Sample records for zone soil water

  1. Soil water nitrate concentrations in giant cane and forest riparian buffer zones (United States)

    Jon E. Schoonover; Karl W. J. Williard; James J. Zaczek; Jean C. Mangun; Andrew D. Carver


    Soil water nitrate concentrations in giant cane and forest riparian buffer zones along Cypress Creek in southern Illinois were compared to determine if the riparian zones were sources or sinks for nitrogen in the rooting zone. Suction lysimeters were used to collect soil water samples from the lower rooting zone in each of the two vegetation types. The cane riparian...


    African Journals Online (AJOL)


    It is usual practice to use available soil water content as a criterion for deciding when irrigation is needed. Soil water content is determined by using soil measuring techniques (capacitance probe) that describe the depletion of available soil water see fig1 and 2. The irrigation scheduling is based on the water treatment (i.e. ...

  3. Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment (United States)

    Han, Dongmei; Zhou, Tiantian


    Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.

  4. Water extraction and implications on soil moisture sensor placement in the root zone of banana

    Directory of Open Access Journals (Sweden)

    Alisson Jadavi Pereira da Silva

    Full Text Available ABSTRACT: The knowledge on spatial and temporal variations of soil water storage in the root zone of crops is essential to guide the studies to determine soil water balance, verify the effective zone of water extraction in the soil and indicate the correct region for the management of water, fertilizers and pesticides. The objectives of this study were: (i to indicate the zones of highest root activity for banana in different development stages; (ii to determine, inside the zone of highest root activity, the adequate position for the installation of soil moisture sensors. A 5.0 m3 drainage lysimeter was installed in the center of an experimental area of 320 m2. Water extraction was quantified inside the lysimeter using a 72 TDR probe. The concept of time stability was applied to indicate the position for sensor installation within the limits of effective water extraction. There are two patterns of water extraction distribution during the development of banana and the point of installation of sensors for irrigation management inside the zone of highest root activity is not constant along the crop development.

  5. Analysis of the NASA AirMOSS Root Zone Soil Water and Soil Temperature from Three North American Ecosystems (United States)

    Hagimoto, Y.; Cuenca, R. H.


    Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.

  6. Study on soil-water retention curves for loess aerated zone

    International Nuclear Information System (INIS)

    Guo Zede; Cheng Jinru; Deng An; Masayuki Mukai; Hideo Kamiyama


    The author introduces the measuring method and results of soil-water retention curves of 46 samples taken from ground surface to water table of 28 m depth at CIRP's Field Test Site. The results indicate that the soil-water retention characteristics vary significantly with depth, and the loess-aerated zone at the site can be divided into five layers. From the results, unsaturated hydraulic parameters are deduced, such as conductivity, specific water capacity and equivalent pore diameter. The water velocity calculated from these parameters is satisfactorily consistent with that one obtained from 3 H tracing test carried out at the site

  7. Bioventing - a new twist on soil vapor remediation of the vadose zone and shallow ground water

    International Nuclear Information System (INIS)

    Yancheski, T.B.; McFarland, M.A.


    Bioventing, which is a combination of soil vapor remediation and bioremediation techniques, may be an innovative, cost-effective, and efficient remedial technology for addressing petroleum contamination in the vadose zone and shallow ground water. The objective of bioventing is to mobilize petroleum compounds from the soil and ground water into soil vapor using soil vapor extraction and injection technology, and to promote the migration of the soil vapor upward to the turf root zone for degradation by active near-surface microbiological activity. Promoting and maintaining optimum microbiological activity in the turf root rhizosphere is a key component to the bioventing technique. Preliminary ongoing USEPA bioventing pilot studies (Kampbell, 1991) have indicated that this technique is a promising remediation technology, although feasibility studies are not yet complete. However, based on the preliminary data, it appears that proper bioventing design and implementation will result in substantial reductions of petroleum compounds in the capillary zone and shallow ground water, complete degradation of petroleum compounds in the turf root zone, and no surface emissions. A bioventing system was installed at a site in southern Delaware with multiple leaking underground storage tanks in early 1992 to remediate vadose zone and shallow ground-water contaminated by petroleum compounds. The system consists of a series of soil vapor extraction and soil vapor/atmospheric air injection points placed in various contamination areas and a central core remediation area (a large grassy plot). This system was chosen for this site because it was least costly to implement and operate as compared to other remedial alternatives (soil vapor extraction with carbon or catalytic oxidation of off-gas treatment, insitu bioremediation, etc.), and results in the generation of no additional wastes

  8. Acid-base status of soils in groundwater discharge zones — relation to surface water acidification (United States)

    Norrström, Ann Catrine


    Critical load calculations have suggested that groundwater at depth of 2 m in Sweden is very sensitive to acid load. As environmental isotope studies have shown that most of the runoff in streams has passed through the soil, there is a risk in the near future of accelerated acidification of surface waters. To assess the importance of the last soil horizon of contact before discharge, the upper 0-0.2m of soils in seven discharge zones were analysed for pools of base cations, acidity and base saturation. The sites were about 3-4 m 2 in size and selected from two catchments exposed to different levels of acid deposition. The soils in the seven sites had high concentrations of exchangeable base cations and consequently high base saturation. The high correlation ( r2 = 0.74) between base saturation in the soils of the discharge zones and mean pH of the runoff waters suggested that the discharge zone is important for surface water acidification. The high pool of exchangeable base cations will buffer initially against the acid load. As the cation exchange capacity (meq dm -3) and base saturation were lower in the sites from the catchment receiving lower deposition, these streams may be more vulnerable to acidification in the near future. The high concentration of base cations in non-exchangeable fractions may also buffer against acidification as it is likely that some of these pools will become exchangeable with time.

  9. [Retaining and transformation of incoming soil N from highland to adjacent terrestrial water body in riparian buffer zone]. (United States)

    Wang, Qing-cheng; Yu, Hong-li; Yao, Qin; Han, Zhuang-xing; Qiao, Shu-liang


    Highland soil nitrogen can enter adjacent water body via erosion and leaching, being one of the important pollutants in terrestrial water bodies. Riparian buffer zone is a transitional zone between highland and its adjacent water body, and a healthy riparian buffer zone can retain and transform the incoming soil N through physical, biological, and biochemical processes. In this paper, the major pathways through which soil nitrogen enters terrestrial water body and the mechanisms the nitrogen was retained and transformed in riparian buffer zone were introduced systematically, and the factors governing the nitrogen retaining and transformation were analyzed from the aspects of hydrological processes, soil characters, vegetation features, and human activities. The problems existing in riparian buffer zone study were discussed, and some suggestions for the further study in China were presented.

  10. Benzo(a)pyrene accumulation in soils of technogenic emission zone by subcritical water extraction method (United States)

    Sushkova, Svetlana; Minkina, Tatiana; Kizilkaya, Ridvan; Mandzhieva, Saglara; Batukaev, Abdulmalik; Bauer, Tatiana; Gulser, Coskun


    The purpose of research is the assessment of main marker of polycyclic aromatic hydrocarbons contamination, benzo[a]pyrene (BaP) content in soils of emission zone of the power complex plant in soils with use of ecologically clean and effective subcritical water extraction method. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Plant emissions from burning coal. In 2000, monitoring plots were established at different distances from the NPS (1.0-20.0 km). Soil samples for the determination of soil properties and the contents of BaP were taken from a depth of 0-20 cm. The soil cover in the region under study consisted of ordinary chernozems, meadow-chernozemic soils, and alluvial meadow soils. This soil revealed the following physical and chemical properties: Corg-3.1-5.0%, pH-7.3-7.6, ECE-31.2-47.6 mmol(+)/100g; CaCO3-0.2-1.0%, the content of physical clay - 51-67% and clay - 3-37%. BaP extraction from soils was carried out by a subcritical water extraction method. Subcritical water extraction of BaP from soil samples was conducted in a specially developed extraction cartridge made of stainless steel and equipped with screw-on caps at both ends. It was also equipped with a manometer that included a valve for pressure release to maintain an internal pressure of 100 atm. The extraction cartridge containing a sample and water was placed into an oven connected to a temperature regulator under temperature 250oC and pressure 60 atm. The BaP concentration in the acetonitrile extract was determined by HPLC. The efficiency of BaP extraction from soil was determined using a matrix spike. The main accumulation of pollutant in 20 cm layer of soils is noted directly in affected zone on the plots situated at 1.2, 1.6, 5.0, 8.0 km from emission source in the direction of prevailing winds. The maximum quantity of a pollutant was founded in the soil of the plot located mostly close to a source of pollution in the direction of prevailing winds

  11. Stochastic Modeling Of Field-Scale Water And Solute Transport Through The Unsaturated Zone Of Soils

    DEFF Research Database (Denmark)

    Loll, Per

    were previously thought not to pose a leaching threat. Thus, a reevaluation of our understanding of the mechanisms governing chemical fate in the unsaturated zone of soils has been necessary, in order for us to make better decisions regarding widely different issues such as agricultural management...... of pesticides and nutrients, and risk identification and assessment at polluted (industrial) sites. One of the key factors requiring our attention when we are trying to predict field-scale chemical leaching is spatial variability of the soil and the influence it exerts on both water and chemical transport...

  12. Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers.

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James R.; Coplen, Amy K


    Over the last decade, dairy farms in New Mexico have become an important component to the economy of many rural ranching and farming communities. Dairy operations are water intensive and use groundwater that otherwise would be used for irrigation purposes. Most dairies reuse their process/green water three times and utilize lined lagoons for temporary storage of green water. Leakage of water from lagoons can pose a risk to groundwater quality. Groundwater resource protection infrastructures at dairies are regulated by the New Mexico Environment Department which currently relies on monitoring wells installed in the saturated zone for detecting leakage of waste water lagoon liners. Here we present a proposal to monitor the unsaturated zone beneath the lagoons with soil water solution samplers to provide early detection of leaking liners. Early detection of leaking liners along with rapid repair can minimize contamination of aquifers and reduce dairy liability for aquifer remediation. Additionally, acceptance of vadose zone monitoring as a NMED requirement over saturated zone monitoring would very likely significantly reduce dairy startup and expansion costs. Acknowledgment Funding for this project was provided by the Sandia National Laboratories Small Business Assistance Program

  13. Assimilation of a thermal remote sensing-based soil moisture proxy into a root-zone water balance model (United States)

    Crow, W. T.; Kustas, W. P.


    Two types of Soil Vegetation Atmosphere Transfer (SVAT) modeling approaches are commonly applied to monitoring root-zone soil water availability. Water and Energy Balance (WEB) SVAT modeling are based forcing a prognostic water balance model with precipitation observations. In constrast, thermal Remote Sensing (RS) observations of canopy radiometric temperatures can be integrated into purely diagnostic SVAT models to predict the onset of vegetation water stress due to low root-zone soil water availability. Unlike WEB-SVAT models, RS-SVAT models do not require observed precipitation. Using four growings seasons (2001 to 2004) of profile soil moisture, micro-meteorology, and surface radiometric temperature observations at the USDA's OPE3 site, root-zone soil moisture predictions made by both WEB- and RS-SVAT modeling approaches are intercompared with each other and availible root- zone soil moisture observations. Results indicate that root-zone soil moisture estimates derived from a WEB- SVAT model have slightly more skill in detecting soil moisture anomalies at the site than comporable predictions from a competing RS-SVAT modeling approach. However, the relative advantage of the WEB-SVAT model disappears when it is forced with lower-quality rainfall information typical of continental and global-scale rainfall data sets. Most critically, root-zone soil moisture errors associated with both modeling approaches are sufficiently independent such that the merger of both information from both proxies - using either simple linear averaging or an Ensemble Kalman filter - creates a merge soil moisture estimate that is more accurate than either of its parent components.

  14. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen) (United States)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil


    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  15. Contributions of water supply from the weathered bedrock zone to forest soil quality (United States)

    James H. Witty; Robert C. Graham; Kenneth R. Hubbert; James A. Doolittle; Jonathan A. Wald


    One measure of forest soil quality is the ability of the soil to support tree growth. In mediterranean-type ecosystems, such as most of California's forests, there is virtually no rainfall during the summer growing season, so trees must rely on water stored within the substrate. Water is the primary limitation to productivity in these forests. Many forest soils in...

  16. [Transportation and risk assessment of heavy metal pollution in water-soil from the Riparian Zone of Daye Lake, China]. (United States)

    Zhang, Jia-quan; Li, Xiu; Zhang, Quan-fa; Li, Qiong; Xiao, Wen-sheng; Wang, Yong-kui; Zhang, Jian-chun; Gai, Xi-guang


    Each 20 water samples and soil samples (0-10 cm, 10-20 cm) were collected from the riparian zone of Daye Lake in dry season during March 2013. Heavy metals (Cu, Ph, Cd, Zn) have been detected by flame atomic absorption spectrometric (FAAS). The results showed that the average concentrations of Cu, Pb, Cd, Zn in the water were 7.14, 25.94, 15.72 and 37.58 microg x L(-1), respectively. The concentration of Cu was higher than the five degree of the surface water environment quality standard. The average concentrations of Cu, Pb, Cd, Zn in soil(0-10 cm) were 108.38, 53.92, 3.55, 139.26 mg x kg(-1) in soil (10-20 cm) were 93.00, 51.72, 2.08, 171.00 mg x kg(-1), respectively. The Cd concentrations were higher than the three grade value of the national soil environment quality standard. The transportation of Pb from soil to water was relatively stable, and Zn was greatly influenced by soil property and the surrounding environment from soil to water. The transformation of heavy metal in west riparian zone was higher than that of east riparian zone. The potential environmental risk was relatively high. Cu, Pb, Cd, Zn were dominated by residue fraction of the modified BCR sequential extraction method. The overall migration order of heavy metal element was: Pb > Cu > Cd > Zn. There were stronger transformation and higher environmental pollution risk of Cu, Pb. The index of assessment and potential ecological risk coefficient indicated that heavy metal pollution in soil (0-10 cm) was higher than the soil (10-20 cm), Cd was particularly serious.

  17. Geochemical controls on the composition of soil pore waters beneath a mixed waste disposal site in the unsaturated zone

    International Nuclear Information System (INIS)

    Rawson, S.A.; Hubbell, J.M.


    Soil pore waters are collected routinely to monitor a thick unsaturated zone that separates a mixed waste disposal site containing transuranic and low-level radioactive wastes from the Snake River Plain aquifer. The chemistry of the soil pore waters has been studied to evaluate the possible control on the water composition by mineral equilibria and determine the extent, if any, of migration of radionuclides from the disposal site. Geochemical codes were used to perform speciation calculations for the waters. The results of speciation calculations suggest that the installation of the lysimeters affects the observed silica contents of the soil pore waters. The results also establish those chemical parameters that are controlled by secondary mineral precipitation. 15 refs., 6 figs., 1 tab

  18. Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone

    Directory of Open Access Journals (Sweden)

    M. Sprenger


    Full Text Available Understanding the influence of vegetation on water storage and flux in the upper soil is crucial in assessing the consequences of climate and land use change. We sampled the upper 20 cm of podzolic soils at 5 cm intervals in four sites differing in their vegetation (Scots Pine (Pinus sylvestris and heather (Calluna sp. and Erica Sp and aspect. The sites were located within the Bruntland Burn long-term experimental catchment in the Scottish Highlands, a low energy, wet environment. Sampling took place on 11 occasions between September 2015 and September 2016 to capture seasonal variability in isotope dynamics. The pore waters of soil samples were analyzed for their isotopic composition (δ2H and δ18O with the direct-equilibration method. Our results show that the soil waters in the top soil are, despite the low potential evaporation rates in such northern latitudes, kinetically fractionated compared to the precipitation input throughout the year. This fractionation signal decreases within the upper 15 cm resulting in the top 5 cm being isotopically differentiated to the soil at 15–20 cm soil depth. There are significant differences in the fractionation signal between soils beneath heather and soils beneath Scots pine, with the latter being more pronounced. But again, this difference diminishes within the upper 15 cm of soil. The enrichment in heavy isotopes in the topsoil follows a seasonal hysteresis pattern, indicating a lag time between the fractionation signal in the soil and the increase/decrease of soil evaporation in spring/autumn. Based on the kinetic enrichment of the soil water isotopes, we estimated the soil evaporation losses to be about 5 and 10 % of the infiltrating water for soils beneath heather and Scots pine, respectively. The high sampling frequency in time (monthly and depth (5 cm intervals revealed high temporal and spatial variability of the isotopic composition of soil waters, which can be critical

  19. Soil Moisture/ Tree Water Status Dynamics in Mid-Latitude Montane Forest, Southern Sierra Critical Zone Observatory, CA (United States)

    Hartsough, P. C.; Malazian, A.; Meadows, M. W.; Roudneva, K.; Storch, J.; Bales, R. C.; Hopmans, J. W.


    As part of an effort to understand the root-water-nutrient interactions in the multi-dimensional soil/vegetation system surrounding large trees, in August 2008 we instrumented a mature white fir (Abies concolor) and the surrounding soil to better define the water balance in a single tree. In July 2010, we instrumented a second tree, a Ponderosa pine (Pinus ponderosa) in shallower soils on a drier, exposed slope. The trees are located in a mixed-conifer forest at an elevation of 2000m in the Southern Sierra Critical Zone Observatory. The deployment of more than 250 sensors to measure temperature, volumetric water content, matric potential, and snow depth surrounding the two trees complements sap-flow measurements in the trunk and stem-water-potential measurements in the canopy to capture the seasonal cycles of soil wetting and drying. We show here the results of a multi-year deployment of soil moisture sensors as critical integrators of hydrologic/ biotic interaction in a forested catchment. Sensor networks such as deployed here are a valuable tool in closing the water budget in dynamic forested catchments. While the exchange of energy, water and carbon is continuous, the pertinent fluxes are strongly heterogeneous in both space and time. Thus, the prediction of the behavior of the system across multiple scales constitutes a major challenge.

