100 to -200 m. Undisturbed rock cores and groundwater were sampled and transferred into an Ar gas atmospheric glove box with minimized exposure to the atmosphere. The reducing conditions of the sampled groundwater and rock cores were examined in the Ar atmospheric glove box by measuring pH and Eh of the sampled groundwater and sampled groundwater contacting with disk type rock samples, respectively. (author)

  16. The Vertical Flux Method (VFM) for regional estimates of temporally and spatially varying nitrate fluxes in unsaturated zone and groundwater

    Science.gov (United States)

    Green, C. T.; Liao, L.; Nolan, B. T.; Juckem, P. F.; Ransom, K.; Harter, T.

    2017-12-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality. Measurements of atmospheric tracers of groundwater age and dissolved-gas indicators of denitrification progress have potential to improve estimates of NO3- reactive transport processes. This presentation introduces a regionalized version of a vertical flux method (VFM) that uses simple mathematical estimates of advective-dispersive reactive transport with regularization procedures to calibrate estimated tracer concentrations to observed equivalents. The calibrated VFM provides estimates of chemical, hydrologic and reaction parameters (source concentration time series, recharge, effective porosity, dispersivity, reaction rate coefficients) and derived values (e.g. mean unsaturated zone travel time, eventual depth of the NO3- front) for individual wells. Statistical learning methods are used to extrapolate parameters and predictions from wells to continuous areas. The regional VFM was applied to 473 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and triogiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with independent estimates. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) fractions of N leached to groundwater have changed over time, with increasing fractions from manure and decreasing fractions from fertilizer, and (3) under current practices and conditions, 60% of the shallow aquifer will eventually be affected by NO3- contamination. Based on GIS coverages of variables related to soils, land use and hydrology, the VFM results at individual wells were extrapolated regionally using boosted regression trees, a statistical learning approach, that related

  17. Groundwater-quality data and regional trends in the Virginia Coastal Plain, 1906-2007

    Science.gov (United States)

    McFarland, Randolph E.

    2010-01-01

    A newly developed regional perspective of the hydrogeology of the Virginia Coastal Plain incorporates updated information on groundwater quality in the area. Local-scale groundwater-quality information is provided by a comprehensive dataset compiled from multiple Federal and State agency databases. Groundwater-sample chemical-constituent values and related data are presented in tables, summaries, location maps, and discussions of data quality and limitations. Spatial trends in groundwater quality and related processes at the regional scale are determined from interpretive analyses of the sample data. Major ions that dominate the chemical composition of groundwater in the deep Piney Point, Aquia, and Potomac aquifers evolve eastward and with depth from (1) 'hard' water, dominated by calcium and magnesium cations and bicarbonate and carbonate anions, to (2) 'soft' water, dominated by sodium and potassium cations and bicarbonate and carbonate anions, and lastly to (3) 'salty' water, dominated by sodium and potassium cations and chloride anions. Chemical weathering of subsurface sediments is followed by ion exchange by clay and glauconite, and subsequently by mixing with seawater along the saltwater-transition zone. The chemical composition of groundwater in the shallower surficial and Yorktown-Eastover aquifers, and in basement bedrock along the Fall Zone, is more variable as a result of short flow paths between closely located recharge and discharge areas and possibly some solutes originating from human sources. The saltwater-transition zone is generally broad and landward-dipping, based on groundwater chloride concentrations that increase eastward and with depth. The configuration is convoluted across the Chesapeake Bay impact crater, however, where it is warped and mounded along zones having vertically inverted chloride concentrations that decrease with depth. Fresh groundwater has flushed seawater from subsurface sediments preferentially around the impact crater

  18. Redox Zonation and Oscillation in the Hyporheic Zone of the Ganges-Brahmaputra-Meghna Delta: Implications for the Fate of Groundwater Arsenic during Discharge

    Science.gov (United States)

    Jung, Hun Bok; Zheng, Yan; Rahman, Mohammad W.; Rahman, Mohammad M.; Ahmed, Kazi M.

    2015-01-01

    Riverbank sediment cores and pore waters, shallow well waters, seepage waters and river waters were collected along the Meghna Riverbank in Gazaria Upazila, Bangladesh in Jan. 2006 and Oct.-Nov. 2007 to investigate hydrogeochemical processes controlling the fate of groundwater As during discharge. Redox transition zones from suboxic (0-2 m depth) to reducing (2-5 m depth) then suboxic conditions (5-7 m depth) exist at sites with sandy surficial deposits, as evidenced by depth profiles of pore water (n=7) and sediment (n=11; diffuse reflectance, Fe(III)/Fe ratios and Fe(III) concentrations). The sediment As enrichment zone (up to ~700 mg kg−1) is associated with the suboxic zones mostly between 0-2 m depth and less frequently between 5-7 m depth. The As enriched zones consist of several 5 to 10 cm-thick dispersed layers and span a length of ~5-15 m horizontally from the river shore. Depth profiles of riverbank pore water deployed along a 32 m transect perpendicular to the river shore show elevated levels of dissolved Fe (11.6±11.7 mg L−1) and As (118±91 μg L−1, mostly as arsenite) between 2-5 m depth, but lower concentrations between 0-2 m depth (0.13±0.19 mg L−1 Fe, 1±1 μg L−1 As) and between 5-6 m depth (1.14±0.45 mg L−1 Fe, 28±17 μg L−1 As). Because it would take more than a few hundred years of steady groundwater discharge (~10 m yr−1) to accumulate hundreds of mg kg−1 of As in the riverbank sediment, it is concluded that groundwater As must have been naturally elevated prior to anthropogenic pumping of the aquifer since the 1970s. Not only does this lend unequivocal support to the argument that As occurrence in the Ganges-Brahmaputra-Meghna Delta groundwater is of geogenic origin, it also calls attention to the fate of this As enriched sediment as it may recycle As into the aquifer. PMID:26855475

  19. Groundwater geochemistry of Isla de Mona, Puerto Rico

    Science.gov (United States)

    Wicks, C.M.; Troester, J.W.

    1998-01-01

    In this study, we explore the differences between the hydrogeochemical processes observed in a setting that is open to input from the land surface and in a setting that is closed with respect to input from the land surface. The closed setting was a water-filled passage in a cave. Samples of groundwater and of a solid that appeared to be suspended in the relatively fresh region of saline-freshwater mixing zone were collected. The solid was determined to be aragonite. Based on the analyses of the composition and saturation state of the groundwater, the mixing of fresh and saline water and precipitation of aragonite are the controlling geochemical processes in this mixing zone. We found no evidence of sulfate reduction. Thus, this mixing zone is similar to that observed in Caleta Xel Ha, Quintana Roo, also a system that is closed with respect to input from the land surface. The open setting was an unconfined aquifer underlying the coastal plain along which four hand-dug wells are located. Two wells are at the downgradient ends of inferred flowpaths and one is along a flowpath. The composition of the groundwater in the downgradient wells is sulfide-rich and brackish. In contrast, at the well located along a flow line, the groundwater is oxygenated and brackish. All groundwater is oversaturated with respect to calcite, aragonite, and dolomite. The composition is attributed to mixing of fresh and saline groundwater, CO2 outgassing, and sulfate reduction. This mixing zone is geochemically similar to that observed in blue holes and cenotes.

  20. Groundwater management in coastal zones and on islands in crystalline bedrock areas of Sweden

    Science.gov (United States)

    Banzhaf, Stefan; Ekström, Linda Louise; Ljungkvist, Andreas; Granberg, Maria; Merisalu, Johanna; Pokorny, Sebastian; Barthel, Roland

    2017-04-01

    Groundwater problems in coastal regions are usually not associated with the sparsely populated shores of water-rich Scandinavia. However, the combination of geology and the specific conditions of water usage create challenges even there. Along the Swedish coast, much of the groundwater occurs in fractured bedrock or in relatively small, shallow, and isolated quaternary sedimentary formations. Those aquifers cannot provide water to larger permanent settlements and are thus neither useful for the public water supply nor have previously received much attention from water authorities or researchers. However, of the 450,000 private wells in Sweden, many are located in coastal areas or on islands, creating pressure on groundwater resources in summer months as periods with low or no natural groundwater recharge. In view of the increasing water demand, as well as the awareness of environmental impacts and climate change, Swedish municipalities now recognize groundwater usage in coastal areas is a major concern. Here, we present the results of an investigation on the "Koster" archipelago which forms a microcosm of coastal zone groundwater problems in Sweden. Koster's geology is dominated by fractured, crystalline bedrock with occasional shallow quaternary deposits in between. With around 300 permanent residents, and up to 6,000 summer guests in peak holiday season, the existing water supply based on 800 private wells is at its limit. Water availability forms an obstacle to future development and the current mode of operation is unsustainable. Therefore, the municipality must decide how to secure future water supply which involves complex legal problems, as well as social, cultural, economic, hydrogeological, and environmental questions. As there are no observation wells on the islands, we used approximately 220 of the 800 wells (65% dug and shallow, 35% drilled and up to 120m deep) for our monitoring. Additionally, water samples were collected by property owners on four

  1. Identification of manganese as a toxicant in a groundwater treatment system: Addressing naturally occurring toxicants

    International Nuclear Information System (INIS)

    Goodfellow, W. Jr.; Sohn, V.; Richey, M.; Yost, J.

    1995-01-01

    Effluent from a groundwater remediation system at a bulk oil storage and distribution terminal has been chronically toxic to Ceriodaphnia dubia. The remediation system was designed in response to a hydrocarbon plume in the area of the terminal. The remediation system consists of a series of groundwater recovery wells and groundwater intercept trench systems with groundwater treatment and phased-separated hydrocarbon recovery systems. The groundwater treatment and petroleum recovery systems consist of oil/water separators, product recovery tanks, air strippers, filters, and carbon adsorption units. The characteristics of this effluent are low total suspended solids, total dissolved solids, and hardness concentrations as well as meeting stringent NPDES permit requirements for lead, copper, zinc, mercury, total petroleum hydrocarbons, and BTEX. Additional priority pollutant evaluations revealed no compounds of concern. Performance of a Toxicity identification Evaluation (TIE) indicated that manganese was the principle toxicant in the effluent. Manganese is a naturally occurring constituent in this groundwater source and is not added to the treatment system. This paper will present the results of the TIE with a discussion of treatability/control options for manganese control at this facility. Recommendations for addressing naturally occurring toxicants that are not a result of the facility's operations will also be presented

  2. Effect of heterogeneity on enhanced reductive dechlorination: Analysis of remediation efficiency and groundwater acidification

    Science.gov (United States)

    Brovelli, A.; Lacroix, E.; Robinson, C. E.; Gerhard, J.; Holliger, C.; Barry, D. A.

    2011-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, alternative terminal electron acceptors available and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. In previous work a detailed geochemical and groundwater flow simulator able to model the fermentation-dechlorination reactions and associated pH change was developed. The model accounts for the main processes influencing microbial activity and groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects dechlorination rates, groundwater pH and ultimately the remediation efficiency. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For examples, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The

  3. Resilience of Groundwater Impacted by Land Use and Climate Change in a Karst Aquifer, South China.

    Science.gov (United States)

    Guo, Fang; Jiang, Guanghui; Polk, Jason S; Huang, Xiufeng; Huang, Siyu

    2015-11-01

    Changes of groundwater flow and quality were investigated in a subtropical karst aquifer to determine the driving mechanism. Decreases in groundwater flow are more distinct in discharge zones than those in recharge and runoff zones. Long-term measurement of the represented regional groundwater outlet reveals that groundwater discharge decrease by nearly 50% during the dry season. The hydrochemistry of groundwater in the runoff and discharge zones is of poorer quality than in the recharge zone. Indications of intensive land resource exploitation and changes in land use patterns were attributed to changes in groundwater conditions since 1990, but the influence of climate change was likely from 2001, because the water temperature exhibited increasing trends at a mean rate of 0.02 °C/yr even though groundwater depth was high in the aquifer. These conclusions imply the need for further groundwater monitoring and reevaluation to understand the resilience of aquifer during urbanization and development.

  4. Degradation of sucralose in groundwater and implications for age dating contaminated groundwater.

    Science.gov (United States)

    Robertson, W D; Van Stempvoort, D R; Spoelstra, J; Brown, S J; Schiff, S L

    2016-01-01

    The artificial sweetener sucralose has been in use in Canada and the US since about 2000 and in the EU since 2003, and is now ubiquitous in sanitary wastewater in many parts of the world. It persists during sewage treatment and in surface water environments and as such, has been suggested as a powerful tracer of wastewater. In this study, longer-term persistence of sucralose was examined in groundwater by undertaking a series of three sampling snapshots of a well constrained wastewater plume in Canada (Long Point septic system) over a 6-year period from 2008 to 2014. A shrinking sucralose plume in 2014, compared to earlier sampling, during this period when sucralose use was likely increasing, provides clear evidence of degradation. However, depletion of sucralose from a mean of 40 μg/L in the proximal plume zone, occurred at a relatively slow rate over a period of several months to several years. Furthermore, examination of septic tank effluent and impacted groundwater at six other sites in Canada, revealed that sucralose was present in all samples of septic tank effluent (6-98 μg/L, n = 32) and in all groundwater samples (0.7-77 μg/L, n = 64). Even though sucralose degradation is noted in the Long Point plume, its ubiquitous presence in the groundwater plumes at all seven sites implies a relatively slow rate of decay in many groundwater septic plume environments. Thus, sucralose has the potential to be used as an indicator of 'recent' wastewater contamination. The presence of sucralose identifies groundwater that was recharged after 2000 in Canada and the US and after 2003 in the EU and many Asian countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Surface and subsurface continuous gravimetric monitoring of groundwater recharge processes through the karst vadose zone at Rochefort Cave (Belgium)

    Science.gov (United States)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Triantafyllou, A.; Delforge, D.; Quinif, Y.; Van Ruymbeke, M.; Kaufmann, O.

    2017-12-01

    Ground-based gravimetry is a non-invasive and integrated tool to characterize hydrological processes in complex environments such as karsts or volcanoes. A problem in ground-based gravity measurements however concerns the lack of sensitivity in the first meters below the topographical surface, added to limited infiltration below the gravimeter building (umbrella effect). Such limitations disappear when measuring underground. Coupling surface and subsurface gravity measurements therefore allow isolating hydrological signals occurring in the zone between the two gravimeters. We present a coupled surface/subsurface continuous gravimetric monitoring of 2 years at the Rochefort Cave Laboratory (Belgium). The gravity record includes surface measurements of a GWR superconducting gravimeter and subsurface measurements of a Micro-g LaCoste gPhone gravimeter, installed in a cave 35 m below the surface station. The recharge of karstic aquifers is extremely complex to model, mostly because karst hydrological systems are composed of strongly heterogeneous flows. Most of the problem comes from the inadequacy of conventional measuring tools to correctly sample such heterogeneous media, and particularly the existence of a duality of flow types infiltrating the vadose zone: from rapid flows via open conduits to slow seepage through porous matrix. Using the surface/subsurface gravity difference, we were able to identify a significant seasonal groundwater recharge within the karst vadose zone. Seasonal or perennial perched reservoirs have already been proven to exist in several karst areas due to the heterogeneity of the porosity and permeability gradient in karstified carbonated rocks. Our gravimetric experiment allows assessing more precisely the recharge processes of such reservoirs. The gravity variations were also compared with surface and in-cave hydrogeological monitoring (i.e. soil moisture, in-cave percolating water discharges, water levels of the saturated zone). Combined

  6. Laboratory evaluation of the potential for in situ treatment of chromate-contaminated groundwater by chemical precipitation

    International Nuclear Information System (INIS)

    Thornton, E.C.; Beck, M.A.; Jurgensmeier, C.A.

    1995-03-01

    The objective of this paper is to present the results of a series of small-scale batch tests performed to assess the effectiveness of chemical precipitation in the remediation of chromate-contaminated groundwater. These tests involved treatment of chromate solutions with ferrous and sulfide ions. In addition, tests were conducted that involved treatment of mixtures of chromate-contaminated groundwater and uncontaminated soil with the ferrous ion. A combination of ferrous sulfate and sodium sulfide was also tested in the groundwater treatment tests, since this approach has been shown to be an efficient method for treating electroplating wastewaters

  7. Distribution of effluent injected into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant, southeastern Florida, 1997–2011

    Science.gov (United States)

    King, Jeffrey N.; Decker, Jeremy D.

    2018-02-09

    Nonhazardous, secondarily treated, domestic wastewater (effluent) has been injected about 1 kilometer below land surface into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant in southeastern Florida. The Boulder Zone contains saline, nonpotable water. Effluent transport out of the injection zone is a risk of underground effluent injection. At the North District Wastewater Treatment Plant, injected effluent was detected outside the Boulder Zone. The U.S. Geological Survey, in cooperation with Miami-Dade Water and Sewer Department, investigated effluent transport from the Boulder Zone to overlying permeable zones in the Floridan aquifer system.One conceptual model is presented to explain the presence of effluent outside of the injection zone in which effluent injected into the Boulder Zone was transported to the Avon Park permeable zone, forced by buoyancy and injection pressure. In this conceptual model, effluent injected primarily into the Boulder Zone reaches a naturally occurring feature (a karst-collapse structure) near an injection well, through which the effluent is transported vertically upward to the uppermost major permeable zone of the Lower Floridan aquifer. The effluent is then transported laterally through the uppermost major permeable zone of the Lower Floridan aquifer to another naturally occurring feature northwest of the North District Wastewater Treatment Plant, through which it is then transported vertically upward into the Avon Park permeable zone. In addition, a leak within a monitoring well, between monitoring zones, allowed interflow between the Avon Park permeable zone and the Upper Floridan aquifer. A groundwater flow and effluent transport simulation of the hydrogeologic system at the North District Wastewater Treatment Plant, based on the hypothesized and non-unique conceptualization of the subsurface hydrogeology and flow system, generally replicated measured effluent constituent

  8. Nuclear and isotopic techniques for the characterization of submarine groundwater discharge in coastal zones. Results of a coordinated research project 2001-2006

    International Nuclear Information System (INIS)

    2007-07-01

    Submarine groundwater discharge (SGD) is now recognized as an important pathway between land and sea. As such, this flow may contribute to the biogeochemical and other marine budgets of nearshore waters. These discharges typically display significant spatial and temporal variability, making direct assessments difficult. Groundwater seepage is patchy, diffuse, temporally variable, and may involve multiple aquifers. Thus, the measurement of its magnitude and associated chemical fluxes is a challenging enterprise. An initiative on SGD characterization was developed by the IAEA and UNESCO in 2000 as a 5-year plan to assess methodologies and importance of SGD for coastal zone management. The IAEA component included a Coordinated Research Project (CRP) on Nuclear and Isotopic Techniques for the Characterization of Submarine Groundwater Discharge (SGD) in Coastal Zones, carried out jointly by the IAEA's Isotope Hydrology Section in Vienna and the Marine Environment Laboratory in Monaco, together with 9 laboratories from 8 countries. In addition to the IAEA, the Intergovernmental Oceanographic Commission (IOC) and the International Hydrological Programme (IHP) have provided support. This overall effort originally grew from a project sponsored by the Scientific Committee on Ocean Research (SCOR) who established a Working Group (112) on SGD. The activities included joint meetings (Vienna 2000, 2002, and 2005; Syracuse, Italy, 2001; and Monaco 2004), sampling expeditions (Australia 2000; Sicily 2001 and 2002; New York 2002; Brazil 2003; and Mauritius 2005), joint analytical work, data evaluation, and preparation of joint publications. The objectives of the CRP included the improvement of capabilities for water resources and environmental management of coastal zones; application of recently developed nuclear and isotopic techniques suitable for quantitative estimation of various components of SGD; understanding of the influence of SGD on coastal processes and on groundwater

  9. Pollution Status of Trace Metals in Groundwater Due to Industrail Activities in and Around Dhaka Export Processing Zone, Bangladesh

    Directory of Open Access Journals (Sweden)

    GOLAM AHMED

    2012-06-01

    Full Text Available Effluents from multiindustrail activities influence inland water system directly, which subsiquently affect groundwater quality and human health. Some previous reports indicated that inadequate treatment process of discharged effluent of Dhaka Export Processing Zone (DEPZ increased the concentrations of pollutants in surface water system and deteriorated total fishing and agricultural system around DEPZ and its connected area. Therefore, the present study was conducted to investigate wether the concentration of selective metals viz. Li, V, Cr, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Pb and U in two types of groundwater sources were either with in the permissible guidlines or influenced by DEPZ multi industrail on their levels of contamination. The concentrations of metals were determined using inductively Couples Plasma Mass Spectrometry (ICP-MS. The mean concentrations of the elements in both types of groundwater were in the levels of their permissible guidlines, except for Ni (12.91 µg/L, Ga (0.48µg/L, Sr (90.26 µg/L and Cs (0.07µg//Lin groundwater inside DEPZ, which were 1.30, 5.00, 1.50 and 1.40 times higher than the maximum permissible limit (MPL of 10 µg/L, 0.09 µg/L, 60 µg/L, and 0.05µg/L, respectively. The mean concentrations of Li (6.85 µg/L, Zn(268 µg/L, Ga (0.12 µg/L, Sr (131 µg/L and Cs (0.07 µg/L were 3.43, 1.34, 1.33, 2.18, 1.40 times higher then the MPL of 2 µg/L, 200 µg/L, 0.09 µg/L, 60 µg/L and 0.05 µg/L, respectively, in groundwater around DEPZ. Comparatively Zn and Sr possessed higher concentrations, and Cs and U possessed lower concentration in both types of groundwater sources. The elements were distributed in homogeneous and hetrogeneous manner among the source points for deep-tubewell (DTWS and shallow tubewell (STWs, respectively. The significant positive correlations were found between the elements viz., Co-V (0.85, Ni-Sr ((0.70, Co-Cd (0.86, As-Se (0.99, Cs-Zn (0.95, Li-U (0.,71, Zn-U (0

  10. The effect of Littorella uniflora on nutrients in a groundwater fed lake

    DEFF Research Database (Denmark)

    Ommen, Daniela Oliveira; Vinther, Hanne Fogh; Krüger, Laila

    into the lake; and a smaller recharge zone where water from the lake flows back into the aquifer. This variable groundwater pattern combined with only minor surface inlets and outlets provides good conditions for studying the interactions between groundwater and Littorella uniflora. Preliminary results from......Lake Hampen is a Lobelia lake situated high up in the Jutland ridge and which lies close to the groundwater boundary. This means that the groundwater flow between the aquifer and the lake is not constant. Lake Hampen has a large discharge zone where the groundwater flows from the aquifer......,49 to 0,88mg NO3-N L-1 in the recharge zone. There are also indications that the plants have the capability to effectively reduce high nitrate concentrations within the rhizosphere (reduction of 30 to 0,1mg NO3-N L-1 was observed)....

  11. Approaches to groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.; Klavetter, E.; Peters, R.

    1989-01-01

    One of the objectives of performance assessment for the Yucca Mountain Project is to estimate the groundwater travel time at Yucca Mountain, Nevada, to determine whether the site complies with the criteria specified in the Code of Federal Regulations, Title 10 CFR 60.113 (a). The numerical standard for performance in these criteria is based on the groundwater travel time along the fastest path of likely radionuclide transport from the disturbed zone to the accessible environment. The concept of groundwater travel time as proposed in the regulations, does not have a unique mathematical statement. The purpose of this paper is to discuss the ambiguities associated with the regulatory specification of groundwater travel time, two different interpretations of groundwater travel time, and the effect of the two interpretations on estimates of the groundwater travel time

  12. A/M Area Vadose Zone Monitoring Plan (U)

    International Nuclear Information System (INIS)

    Kupar, J.; Jarosch, T.R.; Jackson, D.G. Jr.; Looney, B.B.; Jerome, K.M.; Riha, B.D.; Rossabi, J.; Van Pelt, R.S.

    1998-03-01

    Characterization and monitoring data from implementation and the first two and one half years of vadose zone remediation operations indicate that this activity has substantially improved the performance of the A/M Area Groundwater Corrective Action Program. During this period, vadose zone remediation removed approximately 225, 000 lbs (100,000 Kg) of chlorinated solvents (CVOCs) from the subsurface. Further, vadose zone remediation system operation increased the overall CVOC removal rate of the A/M Area Groundwater Corrective Action by 300% to 500% during this period versus the groundwater pump and treat system along. Various support activities have been performed to support operation and documentation of performance of the vadose zone remediation system. These activities address performance of existing systems (contaminant distributions, zone of influence, and process monitoring data), evaluation of suspect sources, evaluation of alternative/enhancement technologies, and initial development of remediation goals. In particular, the most recent A/M vadose zone remediation support activities (described in WSRC-RP-97-109) were completed and the results provide key documentation about system performance

  13. A pilot study for the extraction and treatment of groundwater from a manufactured gas plant site. Final report

    International Nuclear Information System (INIS)

    1997-12-01

    This report describes a pilot study involving treatment of contaminated groundwater at a former manufactured gas plant site on the eastern seaboard of the US. The work was performed in order to provide the design basis for a full-scale groundwater extraction and treatment system at the site, as well as to develop a generic approach to selection of groundwater treatment sequences at other MGP sites. It included three main components: hydrogeologic investigations, bench-scale treatability studies, and pilot-scale treatability studies. Technologies evaluated in bench-scale work included gravity settling, filtration, and dissolved air flotation (DAF) for primary treatment of nonaqueous phase materials; biological degradation, air stripping, and carbon adsorption for secondary treatment of dissolved organics; and carbon adsorption as tertiary treatment of remaining dissolved contaminants. Pilot-scale studies focused on collecting system performance data fore three distinct levels of contamination. Two treatment trains were evaluated. One consisted of DAF, fluidized-bed biotreatment, and filtration plus carbon adsorption; the other used the same steps except to substitute air stripping for fluidized bed treatment. The final effluents produced by both treatment sequences were similar and demonstrated complete treatment of the groundwater. Besides detailing system design and performance for the treatability studies, the report includes an analysis of groundwater treatment applications to MGP sites in general, including a discussion of capital and operating costs

  14. Isotope hydrology of groundwaters in the Donana National Park and the associated zone of influence

    International Nuclear Information System (INIS)

    Plata, A.; Baonza, E.; Silgado, A.

    1984-01-01

    The authors describe a study, using environmental isotopes, of the groundwaters of a complex hydrological system formed by a free recharge zone with a multi-layer structure, a confined zone with connate waters trapped by the deposition of a thick clay layer in a coastal pool environment, and a series of both recent and ancient highly permeable dune formations. Attempts have been made, using tritium of thermonuclear origin, to determine the approximate average recharge rate during the last 28 years in the free aquifer zone. Despite the difficulties encountered, the value of 78 mm/a obtained, which is 13.2% of the average precipitation, is very similar to that obtained using conventional methods (approximately 84 mm/a). As was expected, there was no tritium in the confined zone. Carbon-14 was used to determine the reduced velocity of the underground stream and to confirm the network of streams deduced from conductivity measurements. The age-correction methods proposed by Tamers, Pearson, Mook and Fontes were compared. The differences in age between the last method and the first two are reasonable and can be explained by the isotopic interchange between the CaCO 3 of the rock formation and the gaseous CO 2 included in Fontes' model. On the other hand, the differences found with the Mook method are considerable, particularly for sample values below delta 13 C. The last model is more sensitive to changes in delta 13 C, and the interval of this parameter for which this model gives reasonable values of age is very small. In addition, the 14 C made it possible to determine the sedimentation velocity of clays in the swamp zone. The stable isotopes in the water confirmed the hypothesis that the underground waters in the confinement zone are a mixture of fresh water which has infiltrated into the recharge zone and of connate water trapped by the deposition of the clay layer. (author)

  15. Metallurgical Laboratory (HWMF) Groundwater Monitoring Report, Fourth Quarter 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1995-03-01

    Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Units were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab Hazardous Waste Management Facility. This project began in July 1994 and is complete; however, analytical data from these wells are not yet available

  16. Cation exchange in a temporally fluctuating thin freshwater lens on top of saline groundwater

    NARCIS (Netherlands)

    Eeman, S.; Louw, de P.G.B.; Zee, van der S.E.A.T.M.

    2017-01-01

    In coastal-zone fields with a high groundwater level and sufficient rainfall, freshwater lenses are formed on top of saline or brackish groundwater. The fresh and the saline water meet at shallow depth, where a transition zone is found. This study investigates the mixing zone that is characterized

  17. Hydraulic performance of permeable barriers for in situ treatment of contaminated groundwater

    International Nuclear Information System (INIS)

    Smyth, D.J.A.; Shikaze, S.G.; Cherry, J.A.

    1997-01-01

    The passive interception and in situ treatment of dissolved contaminants in groundwater by permeable reactive barriers has recently gained favor at an increasing number of sites as an alternative to conventional approaches to groundwater remediation such as the pump-and-treat method. Permeable reactive barriers have two essential functions. The first is that the barriers must be installed in a position such that all of the plume passes through the reactive system. The second function is to achieve acceptable treatment of the contamination by physical, chemical or biological means within or downgradient of the barrier. In this paper, issues associated with the hydraulic performance of permeable reaction barriers are evaluated using a three-dimensional groundwater flow model. The efficiency of plume capture by permeable wall and funnel-and-gate systems is examined for some generic and for site-specific hydrogeologic systems. The results have important implications to decisions pertaining to the selection, design and installation of permeable reactive barrier systems

  18. Stakeholder and expert-guided scenarios for agriculture and landscape development in a groundwater proction area

    DEFF Research Database (Denmark)

    Vejre, Henrik; Vesterager, Jens Peter; Kristensen, Lone Søderkvist

    2011-01-01

    Nitrate and pesticide leaching led to the designation of groundwater protection zones in Denmark. The protective measures in these zones often clash with local interests in agriculture. Scenarios were used to evaluate the development of a groundwater protection zone in a farming area. Stakeholders...

  19. Groundwater Hydrochemical Zoning in Inland Plains and its Genetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Liting Xing

    2018-06-01

    Full Text Available Pore water in inland plain areas, generally having poor water quality, contain complex hydrochemical properties. In order to examine groundwater chemical composition formation characteristics, groundwater in the Jiyang area of Lubei Plain was studied using stratified monitoring of drilling, analysis of water level and water quality, isotope analysis, ion ratio coefficient and isothermal adsorption experiments, hydrochemical characteristics, and analysis of variations in different shallow depths. Results show that: (1 Numerous hydrochemistry types are present in the diving. Along with the direction of groundwater flow, total dissolved solids (TDS of diving in the study area generally increases and the hydrochemical type changes from the HCO3 type to the HCO3·SO4 type, Cl·HCO3 type and the Cl·SO4 type. (2 Shallow brackish water and freshwater in the horizontal direction are alternately distributed, and shallow brackish water is distributed in the area between old channels, showing sporadic spots or bands, whose hydrochemistry type is predominantly Cl·SO4-Na·Mg·Ca. (3 Affected by the sedimentary environment, hydrodynamic conditions and other factors; diving, middle brackish water and deep freshwater are vertically deposited in the study area. The dynamics of middle brackish water quality are stable due to the sedimentary environment and clay deposits. The hydrochemistry types of middle brackish water are mainly Cl·SO4-Mg·Na and SO4·Cl-Na·Mg, while the deep confined water is dominated by HCO3. (4 The optimal adsorption isotherms of Na+, Ca2+ and Mg2+ in groundwater from clay, with a thickness raging from 6–112 m, conformed to the Henry equation and the Langmuir equation. The retardation of Na+, Ca2+ and Mg2+ in groundwater differed with differing depths of the clay deposit. The trend of change in retardation strength correlates strongly with the TDS of groundwater. Groundwater in the inland plain area is affected by complicated

  20. Site scale groundwater flow in Haestholmen

    International Nuclear Information System (INIS)

    Loefman, J.

    1999-05-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal - of spent nuclear fuel. This study represents the groundwater flow modelling at Haestholmen, and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Haestholmen. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Haestholmen. The present topography together with a mathematical model describing the land uplift at the Haestholmen area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography and by the highly transmissive fracture zones. Near the surface the flow spreads out to offshore and to the lower areas of topography in all directions away from

  1. On the use of mean groundwater age, life expectancy and capture probability for defining aquifer vulnerability and time-of-travel zones for source water protection.

    Science.gov (United States)

    Molson, J W; Frind, E O

    2012-01-01

    Protection and sustainability of water supply wells requires the assessment of vulnerability to contamination and the delineation of well capture zones. Capture zones, or more generally, time-of-travel zones corresponding to specific contaminant travel times, are most commonly delineated using advective particle tracking. More recently, the capture probability approach has been used in which a probability of capture of P=1 is assigned to the well and the growth of a probability-of-capture plume is tracked backward in time using an advective-dispersive transport model. This approach accounts for uncertainty due to local-scale heterogeneities through the use of macrodispersion. In this paper, we develop an alternative approach to capture zone delineation by applying the concept of mean life expectancy E (time remaining before being captured by the well), and we show how life expectancy E is related to capture probability P. Either approach can be used to delineate time-of-travel zones corresponding to specific travel times, as well as the ultimate capture zone. The related concept of mean groundwater age A (time since recharge) can also be applied in the context of defining the vulnerability of a pumped aquifer. In the same way as capture probability, mean life expectancy and groundwater age account for local-scale uncertainty or unresolved heterogeneities through macrodispersion, which standard particle tracking neglects. The approach is tested on 2D and 3D idealized systems, as well as on several watershed-scale well fields within the Regional Municipality of Waterloo, Ontario, Canada. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Approaches to groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.; Klavetter, E.; Peters, R.

    1989-01-01

    One of the objectives of performance assessment for the Yucca Mountain Project is to estimate the groundwater travel time at Yucca Mountain, Nevada, to determine whether the site complies with the criteria specified in the Code of Federal Regulations. The numerical standard for performance in these criteria is based on the groundwater travel time along the fastest path of likely radionuclide transport from the disturbed zone to the accessible environment. The concept of groundwater travel time, as proposed in the regulations, does not have a unique mathematical statement. The purpose of this paper is to discuss (1) the ambiguities associated with the regulatory specification of groundwater travel time, (2) two different interpretations of groundwater travel time, and (3) the effect of the two interpretations on estimates of the groundwater travel time. 3 refs., 2 figs., 2 tabs

  3. Hanford Site groundwater monitoring for Fiscal Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E. [eds.] [and others

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium`s ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level.

  4. Hanford Site groundwater monitoring for Fiscal Year 1997

    International Nuclear Information System (INIS)

    Hartman, M.J.; Dresel, P.E.

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium's ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level

  5. Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia).

    Science.gov (United States)

    Ortegón, Gloria Páez; Arboleda, Fernando Muñoz; Candela, Lucila; Tamoh, Karim; Valdes-Abellan, Javier

    2016-01-01

    Extensive application of vinasse, a subproduct from sugar cane plantations for bioethanol production, is currently taking place as a source of nutrients that forms part of agricultural management in different agroclimatic regions. Liquid vinasse composition is characterised by high variability of organic compounds and major ions, acid pH (4.7), high TDS concentration (117,416-599,400mgL(-1)) and elevated EC (14,350-64,099μScm(-1)). A large-scale sugar cane field application is taking place in Valle del Cauca (Colombia), where monitoring of soil, unsaturated zone and the aquifer underneath has been made since 2006 to evaluate possible impacts on three experimental plots. For this assessment, monitoring wells and piezometers were installed to determine groundwater flow and water samples were collected for chemical analysis. In the unsaturated zone, tensiometers were installed at different depths to determine flow patterns, while suction lysimeters were used for water sample chemical determinations. The findings show that in the sandy loam plot (Hacienda Real), the unsaturated zone is characterised by low water retention, showing a high transport capacity, while the other two plots of silty composition presented temporal saturation due to La Niña event (2010-2011). The strong La Niña effect on aquifer recharge which would dilute the infiltrated water during the monitoring period and, on the other hand dissolution of possible precipitated salts bringing them back into solution may occur. A slight increase in the concentration of major ions was observed in groundwater (~5% of TDS), which can be attributed to a combination of factors: vinasse dilution produced by water input and hydrochemical processes along with nutrient removal produced by sugar cane uptake. This fact may make the aquifer vulnerable to contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. In situ treatment of cyanide-contaminated groundwater by iron cyanide precipitation

    International Nuclear Information System (INIS)

    Ghosh, R.S.; Dzombak, D.A.; Luthy, R.G.; Smith, J.R.