  20. Environmental isotope profiles of the soil water in loess unsaturated zone in semi-arid areas of china

    International Nuclear Information System (INIS)

    Lin Ruifen; Wei Keqin


    According to the IAEA Research Contract No. 9402, soil cores CHN/97 and CHN/98 were taken from loess deposits of China in Inner-Mongolia and Shanxi Province, respectively. Isotope and chemical constituents of the interstitial water from these cores, compared with data obtained from the same places before, were used for estimating the infiltration rate. Tritium profiles from the loess unsaturated zone show clearly defined peaks of 1963 fallout. It implies that piston-flow model is the dominant process for soil water movement in the highly homogeneous loess deposits. It has been shown from this study that vertical infiltration through the unsaturated zone accounts for 12%-13% of the annual precipitation and perhaps is not the main mechanism of groundwater recharge in semi-arid loess areas. (author)

  1. Carbon storage, soil carbon dioxide efflux and water quality in three widths of piedmont streamside management zones (United States)

    Erica F. Wadl; William Lakel; Michael Aust; John Seiler


    Streamside management zones (SMZs) are used to protect water quality. Monitoring carbon pools and fluxes in SMZs may a good indicator of the SMZ’s overall function and health. In this project we evaluated some of these pools and fluxes from three different SMZ widths (30.5, 15.3, and 7.6 m) in the Piedmont of Virginia. We quantified carbon storage in the soil (upper 10...

  2. From soil water to surface water – how the riparian zone controls element transport from a boreal forest to a stream

    Directory of Open Access Journals (Sweden)

    F. Lidman


    Full Text Available Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr and other parameters such as sulfate and total organic carbon (TOC. The results showed that the concentrations of most investigated elements increased substantially (up to 60 times as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the

  3. Emerging organic pollutants in the vadose zone of a soil aquifer treatment system: Pore water extraction using positive displacement. (United States)

    Sopilniak, Alexander; Elkayam, Roy; Rossin, Anna Voloshenko; Lev, Ovadia


    Trace organic compounds in effluents, water streams and aquifers are amply reported. However, the mobile pool of Emerging Organic Contaminants (EOCs) in the deep parts of the vadose zone is hard to estimate, due to difficulties in extraction of sufficient quantity of pore water. Here, we present a new methodology for depth profiling of EOCs in pore water by Positive Displacement Extraction (PDE): Pore water extraction from unsaturated soil samples is carried out by withdrawal of soil cores by direct-push drilling and infiltrating the core by organics free water. We show that EOC concentrations in the water eluted in the plateau region of the inverse breakthrough curve is equal to their pore water concentrations. The method was previously validated for DOC extraction, and here the scope of the methodology is extended to pore water extraction for organic pollutants analysis. Method characteristics and validation were carried out with atrazine, simazine, carbamazepine, venlafaxine, O-desmethylvenlafaxine and caffeine in the concentration range of several ng to several μg/liter. Validation was carried out by laboratory experiments on three different soils (sandy, sandy-clayey and clayey). Field studies in the vadose zone of a SAT system provided 27 m deep EOC profiles with less than 1.5 m spatial resolution. During the percolation treatment, carbamazepine remained persistent, while the other studied EOCs were attenuated to the extent of 50-99%.The highest degradation rate of all studied EOCs was in the aerobic zone. EOC levels based on PDE and extraction by centrifugation were compared, showing a positive bias for centrifugation. Copyright © 2017 Elsevier Ltd. All rights reserved.


    Directory of Open Access Journals (Sweden)

    Donald Gabriels


    Full Text Available Steeplands, when cleared from forests, are susceptible to erosion by rainfall and are prone toland degradation and desertification processes.The dominant factors affecting those erosion processes and hence the resulting runoff and soillosses are the aggressiveness of the rainfall during the successive plant growth stages, the soilcover-management, but also the topography (slope length and slope steepness. Depending onthe type of (agro climatological zone, the runoff water should either be limited and controlled(excess of water or should be enhanced and collected from the slope on the downslopecropping area if water is short (negative soil water balance.Examples are given of practical applications in Ecuador where alternative soil conservationscenarios are proposed in maize cultivation in small fields on steep slopes. Adding peas andbarley in the rotation of maize and beans resulted only in a slight decrease of the soil losses.Subdividing the fields into smaller parcels proved to give the best reduction in soil loss.Because the average slope steepness is high, erosion control measures such as contourploughing and strip cropping have only small effects.Erosion and its effect on productivity of a sorghum -livestock farming system are assessed onfour different areas in Venezuela with different levels of erosion. A Productivity Index (PIand an Erosion Risk Index (ERI were used to classify the lands for soil conservationpriorities and for alternative land uses. Intensive agriculture can be applied on slightly erodedsoil, whereas severely eroded soil can be used with special crops or agro-forestry. Semiintensiveagriculture is possible on moderately eroded soil.Reforestation of drylands in Chili requires understanding of the infiltration/runoff process inorder to determine dimensions of water harvesting systems. Infiltration processes in semi-aridregions of Chile were evaluated, using rainfall experiments and constant-head infiltrationmeasurements

  5. The use of high vacuum soil vapor extraction to improve contaminant recovery from ground water zones of low transmissivity

    International Nuclear Information System (INIS)

    Brown, A.; Farrow, J.R.C.; Burgess, W.


    This study examines the potential for enhancing hydrocarbon contaminant mass recovery from ground water using high vacuum soil vapor extraction (SVE). The effectiveness of this form of remediation is compared with the effectiveness of conventional pump-and-treat. This study focuses on the performance of a high vacuum SVE system at two ground water monitoring wells (MW-17 and MW-65b) at a site in Santa Barbara, California, US. The site is a highly characterized site with vadose zone and ground water petroleum hydrocarbon contamination (gasoline). The ground water wells are located beyond a defined area of vadose zone soil contamination. Ground water hydrocarbon contamination [light non-aqueous phase liquid (LNAPL) and dissolved phase] is present at each of the wells. the ground water wells have been part of a low-flow, pump-and-treat, ground water treatment system (GWTS) since August, 1986. The low transmissivity of the aquifer sediments prevent flow rates above approximately 0.02 gpm (0.01 l/min) per well

  6. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China (United States)

    Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi


    The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.

  7. Spatial Variability of Soil-Water Storage in the Southern Sierra Critical Zone Observatory: Measurement and Prediction (United States)

    Oroza, C.; Bales, R. C.; Zheng, Z.; Glaser, S. D.


    Predicting the spatial distribution of soil moisture in mountain environments is confounded by multiple factors, including complex topography, spatial variably of soil texture, sub-surface flow paths, and snow-soil interactions. While remote-sensing tools such as passive-microwave monitoring can measure spatial variability of soil moisture, they only capture near-surface soil layers. Large-scale sensor networks are increasingly providing soil-moisture measurements at high temporal resolution across a broader range of depths than are accessible from remote sensing. It may be possible to combine these in-situ measurements with high-resolution LIDAR topography and canopy cover to estimate the spatial distribution of soil moisture at high spatial resolution at multiple depths. We study the feasibility of this approach using six years (2009-2014) of daily volumetric water content measurements at 10-, 30-, and 60-cm depths from the Southern Sierra Critical Zone Observatory. A non-parametric, multivariate regression algorithm, Random Forest, was used to predict the spatial distribution of depth-integrated soil-water storage, based on the in-situ measurements and a combination of node attributes (topographic wetness, northness, elevation, soil texture, and location with respect to canopy cover). We observe predictable patterns of predictor accuracy and independent variable ranking during the six-year study period. Predictor accuracy is highest during the snow-cover and early recession periods but declines during the dry period. Soil texture has consistently high feature importance. Other landscape attributes exhibit seasonal trends: northness peaks during the wet-up period, and elevation and topographic-wetness index peak during the recession and dry period, respectively.

  8. Salts in soil and water within the arid climate zone. Effects on engineering geology, exemplified from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Jergman, K.


    In the arid climate zone, where the potential evaporation is much higher than the precipitation, soil and water generally are enriched by salts. In this research project it has been pointed out how salts affect engineering geology in different ways. The extensive study of the Al Khafji area in Saudi Arabia has shown that salts have affected soil and water so that - the crust hardness has increased due to a development of duricrust. The strength of the upper part of the crust is similar to weak rock. - the coastal terrace area moves vertically - groundwater affects the salinization of the soil profile A general description of the effect of salts on engineering geology can be summarized as below: The precipitated salts affect the profile so that 1.Stability changes. 2.Swelling alternatively contraction can occur due to variations of the water content. 3.Vegetation growth becomes difficult or impossible. 4.Excavation work is difficult. 5.Aggregate sources are affected. 6.Concrete corrosion is caused. 7.There is demand for proper field and laboratory tests and for special design criteria.The occurance of salts in the water causes due special conditions that 1.The soil profile is enriched by salts 2. The plants are damaged. 3.Concrete corrosion is developed. 4.The water is not suitable for drinking or irrigation purposes. 5. The density increases to such an extent that it effects the direction of the groundwater flow.

  9. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010 (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.


    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above

  10. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials (United States)

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.


    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68

  11. Lateral water flux in the unsaturated zone: A mechanism for the formation of spatial soil heterogeneity in a headwater catchment (United States)

    John P. Gannon; Kevin J. McGuire; Scott W. Bailey; Rebecca R. Bourgault; Donald S. Ross


    Measurements of soil water potential and water table fluctuations suggest that morphologically distinct soils in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire formed as a result of variations in saturated and unsaturated hydrologic fluxes in the mineral soil. Previous work showed that each group of these soils had distinct water table...

  12. Soil and Soil Water Relationships


    Easton, Zachary M.; Bock, Emily


    Discusses the relationships between soil, water and plants. Discusses different types of soil, and how these soils hold water. Provides information about differences in soil drainage. Discusses the concept of water balance.

  13. [Soil seed bank and its correlations with aboveground vegetation and environmental factors in water level fluctuating zone of Danjiangkou Reservoir, Central China]. (United States)

    Liu, Rui-Xue; Zhan, Juan; Shi, Zhi-Hua; Chen, Long-qing


    Taking the water level fluctuating zone of the Danjiangkou Reservoir as a case, and by the method of hierarchical cluster analysis, the soil seed banks at 37 sampling plots within the areas of 140-145 m elevation were divided into 6 groups, and the species composition, density, and diversity of the soil seed banks among the groups were compared. The differences between the soil seed banks and the aboveground vegetations were analyzed by S0rensen similarity coefficient, and the correlations among the soil seed banks, aboveground vegetations, and environmental factors were explored by principal component analysis (PCA) and multivariable regression analysis. At the same altitudes of the water level fluctuating zone, the species composition of the soil seed banks had obvious heterogeneity, and the density and diversity indices of the soil seed banks among different groups were great. The similarity coefficient between the soil seed banks and aboveground vegetations was low, and the species number in the soil seed banks was obviously lesser than that in the aboveground vegetations. The density of the soil seed banks was highly positively correlated with the aboveground vegetations coverage and species number and the soil texture, but highly negatively correlated with the soil water-holding capacity and soil porosity.

  14. Material Weakening of Slip Zone Soils Induced by Water Level Fluctuation in the Ancient Landslides of Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    Yu-Yong Jiao


    Full Text Available This experimental study investigated the effect of repeated wetting and drying on the reduction of slip zone soils taken from the Huangtupo landslide in the Three Gorges Reservoir, China. The variation process of the physical property and substance composition of the slip zone soils under the wetting-drying cycles was studied through liquid and plastic limit test and X-ray diffraction test. The results indicate that (1 the shearing strength of the slip zone soil dramatically decreased after one wetting-drying cycle and then gradually decreased until reaching a relatively stable state at the fourth cycle; (2 the plasticity index of the slip zone soil varied with increasing number of cycles and a variation process opposite to that of the strength value was observed; and (3 the clay mineral content in the slip zone soil increased and the calcite and quartz contents relatively decreased with increasing number of cycles. The variations in the plasticity index of the slip zone soil, as well as the increase in its clay mineral content, play important roles in the strength reduction. The results of this study provide a foundation for revealing the deformation and damage mechanism of landslides in reservoir banks.

  15. [Transfer characteristic and source identification of soil heavy metals from water-level-fluctuating zone along Xiangxi River, three-Gorges Reservoir area]. (United States)

    Xu, Tao; Wang, Fei; Guo, Qiang; Nie, Xiao-Qian; Huang, Ying-Ping; Chen, Jun


    Transfer characteristics of heavy metals and their evaluation of potential risk were studied based on determining concentration of heavy metal in soils from water-level-fluctuating zone (altitude:145-175 m) and bank (altitude: 175-185 m) along Xiangxi River, Three Gorges Reservoir area. Factor analysis-multiple linear regression (FA-MLR) was employed for heavy metal source identification and source apportionment. Results demonstrate that, during exposing season, the concentration of soil heavy metals in water-level-fluctuation zone and bank showed the variation, and the concentration of soil heavy metals reduced in shallow soil, but increased in deep soil at water-level-fluctuation zone. However, the concentration of soil heavy metals reduced in both shallow and deep soil at bank during the same period. According to the geoaccumulation index,the pollution extent of heavy metals followed the order: Cd > Pb > Cu > Cr, Cd is the primary pollutant. FA and FA-MLR reveal that in soils from water-level-fluctuation zone, 75.60% of Pb originates from traffic, 62.03% of Cd is from agriculture, 64.71% of Cu and 75.36% of Cr are from natural rock. In soils from bank, 82.26% of Pb originates from traffic, 68.63% of Cd is from agriculture, 65.72% of Cu and 69.33% of Cr are from natural rock. In conclusion, FA-MLR can successfully identify source of heavy metal and compute source apportionment of heavy metals, meanwhile the transfer characteristic is revealed. All these information can be a reference for heavy metal pollution control.

  16. Response of soil physico-chemical properties to restoration approaches and submergence in the water level fluctuation zone of the Danjiangkou Reservoir, China. (United States)

    Shu, Xiao; Zhang, KeRong; Zhang, QuanFa; Wang, WeiBo


    With the completion of the Danjiangkou Dam, the impoundment and drainage of dams can significantly alter shorelines, hydrological regime, and sediment and can result in the loss of soil and original riparian vegetation. Revegetation may affect soil properties and have broad important implications both for ecological services and soil recovery. In this work, we investigated the soil properties under different restoration approaches, and before and after submergence in the water level fluctuation zone (WLFZ) of the Danjiangkou Reservoir. Soil physical (bulk density and soil moisture), chemical (pH, soil organic carbon, nitrogen, phosphorus and potassium contents), and heavy metals were determined. This study reported that restoration approaches have impacts on soil moisture, pH, N, soil organic carbon, P, K and heavy metals in the WLFZ of the Danjiangkou Reservoir. Our results indicated that different restoration approaches could increase the soil moisture while decrease soil pH. Higher soil organic carbon in propagule banks transplantation (PBT) and shrubs restoration (SR) indicate that PBT and SR may provide soil organic matter more quickly than trees restoration (TR). SR and TR could significantly improve the soil total P and available P. PBT and SR could improve the soil total K and available K. SR and TR could significantly promote Cu and Zn adsorption, and Pb and Fe release by plant. Submergence could significantly affect the soil pH, NO 3 - -N, NH 4 + -N, total P and available P. Submergence could promote NO 3 - -N and available P adsorption, and NH 4 + -N and total P release by soil. The soil quality index (SQI) values implied that TR and PBT greatly improved soil quality. The present study suggests that PBT and TR could be effective for soil restoration in WLFZ of the Danjiangkou Reservoir. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Experimental investigation of long-lived radionuclide migration in floodplain soils of Chernobyl NPP 10-km zone and risk estimation of ground water pollution

    International Nuclear Information System (INIS)

    Zhirnov, V.G.; Popov, V.E.


    Heavily polluted with long-lived radionuclides, the floodplain soils of Chernobyl NPP 30-km zone is a potential danger for the river system and reservoirs of the Ukraine. In 1991, the building of a dam along the river left bank was started to isolate the river-bed. However, during the spring rise of water in the river body, the water will all the same infiltrate through the soil to the floodplain because of hydraulic pressure. The main goal of this work was to estimate the strontium 90 content in the top water and it's dependence on the depth of water over the soil surface. We studied the strontium 90 different chemical forms distribution in the left bank part of the floodplain and experimentally determined the strontium 90 washing out by river water taken into account it's upward flow

  18. [Fractions and adsorption characteristics of phosphorus on sediments and soils in water level fluctuating zone of the Pengxi River, a tributary of the Three Gorges Reservoir]. (United States)

    Sun, Wen-Bin; Du, Bin; Zhao, Xiu-Lan; He, Bing-Hui


    The sediment, one of the key factors leading to the eutrophication of water bodies, is an important ecological component of natural water body. In order to investigate the morphological characteristics and moving-transiting rule of phosphorus in the sediments of the Pengxi River, a tributary of the Three Gorges Reservoir, the distributions of different phosphorus forms on the three cross-section in the sediments and three soil types of riparian zone were investigated using the sequential extraction method. The characteristics of phosphorus adsorption on the sediments were also investigated by batch experiments. The equilibrium phosphorus concentrations at zero adsorption (EPC0) on those sediments were estimated using the Henry linear models. The results show that the total phosphorus (TP) contents of these sediments and soils of riparian zone were 0.80-1.45 g x kg(-1) and 0.65-1.16 g x kg(-1), respectively. Phosphorus in sediments and soils were divided into inorganic phosphorus (IP) and organic phosphorus (Or-P), and the inorganic phosphorus was the dominant component of TP. Of the inorganic phosphorus fractions, the percentages of phosphorus bounded to calcium (Ca-P) and occluded phosphorus (O-P) from sediments were higher than 80%, implying that the contents of phosphorus were mainly influenced by their bedrocks and the sedimentary environmental conditions, not by the activities of human beings. The fractions of Ca-P and O-P were the dominant components of inorganic phosphorus in alluvial soil and purple soil, while the fraction of O-P was the highest in the paddy soil. The EPC0 values of the sediments from the sections of Huangshi, Shuangjiang and Gaoyang were 0.08, 0.13 and 0.11 mg x L(-1) respectively, but the EPC0 values of the alluvial soil, purple soil and paddy soil located in riparian zone were 0.08, 0.09 and 0.04 mg x L(-1), respectively. Correlation analysis shows that the values of EPC0 positively related to the contents of total phosphorus and clay

  19. Soil water balance approach in root zone of maize (95-TZEEY ...

    African Journals Online (AJOL)

    Water balance approach is the simplest method in the study of plant water consumption. The experiment was established in 4.0 x 5.0 m plots in a randomized complete block design containing six (6) treatments water application (3-days, 4-days, 5-days, 6-days, 7-days and 8-days which correspond to T1, T2, T3, T4, T5 and ...