    1999-01-01

    Groundwater contamination with cyanide is common at many former or active industrial sites. Metal-cyanide complexes typically dominate aqueous speciation of cyanide in groundwater systems, with iron-cyanide complexes often most abundant. Typically, metal-cyanide complexes behave as nonadsorbing solutes in sand-gravel aquifer systems in the neutral pH range, rendering cyanide relatively mobile in groundwater systems. Groundwater pump-and-treat systems have often been used to manage cyanide contamination in groundwater. This study examined the feasibility of using in situ precipitation of iron cyanide in a reactive barrier to attenuate the movement of cyanide in groundwater. Laboratory column experiments were performed in which cyanide solutions were passed through mixtures of sand and elemental iron filings. Removal of dissolved cyanide was evaluated in a variety of cyanide-containing influents under various flow rates and sand-to-iron weight ratios. Long-term column tests performed with various cyanide-containing influents under both oxic and anoxic conditions, at neutral pH and at flow rates typical of sand-gravel porous media, yielded effluent concentrations of total cyanide as low as 0.5 mg/L. Effluent cyanide concentrations achieved were close to the solubilities of Turnbull's blue-hydrous ferric oxide solid solutions, indicating co-precipitation of the two solids. Maximum cyanide removal efficiency was achieved with approximately 10% by weight of iron in the sand-iron mixtures; higher iron contents did not increase removal efficiency significantly. Results obtained indicate that in situ precipitation is a promising passive treatment approach for cyanide in groundwater

  7. Evaluation of Fenton's Reagent and Activated Persulfate for Treatment of a Pharmaceutical Waste Mixture in Groundwater

    DEFF Research Database (Denmark)

    Bennedsen, Lars Rønn; Søgaard, Erik Gydesen; Kakarla, Prasad

    2010-01-01

    Soil and groundwater beneath the Kærgård Plantage megasite in Denmark are contaminated with a complex mixture of pharmaceutical wastes, including sulfonamides, barbiturates, aniline, pyridine chlorinated solvents (DNAPL), benzene, toluene, mercury, and cyanide. Regulatory agencies in Denmark...... capacity of the aquifer sediments, pH dropped to within the range of 1 to 3 for all tests. Due to the presence of significant quantities of mercury and cyanide in the target treatment zone and the lowering of pH, batch and continuous-flow column reactors were used to measure mobilization of the mercury......, cyanide, chromium and other metals both within the aqueous and vapour phases. Except the alkaline activation, all the investigated techniques for activating persulfate were able to remove more than 80% of the primary contaminants. Optimization and more dosages led to 98-99% destruction of primary...

  8. A new separation and treatment method for soil and groundwater restoration

    Energy Technology Data Exchange (ETDEWEB)

    Hitchens, G.D. [Lynntech, Inc., College Station, TX (United States)

    1997-10-01

    Soil and groundwater contamination by organic compounds is a widespread environmental pollution problem. In many cases, contaminated soil is excavated and transported to a landfill or is incinerated to remove contaminants. These remediation practices are expensive, environmentally disruptive, require extensive permitting, and only move contamination from one location to another. Onsite and in situ treatment techniques offer a safer, more cost-effective, and permanent solution. Many soil and groundwater contaminants are highly volatile, enabling the use of methods such as in situ vacuum extraction and air injection for their removal. However, these methods are often difficult to use because of slow volatilization rates and the lack of effective methods to treat the extracted hazardous material. This Phase I Small Business Innovation Research program focuses on developing an in situ soil and groundwater remediation technique that is effective against volatile as well as nonvolatile compounds and that will shorten treatment times. The technique forms the basis of a new catalytic process to degrade extracted contaminants onsite. Key hardware elements on which the new technique is based have been proven in preliminary research. The method has a high potential for public and regulatory acceptance because of its low environment impact.

  9. A new separation and treatment method for soil and groundwater restoration

    International Nuclear Information System (INIS)

    Hitchens, G.D.

    1997-01-01

    Soil and groundwater contamination by organic compounds is a widespread environmental pollution problem. In many cases, contaminated soil is excavated and transported to a landfill or is incinerated to remove contaminants. These remediation practices are expensive, environmentally disruptive, require extensive permitting, and only move contamination from one location to another. Onsite and in situ treatment techniques offer a safer, more cost-effective, and permanent solution. Many soil and groundwater contaminants are highly volatile, enabling the use of methods such as in situ vacuum extraction and air injection for their removal. However, these methods are often difficult to use because of slow volatilization rates and the lack of effective methods to treat the extracted hazardous material. This Phase I Small Business Innovation Research program focuses on developing an in situ soil and groundwater remediation technique that is effective against volatile as well as nonvolatile compounds and that will shorten treatment times. The technique forms the basis of a new catalytic process to degrade extracted contaminants onsite. Key hardware elements on which the new technique is based have been proven in preliminary research. The method has a high potential for public and regulatory acceptance because of its low environment impact

  10. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    OpenAIRE

    Kathleen Feiner; Christopher S. Lowry

    2015-01-01

    Study Focus: This research examines a wetland environment before and after the construction of a beaver dam to determine the hydrologic impacts on regional groundwater flow and quantify changes to the capture zone of a wetland pond. Increased hydraulic head behind a newly built beaver dam can cause shifts in the capture zone of a wetland pond. Changes in groundwater flux, and the extent of both the capture and discharge zones of this wetland were examined with the use of a groundwater flow mo...

  11. Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20).

    Science.gov (United States)

    Ramos, Débora Toledo; da Silva, Márcio Luis Busi; Chiaranda, Helen Simone; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2013-06-01

    Field experiments were conducted to assess the potential for anaerobic biostimulation to enhance BTEX biodegradation under fermentative methanogenic conditions in groundwater impacted by a biodiesel blend (B20, consisting of 20 % v/v biodiesel and 80 % v/v diesel). B20 (100 L) was released at each of two plots through an area of 1 m(2) that was excavated down to the water table, 1.6 m below ground surface. One release was biostimulated with ammonium acetate, which was added weekly through injection wells near the source zone over 15 months. The other release was not biostimulated and served as a baseline control simulating natural attenuation. Ammonium acetate addition stimulated the development of strongly anaerobic conditions, as indicated by near-saturation methane concentrations. BTEX removal began within 8 months in the biostimulated source zone, but not in the natural attenuation control, where BTEX concentrations were still increasing (due to source dissolution) 2 years after the release. Phylogenetic analysis using quantitative PCR indicated an increase in concentration and relative abundance of Archaea (Crenarchaeota and Euryarchaeota), Geobacteraceae (Geobacter and Pelobacter spp.) and sulfate-reducing bacteria (Desulfovibrio, Desulfomicrobium, Desulfuromusa, and Desulfuromonas) in the biostimulated plot relative to the control. Apparently, biostimulation fortuitously enhanced the growth of putative anaerobic BTEX degraders and associated commensal microorganisms that consume acetate and H2, and enhance the thermodynamic feasibility of BTEX fermentation. This is the first field study to suggest that anaerobic-methanogenic biostimulation could enhance source zone bioremediation of groundwater aquifers impacted by biodiesel blends.

  12. Data-Driven Approach for Analyzing Hydrogeology and Groundwater Quality Across Multiple Scales.

    Science.gov (United States)

    Curtis, Zachary K; Li, Shu-Guang; Liao, Hua-Sheng; Lusch, David

    2017-08-29

    Recent trends of assimilating water well records into statewide databases provide a new opportunity for evaluating spatial dynamics of groundwater quality and quantity. However, these datasets are scarcely rigorously analyzed to address larger scientific problems because they are of lower quality and massive. We develop an approach for utilizing well databases to analyze physical and geochemical aspects of groundwater systems, and apply it to a multiscale investigation of the sources and dynamics of chloride (Cl - ) in the near-surface groundwater of the Lower Peninsula of Michigan. Nearly 500,000 static water levels (SWLs) were critically evaluated, extracted, and analyzed to delineate long-term, average groundwater flow patterns using a nonstationary kriging technique at the basin-scale (i.e., across the entire peninsula). Two regions identified as major basin-scale discharge zones-the Michigan and Saginaw Lowlands-were further analyzed with regional- and local-scale SWL models. Groundwater valleys ("discharge" zones) and mounds ("recharge" zones) were identified for all models, and the proportions of wells with elevated Cl - concentrations in each zone were calculated, visualized, and compared. Concentrations in discharge zones, where groundwater is expected to flow primarily upwards, are consistently and significantly higher than those in recharge zones. A synoptic sampling campaign in the Michigan Lowlands revealed concentrations generally increase with depth, a trend noted in previous studies of the Saginaw Lowlands. These strong, consistent SWL and Cl - distribution patterns across multiple scales suggest that a deep source (i.e., Michigan brines) is the primary cause for the elevated chloride concentrations observed in discharge areas across the peninsula. © 2017, National Ground Water Association.

  13. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater.

    Science.gov (United States)

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G

    2018-01-01

    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  14. Recent and old groundwater in the Niebla-Posadas regional aquifer (southern Spain): Implications for its management

    Science.gov (United States)

    Scheiber, Laura; Ayora, Carlos; Vázquez-Suñé, Enric; Cendón, Dioni I.; Soler, Albert; Custodio, Emilio; Baquero, Juan Carlos

    2015-04-01

    The Niebla-Posadas (NP) aquifer in southern Spain is one of the main groundwater sources for the lower Guadalquivir Valley, a semiarid region supporting an important population, agriculture and industry. To contribute to the understanding of this aquifer the assessment of sustainable use of groundwater, the residence time of groundwater in the NP aquifer has been estimated using 3H, 14C and 36Cl. Along the flow paths, recharged groundwater mixes with NaCl-type waters and undergoes calcite dissolution and is further modified by cation exchange (Ca-Na). Consequently, the water loses most of its calcium and the residual δ13CDIC in the groundwater is isotopically enriched. Further modifications take place along the flow path in deeper zones, where depleted δ13CDIC values are overprinted due to SO42- and iron oxide reduction, triggered by the presence of organic matter. Dating with 3H, 14C and 36Cl has allowed the differentiation of several zones: recharge zone (30 ky). An apparent link between the tectonic structure and the groundwater residence time zonation can be established. Regional faults clearly separates deep zone 1 from the distinctly older age (>30 ky) deep zone 2. From the estimated residence times, two groundwater areas of different behavior can be differentiated within the aquifer.

  15. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    previous hypothesis that regional groundwater flow from the piedmont groundwater recharge zone predominantly discharges at the coastline may therefore be false. A more reliable alternative might be to conceptualize deep groundwater below the coastal plains a hydrodynamically stagnant zone, responding gradually to landscape and hydrological change on geologic timescales. This study brings a new and original understanding of the groundwater flow system in an important regional basin, in the context of its geometry and evolution over geological timescales. There are important implications for the sustainability of the ongoing high rates of groundwater extraction in the NCB.

  16. Influence of physical factors and geochemical conditions on groundwater acidification during enhanced reductive dechlorination

    Science.gov (United States)

    Brovelli, A.; Barry, D. A.; Robinson, C.; Gerhard, J.

    2010-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, availability of alternative terminal electron acceptors and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. For this reason, research in this area is gaining increasing attention. In previous work (Robinson et al., 2009 407:4560, Sci. Tot. Environ, Robinson and Barry, 2009 24:1332, Environ. Model. & Software, Brovelli et al., 2010, submitted), a detailed geochemical and groundwater flow model able to predict the pH change occurring during reductive dehalogenation was developed. The model accounts for the main processes influencing groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects groundwater pH and dechlorination rates. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency

  17. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A; Lance, P E; Downs, A; Kier, Brian P [EMCON Northwest Inc., Portland, OR (United States)

    1994-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  18. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A.; Lance, P.E.; Downs, A.; Kier, Brian P. [EMCON Northwest Inc., Portland, OR (United States)

    1993-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  19. Developing a methodology for identifying action zones to protect and manage groundwater well fields

    Science.gov (United States)

    Bellier, Sandra; Viennot, Pascal; Ledoux, Emmanuel; Schott, Celine

    2013-04-01

    Implementation of a long term action plan to manage and protect well fields is a complex and very expensive process. In this context, the relevance and efficiency of such action plans on water quality should be evaluated. The objective of this study is to set up a methodology to identify relevant actions zones in which environmental changes may significantly impact the quantity or quality of pumped water. In the Seine-et-Marne department (France), under French environmental laws three sectors integrating numerous well-field pumping in Champigny's limestone aquifer are considered as priority. This aquifer, located at south-east of Paris, supplies more than one million people with drinking water. Catchments areas of these abstractions are very large (2000 km2) and their intrinsic vulnerability was established by a simple parametric approach that does not permit to consider the complexity of hydrosystem. Consequently, a methodology based on a distributed modeling of the process of the aquifer was developed. The basin is modeled using the hydrogeological model MODCOU, developed in MINES ParisTech since the 1980s. It simulates surface and groundwater flow in aquifer systems and allows to represent the local characteristics of the hydrosystem (aquifers communicating by leakage, rivers infiltration, supply from sinkholes and locally perched or dewatering aquifers). The model was calibrated by matching simulated river discharge hydrographs and piezometric heads with observed ones since the 1970s. Thanks to this modelling tool, a methodology based on the transfer of a theoretical tracer through the hydrosystem from the ground surface to the outlets was implemented to evaluate the spatial distribution of the contribution areas at contrasted, wet or dry recharge periods. The results show that the surface of areas contributing to supply most catchments is lower than 300 km2 and the major contributory zones are located along rivers. This finding illustrates the importance of

  20. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater.

    Science.gov (United States)

    Jing, C; Landsberger, S; Li, Y L

    2017-09-01

    In this study, nanoscale zero valent iron I-NZVI was investigated as a remediation strategy for uranium contaminated groundwater from the former Cimarron Fuel Fabrication Site in Oklahoma, USA. The 1 L batch-treatment system was applied in the study. The result shows that 99.9% of uranium in groundwater was removed by I-NZVI within 2 h. Uranium concentration in the groundwater stayed around 27 μg/L, and there was no sign of uranium release into groundwater after seven days of reaction time. Meanwhile the release of iron was significantly decreased compared to NZVI which can reduce the treatment impact on the water environment. To study the influence of background pH of the treatment system on removal efficiency of uranium, the groundwater was adjusted from pH 2-10 before the addition of I-NZVI. The pH of the groundwater was from 2.1 to 10.7 after treatment. The removal efficiency of uranium achieved a maximum in neutral pH of groundwater. The desorption of uranium on the residual solid phase after treatment was investigated in order to discuss the stability of uranium on residual solids. After 2 h of leaching, 0.07% of the total uranium on residual solid phase was leached out in a HNO 3 leaching solution with a pH of 4.03. The concentration of uranium in the acid leachate was under 3.2 μg/L which is below the EPA's maximum contaminant level of 30 μg/L. Otherwise, the concentration of uranium was negligible in distilled water leaching solution (pH = 6.44) and NaOH leaching solution (pH = 8.52). A desorption study shows that an acceptable amount of uranium on the residuals can be released into water system under strong acid conditions in short terms. For long term disposal management of the residual solids, the leachate needs to be monitored and treated before discharge into a hazardous landfill or the water system. For the first time, I-NZVI was applied for the treatment of uranium contaminated groundwater. These results provide proof that I-NZVI has

  1. Hanford Site Groundwater Monitoring for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    MJ Hartman; LF Morasch; WD Webber

    2000-05-10

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds

  2. INFLUENCE OF GROUNDWATER GEOCHEMISTRY ON THE LONG-TERM PERFORMANCE OF IN-SITU PERMEABLE REACTIVE BARRIERS CONTAINING ZERO-VALENT IRON

    Science.gov (United States)

    Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...

  3. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    Science.gov (United States)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    . Differences in microbial sulfate reduction, organic matter supply, and/or groundwater residence time likely contributed to this pattern. The contrasting features of the east and west sub-marsh zones highlight the need for multiple techniques for characterization of submarine groundwater discharge sources and the impact of biogeochemical processes on the delivery of nutrients and carbon to coastal areas via submarine groundwater discharge.

  4. identification of hydrogeochemical processes in groundwater using

    African Journals Online (AJOL)

    PROF EKWUEME

    and the hydrochemical data was subjected to multivariate statistical analysis and conventional ... Groundwater flows through geological materials as it moves along ... using various conventional graphical methods and ...... from recharge zone to discharge zone, a bivariate plot of. Ca2+ + .... Handbook of Applied Hydrology,.

  5. Evapotranspiration Within the Groundwater Model Domain of the Tuba City, Arizona, Disposal Site Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a net groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.

  6. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    Science.gov (United States)

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Integrating a Linear Signal Model with Groundwater and Rainfall time-series on the Characteristic Identification of Groundwater Systems

    Science.gov (United States)

    Chen, Yu-Wen; Wang, Yetmen; Chang, Liang-Cheng

    2017-04-01

    Groundwater resources play a vital role on regional supply. To avoid irreversible environmental impact such as land subsidence, the characteristic identification of groundwater system is crucial before sustainable management of groundwater resource. This study proposes a signal process approach to identify the character of groundwater systems based on long-time hydrologic observations include groundwater level and rainfall. The study process contains two steps. First, a linear signal model (LSM) is constructed and calibrated to simulate the variation of underground hydrology based on the time series of groundwater levels and rainfall. The mass balance equation of the proposed LSM contains three major terms contain net rate of horizontal exchange, rate of rainfall recharge and rate of pumpage and four parameters are required to calibrate. Because reliable records of pumpage is rare, the time-variant groundwater amplitudes of daily frequency (P ) calculated by STFT are assumed as linear indicators of puamage instead of pumpage records. Time series obtained from 39 observation wells and 50 rainfall stations in and around the study area, Pintung Plain, are paired for model construction. Second, the well-calibrated parameters of the linear signal model can be used to interpret the characteristic of groundwater system. For example, the rainfall recharge coefficient (γ) means the transform ratio between rainfall intention and groundwater level raise. The area around the observation well with higher γ means that the saturated zone here is easily affected by rainfall events and the material of unsaturated zone might be gravel or coarse sand with high infiltration ratio. Considering the spatial distribution of γ, the values of γ decrease from the upstream to the downstream of major rivers and also are correlated to the spatial distribution of grain size of surface soil. Via the time-series of groundwater levels and rainfall, the well-calibrated parameters of LSM have

  8. Geomorphology and its implication in urban groundwater environment: case study from Mumbai, India

    Science.gov (United States)

    Rani, V. R.; Pandalai, H. S.; Sajinkumar, K. S.; Pradeepkumar, A. P.

    2015-06-01

    Landforms of Mumbai Island have been largely modified by the urban sprawl and the demand for groundwater will increase exponentially in the future. Quality and quantity of groundwater occurrence in island are highly influenced by the geomorphic units. As this metropolis receives heavy rainfall, the area rarely faces the issue of water scarcity, nevertheless, quality always remains a question. The landforms of Mumbai Island have been shaped by a combination of fluvial, denudational and marine processes. These landforms are categorized into two broad zones on the basis of its influence in groundwater occurrence. Denudational landforms are categorized as runoff zones whereas the other two are categorized as storage zones. This classification is on the basis of occurrence and storage of groundwater. Mumbai Island is exposed to frequent sea water incursion and groundwater quality has deteriorated. The varied hydrogeological conditions prevalent in this area prevent rapid infiltration. This combined with the overextraction of groundwater resources for agriculture and industry has caused serious concern about the continued availability of potable water. This study aims at validating the geomorphic classification of the landforms with hydrogeochemistry and borehole data and it proved that geomorphology corroborates with groundwater chemistry and subsurface geology.

  9. Site scale groundwater flow in Olkiluoto

    International Nuclear Information System (INIS)

    Loefman, J.

    1999-03-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal of spent nuclear fuel. This study represents the latest modelling effort at Olkiluoto (Finland), and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Olkiluoto. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Olkiluoto. The present groundwater table and topography together with a mathematical model describing the land uplift at the Olkiluoto area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography. Below the island of Olkiluoto the flow direction is mostly downwards, while near the shoreline and below the sea water flows horizontally and

  10. Site scale groundwater flow in Haestholmen

    Energy Technology Data Exchange (ETDEWEB)

    Loefman, J. [VTT Energy, Espoo (Finland)

    1999-05-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal - of spent nuclear fuel. This study represents the groundwater flow modelling at Haestholmen, and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Haestholmen. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Haestholmen. The present topography together with a mathematical model describing the land uplift at the Haestholmen area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography and by the highly transmissive fracture zones. Near the surface the flow spreads out to offshore and to the lower areas of topography in all directions away from

  11. Site scale groundwater flow in Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Loefman, J. [VTT Energy, Espoo (Finland)

    1999-03-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal of spent nuclear fuel. This study represents the latest modelling effort at Olkiluoto (Finland), and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Olkiluoto. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Olkiluoto. The present groundwater table and topography together with a mathematical model describing the land uplift at the Olkiluoto area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography. Below the island of Olkiluoto the flow direction is mostly downwards, while near the shoreline and below the sea water flows horizontally and

  12. Green Infrastructure, Groundwater and the Sustainable City

    Science.gov (United States)

    Band, L. E.

    2014-12-01

    The management of water is among the most important attributes of urbanization. Provision of sufficient quantities and quality of freshwater, treatment and disposal of wastewater and flood protection are critical for urban sustainability. Over the last century, two major shifts in water management paradigms have occurred, the first to improve public health with the provision of infrastructure for centralized sanitary effluent collection and treatment, and the rapid drainage and routing of stormwater. A current shift in paradigm is now occurring in response to the unintended consequences of sanitary and stormwater management, which have degraded downstream water bodies and shifted flood hazard downstream. Current infrastructure is being designed and implemented to retain, rather than rapidly drain, stormwater, with a focus on infiltration based methods. In urban areas, this amounts to a shift in hydrologic behavior to depression focused recharge. While stormwater is defined as surface flow resulting from developed areas, an integrated hydrologic systems approach to urban water management requires treatment of the full critical zone. In urban areas this extends from the top of the vegetation and building canopy, to a subsurface depth including natural soils, fill, saprolite and bedrock. In addition to matric and network flow in fracture systems, an urban "karst" includes multiple generations of current and past infrastructure, which has developed extensive subsurface pipe networks for supply and drainage, enhancing surface/groundwater flows and exchange. In this presentation, Band will discuss the need to focus on the urban critical zone, and the development and adaptation of new modeling and analytical approaches to understand and plan green infrastructure based on surface/groundwater/ecosystem interactions, and implications for the restoration and new design of cities.

  13. Groundwater monitoring program plan and conceptual site model for the Al-Tuwaitha Nuclear Research Center in Iraq.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John Robin; Cochran, John Russell

    2013-07-01

    The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraqs Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing: A CSM describing the hydrogeologic regime and contaminant issues, recommendations for future groundwater characterization activities, and descriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifies a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.

  14. Small-scale spatial variability of phenoxy acid mineralization potentials in transition zones with a multidisciplinary approach

    DEFF Research Database (Denmark)

    Pazarbasi, Meric Batioglu

    The phenoxy acid group of herbicides is widely used to control broadleaf weeds, and it contaminates groundwater and surface water by leaching from agricultural soil or landfills. Due to the distinct vertical and horizontal gradients in nutrients and hydrologic exchange in transition zones...... in two transition zones, (1) the interfaces of unsaturated and saturated zones and (2) groundwater and surface water. Small-scale spatial variability of phenoxy acids was previously shown in topsoil; however, such small-scale studies are scarce in subsurface environments. We therefore studied the factors...... classes in the different mineralization potentials of discharge zones. Understanding of the natural attenuation potential of groundwater-surface water transition zones is important for stream water protection. In landfill-impacted groundwater-surface water interface, we further analyzed bacterial...

  15. Acid-base status of soils in groundwater discharge zones — relation to surface water acidification

    Science.gov (United States)

    Norrström, Ann Catrine

    1995-08-01

    Critical load calculations have suggested that groundwater at depth of 2 m in Sweden is very sensitive to acid load. As environmental isotope studies have shown that most of the runoff in streams has passed through the soil, there is a risk in the near future of accelerated acidification of surface waters. To assess the importance of the last soil horizon of contact before discharge, the upper 0-0.2m of soils in seven discharge zones were analysed for pools of base cations, acidity and base saturation. The sites were about 3-4 m 2 in size and selected from two catchments exposed to different levels of acid deposition. The soils in the seven sites had high concentrations of exchangeable base cations and consequently high base saturation. The high correlation ( r2 = 0.74) between base saturation in the soils of the discharge zones and mean pH of the runoff waters suggested that the discharge zone is important for surface water acidification. The high pool of exchangeable base cations will buffer initially against the acid load. As the cation exchange capacity (meq dm -3) and base saturation were lower in the sites from the catchment receiving lower deposition, these streams may be more vulnerable to acidification in the near future. The high concentration of base cations in non-exchangeable fractions may also buffer against acidification as it is likely that some of these pools will become exchangeable with time.

  16. Progression and timing of treatment of zone I retinopathy of prematurity.

    Science.gov (United States)

    Soh, Yuka; Fujino, Takahiro; Hatsukawa, Yoshikazu

    2008-09-01

    To clarify the progression of zone I retinopathy of prematurity (ROP) and elucidate the most suitable time and method of treatment. Interventional case series. Forty-six eyes of 23 zone I ROP infants were studied at a single institution. Birth weight ranged from 448 to 954 g, and gestational age ranged from 22 to 26 weeks. Fundus examination was started at 29 or 30 weeks postmenstrual age and was performed once or more per week. The first treatment was performed using laser photocoagulation or cryotherapy when zone I ROP progressed to the following criteria. Treatment criteria A included 35 eyes of 18 cases of zone I any stage ROP with plus disease (Early Treatment for Retinopathy of Prematurity [ETROP] type 1), criteria B included five eyes of three cases of zone I stage 3 ROP with or without plus disease (ETROP type 1), criteria C included six eyes of four cases of stage 1 or stage 2 ROP without plus disease; the demarcation lines belonged, in large part, within the zone I area. Hazy media such as corneal opacity, miotic pupil, tunica vasculosa lentis, and hazy vitreous persisted until approximately 32 weeks postmenstrual age. The mean period between stage 1 and stage 3 mild was one week, that between stage 1 and stage 3 moderate was 1.7 weeks, and that between stage 1 and stage 3 severe was 1.3 weeks. The period between stage 1 and the first treatment was zero to 20 days, and 60.9% of all the cases were treated within 10 days after stage 1. Six of 46 eyes had unfavorable outcomes. Surgical results of our treatment were comparable or better than those of other reports. Immediate treatment was required when zone I ROP was diagnosed behind persistent hazy media.

  17. Hanford Site Groundwater Monitoring for Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2007-03-01

    This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

  18. Creation of a subsurface permeable treatment barrier using in situ redox manipulation

    International Nuclear Information System (INIS)

    Fruchter, J.S.; Cole, C.R.; Williams, M.D.

    1997-01-01

    The goal of in situ redox manipulation is to create a permeable treatment zone in the subsurface for remediating redox-sensitive contaminants in groundwater. The permeable treatment zone is created just downstream of the contaminant plume or contaminant source through the injection of reagents and/or microbial nutrients to alter the redox potential of the aquifer fluids and sediments. Contaminant plumes migrating through this manipulated zone can then be destroyed or immobilized. In a field test at the Hanford Site, ∼77,000 L of buffered sodium dithionite solution were successfully injected into the unconfined aquifer at the 100-H Area in September 1995. The target contaminant was chromate. No significant plugging of the well screen or the formation was detected during any phase of the test. Dithionite was detected in monitoring wells at least 7.5 m from the injection point. Data were obtained from all three phases of the test (i.e., injection, reaction, withdrawal). Preliminary core data show that from 60% to 100% of the available reactive iron in the targeted aquifer sediments was reduced by the injected dithionite. One year after the injection, groundwater in the treatment zone remains anoxic. Total and hexavalent chromium levels in groundwater have been reduced from a preexperiment concentration of ∼60 μg/L to below the detection limit of the analytical methods

  19. Application Of Electrical Resistivity Imaging Technique And Colloidal Borescope On Groundwater Study At Block 33, Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Mohd Muzamil Mohd Hashim; Mohd Abdul Wahab Yusof; Kamarudin Samuding; Nazran Harun; Nurul Fairuz Diyana Baharudin

    2014-01-01

    Electrical resistivity imaging is a geophysical surveying technique that used to obtain two dimensional (2D) subsurface profile. Base on resistivity value, the potential zone that contained groundwater has been identified. A borehole with 100 m depth has been constructed on the groundwater potential zone. Then, a Colloidal Borescope is being used to get the groundwater velocity and direction. From the resistivity profile, a groundwater zone identified at the north and south area of the study site but the actual direction of groundwater system at that area cannot be recognized so that, the colloidal borescope data being used to clarify the actual flow and direction. Combination from this two type of data produced a good result of groundwater direction in this study area. (author)

  20. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    Knepp, A.J.; Isaacs, J.D.

    1997-09-01

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  1. Groundwater Recharge Processes Revealed By Multi-Tracers Approach in a Headwater, North China Plain

    Science.gov (United States)

    Sakakibara, K.; Tsujimura, M.; Song, X.; Zhang, J.

    2014-12-01

    Groundwater recharge variation in space and time is crucial for effective water management especially in arid/ semi-arid regions. In order to reveal comprehensive groundwater recharge processes in a catchment with a large topographical relief and seasonal hydrological variations, intensive field surveys were conducted at 4 times in different seasons in Wangkuai watershed, Taihang Mountains, which is a main groundwater recharge zone of North China Plain. The groundwater, spring, stream water and lake water were sampled, and inorganic solute constituents and stable isotopes of oxygen-18 and deuterium were determined on all water samples. Also, the stream flow rate was observed in stable state condition. The stable isotopic compositions, silica and bicarbonate concentrations in the groundwater show close values as those in the surface water, suggesting main groundwater recharge occurs from surface water at mountain-plain transitional zone throughout a year. Also, the deuterium and oxgen-18 in the Wangkuai reservoir and the groundwater in the vicinity of the reservoir show higher values, suggesting the reservoir water, affected by evaporation effect, seems to have an important role for the groundwater recharge in alluvial plain. For specifying the groundwater recharge area and quantifying groundwater recharge rate from the reservoir, an inversion analysis and a simple mixing model were applied in Wangkuai watershed using stable isotopes of oxygen-18 and deuterium. The model results show that groundwater recharge occurs dominantly at the altitude from 357 m to 738 m corresponding to mountain-plain transitional zone, and groundwater recharge rate by Wangkuai reservoir is estimated to be 2.4 % of total groundwater recharge in Wangkuai watershed.

  2. Trace Metals in Groundwater and the Vadose Zone Calcite: In Situ Containment and Stabilization of Strontium-90 and Other Divalent Metals and Radionuclides at Arid West DOE

    International Nuclear Information System (INIS)

    Smith, Robert W.

    2004-01-01

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption)

  3. Regional Survey of Structural Properties and Cementation Patterns of Fault Zones in the Northern Part of the Albuquerque Basin, New Mexico - Implications for Ground-Water Flow

    Science.gov (United States)

    Minor, Scott A.; Hudson, Mark R.

    2006-01-01

    Motivated by the need to document and evaluate the types and variability of fault zone properties that potentially affect aquifer systems in basins of the middle Rio Grande rift, we systematically characterized structural and cementation properties of exposed fault zones at 176 sites in the northern Albuquerque Basin. A statistical analysis of measurements and observations evaluated four aspects of the fault zones: (1) attitude and displacement, (2) cement, (3) lithology of the host rock or sediment, and (4) character and width of distinctive structural architectural components at the outcrop scale. Three structural architectural components of the fault zones were observed: (1) outer damage zones related to fault growth; these zones typically contain deformation bands, shear fractures, and open extensional fractures, which strike subparallel to the fault and may promote ground-water flow along the fault zone; (2) inner mixed zones composed of variably entrained, disrupted, and dismembered blocks of host sediment; and (3) central fault cores that accommodate most shear strain and in which persistent low- permeability clay-rich rocks likely impede the flow of water across the fault. The lithology of the host rock or sediment influences the structure of the fault zone and the width of its components. Different grain-size distributions and degrees of induration of the host materials produce differences in material strength that lead to variations in width, degree, and style of fracturing and other fault-related deformation. In addition, lithology of the host sediment appears to strongly control the distribution of cement in fault zones. Most faults strike north to north-northeast and dip 55? - 77? east or west, toward the basin center. Most faults exhibit normal slip, and many of these faults have been reactivated by normal-oblique and strike slip. Although measured fault displacements have a broad range, from 0.9 to 4,000 m, most are internal structure of, and cement

  4. HEAT AND MASS TRANSFER IN THE VADOSE ZONE WITH PLANT ROOTS. (R825414)

    Science.gov (United States)

    AbstractThe vadose zone is the intermediate medium between the atmosphere and groundwater. The modeling of the processes taking place in the vadose zone needs different approaches to those needed for groundwater transport problems because of the marked changes in envi...