  20. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China. (United States)

    Ye, Chen; Li, Siyue; Zhang, Yulong; Zhang, Quanfa


    The water-level-fluctuation zone (WLFZ) between the elevations of 145-175 m in China's Three Gorges Reservoir has experienced a novel hydrological regime with half a year (May-September) exposed in summer and another half (October-April) submerged in winter. In September 2008 (before submergence) and June 2009 (after submergence), soil samples were collected in 12 sites in the WLFZ and heavy metals (Hg, As, Cr, Cd, Pb, Cu, Zn, Fe, and Mn) were determined. Enrichment factor (EF), factor analysis (FA), and factor analysis-multiple linear regression (FA-MLR) were employed for heavy metal pollution assessment, source identification, and source apportionment, respectively. Results demonstrate spatial variability in heavy metals before and after submergence and elements of As, Cd, Pb, Cu, and Zn are higher in the upper and low reaches. FA and FA-MLR reveal that As and Cd are the primary pollutants before submergence, and over 45% of As originates from domestic sewage and 59% of Cd from industrial wastes. After submergence, the major contaminants are Hg, Cd, and Pb, and traffic exhaust contributes approximately 81% to Hg and industrial effluent accounts about 36% and 73% for Cd and Pb, respectively. Our results suggest that increased shipping and industrial wastes have deposited large amounts of heavy metals which have been accumulated in the WLFZ during submergence period. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Soil chemistry and ground-water quality of the water-table zone of the surficial aquifer, Naval Submarine Base Kings Bay, Camden County, Georgia, 1998 and 1999 (United States)

    Leeth, David C.


    In 1998, the U.S. Geological Survey, in cooperation with the U.S. Department of the Navy, began an investigation to determine background ground-water quality of the water-table zone of the surficial aquifer and soil chemistry at Naval Submarine Base Kings Bay, Camden County, Georgia, and to compare these data to two abandoned solid- waste disposal areas (referred to by the U.S. Navy as Sites 5 and 16). The quality of water in the water-table zone generally is within the U.S. Environmental Protection Agency (USEPA) drinking-water regulation. The pH of ground water in the study area ranged from 4.0 to 7.6 standard units, with a median value of 5.4. Water from 29 wells is above the pH range and 3 wells are within the range of the USEPA secondary drinking-water regulation (formerly known as the Secondary Maximum Contaminant Level or SMCL) of 6.5 to 8.5 standard units. Also, water from one well at Site 5 had a chloride concentration of 570 milligrams per liter (mg/L,), which is above the USEPA secondary drinking-water regulation of 250 mg/L. Sulfate concentrations in water from two wells at Site 5 are above the USEPA secondary drinking-water regulation of 250 mg/L. Of 22 soil-sampling locations for this study, 4 locations had concentrations above the detection limit for either volatile organic compounds (VOCs), base-neutral acids (BNAs), or pesticides. VOCs detected in the study area include toluene in one background sample; and acetone in one background sample and one sample from Site 16--however, detection of these two compounds may be a laboratory artifact. Pesticides detected in soil at the Submarine Base include two degradates of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT): 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (4,4'-DDD) in one background sample, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (4,4'-DDE) in one background sample and one sample from Site 16; and dibenzofuran in one sample from Site 16. BNAs were detected in one background sample and in two

  2. Spatiotemporal Heterogeneity of Dissolved Organic Carbon in Waters and Soils in a Snow-dominated Headwater Catchment: Investigations at Reynolds Creek Critical Zone Observatory, Owyhee County, Idaho (United States)

    Radke, A. G.; Godsey, S.; Lohse, K. A.; Huber, D. P.; Patton, N. R.; Holbrook, S.


    The non-uniform distribution of precipitation in snowmelt-driven systems—the result of blowing and drifting snow—is a primary driver of spatial heterogeneity in vegetative communities and soil development. Snowdrifts may increase bedrock weathering below them, creating deeper soils and the potential for greater fracture flow. These snowdrift areas are also commonly more productive than the snow-starved, scoured areas where wind has removed snow. Warming-induced changes in the fraction of precipitation falling as snow, and therefore subject to drifting, may significantly affect carbon dynamics on multiple timescales. The focus of this study is to understand the coupled hydrological and carbon dynamics in a heterogeneous, drift-dominated watershed. We seek to determine the paths of soil water and groundwater in a small headwater catchment (Reynolds Mountain East, Reynolds Creek Critical Zone Observatory, Idaho, USA). Additionally, we anticipate quantifying the flux of dissolved organic carbon through these paths, and relate this to zones of greater vegetative productivity. We deduce likely flowpaths through a combination of soil water, groundwater, and precipitation characterization. Along a transect running from a snowdrift to the stream, we measure hydrometric and hydrochemical signatures of flow throughout the snowmelt period and summer. We then use end-member-mixing analysis to interpret flowpaths in light of inferred subsurface structure derived from drilling and electrical resistance tomography transects. Preliminary results from soil moisture sensors suggest that increased bedrock weathering creates pathways by which snowmelt bypasses portions of the soil, further increasing landscape heterogeneity. Further analysis will identify seasonal changes in carbon sourcing for this watershed, but initial indications are that spring streamwater is sourced primarily from soil water, with close associations between soil carbon and DOC.

  3. [Distribution and risk assessment of mercury species in soil of the water-level-fluctuating zone in the Three Gorges Reservoir]. (United States)

    Zhang, Cheng; Chen, Hong; Wang, Ding-Yong; Sun, Rong-Guo; Zhang, Jin-Yang


    To investigate pollution level and ecological risk of mercury in soils of the water-level-fluctuating zone in the Three Gorges Reservoir Region, 192 surface soil samples from 14 counties (districts) in Chongqing were obtained. Concentrations of THg and Hg species, bioavailable Hg were analyzed and discussed. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index (E(r)) were applied to assess the pollution status and potential ecological risk of THg and Hg species, respectively. The results showed that significant differences in the concentration of THg were found in soils of water-level-fluctuating zone in the Three Gorges Reservoir. The THg concentration ranged from 22.4 to 393.5 microg x kg(-1), with an average of (84.2 +/- 54.3) microg x kg(-1). 76.6% of the samples' THg content was higher than the soil background value in the Three Gorges Reservoir Region. The percentage of five mercury species (water-soluble Hg, HCl-soluble Hg, KOH-soluble Hg, H2O2-soluble Hg, residue Hg) in soils were 4.1%, 15.5%, 18.3%, 10.9%, 51.3%, respectively. The average concentrations of bioavailable mercury varied between 19.7-36.6 microg x kg(-1), and the percentage of bioavailable Hg was 22.1%-51.6% of THg. According to the geoaccumulation index, the soils were lightly polluted by Hg. Håkanson single potential ecological risk index evaluation showed that Hg species had a low potential ecological risk, moreover, soils of water-level-fluctuating zone in the Three Gorges Reservoir were at low ecological risk levels as evaluated by bioavailable Hg. While, the assessment results based on THg of soils was much higher than that based on the Hg species. Two methods of evaluation showed that the I(geo) and E(r) values calculated based on the Hg species better reflected the actual pollution levels of soils and its hazard to aquatic organisms.

  4. Designing sustainable soils in Earth's critical zone (United States)

    Banwart, Steven Allan; de Souza, Danielle Maia; Menon, Manoj; Nikolaidis, Nikolaos; Panagos, Panos; Vala Ragnardsdottir, Kristin; Rousseva, Svelta; van Gaans, Pauline


    The demographic drivers of increasing human population and wealth are creating tremendous environmental pressures from growing intensity of land use, resulting in soil and land degradation worldwide. Environmental services are provided through multiple soil functions that include biomass production, water storage and transmission, nutrient transformations, contaminant attenuation, carbon and nitrogen storage, providing habitat and maintaining the genetic diversity of the land environment. One of the greatest challenges of the 21st century is to identify key risks to soil, and to design mitigation strategies to manage these risks and to enhance soil functions that can last into the future. The scientific study of Earth's Critical Zone (CZ), the thin surface layer that extends vertically from the top of the tree canopy to the bottom of aquifers, provides an essential integrating scientific framework to study, protect and enhance soil functions. The research hypothesis is that soil structure, the geometric architecture of solids, pores and biomass, is a critical indicator and essential factor of productive soil functions. The experimental design selects a network of Critical Zone Observatories (CZOs) as advanced field research sites along a gradient of land use intensity in order to quantify soil structure and soil processes that dictate the flows and transformations of material and energy as soil functions. The CZOs focus multidisciplinary expertise on soil processes, field observation and data interpretation, management science and ecological economics. Computational simulation of biophysical processes provides a quantitative method of integration for the range of theory and observations that are required to quantify the linkages between changes in soil structure and soil functions. Key results demonstrate that changes in soil structure can be quantified through the inputs of organic carbon and nitrogen from plant productivity and microbial activity, coupled with

  5. Modern radionuclide content of the underground water and soils near the epicentral zone of cratering explosion at the Semipalatinsk test site

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.K.; Kvasnikova, E.V. [Institute of Global Climate and Ecology, Moscow (Russian Federation)


    The investigation wells for a control of the underground water contamination were bored after the cratering explosions at the Semipalatinsk Test Site, now they are restored partially. The analysis of the retrospective information of the Institute of Global Climate and Ecology (Moscow, Russia) give a possibility to choose wells and terrains for the successful study of radionuclide migration with the underground water. The epicentral zone, the crater and the territory with radius 1,5 km around the underground cratering explosion '1003' were investigated under the ISTC project K-810. Underground water and soil samples were taken at the two expeditions of 2003. The chemical extraction methods taking into account the water mineral composition, gamma-spectrum methods, methods of the liquid scintillation spectrometry and methods of alpha-spectrometry were used. The modern radionuclide content ({sup 3}H, {sup 90}Sr, {sup 137}Cs, {sup 239+240}Pu, {sup 241}Am) of the underground water will be presented and compare with a radionuclide content of soils around crater. The retrospective information will be added by these modern data. The vertical radionuclide distribution in soils will be presented. (author)

  6. Modern radionuclide content of the underground water and soils near the epicentral zone of cratering explosion at the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Gordeev, S.K.; Kvasnikova, E.V.


    The investigation wells for a control of the underground water contamination were bored after the cratering explosions at the Semipalatinsk Test Site, now they are restored partially. The analysis of the retrospective information of the Institute of Global Climate and Ecology (Moscow, Russia) give a possibility to choose wells and terrains for the successful study of radionuclide migration with the underground water. The epicentral zone, the crater and the territory with radius 1,5 km around the underground cratering explosion '1003' were investigated under the ISTC project K-810. Underground water and soil samples were taken at the two expeditions of 2003. The chemical extraction methods taking into account the water mineral composition, gamma-spectrum methods, methods of the liquid scintillation spectrometry and methods of alpha-spectrometry were used. The modern radionuclide content ( 3 H, 90 Sr, 137 Cs, 239+240 Pu, 241 Am) of the underground water will be presented and compare with a radionuclide content of soils around crater. The retrospective information will be added by these modern data. The vertical radionuclide distribution in soils will be presented. (author)

  7. Soil water management

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Cassel, D.K.


    The use of radiation and tracer techniques in investigations into soil water management in agriculture, hydrology etc. is described. These techniques include 1) neutron moisture gauges to monitor soil water content and soil water properties, 2) gamma radiation attenuation for measuring the total density of soil and soil water content, 3) beta radiation attenuation for measuring changes in the water status of crop plants and 4) radioactive and stable tracers for identifying pathways, reactions and retention times of the constituents in soils and groundwater aquifers. The number and spacing of soil observations that should be taken to represent the management unit are also considered. (U.K.)

  8. [Effects of Citric Acid on Activation and Methylation of Mercury in the Soils of Water-Level-Fluctuating Zone of the Three Gorges.Reservoir]. (United States)

    Qin, Cai-qing; Liang, Li; You, Rui; Deng, Han; Wang, Ding-yong


    To investigate effects of the main component of vegetation root exudates-citric acid on activation and methylation of mercury in the soil of water-level-fluctuating zone (WLFZ) of the Three Gorges Reservoir area, simulation experiments were conducted by extracting and cultivating soil with different concentrations of citric acid. The results showed that after adding citric acid, the total mercury content in leaching solution before reaching peak were higher than that of the control, and increased with the increase of citric acid concentrations. The maximum amount of mercury complexes increased initially and then reached plateaus with the percentage against the total mercury in soil of 1.03%, 1.67%, 1.99%, 2.47%, 2.68%, 2.73% and 2.73% for different citric acid concentrations (0, 1, 2, 4, 5, 6 and 8 mmol · L⁻¹). In addition, concentrations of methylmercury ( MeHg) in soil remained stable in the first 3 hours, and then increased accompanying with the increasing rate rising with the concentration of citric acid ( besides the control group) . This result indicated that citric acid probably could promote the transformation process from inorganic mercury to MeHg in soil. which increased with the concentration of citric acid.

  9. Kinetics and Mechanisms of Phosphorus Adsorption in Soils from Diverse Ecological Zones in the Source Area of a Drinking-Water Reservoir. (United States)

    Zhang, Liang; Loáiciga, Hugo A; Xu, Meng; Du, Chao; Du, Yun


    On-site soils are increasingly used in the treatment and restoration of ecosystems to harmonize with the local landscape and minimize costs. Eight natural soils from diverse ecological zones in the source area of a drinking-water reservoir in central China are used as adsorbents for the uptake of phosphorus from aqueous solutions. The X-ray fluorescence (XRF) spectrometric and BET (Brunauer-Emmett-Teller) tests and the Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectral analyses are carried out to investigate the soils' chemical properties and their potential changes with adsorbed phosphorous from aqueous solutions. The intra-particle diffusion, pseudo-first-order, and pseudo-second-order kinetic models describe the adsorption kinetic processes. Our results indicate that the adsorption processes of phosphorus in soils occurred in three stages and that the rate-controlling steps are not solely dependent on intra-particle diffusion. A quantitative comparison of two kinetics models based on their linear and non-linear representations, and using the chi-square (χ2) test and the coefficient of determination (r2), indicates that the adsorptive properties of the soils are best described by the non-linear pseudo-second-order kinetic model. The adsorption characteristics of aqueous phosphorous are determined along with the essential kinetic parameters.

  10. How soil water storage moderates climate changes effects on transpiration, across the different climates of the Critical Zone Observatories (United States)

    Heckman, C.; Tague, C.


    While the demand side of transpiration is predicted to increase under a warmer climate, actual evapotranspiration (AET) will be moderated by the supply of water available to vegetation. A key question to ask is how will plant accessible water storage capacity (PAWSC) affect the partitioning of precipitation between AET and runoff. Our results indicate that whether AET increases or decreases, and how much, is significantly based upon interactions between PAWSC and characteristics of precipitation such as the amount, frequency, and skew as well the partitioning between rain and snow. In snow dominated climates, if PAWSC cannot make up for the loss of storage as snowpack then AET could decrease, and in rain dominated climates, PAWSC could significantly limit the increase in AET. These results highlight the importance of critical zone research: constraining PAWSC is critical in predicting not only the magnitude but also the direction of the change in AET with climate warming. Due to the highly heterogeneous nature of PAWSC and the difficulty of measuring it across large scales, we use a well-tested hydrologic model to estimate the impacts from a range of PAWSC on the partitioning of precipitation between runoff and AET. We completed this analysis for the range of precipitation and vegetation characteristics found across 9 of the Critical Zone Observatories.

  11. Airborne Detection of Cosmic-Ray Albedo Neutrons for Regional-Scale Surveys of Root-Zone Soil Water on Earth (United States)

    Schrön, M.; Bannehr, L.; Köhli, M.; Zreda, M. G.; Weimar, J.; Zacharias, S.; Oswald, S. E.; Bumberger, J.; Samaniego, L. E.; Schmidt, U.; Zieger, P.; Dietrich, P.


    While the detection of albedo neutrons from cosmic rays became a standard method in planetary space science, airborne neutron sensing has never been conceived for hydrological research on Earth. We assessed the applicability of atmospheric neutrons to sense root-zone soil moisture averaged over tens of hectares using neutron detectors on an airborne vehicle. Large-scale quantification of near-surface water content is an urgent challenge in hydrology. Information about soil and plant water is crucial to accurately assess the risks for floods and droughts, to adjust regional weather forecasts, and to calibrate and validate the corresponding models. However, there is a lack of data at scales relevant for these applications. Most conventional ground-based geophysical instruments provide root-zone soil moisture only within a few tens of m2, while electromagnetic signals from conventional remote-sensing instruments can only penetrate the first few centimeters below surface, though at larger spatial areas.In the last couple of years, stationary and roving neutron detectors have been used to sense the albedo component of cosmic-ray neutrons, which represents the average water content within 10—15 hectares and 10—50 cm depth. However, the application of these instruments is limited by inaccessible terrain and interfering local effects from roads. To overcome these limitations, we have pioneered first simulations and experiments of such sensors in the field of airborne geophysics. Theoretical investigations have shown that the footprint increases substantially with height above ground, while local effects smooth out throughout the whole area. Campaigns with neutron detectors mounted on a lightweight gyrocopter have been conducted over areas of various landuse types including agricultural fields, urban areas, forests, flood plains, and lakes. The neutron signal showed influence of soil moisture patterns in heights of up to 180 m above ground. We found correlation with

  12. Study of downward movement of soil water in unsaturated zones using isotopic techniques. Part of a coordinated programme on studying physical and isotopic behaviour of soil moisture in the zones of aeration

    International Nuclear Information System (INIS)

    Sajjad, M.I.