  5. Application of the Drilling Impact Study (DIS) to Forsmark groundwaters

    International Nuclear Information System (INIS)

    Gascoyne, Mel; Gurban, Ioana

    2008-01-01

    Characterisation of a geological formation as a repository for nuclear fuel waste requires deep drilling into the bedrock to gain an understanding of the geological structure, rock types, groundwater flow and the chemical composition of groundwater and the adjacent rock. The methods of characterisation from a hydrogeochemical point of view, might be affected by the various drilling activities and techniques for determining groundwater composition have been employed so that the composition can be corrected for these activities. SKB has developed and supported the Drilling Impact Study (DIS) project in which a tracer is used as an indicator of contamination to attempt to correct the groundwater composition for dilution or contamination by surface waters. The project began about five years ago with the intention of developing a routine method for determining the extent of contamination of borehole groundwater by drilling water. The main objectives of this work were: 1. Determine the extent of drilling water contamination in permeable zones in a test borehole on the Forsmark site. 2. Correct measured chemical compositions of the groundwaters based on contamination results. 3. Provide a workable methodology for routine correction of groundwater composition. 4. Apply the modified DIS model to suitable borehole zones at the Forsmark site in a systematic fashion 5. Determine uncertainties in DIS modelling. A memorandum was prepared by describing the characteristics of borehole KFM06 and its drilling history. Estimates were made of the amount of drilling water in permeable zones in the borehole and the various approaches to applying results of DIS were described and recommendations made, with an example calculation

  6. Assessing quality and quantity of groundwater DOC in relation to plant export from different over-winter green-cover treatments in tillage farming systems

    Science.gov (United States)

    Premrov, Alina; Coxon, Catherine; Hackett, Richard; Richards, Karl

    2010-05-01

    humification index (HIX) was performed. Computation of HIX was adapted from the methodology described in Zsolnay (2003) and Cannavo et al. (2004b) using emission spectra from excitation at 245nm, and the HIX was expressed as the H/L ratio. H/L is defined as the ratio between the area of the higher and lower usable quarter of emission spectrum peak [i.e. H (352 - 382nm), L (450 - 480nm)], corresponding to the pools of high (H) and low (L) organic molecule sizes (Cannavo et al., 2004b). Quantitatively the results showed generally low DOC values (green cover treatments: i.e. mean groundwater HIX value under mustard treatment (n=4 per treatment) was 1.84, std.err.= 0.19; while the mean value for natural regeneration was 1.62 (std.err.=0.15) and that for the no-cover treatment was 1.60 (std.err.=0.16). The results indicate the importance of further studies using EEFM analysis to assess the quality of dissolved organic matter in shallow groundwater. Acknowledgements This work was funded by a Teagasc Walsh Fellowship and a Trinity College Dublin One-year Postgraduate Student Award. The authors thank Dr. Norman Allot and Dr. Carlos Rocha from Trinity College Dublin for their support and suggestions regarding the Fluorescence Spectrophotometrical analysis. Literature: Buss, S.R., Rivett, M.O., Morgan, P., Bemment, C.D., 2005. Using science to create a better place: Attenuation of nitrate in the sub-surface environment. Science Report SC030155/SR2. Environment Agency, UK. Cannavo, P., Richaume, A., Lafolie, F., 2004a. Fate of nitrogen and carbon in the vadose zone: in situ and laboratory measurements of seasonal variations in aerobic respiratory and denitrifying activities. Soil Biology and Biochemistry 36, p. 463-478. Cannavo, P., Dudal, Y., Boudenne, J.L., Lafolie, F., 2004b. Potential for Fluorescence Spectroscopy To Assess the Quality of Soil Water-Extracted Organic Matter. Soil Science 169, p. 688-696. Premrov, A., Coxon, C.E., Hackett, R., Brennan D., Sills, P. & Richards, K. 2009

  7. Assessment of the feasibility of anaerobic composting for treatment of perchlorate - contaminated soils in a war zone

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2015-01-01

    Full Text Available Aims: The objectives of this study were to determine the perchlorate concentrations in surface soils and assess feasibility of anaerobic bioremediation in full-scale for perchlorate-contaminated soils in a war zone. Materials and Methods: Fifteen samples of surface soil were collected using a composite sampling method in the study area. The soil samples, after extraction and preparation, were analyzed by ion chromatography. Anaerobic composting technique (soil excavation, mixing with manure, transfer into treatment cell and cover with a 6-mil high-density polyethylene liner considered to cleanup perchlorate-contaminated soil in a war zone. Results: The concentration of perchlorate in the soil surface samples ranged from 3 to 107.9 mg/kg, which is more than State advisory levels for residential and protection of domestic groundwater use pathway. This study indicates that technologies, skills, experience, raw materials (manure, lands, and machinery needed for implementation of full-scale composting, are available in the study area. Conclusions: Based on the results, anaerobic composting technique could be considered as a feasible, viable and cost-effective alternative for perchlorate bioremediation in the study area. According to the available of techniques and skills, successful experiences of anaerobic composting in other countries, and potential of study area, The application of anaerobic composting is technically feasible and can be use for perchlorate contaminated soil cleanup in a zone war.

  8. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    I Nanda Balan

    2012-01-01

    Full Text Available Context : Water, the elixir of life, is a prime natural resource. Due to rapid urbanization in India, the availability and quality of groundwater have been affected. According to the Central Groundwater Board, 80% of Chennai′s groundwater has been depleted and any further exploration could lead to salt water ingression. Hence, this study was done to assess the groundwater quality in Chennai city. Aim : To assess the groundwater quality using water quality index in Chennai city. Materials and Methods: Chennai city was divided into three zones based on the legislative constituency and from these three zones three locations were randomly selected and nine groundwater samples were collected and analyzed for physiochemical properties. Results: With the exception of few parameters, most of the water quality assessment parameters showed parameters within the accepted standard values of Bureau of Indian Standards (BIS. Except for pH in a single location of zone 1, none of the parameters exceeded the permissible values for water quality assessment as prescribed by the BIS. Conclusion: This study demonstrated that in general the groundwater quality status of Chennai city ranged from excellent to good and the groundwater is fit for human consumption based on all the nine parameters of water quality index and fluoride content.

  9. Ecology and living conditions of groundwater fauna

    Energy Technology Data Exchange (ETDEWEB)

    Thulin, Barbara [Geo Innova AB (Sweden); Hahn, Hans Juergen [Arbeitsgruppe Grundwasseroekologie, Univ. of Koblenz-Landau (Germany)

    2008-09-15

    This report presents the current state of ecological knowledge and applied research relating to groundwater. A conceptual picture is given of groundwater fauna occurrence in regard to Swedish environmental conditions. Interpretation features for groundwater fauna and applications are outlined. Groundwater is one of the largest and oldest limnic habitats populated by a rich and diverse fauna. Both very old species and species occurring naturally in brackish or salt water can be found in groundwater. Groundwater ecosystems are heterotrophic; the fauna depends on imports from the surface. Most species are meiofauna, 0.3-1 mm. The food chain of groundwater fauna is the same as for relatives in surface water and salt water. Smaller animals graze biofilms and detritus, larger animals act facutatively as predators. A difference is that stygobiotic fauna has become highly adapted to its living space and tolerates very long periods without food. Oxygen is a limiting factor, but groundwater fauna tolerates periods with low oxygen concentrations, even anoxic conditions. For longer periods of time a minimum oxygen requirement of 1 mg/l should be fulfilled. Geographic features such as Quaternary glaciation and very old Pliocene river systems are important for distribution patterns on a large spatial scale, but aquifer characteristics are important on a landscape scale. Area diversity is often comparable to surface water diversity. However, site diversity is low in groundwater. Site specific hydrological exchange on a geological facies level inside the aquifer, e.g. porous, fractured and karstic aquifers as well as the hyporheic zone, controls distribution patterns of groundwater fauna. For a better understanding of controlling factors indicator values are suggested. Different adequate sampling methods are available. They are representative for the aquifer, but a suitable number of monitoring wells is required. The existence of groundwater fauna in Sweden is considered as very

  10. Ecology and living conditions of groundwater fauna

    International Nuclear Information System (INIS)

    Thulin, Barbara; Hahn, Hans Juergen

    2008-09-01

    This report presents the current state of ecological knowledge and applied research relating to groundwater. A conceptual picture is given of groundwater fauna occurrence in regard to Swedish environmental conditions. Interpretation features for groundwater fauna and applications are outlined. Groundwater is one of the largest and oldest limnic habitats populated by a rich and diverse fauna. Both very old species and species occurring naturally in brackish or salt water can be found in groundwater. Groundwater ecosystems are heterotrophic; the fauna depends on imports from the surface. Most species are meiofauna, 0.3-1 mm. The food chain of groundwater fauna is the same as for relatives in surface water and salt water. Smaller animals graze biofilms and detritus, larger animals act facutatively as predators. A difference is that stygobiotic fauna has become highly adapted to its living space and tolerates very long periods without food. Oxygen is a limiting factor, but groundwater fauna tolerates periods with low oxygen concentrations, even anoxic conditions. For longer periods of time a minimum oxygen requirement of 1 mg/l should be fulfilled. Geographic features such as Quaternary glaciation and very old Pliocene river systems are important for distribution patterns on a large spatial scale, but aquifer characteristics are important on a landscape scale. Area diversity is often comparable to surface water diversity. However, site diversity is low in groundwater. Site specific hydrological exchange on a geological facies level inside the aquifer, e.g. porous, fractured and karstic aquifers as well as the hyporheic zone, controls distribution patterns of groundwater fauna. For a better understanding of controlling factors indicator values are suggested. Different adequate sampling methods are available. They are representative for the aquifer, but a suitable number of monitoring wells is required. The existence of groundwater fauna in Sweden is considered as very

  11. A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94

    International Nuclear Information System (INIS)

    Orr, B. R.

    1999-01-01

    Studies of flow through the unsaturated zone and perched ground-water zones above the Snake River Plain aquifer are part of the overall assessment of ground-water flow and determination of the fate and transport of contaminants in the subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies include definition of the hydrologic controls on the formation of perched ground-water zones and description of the transport and fate of wastewater constituents as they moved through the unsaturated zone. The definition of hydrologic controls requires stratigraphic correlation of basalt flows and sedimentary interbeds within the saturated zone, analysis of hydraulic properties of unsaturated-zone rocks, numerical modeling of the formation of perched ground-water zones, and batch and column experiments to determine rock-water geochemical processes. This report describes the development of a transient numerical simulation that was used to evaluate a conceptual model of flow through perched ground-water zones beneath wastewater infiltration ponds at the Test Reactor Area (TRA)

  12. Supplemental Groundwater Remediation Technologies to Protect the Columbia River at Hanford, WA

    International Nuclear Information System (INIS)

    Thompson, K.M.; Petersen, Scott W.; Fruchter, Jonathan S.; Ainsworth, Calvin C.; Vermeul, Vince R.; Wellman, Dawn M.; Szecsody, Jim E.; Truex, Michael J.; Amonette, James E.; Long, Philip E.

    2007-01-01

    Nine projects have been recently selected by the US Department of Energy (EM-22) to address groundwater contaminant migration at the Hanford Site. This paper summarizes the background and objectives of these projects. Five of the selected projects are targeted at hexavalent chromium contamination in Hanford 100 Area groundwater. These projects represent an integrated approach towards identifying the source of hexavalent chromium contamination in the Hanford 100-D Area and treating the groundwater contamination. Currently, there is no effective method to stop strontium-90 associated with the riparian zone sediments from leaching into the river. Phytoremediation may be a possible way to treat this contamination. Its use at the 100-N Area will be investigated. Another technology currently being tested for strontium-90 contamination at the 100-N Area involves injection (through wells) of a calcium-citrate-phosphate solution, which will precipitate apatite, a natural calcium-phosphate mineral. Apatite will adsorb the strontium-90, and then incorporate it as part of the apatite structure, isolating the strontium-90 contamination from entering the river. This EM-22 funded apatite project will develop a strategy for infiltrating the apatite solution from ground surface or a shallow trench to provide treatment over the upper portion of the contaminated zone, which is unsaturated during low river stage.

  13. Development of a sitewide groundwater remediation strategy at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Goswami, D.

    1996-01-01

    Over 440 km 2 (170 mi 2 ) of groundwater beneath the Hanford Site are contaminated by hazardous and radioactive waste, out of which almost half is over state and federal drinking water standards. In addition to the complicated nature of these plumes, remediation is further obscured by limited application of available technologies and hydrogeologic information. This paper briefly describes the processes used by the Washington State Department of Ecology (Ecology), U.S. Environmental Protection Agency, and U.S. Department of Energy (USDOE) in developing a sitewide groundwater remediation strategy for Hanford and its outcome. As an initial approach to sitewide groundwater remediation, the strategy is to remediate the major plumes found in the reactor areas (100 Area) adjacent to the Columbia River and contain the major plumes found in the Central Plateau region (200 Area). This approach was based mainly on the qualitative risk, stakeholder's and tribe's values, and available technical feasibility. The strategy emphasizes the use of existing treatment and extraction technology for the remediation of groundwater in combination with proposed and existing site infrastructure. This work is being performed in parallel with ongoing risk and other feasibility activities. Under this strategy, innovative technologies being developed are in the areas of dense nonaqueous phase liquid identification and recovery, and problems associated with strontium-90, cesium-137, and plutonium in the vadose zone and groundwater. The final remediation strategy alternatives remain a product of risk assessment, technical feasibility, site use scenario, and cost consideration. In order to develop a strategy for the final cleanup, several issues such as aquifer restoration, natural attenuation, potential contamination of groundwater from the tank farms and from the existing contamination source in the vadose zone must be looked in detail in conjuction with public and stakeholder's values

  14. Depth Stratification Leads to Distinct Zones of Manganese and Arsenic Contaminated Groundwater.

    Science.gov (United States)

    Ying, Samantha C; Schaefer, Michael V; Cock-Esteb, Alicea; Li, Jun; Fendorf, Scott

    2017-08-15

    Providing access to safe drinking water is a global challenge, for which groundwater is increasingly being used throughout the world. However, geogenic contaminants limit the suitability of groundwater for domestic purposes over large geographic areas across most continents. Geogenic contaminants in groundwater are often evaluated individually, but here we demonstrate the need to evaluate multiple contaminants to ensure that groundwater is safe for human consumption and agricultural usage. We compiled groundwater chemical data from three aquifer regions across the world that have been reported to have widespread As and Mn contamination including the Glacial Aquifer in the U.S., the Ganges-Brahmaputra-Mehta Basin within Bangladesh, and the Mekong Delta in Cambodia, along with newly sampled wells in the Yangtze River Basin of China. The proportion of contaminated wells increase by up to 40% in some cases when both As and Mn contaminants are considered. Wilcoxon rank-sum analysis indicates that Mn contamination consistently occurs at significantly shallower depths than As contaminated wells in all regions. Arsenic concentrations in groundwater are well predicted by redox indicators (Eh and dissolved oxygen) whereas Mn shows no significant relationship with either parameter. These findings illustrate that the number of safe wells may be drastically overestimated in some regions when Mn contamination is not taken into account and that depth may be used as a distinguishing variable in efforts to predict the presence of groundwater contaminants regionally.

  15. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    International Nuclear Information System (INIS)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-01

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P and T) operations have had minimal impact on the contaminant plume - primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (''brownfield'') scenario for Tuba City. This alternative approach would have low risks, similar to the current P and T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations

  16. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-08

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

  17. Prevalence of pathogenic bacteria in surface and groundwater of urban and rural zones of El-Gaza generative, Egypt

    International Nuclear Information System (INIS)

    Abo-State, M.A.M.; El-Khatat, A.M.R.; El-Shahat, M.F.

    2005-01-01

    Thirty three water and soil samples, from the urban and rural zones of El-Giza, Egypt, were used to evaluate the microbiological quality of soil, surface and groundwater samples. Total aerobic bacterial count of groundwater ranged from 2 x10 4 to 1. 2 x 10 7 CFU/ml, which were B. cereus (1 x10 2 - 1 x10 4 CFU/ml), Enterobacteriacea (1 x 10 2 - 2 x 10 6 CFU/ml), E.Coli (0 - 9 x 10 4 CFU/ml), Pseudomonas (9 x 10 2 - 3 x 10 6 CFU/ml), total Staph. (0 - 5.6 x 10 3 CFU/ml) and Staph. aureus (0 - 5 x10 3 CFU/ml). Meanwhile, surface water contained total aerobic bacterial count in the range of 1 x 10 5 -9 x 10 6 CFU/ml, which where l x10 2 - 4 x 10 3 CFU/ml B. cereus, 3.9 x 10''3 -1.6 x 10 6 CFU/ml Enterobacteriacea, 1 x 10 2 - 2.9 x 10 4 CFU/ml Ent. faecalis, 5 x 10 2 - 1.1 x 10 5 CFU/ml E. coli, 4.9 x 10 4 - 1.1 x 10 4 CFU/ml Pseudomonas, 3 x 10 2 - 4 x 10 4 CFU/ml total Staph. and 1 x 10 -1 x 10 4 CFU/ml Staph. aureus. Salmonella was detected in almost all surface water samples except in one sample. No Ent. faecalis, total Staph. and Staph. aureus or Salmonella had been detected in soil samples except in one sample, which recorded 4 x10 3 CFU/ml Ent. faecalis. Inactivation of pathogenic bacteria by heat treatment revealed that heating of water for 5 minutes at 100 degree C (boiling) got rid completely of pathogens except the spore forming Bacilli which still persisted

  18. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution

    Directory of Open Access Journals (Sweden)

    T. Vogt

    2012-02-01

    Full Text Available River-water infiltration is of high relevance for hyporheic and riparian groundwater ecology as well as for drinking water supply by river-bank filtration. Heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. However, quantifying flow patterns and velocities is impeded by spatial and temporal variations of exchange fluxes, insufficient sensors spacing during field investigations, or simplifying assumptions for analysis or modeling such as uniform flow. The objective of this study is to investigate lateral shallow groundwater flow upon river-water infiltration at the shoreline of the riverbed and in the adjacent riparian zone of the River Thur in northeast Switzerland. Here we have applied distributed temperature sensing (DTS along optical fibers wrapped around tubes to measure high-resolution vertical temperature profiles of the unsaturated zone and shallow riparian groundwater. Diurnal temperature oscillations were tracked in the subsurface and analyzed by means of dynamic harmonic regression to extract amplitudes and phase angles. Subsequent calculations of amplitude attenuation and time shift relative to the river signal show in detail vertical and temporal variations of heat transport in shallow riparian groundwater. In addition, we apply a numerical two-dimensional heat transport model for the unsaturated zone and shallow groundwater to obtain a better understanding of the observed heat transport processes in shallow riparian groundwater and to estimate the groundwater flow velocity. Our results show that the observed riparian groundwater temperature distribution cannot be described by uniform flow, but rather by horizontal groundwater flow velocities varying over depth. In addition, heat transfer of diurnal temperature oscillations from the losing river through shallow groundwater is influenced by thermal exchange with the unsaturated zone. Neglecting the influence of the unsaturated zone

  19. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone

    Science.gov (United States)

    Kennedy, Jeffrey R.; Ferre, Ty P.A.; Creutzfeldt, Benjamin

    2016-01-01

    Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).

  20. The distribution and origins of extremely acidic saline groundwaters in the south of Western Australia - Groundwater and digital mapping datasets provide new insights

    Science.gov (United States)

    Lillicrap, Adam M.; Biermann, Vera; George, Richard J.; Gray, David J.; Oldham, Carolyn E.

    2018-01-01

    Some of the largest extents of naturally occurring acidic waters are found across southern Australia. The origins of these systems remain poorly understood with many hypotheses for their genesis. Australian government agency groundwater datasets and mapping data (vegetation, geology, regolith and soils) for south-western Australia, unavailable to previous researchers, were statistically analysed to better understand the origins of acidic groundwater and guide additional fieldwork to study the origins of acidic saline groundwater. The groundwater data showed a distinct bimodal distribution in pH; the 'acid' population had a median pH of 3.5 and the larger 'non-acid' population had a median pH of 6.6. Acidic groundwater became progressively more common further from the coast towards the drier internally drained regions. Acidic groundwater was mostly confined to the lower slopes and valley floors with localised controls on distribution. Paradoxically, subsoil alkalinity within the internally drained inland regions had the strongest correlation with acidic groundwater (r2 = 0.85). Vegetation was also a strong predictor of acidic groundwater. Acidic groundwater had the highest occurrence under Eucalyptus woodlands and shrublands that grew on alkaline calcareous soils. Pre-clearing soil data in areas with acidic saline groundwater showed that the upper 1 m of the unsaturated zone had a pH around 8 while the pH at depths greater than 5 m decreased to calcium is sourced from the deeper profile where the root biota exchanges calcium for hydrogen ions to maintain charge balance. Iron is mobilised from the upper soil profile and concentrates lower in the profile at depths >1.5 m. There, the iron is reduced around roots and the alkalinity generated by microbial iron reduction is removed by biogenic calcification processes. The iron moves in solution further down the profile following roots where it comes in contact with the oxygenated unsaturated zone matrix and is oxidised

  1. Modelling monthly runoff generation processes following land use changes: groundwater-surface runoff interactions

    Science.gov (United States)

    Bari, M.; Smettem, K. R. J.

    A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall-runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall-runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted

  2. Effects of residential wastewater treatment systems on ground-water quality in west-central Jefferson County, Colorado

    Science.gov (United States)

    Hall, Dennis C.; Hillier, D.E.; Nickum, Edward; Dorrance, W.G.

    1981-01-01

    The use of residential wastewater-treatment systems in Evergreen Meadows, Marshdale, and Herzman Mesa, Colo., has degraded ground-water quality to some extent in each community. Age of community; average lot size; slope of land surface; composition, permeability, and thickness of surficial material; density, size , and orientation of fractures; maintenance of wastewater-treatment systems; and presence of animals are factors possibly contributing to the degradation of ground-water quality. When compared with effluent from aeration-treatment tanks, effluent fom septic-treatment tanks is characterized by greater biochemical oxygen demand and greater concentrations of detergents. When compared with effluent from septic-treatment tanks, effluent from aeration-treatment tanks is characterized by greater concentrations of dissolved oxygen, nitrite, nitrate, sulfate, and dissolved solids. (USGS)

  3. Bedrock refractive-flow cells: A passive treatment analog to funnel-and-gate

    International Nuclear Information System (INIS)

    Dick, V.; Edwards, D.

    1997-01-01

    Funnel-and-gate technology provides a mechanism to passively treat groundwater contaminant plumes, but depends on placement of a sufficient barrier (open-quotes funnelclose quotes) in the plume flow path to channel the plume to a pass-through treatment zone (open-quotes gateclose quotes). Conventional barrier technologies limit funnel-and-gate deployment to unconsolidated overburden applications. A method has been developed which allows similar passive treatment to be applied to bedrock plumes. Rather than use barriers as the funnel, the method uses engineered bedrock zones, installed via precision blasting or other means, to refract groundwater flow along a preferred path to treatment (gate). The method requires orienting the refractive cell based on the Tangent Law and extending refractive cell limbs down gradient of the gate to disperse head and control flow. A typical Refractive-Flow cell may be open-quotes Yclose quotesshaped, with each limb 3-10 ft [1-3 m] wide and several tens to a few hundred feet [10 - 100 m] in length. Treatment takes place at the center of the X. MODFLOW modeling has been used to successfully simulate desired flow. Engineered blasting has been used at full scale application to create bedrock rubble zones for active collection/flow control for several years. The method provides a previously unavailable method to passively treat contaminated groundwater in bedrock at low cost

  4. Nitrogen and phosphorus budgets for the Yucatán littoral: An approach for groundwater management.

    Science.gov (United States)

    Arandacirerol, Nancy; Comín, Francisco; Herrera-Silveira, Jorge

    2011-01-01

    Human activities have altered the balance of ecosystems to the detriment of natural environments. Eutrophication is a serious risk in Yucatán, a state in the eastern peninsula of México where groundwater supplies the only freshwater to a karst shelf environment. While economic development in Yucatán is increasing, environmental awareness is lagging, and efficient waste treatment systems are lacking. To assess potential nitrogen and phosphorus inputs into the coastal zone of Yucatán, we analyzed government reports and the chemical composition of groundwater and aquaculture wastewater. Swine, poultry, and tourism are revealed as the main continental nutrient sources, while groundwater with high nitrate concentrations is the principal coastal nutrient source, a pattern similar to other river discharges around the world. This study demonstrates that environmental risk management practices must be implemented in the Yucatán region to protect groundwater quality.

  5. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater

    Science.gov (United States)

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    Concentrations of geogenic Cr(VI) in groundwater that exceed the World Health Organization’s maximum contaminant level for drinking water (50 μg L−1) occur in several locations globally. The major mechanism for mobilization of this Cr(VI) at these sites is the weathering of Cr(III) from ultramafic rocks and its subsequent oxidation on Mn oxides. This process may be occurring in the southern Sacramento Valley of California where Cr(VI) concentrations in groundwater can approach or exceed 50 μg L−1. To characterize Cr geochemistry in the area, samples from several soil auger cores (approximately 4 m deep) and drill cores (approximately 25 m deep) were analyzed for total concentrations of 44 major, minor and trace elements, Cr associated with labile Mn and Fe oxides, and Cr(VI). Total concentrations of Cr in these samples ranged from 140 to 2220 mg per kg soil. Between 9 and 70 mg per kg soil was released by selective extractions that target Fe oxides, but essentially no Cr was associated with the abundant reactive Mn oxides (up to ~1000 mg hydroxylamine-reducible Mn per kg soil was present). Both borehole magnetic susceptibility surveys performed at some of the drill core sites and relative differences between Cr released in a 4-acid digestion versus total Cr (lithium metaborate fusion digestion) suggest that the majority of total Cr in the samples is present in refractory chromite minerals transported from ultramafic exposures in the Coast Range Mountains. Chromium(VI) in the samples studied ranged from 0 to 42 μg kg−1, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a

  6. Hanford Site groundwater monitoring for fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  7. Hanford Site groundwater monitoring for fiscal year 1996

    International Nuclear Information System (INIS)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V.

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems

  8. Permeable sorptive walls for treatment of hydrophobic organic contaminant plumes in groundwater

    International Nuclear Information System (INIS)

    Grathwohl, P.; Peschik, G.

    1997-01-01

    Highly hydrophobic contaminants are easily adsorbed from aqueous solutions. Since for many of these compounds sorption increases with increasing organic carbon content natural materials such as bituminous shales and coals may be used in permeable sorptive walls. This, however, only applies if sorption is at equilibrium, which may not always be the case in groundwater treatment using a funnel-and-gate system. In contrast to the natural solids, granular activated carbons (GACs) have very high sorption capacities and reasonably fast sorption kinetics. The laboratory results show that application of GACs (e.g. F100) is economically feasible for in situ removal of polycyclic aromatic hydrocarbons (PAH) from groundwater at a former manufactured gas plant site (MGP). For less sorbing compounds (such as benzene, toluene, xylenes) a combination of adsorption and biodegradation is necessary (i.e. sorptive + reactive treatment)

  9. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    1995-06-01

    During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters

  10. Decadal variations in groundwater quality

    DEFF Research Database (Denmark)

    Jessen, Søren; Postma, Dieke; Thorling, Lærke

    2017-01-01

    Twenty-five years of groundwater quality monitoring in a sandy aquifer beneath agricultural fields showed large temporal and spatial variations in major ion groundwater chemistry, which were linked closely to the nitrate (NO3) content of agricultural recharge. Between 1988 and 2013, the NO3 content...... of water in the oxidized zone of the aquifer nearly halved, following implementation of action plans to reduce N leaching from agriculture. However, due to denitrification by pyrite oxidation in the aquifer, a plume of sulfate-rich water migrates through the aquifer as a legacy of the historical NO3...... loading. Agriculture thus is an important determinant of major ion groundwater chemistry. Temporal and spatial variations in the groundwater quality were simulated using a 2D reactive transport model, which combined effects of the historical NO3 leaching and denitrification, with dispersive mixing...

  11. Evaluation of biological hydrogen sulfide oxidation coupled with two-stage upflow filtration for groundwater treatment.

    Science.gov (United States)

    Levine, Audrey D; Raymer, Blake J; Jahn, Johna

    2004-01-01

    Hydrogen sulfide in groundwater can be oxidized by aerobic bacteria to form elemental sulfur and biomass. While this treatment approach is effective for conversion of hydrogen sulfide, it is important to have adequate control of the biomass exiting the biological treatment system to prevent release of elemental sulfur into the distribution system. Pilot scale tests were conducted on a Florida groundwater to evaluate the use of two-stage upflow filtration downstream of biological sulfur oxidation. The combined biological and filtration process was capable of excellent removal of hydrogen sulfide and associated turbidity. Additional benefits of this treatment approach include elimination of odor generation, reduction of chlorine demand, and improved stability of the finished water.

  12. Relating groundwater to seasonal wetlands in southeastern Wisconsin, USA

    Science.gov (United States)

    Skalbeck, J.D.; Reed, D.M.; Hunt, R.J.; Lambert, J.D.

    2009-01-01

    Historically, drier types of wetlands have been difficult to characterize and are not well researched. Nonetheless, they are considered to reflect the precipitation history with little, if any, regard for possible relation to groundwater. Two seasonal coastal wetland types (wet prairie, sedge meadow) were investigated during three growing seasons at three sites in the Lake Michigan Basin, Wisconsin, USA. The six seasonal wetlands were characterized using standard soil and vegetation techniques and groundwater measurements from the shallow and deep systems. They all met wetland hydrology criteria (e.g., water within 30 cm of land surface for 5% of the growing season) during the early portion of the growing season despite the lack of appreciable regional groundwater discharge into the wetland root zones. Although root-zone duration analyses did not fit a lognormal distribution previously noted in groundwater-dominated wetlands, they were able to discriminate between the plant communities and showed that wet prairie communities had shorter durations of continuous soil saturation than sedge meadow communities. These results demonstrate that the relative rates of groundwater outflows can be important for wetland hydrology and resulting wetland type. Thus, regional stresses to the shallow groundwater system such as pumping or low Great Lake levels can be expected to affect even drier wetland types. ?? Springer-Verlag 2008.

  13. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    Directory of Open Access Journals (Sweden)

    Kathleen Feiner

    2015-09-01

    New hydrological insights for the region: The construction of a beaver dam resulted in minimal changes to regional groundwater flow paths at this site, which is attributed to a clay unit underlying the peat, disconnecting this wetland from regional groundwater flow. However, groundwater discharge from the wetland pond increased by 90%. Simulating a scenario with the numerical model in which the wetland is connected to regional groundwater flow results in a much larger impact on flow paths. In the absence of the clay layer, the simulated construction of a beaver dam causes a 70% increase in groundwater discharge from the wetland pond and increases the surface area of both the capture zone and the discharge zone by 30% and 80%, respectively.

  14. In Situ Catalytic Groundwater Treatment Using Palladium Catalysts and Horizontal Flow Treatment Wells

    Science.gov (United States)

    2008-01-01

    may enter the soil , and subsequently the groundwater, along any portion of this unlined channel. The area south of the buildings has not been...the 1960s in the northwestern corner of Site 19, and an estimated 250,000 gallons of JP-4 jet fuel were released. Soil was excavated and...16,000 Pd catalyst treatment system $61,000 Pd catalyst with eggshell coating (20 kg @ $245 per lb) $11,000 Skid-mounted reactor system and

  15. Biosphere modelling for a deep radioactive waste repository: treatment of the groundwater-soil pathway

    International Nuclear Information System (INIS)

    Baeyens, B.; Grogan, H.A.; Dorp, F. van

    1991-07-01

    The effect of radionuclide transfer from near-surface groundwater to the rooting zone soil, via a deep soil layer, is modelled in this report. The possible extent of upward solute movement is evaluated for a region in northern Switzerland. The concentration of 237 Np and 129 I in the deep and top soil, and hence growing crops, are evaluated assuming a constant unit activity concentration in the groundwater. A number of parameter variations are considered, namely variable soil sorption coefficients, reduced infiltration of rain water and decreased groundwater flow. A release to an alternative smaller recipient region in northern Switzerland is also evaluated. For the parameter ranges considered uncertainty in the solid-liquid distribution coefficient has the largest effect on overall uncertainty. These calculations have been presented within the international Biosphere Model Validation Study (BIOMOVS). A description of the test scenario, and the model calculations submitted, have been included in this report for completeness. To place the groundwater-soil-crop-man pathway in context, its contribution to the total dose to man is evaluated for the 237 Np- 233 U- 229 Th decay chain. The results obtained using the two-layer soil model, described in this report, are compared with the single-layer soil model used during Project Gewaehr 1985. The more realistic two-layer soil model indicated an increase in importance of the drinking water pathway. It should be noted, however, that not all the critical pathways have been treated in this study with the same degree of conservatism. (author) 16 figs., 15 tabs., 31 refs

  16. Radioactive waste isolation in arid zones

    International Nuclear Information System (INIS)

    Nativ, R.

    1991-01-01

    Arid zones are currently considered ideal sites for the isolation of radioactive and other hazardous wastes. Because arid zones have low precipitation, other hydrological features such as minimal surface water, low recharge rates, small hydraulic gradients, deep water table and lower water quality are also inferred. These premises have proved to be misleading in many circumstances, resulting in groundwater contamination by radionuclides. Case studies indicating surface water damages, occurrence of active recharge, groundwater flow and considerable discharge of potable water in arid and hyper-arid terrains, as well as the possibility of future climatic changes, require careful hydrological assessment of proposed sites in arid areas. (author)

  17. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    Science.gov (United States)

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-01-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  18. Aquifer Characterization and Groundwater Potential Evaluation in Sedimentary Rock Formation

    Science.gov (United States)

    Ashraf, M. A. M.; Yusoh, R.; Sazalil, M. A.; Abidin, M. H. Z.

    2018-04-01

    This study was conducted to characterize the aquifer and evaluate the ground water potential in the formation of sedimentary rocks. Electrical resistivity and drilling methods were used to develop subsurface soil profile for determining suitable location for tube well construction. The electrical resistivity method was used to infer the subsurface soil layer by use of three types of arrays, namely, the pole–dipole, Wenner, and Schlumberger arrays. The surveys were conducted using ABEM Terrameter LS System, and the results were analyzed using 2D resistivity inversion program (RES2DINV) software. The survey alignments were performed with maximum electrode spreads of 400 and 800 m by employing two different resistivity survey lines at the targeted zone. The images were presented in the form of 2D resistivity profiles to provide a clear view of the distribution of interbedded sandstone, siltstone, and shale as well as the potential groundwater zones. The potential groundwater zones identified from the resistivity results were confirmed using pumping, step drawdown, and recovery tests. The combination among the three arrays and the correlation between the well log and pumping test are reliable and successful in identifying potential favorable zones for obtaining groundwater in the study area.

  19. Application of a hybrid multiscale approach to simulate hydrologic and biogeochemical processes in the river-groundwater interaction zone.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang; Song, Hyun-Seob; Hou, Zhangshuan; Chen, Xingyuan; Liu, Yuanyuan; Scheibe, Tim

    2017-03-01

    The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scales of interest.

  20. Sandcastle Moats and Petunia Bed Holes. A Book about Groundwater.

    Science.gov (United States)

    Nickinson, Pat

    This book provides five instructional units on groundwater. Units included are: (1) "Where's the Groundwater?" (describing the concepts of a saturated zone, water table, hydrologic cycle, recharge and discharge, core of depression, subsidence, and saltwater intrusion); (2) "How Does It Travel?" (discussing porosity,…

  1. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  2. Rationales behind irrationality of decision making in groundwater quality management.