    Experiments carried out to study the relative contribution from canal system, precipitation and irrigated fields to water table are described. The normal delta of irrigation water does not seem to have any appreciable effect on the water table through heavy textured soil. The contribution from irrigated fields and rains through sandy soils is significant. However, the groundwater rise (water logging) is mainly due to the infiltration from the canal system. Flow velocities at 1 m depth and 20 vol. % moisture are of the order of 16 m/a and 1.6 m/a for sandy and loamy soils respectively. The contribution from irrigated fields and rains to groundwater recharge is considered to be less than 30%

  13. Compost improves urban soil and water quality (United States)

    Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion, which may degrade water quality. The purpose of our study was to determine the whether planting prairie grasses and adding compost to urban soils can mitigate these concerns. We simula...

  14. Measurements of soil, surface water, and groundwater CO2 concentration variability within Earth's critical zone: low-cost, long-term, high-temporal resolution monitoring (United States)

    Blackstock, J. M.; Covington, M. D.; Williams, S. G. W.; Myre, J. M.; Rodriguez, J.


    Variability in CO2 fluxes within Earth's Critical zone occurs over a wide range of timescales. Resolving this and its drivers requires high-temporal resolution monitoring of CO2 both in the soil and aquatic environments. High-cost (> 1,000 USD) gas analyzers and data loggers present cost-barriers for investigations with limited budgets, particularly if high spatial resolution is desired. To overcome high-costs, we developed an Arduino based CO2 measuring platform (i.e. gas analyzer and data logger). The platform was deployed at multiple sites within the Critical Zone overlying the Springfield Plateau aquifer in Northwest Arkansas, USA. The CO2 gas analyzer used in this study was a relatively low-cost SenseAir K30. The analyzer's optical housing was covered by a PTFE semi-permeable membrane allowing for gas exchange between the analyzer and environment. Total approximate cost of the monitoring platform was 200 USD (2% detection limit) to 300 USD (10% detection limit) depending on the K30 model used. For testing purposes, we deployed the Arduino based platform alongside a commercial monitoring platform. CO2 concentration time series were nearly identical. Notably, CO2 cycles at the surface water site, which operated from January to April 2017, displayed a systematic increase in daily CO2 amplitude. Preliminary interpretation suggests key observation of seasonally increasing stream metabolic function. Other interpretations of observed cyclical and event-based behavior are out of the scope of the study; however, the presented method describes an accurate near-hourly characterization of CO2 variability. The new platform has been shown to be operational for several months, and we infer reliable operation for much longer deployments (> 1 year) given adequate environmental protection and power supply. Considering cost-savings, this platform is an attractive option for continuous, accurate, low-power, and low-cost CO2 monitoring for remote locations, globally.

  15. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010 (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.


    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  16. Critical Zone Experimental Design to Assess Soil Processes and Function (United States)

    Banwart, Steve


    Through unsustainable land use practices, mining, deforestation, urbanisation and degradation by industrial pollution, soil losses are now hypothesized to be much faster (100 times or more) than soil formation - with the consequence that soil has become a finite resource. The crucial challenge for the international research community is to understand the rates of processes that dictate soil mass stocks and their function within Earth's Critical Zone (CZ). The CZ is the environment where soils are formed, degrade and provide their essential ecosystem services. Key among these ecosystem services are food and fibre production, filtering, buffering and transformation of water, nutrients and contaminants, storage of carbon and maintaining biological habitat and genetic diversity. We have initiated a new research project to address the priority research areas identified in the European Union Soil Thematic Strategy and to contribute to the development of a global network of Critical Zone Observatories (CZO) committed to soil research. Our hypothesis is that the combined physical-chemical-biological structure of soil can be assessed from first-principles and the resulting soil functions can be quantified in process models that couple the formation and loss of soil stocks with descriptions of biodiversity and nutrient dynamics. The objectives of this research are to 1. Describe from 1st principles how soil structure influences processes and functions of soils, 2. Establish 4 European Critical Zone Observatories to link with established CZOs, 3. Develop a CZ Integrated Model of soil processes and function, 4. Create a GIS-based modelling framework to assess soil threats and mitigation at EU scale, 5. Quantify impacts of changing land use, climate and biodiversity on soil function and its value and 6. Form with international partners a global network of CZOs for soil research and deliver a programme of public outreach and research transfer on soil sustainability. The

  17. Effects of deficit irrigation and partial root-zone drying on soil and plant water status, stomatal conductance, plant growth and water use efficiency in tomato during early fruiting stage

    DEFF Research Database (Denmark)

    Liu, Fulai; Shahnazari, Ali; Jacobsen, S.-E.


    The effects of 'partial root-zone drying' (PRD), compared with full irrigation (FI) and deficit irrigation (DI), on soil and plant water status, plant growth and water use efficiency (WUE) were investigated in potted tomatoes (Lycopersicon esculentum L., var. Cedrico) at the early fruiting stage...... system, and the irrigated side of the plants was reversed when volumetric soil water content ( ) of the dry side had decreased to 6%. of FI was about 14%. of DI decreased during the first 4-5 days after the onset of treatment (DAT) and was about 7% and 6% thereafter for DI-70 and DI-50, respectively....... of the wet side in PRD-70 declined during 3-6 DAT and was lower than that of FI by 4-6% thereafter. in both wet and dry sides of PRD-50 was slightly lower than that for PRD-70. After 5 DAT, midday leaf water potential was significantly lower in DI and PRD than in FI plants. FI plants had the highest leaf...

  18. Fast determination of soil behavior in the capillary zone using simple laboratory tests. (United States)


    Frost heave and thaw weakening are typical problems for engineers building in northern regions. These unsaturated-soil behaviors are : caused by water flowing through the capillary zone to a freezing front, where it forms ice lenses. Although suction...

  19. Soil Water Retention Curve (United States)

    Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.


    Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first

  20. Nutritional responses to soil drying and rewetting cycles under partial root-zone drying irrigation

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Jensen, Christian Richardt; Liu, Fulai


    signaling that regulates stomatal aperture. PRI induced soil DRW cycles and more soil water dynamics in the root zone enhance soil nutrient mineralization process and thus increase the bioavailability of soil nutrients, resulting in improved nitrogen (N) and phosphorus (P) uptake, in which soil microbial...... processes play a key role. Studies investigating how soil DRW cycles and water dynamics under PRI on nutrient transport in soil solution, soil microbe mediated P transformation, interactions between phytohormones and nutrient uptake, root morphological and architectural traits for nutrient acquisition......Abstract Repeated soil drying and rewetting (DRW) cycles occur in rainfed and irrigated agriculture. The intensity and frequency of DRW cycles regulate both microbial physiology and soil physical processes, hereby affecting the mineralization and immobilization of soil nutrients...

  1. Contribution of soil, water and food consumption to metal exposure of children from geological enriched environments in the coastal zone of Lake Victoria, Kenya.

    NARCIS (Netherlands)

    Oyoo-Okoth, E.; Admiraal, W.; Osano, O.; Manguya-Lusega, D; Ngure, V.; Kraak, M.H.S.; Chepkirui-Boit, V.; Makwali, J.


    Geologically enriched environments may contain high concentrations of some metals. In areas where industrial exposures remain superficial, children may be exposed to these geological metals through soil, drinking water and consumption of food locally grown. The aim of this study was to assess the

  2. Sustainable Soil Water Management Systems


    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.


    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  3. Evaluating the effects of mulch and irrigation amount on soil water distribution and root zone water balance using HYDRUS-2D (United States)

    Drip irrigation under mulch is a major water-saving irrigation method that has been widely practiced for cotton production. The performance of such irrigation systems should be evaluated for proper design, management, operation, and efficient water use. The modeling approach has been used as a commo...

  4. Modelling soil-water dynamics in the rootzone of structured and water-repellent soils (United States)

    Brown, Hamish; Carrick, Sam; Müller, Karin; Thomas, Steve; Sharp, Joanna; Cichota, Rogerio; Holzworth, Dean; Clothier, Brent


    In modelling the hydrology of Earth's critical zone, there are two major challenges. The first is to understand and model the processes of infiltration, runoff, redistribution and root-water uptake in structured soils that exhibit preferential flows through macropore networks. The other challenge is to parametrise and model the impact of ephemeral hydrophobicity of water-repellent soils. Here we have developed a soil-water model, which is based on physical principles, yet possesses simple functionality to enable easier parameterisation, so as to predict soil-water dynamics in structured soils displaying time-varying degrees of hydrophobicity. Our model, WEIRDO (Water Evapotranspiration Infiltration Redistribution Drainage runOff), has been developed in the APSIM Next Generation platform (Agricultural Production Systems sIMulation). The model operates on an hourly time-step. The repository for this open-source code is We have carried out sensitivity tests to show how WEIRDO predicts infiltration, drainage, redistribution, transpiration and soil-water evaporation for three distinctly different soil textures displaying differing hydraulic properties. These three soils were drawn from the UNSODA (Unsaturated SOil hydraulic Database) soils database of the United States Department of Agriculture (USDA). We show how preferential flow process and hydrophobicity determine the spatio-temporal pattern of soil-water dynamics. Finally, we have validated WEIRDO by comparing its predictions against three years of soil-water content measurements made under an irrigated alfalfa (Medicago sativa L.) trial. The results provide validation of the model's ability to simulate soil-water dynamics in structured soils.

  5. Methylmercury production in soil in the water-level-fluctuating zone of the Three Gorges Reservoir, China: The key role of low-molecular-weight organic acids. (United States)

    Yin, Deliang; Wang, Yongmin; Jiang, Tao; Qin, Caiqing; Xiang, Yuping; Chen, Qiuyu; Xue, Jinping; Wang, Dingyong


    As important parts of dissolved organic matter, low-molecular-weight organic acids (LMWOAs) typically play important roles in desorbing Hg(II) from the soil solid-phase, which may directly or indirectly impact methylmercury (MeHg) production. However, the mechanism of these processes remains unclear. To better understand the effects of LMWOAs on Hg methylation in the soil, a field study was conducted to investigate the distribution of LMWOAs and their relationship with soil MeHg in a seasonally inundated area in the Three Gorges Reservoir (TGR), China. Meanwhile, laboratory simulation experiments were performed to determine the potential mechanism of LMWOAs in Hg methylation. The field investigation detected considerable amounts of LMWOAs in soil, among which tartaric acid and oxalic acid were dominant components. Among which, tartaric acid and oxalic acid were dominant components. Also, a seasonally and spatially heterogeneous distribution of LMWOAs in soil was observed. Notably, a significant positive relationship was found between MeHg concentrations and LMWOA pools in soil (r = 0.969, p < .01), implying that LMWOAs could promote soil MeHg production. The simulation experiments confirmed that the MeHg levels in soil were largely elevated with the addition of LMWOAs, which occurred mainly in oxygen-deficient environment and was mediated by biotic factors. The soluble Hg-LMWOA complexes, which were formed by the enhanced desorption of Hg(II) from solid-phase, were mostly responsible for the elevated MeHg production in soil. Moreover, those LMWOAs with more carboxylic groups were believed to enhance the net production of MeHg. The generated MeHg in sediment could diffuse into the overlying water, which thus poses a potential threat to the aquatic food web. Therefore, the enhanced Hg methylation caused by LMWOAs should be given more attention, especially in a seasonally inundated ecosystem, where the MeHg exposure is usually related to fishery activities

  6. Study on water infiltration in loess aerated zone at CIRP's field test site

    International Nuclear Information System (INIS)

    Du Zhongde; Zhao Yingjie; Ni Dongqi; Ma Binghui; Xu Zhaoyi; Tadao Tanaka; Masayuki Mukai


    Vertical joints and large pores existing uniquely in loess cause difference between loess and other homogenous soil media in water infiltration. Field test of water infiltration in loess aerated zone of and analysis with hydraulic theory of soil concludes that for the loess aerated zone of vertical joints existing in it makes little contribution to water infiltration under unsaturated condition, and large pores in the media would significantly retard water infiltration

  7. Changes of the water isotopic composition in unsaturated soils

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia


    Based on the spatial and temporal variations of the stable isotope content in precipitation - as input in subsurface - and the mixing processes, the deuterium content in the water that moves in unsaturated zones was used to determine the most conducive season to recharge, the mechanisms for infiltration of snow or rain precipitation in humid, semi-arid or arid conditions, the episodic cycles of infiltration water mixing with the already present soil water and water vapor and whether infiltration water is or is not from local precipitation. Oscillations in the isotopic profiles of soil moisture can be used to estimate the following aspects: where piston or diffusive flow is the dominant mechanisms of water infiltration; the average velocities of the water movement in vadose zone; the influence of vegetation cover, soil type and slope exposure on the dynamics of water movement in soil; the conditions required for infiltration such as: the matrix, gravity, pressure and osmotic potentials during drainage in unsaturated soil. (authors)

  8. Three Principles of Water Flow in Soils (United States)

    Guo, L.; Lin, H.


    Knowledge of water flow in soils is crucial to understanding terrestrial hydrological cycle, surface energy balance, biogeochemical dynamics, ecosystem services, contaminant transport, and many other Critical Zone processes. However, due to the complex and dynamic nature of non-uniform flow, reconstruction and prediction of water flow in natural soils remain challenging. This study synthesizes three principles of water flow in soils that can improve modeling water flow in soils of various complexity. The first principle, known as the Darcy's law, came to light in the 19th century and suggested a linear relationship between water flux density and hydraulic gradient, which was modified by Buckingham for unsaturated soils. Combining mass balance and the Buckingham-Darcy's law, L.A. Richards quantitatively described soil water change with space and time, i.e., Richards equation. The second principle was proposed by L.A. Richards in the 20th century, which described the minimum pressure potential needed to overcome surface tension of fluid and initiate water flow through soil-air interface. This study extends this principle to encompass soil hydrologic phenomena related to varied interfaces and microscopic features and provides a more cohesive explanation of hysteresis, hydrophobicity, and threshold behavior when water moves through layered soils. The third principle is emerging in the 21st century, which highlights the complex and evolving flow networks embedded in heterogeneous soils. This principle is summarized as: Water moves non-uniformly in natural soils with a dual-flow regime, i.e., it follows the least-resistant or preferred paths when "pushed" (e.g., by storms) or "attracted" (e.g., by plants) or "restricted" (e.g., by bedrock), but moves diffusively into the matrix when "relaxed" (e.g., at rest) or "touched" (e.g., adsorption). The first principle is a macroscopic view of steady-state water flow, the second principle is a microscopic view of interface

  9. Improvements to measuring water flux in the vadose zone. (United States)

    Masarik, Kevin C; Norman, John M; Brye, Kristofor R; Baker, John M


    Evaluating the impact of land use practices on ground water quality has been difficult because few techniques are capable of monitoring the quality and quantity of soil water flow below the root zone without disturbing the soil profile and affecting natural flow processes. A recently introduced method, known as equilibrium tension lysimetry, was a major improvement but it was not a true equilibrium since it still required manual intervention to maintain proper lysimeter suction. We addressed this issue by developing an automated equilibrium tension lysimeter (AETL) system that continuously matches lysimeter tension to soil-water matric potential of the surrounding soil. The soil-water matric potential of the bulk soil is measured with a heat-dissipation sensor, and a small DC pump is used to apply suction to a lysimeter. The improved automated approach reported here was tested in the field for a 12-mo period. Powered by a small 12-V rechargeable battery, the AETLs were able to continuously match lysimeter suction to soil-water matric potential for 2-wk periods with minimal human attention, along with the added benefit of collecting continuous soil-water matric potential data. We also demonstrated, in the laboratory, methods for continuous measurement of water depth in the AETL, a capability that quantifies drainage on a 10-min interval, making it a true water-flux meter. Equilibrium tension lysimeters have already been demonstrated to be a reliable method of measuring drainage flux, and the further improvements have created a more effective device for studying water drainage and chemical leaching through the soil matrix.

  10. Soil salinization in different natural zones of intermontane depressions in Tuva (United States)

    Chernousenko, G. I.; Kurbatskaya, S. S.


    Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.

  11. Soils characterisation along ecological forest zones in the Eastern Himalayas (United States)

    Simon, Alois; Dhendup, Kuenzang; Bahadur Rai, Prem; Gratzer, Georg


    Elevational gradients are commonly used to characterise vegetation patterns and, to a lesser extent, also to describe soil development. Furthermore, interactions between vegetation cover and soil characteristics are repeatedly observed. Combining information on soil development and easily to distinguish forest zones along elevational gradients, creates an added value for forest management decisions especially in less studied mountain regions. For this purpose, soil profiles along elevational gradients in the temperate conifer forests of Western and Central Bhutan, ranging from 2600-4000m asl were investigated. Thereby, 82 soil profiles were recorded and classified according to the World Reference Base for Soil Resources. Based on 19 representative profiles, genetic horizons were sampled and analysed. We aim to provide fundamental information on forest soil characteristics along these elevational transects. The results are presented with regard to ecological forest zones. The elevational distribution of the reference soil groups showed distinct distribution ranges for most of the soils. Cambisols were the most frequently recorded reference soil group with 58% of the sampled profiles, followed by Podzols in higher elevations, and Stagnosols, at intermediate elevations. Fluvisols occurred only at the lower end of the elevational transects and Phaeozems only at drier site conditions in the cool conifer dry forest zone. The humus layer thickness differs between forest zones and show a shift towards increased organic layer (O-layer) with increasing elevation. The reduced biomass productivity with increasing elevation and subsequently lower litter input compensates for the slow decomposition rates. The increasing O-layer thickness is an indicator of restrained intermixing of organic and mineral components by soil organisms at higher elevation. Overall, the soil types and soil characteristics along the elevational gradient showed a continuous and consistent change, instead

  12. Water storage change estimation from in situ shrinkage measurements of clay soils

    NARCIS (Netherlands)

    Brake, te B.; Ploeg, van der M.J.; Rooij, de G.H.