    Science.gov (United States)

    Ronen, Daniel; Sorek, Shaul; Gilron, Jack

    2012-01-01

    This issue paper presents how certain policies regarding management of groundwater quality lead to unexpected and undesirable results, despite being backed by seemingly reasonable assumptions. This happened in part because the so-called reasonable decisions were not based on an integrative and quantitative methodology. The policies surveyed here are: (1) implementation of a program for aquifer restoration to pristine conditions followed, after failure, by leaving it to natural attenuation; (2) the "Forget About The Aquifer" (FATA) approach, while ignoring possible damage that contaminated groundwater can inflict on the other environmental systems; (3) groundwater recharge in municipal areas while neglecting the presence of contaminants in the unsaturated zone and conditions exerted by upper impervious surfaces; (4) the Soil Aquifer Treatment (SAT) practice considering aquifers to be "filters of infinite capacity"; and (5) focusing on well contamination vs. aquifer contamination to conveniently defer grappling with the problem of the aquifer as a whole. Possible reasons for the failure of these seemingly rational policies are: (1) the characteristic times of processes associated with groundwater that are usually orders of magnitude greater than the residence times of decision makers in their managerial position; (2) proliferation of improperly trained "groundwater experts" or policymakers with sectoral agendas alongside legitimate differences of opinion among groundwater scientists; (3) the neglect of the cyclic nature of natural phenomena; and (4) ignoring future long-term costs because of immediate costs. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  3. Preliminary engineering assessment of treatment alternatives for groundwater from the Hanford 200 Area 200-BP-5 plumes

    International Nuclear Information System (INIS)

    1996-05-01

    This report presents the results of the Preliminary Engineering Assessment of Treatment Alternatives (PEATA), an engineering evaluation of potential treatment alternatives for groundwater extracted from the 200-BP-5 Area's 216-BY Cribs and 216-B-5 Reverse Well plumes. The primary objective of the PEATA was to identify treatment technologies that are worth further consideration (i.e., treatability testing or a more refined engineering evaluation). It will also provide a basis for evaluating the results of the treatability testing that is currently being conducted on the presumptive remedy of ion exchange with disposal of spent resin and will serve as a guide for selection of other technologies for additional testing. Because there are little data or past experience with groundwater similar to the BY-Crib and B-5 Reverse Well Plumes, treatment efficiencies cannot be predicted with certainty and rigorous treatment system designs and costs cannot be developed. This applies to all alternatives, including the presumptive remedy of ion exchange. The approach for this study was to develop conceptual designs and approximate costs for the treatment technologies that were most likely to be effective on the BY-Crib and B-5 Reverse Well groundwater

  4. Large scale treatment of total petroleum-hydrocarbon contaminated groundwater using bioaugmentation.

    Science.gov (United States)

    Poi, Gregory; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Mok, Puah Chum; Ball, Andrew S

    2018-05-15

    Bioaugmentation or the addition of microbes to contaminated sites has been widely used to treat contaminated soil or water; however this approach is often limited to laboratory based studies. In the present study, large scale bioaugmentation has been applied to total petroleum hydrocarbons (TPH)-contaminated groundwater at a petroleum facility. Initial TPH concentrations of 1564 mg L -1 in the field were reduced to 89 mg L -1 over 32 days. This reduction was accompanied by improved ecotoxicity, as shown by Brassica rapa germination numbers that increased from 52 at day 0 to 82% by the end of the treatment. Metagenomic analysis indicated that there was a shift in the microbial community when compared to the beginning of the treatment. The microbial community was dominated by Proteobacteria and Bacteroidetes from day 0 to day 32, although differences at the genus level were observed. The predominant genera at the beginning of the treatment (day 0 just after inoculation) were Cloacibacterium, Sediminibacterium and Brevundimonas while at the end of the treatment members of Flavobacterium dominated, reaching almost half the population (41%), followed by Pseudomonas (6%) and Limnobacter (5.8%). To the author's knowledge, this is among the first studies to report the successful large scale biodegradation of TPH-contaminated groundwater (18,000 L per treatment session) at an offshore petrochemical facility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Isotope hydrology in the Sahel zone

    International Nuclear Information System (INIS)

    1974-01-01

    Northern Africa has recently experienced an exceptional period of severe drought. Practically no precipitation has been received during two or three years by large regions in the so-called Sahel zone, which extends over all Africa from West to East at a latitude between 10 and 20 degrees North in the following countries: Senegal, Mauritania, Mali, Upper Volta, Niger, Nigeria, Chad, Sudan and Ethiopia. Although precipitation is scarce even in normal years, important groundwater resources are present in the Sahei zone. However, groundwater is exploited mainly by dug wells, reaching only the upper part of the phreatic aquifer, which is also the one immediately affected by droughts (lowering of the water table). Deep groundwater is exploited only by a limited number of drilled wells. In recent years several hydrogeological projects have been financed by the United Nations through UNDP in the Sahel countries, with the purpose of locating and evaluating groundwater resources and of developing their exploitation. The International Atomic Energy Agency has taken or takes part in many of these projects by providing isotopic analyses of groundwater. Some of the most difficult questions to be answered in groundwater research in arid zones are: Is the recharge of a given aquifer also taking place at present? If so, from where does the major contribution to groundwater recharge come? What is the age of groundwater? Often it is not possible to answer these questions with the classical hydrogeological and geophysical methods above, but the techniques based on the so-called environmental isotopes ( 18 O and 2 H, 3 H and 14 C) may provide an answer. The information provided by isotope techniques is in many cases extremely valuable for a better understanding of groundwater resources and a better planning of their exploitation, despite the problems which always occur in actual cases. In fact, natural processes, like mixing or interaction with the aquifer material, or practical

  6. Hydrogeological Investigation and Groundwater Potential ...

    African Journals Online (AJOL)

    The paper assesses groundwater quality and productivity in Haromaya watershed, eastern. Ethiopia. ... zones, quantity and quality of plant and animal life (Tamire H., 1981). Steep to very ... Present research work was proposed to conduct hydrogeological investigation and assess ...... Water Balance of Haromaya basin,.

  7. Using artificial sweeteners to identify contamination sources and infiltration zones in a coupled river-aquifer system

    Science.gov (United States)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2014-05-01

    In shallow or unconfined aquifers the infiltration of contaminated river water might be a major threat to groundwater quality. Thus, the identification of possible contamination sources in coupled surface- and groundwater systems is of paramount importance to ensure water quality. Micropollutants like artificial sweeteners are promising markers for domestic waste water in natural water bodies. Compounds, such as artificial sweeteners, might enter the aquatic environment via discharge of waste water treatment plants, leaky sewer systems or septic tanks and are ubiquitously found in waste water receiving waters. The hereby presented field study aims at the (1) identification of contamination sources and (2) delineation of infiltration zones in a connected river-aquifer system. River bank filtrate in the groundwater body was assessed qualitatively and quantitatively using a combined approach of hydrochemical analysis and artificial sweeteners (acesulfame ACE) as waste water markers. The investigated aquifer lies within a mesoscale alpine head water catchment and is used for drinking water production. It is hypothesized that a large proportion of the groundwater flux originates from bank filtrate of a nearby losing stream. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners at the investigated site. The municipal waste water treatment plant was identified as point-source for ACE in the river network. In the aquifer ACE was present in more than 80% of the monitoring wells. In addition, water samples were classified according to their hydrochemical composition, identifying two predominant types of water in the aquifer: (1) groundwater influenced by bank filtrate and (2) groundwater originating from local recharge. In combination with ACE concentrations a third type of water could be discriminated: (3) groundwater influence by bank filtrate but infiltrated prior to the waste water treatment plant. Moreover, the presence of ACE

  8. River water infiltration enhances denitrification efficiency in riparian groundwater.

    Science.gov (United States)

    Trauth, Nico; Musolff, Andreas; Knöller, Kay; Kaden, Ute S; Keller, Toralf; Werban, Ulrike; Fleckenstein, Jan H

    2018-03-01

    Nitrate contamination in ground- and surface water is a persistent problem in countries with intense agriculture. The transition zone between rivers and their riparian aquifers, where river water and groundwater interact, may play an important role in mediating nitrate exports, as it can facilitate intensive denitrification, which permanently removes nitrate from the aquatic system. However, the in-situ factors controlling riparian denitrification are not fully understood, as they are often strongly linked and their effects superimpose each other. In this study, we present the evaluation of hydrochemical and isotopic data from a 2-year sampling period of river water and groundwater in the riparian zone along a 3rd order river in Central Germany. Based on bi- and multivariate statistics (Spearman's rank correlation and partial least squares regression) we can show, that highest rates for oxygen consumption and denitrification in the riparian aquifer occur where the fraction of infiltrated river water and at the same time groundwater temperature, are high. River discharge and depth to groundwater are additional explanatory variables for those reaction rates, but of minor importance. Our data and analyses suggest that at locations in the riparian aquifer, which show significant river water infiltration, heterotrophic microbial reactions in the riparian zone may be fueled by bioavailable organic carbon derived from the river water. We conclude that interactions between rivers and riparian groundwater are likely to be a key control of nitrate removal and should be considered as a measure to mitigate high nitrate exports from agricultural catchments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Deep Vadose Zone Treatability Test of Soil Desiccation for the Hanford Central Plateau: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [CH2M Hill Plateau Remediation Co., Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greenwood, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peterson, John E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hubbard, Susan S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ward, Anderson L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-02-20

    Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths where direct exposure pathways are not of concern, but may need to be remediated to protect groundwater. The Department of Energy developed a treatability test program for technologies to address Tc-99 and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment, have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. The treatability test of desiccation described herein was conducted as an element of the deep vadose zone treatability test program. Desiccation was shown to be a potentially effective vadose zone remediation technology to protect groundwater when used in conjunction with a surface infiltration barrier.

  10. The Decline of Soil Infiltration Capacity Due To High Elevation Groundwater

    OpenAIRE

    Isri Ronald Mangangka

    2008-01-01

    Infiltration capacity of soil mainly depends on two factors; the particle size and the moisture content of the soil. Groundwater increases the soil moisture, not only below the water table but also within the capillary zone, above the water table. Field experiment in a high groundwater area was conducted to understand the relationship among the groundwater, soil moisture and infiltration capacity. Using a single ring infiltrometer, the effect of groundwater in the infiltration rate was observ...

  11. Pharmaceuticals as Groundwater Tracers - Applications and Limitations

    Science.gov (United States)

    Scheytt, T. J.; Mersmann, P.; Heberer, T.

    2003-12-01

    Pharmaceutically active substances and metabolites are found at concentrations up to the microgram/L-level in groundwater samples from the Berlin (Germany) area and from several other places world wide. Among the compounds detected in groundwater are clofibric acid, propyphenazone, diclofenac, ibuprofen, and carbamazepine. Clofibric acid, the active metabolite of clofibrate and etofibrate (blood lipid regulators) is detected in groundwater at maximum concentrations of 7300 ng/L. Among the most important input paths of drugs are excretion and disposal into the sewage system. Groundwater contamination is likely to be due to leaky sewage systems, influent streams, bank filtration, and irrigation with effluent water from sewage treatment plants. There are no known natural sources of the above mentioned pharmaceuticals. The use of pharmaceuticals as tracers may include: (a) Quantification of infiltration from underground septic tanks (b) Detection of leaky sewage systems / leaky sewage pipes (c) Estimation of the effectiveness of sewage treatment plants (d) Identification of transport pathways of other organic compounds (e) Quantification of surface water / groundwater interaction (f) Characterization of the biodegradation potential. The use of pharmaceuticals as tracers is limited by variations in input. These variations depend on the amount of drugs prescribed and used in the study area, the social structure of the community, the amount of hospital discharge, and temporal concentration variations. Furthermore, the analysis of trace amounts of pharmaceuticals is sophisticated and expensive and may therefore limit the applicability of pharmaceuticals as tracers. Finally, the transport and degradation behavior of pharmaceuticals is not fully understood. Preliminary experiments in the laboratory were conducted using sediment material and groundwater from the Berlin area to evaluate the transport and sorption behavior of selected drugs. Results of the column experiments

  12. Origins and bioavailability of dissolved organic matter in groundwater

    Science.gov (United States)

    Shen, Yuan; Chapelle, Francis H.; Strom, Eric W.; Benner, Ronald

    2015-01-01

    Dissolved organic matter (DOM) in groundwater influences water quality and fuels microbial metabolism, but its origins, bioavailability and chemical composition are poorly understood. The origins and concentrations of dissolved organic carbon (DOC) and bioavailable DOM were monitored during a long-term (2-year) study of groundwater in a fractured-rock aquifer in the Carolina slate belt. Surface precipitation was significantly correlated with groundwater concentrations of DOC, bioavailable DOM and chromophoric DOM, indicating strong hydrological connections between surface and ground waters. The physicochemical and biological processes shaping the concentrations and compositions of DOM during its passage through the soil column to the saturated zone are conceptualized in the regional chromatography model. The model provides a framework for linking hydrology with the processes affecting the transformation, remineralization and microbial production of DOM during passage through the soil column. Lignin-derived phenols were relatively depleted in groundwater DOM indicating substantial removal in the unsaturated zone, and optical properties of chromophoric DOM indicated lower molecular weight DOM in groundwater relative to surface water. The prevalence of glycine, γ-aminobutyric acid, and d-enantiomers of amino acids indicated the DOM was highly diagenetically altered. Bioassay experiments were used to establish DOC-normalized yields of amino acids as molecular indicators of DOM bioavailability in groundwater. A relatively small fraction (8 ± 4 %) of DOC in groundwater was bioavailable. The relatively high yields of specific d-enantiomers of amino acids indicated a substantial fraction (15–34 %) of groundwater DOC was of bacterial origin.

  13. Identification of groundwater prospective zones by using remote ...

    Indian Academy of Sciences (India)

    remote sensing and geoelectrical methods in Jharia and. Raniganj coalfields, Dhanbad district, Jharkhand state. Basudeo Rai. 1,∗ ... are most promising for groundwater exploration and dug wells may be dug up to depths of. 30 ± 5 m. 1. ..... Gupta A 1980 Correlation of Landsat and airborne magnetic anomaly data of a part ...

  14. Innovative technologies for groundwater cleanup

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1992-09-01

    These notes provide a broad overview of current developments in innovative technologies for groundwater cleanup. In this context, groundwater cleanup technologies include site remediation methods that deal with contaminants in ground water or that may move from the vadose zone into ground water. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in groundwater cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the site-specific technical challenges presented by each groundwater contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After reviewing a representative selection of these technologies, one of the new technologies, the Microbial Filter method, is discussed in more detail to highlight a promising in situ groundwater cleanup technology that is now being readied for field testing

  15. Isotope investigation on groundwater recharge and dynamics in shallow and deep alluvial aquifers of southwest Punjab.

    Science.gov (United States)

    Keesari, Tirumalesh; Sharma, Diana A; Rishi, Madhuri S; Pant, Diksha; Mohokar, Hemant V; Jaryal, Ajay Kumar; Sinha, U K

    2017-11-01

    Groundwater samples collected from the alluvial aquifers of southwest Punjab, both shallow and deep zones were measured for environmental tritium ( 3 H) and stable isotopes ( 2 H and 18 O) to evaluate the source of recharge and aquifer dynamics. The shallow groundwater shows wide variation in isotopic signature (δ 18 O: -11.3 to -5.0‰) reflecting multiple sources of recharge. The average isotopic signature of shallow groundwaters (δ 18 O: -6.73 ± 1.03‰) is similar to that of local precipitation (-6.98 ± 1.66‰) indicating local precipitation contributes to a large extent compared to other sources. Other sources have isotopically distinct signatures due to either high altitude recharge (canal sources) or evaporative enrichment (irrigation return flow). Deep groundwater shows relatively depleted isotopic signature (δ 18 O: -8.6‰) and doesn't show any evaporation effect as compared to shallow zone indicating recharge from precipitation occurring at relatively higher altitudes. Environmental tritium indicates that both shallow ( 3 H: 5 - 10 T.U.) and deeper zone ( 3 H: 1.5 - 2.5 T.U.) groundwaters are modern. In general the inter-aquifer connections seem to be unlikely except a few places. Environmental isotope data suggests that shallow groundwater is dynamic, local and prone to changes in land use patterns while deep zone water is derived from distant sources, less dynamic and not impacted by surface manifestations. A conceptual groundwater flow diagram is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The X-625 Groundwater Treatment Facility: A field-scale test of trichloroethylene dechlorination using iron filings for the X-120/X-749 groundwater plume

    International Nuclear Information System (INIS)

    Liang, L.; West, O.R.; Korte, N.E.

    1997-09-01

    The dehalogenation of chlorinated solvents by zero-valence iron has recently become the subject of intensive research and development as a potentially cost-effective, passive treatment for contaminated groundwater through reactive barriers. Because of its successful application in the laboratory and other field sites, the X-625 Groundwater Treatment Facility (GTF) was constructed to evaluate reactive barrier technology for remediating trichloroethylene (TCE)-contaminated groundwater at the Portsmouth Gaseous Diffusion Plant (PORTS). The X-625 GTF was built to fulfill the following technical objectives: (1) to test reactive barrier materials (e.g., iron filings) under realistic groundwater conditions for long term applications, (2) to obtain rates at which TCE degrades and to determine by-products for the reactive barrier materials tested, and (3) to clean up the TCE-contaminated water in the X-120 plume. The X-625 is providing important field-scale and long-term for the evaluation and design of reactive barriers at PORTS. The X-625 GTS is a unique facility not only because it is where site remediation is being performed, but it is also where research scientists and process engineers can test other promising reactive barrier materials. In addition, the data collected from X-625 GTF can be used to evaluate the technical and economic feasibility of replacing the activated carbon units in the pump-and-treat facilities at PORTS

  17. Clarke County, Virginia's innovative response to groundwater protection

    International Nuclear Information System (INIS)

    Lee, G.R.; Christoffel, T.J.

    1990-01-01

    In 1982, the Clarke County Planning Commission created a Water Supply committee which led to the following county actions: adoption of a resource conservation overlay zone to protect the County Sanitation Authority's public spring; submission of the first Virginia application for federal sole-source aquifer designation; drafting of a proposed oil and gas exploration and extraction ordinance; and a contract with the USGS for a three-year groundwater resources study. In February 1987, the Clarke County Plan was published. Six implementation strategies were recommended, the majority of which have been adopted: (1) on-site wastewater treatment system management; (2) a sinkhole ordinance; (3) well standards; (4) underground storage tank requirements; (5) community education; and (6) a geographic information system. This plan emphasizes direct local government land use policies designed to mitigate risks of groundwater contamination. The plan used existing technical information to focus on prevention as the best strategy for natural resource protection

  18. Concentrations and speciation of arsenic in groundwater polluted by warfare agents

    International Nuclear Information System (INIS)

    Daus, Birgit; Hempel, Michael; Wennrich, Rainer; Weiss, Holger

    2010-01-01

    Groundwater polluted with phenylarsenicals from former warfare agent deposits and their metabolites was investigated with respect to the behavior of relevant arsenic species. Depth profiles at the estimated source and at about 1 km downgradient from the source zone were sampled. The source zone is characterized by high total arsenic concentrations up to 16 mg L -1 and is dominated by organic arsenic compounds. The concentrations in the downgradient region are much lower (up to 400 μg L -1 ) and show a high proportion of inorganic arsenic species. Iron precipitation seems to be an effective mechanism to prevent dispersion of inorganic arsenic as well as phenylarsonic acid. Reductive conditions were observed in the deeper zone with predominant occurrence of trivalent arsenic species. The inorganic species are in redox equilibrium, whereas the phenylarsenic compounds have variable proportions. Methylphenylarsinic acid was identified in groundwater in traces which indicates microbial degradation activity. - The environmental fate and behavior of phenylarsenicals in groundwater are influenced by the geochemical environment.

  19. Concentrations and speciation of arsenic in groundwater polluted by warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Daus, Birgit, E-mail: birgit.daus@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Groundwater Remediation, Permoserstrasse 15, 04318 Leipzig (Germany); Hempel, Michael [UFZ - Helmholtz Centre for Environmental Research, Department of Groundwater Remediation, Permoserstrasse 15, 04318 Leipzig (Germany); Wennrich, Rainer [Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig (Germany); Weiss, Holger [UFZ - Helmholtz Centre for Environmental Research, Department of Groundwater Remediation, Permoserstrasse 15, 04318 Leipzig (Germany)

    2010-11-15

    Groundwater polluted with phenylarsenicals from former warfare agent deposits and their metabolites was investigated with respect to the behavior of relevant arsenic species. Depth profiles at the estimated source and at about 1 km downgradient from the source zone were sampled. The source zone is characterized by high total arsenic concentrations up to 16 mg L{sup -1} and is dominated by organic arsenic compounds. The concentrations in the downgradient region are much lower (up to 400 {mu}g L{sup -1}) and show a high proportion of inorganic arsenic species. Iron precipitation seems to be an effective mechanism to prevent dispersion of inorganic arsenic as well as phenylarsonic acid. Reductive conditions were observed in the deeper zone with predominant occurrence of trivalent arsenic species. The inorganic species are in redox equilibrium, whereas the phenylarsenic compounds have variable proportions. Methylphenylarsinic acid was identified in groundwater in traces which indicates microbial degradation activity. - The environmental fate and behavior of phenylarsenicals in groundwater are influenced by the geochemical environment.

  20. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand

    Science.gov (United States)

    Radloff, K. A.; Zheng, Y.; Michael, H. A.; Stute, M.; Bostick, B. C.; Mihajlov, I.; Bounds, M.; Huq, M. R.; Choudhury, I.; Rahman, M. W.; Schlosser, P.; Ahmed, K. M.; van Geen, A.

    2011-11-01

    The consumption of shallow groundwater with elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, a growing reliance on groundwater sourced below 150-m depth--where arsenic concentrations tend to be lower--has reduced exposure. Groundwater flow simulations have suggested that these deep waters are at risk of contamination due to replenishment with high-arsenic groundwater from above, even when deep water pumping is restricted to domestic use. However, these simulations have neglected the influence of sediment adsorption on arsenic migration. Here, we inject arsenic-bearing groundwater into a deep aquifer zone in Bangladesh, and monitor the reduction in arsenic levels over time following stepwise withdrawal of the water. Arsenic concentrations in the injected water declined by 70% after 24h in the deep aquifer zone, owing to adsorption on sediments; concentrations of a co-injected inert tracer remain unchanged. We incorporate the experimentally determined adsorption properties of sands in the deep aquifer zone into a groundwater flow and transport model covering the Bengal Basin. Simulations using present and future scenarios of water-use suggest that arsenic adsorption significantly retards transport, thereby extending the area over which deep groundwater can be used with low risk of arsenic contamination. Risks are considerably lower when deep water is pumped for domestic use alone. Some areas remain vulnerable to arsenic intrusion, however, and we suggest that these be prioritized for monitoring.

  1. Initial site characterisation of a dissolved hydrocarbon groundwater plume discharging to a surface water environment

    International Nuclear Information System (INIS)

    Westbrook, S.J.; Commonwealth Scientific and Industrial Research Organisation Land and Water, Wembley, WA; Davis, G.B.; Rayner, J.L.; Fisher, S.J.; Clement, T.P.

    2000-01-01

    Preliminary characterisation of a dissolved hydrocarbon groundwater plume flowing towards a tidally- and seasonally-forced estuarine system has been completed at a site in Perth, Western Australia. Installation and sampling of multiport boreholes enabled fine scale (0.5-m) vertical definition of hydrocarbon concentrations. Vertical electrical conductivity profiles from multiport and spear probe sampling into the river sediments indicated that two groundwater/river water interfaces or dispersion zones are present: (a) an upper dispersion zone between brackish river water and groundwater, and (b) a lower interface between groundwater and deeper saline water. On-line water level loggers show that near-shore groundwater levels are also strongly influence by tidal oscillation. Results from the initial site characterisation will be used to plan further investigations of contaminated groundwater/surface water interactions and the biodegradation processes occurring at the site

  2. GIS-based bivariate statistical techniques for groundwater potential analysis (an example of Iran)

    Science.gov (United States)

    Haghizadeh, Ali; Moghaddam, Davoud Davoudi; Pourghasemi, Hamid Reza

    2017-12-01

    Groundwater potential analysis prepares better comprehension of hydrological settings of different regions. This study shows the potency of two GIS-based data driven bivariate techniques namely statistical index (SI) and Dempster-Shafer theory (DST) to analyze groundwater potential in Broujerd region of Iran. The research was done using 11 groundwater conditioning factors and 496 spring positions. Based on the ground water potential maps (GPMs) of SI and DST methods, 24.22% and 23.74% of the study area is covered by poor zone of groundwater potential, and 43.93% and 36.3% of Broujerd region is covered by good and very good potential zones, respectively. The validation of outcomes displayed that area under the curve (AUC) of SI and DST techniques are 81.23% and 79.41%, respectively, which shows SI method has slightly a better performance than the DST technique. Therefore, SI and DST methods are advantageous to analyze groundwater capacity and scrutinize the complicated relation between groundwater occurrence and groundwater conditioning factors, which permits investigation of both systemic and stochastic uncertainty. Finally, it can be realized that these techniques are very beneficial for groundwater potential analyzing and can be practical for water-resource management experts.

  3. Delineation of groundwater potential zone: An AHP/ANP approach

    Indian Academy of Sciences (India)

    Groundwater; multi-criteria decision making; analytical network process. J. Earth Syst. ... than AHP for decision making. ... the themes and provide utility weights for the alter- natives ... theory that has been applied to classifying ETM+ image.

  4. Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes.

    Science.gov (United States)

    Eang, Khy Eam; Igarashi, Toshifumi; Fujinaga, Ryota; Kondo, Megumi; Tabelin, Carlito Baltazar

    2018-03-06

    Groundwater flow and its geochemical evolution in mines are important not only in the study of contaminant migration but also in the effective planning of excavation. The effects of groundwater on the stability of rock slopes and other mine constructions especially in limestone quarries are crucial because calcite, the major mineral component of limestone, is moderately soluble in water. In this study, evolution of groundwater in a limestone quarry located in Chichibu city was monitored to understand the geochemical processes occurring within the rock strata of the quarry and changes in the chemistry of groundwater, which suggests zones of deformations that may affect the stability of rock slopes. There are three distinct geological formations in the quarry: limestone layer, interbedded layer of limestone and slaty greenstone, and slaty greenstone layer as basement rock. Although the hydrochemical facies of all groundwater samples were Ca-HCO 3 type water, changes in the geochemical properties of groundwater from the three geological formations were observed. In particular, significant changes in the chemical properties of several groundwater samples along the interbedded layer were observed, which could be attributed to the mixing of groundwater from the limestone and slaty greenstone layers. On the rainy day, the concentrations of Ca 2+ and HCO 3 - in the groundwater fluctuated notably, and the groundwater flowing along the interbedded layer was dominated by groundwater from the limestone layer. These suggest that groundwater along the interbedded layer may affect the stability of rock slopes.

  5. Flood-controlled excess-air formation favors aerobic respiration and limits denitrification activity in riparian groundwater

    Directory of Open Access Journals (Sweden)

    Simone ePeter

    2015-11-01

    Full Text Available The saturated riparian zones of rivers act as spatially and temporally variable biogeochemical reactors. This complicates the assessment of biogeochemical transport and transformation processes. During a flood event, excess-air formation, i.e. the inclusion and dissolution of air bubbles into groundwater, can introduce high amounts of dissolved O2 and thereby affect biogeochemical processes in groundwater. With the help of a field-installed membrane-inlet mass-spectrometer we resolved the effects of flood induced excess-air formationon organic carbon and nitrogen transformations in groundwater of different riparian zones of a restored section of the River Thur, Switzerland. The results show that the flood event triggered high aerobic respiration activity in the groundwater below a zone densely populated with willow plants. The flood introduced high concentrations of O2 (230 µmol L–1 to the groundwater through the formation of excess air and transported up to ~400 µmol L 1 organic carbon from the soil/root layer into groundwater during the movement of the water table. A rapid respiration process, quantified via the measurements of O2, CO2 and noble-gas concentrations, led to fast depletion of the introduced O2 and organic carbon and to high CO2 concentration (590 µmol L–1 in the groundwater shortly after the flood. The synchronous analysis of different nitrogen species allowed studying the importance of denitrification activity. The results indicate that in the willow zone excess-air formation inhibited denitrification through high O2 concentration input. Instead, the observed decrease in nitrate concentration (~50 µmol N L 1 may be related to fostered nitrate uptake by plants. In the other riparian zones closer to the river, no significant excess-air formation and corresponding respiration activity was observed. Overall, analyzing the dissolved gases in the groundwater significantly contributed to deciphering biogeochemical processes in

  6. Integrated approach for identification of potential groundwater zones ...

    Indian Academy of Sciences (India)

    The population density of the area is 370 person per sq. km. .... The depth of bore wells on average ranges from 40 to 80m with a ..... draw down pumping test which showed optimum yield of ... izontally stratified earth; Geophysical Prospecting 19. 769–775. ... groundwater potential of India – an estimate based on injected ...

  7. Considerations in modeling groundwater inflow to underground respositories

    International Nuclear Information System (INIS)

    Freeze, G.; Christian-Frear, T.

    1996-01-01

    Groundwater in and around underground radioactive waste repositories has several potential effects on repository performance. Repository excavation produces conditions where the repository is underpressured relative to the surrounding host rock, resulting in groundwater inflow to the repository. The presence of groundwater has been shown to enhance gas generation from emplaced waste forms, which expedites repository pressurization. Repository pressurization results in an increased driving force for dissolved radionuclide movement away from the repository. Repository excavation also produces a zone surrounding the repository having disturbed hydrologic and geochemical properties. Within the disturbed rock zone (DRZ), intrinsic permeability and porosity change over time due to the formation of microfractures and grain boundary dilation. Additionally, elastic and inelastic changes in pore volume may cause variation in the near-field fluid pressure and fluid saturation distributions that influence groundwater flow toward the repository excavation. Increased permeability, decreased pore-fluid pressure, and partially saturated conditions in the DRZ contribute to enhancing potential release pathways away from the repository. It is important for a repository performance assessment to consider chemical processes, hydrologic processes, as well as the complex coupling between these processes

  8. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    International Nuclear Information System (INIS)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-01-01

    groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by

  9. The interaction between the unsaturated zone, aquifer, and stream during a period of groundwater withdrawal

    DEFF Research Database (Denmark)

    Poulsen, Søren Erbs; Christensen, Steen; Rasmussen, Keld Rømer

    2011-01-01

    drainage responses to water-table drawdown. The responses can be sufficiently modeled by estimating the specific yield and five exponential time constants of a Moench/Boulton type model of delayed drainage. The average specific yield is thus estimated to 0.24 which is in agreement with previous small scale......; in the second case the estimate (0.17) is in better agreement with core and previous estimates (0.24). The analysis indicates that relatively fast drainage, and the existence of two drawdown dependent sources of groundwater recharge (the storage and the stream), complicates pumping test design to obtain unique...... parameter estimation. The analysis supports that an essential factor in parameter estimation by pumping test analysis for (at least some) unconfined aquifers is the use of a model that accounts for time-varying drainage from the vadose zone. Finally, when predicting stream depletion beyond 1. day of pumping...

  10. High-resolution monitoring across the soil-groundwater interface - Revealing small-scale hydrochemical patterns with a novel multi-level well

    Science.gov (United States)

    Gassen, Niklas; Griebler, Christian; Stumpp, Christine

    2016-04-01

    Biogeochemical turnover processes in the subsurface are highly variable both in time and space. In order to capture this variability, high resolution monitoring systems are required. Particular in riparian zones the understanding of small-scale biogeochemical processes is of interest, as they are regarded as important buffer zones for nutrients and contaminants with high turnover rates. To date, riparian research has focused on influences of groundwater-surface water interactions on element cycling, but little is known about processes occurring at the interface between the saturated and the unsaturated zone during dynamic flow conditions. Therefore, we developed a new type of high resolution multi-level well (HR-MLW) that has been installed in the riparian zone of the Selke river. This HR-MLW for the first time enables to derive water samples both from the unsaturated and the saturated zone across one vertical profile with a spatial vertical resolution of 0.05 to 0.5 m to a depth of 4 m b.l.s. Water samples from the unsaturated zone are extracted via suction cup sampling. Samples from the saturated zone are withdrawn through glass filters and steel capillaries. Both, ceramic cups and glass filters, are installed along a 1" HDPE piezometer tube. First high resolution hydrochemical profiles revealed a distinct depth-zonation in the riparian alluvial aquifer. A shallow zone beneath the water table carried a signature isotopically and hydrochemically similar to the nearby river, while layers below 1.5 m were influenced by regional groundwater. This zonation showed temporal dynamics related to groundwater table fluctuations and microbial turnover processes. The HR-MLW delivered new insight into mixing and turnover processes between riverwater and groundwater in riparian zones, both in a temporal and spatial dimension. With these new insights, we are able to improve our understanding of dynamic turnover processes at the soil - groundwater interface and of surface

  11. Porewater and groundwater geochemistry at the Down Ampney fault research site

    International Nuclear Information System (INIS)

    Metcalfe, R.; Ross, C.A.M.; Cave, M.R.; Green, K.A.; Reeder, S.; Entwisle, D.C.

    1990-12-01

    A Jurassic sequence of mudrocks, siltstones and limestones, at Down Ampney, Gloucestershire, was investigated. The aim was to evaluate the importance of faults in mudrocks as conduits for direct groundwater flow, and the influence of such faults on solute transport. Chemical analysis of porewaters and groundwaters are reported. Porewaters were obtained for analysis by squeezing mudrock core samples, yielding 18.1-34.5% of the total porewater. The solutions were analysed for major and trace elements and stable O/H isotope compositions. These analyses are compared with analyses for conventional groundwater samples. Samples were taken from a borehole array which crossed a prominent east-west trending fault, with a northerly downthrow of c.48 m. Comparisons are made between pore- and ground- water samples from each side of the fault, and from the fault zone itself. Sulphate concentrations are greatly increased in porewaters from the fault zone in comparison with sulphate concentrations in porewaters remote from the fault. The concentrations of porewater cations are related to pH, which in turn can be related to sulphate concentrations, probably controlled by sulphide oxidation. Cation concentrations are controlled mainly by carbonate dissolution and cation exchange reactions, largely dependent upon pH. Porewater concentrations of Cl and Br increase downwards but away from the fault zones the concentration gradients with depth are twice those in the vicinity of the fault. This suggests that meteoric waters are conducted by the fault, although they also penetrate downwards throughout the area. Groundwater compositions bear no simple relationship to porewater compositions, except in the case of sulphate. In the fault zone this is invariably more dilute in groundwaters than in porewaters. (author)

  12. An isotope-aided study on the interaction between surface water and groundwater in the KAERI area

    International Nuclear Information System (INIS)

    Ahn, Jong Sung; Kim, Jong Hoon; Yun, Si Tae; Jeong, Chan Ho; Kim, Kae Nam

    1988-01-01

    The basement rocks of the KAERI area are compose421d of two mica granite and schistose granite. The groundwater in these fresh crystalline rocks appears to be restricted within the zones developing the fractures. The groundwater in this area occurs mainly in the weathered zones of granitic rocks, with a thickness of 5-20 m. On the results of environmental isotopes analyses, it was proved that surface water and precipitation infiltrated rapidly through the subsurface media into the weathered zone. The high environmental isotopes level found in some groundwater samples are ascribed to the impermeable layer such as clay and silt around the sampling points. Consequently, the groundwater flow in this area is controlled by the heterogeneity of weathered materials. The water types classified by the piper diagram are attributed to the Ca-Cl and Ca-HCO 3 types

  13. Salinity of deep groundwater in California: Water quantity, quality, and protection

    Science.gov (United States)

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  14. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and

  15. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon

  16. Integrating geochemical investigations and geospatial assessment to understand the evolutionary process of hydrochemistry and groundwater quality in arid areas.

    Science.gov (United States)

    El Alfy, Mohamed; Alharbi, Talal; Mansour, Basma

    2018-04-12

    Groundwater is the key for life in arid areas. Aquifer overexploitation and climatic conditions can significantly deteriorate groundwater quality. The Al-Qassim area in central Saudi Arabia is characterized by dense agricultural use and is irrigated mainly by fossil groundwater from the Saq Aquifer. Understanding the area's hydrochemistry, major factors governing groundwater quality, and alternative uses of the groundwater are the main goals of this study. Groundwater samples were collected and examined for major, minor, and trace elements. Ionic relationships, hydrochemical facies, geospatial distributions, and multivariate analyses were conducted to assess the hydrochemical processes at play. The salinity and nitrate concentrations of the Saq Aquifer's groundwater were found to increase in the outcrop areas more than the confined areas. The spatial distributions were fragmented by three main factors: (i) modern recharge by relatively brackish water, (ii) irrigation return flow in intensive farming areas, and (iii) overexploitation and draining of deep and relatively saline zones of the aquifer. Seven water types were found representing the alkaline water with a predominance of sulfate-chloride ions and earth alkaline water with a predominance of sulfate and chloride. Mixing between fresh and brackish water, dissolution of mineral phases, silicate weathering, and reverse ion exchange were recognized as the evolutionary processes, while evaporation played a minor role. Cluster analyses characterized the fresh groundwater zone, modern groundwater recharge zone, and anthropogenic influence zone. In the confined areas, nearly all the groundwater was appropriate for domestic use and irrigation. In the outcrop areas, some limitations were found due to unsuitable conditions.

  17. Water sources accessed by arid zone riparian trees in highly saline environments, Australia.

    Science.gov (United States)

    Costelloe, Justin F; Payne, Emily; Woodrow, Ian E; Irvine, Elizabeth C; Western, Andrew W; Leaney, Fred W

    2008-05-01

    The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees-soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using delta(18)O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000-30,000 mg L(-1).

  18. Transfer of European Approach to Groundwater Monitoring in China

    Science.gov (United States)

    Zhou, Y.

    2007-12-01

    in 3 pilot areas have been conducted to build research capacities of the central and provincial groundwater information centers in providing groundwater information services to decision makers and public. Groundwater regime zoning and pollution risk maps were used to lay-out groundwater quantity and quality monitoring networks, respectively. Automatic groundwater recorders were installed in selected observation wells. ArcGIS based regional groundwater information systems were constructed and used to create groundwater regime zoning and pollution risk maps. Steady state groundwater models have been constructed and calibrated. Transient groundwater models are under calibration. Groundwater resources development scenarios were formulated. The model will be used to predict what will be consequences in next 20 years if current situation continues as business as usual. Possibilities of reducing groundwater abstraction and opportunities of artificially enhanced groundwater recharge will be analyzed. Combination of decreasing abstraction and increasing recharge may lead to a sustainable plan of future groundwater resources development.

  19. The characteristics of hydrogeochemical zonation of groundwater in inland plain

    Science.gov (United States)

    Xin-yu, HOU; Li-ting, XING; Yi, YANG; Wen-jing, ZHANG; Guang-yao, CHI

    2018-05-01

    To find out the hydrochemical zoning of groundwaterin the inland plain, taking Jiyang plain as an example, based on mathematical statistics, ion ratio coefficient and isotopic analysis method, the characteristics of water chemical composition and its zoning at different depths of 500m were studied. The result shows: ①The groundwater flow system in the study area can be divided into local flow system, intermediate flow system and regional flow system. ②The hydrochemical type of shallow groundwater is complex. The hydrochemical types of middle confined water are mainly ClṡSO4—MgṡNa and SO4ṡCl—NaṡMg. The deep confined water is mainly HCO3. ③The TDS of shallow groundwater increases gradually along the direction of groundwater flow. ④The shallow saltwater and freshwater are alternately distributed in horizontal direction, and saltwater is distributed sporadically in the interfluve area with sporadic punctate or banded, and hydrochemical types are mainly ClṡSO4—NaṡMgṡCa. Conclusion: Groundwater in the study area is affected by complicated hydrogeochemical action, mainly in the form of filtration, cation exchange and evaporation. The inland plain area is characterized by hydrogeochemical zonation in horizontal and vertical.

  20. Paleoclimatic information from deuterium and oxygen-18 in C-14 dated North Saharian groundwaters; groundwater formation in the past

    International Nuclear Information System (INIS)

    Sonntag, C.; Muennich, K.O.; Junghans, C.

    1978-01-01

    A statistical presentation of C-14 groundwater ages for various regions of the Northern Sahara reflects the alternating sequence of humid and arid periods in the late Pleistocene and Holocene. Groundwaters older than 20000 y B.P. are found all over the Sahara. Isoline-presentation of the Continental Effect in deuterium and oxygen-18 of Saharian groundwater is similar to the one in modern European groundwater. This similarity proves the Western Drift influence when in the past winter rains were sufficient for groundwater formation in the Sahara (great pluvial). The postpluvial humid phases of the Sahara during the Holocene were probably of decreasing importance from west to east. The lower deuterium excess d = delta D - 8 x delta 18 O observed in old Saharian groundwaters is interpreted to be due to a lower moisture deficit of the air over the ocean during the last ice-age. Extremely high D- and O-18 contents of modern groundwater in the Sahel zone south of the Sahara are probably due to summer rain originating from tropical rain forest evapotranspiration. (orig.) [de

  1. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of low-level radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Geologic data, hydrologic data, groundwater monitoring program, information, detection monitoring program, groundwater characterization drawings, building emergency plan--grout treatment facility, response action plan for grout treatment facility, Hanford Facility contingency plan, training course descriptions, overview of the Hanford Facility Grout Performance, assessment, bland use and zoning map, waste minimization plan, cover design engineering report, and clay liners (ADMIXTURES) in semiarid environments

  2. Groundwater geophysics. A tool for hydrology. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Reinhard (ed.) [Landesamt fuer Natur und Umwelt, Flintbek (Germany). Abt. Geologie/Boden

    2009-07-01

    Access to clean water is a human right and a basic requirement for economic development. The safest kind of water supply is the use of groundwater. Since groundwater normally has a natural protection against pollution by the covering layers, only minor water treatment is required. Detailed knowledge on the extent, hydraulic properties, and vulnerability of groundwater reservoirs is necessary to enable a sustainable use of the resources. This book addresses students and professionals in Geophysics and Hydrogeology. The aim of the authors is to demonstrate the application of geophysical techniques to provide a database for hydrogeological decisions like drillhole positioning or action plans for groundwater protection. Physical fundamentals and technical aspects of modern geophysical reconnaissance methods are discussed in the first part of the book. Beside 'classical' techniques like seismic, resistivity methods, radar, magnetic, and gravity methods emphasis is on relatively new techniques like complex geoelectric, radiomagnetotellurics, vertical groundwater flow determination, or nuclear magnetic resonance. An overview of direct push techniques is given which can fill the gap between surface and borehole geophysics. The applications of these techniques for hydrogeological purposes are illustrated in the second part of the book. The investigation of pore aquifers is demonstrated by case histories from Denmark, Germany, and Egypt. Examples for the mapping of fracture zone and karst aquifers as well as for saltwater intrusions leading to reduced groundwater quality are shown. The assessment of hydraulic conductivities of aquifers by geophysical techniques is discussed with respect to the use of porosity - hydraulic conductivity relations and to geophysical techniques like NMR or SIP which are sensitive to the effective porosity of the material. The classification of groundwater protective layers for vulnerability maps as required by the EU water framework

  3. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    Science.gov (United States)

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  4. THE STUDY OF CHANGES IN ARDABIL PLAIN GROUNDWATER LEVEL USING GIS

    Directory of Open Access Journals (Sweden)

    Javad Zare Aghbolagh

    2016-03-01

    Full Text Available Uncontrolled exploitation of groundwater in many parts of the world has led to a sharp drop in groundwater levels. In this study, changes in Ardabil plain groundwater level were studied using geographic information system (GIS. For this purpose, the interpolation table method was used, the intrinsic data as table data of piezo metric wells was used. In order to implement the model, the Majol Geoestatical in geographic information system software was used. The data entered as regions into the geographic information system, and then done for the entire zoning area, due to zoning 8 models, the IDW, GPI, RBF, LPI, KO, KS, KU and EBK in geostatical extension were evaluated. The ordinary kriging method (KO with the lowest RMSE, was determined as the most accurate one, and finally, as the ultimate method for zoning and map providing for the changes in groundwater levels drop of the region. The results of classification showed that the biggest drop of about 40 meters was in the areas close to the southeastern parts of the study region and in other areas, little changes were observed, this rate of the change and decline in some parts of the desert like southern regions is very tangible and specified.

  5. Global Patterns of Legacy Nitrate Storage in the Vadose Zone

    Science.gov (United States)

    Ascott, M.; Gooddy, D.; Wang, L.; Stuart, M.; Lewis, M.; Ward, R.; Binley, A. M.

    2017-12-01

    Global-scale nitrogen (N) budgets have been developed to quantify the impact of man's influence on the nitrogen cycle. However, these budgets often do not consider legacy effects such as accumulation of nitrate in the deep vadose zone. In this presentation we show that the vadose zone is an important store of nitrate which should be considered in future nitrogen budgets for effective policymaking. Using estimates of depth to groundwater and nitrate leaching for 1900-2000, we quantify for the first time the peak global storage of nitrate in the vadose zone, estimated as 605 - 1814 Teragrams (Tg). Estimates of nitrate storage are validated using previous national and basin scale estimates of N storage and observed groundwater nitrate data for North America and Europe. Nitrate accumulation per unit area is greatest in North America, China and Central and Eastern Europe where thick vadose zones are present and there is an extensive history of agriculture. In these areas the long solute travel time in the vadose zone means that the anticipated impact of changes in agricultural practices on groundwater quality may be substantially delayed. We argue that in these areas use of conventional nitrogen budget approaches is inappropriate and their continued use will lead to significant errors.

  6. Source zone remediation by zero valent iron technologies

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann

    at a fifth of these contaminated sites. These source zones pose a serious threat to soil and groundwater quality. Remediation of the heterogeneous source zones is challenging due to irregular downwards migration patterns in the subsurface, low aqueous solubility and matrix diffusion. To protect the soil...... and groundwater resources from long-term deterioration, the development of in situ technologies suitable for remediation of DNAPL is warranted. Currently, an array of aggressive in situ remediation technologies remediation exists. These technologies may be suitable under various site specific conditions; however......, most of them are limited by subsurface heterogeneities and/or the risk of inadvertent DNAPL displacement during field application. This thesis presents the results of an investigation of the potential for remediation of chlorinated solvent source zones by emerging zero valent iron (ZVI) based...

  7. A groundwater salinity hotspot and its connection to an intermittent stream identified by environmental tracers (Mt Lofty Ranges, South Australia)

    Science.gov (United States)

    Anderson, Thomas A.; Bestland, Erick A.; Soloninka, Lesja; Wallis, Ilka; Banks, Edward W.; Pichler, Markus

    2017-12-01

    High and variable levels of salinity were investigated in an intermittent stream in a high-rainfall area (˜800 mm/year) of the Mt. Lofty Ranges of South Australia. The groundwater system was found to have a local, upslope saline lens, referred to here as a groundwater salinity `hotspot'. Environmental tracer analyses (δ18O, δ2H, 87/86Sr, and major elements) of water from the intermittent stream, a nearby permanent stream, shallow and deep groundwater, and soil-water/runoff demonstrate seasonal groundwater input of very saline composition into the intermittent stream. This input results in large salinity increases of the stream water because the winter wet-season stream flow decreases during spring in this Mediterranean climate. Furthermore, strontium and water isotope analyses demonstrate: (1) the upslope-saline-groundwater zone (hotspot) mixes with the dominant groundwater system, (2) the intermittent-stream water is a mixture of soil-water/runoff and the upslope saline groundwater, and (3) the upslope-saline-groundwater zone results from the flushing of unsaturated-zone salts from the thick clayey regolith and soil which overlie the metamorphosed shale bedrock. The preferred theory on the origin of the upslope-saline-groundwater hotspot is land clearing of native deep-rooted woodland, followed by flushing of accumulated salts from the unsaturated zone due to increased recharge. This cause of elevated groundwater and surface-water salinity, if correct, could be widespread in Mt. Lofty Ranges areas, as well as other climatically and geologically similar areas with comparable hydrogeologic conditions.

  8. Hydrogeologic controls and geochemical indicators of groundwater movement in the Niles Cone and southern East Bay Plain groundwater subbasins, Alameda County, California

    Science.gov (United States)

    Teague, Nicholas F.; Izbicki, John A.; Borchers, Jim; Kulongoski, Justin T.; Jurgens, Bryant C.

    2018-02-01

    subbasin. Residual effects of pre-1970s intrusion of saline water from San Francisco Bay, including high chloride concentrations in groundwater, are evident in parts of the Niles Cone subbasin. Noble gas recharge temperatures indicate two primary recharge sources (Quarry Lakes and Alameda Creek) in the Niles Cone groundwater subbasin. Although recharge at Quarry Lakes affects hydraulic heads as far as the transition zone between the Niles Cone and East Bay Plain groundwater subbasins (about 5 miles), the effect of recharged water on water quality is only apparent in wells near (less than 2 miles) recharge sources. Groundwater chemistry from upper aquifer system wells near Quarry Lakes showed an evaporated signal (less negative oxygen and hydrogen isotopic values) relative to surrounding groundwater and a tritium concentration (2 tritium units) consistent with recently recharged water from a surface-water impoundment.Uncorrected carbon-14 activities measured in water sampled from wells in the Niles Cone groundwater subbasin range from 16 to 100 percent modern carbon (pmC). The geochemical reaction modeling software NETPATH was used to interpret carbon-14 ages along a flowpath from Quarry Lakes toward the East Bay Plain groundwater subbasin. Model results indicate that changes in groundwater chemistry are controlled by cation exchange on clay minerals and weathering of primary silicate minerals. Old groundwater (lower carbon-14 activities) is characterized by high dissolved silica and pH. Interpreted carbon-14 ages ranged from 830 to more than 7,000 years before present and are less than helium-4 ages that range from 2,000 to greater than 11,000 years before present. The average horizontal groundwater velocity along the studied flowpath, as calculated using interpreted carbon-14 ages, through the Deep aquifer of the Niles Cone groundwater subbasin is between 3 and 12 feet per year. The groundwater velocity decreases near the boundary of the transition zone to the southern

  9. Climate change impact on shallow groundwater conditions in Hungary: Conclusions from a regional modelling study

    Science.gov (United States)

    Kovács, Attila; Marton, Annamária; Tóth, György; Szöcs, Teodóra

    2016-04-01

    A quantitative methodology has been developed for the calculation of groundwater table based on measured and simulated climate parameters. The aim of the study was to develop a toolset which can be used for the calculation of shallow groundwater conditions for various climate scenarios. This was done with the goal of facilitating the assessment of climate impact and vulnerability of shallow groundwater resources. The simulated groundwater table distributions are representative of groundwater conditions at the regional scale. The introduced methodology is valid for modelling purposes at various scales and thus represents a versatile tool for the assessment of climate vulnerability of shallow groundwater bodies. The calculation modules include the following: 1. A toolset to calculate climate zonation from climate parameter grids, 2. Delineation of recharge zones (Hydrological Response Units, HRUs) based on geology, landuse and slope conditions, 3. Calculation of percolation (recharge) rates using 1D analytical hydrological models, 4. Simulation of the groundwater table using numerical groundwater flow models. The applied methodology provides a quantitative link between climate conditions and shallow groundwater conditions, and thus can be used for assessing climate impacts. The climate data source applied in our calculation comprised interpolated daily climate data of the Central European CARPATCLIM database. Climate zones were determined making use of the Thorntwaite climate zonation scheme. Recharge zones (HRUs) were determined based on surface geology, landuse and slope conditions. The HELP hydrological model was used for the calculation of 1D water balance for hydrological response units. The MODFLOW numerical groundwater modelling code was used for the calculation of the water table. The developed methodology was demonstrated through the simulation of regional groundwater table using spatially averaged climate data and hydrogeological properties for various time

  10. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: A potential source of geogenic Cr(VI) to groundwater

    International Nuclear Information System (INIS)

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    g kg -1 , representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a very small fraction of the total solid phase Cr, they are a potentially important source for Cr(VI) to groundwater. Enhanced groundwater recharge through the vadose zone due to irrigation could carry Cr(VI) from the vadose zone to the groundwater and may be the mechanism responsible for the correlation observed between elevated Cr(VI) and NO 3 - concentrations in previously published data for valley groundwaters. Incubation of a valley subsoil showed a Cr(VI) production rate of 24 μg kg -1 a -1 suggesting that field Cr(VI) concentrations could be regenerated annually. Increased Cr(VI) production rates in H + -amended soil incubations indicate that soil acidification processes such as nitrification of ammonium in fertilizers could potentially increase the occurrence of geogenic Cr(VI) in groundwater. Thus, despite the natural origin of the Cr, Cr(VI) generation in the Sacramento Valley soils and sediments has the potential to be influenced by human activities.

  11. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: A potential source of geogenic Cr(VI) to groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Christopher T., E-mail: cmills@usgs.gov [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Denver Federal Center, MS 964D, Denver, CO 80225 (United States); Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J. [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Denver Federal Center, MS 964D, Denver, CO 80225 (United States)

    2011-08-15

    from 0 to 42 {mu}g kg{sup -1}, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a very small fraction of the total solid phase Cr, they are a potentially important source for Cr(VI) to groundwater. Enhanced groundwater recharge through the vadose zone due to irrigation could carry Cr(VI) from the vadose zone to the groundwater and may be the mechanism responsible for the correlation observed between elevated Cr(VI) and NO{sub 3}{sup -} concentrations in previously published data for valley groundwaters. Incubation of a valley subsoil showed a Cr(VI) production rate of 24 {mu}g kg{sup -1} a{sup -1} suggesting that field Cr(VI) concentrations could be regenerated annually. Increased Cr(VI) production rates in H{sup +}-amended soil incubations indicate that soil acidification processes such as nitrification of ammonium in fertilizers could potentially increase the occurrence of geogenic Cr(VI) in groundwater. Thus, despite the natural origin of the Cr, Cr(VI) generation in the Sacramento Valley soils and sediments has the potential to be influenced by human activities.

  12. HEAVY METALS AS UNWANTED COMPONENTS OF BACKWASH WATER DERIVED FROM GROUNDWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Robert Nowak

    2016-06-01

    Full Text Available The paper presents some aspects of the problem of heavy metals presence in wastewater and sewage sludge from water treatment. In the first part, issues on quality of wastewaters and sludge produced during water treatment along with actions aimed at the neutralization of such wastes, were discussed. Subsequent parts of the work present the example of 12 groundwater treatment stations in a particular municipality, and the problem of backwash water quality, in particular, heavy metals contents. The analysis covered a period of three years: 2013, 2014, and 2015. The authors, using the discussed examples, have shown that besides hydrated iron and manganese oxides, also other toxic contaminants can be present in backwash water from groundwater treatment. In particular, the qualitative analysis of the backwash water revealed the presence of heavy metals, mainly zinc. The test results for backwash water were compared with those of filtrate qualitative assessment, wherein the heavy metals were not found. This fact indicated the metal retention in the filter bed and their unsustainable immobilization resulting in penetration of heavy metals from deposit to the backwash water along with other impurities, mainly iron and manganese oxides. The main conclusion from the study is to demonstrate the need for constant monitoring of the backwash water quality, including the presence of toxic heavy metals. This is also important because of the requirement to minimize the negative environmental impact of wastes generated during the water treatment process.

  13. In Situ Treatment of Chlorinated Ethene-Contaminated Groundwater Using horizontal Flow Treatment Wells

    National Research Council Canada - National Science Library

    Ferland, Derek

    2000-01-01

    The limitations of conventional containment technologies for groundwater contaminated with chlorinated solvents have motivated development of innovative technologies to achieve national groundwater...

  14. Soil treatment and groundwater control for No. 6 fuel oil and PCB contamination

    International Nuclear Information System (INIS)

    Girioni, M.J.; St. Hilaire, W.J.

    1991-01-01

    This paper reports that as part of a Short-Term Measure ordered by the Massachusetts Department of Environmental Protection (DEP), soil contaminated by No. 6 fuel oil and low-level polychlorinated biphenyls (PCBs) was excavated, treated and recycled on-site as an asphalt base course for a parking lot at an industrial complex in New Bedford, Massachusetts. Approximately 300 cubic yards of contaminated soil were treated with an asphalt emulsion and utilized as a aggregate component for asphalt processed at ambient temperatures during the month of December 1990. In order to determine if the contaminated soils to be recycled would be classified as a hazardous waste (as defined by the Massachusetts Hazardous Waste Regulations, 310 CMR 30.000), or if the soil to be recycled would pose a significant risk to health, safety or the environment, analytical testing of the contaminated soil was conducted prior, during and after treatment. Analytical testing included Toxicity Characteristics Leaching Procedure (TCLP) analyses of the untreated and treated soil. An alternative solution to the standard groundwater pump-and-treat method was designed and constructed to control and recover the highly viscous floating petroleum product. A series of precast leaching galleys (oil collection chambers) and a precast leach pit (groundwater discharge structure) were constructed to alter the local groundwater table to induce groundwater flow by gravity into the leaching chambers. Passive (i.e., nonpumping) groundwater flow to the leaching chambers was induced by placing of the groundwater discharge structure hydraulically downgradient of the leaching chambers. Collected oil, separated by gravity, will be periodically vacuumed, as necessary, for proper off-site disposal. Excess water discharges to the downgradient leach pit

  15. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    International Nuclear Information System (INIS)

    1993-06-01

    During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB 2 (Water Table) and Aquifer Zone IIB 1 , (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters

  16. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Third quarter, 1994

    International Nuclear Information System (INIS)

    1994-12-01

    During third quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Bis(2-ethylhexyl) phthalate exceeded final PDWS in one well. Aluminum, iron, manganese, tin, and total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and is complete; however, analytical data from these wells is not available yet

  17. An analytical study on groundwater flow in drainage basins with horizontal wells

    Science.gov (United States)

    Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Li, Hailong

    2014-06-01

    Analytical studies on release/capture zones are often limited to a uniform background groundwater flow. In fact, for basin-scale problems, the undulating water table would lead to the development of hierarchically nested flow systems, which are more complex than a uniform flow. Under the premise that the water table is a replica of undulating topography and hardly influenced by wells, an analytical solution of hydraulic head is derived for a two-dimensional cross section of a drainage basin with horizontal injection/pumping wells. Based on the analytical solution, distributions of hydraulic head, stagnation points and flow systems (including release/capture zones) are explored. The superposition of injection/pumping wells onto the background flow field leads to the development of new internal stagnation points and new flow systems (including release/capture zones). Generally speaking, the existence of n injection/pumping wells would result in up to n new internal stagnation points and up to 2n new flow systems (including release/capture zones). The analytical study presented, which integrates traditional well hydraulics with the theory of regional groundwater flow, is useful in understanding basin-scale groundwater flow influenced by human activities.

  18. LONG-TERM GEOCHEMICAL BEHAVIOR OF A ZEROVALENT IRON PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM IN GROUNDWATER

    Science.gov (United States)

    Passive, in-situ reactive barriers have proven to be viable, cost-effective systems for the remediation of Cr-contaminated groundwater at some sites. Permeable reactive barriers (PRBs) are installed in the flow-path of groundwater, most typically as vertical treatment walls. Re...

  19. Regional Hydrogeochemistry of a Modern Coastal Mixing Zone

    Science.gov (United States)

    Wicks, Carol M.; Herman, Janet S.

    1996-02-01

    In west central Florida, groundwater samples were collected along flow paths in the unconfined upper Floridan aquifer that cross the inland, freshwater recharge area and the coastal discharge area. A groundwater flow and solute transport model was used to evaluate groundwater flow and mixing of fresh and saline groundwater along a cross section of the unconfined upper Floridan aquifer. Results show that between 8% and 15% of the fresh and 30-31% of the saline groundwater penetrates to the depth in the flow system where contact with and dissolution of gypsum is likely. The deeply circulating fresh and saline groundwater returns to the near-surface environment discharging CaSO4-rich water to the coastal area where it mixes with fresh CaHCO3 groundwater, resulting in a prediction of calcite precipitation in the modern mixing zone.

  20. Groundwater dating by means of isotopes

    International Nuclear Information System (INIS)

    Johansson, Barbro

    1980-08-01

    A short review is given of method for dating old groundwater by isotopetechniques. The carbon-14 method is then treated in detail; Carbon dioxide, released by root respiration of plants, and by decomposition of organic matter in the soil, is dissolved in soil water. The production of carbon dioxide in the root zone is high and the 14 C/ 12 C ratio is therefore assumed to be the same as in the plants. The residence time of water in the groundwater zone may then be computed, according to the laws of radioactive decay. No attempts have been made to compute the changes in the carbon-14 content of the soil air due to weathering. To do this, one would need to consider diffusion of gaseous carbon dioxide into and out of the soil. The amount of carbon entering the water through weathering in the groundwater zone may be compute if certain assumptions are made. To know if these assumptions are valid for the water of a special area, detailed knowledge about the area is required. In this report, an attempt is made to follow the changes in the composition of the water as the water moves through the ground. The differentiated equilibrium equations of the carbon dioxide system and the ionic balance are used for the calculations. It is assumed that when calcite is present in the ground, weathering of other minerals may be neglected. In order to test its usefulness, the method has been tried on groundwater from a borehole in Kraakemaala, Sweden. The results are very much dependent on the values of some of the parameters used in the calculations. The σ 13 C values especially have a great influence on the calculated age. As long as additional information on conditions at different depth remains unavailable, it seems impossible to determine the age of water with any accuracy. Only a range, which sometimes embraces several thousand years, can be given. A good aid to a better estimate of the age would be obtained if samples of water along a flow path were available. One way to get such

  1. The effectiveness of groundwater pumping as a restoration technology

    International Nuclear Information System (INIS)

    Doty, C.B.; Travis, C.C.

    1991-05-01

    An in-depth analysis of the effectiveness of pumping groundwater for aquifer restoration was conducted based on: (1) performance records for 16 sites where pumping with the objective of aquifer restoration has been implemented for periods of 2 to 12 years, and (2) recent theoretical and modeling studies. The reduction of aquifer concentrations is the primary indicator of effectiveness of groundwater extraction. However, other indicators of effectiveness such as plume containment, mass reduction, and achievement of specific cleanup goals were also components of the evaluation. Based on our review of performance records and recent theoretical studies, the following can be concluded regarding the use of groundwater pumping for aquifer restoration: (1) Pumping is effective for contaminant mass reduction, plume containment and extraction of groundwater for point-of-use treatment. Its use for attaining these objectives should be encouraged. (2) Groundwater pumping is ineffective for restoring aquifers to health-based levels. This reality needs to be explicitly recognized by regulators. (3) The primary contributors to the ineffectiveness of pumping in meeting cleanup goals are the time-dependent decrease in the rate of desorption of contaminants from contaminated soils and the existence of immobile contaminants either in the non-aqueous phase or trapped in zones of low permeability. (4) Remedial time frames of 2 years to 30 years were predicted at the sites reviewed. Regulators currently maintain that 20 to 40 years may be needed to reach health-based cleanup goals. However, recent modeling studies estimate pump and treat time frames of 100 to 1000 years. 22 refs., 5 figs., 4 tabs

  2. Description and application of capture zone delineation for a wellfield at Hilton Head Island, South Carolina

    Science.gov (United States)

    Landmeyer, J.E.

    1994-01-01

    Ground-water capture zone boundaries for individual pumped wells in a confined aquffer were delineated by using groundwater models. Both analytical and numerical (semi-analytical) models that more accurately represent the $round-water-flow system were used. All models delineated 2-dimensional boundaries (capture zones) that represent the areal extent of groundwater contribution to a pumped well. The resultant capture zones were evaluated on the basis of the ability of each model to realistically rapresent the part of the ground-water-flow system that contributed water to the pumped wells. Analytical models used were based on a fixed radius approach, and induded; an arbitrary radius model, a calculated fixed radius model based on the volumetric-flow equation with a time-of-travel criterion, and a calculated fixed radius model derived from modification of the Theis model with a drawdown criterion. Numerical models used induded the 2-dimensional, finite-difference models RESSQC and MWCAP. The arbitrary radius and Theis analytical models delineated capture zone boundaries that compared least favorably with capture zones delineated using the volumetric-flow analytical model and both numerical models. The numerical models produced more hydrologically reasonable capture zones (that were oriented parallel to the regional flow direction) than the volumetric-flow equation. The RESSQC numerical model computed more hydrologically realistic capture zones than the MWCAP numerical model by accounting for changes in the shape of capture zones caused by multiple-well interference. The capture zone boundaries generated by using both analytical and numerical models indicated that the curnmtly used 100-foot radius of protection around a wellhead in South Carolina is an underestimate of the extent of ground-water capture for pumped wetis in this particular wellfield in the Upper Floridan aquifer. The arbitrary fixed radius of 100 feet was shown to underestimate the upgradient

  3. 78 FR 60218 - Safety Zone; Old Mormon Slough, Stockton, CA

    Science.gov (United States)

    2013-10-01

    ... decontaminate soil, groundwater, and sediment in Old Mormon Slough and the surrounding basin. This safety zone... decontamination. This safety zone reduces human health and environmental risks associated with clean up efforts at... safety zone in Old Mormon Slough to further the efforts of the EPA to rehabilitate soil, sediment, and...

  4. Heterogeneity of groundwater storage properties in the critical zone of Irish metamorphic basement from geophysical surveys and petrographic analyses

    Science.gov (United States)

    Comte, Jean-Christophe; Cassidy, Rachel; Caulfield, John; Nitsche, Janka; Ofterdinger, Ulrich; Wilson, Christopher

    2016-04-01

    Weathered/fractured bedrock aquifers contain groundwater resources that are crucial in hard rock basement regions for rural water supply and maintaining river flow and ecosystem resilience. Groundwater storage in metamorphic rocks is subject to high spatial variations due to the large degree of heterogeneity in fracture occurrence and weathering patterns. Point measurements such as borehole testing are, in most cases, insufficient to characterise and quantify those storage variations because borehole sampling density is usually much lower than the scale of heterogeneities. A suite of geophysical and petrographic investigations was implemented in the weathered/fractured micaschist basement of Donegal, NW Ireland. Electrical Resistivity Tomography provided a high resolution 2D distribution of subsurface resistivities. Resistivity variations were transferred into storage properties (i.e. porosities) in the saturated critical zone of the aquifer through application of a petrophysical model derived from Archie's Law. The petrophysical model was calibrated using complementary borehole gamma logging and clay petrographic analysis at multi-depth well clusters distributed along a hillslope transect at the site. The resulting distribution of porosities shows large spatial variations along the studied transect. With depth, porosities rapidly decrease from about a few % in the uppermost, highly weathered basement to less than 0.5% in the deep unweathered basement, which is encountered at depths of between 10 and 50m below the ground surface. Along the hillslope, porosities decrease with distance from the river in the valley floor, ranging between 5% at the river to less than 1% at the top of the hill. Local traces of regional fault zones that intersect the transect are responsible for local increases in porosity in relation to deeper fracturing and weathering. Such degrees of spatial variation in porosity are expected to have a major impact on the modality of the response of

  5. The use of unsaturated zone solutes and deuterium profiles in the study of groundwater recharge in the semi-arid zone of Nigeria

    International Nuclear Information System (INIS)

    Goni, I.B.; Edmunds, W.M.

    2001-01-01

    Two unsaturated zone profiles (MF and MG) in NE Nigeria have been sampled for inert tracers (Cl, Br, NO 3 and δ 2 H to investigate recharge rates and processes. The upper MF and MG profiles have sandy lithology, lower moisture content ( 2 H around -30 per mille. All these indicate that present day recharge is taking place. The lower section of the MF profile shows a distinct contrast with high moisture content (up to 27%), very high chloride (average 2892 mg/L) and relatively enriched deuterium (-12 per mille), indicating the effect of evaporative enrichment. This lower section corresponds to low permeability lacustrine deposits probably representing the former bed of Lake Chad where little or no infiltration has been occurring since the mid-Holocene when the lake extended over this area. The sand-covered areas of the Sahel of the NE Nigeria provide an important phreatic aquifer. An estimation of the amount of recharge using the unsaturated zone chloride mass balance gives significant rates of 14 mm/a and 22 mm/a for the upper MF and MG profiles respectively. These rates mainly span the period of the recent Sahel drought and even higher recharge rates may occur during wetter periods. These rates fall within the 14 mm/a to 53 mm/a range estimated for the Manga Grasslands area in the NE Nigeria obtained in an earlier study. From the water resource point of view, the region has potential for perennially-recharged groundwater resources that can sustain the present abstraction level which is mainly via dug wells. (author)

  6. An integrated hydrogeological study to support sustainable development and management of groundwater resources: a case study from the Precambrian Crystalline Province, India

    Science.gov (United States)

    Madhnure, Pandith; Peddi, Nageshwar Rao; Allani, Damodar Rao

    2016-03-01

    The rapid expansion of agriculture, industries and urbanization has triggered unplanned groundwater development leading to severe stress on groundwater resources in crystalline rocks of India. With depleting resources from shallow aquifers, end users have developed resources from deeper aquifers, which have proved to be counterproductive economically and ecologically. An integrated hydrogeological study has been undertaken in the semi-arid Madharam watershed (95 km2) in Telangana State, which is underlain by granites. The results reveal two aquifer systems: a weathered zone (maximum 30 m depth) and a fractured zone (30-85 m depth). The weathered zone is unsaturated to its maximum extent, forcing users to tap groundwater from deeper aquifers. Higher orders of transmissivity, specific yield and infiltration rates are observed in the recharge zone, while moderate orders are observed in an intermediate zone, and lower orders in the discharge zone. This is due to the large weathering-zone thickness and a higher sand content in the recharge zone than in the discharge zone, where the weathered residuum contains more clay. The NO3 - concentration is high in shallow irrigation wells, and F- is high in deeper wells. Positive correlation is observed between F- and depth in the recharge zone and its proximity. Nearly 50 % of groundwater samples are unfit for human consumption and the majority of irrigation-well samples are classed as medium to high risk for plant growth. Both supply-side and demand-side measures are recommended for sustainable development and management of this groundwater resource. The findings can be up-scaled to other similar environments.

  7. Insights in groundwater organic matter from Liquid Chromatography-Organic Carbon Detection

    Science.gov (United States)

    Rutlidge, H.; Oudone, P.; McDonough, L.; Andersen, M. S.; Baker, A.; Meredith, K.; O'Carroll, D. M.

    2017-12-01

    Understanding the processes that control the concentration and characteristics of organic matter in groundwater has important implications for the terrestrial global carbon budget. Liquid Chromatography - Organic Carbon Detection (LC-OCD) is a size-exclusion based chromatography technique that separates the organic carbon into molecular weight size fractions of biopolymers, humic substances, building blocks (degradation products of humic substances), low molecular weight acids and low molecular weight neutrals. Groundwater and surface water samples were collected from a range of locations in Australia representing different surface soil, land cover, recharge type and hydrological properties. At one site hyporheic zone samples were also collected from beneath a stream. The results showed a general decrease in the aromaticity and molecular weight indices going from surface water, hyporheic downwelling and groundwater samples. The aquifer substrate also affected the organic composition. For example, groundwater samples collected from a zone of fractured rock showed a relative decrease in the proportion of humic substances, suggestive of sorption or degradation of humic substances. This work demonstrates the potential for using LC-OCD in elucidating the processes that control the concentration and characteristics of organic matter in groundwater.

  8. Isotope and chemical tracers in groundwater hydrology

    International Nuclear Information System (INIS)

    Kendall, C.; Stewart, M.K.; Morgenstern, U.; Trompetter, V.

    1999-01-01

    The course sessions cover: session 1, Fundamentals of stable and radioactive isotopes; session 2, Stable oxygen and hydrogen isotopes in hydrology: background, examples, sampling strategy; session 3, Catchment studies using oxygen and hydrogen isotopes: background - the hydrologic water balance, evapotranspiration - the lion's share, runoff generation - new water/old water fractions, groundwater recharge - the crumbs; session 4, Isotopes in catchment hydrology: survey of applications, future developments; session 5, Applications of tritium in hydrology: background and measurement, interpretation, examples; session 6, Case studies using mixing models: Hutt Valley groundwater system, an extended mixing model for simulating tracer transport in the unsaturated zone; session 7, Groundwater dating using CFC concentrations: background, sampling and measurement, use and applications; session 8, Groundwater dating with carbon-14: background, sampling and measurement, use and applications; session 9, NZ case studies: Tauranga warm springs, North Canterbury Plains groundwater; session 10, Stable carbon and nitrogen isotopes: background and examples, biological applications of C-N-S isotopes; session 11, New developments in isotope hydrology: gas isotopes, compound specific applications, age dating of sediments etc; session 12, NZ case studies: North Canterbury Plains groundwater (continued), Waimea Plains groundwater. (author). refs., figs

  9. Assessment of vulnerability zones for ground water pollution using GIS-DRASTIC-EC model: A field-based approach

    Science.gov (United States)

    Anantha Rao, D.; Naik, Pradeep K.; Jain, Sunil K.; Vinod Kumar, K.; Dhanamjaya Rao, E. N.