    Water storage in the unsaturated zone is a major determinant of the hydrological behaviour of the soil, but methods to quantify soil water storage are limited. The objective of this study is to assess the applicability of clay soil surface elevation change measurements to estimate soil water storage

  13. Water sources accessed by arid zone riparian trees in highly saline environments, Australia. (United States)

    Costelloe, Justin F; Payne, Emily; Woodrow, Ian E; Irvine, Elizabeth C; Western, Andrew W; Leaney, Fred W


    The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees-soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using delta(18)O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000-30,000 mg L(-1).

  14. Buffer Zone Requirements for Soil Fumigant Applications (United States)

    Updated pesticide product labels require fumigant users to establish a buffer zone around treated fields to reduce risks to bystanders. Useful information includes tarp testing guidance and a buffer zone calculator.

  15. Soils and water [Chapter 18 (United States)

    Goran Berndes; Heather Youngs; Maria Victoria Ramos Ballester; Heitor Cantarella; Annette L. Cowie; Graham Jewitt; Luiz Antonio Martinelli; Dan Neary


    Bioenergy production can have positive or negative impacts on soil and water. To best understand these impacts, the effects of bioenergy systems on water and soil resources should be assessed as part of an integrated analysis considering environmental, social and economic dimensions. Bioenergy production systems that are strategically integrated in the landscape to...

  16. Evaluation of Soil Flushing for Application to the Deep Vadose Zone in the Hanford Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Oostrom, Martinus; Zhang, Z. F.; Carroll, Kenneth C.; Schramke, Janet A.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Gordon, Kathryn A.; Last, George V.


    Soil flushing was included in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau as a technology with the potential to remove contaminants from the vadose zone. Soil flushing operates through the addition of water, and if necessary an appropriate mobilizing agent, to mobilize contaminants and flush them from the vadose zone and into the groundwater where they are subsequently captured by a pump-and-treat system. There are uncertainties associated with applying soil flushing technology to contaminants in the deep vadose zone at the Hanford Central Plateau. The modeling and laboratory efforts reported herein are intended to provide a quantitative assessment of factors that impact water infiltration and contaminant flushing through the vadose zone and into the underlying groundwater. Once in the groundwater, capture of the contaminants would be necessary, but this aspect of implementing soil flushing was not evaluated in this effort. Soil flushing was evaluated primarily with respect to applications for technetium and uranium contaminants in the deep vadose zone of the Hanford Central Plateau.


    Directory of Open Access Journals (Sweden)

    Talat Naseer Pasha


    Full Text Available This study was undertaken to assess the effects of season, soil, water and feedstuffs on macro-mineral status of blood plasma of sheep and goats in the central mix cropping zone of Punjab, Pakistan. Five sub-locations were selected randomly from the study area. From each sub-location, blood samples were collected from adult sheep and goats as well as from kids and lambs, both in winter and summer season. Lower sodium (Na and potassium (K levels were found in soil and feedstuffs of the area. However, in different sources of water, Na values were nearly within the range but K was slightly higher. This was followed by lower plasma Na concentration both in sheep (114.23 + 10.21 mEq / L and goats (121.78 + 12.35 mEq / L. However, concentration of K was within the critical limit in sheep (4.05 + 0.40 mEq / L and goats (5.10 + 12.4 mEq / L. Plasma Na and K in both species showed effects of season, animal class and interaction of season and animal class (P≤0.05. Lower calcium (Ca concentrations were found in soil, feedstuffs and water. A similar trend was observed in plasma Ca concentration of sheep (3.2 + 0.98 mg / 100ml and goats (3.4 + 1.26 mg / 100ml during winter. In contrast, phosphorous (P was marginally deficient in soil, water and feedstuffs as well as in blood plasma of sheep (3.12 + 2.25 mg / 100ml and goat (3.60 + 2.25 mg / 100ml during winter and summer. The levels of Ca and P were marginally deficient in summer season in adult animals. Soil magnesium (Mg values were slightly higher, whereas, water and feedstuffs were deficient. Blood plasma concentration of Mg was higher many fold both in sheep (5.25 + 1.85 mg / 100ml and goats (4.76 + 1.23 mg / 100ml. However, plasma Mg was affected by season and animal class (P≤0.05.The data were all analyzed using one way ANOVA test and significant differences between means were tested using Duncan’s multiple range test. From these blood analyses, we concluded that macro

  18. Moditored unsaturated soil transport processes as a support for large scale soil and water management (United States)

    Vanclooster, Marnik


    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  19. Soil Heavy Metal Concentration Patterns at Two Speed Zones along ...

    African Journals Online (AJOL)

    Soil Heavy Metal Concentration Patterns at Two Speed Zones along the Gaborone- Tlokweng Border Post Highway, Southeast Botswana. ... Since 1988 Botswana has been experiencing an unprecedented increase in vehicular traffic which is suspected to be having contamination effects on soils along heavily used roads ...

  20. A vadose zone water fluxmeter with divergence control (United States)

    Gee, G.W.; Ward, A.L.; Caldwell, T.G.; Ritter, J.C.


    Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self‐calibrating tipping bucket, with a sensitivity of ∼4 mL tip−1. For our meter this is equivalent to detection limit of ∼0.1 mm. Passive‐wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two‐dimensional (2‐D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr−1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr−1 to more than 1000 mm yr−1.

  1. In situ vadose zone remediation of petroleum-contaminated soils

    International Nuclear Information System (INIS)

    Greacen, J.R.; Finkel, D.J.


    This paper discusses a pilot-scale system treating vadose zone soils contaminated with petroleum products constructed and operated at a former petroleum bulk storage terminal in New England. A site investigation following decommissioning activities identified more than 100,000 yds of soil at the site contaminated by both No. 2 fuel oil and gasoline. Soil cleanup criteria of 50 ppm TPH and 0.25 ppm BTEX were established. A pilot-scale treatment unit with dimensions of 125 ft x 125 ft x 6 ft was constructed to evaluate the potential for in situ treatment of vadose zone soils. Contaminant levels in pilot cell soils ranged from 0 to 5,250 ppm TPH and 0.0 to 4.2 ppm BTEX. Two soil treatment methods n the pilot system were implemented; venting to treat the lighter petroleum fractions and bioremediation to treat the nonvolatile petroleum constituents. Seven soil gas probes were installed to monitor pressure and soil gas vapor concentrations in the subsurface. Changes in soil gas oxygen and carbon dioxide concentrations were used as an indirect measure of enhanced bioremediation of pilot cell soils. After operating the system for a period of 2.5 months, soil BTEX concentrations were reduced to concentrations below the remediation criteria for the site

  2. The quantitative soil quality assessment tobacco plant in Sindoro mountainous zone

    Directory of Open Access Journals (Sweden)



    Full Text Available The long-term cultivation of tobacco (Nicotiana tabacum plant in the Sindoro mountainous zone of Central Java has resulted in soil quality degradation that could affect economic development in the region if sustainable production practices are not identified. The objective of the study was to identify appropriate indicators for assessing soil quality on tobacco plant. The quantitative soil quality indicators were total organic-C, pH, available P and available K (chemical, soil depth, bulk density, AWC (available water capacity and soil aggregate stability (physical, and qCO2 (soil respiration, MBC (microbial biomass carbon (biological. The decreases in the soil aggregate stability, available water capacity, cation exchange capacity, soil respiration, microbial biomass carbon and total organic-C; or increases in bulk density (compaction, available P, available K and total nitrogen indicated the decrease in soil quality due to long-term tobacco production. The result of this research showed that the change of soil quality had occurred in Sindoro Mountain. The Soil Quality Index (SQI for three land use systems in Sindoro mountain (forest, mixed farm, and tobacco were 0.60, 0.47, and 0.57, respectively. The comparison of these rates with soil quality classes showed that the soil quality presented moderate to good level of quality; class SQI.

  3. Water transport in desert alluvial soil

    International Nuclear Information System (INIS)

    Kearl, P.M.


    Safe storage of radioactive waste buried in an arid alluvial soil requires extensive site characterization of the physical process influencing moisture movement which could act as a transport medium for the migration of radionuclides. The field portion of this study included an infiltration plot instrumented with thermocouple psychrometers and neturon moisture probe access holes. Baseline information shows a zone of higher moisture content at approximately 1.5 m (5 ft) in depth. A sprinkler system simulated a 500-year precipitation event. Results revealed water penetrated the soil to 0.9 m (2.9 ft). Due to the low moisture content, vapor transport was primarily responsible for water movement at this depth. Temperature gradients are substantially responsible for vapor transport by preferentially sorting water-vapor molecules from the surrounding air by using the soil as a molecular sieve. Adsorbed and capillary water vapor pressure increases in response to a temperature increase and releases additional water to the soil pore atmosphere to be diffused away

  4. Radionuclide contaminated micromycetes in the soil the thirty kilometer zone

    International Nuclear Information System (INIS)

    Zhdanova, N.N.; Vasilevskaya, A.I.; Redchits, T.I.; Gavrilov, V.I.; Lashko, T.N.; Luchkov, P.N.; Shcherbachenko, A.M.; AN Ukrainskoj SSR, Kiev


    From 1986 year the ecological monitoring of the soil microscopic fungi exist under conditions of the radioactive contamination in the thirty kilometer zone of the Chernobyl' NPP is conducted. As mycological isotope soil analysis the limiting factor in the ecological situation need consider the radionuclide contamination of the soils. It is shown, that the amount of fungus germs decreased by 200 times in 1986 year and increased sharp to 1989-90 years. During the first years after the accident, in the most contaminated soils dark-pigmented fungi predominated. It is due to a deep reorganization of the soil micromycete associations. Correlations is revealed in the interrelations among various species of fungi, isolated from the soils, differed in the radioactivity. Among 12 species of fungi (from 6 genuses of micromycetes) isotope accumulation is noted. There are Sr-90 and Cs-137, most widespread in the soil after the accident. 18 refs.; 8 figs

  5. An injected gamma-tracer method for soil-moisture movement investigations in arid zones

    International Nuclear Information System (INIS)

    Nair, A.R.; Navada, S.V.; Rao, S.M.


    A method for the in-situ determination of soil-moisture transport rates using K 3 60 Co(CN) 6 is discussed. The tracer compares well with tritiated water in laboratory investigations and the results obtained in limited field studies are very encouraging. The method promises to be of specific interest in arid-zone investigations where the soil-moisture fluxes in liquid and vapour phases could cause complications for tritium tracer data interpretation. (author)

  6. Soil water sensing: Implications of sensor capabilities for variable rate irrigation management (United States)

    Irrigation scheduling using soil water sensors aims at maintaining the soil water content in the crop root zone above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation, evaporation and runoff or that...

  7. COSMOS soil water sensor compared with EM sensor network & weighing lysimeter (United States)

    Soil water sensing methods are widely used to characterize the root zone and below, but only a few are capable of delivering water content data with accuracy for the entire soil profile such that evapotranspiration (ET) can be determined by soil water balance and irrigations can be scheduled with mi...

  8. The influence of the unsaturated zone on the upward transport of radionuclides in soils

    International Nuclear Information System (INIS)

    Elert, M.; Lindgren, M.


    The transport of radionuclides from the deep soil to the surface soil is an important part of biosphere modelling. In this study the effect of transient hydrological conditions on the upward transport of radionuclides through soils has been studied. The effect of varying soil properties, climate conditions have been considered as well as the effect of a fluctuating groundwater level. It was shown that the soil characteristics influences the radionuclide concentration; an increased hydraulic conductivity leads to increase in the concentration in the root zone. The climate conditions were shown to be of major importance. A dispersion dependent on both velocity and saturation leads to a more effective upward transport of radionuclides to the root zone than if dispersion is assumed to be dependent only on the saturation. The boundary condition used in the case with varying groundwater level may be more realistic than the boundary condition applied for the case with a constant groundwater level. All calculations with varying groundwater level gave lower radionuclide concentration in the root zone. Sorption is redox sensitive for many radionuclides and the redox potential in the soil will be affected by the degree of water saturation. The performed calculations did, however, not result in any significant change in the radionuclide concentration in the root zone due to variation in sorption. A comparison between the results of the two models show that the compartment model in all studied cases predicts a higher annual average radionuclide concentration in the root zone than the numerical model. Annual variation in soil water flow were not included in the compartment model. During the summer the concentration in the root zone may be several times higher than the annual average. This may be important for plant uptake, since this increased concentrations coincides with the plant growing season. The calculations made with the simple compartment model also show that these

  9. Benchmarking LSM root-zone soil mositure predictions using satellite-based vegetation indices (United States)

    The application of modern land surface models (LSMs) to agricultural drought monitoring is based on the premise that anomalies in LSM root-zone soil moisture estimates can accurately anticipate the subsequent impact of drought on vegetation productivity and health. In addition, the water and energy ...

  10. Using purposeful landscape zoning of Ukraine to improve soil protection system

    Directory of Open Access Journals (Sweden)

    Володимир Тишковець


    Full Text Available Basic aspects of Ukrainian landscapes target zoning use for maintenance of soil protection system on agricultural lands have been presented. The analysis of current systems of purposeful zoning of territories in the country and modern approaches to its modernization has been done. The ameliorative functions of forest in accordance with existing main and supportive negative factors, forms and intensiveness of its appearance in concrete types of landscapes have been explained. The questions of forest projection optimization in accordance with natural-climatic conditions of certain regions have been described. The ways of qualitative new use of agroforest ameliorative measures have been determined. The new zoning system on the basis of main soil erosion factors principally differs from the previous systems. The proposed zoning method is characterized by complexity, involving main physical, geographical and agricultural factors in the order of their impact on soil erosion processes. These factors consist of climate (water and temperature regime, relief and character of agricultural use of territory. Meanwhile, other factors (soil, vegetative cover and other are used simultaneously with the main factors. That kind of zoning by the main factors of soil erosion is only the first stage. The second stage should be zoning by types of systems of counter erosion measures. In this article the authors have shown that when choosing agrarian ameliorative methods, the influence on negative factors on agriculture should be considered in the new zoning of the territory. A number of references and fund materials, including those of territorial zoning have been analyzed in the article. Preferences and negative aspects as well as selection of a basis for new agrarian ameliorative zoning of Ukrainian landscapes which includes the full information of factors and conditions of formation and expansion of negative factors for agriculture have been proposed.

  11. Long-Term Soil Experiments: A Key to Managing Earth's Rapidly Changing Critical Zones (United States)

    Richter, D., Jr.


    In a few decades, managers of Earth's Critical Zones (biota, humans, land, and water) will be challenged to double food and fiber production and diminish adverse effects of management on the wider environment. To meet these challenges, an array of scientific approaches is being used to increase understanding of Critical Zone functioning and evolution, and one amongst these approaches needs to be long-term soil field studies to move us beyond black boxing the belowground Critical Zone, i.e., to further understanding of processes driving changes in the soil environment. Long-term soil experiments (LTSEs) provide direct observations of soil change and functioning across time scales of decades, data critical for biological, biogeochemical, and environmental assessments of sustainability; for predictions of soil fertility, productivity, and soil-environment interactions; and for developing models at a wide range of temporal and spatial scales. Unfortunately, LTSEs globally are not in a good state, and they take years to mature, are vulnerable to loss, and even today remain to be fully inventoried. Of the 250 LTSEs in a web-based network, results demonstrate that soils and belowground Critical Zones are highly dynamic and responsive to human management. The objective of this study is to review the contemporary state of LTSEs and consider how they contribute to three open questions: (1) can soils sustain a doubling of food production in the coming decades without further impinging on the wider environment, (2) how do soils interact with the global C cycle, and (3) how can soil management establish greater control over nutrient cycling. While LTSEs produce significant data and perspectives for all three questions, there is on-going need and opportunity for reviews of the long-term soil-research base, for establishment of an efficiently run network of LTSEs aimed at sustainability and improving management control over C and nutrient cycling, and for research teams that

  12. Creep model of unsaturated sliding zone soils and long-term deformation analysis of landslides (United States)

    Zou, Liangchao; Wang, Shimei; Zhang, Yeming


    Sliding zone soil is a special soil layer formed in the development of a landslide. Its creep behavior plays a significant role in long-term deformation of landslides. Due to rainfall infiltration and reservoir water level fluctuation, the soils in the slide zone are often in unsaturated state. Therefore, the investigation of creep behaviors of the unsaturated sliding zone soils is of great importance for understanding the mechanism of the long-term deformation of a landslide in reservoir areas. In this study, the full-process creep curves of the unsaturated soils in the sliding zone in different net confining pressure, matric suctions and stress levels were obtained from a large number of laboratory triaxial creep tests. A nonlinear creep model for unsaturated soils and its three-dimensional form was then deduced based on the component model theory and unsaturated soil mechanics. This creep model was validated with laboratory creep data. The results show that this creep model can effectively and accurately describe the nonlinear creep behaviors of the unsaturated sliding zone soils. In order to apply this creep model to predict the long-term deformation process of landslides, a numerical model for simulating the coupled seepage and creep deformation of unsaturated sliding zone soils was developed based on this creep model through the finite element method (FEM). By using this numerical model, we simulated the deformation process of the Shuping landslide located in the Three Gorges reservoir area, under the cycling reservoir water level fluctuation during one year. The simulation results of creep displacement were then compared with the field deformation monitoring data, showing a good agreement in trend. The results show that the creeping deformations of landslides have strong connections with the changes of reservoir water level. The creep model of unsaturated sliding zone soils and the findings obtained by numerical simulations in this study are conducive to

  13. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates. (United States)

    Vero, S E; Ibrahim, T G; Creamer, R E; Grant, J; Healy, M G; Henry, T; Kramers, G; Richards, K G; Fenton, O