    2018-06-01

    Assessment of groundwater vulnerability to pollution is an essential pre-requisite for better planning of an area. We present the groundwater vulnerability assessment in parts of the Yamuna Nagar District, Haryana State, India in an area of about 800 km2, considered to be a freshwater zone in the foothills of the Siwalik Hill Ranges. Such areas in the Lower Himalayas form good groundwater recharge zones, and should always be free from contamination. But, the administration has been trying to promote industrialization along these foothill zones without actually assessing the environmental consequences such activities may invite in the future. GIS-DRASTIC model has been used with field based data inputs for studying the vulnerability assessment. But, we find that inclusion electrical conductivity (EC) as a model parameter makes it more robust. Therefore, we rename it as GIS-DRASTIC-EC model. The model identifies three vulnerability zones such as low, moderate and high with an areal extent of 5%, 80% and 15%, respectively. On the basis of major chemical parameters alone, the groundwater in the foothill zones apparently looks safe, but analysis with the help of GIS-DRASTIC-EC model gives a better perspective of the groundwater quality in terms of identifying the vulnerable areas.

  10. Natural attenuation of petroleum hydrocarbons-a study of biodegradation effects in groundwater (Vitanovac, Serbia).

    Science.gov (United States)

    Marić, Nenad; Matić, Ivan; Papić, Petar; Beškoski, Vladimir P; Ilić, Mila; Gojgić-Cvijović, Gordana; Miletić, Srđan; Nikić, Zoran; Vrvić, Miroslav M

    2018-01-20

    The role of natural attenuation processes in groundwater contamination by petroleum hydrocarbons is of intense scientific and practical interest. This study provides insight into the biodegradation effects in groundwater at a site contaminated by kerosene (jet fuel) in 1993 (Vitanovac, Serbia). Total petroleum hydrocarbons (TPH), hydrochemical indicators (O 2 , NO 3 - , Mn, Fe, SO 4 2- , HCO 3 - ), δ 13 C of dissolved inorganic carbon (DIC), and other parameters were measured to demonstrate biodegradation effects in groundwater at the contaminated site. Due to different biodegradation mechanisms, the zone of the lowest concentrations of electron acceptors and the zone of the highest concentrations of metabolic products of biodegradation overlap. Based on the analysis of redox-sensitive compounds in groundwater samples, redox processes ranged from strictly anoxic (methanogenesis) to oxic (oxygen reduction) within a short distance. The dependence of groundwater redox conditions on the distance from the source of contamination was observed. δ 13 C values of DIC ranged from - 15.83 to - 2.75‰, and the most positive values correspond to the zone under anaerobic and methanogenic conditions. Overall, results obtained provide clear evidence on the effects of natural attenuation processes-the activity of biodegradation mechanisms in field conditions.

  11. [Study on the groundwater petroleum contaminant remediation by air sparging].

    Science.gov (United States)

    Wang, Zhi-Qiang; Wu, Qiang; Zou, Zu-Guang; Chen, Hong; Yang, Xun-Chang; Zhao, Ji-Chu

    2007-04-01

    The groundwater petroleum contaminant remediation effect by air sparging was investigated in an oil field. The results show that the soil geological situation has great influence on the air distribution, and the shape of air distribution is not symmetrical to the air sparging (AS) well as axis. The influence distance in the left of AS well is 6 m, and only 4 m in the right. The petroleum removal rate can reach 70% in the zone with higher air saturation, but only 40% in the zone with lower air saturation, and the average petroleum removal rate reaches 60% in the influence zone for 40 days continuous air sparging. The petroleum components in groundwater were analyzed by GC/MS (gas chromatogram-mass spectrograph) before and after experiments, respectively. The results show that the petroleum removal rate has relationship with the components and their properties. The petroleum components with higher volatility are easily removed by volatilization, but those with lower volatility are difficult to remove, so a tailing effect of lingering residual contaminant exists when the air sparging technology is adopted to treat groundwater contaminated by petroleum products.

  12. Evaluating the role of soil variability on groundwater pollution and recharge at regional scale by integrating a process-based vadose zone model in a stochastic approach

    Science.gov (United States)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi

    2013-04-01

    Interpreting and predicting the evolution of water resources and soils at regional scale are continuing challenges for natural scientists. Examples include non-point source (NPS) pollution of soil and surface and subsurface water from agricultural chemicals and pathogens, as well as overexploitation of groundwater resources. The presence and build up of NPS pollutants may be harmful for both soil and groundwater resources. The accumulation of salts and trace elements in soils can significantly impact crop productivity, while loading of salts, nitrates, trace elements and pesticides into groundwater supplies can deteriorate a source of drinking and irrigation water. Consequently, predicting the spatial distribution and fate of NPS pollutants in soils at applicative scales is now considered crucial for maintaining the fragile balance between crop productivity and the negative environmental impacts of NPS pollutants, which is a basis of sustainable agriculture. Soil scientists and hydrologists are regularly asked to assist state agencies to understand these critical environmental issues. The most frequent inquiries are related to the development of mathematical models needed for analyzing the impacts of alternative land-use and best management use and management of soil and water resources. Different modelling solutions exist, mainly differing on the role of the vadose zone and its horizontal and vertical variability in the predictive models. The vadose zone (the region from the soil surface to the groundwater surface) is a complex physical, chemical and biological ecosystem that controls the passage of NPS pollutants from the soil surface where they have been deposited or accumulated due to agricultural activities, to groundwater. Physically based distributed hydrological models require the internal variability of the vadose zone be explored at a variety of scales. The equations describing fluxes and storage of water and solutes in the unsaturated zone used in these

  13. Evidence of Enhanced Subrosion in a Fault Zone and Characterization of Hazard Zones with Elastic Parameters derived from SH-wave reflection Seismics and VSP

    Science.gov (United States)

    Wadas, S. H.; Tanner, D. C.; Tschache, S.; Polom, U.; Krawczyk, C. M.

    2017-12-01

    Subrosion, the dissolution of soluble rocks, e.g., sulfate, salt, or carbonate, requires unsaturated water and fluid pathways that enable the water to flow through the subsurface and generate cavities. Over time, different structures can occur that depend on, e.g., rock solubility, flow rate, and overburden type. The two main structures are sinkholes and depressions. To analyze the link between faults, groundwater flow, and soluble rocks, and to determine parameters that are useful to characterize hazard zones, several shear-wave (SH) reflection seismic profiles were surveyed in Thuringia in Germany, where Permian sulfate rocks and salt subcrop close to the surface. From the analysis of the seismic sections we conclude that areas affected by tectonic deformation phases are prone to enhanced subrosion. The deformation of fault blocks leads to the generation of a damage zone with a dense fracture network. This increases the rock permeability and thus serves as a fluid pathway for, e.g., artesian-confined groundwater. The more complex the fault geometry and the more interaction between faults, the more fractures are generated, e.g., in a strike slip-fault zone. The faults also act as barriers for horizontal groundwater flow perpendicular to the fault surfaces and as conduits for groundwater flow along the fault strike. In addition, seismic velocity anomalies and attenuation of seismic waves are observed. Low velocities high attenuation may indicate areas affected by subrosion. Other parameters that characterize the underground stability are the shear modulus and the Vp/Vs ratio. The data revealed zones of low shear modulus high Vp/Vs ratio >2.5, which probably indicate unstable areas due to subrosion. Structural analysis of S-wave seismics is a valuable tool to detect near-surface faults in order to determine whether or not an area is prone to subrosion. The recognition of even small fault blocks can help to better understand the hydrodynamic groundwater conditions

  14. Very low frequency electromagnetic (VLF-EM) and electrical resistivity (ER) investigation for groundwater potential evaluation in a complex geological terrain around the Ijebu-Ode transition zone, southwestern Nigeria

    International Nuclear Information System (INIS)

    Osinowo, Olawale O; Olayinka, A Idowu

    2012-01-01

    Groundwater exploration in either a basement or sedimentary environment is often fairly well defined and focuses on delineating weathered/fractured rocks or saturated formations, respectively. Conversely, unique geological structures, the complex coexistence of different rock types and poorly defined basal/lateral contacts between basement and sedimentary rocks make groundwater development in a geological transition environment very challenging. Ijebu-Ode and its environs lie within such a problematic transition zone, between the Precambrian basement rocks and Cretaceous sediments of the Dahomey Basin, in southwestern Nigeria, where associated acute groundwater development challenges require adequate subsurface information to maximize its groundwater resource potential. This study integrated very low frequency electromagnetic (VLF-EM) and electrical resistivity (ER) geophysical prospecting techniques for a detailed terrain study of Ijebu-Ode in order to establish the reasons for the low groundwater resource potential in the area. Thirty five VLF-EM profiles, 140 vertical electrical soundings (VES) and relevant hydrogeological data were acquired along grids and profiles. Data were filtered, inverted and enhanced using appropriate software packages. The current density and geoelectric parameters of the VLF-EM and VES data were employed to generate terrain maps, the conductivity distribution and a subsurface basement model of the study area. Current density plots and geoelectric parameters identified up to three layers in the basement complex terrain which comprised lateritic topsoil, weathered basement and fresh basement rocks. The five layers encountered in the sedimentary terrain were topsoil, a lateritic unit, a dry sandy unit, a saturated sandy unit and fresh basement rocks. The hydraulic conductivity of the thick (3–18 m) lateritic unit was determined to be 1.32 × 10 −5 mm s −1 , while that of the underlying sandy units ranged from 2.65 × 10 −4 to 1

  15. Chemical and Isotopes study of pollutants transport through unsaturated zone in Damascus oasis (Syria)

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2011-08-01

    The primary objectives of this study were to determine the hydrochemical and isotopic characteristics of groundwater and to study vertical transport processes for trace elements through the unsaturated zone, from the surface water into the groundwater system. A third objective is to identifying the importance of the unsaturated zone in protecting groundwater from contamination. Distribution of trace elements, including Cu, Pb, Cr, Cd, Zn and As in the soil with depth were studied. Mineralogy was investigated using X-Ray diffraction techniques and granulometry in three drilled soil profile (KA, KB and KS) in Damascus Oasis, which indicated that the soil consists mainly of calcite, a mineral that has the ability to bind some of the trace elements. Measurement of nitrate concentrations in groundwater permitted an investigation of the urban, industrial and agricultural pollution in the Oasis, in particular, in the eastern part of Damascus city and in the north of Oasis where the irrigation by treated wastewater is applied. Depending on the chemical characteristics of the studied trace elements and soil conditions, these elements have high concentrations in the upper part of the soil (20-30 cm depth), due to absorption by clay minerals and organic matter. These high concentrations represent pollution by leather industries (tannery) in the area. The trace element concentrations decrease towards the east in parallel with river flow direction. The lower part of profiles show low trace element concentrations, below the international permitted limit. The low concentrations of trace elements in groundwater which are also below the international limit, indicates no pollution is presented. The isotopic composition of shallow groundwater indicates the underground recharge, originated from the Anti-Lebanon Mountain, is more significant than the direct recharge through unsaturated zone. It is concluded the unsaturated zone and the decrease of groundwater levels have played an

  16. Global simulation of interactions between groundwater and terrestrial ecosystems

    Science.gov (United States)

    Braakhekke, M. C.; Rebel, K.; Dekker, S. C.; Smith, B.; Van Beek, L. P.; Sutanudjaja, E.; van Kampenhout, L.; Wassen, M. J.

    2016-12-01

    In many places in the world ecosystems are influenced by the presence of a shallow groundwater table. In these regions upward water flux due to capillary rise increases soil moisture availability in the root zone, which has strong positive effect on evapotranspiration. Additionally it has important consequences for vegetation dynamics and fluxes of carbon and nitrogen. Under water limited conditions shallow groundwater stimulates vegetation productivity, and soil organic matter decomposition while under saturated conditions groundwater may have a negative effect on these processes due to lack of oxygen. Furthermore, since plant species differ with respect to their root distribution, preference for moisture conditions, and resistance to oxygen stress, shallow groundwater also influences vegetation type. Finally, processes such as denitrification and methane production occur under strictly anaerobic conditions and are thus strongly influenced by moisture availability. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure and are therefore less suitable to represent effects of groundwater on biogeochemical fluxes. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure and biogeochemical processes. These models are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB. Using this coupled model we aim to

  17. The Impact of Climate Change on Groundwater Resources and Groundwater Quality in the Patcham Catchment, England.

    Science.gov (United States)

    Phillips, R. J.; Smith, M.; Pope, D. J.; Gumm, L.

    2012-04-01

    The CLIMAWAT project is an EU-Regional Development Fund Interreg IV funded research programme to study the impacts of climate change on groundwater resources and groundwater quality from the Chalk aquifer of SE England. The use of partially treated wastewater for artificial recharge will also be extensively studied in both the field and laboratory. The Chalk is a major aquifer and regionally supplies 70% of potable water supplies. The long term sustainable use of this resource is of paramount importance and the outcomes of this project will better inform and enhance long term management strategies for this. Project partners include water companies, regulatory bodies and industry consultancies. The four main objectives of the CLIMAWAT project are: i) better improve the prediction of the impact of climate change on this groundwater resource; ii) better understand and quantify how recharge mechanisms will vary due to the uncertainty associated with climate change; iii) better understand the storage mechanisms and fate of contaminants (e.g. nitrates and pesticides) in this aquifer and iv) investigate the impact of using partially treated wastewater for artificial recharge. An extensive field monitoring and data collection programme is underway in the Patcham Catchment (SE of England). Simultaneous monitoring of climatic, unsaturated zone potentiometric, groundwater level and chemistry data will allow for a better understanding of how changes in recharge patterns will effect groundwater quality and quantity. Isoptopic analysis of sampled groundwaters has allowed for interpretations and a better understanding of the storage and movement of water through this aquifer. The laboratory experimental programme is also underway and the results from this will compliment the field based studies to further enhance the understanding of contaminant behaviour in the both unsaturated and saturated zones. Core experiments are being used to investigate how nutrient and other

  18. Challenging a trickle-down view of climate change on agriculture and groundwater

    Science.gov (United States)

    Global climate change is largely viewed as affecting ecohydrology of the Earth’s surface, but various studies are showing deeper effects on groundwater. Agricultural systems may be studied at the land surface and into the root zone with deeper effects of water and chemical movement to groundwater. ...

  19. Aquifers and hyporheic zones: Towards an ecological understanding of groundwater

    Science.gov (United States)

    Hancock, Peter J.; Boulton, Andrew J.; Humphreys, William F.

    2005-03-01

    Ecological constraints in subsurface environments relate directly to groundwater flow, hydraulic conductivity, interstitial biogeochemistry, pore size, and hydrological linkages to adjacent aquifers and surface ecosystems. Groundwater ecology has evolved from a science describing the unique subterranean biota to its current form emphasising multidisciplinary studies that integrate hydrogeology and ecology. This multidisciplinary approach seeks to elucidate the function of groundwater ecosystems and their roles in maintaining subterranean and surface water quality. In aquifer-surface water ecotones, geochemical gradients and microbial biofilms mediate transformations of water chemistry. Subsurface fauna (stygofauna) graze biofilms, alter interstitial pore size through their movement, and physically transport material through the groundwater environment. Further, changes in their populations provide signals of declining water quality. Better integrating groundwater ecology, biogeochemistry, and hydrogeology will significantly advance our understanding of subterranean ecosystems, especially in terms of bioremediation of contaminated groundwaters, maintenance or improvement of surface water quality in groundwater-dependent ecosystems, and improved protection of groundwater habitats during the extraction of natural resources. Overall, this will lead to a better understanding of the implications of groundwater hydrology and aquifer geology to distributions of subsurface fauna and microbiota, ecological processes such as carbon cycling, and sustainable groundwater management. Les contraintes écologiques dans les environnements de subsurface sont en relation directe avec les écoulements des eaux souterraines, la conductivité hydraulique, la biogéochimie des milieux interstitiels, la taille des pores, et les liens hydrologiques avec les aquifères et les écosystèmes adjacents. L'écologie des eaux souterraines a évolué d'une science décrivant uniquement les

  20. The application of radiation logs to groundwater hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Scott Keys, W [United States Geological Survey, Denver, CO (United States)

    1967-05-15

    The drilling of exploratory holes to determine the availability of groundwater and to plan the most economical methods of water development is expensive. The only technique available at present for obtaining geological and hydrological information through the casing of pre-existing water wells and other boreholes is by radiation logging. Up to now these logging techniques have been little used in groundwater hydrology. This report describes inexpensive portable radiation logging equipment that is available or has been developed for groundwater studies in connection with a general research project on the application of borehole geophysics in groundwater hydrology. It is possible to obtain data on the following: the source, velocity, and chemical quality of groundwater; the location, extent, geometry, bulk density, porosity, permeability, and specific yield of aquifers and associated strata; and the position of casings, casing collars, leaks, perforations, and cement. The radiation logs employed include natural gamma, gamma-gamma, neutron-gamma. neutron epithermal-neutron. and radioactive tracer. The following radioisotopes are utilized: cobalt-60, plutonium-239, americium-241, and iodine-131. Typical radiation logs obtained by the various techniques are described and examples are given of practical applications of radiation logging to groundwater investigations. The applications cited are studies of perched water in basaltic rocks and associated sedimentary strata; the porosity, moisture content, and position of zones into which water was injected in volcanic tuff; the position of the interface between brine and fresh water in fine-grained carbonate rocks and associated fine clastic rocks; the interpretation of porosity from a neutron log; and the location by means of a radioactive tracer of the more permeable fracture zones in a well penetrating crystalline rock. (author)

  1. Assessment of groundwater potential in Ankobra River Basin

    International Nuclear Information System (INIS)

    Nyarkoh, Charles Prince

    2011-08-01

    Ankobra river basin is endowed with many rich natural resources. The mining activities in the basin and the proposed hydropower generation on the Ankobra river as well as oil discovery in the Western Region would lead to the establishing of new industries in the basin. These would certainly lead to potential population growth. As a result of these developments, there would be stress on surface water resources and therefore there would be demand for ground water. A research was carried out to assess groundwater supply. Hydrogeological data was used to evaluate the ground water storage in the basement complex, regolith. The relevant aquifer characteristics/parameters (extent of the study area, thickness of the ground water zone in the regolith, the porosity and specific capacity of the aquifer zones) were used to compute total groundwater storage and recoverable storage. The groundwater contribution to stream flow was computed using mean monthly discharge data from the filled data and hydrograph drawn. The base flow was then determined from the hydrograph separation using the straight line method. The groundwater potential in the Ankobra basin is 45.82*10 9 m 3 while the recoverable groundwater storage is 29.39*10 9 m 3 . The base flow computed was 13.75m 3/ s. Investigations into groundwater chemistry with particular references to physico-chemical parameters (quality) was analysed. The constituents fall within the acceptable limits of the Ghana Standard Board (GSB) for drinking water standard and are satisfactory for human consumption. However, Tamso, Wantenem, Gyaman, Beyim communities exceeded the GSB'S recommended values of PH (6.5-8.5) and chloride ( 250 mg/I) respectively for drinking water standard.(author)

  2. Technical framework for groundwater restoration

    International Nuclear Information System (INIS)

    1991-04-01

    This document provides the technical framework for groundwater restoration under Phase II of the Uranium Mill Tailings Remedial Action (UMTRA) Project. A preliminary management plan for Phase II has been set forth in a companion document titled ''Preplanning Guidance Document for Groundwater Restoration''. General principles of site characterization for groundwater restoration, restoration methods, and treatment are discussed in this document to provide an overview of standard technical approaches to groundwater restoration

  3. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor.

    Science.gov (United States)

    Zhao, Yingxin; Feng, Chuanping; Wang, Qinghong; Yang, Yingnan; Zhang, Zhenya; Sugiura, Norio

    2011-09-15

    An intensified biofilm-electrode reactor (IBER) combining heterotrophic and autotrophic denitrification was developed for treatment of nitrate contaminated groundwater. The reactor was evaluated with synthetic groundwater (NO(3)(-)-N50 mg L(-1)) under different hydraulic retention times (HRTs), carbon to nitrogen ratios (C/N) and electric currents (I). The experimental results demonstrate that high nitrate and nitrite removal efficiency (100%) were achieved at C/N = 1, HRT = 8h, and I = 10 mA. C/N ratios were reduced from 1 to 0.5 and the applied electric current was changed from 10 to 100 mA, showing that the optimum running condition was C/N = 0.75 and I = 40 mA, under which over 97% of NO(3)(-)-N was removed and organic carbon (methanol) was completely consumed in treated water. Simultaneously, the denitrification mechanism in this system was analyzed through pH variation in effluent. The CO(2) produced from the anode acted as a good pH buffer, automatically controlling pH in the reaction zone. The intensified biofilm-electrode reactor developed in the study was effective for the treatment of groundwater polluted by nitrate. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Hanford Site groundwater monitoring: Setting, sources and methods

    International Nuclear Information System (INIS)

    Hartman, M.J.

    2000-01-01

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports

  5. Hanford Site groundwater monitoring: Setting, sources and methods

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  6. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    International Nuclear Information System (INIS)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  7. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang [Univ. Da Coruna (Spain)

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  8. Long term variations of chlorine-36 input signal to groundwater as recorded in deep unsaturated zones, south-east Australia

    International Nuclear Information System (INIS)

    Le Gal La Salle, C.; Herczeg, A.L.; Leaney, F.W.; Fifield, L.K.; Cresswell, R.G.; Kellet, J.

    1997-01-01

    The use of chlorine-36 is increasing in hydrology as its long half-life (3x10 5 a), allows useful long-term investigations into groundwater systems. Because chloride is very hydrophillic, the chlorine-36 signal should not be affected by geochemical processes in most aquatic systems. Nevertheless, over long periods of time, the chlorine-36 input to groundwater systems may vary due to factors such as: changes of production of chlorine-36 and/or changes of its distribution in the atmosphere. For instance the production of chlorine-36 might be governed by long-term terrestrial magnetic dipole strength variations as suggested for other radiogenic isotopes. Variations of the input signal of chlorine-36 should be recorded in pore waters of deep unsaturated zones. In this system, the time scale is approximated by the cumulative chloride content with depth assuming a constant input of chloride. Long-term records of chloride and chlorine-36 in two deep unsaturated-zone profiles, situated in the semi-arid Murray Basin in Australia, are presented. The two profiles record periods of approximately 20±1 to 27±2 ka and 100±5 to 220±10 ka respectively. The range of variation of the recorded time at each site is related to the estimated range of chloride deposition rate. The recharge rates are constant in both profiles with values approximating 0.4 and less than 0.1 mm.a -1 respectively. The linear relationship between chlorine-36 and stable chloride indicates that variations of chlorine-36 are governed by evapotranspiration, with a concentration factor of up to 2. Therefore the chlorine-36 is normalised to chloride to take account of the evapotranspiration process. In the soil profile at Kaniva, Western Victoria, 36 Cl/Cl'- ratio shows an increase of approximately 20% down profile. The second profile at Boree Plains, Wester, NSW, shows variations of 36 Cl/Cl'- ratio of 40% with a decreasing trend down profile. The input signal of chlorine-36/chloride is calculated by correction

  9. Response of deep groundwater to land use change in desert basins of the Trans-Pecos region, Texas, USA: Effects on infiltration, recharge, and nitrogen fluxes

    Science.gov (United States)

    Robertson, Wendy Marie; Böhlke, John Karl; Sharp, John M.

    2017-01-01

    Quantifying the effects of anthropogenic processes on groundwater in arid regions can be complicated by thick unsaturated zones with long transit times. Human activities can alter water and nutrient fluxes, but their impact on groundwater is not always clear. This study of basins in the Trans-Pecos region of Texas links anthropogenic land use and vegetation change with alterations to unsaturated zone fluxes and regional increases in basin groundwater NO3−concentrations. Median increases in groundwater NO3− (by 0.7–0.9 mg-N/l over periods ranging from 10 to 50+ years) occurred despite low precipitation (220–360 mm/year), high potential evapotranspiration (~1570 mm/year), and thick unsaturated zones (10–150+ m). Recent model simulations indicate net infiltration and groundwater recharge can occur beneath Trans-Pecos basin floors, and may have increased due to irrigation and vegetation change. These processes were investigated further with chemical and isotopic data from groundwater and unsaturated zone cores. Some unsaturated zone solute profiles indicate flushing of natural salt accumulations has occurred. Results are consistent with human-influenced flushing of naturally accumulated unsaturated zone nitrogen as an important source of NO3− to the groundwater. Regional mass balance calculations indicate the mass of natural unsaturated zone NO3− (122–910 kg-N/ha) was sufficient to cause the observed groundwater NO3− increases, especially if augmented locally with the addition of fertilizer N. Groundwater NO3− trends can be explained by small volumes of high NO3− modern recharge mixed with larger volumes of older groundwater in wells. This study illustrates the importance of combining long-term monitoring and targeted process studies to improve understanding of human impacts on recharge and nutrient cycling in arid regions, which are vulnerable to the effects of climate change and increasing human reliance on dryland ecosystems.

  10. Redox zonation for different groundwater flow paths during bank filtration: a case study at Liao River, Shenyang, northeastern China

    Science.gov (United States)

    Su, Xiaosi; Lu, Shuai; Yuan, Wenzhen; Woo, Nam Chil; Dai, Zhenxue; Dong, Weihong; Du, Shanghai; Zhang, Xinyue

    2018-03-01

    The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.

  11. Prediction of Groundwater Quality Trends Resulting from Anthropogenic Changes in Southeast Florida.

    Science.gov (United States)

    Yi, Quanghee; Stewart, Mark

    2018-01-01

    The effects of surface water flow system changes caused by constructing water-conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids (TDS) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals. This low TDS groundwater appears to be the result of pre-development conditions rather than seepage from the canals constructed after the 1950s. Numerical simulation results indicate that the time for low TDS groundwater under the ridge to reach equilibrium with high TDS surface water in the water-conservation areas and Everglades National Park are approximately 70 and 60 years, respectively. The high TDS groundwater would be restricted to the water-conservation areas and the park due to its slow eastward movement caused by small hydraulic gradients in Rocky Glades and its mixing with the low TDS groundwater under the high-recharge area of the ridge. The flow or physical boundary conditions such as high recharge rates or low hydraulic conductivity layers may affect how the spatial distribution of groundwater quality in an aquifer will change when a groundwater flow system reaches equilibrium with an associated surface water flow system. © 2017, National Ground Water Association.

  12. Application of Geospatial Techniques for Groundwater Quality and Availability Assessment: A Case Study in Jaffna Peninsula, Sri Lanka

    Directory of Open Access Journals (Sweden)

    Kuddithamby Gunaalan

    2018-01-01

    Full Text Available Groundwater is one of the most important natural resources in the northern coastal belt of Sri Lanka, as there are no major water supply schemes or perennial rivers. Overexploitation, seawater intrusion and persistent pollution of this vital resource are threatening human health as well as ecosystems in the Jaffna Peninsula. Therefore, the main intent of the present paper is to apply geospatial techniques to assess the spatial variation of groundwater quality and availability for the sustainable management of groundwater in the coastal areas. The electrical conductivity (EC and depth to water (DTW of 41 wells were measured during the period from March to June 2014, which represents the dry period of the study area. Surface interpolation, gradient analysis, a local indicators of spatial autocorrelations (LISA and statistical analysis were used to assess the quality and availability of groundwater. The results revealed that the drinking and irrigation water quality in the study area were poor and further deteriorated with the progression of the dry season. Good quality and availability of groundwater were observed in the western zone compared to other zones of the study area. A negative correlation was identified between depth to water and electrical conductivity in the western zone. Hence, relatively deep wells in the western zone of the study area can be used to utilize the groundwater for drinking, domestic and agricultural purposes. The outcomes of this study can be used to formulate policy decisions for sustainable management of groundwater resources in Jaffna Peninsula.

  13. Review of ground-water flow and transport models in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Oster, C.A.

    1982-11-01

    Models of partially saturated flow and transport in porous media have application in the analysis of existing as well as future low-level radioactive waste facilities located above the water table. An extensive literature search along with telephone and mail correspondence with recognized leading experts in the field, was conducted to identify computer models suitable for studies of low-level radioactive waste facilities located in the unsaturated zone. Fifty-five existing models were identified as potentially useful. Ten of these models were selected for further examination. This report contains a statement of the ground-water flow-contaminant transport problem, a discussion of those methods used to reduce the physical problem to a computer model, a brief discussion about the data requirements of these models. The procedure used to select the ten codes for further discussion is given, along with a list of these models. Finally, the Appendices contain the data about the fifty-five codes examined. Specifically Appendix D contains the detailed discussion of each of the ten selected codes. Included in each discussion are such items which a potential user requires in determining whether the code is suitable for his applications. Appendix E contains brief summary information about each of the fifty-five codes. Included in the summaries are identification data, authors, pertinent references, and model type.

  14. Review of ground-water flow and transport models in the unsaturated zone

    International Nuclear Information System (INIS)

    Oster, C.A.

    1982-11-01

    Models of partially saturated flow and transport in porous media have application in the analysis of existing as well as future low-level radioactive waste facilities located above the water table. An extensive literature search along with telephone and mail correspondence with recognized leading experts in the field, was conducted to identify computer models suitable for studies of low-level radioactive waste facilities located in the unsaturated zone. Fifty-five existing models were identified as potentially useful. Ten of these models were selected for further examination. This report contains a statement of the ground-water flow-contaminant transport problem, a discussion of those methods used to reduce the physical problem to a computer model, a brief discussion about the data requirements of these models. The procedure used to select the ten codes for further discussion is given, along with a list of these models. Finally, the Appendices contain the data about the fifty-five codes examined. Specifically Appendix D contains the detailed discussion of each of the ten selected codes. Included in each discussion are such items which a potential user requires in determining whether the code is suitable for his applications. Appendix E contains brief summary information about each of the fifty-five codes. Included in the summaries are identification data, authors, pertinent references, and model type

  15. Application of isotopes to the assessment of pollutant behaviour in the unsaturated zone for groundwater protection. Final report of a coordinated research project 2004-2005

    International Nuclear Information System (INIS)

    2009-05-01

    A coordinated research project (CRP) was conducted by the IAEA with the purpose of studying what isotopic and other ancillary data are required to help understand migration of potential contaminants through the unsaturated zone (UZ) into the underlying groundwater. To this end, research projects were conducted in ten countries to study recharge and infiltration processes, as well as contaminant migration in a wide variety of UZ environments. This publication contains the reports of these ten projects and a summary of the accomplishments of the individual projects. The IAEA-TECDOC reviews the usefulness and current status of application of the combined use of isotope and other hydrogeochemical tools for the assessment of flow and transport processes in the UZ. A number of isotope and hydrochemical tools have been used to simultaneously study groundwater recharge and transport of pollutants in the UZ. This information is relevant for assessing the vulnerability of groundwater to contamination. The ten projects covered climates ranging from humid to arid, and water table depths from the near surface to over 600 m. The studies included measuring movement of water, solutes, and gases through the UZ using an assortment of isotope and geochemical tracers and approaches. Contaminant issues have been studied at most of the ten sites and the UZ was found to be very effective in protecting groundwater from most heavy metal contaminants. The publication is expected to be of interest to hydrologists, hydrogeologists and soil scientists dealing with pollution aspects and protection of groundwater resources, as well as counterparts of TC projects in Member States

  16. Numerical simulation and impact assessment of a groundwater pollution based on MODFLOW

    International Nuclear Information System (INIS)

    Liu Dongxu; Si Gaohua; Zheng Junfang; Yu Jing; Liu Yong; Chen Jianjie; Ma Jinzhu

    2013-01-01

    Based on MODFLOW, SRTM3 DEM data and GIS tool, a saturated-zone groundwater flow and radionuclide transport numerical model in a research area had been developed to evaluate the migration trend and environmental impact. The results showed that 3 H transporting with the groundwater had a fast velocity and a pulse concentration which can not reduce to acceptable level within short times. that may cause groundwater pollution in downstream region. However, 90 Sr was transported slowly with the groundwater, and may only cause a pollution area of about 200 m around the source. (authors)

  17. Survey of subsurface treatment technologies for environmental restoration sites at Sandia National Laboratories, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Lucas K.; Ho, Clifford Kuofei; Wright, Jerome L.

    2003-08-01

    This report provides a survey of remediation and treatment technologies for contaminants of concern at environmental restoration (ER) sites at Sandia National Laboratories, New Mexico. The sites that were evaluated include the Tijeras Arroyo Groundwater, Technical Area V, and Canyons sites. The primary contaminants of concern at these sites include trichloroethylene (TCE), tetrachloroethylene (PCE), and nitrate in groundwater. Due to the low contaminant concentrations (close to regulatory limits) and significant depths to groundwater ({approx}500 feet) at these sites, few in-situ remediation technologies are applicable. The most applicable treatment technologies include monitored natural attenuation and enhanced bioremediation/denitrification to reduce the concentrations of TCE, PCE, and nitrate in the groundwater. Stripping technologies to remove chlorinated solvents and other volatile organic compounds from the vadose zone can also be implemented, if needed.

  18. Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-12-01

    Full Text Available Irrigated land accounts for 70% of global water usage and 30% of global agricultural production. Forty percent of this water is derived from groundwater. Approximately 20%–30% of the groundwater sources are saline and 20%–50% of global irrigation water is salinized. Salinization reduces crop yields and the number of crop varieties which can be grown on an arable holding. Structured ZVI (zero valent iron, Fe0 pellets desalinate water by storing the removed ions as halite (NaCl within their porosity. This allows an “Aquifer Treatment Zone” to be created within an aquifer, (penetrated by a number of wells (containing ZVI pellets. This zone is used to supply partially desalinated water directly from a saline aquifer. A modeled reconfigured aquifer producing a continuous flow (e.g., 20 m3/day, 7300 m3/a of partially desalinated irrigation water is used to illustrate the impact of porosity, permeability, aquifer heterogeneity, abstraction rate, Aquifer Treatment Zone size, aquifer thickness, optional reinjection, leakage and flow by-pass on the product water salinity. This desalination approach has no operating costs (other than abstraction costs (and ZVI regeneration and may potentially be able to deliver a continuous flow of partially desalinated water (30%–80% NaCl reduction for $0.05–0.5/m3.

  19. Hanford Site Groundwater Monitoring for Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2005-03-01

    This document presents the results of groundwater and vadose zone monitoring for fiscal year 2004 (October 2003 through September 2004)on the U.S. Department of Energy's Hanford Site in southeast Washington State.

  20. Rare Earth Element Concentrations and Fractionation Patterns Along Groundwater Flow Paths in Two Different Aquifer Types (i.e., Sand vs. Carbonate)

    Science.gov (United States)

    Johannesson, K. H.; Tang, J.

    2003-12-01

    Groundwater samples were collected in two different types of aquifer (i.e., Carrizo Sand Aquifer, Texas and Upper Floridan carbonate Aquifer, west-central Florida) to study the concentrations, fractionation, and speciation of rare earth elements (REE) along groundwater flow paths in each aquifer. Major solutes and dissolved organic carbon (DOC) were also measured in these groundwaters. The Carrizo Sand aquifer was sampled in October 2002 and June 2003, whereas, to date, we have only sampled the Floridan once (i.e., June 2003). The data reveal no significant seasonal differences in major solute and REE concentrations for the Carrizo. In Carrizo sand aquifer, groundwaters from relatively shallow wells (i.e., less than 167 m) in the recharge zone are chiefly Ca-Na-HCO3-Cl type waters. With flow down-gradient the groundwaters shift composition to the Na-HCO3 waters. pH and alkalinity initially decrease with flow away from the recharge zone before increasing again down-gradient. DOC is generally low (0.65 mg/L) along the flow path. REE concentrations are highest in groundwaters from the recharge zone (Nd 40.5 pmol/kg), and decrease substantially with flow down-gradient reaching relatively low and stable values (Nd 4.1-8.6 pmol/kg) roughly 10 km from the recharge zone. Generally, Carrizo groundwaters exhibit HREE-enriched shale-normalized patterns. The HREE enrichments are especially strong for waters from the recharge zone [(Yb/Nd)SN =1.7-5.6], whereas down-gradient (deep) groundwaters have flatter patterns [(Yb/Nd)SN =0.7-2.5]. All groundwaters have slightly positive Eu anomalies (Eu/Eu* 0.09-0.14) and negative Ce anomalies (Ce/Ce* -0.85 - -0.07). In the Upper Floridan Aquifer, Ca, Mg, SO4, and Cl concentrations generally increase along groundwater flow path, whereas pH and alkalinity generally decrease. DOC is higher (0.64 - 2.29 mg/L) than in the Carrizo and initially increases along the flow path and then decreases down-gradient. LREE (Nd) concentrations generally

  1. Application of Dempster-Shafer theory of evidence model to geoelectric and hydraulic parameters for groundwater potential zonation

    Science.gov (United States)

    Mogaji, Kehinde Anthony; Lim, Hwee San

    2018-06-01

    The application of a GIS - based Dempster - Shafer data driven model named as evidential belief function EBF- methodology to groundwater potential conditioning factors (GPCFs) derived from geophysical and hydrogeological data sets for assessing groundwater potentiality was presented in this study. The proposed method's efficacy in managing degree of uncertainty in spatial predictive models motivated this research. The method procedural approaches entail firstly, the database containing groundwater data records (bore wells location inventory, hydrogeological data record, etc.) and geophysical measurement data construction. From the database, different influencing groundwater occurrence factors, namely aquifer layer thickness, aquifer layer resistivity, overburden material resistivity, overburden material thickness, aquifer hydraulic conductivity and aquifer transmissivity were extracted and prepared. Further, the bore well location inventories were partitioned randomly into a ratio of 70% (19 wells) for model training and 30% (9 wells) for model testing. The synthesized of the GPCFs via applying the DS - EBF model algorithms produced the groundwater productivity potential index (GPPI) map which demarcated the area into low - medium, medium, medium - high and high potential zones. The analyzed percentage degree of uncertainty for the predicted lows potential zones classes and mediums/highs potential zones classes are >10% and used by local authorities for groundwater exploitation and management in the area.

  2. Economic Feasibility of Irrigated Agricultural Land Use Buffers to Reduce Groundwater Nitrate in Rural Drinking Water Sources

    Directory of Open Access Journals (Sweden)

    Megan M. Mayzelle

    2014-12-01

    Full Text Available Agricultural irrigation leachate is often the largest source for aquifer recharge in semi-arid groundwater basins, but contamination from fertilizers and other agro-chemicals may degrade the quality of groundwater. Affected communities are frequently economically disadvantaged, and water supply alternatives may be too costly. This study aimed to demonstrate that, when addressing these issues, environmental sustainability and market profitability are not incompatible. We investigated the viability of two low impact crops, alfalfa and vineyards, and new recharge basins as an alternative land use in recharge buffer zones around affected communities using an integrated hydrologic, socio-geographic, and economic analysis. In the southern Central Valley, California, study area, alfalfa and vineyards currently constitute 30% of all buffer zone cropland. Economic analyses of alternative land use scenarios indicate a wide range of revenue outcomes. Sector output gains and potential cost saving through land use conversion and resulting flood control result in gains of at least $2.3 billion, as compared to costs of $0.3 to $0.7 billion for treatment options over a 20 year period. Buffer zones would maintain the economic integrity of the region and concur with prevailing policy options. Thus, managed agricultural recharge buffer zones are a potentially attractive option for communities facing financial constraint and needing to diversify their portfolio of policy and infrastructure approaches to meet drinking water quality objectives.

  3. Evapotranspiration Calculation on the Basis of the Riparian Zone Water Balance

    Directory of Open Access Journals (Sweden)

    SZILÁGYI, József

    2008-01-01

    Full Text Available Riparian forests have a strong influence on groundwater levels and groundwater sustainedstream baseflow. An empirical and a hydraulic version of a new method were developed to calculateevapotranspiration values from riparian zone groundwater levels. The new technique was tested on thehydrometeorological data set of the Hidegvíz Valley (located in Sopron Hills at the eastern foothills ofthe Alps experimental catchment. Evapotranspiration values of this new method were compared tothe Penman-Monteith evapotranspiration values on a half hourly scale and to the White methodevapotranspiration values on a daily scale. Sensitivity analysis showed that the more reliable hydraulicversion of our ET estimation technique is most sensitive (i.e., linearly to the values of the saturatedhydraulic conductivity and specific yield taken from the riparian zone.

  4. Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals

    NARCIS (Netherlands)

    Grift, B. van der; Griffioen, J.

    2008-01-01

    Historic emissions from ore smelters typically cause regional soil contamination. We developed a modelling approach to assess the impact of such contamination on groundwater and surface water load, coupling unsaturated zone leaching modelling with 3D groundwater transport modelling. Both historic

  5. Investigation of land subsidence due to groundwater withdraw in Rafsanjan plain using GIS software

    International Nuclear Information System (INIS)

    Rahnama, M. B; Moafi H

    2009-01-01

    Nowadays, the purpose of predicting land subsidence is to manage the optimum usage of groundwater, which is considered according to irregular use of groundwater. Digging deep and semi-deep wells and continuous drought, mainly in wasteland and semi-wasteland zone in recent years causes the land subsidence in Rafsanjan plain. The Rafsanjan basin is located in the nearly central part of Iran in the Kerman province, with a general elevation between 1,400-1,500 m above sea level. In this research, first, the deep and semi-deep wells were investigated and groundwater table data were colleted. Second, these informations were analyzed and corrected. These data were used to create great bank of information data, to manage and program the geographic information system (GIS) software. Then by investigation of an existing land subsidence data, which were collected by GPS in August 1998 and April 1999, by the GIS software, the results show that discharging of groundwater is the main factor of the land subsidence in Rafsanjan zone. Therefore, the critical land subsidence zone of the Rafsanjan plain was determined, and precaution and recommendations are presented. (author)

  6. Hydrochemical analysis of groundwater using multivariate statistical methods - The Volta region, Ghana

    Science.gov (United States)

    Banoeng-Yakubo, B.; Yidana, S.M.; Nti, E.

    2009-01-01

    Q and R-mode multivariate statistical analyses were applied to groundwater chemical data from boreholes and wells in the northern section of the Volta region Ghana. The objective was to determine the processes that affect the hydrochemistry and the variation of these processes in space among the three main geological terrains: the Buem formation, Voltaian System and the Togo series that underlie the area. The analyses revealed three zones in the groundwater flow system: recharge, intermediate and discharge regions. All three zones are clearly different with respect to all the major chemical parameters, with concentrations increasing from the perceived recharge areas through the intermediate regions to the discharge areas. R-mode HCA and factor analysis (using varimax rotation and Kaiser Criterion) were then applied to determine the significant sources of variation in the hydrochemistry. This study finds that groundwater hydrochemistry in the area is controlled by the weathering of silicate and carbonate minerals, as well as the chemistry of infiltrating precipitation. This study finds that the ??D and ??18O data from the area fall along the Global Meteoric Water Line (GMWL). An equation of regression derived for the relationship between ??D and ??18O bears very close semblance to the equation which describes the GMWL. On the basis of this, groundwater in the study area is probably meteoric and fresh. The apparently low salinities and sodicities of the groundwater seem to support this interpretation. The suitability of groundwater for domestic and irrigation purposes is related to its source, which determines its constitution. A plot of the sodium adsorption ratio (SAR) and salinity (EC) data on a semilog axis, suggests that groundwater serves good irrigation quality in the area. Sixty percent (60%), 20% and 20% of the 67 data points used in this study fall within the medium salinity - low sodicity (C2-S1), low salinity -low sodicity (C1-S1) and high salinity - low

  7. VADOSE ZONE STUDIES AT AN INDUSTRIAL CONTAMINATED SITE: THE VADOSE ZONE MONITORING SYSTEM AND CROSS-HOLE GEOPHYSICS

    OpenAIRE

    Fernandez de Vera, Natalia; Beaujean, Jean; Jamin, Pierre; Nguyen, Frédéric; Dahan, Ofer; Vanclooster, Marnik; Brouyère, Serge

    2014-01-01

    In situ vadose zone characterization is essential to improve risk characterization and remediation measures for soil and groundwater contamination. However, most available technologies have been developed in the context of agricultural soils. Most of these methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. In addition, they are applicable only in the first meters of soils, leaving deeper vadose zones with lack of informatio...

  8. Evaluation of Soil Flushing for Application to the Deep Vadose Zone in the Hanford Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Oostrom, Martinus; Zhang, Z. F.; Carroll, Kenneth C.; Schramke, Janet A.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Gordon, Kathryn A.; Last, George V.

    2010-11-01

    Soil flushing was included in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau as a technology with the potential to remove contaminants from the vadose zone. Soil flushing operates through the addition of water, and if necessary an appropriate mobilizing agent, to mobilize contaminants and flush them from the vadose zone and into the groundwater where they are subsequently captured by a pump-and-treat system. There are uncertainties associated with applying soil flushing technology to contaminants in the deep vadose zone at the Hanford Central Plateau. The modeling and laboratory efforts reported herein are intended to provide a quantitative assessment of factors that impact water infiltration and contaminant flushing through the vadose zone and into the underlying groundwater. Once in the groundwater, capture of the contaminants would be necessary, but this aspect of implementing soil flushing was not evaluated in this effort. Soil flushing was evaluated primarily with respect to applications for technetium and uranium contaminants in the deep vadose zone of the Hanford Central Plateau.

  9. Studying The Contamination Status And The Sources Of Nitrogen Compounds In Groundwater In Ho Chi Minh City Area Using The Isotope Hydrology Techniques

    International Nuclear Information System (INIS)

    Nguyen Kien Chinh; Le Danh Chuan; Nguyen Van Nhien; Huynh Long; Tran Bich Lien; Luong Thu Tra

    2013-01-01

    The obtained data on nitrate, ammonium and total nitrogen concentration of 100 groundwater samples collected from 3 main aquifers show that although the nitrate concentration is still lower than the authorized limit of this compound in groundwater but the concentration and, specially the distribution of nitrate in shallow aquifer (Pleistocene) shows the increasing tendency in pollution level while ammonium and also total nitrogen content exceeded the authorized limit of these compounds in groundwater. For deeper aquifers (Upper and Lower Pliocene) groundwater is less polluted by nitrogen compounds. Analysis data on isotopic composition δ 15 N and δ 18 O of nitrate of the collected groundwater samples in compiling with other environmental isotopes data as δ 2 H, δ 18 O of water and natural radioactive isotopes in groundwater ( 3 H and 14 C) show that nitrate in Pleistocene groundwater is derived from both sources, geogenic source such as organic matter buried in aquifer soil layers and anthropogenic source like fertilizers, manure and septic wastes with the dominance of anthropogenic source. At the same time, obtained isotopic data proved the geogenic source of nitrate in water of the deeper aquifers. Study results on infiltration rate and infiltration depth of fertilizers and water using tracer techniques in the zone specializing in legume cultivation of the study area show the possible infiltration into shallow groundwater of water and also fertilizers. The obtained results prove the need of better management of the use of fertilizers for cultivation activities in the study area and to apply the advanced cultural manners for minimizing amount of fertilizers used. At the same time to strengthen wastes management and treatment in whole study area, especially in the zones which intake rain water as a recharge source to shallow groundwater such as Cu Chi, Hoc Mon and also inner city districts. (author)

  10. Groundwater problems studies in the Thar desert, India, using isotope techniques

    International Nuclear Information System (INIS)

    Navada, S.V.

    1999-01-01

    In groundwater management, particularly in arid regions like western Rajasthan, it is important to know the presence of modern recharge and to estimate the recharge rate to avoid over-exploitation of the groundwater resource. Isotopes can help to identify modern recharge and to estimate recharge rate to the aquifer. If modern recharge is absent, groundwater dating using radiocarbon could help to identify old groundwater or paleowaters. A number of isotope studies carried out in arid zones (particularly in the Sahara) have shown that the deep groundwater is generally very old. From these studies it was concluded that episodic large scale recharge corresponding to humid phases or pluvials occurred in these arid areas. The paper reviews our experiences on the application of isotope techniques in understanding groundwater recharge process in and western Rajasthan

  11. Geophysical logging for groundwater investigations in Southern Thailand

    Directory of Open Access Journals (Sweden)

    Phongpiyah Klinmanee

    2012-09-01

    Full Text Available In Thailand the Department of Groundwater Resources is drilling to find vital aquifers. Sometimes groundwater formations cannot be identified clearly during drilling; therefore, geophysical logging was applied after drilling and before casing.The tool used here is measuring nine parameters in one run, natural gamma ray, spontaneous potential, single point resistance, normal resistivity (AM 8’’, 16’’, 32’’, and 64’’, mud temperature and resistivity. Cutting was used to support the geophysical interpretations. In many cases the groundwater bearing zones could be clearly identified. The combination of andthe possibility choosing from nine parameters measured provided the necessary data base to identify groundwater bearingzones in different environments. It has been demonstrated that in different wells different tools are favorable than others.Based on the conclusions of this study geophysical logging in groundwater exploration is recommended as a normalstandard technique that should be applied in every new well drilled.

  12. Soil and groundwater VOCs contamination: How can electrical geophysical measurements help assess post-bioremediation state?

    Science.gov (United States)

    Kessouri, P.; Johnson, T. C.; Day-Lewis, F. D.; Slater, L. D.; Ntarlagiannis, D.; Johnson, C. D.

    2016-12-01

    The former Brandywine MD (Maryland, USA) Defense Reutilization and Marketing Office (DRMO) was designated a hazardous waste Superfund site in 1999. The site was used as a storage area for waste and excess government equipment generated by several U.S. Navy and U.S. Air Force installations, leading to soil and groundwater contamination by volatile organic compounds (VOCs). Active bioremediation through anaerobic reductive dehalogenation was used to treat the groundwater and the aquifer unconsolidated materials in 2008, with electrical geophysical measurements employed to track amendment injections. Eight years later, we used spectral induced polarization (SIP) and time domain induced polarization (TDIP) on 2D surface lines and borehole electrical arrays to assess the long term impact of active remediation on physicochemical properties of the subsurface. Within the aquifer, the treated zone is more electrically conductive, and the phase shift describing the polarization effects is higher than in the untreated zone. Bulk conductivity and phase shift are also locally elevated close to the treatment injection well, possibly due to biogeochemical transformations associated with prolonged bacterial activity. Observed SIP variations could be explained by the presence of biofilms coating the pore space and/or by-products of the chemical reactions catalyzed by the bacterial activity (e.g. iron sulfide precipitation). To investigate these possibilities, we conducted complementary well logging measurements (magnetic susceptibility [MS], nuclear magnetic resonance [NMR], gamma-ray) using 5 boreholes installed at both treated and untreated locations of the site. We also collected water and soil samples on which we conducted microbiological and chemical analyses, along with geophysical observations (SIP, MS and NMR), in the laboratory. These measurements provide further insights into the physicochemical transformations in the subsurface resulting from the treatment and highlight

  13. Evaluation of Long-term Performance of Enhanced Anaerobic Source Zone Bioremediation using mass flux

    Science.gov (United States)

    Haluska, A.; Cho, J.; Hatzinger, P.; Annable, M. D.

    2017-12-01

    Chlorinated ethene DNAPL source zones in groundwater act as potential long term sources of contamination as they dissolve yielding concentrations well above MCLs, posing an on-going public health risk. Enhanced bioremediation has been applied to treat many source zones with significant promise, but long-term sustainability of this technology has not been thoroughly assessed. This study evaluated the long-term effectiveness of enhanced anaerobic source zone bioremediation at chloroethene contaminated sites to determine if the treatment prevented contaminant rebound and removed NAPL from the source zone. Long-term performance was evaluated based on achieving MCL-based contaminant mass fluxes in parent compound concentrations during different monitoring periods. Groundwater concertation versus time data was compiled for 6-sites and post-remedial contaminant mass flux data was then measured using passive flux meters at wells both within and down-gradient of the source zone. Post-remedial mass flux data was then combined with pre-remedial water quality data to estimate pre-remedial mass flux. This information was used to characterize a DNAPL dissolution source strength function, such as the Power Law Model and the Equilibrium Stream tube model. The six-sites characterized for this study were (1) Former Charleston Air Force Base, Charleston, SC; (2) Dover Air Force Base, Dover, DE; (3) Treasure Island Naval Station, San Francisco, CA; (4) Former Raritan Arsenal, Edison, NJ; (5) Naval Air Station, Jacksonville, FL; and, (6) Former Naval Air Station, Alameda, CA. Contaminant mass fluxes decreased for all the sites by the end of the post-treatment monitoring period and rebound was limited within the source zone. Post remedial source strength function estimates suggest that decreases in contaminant mass flux will continue to occur at these sites, but a mass flux based on MCL levels may never be exceeded. Thus, site clean-up goals should be evaluated as order

  14. Chlorinated solvents in groundwater of the United States

    Science.gov (United States)

    Moran, M.J.; Zogorski, J.S.; Squillace, P.J.

    2007-01-01

    Four chlorinated solvents-methylene chloride, perchloroethene (PCE), 1,1,1-trichloroethane, and trichloroethene (TCE)-were analyzed in samples of groundwater taken throughout the conterminous United States by the U.S. Geological Survey. The samples were collected between 1985 and 2002 from more than 5,000 wells. Of 55 volatile organic compounds (VOCs) analyzed in groundwater samples, solvents were among the most frequently detected. Mixtures of solvents in groundwater were common and may be the result of common usage of solvents or degradation of one solvent to another. Relative to other VOCs with Maximum Contaminant Levels (MCLs), PCE and TCE ranked high in terms of the frequencies of concentrations greater than or near MCLs. The probability of occurrence of solvents in groundwater was associated with dissolved oxygen content of groundwater, sources such as urban land use and population density, and hydraulic properties of the aquifer. The results reinforce the importance of understanding the redox conditions of aquifers and the hydraulic properties of the saturated and vadose zones in determining the intrinsic susceptibility of groundwater to contamination by solvents. The results also reinforce the importance of controlling sources of solvents to groundwater. ?? 2007 American Chemical Society.

  15. Uranium series disequilibrium: application to studies of the groundwater regime of the Harwell region

    International Nuclear Information System (INIS)

    Ivanovich, M.; Alexander, J.

    1985-03-01

    Regional groundwater systems incorporating argillaceous formations beneath the Harwell site have been studied as part of a national research programme of investigation into the feasibility of disposal of low and intermediate radioactive wastes into argillaceous rocks. The principal aim of the programme is to establish the groundwater flow patterns using hydrogeological and geochemical methods in association with isotope contents and uranium series disequilibrium and thus provide an independent approach to the study of effective permeabilities of clay lithologies in a sedimentary sequence. Thirty four groundwater samples derived from the high permeability formations in the Harwell region have been analysed for uranium and thorium content and 234 U/ 238 U, 230 Th/ 234 U and 230 Th/ 232 Th activity ratios. The uranium isotopic signatures have been interpreted in terms of the regional groundwater circulation and mixing patterns. The most significant zones of groundwater mixing determined from uranium isotopic data are situated just beneath the edge of the confined strata. These zones coincide with the locations of hydraulic lows in the Great Oolite and the Corallian formations towards which the regional groundwaters move. It is concluded that the uranium isotopic signatures can be used to identify water masses and to evaluate mixing of groundwaters in a sedimentary sequence on a regional scale. (author)

  16. Nitrogen fate in a subtropical mangrove swamp: Potential association with seawater-groundwater exchange.

    Science.gov (United States)

    Xiao, Kai; Wu, Jiapeng; Li, Hailong; Hong, Yiguo; Wilson, Alicia M; Jiao, Jiu Jimmy; Shananan, Meghan

    2018-04-18

    Coastal mangrove swamps play an important role in nutrient cycling at the land-ocean boundary. However, little is known about the role of periodic seawater-groundwater exchange in the nitrogen cycling processes. Seawater-groundwater exchange rates and inorganic nitrogen concentrations were investigated along a shore-perpendicular intertidal transect in Daya Bay, China. The intertidal transect comprises three hydrologic subzones (tidal creek, mangrove and bare mudflat zones), each with different physicochemical characteristics. Salinity and hydraulic head measurements taken along the transect were used to estimate the exchange rates between seawater and groundwater over a spring-neap tidal cycle. Results showed that the maximum seawater-groundwater exchange occurred within the tidal creek zone, which facilitated high-oxygen seawater infiltration and subsequent nitrification. In contrast, the lowest exchange rate found in the mangrove zone caused over-loading of organic matter and longer groundwater residence times. This created an anoxic environment conducive to nitrogen loss through the anammox and denitrification processes. Potential oxidation rates of ammonia and nitrite were measured by the rapid and high-throughput method and rates of denitrification and anammox were measured by the modified membrane inlet mass spectrometry (MIMS) with isotope pairing, respectively. In the whole transect, denitrification accounted for 90% of the total nitrogen loss, and anammox accounted for the remaining 10%. The average nitrogen removal rate was about 2.07g per day per cubic meter of mangrove sediments. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Simulations of groundwater flow and particle-tracking analysis in the zone of contribution to a public-supply well in San Antonio, Texas

    Science.gov (United States)

    Lindgren, Richard L.; Houston, Natalie A.; Musgrove, MaryLynn; Fahlquist, Lynne S.; Kauffman, Leon J.

    2011-01-01

    In 2006, a public-supply well in San Antonio, Texas, was selected for intensive study to assess the vulnerability of public-supply wells in the Edwards aquifer to contamination by a variety of compounds. A local-scale, steady-state, three-dimensional numerical groundwater-flow model was developed and used in this study to evaluate the movement of water and solutes from recharge areas to the selected public-supply well. Particle tracking was used to compute flow paths and advective traveltimes throughout the model area and to delineate the areas contributing recharge and zone of contribution for the selected public-supply well.

  18. Effect of anti-VEGF treatment on retinopathy of prematurity in Zone II Stage 3+

    Directory of Open Access Journals (Sweden)

    Xiu-Mei Yang

    2018-04-01

    Full Text Available AIM: To evaluate the effect of intravitreal ranibizumab injection for retinopathy of prematurity (ROP in Zone II Stage 3+. METHODS: Data was collected for ROP patients with Zone II Stage 3+ who received intravitreal ranibizumab injections between October 2014 and Janu­ary 2017 at the Department of Ophthalmology in our hospital. No prior laser or other intravitreal treatment was done. Prior to the intervention and at each follow-up visit, fundus examination was performed. Gestational age at birth, sex, birth weight, ROP zone, ROP stage, post menstrual age (PMA at treatment, and follow-up pe­riod were recorded. The final clinical status of the retina was evaluated for each patient. The primary outcome mea­sures included ROP recurrences requiring re-treatment, complete or incomplete peripheral vascularization. RESULTS: Eighty-six eyes of 46 premature infants with Zone II Stage 3+ ROP were enrolled in the study. The mean gestational age at birth was 28.18±1.67 (range: 25 to 33wk and the mean birth weight was 1070.57±226.85 (range: 720.00 to 1650.00 g. The mean PMA at treatment was 38.32±2.99 (range: 32.29 to 46.00wk. Seventy-one eyes (82.56% were treated success­fully with intravitreal ranibizumab as monotherapy. Fifteen eyes (17.44% developed recurrent disease. The mean interval between the treatment and retreatment was 5.96±3.22 (range: 1.86 to 11.71wk. All eyes vascularized into zone III at the end of the study and among them 62 eyes (72.09% achieved complete vascu­larization. CONCLUSION: Intravitreal ranibizumab injection is an effective treatment in Zone II Stage 3+ ROP patients. More patients with longer follow-up duration are necessary to confirm the safety and efficacy of this treatment.

  19. ASSESSMENT OF GROUNDWATER QUALITY IN SUNAMGANJ OF BANGLADESH

    Directory of Open Access Journals (Sweden)

    F. Raihan, J. B. Alam

    2008-07-01

    Full Text Available In this study, groundwater quality in Sunamganj of Bangladesh was studied based on different indices for irrigation and drinking uses. Samples were investigated for sodium absorption ratio, soluble sodium percentage, residual sodium carbonate, electrical conductance, magnesium adsorption ratio, Kelly's ratio, total hardness, permeability index, residual sodium bi-carbonate to investigate the ionic toxicity. From the analytical result, it was revealed that the values of Sodium Adsorption Ratio indicate that ground water of the area falls under the category of low sodium hazard. So, there was neither salinity nor toxicity problem of irrigation water, so that ground water can safely be used for long-term irrigation. Average Total Hardness of the samples in the study area was in the range of between 215 mg/L at Tahirpur and 48250 mg/L at Bishamvarpur. At Bishamvarpur, the water was found very hard. Average total hardness of the samples was in the range of between 215 mg/L at Tahirpur and 48250 mg/L at Bishamvarpur. At Bishamvarpur, the water was found very hard. It was shown based on GIS analysis that the groundwater quality in Zone-1 could be categorized of "excellent" class, supporting the high suitability for irrigation. In Zone-2 and Zone-3, the groundwater quality was categorized as "risky" and "poor" respectively. The study has also made clear that GIS-based methodology can be used effectively for ground water quality mapping even in small catchments.

  20. Sustainable Groundwater Management Using Economic Incentive Approach

    Science.gov (United States)

    Yan, T.; Shih, J.; Sanchirico, J. N.

    2006-12-01

    Although groundwater accounts for about 20% of the water consumption in the US, recent urban development, land use changes and agricultural activities in many regions (for example, Chesapeake Bay and eastern shore of Maryland) have resulted in deleterious impacts on groundwater quality. These impacts have dramatically increased potential human health and ecological system risks. One example is nitrogen pollution delivered to local waterways from septic systems via groundwater. Conventional approaches for nitrogen removal, such as pumping and treatment (nitrification-denitrification) process, tend to be expensive. On the other hand, economic incentive approaches (such as marketable permits) have the potential to increase the efficiency of environmental policy by reducing compliance costs for regulated entities and individuals and/or achieving otherwise uneconomical pollution reduction. The success of the sulfur dioxide trading market has led to the creation of trading markets for other pollutants, especially at the regional, state, and smaller (e.g. watershed) scales. In this paper, we develop an integrated framework, which includes a groundwater flow and transport model, and a conceptual management model. We apply this framework to a synthetic set up which includes one farm and two development areas in order to investigate the potential of using economic incentive approaches for groundwater quality management. The policy analysis is carried out by setting up the objective of the modeling framework to minimize the total cost of achieving groundwater quality goals at specific observation point using either a transferable development right (TDR) system between development areas and/or using a tax for fertilizer usage in the farm area. The TDR system consists of a planning agency delineating a region into restricted-use (e.g., agriculture, open space) and high intensity zones (e.g., residential, commercial uses). The agency then endows landowners in the restricted area

  1. Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii

    Science.gov (United States)

    Gingerich, Stephen B.

    1999-01-01

    The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high

  2. Groundwater Pollution Arising From The Disposal Of Creosote Waste

    DEFF Research Database (Denmark)

    Arvin, Erik; Flyvbjerg, J.

    1992-01-01

    Creosote-contaminated groundwater contains a complex mixture of phenols, aromatic hydrocarbons and nitrogen-, sulphur- or oxygen-containing heterocyclic, aromatic compounds. One of the most important factors that limits the spreading of these contaminants in groundwater aquifers is degradation by...... enhancement of the native population of subsurface micro-organisms to degrade the contaminants (in situ treatment) and withdrawal of the groundwater followed by treatment by various wastewater treatment processes (above-ground treatment)....

  3. Porewater and groundwater geochemistry at the Down Ampney fault research site

    International Nuclear Information System (INIS)

    Metcalfe, R.; Ross, C.A.M.; Cave, M.R.; Green, K.A.; Reeder, S.; Entwisle, D.C.

    1993-01-01

    This work is performed under contract with the Commission of the European Communities in the framework of its research programme on Management and Storage of Radioactive Wastes. The importance of faults in mudrocks as groundwater conduits, and as a control on solute transport, was assessed in a Jurassic mudrock, siltstone and limestone sequence at Down Ampney, Gloucestershire. Samples were taken from a borehole array crossing an east-west trending fault, of approximately 48 m northerly downthrow. Squeezing mudrock samples yielded 18.1 to 34.5% of total porewater, which was analyzed for major/trace elements and stable O/H isotope compositions. Fault-zone porewaters have greatly increased sulphate concentrations relative to those remote from the fault. Porewater cation concentrations are related to pH, which is correlated with sulphate concentrations, probably controlled by sulphide oxidation. Control of cation concentrations is largely by pH-dependent carbonate dissolution and cation exchange reactions. Porewater C1 and Br concentrations increase downwards, but at twice the rate away from the fault as near the fault, suggesting that although meteoric waters penetrate throughout the area, they are preferentially conducted by the fault. Comparisons are made between pore- and groundwater samples from each side of the fault, and from the fault zone. Pore- and groundwater compositions are not simply related, except in the case of sulphate which, in the fault zone, is more diluted in groundwaters. 14 refs. 20 figs., 17 tabs

  4. Regional-to-site scale groundwater flow in Romuvaara

    Energy Technology Data Exchange (ETDEWEB)

    Kattilakoski, E.; Koskinen, L. [VTT Energy, Espoo (Finland)

    1999-04-01

    The work describing numerical groundwater flow modelling at the Romuvaara site serves as a background report for the safety assessment TILA-99. The site scale can roughly be taken as the scale of detailed borehole investigations, which have probed the bedrock of Romuvaara over about 2 km{sup 2} large and 1 km deep volume. The site model in this work covers an area of about 12 km{sup 2}. The depth of the model is 2200 m. The site scale flow modelling produced characteristics of the deep groundwater flow and evaluated the impact of a spent fuel repository on the natural groundwater flow conditions. It treated the hydraulic gradient in the intact rock between the repository and the fracture zone nearest to it (about 50 m off) for the block scale model, which describes the groundwater flow on the repository scale. The result quantities were the hydraulic head h (as the base quantity) and its gradient in selected cross sections and fracture zones, the flow rates around the repository, flow paths and discharge areas of the water from the repository. Two repository layouts were discussed. The numerical simulations were performed with the FEFTRA code based on the porous medium concept and the finite element method. The regional model with a no-flow boundary condition at the bottom and on the lateral edges was firstly used to confirm the hydraulic head boundary condition on the lateral edges of an interior site model (having a no-flow boundary condition at the bottom). The groundwater table was used as the hydraulic head boundary condition at the surface of each model. Both the conductivity of the bedrock (modeled with three-dimensional elements) and the transmissivities of the fracture zones (described with two-dimensional elements in the three-dimensional mesh) decreased as a function of the depth. All the results were derived from the site model. The range of variation of the hydraulic gradient immediately outside the repository was studied in the direction of the flow

  5. Upscaling of lysimeter measurements to regional groundwater nitrate distribution

    Science.gov (United States)

    Klammler, Gernot; Fank, Johann; Kupfersberger, Hans; Rock, Gerhard

    2015-04-01

    For many European countries nitrate leaching from the soil zone into the aquifer due to surplus application of mineral fertilizer and animal manure by farmers constitutes the most important threat to groundwater quality. This is a diffuse pollution situation and measures to change agricultural production have to be investigated at the aquifer scale to safeguard drinking water supply from shallow groundwater resources Lysimeters are state-of-the-art measurements for water and solute fluxes through the unsaturated zone towards groundwater at the point scale, but due to regional heterogeneities (especially concerning soil conditions) lysimeters cannot provide aquifer-wide groundwater recharge and solute leaching. Thus, in this work the numerical simulation model SIMWASER/STOTRASIM (Stenitzer, 1988; Feichtinger, 1998) for quantifying groundwater recharge and nitrate leaching at aquifer scale is applied. Nevertheless, according to Groenendijk et al. (2014) a model calibration by means of lysimeter measurements is essential, since uncalibrated models are generally far from acceptable. Thus, a lysimeter provides the basis for the parameterization of numerical simulation models. To quantify also the impact on regional nitrate distribution in the groundwater, we couple the unsaturated zone model SIMWASER/STOTRASIM with the saturated groundwater flow and solute transport model FELOW (Diersch, 2009) sequentially. In principal, the problem could be solved by the 3 dimensional equation describing variable saturated groundwater flow and solute transport. However, this is computationally prohibitive due to the temporal and spatial scope of the task, particularly in the framework of running numerous simulations to compromise between conflicting interests (i.e. good groundwater status and high agricultural yield). To account for the unknown regional distribution of crops grown and amount, timing and kind of fertilizers used a stochastic tool (Klammler et al, 2011) is developed that

  6. Computation of groundwater resources and recharge in Chithar River Basin, South India.

    Science.gov (United States)

    Subramani, T; Babu, Savithri; Elango, L

    2013-01-01

    Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km(2) have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m(3)). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10% to 15%.

  7. Installation of the multi-packer system for the long-term monitoring of deep groundwater system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Bae, Dae Seok; Kim, Chun Soo; Park, Byung Yoon; Koh, Yong Kweon; Kim, Geon Young [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-05-01

    The groundwater system in the deep geological environment is very important to evaluate the behavior of the radionuclide migration and near-field barrier system. The multi-packer system was installed to derive the long-term change of the groundwater pressure and its quality in the several isolated monitoring zones with depth in the study sites. The monitoring zones were basically determined by the spatial distribution characteristics of the conductive fracture and their hydraulic properties. To recover the natural groundwater condition, the borehole water was purged after completing the installation. From this equipment, the in-situ data will be provided to the radionuclide migration and system development study. 2 refs., 9 figs., 3 tabs. (Author)

  8. Distribution of Redox-Sensitive Groundwater Quality Parameters Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Rügge, Kirsten; Pedersen, Jørn K.

    1995-01-01

    The leachate plume stretching 300 m downgradient from the Grindsted Landfill (Denmark) has been characterized in terms of redox-sensitive groundwater quality parameters along two longitudinal transects (285 samples). Variations in the levels of methane, sulfide, iron(ll), manganese(ll), ammonium......, dinitrogen oxide, nitrite, nitrate, and oxygen in the groundwater samples indicate that methane production, sulfate reduction, iron reduction, manganese reduction, and nitrate reduction take place in the plume. Adjacent to the landfill, methanogenic and sulfatereducing zones were identified, while aerobic...... environments were identified furthest away from the landfill. In between, different redox environments, including apparent transition zones, were identified in a sequence in accordance with the thermodynamic principles. The redox zones are believed to constitute an important chemical framework...

  9. Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers.

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James R.; Coplen, Amy K

    2005-11-01

    Over the last decade, dairy farms in New Mexico have become an important component to the economy of many rural ranching and farming communities. Dairy operations are water intensive and use groundwater that otherwise would be used for irrigation purposes. Most dairies reuse their process/green water three times and utilize lined lagoons for temporary storage of green water. Leakage of water from lagoons can pose a risk to groundwater quality. Groundwater resource protection infrastructures at dairies are regulated by the New Mexico Environment Department which currently relies on monitoring wells installed in the saturated zone for detecting leakage of waste water lagoon liners. Here we present a proposal to monitor the unsaturated zone beneath the lagoons with soil water solution samplers to provide early detection of leaking liners. Early detection of leaking liners along with rapid repair can minimize contamination of aquifers and reduce dairy liability for aquifer remediation. Additionally, acceptance of vadose zone monitoring as a NMED requirement over saturated zone monitoring would very likely significantly reduce dairy startup and expansion costs. Acknowledgment Funding for this project was provided by the Sandia National Laboratories Small Business Assistance Program

  10. Conceptual and numerical models of groundwater flow and solute transport in fracture zones: Application to the Aspo Island (Sweden); Modelos conceptuales y numericos de flujo y transporte de solutos en zonas de fractura: aplicacion a la isla de Aspo (Suecia)

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, J.; Samper, J.

    2003-07-01

    Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding

  11. Linking chloride mass balance infiltration rates with chlorofluorocarbon and SF6 groundwater dating in semi-arid settings: potential and limitations.