    The true efficacy of a programme of agricultural mitigation measures within a catchment to improve water quality can be determined only after a certain hydrologic time lag period (subsequent to implementation) has elapsed. As the biophysical response to policy is not synchronous, accurate estimates of total time lag (unsaturated and saturated) become critical to manage the expectations of policy makers. The estimation of the vertical unsaturated zone component of time lag is vital as it indicates early trends (initial breakthrough), bulk (centre of mass) and total (Exit) travel times. Typically, estimation of time lag through the unsaturated zone is poor, due to the lack of site specific soil physical data, or by assuming saturated conditions. Numerical models (e.g. Hydrus 1D) enable estimates of time lag with varied levels of input data. The current study examines the consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates using simulated and actual soil profiles. Results indicated that: greater temporal resolution (from daily to hourly) of meteorological data was more critical as the saturated hydraulic conductivity of the soil decreased; high clay content soils failed to converge reflecting prevalence of lateral component as a contaminant pathway; elucidation of soil hydraulic properties was influenced by the complexity of soil physical data employed (textural menu, ROSETTA, full and partial soil water characteristic curves), which consequently affected time lag ranges; as the importance of the unsaturated zone increases with respect to total travel times the requirements for high complexity/resolution input data become greater. The methodology presented herein demonstrates that decisions made regarding input data and landscape position will have consequences for the estimated range of vertical travel times. Insufficiencies or inaccuracies regarding such input data can therefore mislead policy makers regarding

  14. Research-Based Learning for Undergraduate Students in Soil and Water Sciences: A Case Study of Hydropedology in an Arid-Zone Environment (United States)

    Al-Maktoumi, Ali; Al-Ismaily, Said; Kacimov, Anvar


    This article reports the efficacy of a research-based learning (RBL) exercise on hydropedology of arid zones, with guided and open research projects (OPR) carried out by teams of undergraduate students in Oman. A range of activities and assessments was used to support student learning during the three-month course. Assessment included monitoring…

  15. Water table monitoring in a mined riparian zone

    Directory of Open Access Journals (Sweden)

    Thomaz Marques Cordeiro Andrade


    Full Text Available The objective of this study was to test an easily fabricated tool that assist in the manual installation of piezometers, as well as water table monitor in the research site, located at the Gualaxo do Norte River Watershed, state of Minas Gerais, Brazil. The tool is made of iron pipes and is a low-cost alternative for shallow groundwater observation wells. The measurements were done in a riparian zone after being gold mined, when vegetation and upper soil layers were removed. The wells were installed in three areas following a transect from the river bank. The method was viable for digging up to its maximum depth of 3 meters in a low resistance soil and can be improved to achieve a better resistance over impact and its maximum depth of perforation. Water table levels varied distinctly according to its depth in each point. It varies most in the more shallow wells in different areas, while it was more stable in the deeper ones. The water table profile reflected the probably profile f the terrain and can be a reference for its leveling in reconstitution of degraded banks where upper layers of the soil were removed. Groundwater monitoring can be also an indicator of the suitability of the substrate for soil reconstitution in terms of the maintenance of an infiltration capacity similar to the original material.

  16. Soil physics and the water management of spatially variable soils

    International Nuclear Information System (INIS)

    Youngs, E.G.


    The physics of macroscopic soil-water behaviour in inert porous materials has been developed by considering water flow to take place in a continuum. This requires the flow region to consist of an assembly of representative elementary volumes, repeated throughout space and small compared with the scale of observations. Soil-water behaviour in swelling soils may also be considered as a continuum phenomenon so long as the soil is saturated and swells and shrinks in the normal range. Macroscale heterogeneity superimposed on the inherent microscale heterogeneity can take many forms and may pose difficulties in the definition and measurement of soil physical properties and also in the development and use of predictive theories of soil-water behaviour. Thus, measurement techniques appropriate for uniform soils are often inappropriate, and criteria for soil-water management, obtained from theoretical considerations of behaviour in equivalent uniform soils, are not applicable without modification when there is soil heterogeneity. The spatial variability of soil-water properties is shown in results from field experiments concerned with water flow measurements; these illustrate both stochastic and deterministic heterogeneity in soil-water properties. Problems of water management of spatially variable soils when there is stochastic heterogeneity appear to present an insuperable problem in the application of theory. However, for soils showing deterministic heterogeneity, soil-water theory has been used in the solution of soil-water management problems. Thus, scaling using similar media theory has been applied to the infiltration of water into soils that vary over a catchment area. Also, the drain spacing to control the water-table height in soils in which the hydraulic conductivity varies with depth has been calculated using groundwater seepage theory. (author)

  17. Neutron-activation analysis for investigation of biochemical manganese in soils cotton soweol zone of Uzbekistan

    International Nuclear Information System (INIS)

    Zhumamuratov, A.; Tillaev, T.; Khatamov, Sh.; Suvanov, M.; Osinskaya, N.S.; Rakhmanova, T.P.


    Full text: For many years we neutron activation analysis of soils sampled from different areas of landscape-geochemical regions of Uzbekistan including zone of extreme ecological catastrophe of Aral. Content of manganese and some other elements in the 'soil-cotton' system was investigated. Neutron-activation method of manganese determining with productivity up to 400 samples on shift with detection limit of 1,1 10 -5 % and discrepancies not more than 10%. Was developed extremely uniform distribution of manganese in cotton sowed soils of the Republic (340-1800mg/kg) is determined. Practically all soils of cotton-sowed zone of Republic are with lack of manganese. Distribution of manganese on soil profile of separate organs of cotton (leaves seeds etc.) was studied. Correlation between gross concentration of manganese and its active part extracted by distilled water on the basis of quantity analysis was found. Successive comparison of gross content of manganese in the soil with crop capacity of cotton in different zones of Republic made it possible to find interconnection between these quantities, which proves necessity of using micro-additions of manganese in the soils where its low concentration is detected

  18. Soil tension mediates isotope fractionation during soil water evaporation (United States)

    Gaj, Marcel; McDonnell, Jeffrey


    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  19. Assessment of the rate of ionizing radiation in the protection zone of the Lenin Steelworks and the Nowa Huta Cement Factory, and consequences with respect to soils, water and agriculture

    International Nuclear Information System (INIS)

    Niewiadomski, T.; Godek, J.; Jasinska, M.; Wasiolek, P.


    The level of radioactivity of the natural environment and its changes due to the industrial activity of the Lenin Steelworks were assessed by analysing the radioactivity of wastes from the steelworks (ashes, fly-ashes, slags and waste waters) and by studying the increase in the radioactivity of soil and plant samples taken in the region of the steelworks' protective zone. Samples of ashes, fly-ashes and soils were investigated using gamma-spectroscopy and the concentrations of 226 Ra, 232 Th and 40 K were established. Total beta activity was measured for water and plant samples. The radioactivity of air above ground and the radioactive fallout at ground level around the steelworks was calculated. The highest inhalation and digestion doses as well as doses due to gamma irradiation from the ground at the position of highest immission were calculated in the form of effective dose equivalent committment (EDEC). We state that as a result of fly-ash inhalation the population inhabiting the critical region receives a yearly EDEC of 2 μSv, as a result of consumption of fallout contaminated food - 65 μSv, and that the yearly EDEC from external gamma radiation due to fallout radionuclides deposited on the ground is 30 μSv. The total EDEC at the place of maximum immission following from the 30-year industrial activity of the Lenin Steelworks is estimated at 100 μSv per year which constitutes c. 6% of the yearly dose committment of an inhabitant of Poland, from all natural sources. We have also found that stacked deposits of ashes and slags do not influence strongly the level of environmental radioactivity outside their area. (author)

  20. Water repellent soils: the case for unsaturated soil mechanics

    Directory of Open Access Journals (Sweden)

    Beckett Christopher


    Full Text Available Water repellent (or “hydrophobic” or “non-wetting” soils have been studied by soil scientists for well over a century. These soils are typified by poor water infiltration, which leads to increased soil erosion and poor crop growth. However, the importance of water repellence on determining soil properties is now becoming recognised by geotechnical engineers. Water repellent soils may, for example, offer novel solutions for the design of cover systems overlying municipal or mine waste storage facilities. However, investigations into factors affecting their mechanical properties have only recently been initiated. This purpose of this paper is to introduce geotechnical engineers to the concept of water repellent soils and to discuss how their properties can be evaluated under an unsaturated soils framework. Scenarios in which water repellent properties might be relevant in geotechnical applications are presented and methods to quantify these properties in the laboratory and in the field examined.

  1. CO2 efflux from soils with seasonal water repellency (United States)

    Urbanek, Emilia; Doerr, Stefan H.


    Soil carbon dioxide (CO2) emissions are strongly dependent on pore water distribution, which in turn can be modified by reduced wettability. Many soils around the world are affected by soil water repellency (SWR), which reduces infiltration and results in diverse moisture distribution. SWR is temporally variable and soils can change from wettable to water-repellent and vice versa throughout the year. Effects of SWR on soil carbon (C) dynamics, and specifically on CO2 efflux, have only been studied in a few laboratory experiments and hence remain poorly understood. Existing studies suggest soil respiration is reduced with increasing severity of SWR, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known.Here we report on the first field-based study that tests whether SWR indeed reduces soil CO2 efflux, based on in situ measurements carried out over three consecutive years at a grassland and pine forest sites under the humid temperate climate of the UK.Soil CO2 efflux was indeed very low on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. Low CO2 efflux was also observed when SWR was absent, in spring and late autumn when soil temperatures were low, but also in summer when SWR was reduced by frequent rainfall events. The highest CO2 efflux occurred not when soil was wettable, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. Patchiness of SWR is likely to have created zones with two different characteristics related to CO2 production and transport. Zones with wettable soil or low persistence of SWR with higher proportion of water-filled pores are expected to provide water with high nutrient concentration resulting in higher microbial activity and CO2 production. Soil zones with high SWR persistence, on the other hand, are dominated by air-filled pores with low microbial activity, but facilitating O2

  2. The Influence of Soil Particle on Soil Condensation Water


    Hou Xinwei; Chen Hao; Li Xiangquan; Cui Xiaomei; Liu Lingxia; Wang Zhenxing


    The experiment results showed that the indoor experiment formed from the volume of soil hygroscopic water increased gradually with decreasing size of soil particles. In the outdoor experiments, the results showed that the formed condensation water in medium sand was greater than it was in fine sand; the soil hot condensation water was mainly formed in the top layer of soil between 0-5 cm. We also found that covering the soil surface with stones can increase the volume of formed soil condensat...

  3. Biogeochemical control points in a water-limited critical zone (United States)

    Chorover, J.; Brooks, P. D.; Gallery, R. E.; McIntosh, J. C.; Olshansky, Y.; Rasmussen, C.


    The routing of water and carbon through complex terrain is postulated to control structure evolution in the sub-humid critical zone of the southwestern US. By combining measurements of land-atmosphere exchange, ecohydrologic partitioning, and subsurface biogeochemistry, we seek to quantify how a heterogeneous (in time and space) distribution of "reactants" impacts both short-term (sub-)catchment response (e.g., pore and surface water chemical dynamics) and long-term landscape evolution (e.g., soil geochemistry/morphology and regolith weathering depth) in watersheds underlain by rhyolite and schist. Instrumented pedons in convergent, planar, and divergent landscape positions show distinct depth-dependent responses to precipitation events. Wetting front propagation, dissolved carbon flux and associated biogeochemical responses (e.g., pulses of CO2 production, O2 depletion, solute release) vary with topography, revealing the influence of lateral subsidies of water and carbon. The impacts of these episodes on the evolution of porous media heterogeneity is being investigated by statistical analysis of pore water chemistry, chemical/spectroscopic studies of solid phase organo-mineral products, sensor-derived water characteristic curves, and quantification of co-located microbial community activity/composition. Our results highlight the interacting effects of critical zone structure and convergent hydrologic flows in the evolution of biogeochemical control points.

  4. Controls on deep drainage beneath the root soil zone in snowmelt-dominated environments (United States)

    Hammond, J. C.; Harpold, A. A.; Kampf, S. K.


    Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and high latitude locations, yet we still lack a detailed understanding of how snowmelt is partitioned between the soil, deep drainage, and streamflow under a variety of soil, climate, and snow conditions. Here we use Hydrus 1-D simulations with historical inputs from five SNOTEL snow monitoring sites in each of three regions, Cascades, Sierra, and Southern Rockies, to investigate how inter-annual variability on water input rate and duration affects soil saturation and deep drainage. Each input scenario was run with three different soil profiles of varying hydraulic conductivity, soil texture, and bulk density. We also created artificial snowmelt scenarios to test how snowmelt intermittence affects deep drainage. Results indicate that precipitation is the strongest predictor (R2 = 0.83) of deep drainage below the root zone, with weaker relationships observed between deep drainage and snow persistence, peak snow water equivalent, and melt rate. The ratio of deep drainage to precipitation shows a stronger positive relationship to melt rate suggesting that a greater fraction of input becomes deep drainage at higher melt rates. For a given amount of precipitation, rapid, concentrated snowmelt may create greater deep drainage below the root zone than slower, intermittent melt. Deep drainage requires saturation below the root zone, so saturated hydraulic conductivity serves as a primary control on deep drainage magnitude. Deep drainage response to climate is mostly independent of soil texture because of its reliance on saturated conditions. Mean water year saturations of deep soil layers can predict deep drainage and may be a useful way to compare sites in soils with soil hydraulic porosities. The unit depth of surface runoff often is often greater than deep drainage at daily and annual timescales, as snowmelt exceeds infiltration capacity in near-surface soil layers

  5. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.


    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  6. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system. (United States)

    Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T


    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.

  7. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture (United States)

    Sure, A.; Dikshit, O.


    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  8. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport (United States)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.


    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  9. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones. (United States)

    Delin, Geoffrey N; Herkelrath, William N


    A tracer test was conducted to aid in the investigation of water movement and solute transport at a crude-oil spill site near Bemidji, Minnesota. Time of travel was measured using breakthrough curves for rhodamine WT and bromide tracers moving from the soil surface through oil-contaminated and oil-free unsaturated zones to the saturated zone. Results indicate that the rates of tracer movement were similar in the oil-free unsaturated and saturated zones compared to the oily zones. These results are somewhat surprising given the oil contamination in the unsaturated and saturated zones. Rhodamine tracer breakthrough in the unsaturated and saturated zones in general was delayed in comparison to bromide tracer breakthrough. Peak tracer concentrations for the lysimeters and wells in the oily zone were much greater than at the corresponding depths in the oil-free zone. Water and tracer movement in the oily zone was complicated by soil hydrophobicity and decreased oil saturations toward the periphery of the oil. Preferential flow resulted in reduced tracer interaction with the soil, adsorption, and dispersion and faster tracer movement in the oily zone than expected. Tracers were freely transported through the oily zone to the water table. Recharge calculations support the idea that the oil does not substantially affect recharge in the oily zone. This is an important result indicating that previous model-based assumptions of decreased recharge beneath the oil were incorrect. Results have important implications for modeling the fate and transport of dissolved contaminants at hydrocarbon spill sites. Published by Elsevier B.V.

  10. Hurricane Wilma's impact on overall soil elevation and zones within the soil profile in a mangrove forest (United States)

    Whelan, K.R.T.; Smith, T. J.; Anderson, G.H.; Ouellette, M.L.


    Soil elevation affects tidal inundation period, inundation frequency, and overall hydroperiod, all of which are important ecological factors affecting species recruitment, composition, and survival in wetlands. Hurricanes can dramatically affect a site's soil elevation. We assessed the impact of Hurricane Wilma (2005) on soil elevation at a mangrove forest location along the Shark River in Everglades National Park, Florida, USA. Using multiple depth surface elevation tables (SETs) and marker horizons we measured soil accretion, erosion, and soil elevation. We partitioned the effect of Hurricane Wilma's storm deposit into four constituent soil zones: surface (accretion) zone, shallow zone (0–0.35 m), middle zone (0.35–4 m), and deep zone (4–6 m). We report expansion and contraction of each soil zone. Hurricane Wilma deposited 37.0 (± 3.0 SE) mm of material; however, the absolute soil elevation change was + 42.8 mm due to expansion in the shallow soil zone. One year post-hurricane, the soil profile had lost 10.0 mm in soil elevation, with 8.5 mm of the loss due to erosion. The remaining soil elevation loss was due to compaction from shallow subsidence. We found prolific growth of new fine rootlets (209 ± 34 SE g m−2) in the storm deposited material suggesting that deposits may become more stable in the near future (i.e., erosion rate will decrease). Surficial erosion and belowground processes both played an important role in determining the overall soil elevation. Expansion and contraction in the shallow soil zone may be due to hydrology, and in the middle and bottom soil zones due to shallow subsidence. Findings thus far indicate that soil elevation has made substantial gains compared to site specific relative sea-level rise, but data trends suggest that belowground processes, which differ by soil zone, may come to dominate the long term ecological impact of storm deposit.

  11. Cokriging of Electromagnetic Induction Soil Electrical Conductivity Measurements and Soil Textural Properties to Demarcate Sub-field Management Zones for Precision Irrigation. (United States)

    Ding, R.; Cruz, L.; Whitney, J.; Telenko, D.; Oware, E. K.


    There is the growing need for the development of efficient irrigation management practices due to increasing irrigation water scarcity as a result of growing population and changing climate. Soil texture primarily controls the water-holding capacity of soils, which determines the amount of irrigation water that will be available to the plant. However, while there are significant variabilities in the textural properties of the soil across a field, conventional irrigation practices ignore the underlying variability in the soil properties, resulting in over- or under-irrigation. Over-irrigation leaches plant nutrients beyond the root-zone leading to fertilizer, energy, and water wastages with dire environmental consequences. Under-irrigation, in contrast, causes water stress of the plant, thereby reducing plant quality and yield. The goal of this project is to leverage soil textural map of a field to create water management zones (MZs) to guide site-specific precision irrigation. There is increasing application of electromagnetic induction methods to rapidly and inexpensively map spatially continuous soil properties in terms of the apparent electrical conductivity (ECa) of the soil. ECa is a measure of the bulk soil properties, including soil texture, moisture, salinity, and cation exchange capacity, making an ECa map a pseudo-soil map. Data for the project were collected from a farm site at Eden, NY. The objective is to leverage high-resolution ECa map to predict spatially dense soil textural properties from limited measurements of soil texture. Thus, after performing ECa mapping, we conducted particle-size analysis of soil samples to determine the textural properties of soils at selected locations across the field. We cokriged the high-resolution ECa measurements with the sparse soil textural data to estimate a soil texture map for the field. We conducted irrigation experiments at selected locations to calibrate representative water-holding capacities of each

  12. Transfer of reactive solutes in the unsaturated zone of soils at several observation scales

    International Nuclear Information System (INIS)

    Limousin, G.


    The transfer of contaminants in the unsaturated zone of soils is driven by numerous mechanisms. Field studies are sometimes difficult to set up, and so the question is raised about the reliability of laboratory measurements for describing a field situation. The nuclear power plant at Brennilis (Finistere, France) has been chosen to study the transfer of strontium, cobalt and inert tracers in the soil of this industrial site. Several observation scales have been tested (batch, stirred flow-through reactor, sieved-soil column, un-repacked or repacked soil-core lysimeter, field experiments) in order to determine, at each scale, the factors that influence the transfer of these contaminants, then to verify the adequacy between the different observation scales and their field representativeness. Regarding the soil hydrodynamic properties, the porosity, the water content in the field, the pore water velocity at the water content in the field, the saturation hydraulic conductivity and the dispersion coefficient of this embanked soil are spatially less heterogeneous than those of agricultural or non-anthropic soils. The results obtained with lysimeter and field experiments suggest that hydrodynamics of this unstructured soil can be studied on a repacked sample if the volume is high compared to the rare big-size stones. Regarding the chemical soil-contaminant interactions, cobalt and strontium isotherms are non-linear at concentration higher than 10 -4 mol.L -1 , cobalt adsorption and desorption are fast and independent on pH. On the contrary, at concentration lower than 3.5 x 10 -6 mol.L -1 , cobalt and strontium isotherms are linear, cobalt desorption is markedly slower than adsorption and both cobalt partition coefficient at equilibrium and its reaction kinetics are highly pH-dependent. For both elements, the results obtained with batch, stirred flow-through reactor and sieved-soil column are in adequacy. However, strontium batch adsorption measurements at equilibrium do

  13. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jacques, D.; Jessen, S.


    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying...... mechanisms. Carbon dioxide partial pressure in the soil gas (pCO(2)), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO(2), alkalinity and the water flux...... to calculate the soil CO2 production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 +/- 0.07 and 4.9 +/- 0.07 mu mol Cm-2 s(-1), respectively...

  14. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils. (United States)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.


    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  15. Soil-moisture transport in arid site vadose zones

    International Nuclear Information System (INIS)

    Isaacson, R.E.; Brownell, L.E.; Nelson, R.W.; Roetman, E.L.


    Soil-moisture transport processes in the arid soils of the United States Atomic Energy Commission's Hanford site are being evaluated. The depth of penetration of meteoric precipitation has been determined by profiling fall-out tritium at two locations where the water table is about 90 m below ground surface. In situ temperatures and water potentials were measured with temperature transducers and thermocouple psychrometers at the same location to obtain thermodynamic data for identifying the factors influencing soil-moisture transport. Neutron probes are being used to monitor soil-moisture changes in two lysimeters, three metres in diameter by 20 metres deep. The lysimeters are also equipped to measure pressure, temperature and relative humidity as a function of depth and time. Theoretical models based on conservation of momentum expressions are being developed to analyse non-isothermal soil-moisture transport processes. Future work will be concerned with combining the theoretical and experimental work and determining the amount of rainfall required to cause migration of soil-moisture to the water table. (author)

  16. Environmental isotope profiles and evaporation in shallow water table soils

    International Nuclear Information System (INIS)

    Hussein, M.F.; Froehlich, K.; Nada, A.


    Environmental isotope methods have been employed to evaluate the processes of evaporation and soil salinisation in the Nile Delta. Stable isotope profiles (δ 18 O and δ 2 H) from three sites were analysed using a published isothermal model that analyses the steady-state isotopic profile in the unsaturated zone and provides an estimate of the evaporation rate. Evaporation rates estimated by this method at the three sites range between 60 and 98 mm y -1 which translates to an estimate of net water loss of one billion cubic meters per year from fallow soils on the Nile delta. Capillary rise of water through the root zone during the crop growing season is estimated to be three times greater than evaporation rate estimate and a modified water management strategy could be adopted in order to optimize water use and its management on the regional scale. (author)

  17. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates. (United States)

    Fenton, O; Vero, S; Ibrahim, T G; Murphy, P N C; Sherriff, S C; Ó hUallacháin, D


    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (t(T)) is divided into unsaturated (t(u)) and saturated (t(s)) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of t(T). In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of t(u) were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When t(u) estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from

  18. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates (United States)

    Fenton, O.; Vero, S.; Ibrahim, T. G.; Murphy, P. N. C.; Sherriff, S. C.; Ó hUallacháin, D.


    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (tT) is divided into unsaturated (tu) and saturated (ts) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of tT. In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of tu were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When tu estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of

  19. Isotopic fractionation of soil water during evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Leopoldo, P R [Faculdade de Ciencias Medicas e Biologicas de Botucatu (Brazil); Salati, E; Matsui, E [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)


    The study of the variation of D/H relation in soil water during evaporation is studied. The isotopic fractionation of soil water has been observed in two soils of light and heavy texture. Soil columns were utilized. Soil water was extracted in a system operated under low pressure and the gaseous hydrogen was obtained by decomposition of the water and was analyzed in a GD-150 mass spectrometer for deuterium content. The variation of the delta sub(eta) /sup 0///sub 00/ value during evaporation showed that for water held at potentials below 15 atm, the deuterium content of soil water stays practically constant. For water held at potentials higher than 15 atm, corresponding to the third stage of evaporation, there is a strong tendency of a constant increase of delta sub(eta) /sup 0///sub 00/ of the remaining water.

  20. simulation of vertical water flow through vadose zone

    African Journals Online (AJOL)


    Simulation of vertical water flow representing the release of water from the vadose zone to the aquifer of surroundings ... ground water pollution from agricultural, industrial and municipal .... Peak Flow Characteristics of Wyoming. Streams: US ...

  1. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau]. (United States)

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun


    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  2. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....

  3. Modeling Spatial Soil Water Dynamics in a Tropical Floodplain, East Africa

    Directory of Open Access Journals (Sweden)

    Geofrey Gabiri


    Full Text Available Analyzing the spatial and temporal distribution of soil moisture is critical for ecohydrological processes and for sustainable water management studies in wetlands. The characterization of soil moisture dynamics and its influencing factors in agriculturally used wetlands pose a challenge in data-scarce regions such as East Africa. High resolution and good-quality time series soil moisture data are rarely available and gaps are frequent due to measurement constraints and device malfunctioning. Soil water models that integrate meteorological conditions and soil water storage may significantly overcome limitations due to data gaps at a point scale. The purpose of this study was to evaluate if the Hydrus-1D model would adequately simulate soil water dynamics at different hydrological zones of a tropical floodplain in Tanzania, to determine controlling factors for wet and dry periods and to assess soil water availability. The zones of the Kilombero floodplain were segmented as riparian, middle, and fringe along a defined transect. The model was satisfactorily calibrated (coefficient of determination; R2 = 0.54–0.92, root mean square error; RMSE = 0.02–0.11 on a plot scale using measured soil moisture content at soil depths of 10, 20, 30, and 40 cm. Satisfying statistical measures (R2 = 0.36–0.89, RMSE = 0.03–0.13 were obtained when calibrations for one plot were validated with measured soil moisture for another plot within the same hydrological zone. Results show the transferability of the calibrated Hydrus-1D model to predict soil moisture for other plots with similar hydrological conditions. Soil water storage increased towards the riparian zone, at 262.8 mm/a while actual evapotranspiration was highest (1043.9 mm/a at the fringe. Overbank flow, precipitation, and groundwater control soil moisture dynamics at the riparian and middle zone, while at the fringe zone, rainfall and lateral flow from mountains control soil moisture during the

  4. Modeling Water Pollution of Soil

    Directory of Open Access Journals (Sweden)

    V. Doležel


    Full Text Available The government of the Czech Republic decided that in the location to the west of Prague, capital city of the Czech Republic, some deep mines should be closed because of their low efficiency of coal mined i.e. small amounts and low quality of the coal extracted in the final stage of mining. The locations near Prague influenced the decision to do maintenance on the abandoned mines, as the thread of soil pollution was unacceptably high in the neighborhood of the capital city. Before the mines were closed it was necessary to separate existed extensive horizontal location of salt water below a clay layer in order not to deteriorate the upper fresh water. The salt water could not be allowed to pollute the upper layer with the fresh water, as many wells in villages in the neighborhood of the former mines would be contaminated. Two horizontal clay layers (an insulator and a semi-insulator separated the two horizons containing salt water and fresh water. Before starting deep mining, vertical shafts had to be constructed with concrete linings to enable the miners to access the depths. The salt water was draining away throughout the existence of the mine. The drainage was designed very carefully to avoid possible infiltration of salt water into the upper horizon. Before the mines were abandoned it was necessary to prevent contact between the two kinds of waters in the shafts. Several options were put forward, the most efficient of which appeared to be one that proposed filling the shafts with spoil soil and creating a joint seal made of disparate material at the interface between the salt water and fresh water to create a reliable stopper. The material for the spoil soil was delivered from deposits located not far from the shafts. This material consisted of a variety of grains of sand, big boulders of slate, slaty clay, sandstone, etc.. Chemical admixtures were considered to improve the flocculation of the filling material. The stopper was positioned at a

  5. Radionuclide transport along a boreal hill slope - elevated soil water concentrations in riparian forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Lidman, Fredrik; Boily, Aasa; Laudon, Hjalmar [Dept. of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeaa (Sweden); Koehler, Stephan J. [Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. 7050, 750 07 Uppsala (Sweden)


    The transport of radionuclides from forest ecosystems and out into surface waters is a crucial process for understanding the long-term fate of radionuclides in the boreal landscape. Boreal forests are typically dominated by podzol soils, but the streams draining the forests are often lined by highly organic, often peat-like soils, which the radionuclides must pass through in order to reach the stream. This so-called riparian zone therefore represents a fundamentally different biogeochemical environment than ordinary forest soils, e.g. by exhibiting significantly lower pH and higher concentrations of organic colloids, which significantly can affect the mobility of many radionuclides. Since the riparian zone is the last terrestrial environment that the groundwater is in contact with before it enters the stream, previous research has demonstrated its profound impact on the stream water chemistry. Hence, the riparian soils should also be important for the transport and accumulation of radionuclides. Therefore, soil water was sampled using suction lysimeters installed at different depths along a 22 m long forested hill slope transect in northern Sweden, following the flow pathway of the groundwater from the uphill podzol to the riparian zone near the stream channel. The analyses included a wide range of hydrochemical parameters and many radiologically important elements, e.g. U, Th, Ni, C, Sr, Cs, REEs and Cl. The sampling was repeated ten times throughout a year in order to also capture the temporal variability of the soil water chemistry. The water chemistry of the investigated transect displayed a remarkable change as the groundwater approached the stream channel. Strongly increased concentrations of many elements were observed in the riparian soils. For instance, the concentrations of Th were more than 100 times higher than in the riparian zone than in the uphill forest, suggesting that the riparian zone may be a hotspot for radionuclide accumulation. The reason

  6. Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.


    Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple Phases–Water-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.


    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attem...

  8. Soil water sensing for climate change studies; Applicability of COSMOS and local sensor networks (United States)

    Soil water sensors are used to characterize water content in the near-surface, the root zone and below for agricultural and ecosystem management, but only a few are capable of sensing soil volumes larger than a few hundred liters. Scientists with the USDA-ARS Conservation & Production Research Labor...

  9. Performance Evaluation of Automated Passive Capillary Sampler for Estimating Water Drainage in the Vadose Zone (United States)

    Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...

  10. Validation of SMAP Root Zone Soil Moisture Estimates with Improved Cosmic-Ray Neutron Probe Observations (United States)

    Babaeian, E.; Tuller, M.; Sadeghi, M.; Franz, T.; Jones, S. B.


    Soil Moisture Active Passive (SMAP) soil moisture products are commonly validated based on point-scale reference measurements, despite the exorbitant spatial scale disparity. The difference between the measurement depth of point-scale sensors and the penetration depth of SMAP further complicates evaluation efforts. Cosmic-ray neutron probes (CRNP) with an approximately 500-m radius footprint provide an appealing alternative for SMAP validation. This study is focused on the validation of SMAP level-4 root zone soil moisture products with 9-km spatial resolution based on CRNP observations at twenty U.S. reference sites with climatic conditions ranging from semiarid to humid. The CRNP measurements are often biased by additional hydrogen sources such as surface water, atmospheric vapor, or mineral lattice water, which sometimes yield unrealistic moisture values in excess of the soil water storage capacity. These effects were removed during CRNP data analysis. Comparison of SMAP data with corrected CRNP observations revealed a very high correlation for most of the investigated sites, which opens new avenues for validation of current and future satellite soil moisture products.

  11. Evaluation of different field methods for measuring soil water infiltration (United States)

    Pla-Sentís, Ildefonso; Fonseca, Francisco


    soil before and during the measurement. Due to the commonly found high variability, natural or induced by land management, of the soil surface and subsurface hydrological properties, and to the limitations imposed by the requirements of water for the measurements, there is proposed a simple and handy method, which do not use high volumes of water, adaptable to very different soil and land conditions, and that allow many repeated measurements with acceptable accuracy for most of the purposes. References Pla, I., 1997. A soil water balance model for monitoring soil erosion processes and effects on steep lands in the tropics. Soil Technology. 11(1):17-30. Elsevier Pla, I., 2006. Hydrological approach for assessing desertification processes in the Mediterranean region. In W.G. Kepner et al. (Editors), Desertification in the Mediterranean Region. A Security Issue. 579-600 Springer. Heidelberg (Germany) Reynolds W.D., B.T. Bowman, R.R. Brunke, C.F. Drury and C.S. Tan. 2000. Comparison of Tension Infiltrometer, Pressure Infiltrometer, and Soil Core Estimates of Saturated Hydraulic Conductivity . Soil Science Society of America Journal 64:478-484 Segal, E., S.A.Bradford, P. Shouse; N. Lazarovich, and D. Corwin. 2008. Integration of Hard and Soft Data to Characterize Field-Scale Hydraulic Properties for Flow and Transport Studies. Vadose Zone J 7:878-889 Young, E. 1991. Infiltration measurements, a review. Hydrological processes 5: 309-320.

  12. Model development for prediction of soil water dynamics in plant production. (United States)

    Hu, Zhengfeng; Jin, Huixia; Zhang, Kefeng


    Optimizing water use in agriculture and medicinal plants is crucially important worldwide. Soil sensor-controlled irrigation systems are increasingly becoming available. However it is questionable whether irrigation scheduling based on soil measurements in the top soil could make best use of water for deep-rooted crops. In this study a mechanistic model was employed to investigate water extraction by a deep-rooted cabbage crop from the soil profile throughout crop growth. The model accounts all key processes governing water dynamics in the soil-plant-atmosphere system. Results show that the subsoil provides a significant proportion of the seasonal transpiration, about a third of water transpired over the whole growing season. This suggests that soil water in the entire root zone should be taken into consideration in irrigation scheduling, and for sensor-controlled irrigation systems sensors in the subsoil are essential for detecting soil water status for deep-rooted crops.

  13. Can Process Understanding Help Elucidate The Structure Of The Critical Zone? Comparing Process-Based Soil Formation Models With Digital Soil Mapping. (United States)

    Vanwalleghem, T.; Román, A.; Peña, A.; Laguna, A.; Giráldez, J. V.


    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties in the critical zone. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of traditional digital soil mapping versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  14. Soil attributes of a silvopastoral system in Pernambuco Forest Zone

    Directory of Open Access Journals (Sweden)

    Hugo N.B. Lima


    Full Text Available This research evaluated soil properties in a silvopastoral system using double rows of tree legumes. Treatments were signalgrass (Brachiaria decumbens in monoculture or in consortium with sabiá (Mimosa caesalpiniifolia or gliricidia (Gliricidia sepium. Treatments were arranged in a complete randomized block design, with 4 replications. Response variables included chemical characteristics and physical attributes of the soil. Silvopastoral systems had greater (P<0.001 soil exchangeable Ca (gliricidia = 3.2 and sabiá = 3.0 mmolc/dm3 than signalgrass monoculture (2.0 mmolc/dm3. Water infiltration rate was greater within the tree legume double rows (366 mm/h than in signalgrass (162 mm/h (P = 0.02. However, soil moisture was greater in signalgrass pastures (15.9% (P = 0.0020 than in silvopastures (14.9 and 14.8%, where soil moisture levels increased as distance from the tree rows increased. Conversely, the light fraction of soil organic matter was greater within the tree legume double rows than in the grassed area (P = 0.0019. Long-term studies are needed to determine if these benefits accumulate further and the productivity benefits which result.

  15. Soil water status under perennial and annual pastures on an acid duplex soil

    International Nuclear Information System (INIS)

    Heng, L.K.; White, R.E.; Chen, D.


    A comprehensive field study of soil water balance, nitrogen (N) cycling, pasture management and animal production was carried out on an acid duplex soil at Book Book near Wagga Wagga in southern New South Wales. The experiment, carried out over a 3-year period, tested the hypothesis that sown perennial grass pastures improve the sustainability of a grazing system through better use of water and N. The treatments were: annual pastures without lime (AP-), annual pastures with lime (AP+), perennial pastures without lime (PP-) and perennial pastures with lime (PP+). Soil water measurement was made using a neutron probe on one set of the treatments comprising four adjacent paddocks. Over three winter and spring periods, the results showed that perennial grass pastures, especially PP+, consistently extracted about 40 mm more soil water each year than did the annual grass pastures. As a result, surface runoff, sub-surface flow and deep drainage (percolation below 180 cm depth) were about 40 mm less from the perennial pastures. The soil water status of the four pasture treatments was simulated reasonably well using a simple soil water model. Together with the long-term simulation of deep drainage, using past meteorological records, it is shown that proper management of perennial pastures can reduce recharge to groundwater and make pastoral systems more sustainable in the high rainfall zone. However, to completely reduce recharge, more-deeply rooted plants or trees are needed. (author)

  16. Water management in sandy soil using neutron scattering method

    International Nuclear Information System (INIS)

    Mohamed, K.M.