    Science.gov (United States)

    Stadler, Susanne; Osenbruck, Karsten; Duijnisveld, Wilhelmus H M; Schwiede, Martin; Bottcher, Jurgen

    2010-09-01

    In the framework of the investigation of enrichment processes of nitrate in groundwater of the Kalahari of Botswana near Serowe, recharge processes were investigated. The thick unsaturated zone extending to up to 100 m of mostly unconsolidated sediments and very low recharge rates pose a serious challenge to study solute transport related to infiltration and recharge processes, as this extends past the conventional depths of soil scientific investigations and is difficult to describe using evidence from the groundwater due to the limitations imposed by available tracers. To determine the link between nitrate in the vadose zone and in the uppermost groundwater, sediment from the vadose zone was sampled up to a depth of 15-20 m (in one case also to 65 m) on several sites with natural vegetation in the research area. Among other parameters, sediment and water were analysed to determine chloride and nitrate concentration depth profiles. Using the chloride mass balance method, an estimation of groundwater infiltration rates produced values of 0.2-4 mm a(-1). The uncertainty of these values is, however, high. Because of the extreme thickness of the vadose zone, the travel time in the unsaturated zone might reach extreme values of up to 500 years and more. For investigations using groundwater, we applied the chlorofluorocarbons CFC-113, CFC-12, sulphur hexafluoride (SF(6)) and tritium to identify potential recharge, and found indications for some advective transport of the CFCs and SF(6), which we accounted for as constituting potential active localised recharge. In our contribution, we show the potential and limitations of the applied methods to determine groundwater recharge and coupled solute transport in semi-arid settings, and compare travel time ranges derived from soil science and groundwater investigations.

  12. Summary of New Los Alamos National Laboratory Groundwater Data Loaded in July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Steven M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-07

    This report provides information concerning groundwater monitoring data obtained by the Los Alamos National Laboratory under its interim monitoring plan and contains results for chemical constituents that meet seven screening criteria laid out in the Compliance Order on Consent. Tables are included in the report to organize the findings from the samples. The report covers groundwater samples taken from wells or springs that provide surveillance of the groundwater zones indicated in the table.

  13. Petrol contaminated groundwater treatment with air-stripper in Balassagyarmat, Hungary

    International Nuclear Information System (INIS)

    Szabo, Peter; Bernath, Balazs

    2005-01-01

    Hydrocarbon contaminated groundwater is a common environmental problem in Hungary. Leakage of underground storage tanks, pipe break or illegal tapping as well as lorry accidents can be mentioned as main reasons. MEGATERRA Ltd. elaborated, adopted and tested several groundwater clean-up methods. These methods are based on detailed survey and investigation, sampling and analysis, delineation of contaminated groundwater, risk assessment, establishment of monitoring wells, pumping tests and remediation action plan. One of these methods was implemented by MEGATERRA Ltd. in Balassagyarmat, Hungary. Contamination source was a 10 m 3 vol. simple wall underground fuel-storage tank, which had been emptied. When the remediation started in April 1998, the petrol had already been accumulated on the ground water table forming a 5-7 m wide and 10-15 m long plume being expanded to SSE-NNW direction. The area of the dissolved hydrocarbon contaminated groundwater-body was 1 000 m 2 and its concentration reached up to 30-40 mg/l TPH. The free-phase hydrocarbon layer was 10 cm thick. For the remediation of contaminated groundwater MEGATERRA Ltd. applied pump and treat method, namely groundwater pumping using extraction well, skimming of free-phase hydrocarbon, stripping of the contaminated ground water in air-stripper tower and draining of the treated groundwater into a drainage ditch. In the centre of the plume we established an extraction well with 300 mm diameter in a 500 mm borehole. Peristaltic skimmer pump was used inside the extraction well to remove the free phase petrol from the ground water surface.Because of the intense volatility of the pollutant we applied aeration (stripping) technology. The extracted contaminated groundwater was cleaned in air-stripper equipment being able to eliminate efficiently the volatile pollutants from the water. The aeration tower is a compact cylindrical shaped column with 650 mm in diameter. Its height depends on the pollutant's type The

  14. Groundwater age determination using 85Kr and multiple age tracers (SF6, CFCs, and 3H to elucidate regional groundwater flow systems

    Directory of Open Access Journals (Sweden)

    Makoto Kagabu

    2017-08-01

    New hydrological insights for the region: The groundwater ages could not be estimated using CFCs or SF6, particularly in the urban areas because of artificial additions to the concentration over almost the entire study area. However, even in these regional circumstances, apparent ages of approximately 16, 36, and not less than 55 years were obtained for three locations on the A–A’ line (recharge area, discharge area, and stagnant zone of groundwater, respectively from 85Kr measurements. This trend was also supported by lumped parameter model analysis using a time series of 3H observations. In contrast, along the B–B’ line, the groundwater age of not less than 55 years at three locations, including the recharge to discharge area, where CFCs and SF6 were not detected, implies old groundwater: this is also the area in which denitrification occurs. In the C area, very young groundwater was obtained from shallow water and older groundwater was detected at greater depths, as supported by the long-term fluctuations of the NO3−–N concentration in the groundwater. The results of this study can be effectively used as a “time axis” for sustainable groundwater use and protection of groundwater quality in the study area, where groundwater accounts for almost 100% of the drinking water resources.

  15. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than ∼1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network

  16. Distributed Temperature Sensing - a Useful Tool for Investigation of Surface Water - Groundwater Interaction

    Science.gov (United States)

    Vogt, T.; Hahn-Woernle, L.; Sunarjo, B.; Thum, T.; Schneider, P.; Schirmer, M.; Cirpka, O. A.

    2009-04-01

    In recent years, the transition zone between surface water bodies and groundwater, known as the hyporheic zone, has been identified as crucial for the ecological status of the open-water body and the quality of groundwater. The hyporheic exchange processes vary both in time and space. For the assessment of water quality of both water bodies reliable models and measurements of the exchange rates and their variability are needed. A wide range of methods and technologies exist to estimate water fluxes between surface water and groundwater. Due to recent developments in sensor techniques and data logging work on heat as a tracer in hydrological systems advances, especially with focus on surface water - groundwater interactions. Here, we evaluate the use of Distributed Temperature Sensing (DTS) for the qualitative and quantitative investigation of groundwater discharge into and groundwater recharge from a river. DTS is based on the temperature dependence of Raman scattering. Light from a laser pulse is scattered along an optical fiber of up to several km length, which is the sensor of the DTS system. By sampling the the back-scattered light with high temporal resolution, the temperature along the fiber can be measured with high accuracy (0.1 K) and high spatial resolution (1 m). We used DTS at a test side at River Thur in North-East Switzerland. Here, the river is loosing and the aquifer is drained by two side-channels, enabling us to test DTS for both, groundwater recharge from the river and groundwater discharge into the side-channels. For estimation of seepage rates, we measured highly resolved vertical temperature profiles in the river bed. For this application, we wrapped an optical fiber around a piezometer tube and measured the temperature distribution along the fiber. Due to the wrapping, we obtained a vertical resolution of approximately 5 mm. We analyzed the temperature time series by means of Dynamic Harmonic Regression as presented by Keery et al. (2007

  17. Concepts of Groundwater Occurrence and Flow Near Oak Ridge National Laboratory, Tennessee

    International Nuclear Information System (INIS)

    Moore, G.K.

    1988-01-01

    Previous studies of the area near Oak Ridge National Laboratory (ORNL) assumed that nearly all groundwater from precipitation and infiltration moves vertically down to the water table and then follows a combination of intergranular and fracture flow paths to the streams. These studies also generally assumed nearly linear flow paths, amounts of groundwater flow that are determined by differences in water-level elevation, large permeability differences between regolith and bedrock, and important hydrologic differences between named geologic units. It has been commonly stated for 37 years, for example, that the Conasauga Group has fewer cavities and is less permeable than the Chickamauga Group. All of these assumptions and conclusions are faulty. The new concepts in this report may be controversial, but they explain the available data. Only the stormflow zone from land surface to a depth of 1-2 m has a permeability large enough to transport most groundwater to the streams. Calculations show that 90-95% of all groundwater flow is in the stormflow zone, 4-9% is in a few water-producing intervals below the water table, and about 1% occurs in other intervals. The available data also show that nearly all groundwater flows through enlarged openings such as macropores, fractures, and cavities, and that there are no significant differences between regolith and bedrock or between the Conasauga Group and the Chickamauga group. Flow paths apparently are much more complex than was previously assumed. Multiple paths connect any two points below the water table, and each flow path is more likely to be tortuous than linear. Hydraulic gradients are affected by this complexity and by changes in hydraulic potential on steep hillsides. Below the water table, a large difference in the head of two points generally does not indicate a large flow rate between these points. Groundwater storage in amounts above field capacity is apparently intergranular in only the stormflow and vadose zones

  18. Vadose zone monitoring plan using geophysical nuclear logging for radionuclides discharged to Hanford liquid waste disposal facilities

    International Nuclear Information System (INIS)

    Price, R.K.

    1995-11-01

    During plutonium production at Hanford, large quantities of hazardous and radioactive liquid effluent waste have been discharged to the subsurface (vadose zone). These discharges at over 330 liquid effluent disposal facilities (ie. cribs, ditches, and ponds) account for over 3,000,000 curies of radioactive waste released into the subsurface. It is estimated that 10% of the contaminants have reached the groundwater in many places. Continuing migration may further impact groundwater quality in the future. Through the RCRA Operational Monitoring Program, a Radionuclide Logging System (RLS) has been obtained by Hanford Technical Services (HTS) and enhanced to measure the distribution of contaminants and monitor radionuclide movement in existing groundwater and vadose zone boreholes. Approximately 100 wells are logged by HTS each year in this program. In some cases, movement has been observed years after discharges were terminated. A similar program is in place to monitor the vadose zone at the Tank Farms. This monitoring plan describes Hanford Programs for monitoring the movement of radioactive contamination in the vadose zone. Program background, drivers, and strategy are presented. The objective of this program is to ensure that DOE-RL is aware of any migration of contaminants in the vadose zone, such that groundwater can be protected and early actions can be taken as needed

  19. Compendium of ordinances for groundwater protection

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    Groundwater is an extremely important resource in the Tennessee Valley. Nearly two-thirds of the Tennessee Valley's residents rely, at least in part, on groundwater supplies for drinking water. In rural areas, approximately ninety-five percent of residents rely on groundwater for domestic supplies. Population growth and economic development increase the volume and kinds of wastes requiring disposal which can lead to groundwater contamination. In addition to disposal which can lead to groundwater contamination. In addition to disposal problems associated with increases in conventional wastewater and solid waste, technological advancements in recent decades have resulted in new chemicals and increased usage in agriculture, industry, and the home. Unfortunately, there has not been comparable progress in identifying the potential long-term effects of these chemicals, in managing them to prevent contamination of groundwater, or in developing treatment technologies for removing them from water once contamination has occurred. The challenge facing residence of the Tennessee Valley is to manage growth and economic and technological development in ways that will avoid polluting the groundwater resource. Once groundwater has been contaminated, cleanup is almost always very costly and is sometimes impractical or technically infeasible. Therefore, prevention of contamination -- not remedial treatment--is the key to continued availability of usable groundwater. This document discusses regulations to aid in this prevention.

  20. Impact of radionuclide spatial variability on groundwater quality downstream from a shallow waste burial in the Chernobyl Exclusion Zone

    Science.gov (United States)

    Nguyen, H. L.; de Fouquet, C.; Courbet, C.; Simonucci, C. A.

    2016-12-01

    The effects of spatial variability of hydraulic parameters and initial groundwater plume localization on the possible extent of groundwater pollution plumes have already been broadly studied. However, only a few studies, such as Kjeldsen et al. (1995), take into account the effect of source term spatial variability. We explore this question with the 90Sr migration modeling from a shallow waste burial located in the Chernobyl Exclusion Zone to the underlying sand aquifer. Our work is based upon groundwater sampled once or twice a year since 1995 until 2015 from about 60 piezometers and more than 3,000 137Cs soil activity measurements. These measurements were taken in 1999 from one of the trenches dug after the explosion of the Chernobyl nuclear power plant, the so-called "T22 Trench", where radioactive waste was buried in 1987. The geostatistical analysis of 137Cs activity data in soils from Bugai et al. (2005) is first reconsidered to delimit the trench borders using georadar data as a covariable and to perform geostatistical simulations in order to evaluate the uncertainties of this inventory. 90Sr activity in soils is derived from 137Cs/154Eu and 90Sr/154Eu activity ratios in Chernobyl hot fuel particles (Bugai et al., 2003). Meanwhile, a coupled 1D non saturated/3D saturated transient transport model is constructed under the MELODIE software (IRSN, 2009). The previous 90Sr transport model developed by Bugai et al. (2012) did not take into account the effect of water table fluctuations highlighted by Van Meir et al. (2007) which may cause some discrepancies between model predictions and field observations. They are thus reproduced on a 1D vertical non saturated model. The equiprobable radionuclide localization maps produced by the geostatistical simulations are selected to illustrate different heterogeneities in the radionuclide inventory and are implemented in the 1D model. The obtained activity fluxes from all the 1D vertical models are then injected in a 3D

  1. Modeling Raw Sewage Leakage and Transport in the Unsaturated Zone of Carbonate Aquifer Using Carbamazepine as an Indicator

    Science.gov (United States)

    Yakirevich, A.; Kuznetsov, M.; Livshitz, Y.; Gasser, G.; Pankratov, I.; Lev, O.; Adar, E.; Dvory, N. Z.

    2016-12-01

    Fast contamination of groundwater in karstic aquifers can be caused due to leaky sewers, for example, or overflow from sewer networks. When flowing through a karst system, wastewater has the potential to reach the aquifer in a relatively short time. The Western Mountain Aquifer (Yarkon-Taninim) of Israel is one of the country's major water resources. During late winter 2013, maintenance actions were performed on a central sewage pipe that caused raw sewage to leak into the creek located in the study area. The subsequent infiltration of sewage through the thick ( 100 m) fractured/karst unsaturated zone led to a sharp increase in contaminant concentrations in the groundwater, which was monitored in a well located 29 meters from the center of the creek. Carbamazepine (CBZ) was used as an indicator for the presence of untreated raw sewage and its quantification in groundwater. The ultimate research goal was to develop a mathematical model for quantifying flow and contaminant transport processes in the fractured-porous unsaturated zone and karstified groundwater system. A quasi-3D dual permeability numerical model, representing the 'vadose zone - aquifer' system, was developed by a series of 1D equations solved in variably-saturated zone and by 3D-saturated flow and transport equation in groundwater. The 1D and 3D equations were coupled at the moving phreatic surface. The model was calibrated and applied to a simulated water flow scenario and CBZ transport during and after the observed sewage leakage event. The results of simulation showed that after the leakage stopped, significant amounts of CBZ were retained in the porous matrix of the unsaturated zone below the creek. Water redistribution and slow recharge during the dry summer season contributed to elevated CBZ concentrations in the groundwater in the vicinity of the creek and tens of meters downstream. The resumption of autumn rains enhanced flushing of CBZ from the unsaturated zone and led to an increase in

  2. Treatment of groundwater for nitrate removal by portable ion exchange resin, OSE

    International Nuclear Information System (INIS)

    Iriburo, A.; Pessi, M.; Castagnino, G.; Garat, S.; Hackenbruch, R.; Laguardia, J.; Yelpo, L.; Amondarain, A.; Brunetto, C.

    2010-01-01

    The locations of Palmitas in the Province of Soriano is supplied with groundwater from a shallow and high nitrogen content in sedimentary aquifer (Asencio Formation). Due to lack of alternative sources, groundwater or surface water, it was decided to test the water treatment from a perforation whose tenors were of the order of 51-66 mg / L of nitrates. The methodology used for the removal of nitrate is ion exchange resins .The main issue raised in this case was the disposal of effluent from the washing of the resins, because there is no collective sanitation network Palmitas nor a sufficient stream flow for discharge . Several alternatives (installation of a transitional deposit, haulage trucks, dumping at distant points, etc.), which were ruled by their poor viability and / or high costs were studied. Finally it was decided to install a device that will have three cylinders with resins were transportable, for which should have a weight less than 75 kg and those which would be used alternately. Regeneration of the resins is carried out in the city of Mercedes, distant 40 km, where the necessary water for the discharge conditions exist with a high content of sodium chloride, resulting from ion exchange. This pilot project represents a first step in treatment for nitrate removal in groundwater using transportable resins which aims to supply the public . Due to the nature of the above location , the chosen methodology had to be adapted to fulfill their duties satisfactorily. The first results of this project to a year of commissioning implementation, which has been funded by SBI and developed by his staff, in order to be used in other places with similar problems are presented in this report

  3. Hydraulic evaluation of the groundwater conditions at Finnsjoen. The effects on dilution in a domestic well

    International Nuclear Information System (INIS)

    Axelsson, C.L.; Bystroem, J.; Eriksson, Aa.; Holmen, J.; Haitjema, H.M.

    1991-09-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is presently performing a safety analysis study, SKB 91, for a final repository for spent nuclear fuel. The study is carried out for a generic repository located to the Finnsjoen area, which is one of SKBs oldest study-areas. An important part of the safety analysis is the dose calculations. Radionuclides can be transported to the biosphere via the sea, a lake, and via extraction of groundwater from drilled or dug wells. Thus, an important scenario to study is the dilution of radionuclides in a domestic well drilled in the future close to the repository. The present study is discussing; * Localization, drilling and construction of wells. * Specific capacities and chloride content of the rock mass and wells found in the Finnsjoe are. * Risk areas for future drilled wells. * Dilution in future wells drilled in fracture zones or in the hard rock in the vicinity of the repository. The evaluations show that a well pumping 6 m 3 /day, located in a fracture zone or in the rock mass, has no influence on the local groundwater flow system except for the very vicinity of the well. Consequently, a well may be drilled in the hard rock without any risk of pumping groundwater that has passed the repository. Wells may also be located anywhere in fracture zones, except for in the very discharge area, without any risk of getting groundwater affected by the repository. Modelling indicate that a well drilled in the discharge area for contaminated groundwater, may collect all groundwater from the repository. However, this is based on assumptions of homogeneous continuous fracture zones with a high hydraulic conductivity compared to the rock mass, which will give rise to a concentrated discharge area. (44 refs., 31 figs., 6 tabs.) (au)

  4. Recent Advances in Hyporheic Zone Science

    Science.gov (United States)

    Hester, E. T.

    2017-12-01

    The hyporheic zone exists beneath and adjacent to streams and rivers where surface water and groundwater interact. It provides unique habitat for aquatic organisms, can buffer surface water temperatures, and can be highly reactive, processing nutrients and improving water quality. The hyporheic zone is the subject of considerable research and the past year in WRR witnessed important conceptual advances. A key focus was rigorous evaluation of mixing between surface water and groundwater that occurs within hyporheic sediments. Field observations indicate that greater mixing occurs in the hyporheic zone than in deeper groundwater, and this distinction has been explored by recent numerical modeling studies, but more research is needed to fully understand the causes. A commentary this year in WRR proposed that hyporheic mixing is enhanced by a combination of fluctuating boundary conditions and multiscale physical and chemical spatial heterogeneity but confirmation is left to future research. This year also witnessed the boundaries of knowledge pushed back in a number of other key areas. Field quantification of hyporheic exchange and reactions benefited from advances including the use and interpretation of high frequency nutrient sensors, actively heater fiber optic sensors, isotope tracers, and geophysical methods such as electrical resistivity imaging. Conceptual advances were made in understanding the effects of unsteady environmental conditions (e.g., tides and storms) and preferential flow on hyporheic processes. Finally, hyporheic science is being brought increasingly to bear on applied issues such as informing nutrient removal crediting for stream restoration practices, for example in the Chesapeake Bay watershed.

  5. Using groundwater levels to estimate recharge

    Science.gov (United States)

    Healy, R.W.; Cook, P.G.

    2002-01-01

    Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods.

  6. Influence of the tension-saturated zone on contaminant migration in shallow water-table regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.

    1982-01-01

    Groundwater discharge represents a major pathway for the return to the biosphere of contaminants that are released to the subsurface environment. An understanding of the transport processes in groundwater discharge zones is therefore an important consideration in pathway analyses associated with the environmental assessment of proposed waste-management facilities. Shallow water tables are a common characteristic of groundwater discharge zones, particularly in humid climatic regions. In this paper, the results of field tests, laboratory tests and numerical simulations are used to show that under shallow water-table conditions, the zone of tension saturation can result in a rapid and highly disproportionate water-table response to precipitation. It is further shown that this response can result in complex migration patterns that would not be predicted by the classical approaches to solute transport modelling and that the response could result in large and highly transient inputs to surface water

  7. Quantifying Groundwater Availability in Fractured Rock Aquifers of Northern Ugandan Refugee Settlements

    Science.gov (United States)

    Frederiks, R.; Lowry, C.; Mutiibwa, R.; Moisy, S.; Thapa, L.; Oriba, J.

    2017-12-01

    In the past two years, Uganda has witnessed an influx of nearly one million refugees who have settled in the sparsely populated northwestern region of the country. This rapid population growth has created high demand for clean water resources. Water supply has been unable to keep pace with demand because the fractured rock aquifers underlying the region often produce low yielding wells. To facilitate management of groundwater resources, it is necessary to quantify the spatial distribution of groundwater. In fractured rock aquifers, there is significant spatial variability in water storage because fractures must be both connected and abundant for water to be extracted in usable quantities. Two conceptual models were evaluated to determine the groundwater storage mechanism in the fractured crystalline bedrock aquifers of northwestern Uganda where by permeability is controlled by faulting, which opens up fractures in the bedrock, or weathering, which occurs when water dissolves components of rock. In order to test these two conceptual models, geologic well logs and available hydrologic data were collected and evaluated using geostatistical and numerical groundwater models. The geostatistical analysis focused on identifying spatially distributed patterns of high and low water yield. The conceptual models were evaluated numerically using four inverse groundwater MODFLOW models based on head and estimated flux targets. The models were based on: (1) the mapped bedrock units using an equivalent porous media approach (2) bedrock units with the addition of known fault zones (3) bedrock units with predicted units of deep weathering based on surface slopes, and (4) bedrock units with discrete faults and simulated weathered zones. Predicting permeable zones is vital for water well drilling in much of East Africa and South America where there is an abundance of both fractured rock and tectonic activity. Given that the population of these developing regions is growing, the demand

  8. Effects of groundwater withdrawals from the Hurricane Fault zone on discharge of saline water from Pah Tempe Springs, Washington County, Utah

    Science.gov (United States)

    Gardner, Philip M.

    2018-04-10

    Pah Tempe Springs, located in Washington County, Utah, contribute about 95,000 tons of dissolved solids annually along a 1,500-foot gaining reach of the Virgin River. The river gains more than 10 cubic feet per second along the reach as thermal, saline springwater discharges from dozens of orifices located along the riverbed and above the river on both banks. The spring complex discharges from fractured Permian Toroweap Limestone where the river crosses the north-south trending Hurricane Fault. The Bureau of Reclamation Colorado River Basin Salinity Control Program is evaluating the feasibility of capturing and desalinizing the discharge of Pah Tempe Springs to improve downstream water quality in the Virgin River. The most viable plan, identified by the Bureau of Reclamation in early studies, is to capture spring discharge by pumping thermal groundwater from within the Hurricane Fault footwall damage zone and to treat this water prior to returning it to the river.Three multiple-day interference tests were conducted between November 2013 and November 2014, wherein thermal groundwater was pumped from fractured carbonate rock in the fault damage zone at rates of up to 7 cubic feet per second. Pumping periods for these tests lasted approximately 66, 74, and 67 hours, respectively, and the tests occurred with controlled streamflows of approximately 2.0, 3.5, and 24.5 cubic feet per second, respectively, in the Virgin River upstream from the springs reach. Specific conductance, water temperature, and discharge were monitored continuously in the river (upstream and downstream of the springs reach) at selected individual springs, and in the pumping discharge during each of the tests. Water levels were monitored in three observation wells screened in the thermal system. Periodic stream and groundwater samples were analyzed for dissolved-solids concentration and the stable isotopes of oxygen and hydrogen. Additional discrete measurements of field parameters (specific

  9. 2015 Groundwater Monitoring Report Project Shoal Area: Subsurface Correction Unit 447

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Rick [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-04-01

    The Project Shoal Area in Nevada was the site of a 12-kiloton-yield underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. The corrective action strategy is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. Although water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an evaluation of the groundwater monitoring network will be conducted when water levels at the site have stabilized to the agreement of both the U.S. Department of Energy Office of Legacy Management and the Nevada Division of Environmental Protection.

  10. Perched-Water Evaluation for the Deep Vadose Zone Beneath the B, BX, and BY Tank Farms Area of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Oostrom, Martinus; Carroll, KC; Chronister, Glen B.

    2013-06-28

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located a few meters above the water table within the B, BX, and BY Tank Farms area. The perched water contains elevated concentrations of uranium and technetium-99. This perched-water zone is important to consider in evaluating the future flux of contaminated water into the groundwater. The study described in this report was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and 3) associated groundwater impact.

  11. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  12. Ground-water geology of the coastal zone, Long Beach-Santa Ana area, California

    Science.gov (United States)

    Poland, J.F.; Piper, A.M.

    1956-01-01

    This paper is the first chapter of a comprehensive report on the ground-water features in the southern part of the coastal plain in Los Angeles and Orange Counties, Calif., with special reference to the effectiveness of the so-called coastal barrier--the Newport-Inglewood structural zone--in restraining landwar,-1 movement of saline water. The coastal plain in Los Angeles and Orange Counties, which covers some 775 square miles, sustains a large urban and rural population, diverse industries, and intensive agricultural developments. The aggregate ground-water withdrawal in 1945 was about 400,000 acre-feet a year, an average of about 360 million gallons a day. The dominant land-form elements are a central lowland plain with tongues extending to the coast, bordering highlands and foothills, and a succession of low hills and mesas aligned northwestward along the coastal edge of the central low- land plain. These low hills and mesas are the land-surface expression of geologic structure in the Newport-Inglewood zone. The highland areas that border the inland edge of the coastal plain are of moderate altitude and relief; most of the ridge crests range from 1,400 to 2,500 feet in altitude, but Santiago Peak in the Santa Ana Mountains attains a height of 5,680 feet above sea level. From these highlands the land surface descends across foothills and aggraded alluvial aprons to the central lowland, Downey Plain, here defined as the surface formed by alluvial aggradation during the post-Pleistocene time of rising base level. The Newport-Inglewood belt of hills and plains (mesas) has a maximum relief of some 500 feet but is widely underlain at a depth of about 30 feet by a surface of marine plantation. As initially formed in late Pleistocene time that surface was largely a featureless plain. Thus the present land-surface forms within the Newport-Inglewood belt measure the earth deformation that has occurred there since late Pleistocene time and so are pertinent with respect to

  13. The effect of river fluctuation frequencies and amplitudes on the extent of the river-aquifer mixing zone and on the dilution of substances

    Science.gov (United States)

    Derx, Julia; Blaschke, Alfred Paul

    2010-05-01

    The river-aquifer mixing zone has been identified in the past by both observations in the field and by applying coupled groundwater models. Its implications are important e.g. for macrozoobenthos or fish eggs, which react sensitively to changes in flow velocities. The groundwater quality is also strongly affected due to the transport of substances from the river into the aquifer and can be altered due to these mixing processes. At a field site east of Vienna, we recently found that the Danube River surface level fluctuations induce circular flow patterns within the mixing zone and cause a greater dispersion of substances dissolved in groundwater. This has possibly important implications for river management, for example, in the case of anthropogenic river level fluctuations. In this paper, we investigate these findings more generally for groundwater-river interaction with different river fluctuation amplitudes and frequencies. We apply an unsaturated-saturated groundwater model and perform an extensive systematic model analysis to identify the effects of river fluctuation frequencies and amplitudes on the extent and location of the mixing zone. Thereby we investigate the influence of the river bank slopes, the hydraulic aquifer properties and the exchange conditions (infiltration and groundwater exfiltration). The estimated extents and locations of the mixing zone are presented for a range of river fluctuation frequencies and amplitudes, for aquifers of high to low permeabilities, for flat and steep riverbanks and for infiltration and groundwater exfiltration. These parameters demonstrate the significant correlation to the extent of the mixing zone and can help to give an estimate for management strategies. Furthermore, we give an overview of how much a non-reactive substance dissolved in groundwater is diluted, due to dispersion within the mixing zone, for the full set of scenarios performed during our systematic model analysis.

  14. Recent Advances in the Area of Groundwater

    Science.gov (United States)

    Bahr, J. M.

    2017-12-01

    Groundwater related papers published in Water Resources Research in the last year range from experimental and modeling studies of pore scale flow and reactive transport to assessments of changes in water storage at the scale of regional aquifers enabled by satellite observations. Important societal needs motivating these studies include sustainability of groundwater resources of suitable quantity and quality for human use, protection of groundwater-dependent ecosystems in streams, wetlands, lakes and coastal areas, and assessment of the feasibility of subsurface sequestration of carbon dioxide and long-lived radioactive wastes. Eight general areas that generated ten or more papers within the period July 2016 to June 2017 are the following: aquifer heterogeneity (including geostatistical and inverse methods for parameter estimation), flow and transport in the unsaturated zone (including recharge to and evaporative losses from aquifers), multiphase flow and transport (including processes relevant to carbon sequestration), groundwater-surface water interactions (particularly hyporheic exchange), flow and transport in fractured media, novel remote sensing and geophysical techniques for aquifer characterization and assessment of groundwater dynamics, freshwater-saltwater interactions (particularly in coastal aquifers), and reactive solute transport. This presentation will highlight selected findings in each of these areas.

  15. Thermal Removal of Tritium from Concrete and Soil to Reduce Groundwater Impacts - 13197

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Dennis G. [Savannah River National Laboratory, Building 773-42A, Aiken, South Carolina 29808 (United States); Blount, Gerald C. [Savannah River Nuclear Solutions (United States); Wells, Leslie H.; Cardoso, Joao E.; Kmetz, Thomas F.; Reed, Misty L. [U.S Department of Energy-Savannah River Site (United States)

    2013-07-01

    Legacy heavy-water moderator operations at the Savannah River Site (SRS) have resulted in the contamination of equipment pads, building slabs, and surrounding soil with tritium. At the time of discovery the tritium had impacted the shallow (< 3-m) groundwater at the facility. While tritium was present in the groundwater, characterization efforts determined that a significant source remained in a concrete slab at the surface and within the associated vadose zone soils. To prevent continued long-term impacts to the shallow groundwater a CERCLA non-time critical removal action for these source materials was conducted to reduce the leaching of tritium from the vadose zone soils and concrete slabs. In order to minimize transportation and disposal costs, an on-site thermal treatment process was designed, tested, and implemented. The on-site treatment consisted of thermal detritiation of the concrete rubble and soil. During this process concrete rubble was heated to a temperature of 815 deg. C (1,500 deg. F) resulting in the dehydration and removal of water bound tritium. During heating, tritium contaminated soil was used to provide thermal insulation during which it's temperature exceeded 100 deg. C (212 deg. F), causing drying and removal of tritium. The thermal treatment process volatiles the water bound tritium and releases it to the atmosphere. The released tritium was considered insignificant based upon Clean Air Act Compliance Package (CAP88) analysis and did not exceed exposure thresholds. A treatability study evaluated the effectiveness of this thermal configuration and viability as a decontamination method for tritium in concrete and soil materials. Post treatment sampling confirmed the effectiveness at reducing tritium to acceptable waste site specific levels. With American Recovery and Reinvestment Act (ARRA) funding three additional treatment cells were assembled utilizing commercial heating equipment and common construction materials. This provided a

  16. Root zone effects on tracer migration in arid zones

    International Nuclear Information System (INIS)

    Tyler, S.W.; Walker, G.R.

    1994-01-01

    The study of groundwater recharge and soil water movement in arid regions has received increased attention in the search for safe disposal sites for hazardous wastes. In passing through the upper 1 to 2 m of most soil profiles, tracers indicative of recharge such as Cl, 2 H, 18 O, Br, 3 H, and 56 Cl are subjected to a wide range of processes not encountered deeper in the profile. This transition zone, where water enters as precipitation and leaves as recharge, is often ignored when environmental tracers are used to estimate deep soil water flux and recharge, yet its effect may be profound. In this work, we reexamine the processes of root extraction and its effect on the velocity and distribution of tracers. Examples are presented for idealized conditions, which show clearly the relation between the root zone processes and the deep drainage or recharge. The results indicate that, when recharge is small and root zone processes are not accounted for, tracer techniques can significantly overestimate recharge until the tracer has moved well below the root zone. By incorporating simple models of root zone processes, a clearer understanding of tracer distributions and a more accurate estimate of recharge can then be made. 11 refs., 9 figs

  17. Hyporheic Microbes Database - Microbes in the hyporheic zone

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The hyporheic zone (i.e., where surface & groundwater converge) is a geomorphic feature that contributes to the overall health of streams & rivers. Much of...

  18. Isotopic and hydrochemical evidence of groundwater recharge in the Hopq Desert, NW China

    International Nuclear Information System (INIS)

    Jian Ge; Tao Wang; Yafei Chen; Jiansheng Chen; Hohai University, Nanjing, Jiangsu Province; Lu Ge; Chao Wang

    2016-01-01

    Artesian wells and lakes are found in the hinterland of the Hopq Desert, China. Analysis of soil profiles has revealed that the local vadose zone is always in a state of water deficit because of strong evaporation, and precipitation cannot infiltrate into the groundwater. This research indicated that soil water and surface water are recharged by groundwater and that the groundwater is recharged via an external source. Analyses of the stable isotopes in precipitation and of the water budget suggested that surface water in the Qiangtang Basin on the Tibetan Plateau might correspond to the groundwater in the Hopq Desert. (author)

  19. Vadose zone characterisation at industrial contaminated sites

    OpenAIRE

    Fernandez de Vera, Natalia; Dahan, Ofer; Dassargues, Alain; Vanclooster, Marnik; Nguyen, Frédéric; Brouyère, Serge

    2015-01-01

    In order to improve risk characterization and remediation measures for soil and groundwater contamination, there is a need to improve in situ vadose zone characterization. However, most available technologies have been developed in the context of agricultural soils. Such methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. To overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in ...

  20. Explicit treatment for Dirichlet, Neumann and Cauchy boundary conditions in POD-based reduction of groundwater models

    Science.gov (United States)

    Gosses, Moritz; Nowak, Wolfgang; Wöhling, Thomas

    2018-05-01

    In recent years, proper orthogonal decomposition (POD) has become a popular model reduction method in the field of groundwater modeling. It is used to mitigate the problem of long run times that are often associated with physically-based modeling of natural systems, especially for parameter estimation and uncertainty analysis. POD-based techniques reproduce groundwater head fields sufficiently accurate for a variety of applications. However, no study has investigated how POD techniques affect the accuracy of different boundary conditions found in groundwater models. We show that the current treatment of boundary conditions in POD causes inaccuracies for these boundaries in the reduced models. We provide an improved method that splits the POD projection space into a subspace orthogonal to the boundary conditions and a separate subspace that enforces the boundary conditions. To test the method for Dirichlet, Neumann and Cauchy boundary conditions, four simple transient 1D-groundwater models, as well as a more complex 3D model, are set up and reduced both by standard POD and POD with the new extension. We show that, in contrast to standard POD, the new method satisfies both Dirichlet and Neumann boundary conditions. It can also be applied to Cauchy boundaries, where the flux error of standard POD is reduced by its head-independent contribution. The extension essentially shifts the focus of the projection towards the boundary conditions. Therefore, we see a slight trade-off between errors at model boundaries and overall accuracy of the reduced model. The proposed POD extension is recommended where exact treatment of boundary conditions is required.