    This study was carried out during 2008/2009 at the Experimental Field of Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas in a newly reclaimed sandy soil. The aims of this work are,- determine soil moisture tension within the active root zone and - detecting the behavior of soil moisture within the active root zoon by defines the total hydraulic potential within the soil profile to predict both of actual evapotranspiration and rate of moisture depletion This work also is aimed to study soil water distribution under drip irrigation system.- reducing water deep percolation under the active root depth.This study included two factors, the first one is the irrigation intervals, and the second one is the application rate of organic manure. Irrigation intervals were 5, 10 and 15 days, besides three application rates of organic manure (0 m 3 /fed, 20 m 3 /fed. and 30 m 3 /fed.) in -three replicates under drip irrigation system, Onion was used as an indicator plant. Obtained data show, generally, that neutron scattering technique and soil moisture retention curve model helps more to study the water behavior in the soil profile.Application of organic manure and irrigation to field capacity is a good way to minimize evapotranspiration and deep percolation, which was zero mm/day in the treated treatments.The best irrigation interval for onion plant, in the studied soil, was 5 days with 30m 3 /fad. an application rate of organic manure.Parameter α of van Genuchent's 1980 model was affected by the additions of organic manure, which was decreased by addition of organic manure decreased it. Data also showed that n parameter was decreased by addition of organic manure Using surfer program is a good tool to describe the water distribution in two directions (vertical and horizontal) through soil profile.

  17. A modeling study of water flow in the vadose zone beneath the Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Baca, R.G.; Magnuson, S.O.; Nguyen, H.D.; Martian, P.


    A modeling study was conducted for the purpose of gaining insight into the nature of water flow in the vadose zone beneath the Radioactive Waste Management Complex (RWMC). The modeling study focused on three specific hydrologic aspects: (1) relationship between meteorologic conditions and net infiltration, (2) water movement associated with past flooding events, and (3) estimation of water travel-times through the vadose zone. This information is necessary for understanding how contaminants may be transported through the vadose zone. Evaluations of net infiltration at the RWMC were performed by modeling the processes of precipitation, evaporation, infiltration and soil-moisture redistribution. Water flow simulations were performed for two distinct time periods, namely 1955--1964 and 1984--1990. The patterns of infiltration were calculated for both the undisturbed (or natural sediments) and the pit/trench cover materials. Detailed simulations of the 1969 flooding of Pit 10 were performed to estimate the rate and extent of water movement through the vadose zone. Water travel-times through the vadose zone were estimated using a Monte Carlo simulation approach. The simulations accounted for variability of soil and rock hydraulic properties as well as variations in the infiltration rate

  18. Soil Gas Dynamics and Microbial Activity in the Unsaturated Zone of a Regulated River (United States)

    Christensen, H.; Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Bennett, P. C.


    Over 60% of the world's rivers are dammed, and are therefore regulated. In some river systems, river regulation is the dominant factor governing fluid exchange and soil gas dynamics in the hyporheic region and overlying unsaturated zone of the river banks. Where this is the case, it is important to understand the effects that an artificially-induced change in river stage can have on the chemical, plant, and microbial components of the unsaturated zone. Daily releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River east of Austin, Texas. For this study, we utilized an array of water and gas wells along a transect perpendicular to the river to investigate the biogeochemical process occurring in this mixing zone. The gas wells were installed at several depths up to 1.5 meters, and facilitated the continuous monitoring of soil gases as the pulse percolated through the river bank. Water samples collected from the screened wells penetrated to depths below the water table and were analyzed for nutrients, carbon, and major ions. Additionally, two soil cores were taken at different distances from the river and analyzed for soil moisture and grain size. These cores were also analyzed for microbial activity using the total heterotroph count method and the acetylene inhibition technique, a sensitive method of measuring denitrifying activity. The results provide a detailed picture of soil gas flux and biogeochemical processes in the bank environment in a regulated river. Findings indicate that a river pulse that causes a meter-scale change in river stage causes small, centimeter-scale pulses in the water table. We propose that these conditions create an area of elevated microbial respiration at the base of the unsaturated zone that appears to be decoupled from normal diurnal fluctuations. Along the transect, CO2 concentrations increased with increasing depth down to the water table. CO2 concentrations were highest in the time following a pulse

  19. Quantifying the Influence of Near-Surface Water-Energy Budgets on Soil Thermal Properties Using a Network of Coupled Meteorological and Vadose Zone Instrument Arrays in Indiana, USA (United States)

    Naylor, S.; Gustin, A. R.; Ellett, K. M.


    Weather stations that collect reliable, sustained meteorological data sets are becoming more widely distributed because of advances in both instrumentation and data server technology. However, sites collecting soil moisture and soil temperature data remain sparse with even fewer locations where complete meteorological data are collected in conjunction with soil data. Thanks to the advent of sensors that collect continuous in-situ thermal properties data for soils, we have gone a step further and incorporated thermal properties measurements as part of hydrologic instrument arrays in central and northern Indiana. The coupled approach provides insights into the variability of soil thermal conductivity and diffusivity attributable to geologic and climatological controls for various hydrogeologic settings. These data are collected to facilitate the optimization of ground-source heat pumps (GSHPs) in the glaciated Midwest by establishing publicly available data that can be used to parameterize system design models. A network of six monitoring sites was developed in Indiana. Sensors that determine thermal conductivity and diffusivity using radial differential temperature measurements around a heating wire were installed at 1.2 meters below ground surface— a typical depth for horizontal GSHP systems. Each site also includes standard meteorological sensors for calculating reference evapotranspiration following the methods by the Food and Agriculture Organization (FAO) of the United Nations. Vadose zone instrumentation includes time domain reflectometry soil-moisture and temperature sensors installed at 0.3-meter depth intervals down to a 1.8-meter depth, in addition to matric potential sensors at 0.15, 0.3, 0.6, and 1.2 meters. Cores collected at 0.3-meter intervals were analyzed in a laboratory for grain size distribution, bulk density, thermal conductivity, and thermal diffusivity. Our work includes developing methods for calibrating thermal properties sensors based on

  20. Crop yield monitoring in the Sahel using root zone soil moisture anomalies derived from SMOS soil moisture data assimilation (United States)

    Gibon, François; Pellarin, Thierry; Alhassane, Agali; Traoré, Seydou; Baron, Christian


    West Africa is greatly vulnerable, especially in terms of food sustainability. Mainly based on rainfed agriculture, the high variability of the rainy season strongly impacts the crop production driven by the soil water availability in the soil. To monitor this water availability, classical methods are based on daily precipitation measurements. However, the raingauge network suffers from the poor network density in Africa (1/10000km2). Alternatively, real-time satellite-derived precipitations can be used, but they are known to suffer from large uncertainties which produce significant error on crop yield estimations. The present study proposes to use root soil moisture rather than precipitation to evaluate crop yield variations. First, a local analysis of the spatiotemporal impact of water deficit on millet crop production in Niger was done, from in-situ soil moisture measurements (AMMA-CATCH/OZCAR (French Critical Zone exploration network)) and in-situ millet yield survey. Crop yield measurements were obtained for 10 villages located in the Niamey region from 2005 to 2012. The mean production (over 8 years) is 690 kg/ha, and ranges from 381 to 872 kg/ha during this period. Various statistical relationships based on soil moisture estimates were tested, and the most promising one (R>0.9) linked the 30-cm soil moisture anomalies from mid-August to mid-September (grain filling period) to the crop yield anomalies. Based on this local study, it was proposed to derive regional statistical relationships using 30-cm soil moisture maps over West Africa. The selected approach was to use a simple hydrological model, the Antecedent Precipitation Index (API), forced by real-time satellite-based precipitation (CMORPH, PERSIANN, TRMM3B42). To reduce uncertainties related to the quality of real-time rainfall satellite products, SMOS soil moisture measurements were assimilated into the API model through a Particular Filter algorithm. Then, obtained soil moisture anomalies were

  1. Preferential flow in water-repellent sandy soils : model development and lysimeter experiments

    NARCIS (Netherlands)

    Rooij, de G.H.


    When water enters a water-repellent topsoil, preferential flow paths develop and the flow bypasses a large part of the unsaturated zone. Therefore, preferential flow caused by water- repellency is expected to accelerate solute leaching to the groundwater. In soils with water-repellent

  2. Infiltration of water in disturbed soil columns as affected by clay dispersion and aggregate slaking


    Amezketa, E.; Aragües, R.; Gazol, R.


    Soil crusting negatively affects the productivity and sustainability of irrigated agriculture, reducing water infiltration and plant emergence, and enhancing surface runoff and erosion. Clay dispersion and slaking of the aggregates at the soil surface are the main processes responsible for crusting. The infiltration rates (IR) of ten arid-zone soils in disturbed soil columns were measured and their relative susceptibilities to dispersion and slaking were determined. It was also examined wheth...

  3. Numerical Modeling of Water Fluxes in the Root Zone of Irrigated Pecan (United States)

    Shukla, M. K.; Deb, S.


    Information is still limited on the coupled liquid water, water vapor, heat transport and root water uptake for irrigated pecan. Field experiments were conducted in a sandy loam mature pecan field in Las Cruces, New Mexico. Three pecan trees were chosen to monitor diurnal soil water content under the canopy (approximately half way between trunk and the drip line) and outside the drip line (bare spot) along a transect at the depths of 5, 10, 20, 40, and 60 cm using TDR sensors. Soil temperature sensors were installed at an under-canopy locations and bare spot to monitor soil temperature data at depths of 5, 10, 20, and 40 cm. Simulations of the coupled transport of liquid water, water vapor, and heat with and without root water uptake were carried out using the HYDRUS-1D code. Measured soil hydraulic and thermal properties, continuous meteorological data, and pecan characteristics, e.g. rooting depth, leaf area index, were used in the model simulations. Model calibration was performed for a 26-day period from DOY 204 through DOY 230, 2009 based on measured soil water content and soil temperature data at different soil depths, while the model was validated for a 90-day period from DOY 231 through DOY 320, 2009 at bare spot. Calibrated parameters were also used to apply the model at under-canopy locations for a 116-day period from DOY 204 to 320. HYDRUS-1D simulated water contents and soil temperatures correlated well with the measured data at each depth. Numerical assessment of various transport mechanisms and quantitative estimates of isothermal and thermal water fluxes with and without root water uptake in the unsaturated zone within canopy and bare spot is in progress and will be presented in the conference.

  4. Water Footprint in Nitrate Vulnerable Zones: Mineral vs. Organic Fertilization. (United States)

    Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; María Tarquis Alfonso, Ana


    In intensive agriculture, it is necessary to apply irrigation and fertilizers to increase the crop yield. An optimization of water and N application is necessary. An excess of irrigation implies nitrates washing which would contribute to the contamination of the groundwater. An excess of N, besides affecting the yield and fruit quality, causes serious environmental problems. Nitrate vulnerable zones (NVZs) are areas designated as being at risk from agricultural nitrate pollution. They include around 16% of land in Spain and in Castilla-La Mancha, the area studied, represents 45% of the total land. In several zones, the N content of the groundwater could be approximately 140 mg L-1, or even higher [1]. The input of nitrogen fertilizers (mineral or organic), applied with a poor management, could be increased considerably the pollution risks. The water footprint (WF) is as indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [2]. The WF includes both consumptive water use: blue water (volume of surface and groundwater consumed) and green water (rainwater consumed)). A third element is the water required to assimilate pollution (grey water) [2]. Under semiarid conditions with low irrigation water quality, green WF is zero because the effective rainfall is negligible. Blue WF includes: i) extra consumption or irrigation water that the farmer has to apply to compensate the fail of uniformity on discharge of drips, ii) percolation out of control or salts leaching, which depends on the salt tolerance of the crop, soil and quality of irrigation water, to ensure the fruit yield. In the NVZs, the major concern is grey WF, because the irrigation and nitrogen dose have to be adjusted to the crop needs in order to minimize nitrate pollution. This study focus on the assessment of mineral and organic fertilization on WF in a fertirrigated melon crop under semiarid conditions with a low water quality. During successive years, a melon crop

  5. The Erosion of expansive soils through a zoning of Taza (Morocco) (United States)

    Demehati, A.; Abidi, A.; El Qandil, M.


    Like other cities in the region of Fez-Meknes, Taza undergoes the phenomena of erosion of soils facing the builder in general and the town planner in particular. This type of aggression of the land is sometimes amplified by the swelling-withdrawal of soils. In effect the marl clay layers are considered as unstable soils because of their volumetric changes depending on the duration and intensity of extreme climate changes (weather, droughts, ventilation.). This phenomenon, which is part directly or indirectly so-called natural disasters, can lead to significant costly damage and particularly intense (soil erosion, landslides, obstruction of the course of the water, hydraulic works and sanitation networks, cracks of the constructions and their annexes’, deformations of pavements, etc.). The knowledge and mastery of this phenomenon are essential to prevent, limit or remedy the consequences and damage related to their impacts. We focus as well our contribution on the geotechnical characteristics of the soils of the city of Taza with highlighting of the hazards in susceptibility to erosion of soils in particular through their potential of swelling-removing and this for the benefit geotechnical zoning of Taza.

  6. Pedotransfer functions for isoproturon sorption on soils and vadose zone materials. (United States)

    Moeys, Julien; Bergheaud, Valérie; Coquet, Yves


    Sorption coefficients (the linear K(D) or the non-linear K(F) and N(F)) are critical parameters in models of pesticide transport to groundwater or surface water. In this work, a dataset of isoproturon sorption coefficients and corresponding soil properties (264 K(D) and 55 K(F)) was compiled, and pedotransfer functions were built for predicting isoproturon sorption in soils and vadose zone materials. These were benchmarked against various other prediction methods. The results show that the organic carbon content (OC) and pH are the two main soil properties influencing isoproturon K(D) . The pedotransfer function is K(D) = 1.7822 + 0.0162 OC(1.5) - 0.1958 pH (K(D) in L kg(-1) and OC in g kg(-1)). For low-OC soils (OC isoproturon sorption in soils in unsampled locations should rely, whenever possible, and by order of preference, on (a) site- or soil-specific pedotransfer functions, (b) pedotransfer functions calibrated on a large dataset, (c) K(OC) values calculated on a large dataset or (d) K(OC) values taken from existing pesticide properties databases. Copyright © 2011 Society of Chemical Industry.

  7. Poly-use multi-level sampling system for soil-gas transport analysis in the vadose zone. (United States)

    Nauer, Philipp A; Chiri, Eleonora; Schroth, Martin H


    Soil-gas turnover is important in the global cycling of greenhouse gases. The analysis of soil-gas profiles provides quantitative information on below-ground turnover and fluxes. We developed a poly-use multi-level sampling system (PMLS) for soil-gas sampling, water-content and temperature measurement with high depth resolution and minimal soil disturbance. It is based on perforated access tubes (ATs) permanently installed in the soil. A multi-level sampler allows extraction of soil-gas samples from 20 locations within 1 m depth, while a capacitance probe is used to measure volumetric water contents. During idle times, the ATs are sealed and can be equipped with temperature sensors. Proof-of-concept experiments in a field lysimeter showed good agreement of soil-gas samples and water-content measurements compared with conventional techniques, while a successfully performed gas-tracer test demonstrated the feasibility of the PMLS to determine soil-gas diffusion coefficients in situ. A field application of the PMLS to quantify oxidation of atmospheric CH4 in a field lysimeter and in the forefield of a receding glacier yielded activity coefficients and soil-atmosphere fluxes well in agreement with previous studies. With numerous options for customization, the presented tool extends the methodological choices to investigate soil-gas transport in the vadose zone.

  8. Effects of soil and water conservation practices on selected soil ...

    African Journals Online (AJOL)

    Although different types of soil and water conservation practices (SWCPs) were introduced, the sustainable use of these practices is far below expectations, and soil erosion continues to be a severe problem in Ethiopia. Therefore, this study was conducted at Debre Yakobe Micro-Watershed (DYMW), Northwest Ethiopia ...

  9. SWIM (Soil and Water Integrated Model)

    Energy Technology Data Exchange (ETDEWEB)

    Krysanova, V; Wechsung, F; Arnold, J; Srinivasan, R; Williams, J


    The model SWIM (Soil and Water Integrated Model) was developed in order to provide a comprehensive GIS-based tool for hydrological and water quality modelling in mesoscale and large river basins (from 100 to 10,000 km{sup 2}), which can be parameterised using regionally available information. The model was developed for the use mainly in Europe and temperate zone, though its application in other regions is possible as well. SWIM is based on two previously developed tools - SWAT and MATSALU (see more explanations in section 1.1). The model integrates hydrology, vegetation, erosion, and nutrient dynamics at the watershed scale. SWIM has a three-level disaggregation scheme 'basin - sub-basins - hydrotopes' and is coupled to the Geographic Information System GRASS (GRASS, 1993). A robust approach is suggested for the nitrogen and phosphorus modelling in mesoscale watersheds. SWIM runs under the UNIX environment. Model test and validation were performed sequentially for hydrology, crop growth, nitrogen and erosion in a number of mesoscale watersheds in the German part of the Elbe drainage basin. A comprehensive scheme of spatial disaggregation into sub-basins and hydrotopes combined with reasonable restriction on a sub-basin area allows performing the assessment of water resources and water quality with SWIM in mesoscale river basins. The modest data requirements represent an important advantage of the model. Direct connection to land use and climate data provides a possibility to use the model for analysis of climate change and land use change impacts on hydrology, agricultural production, and water quality. (orig.)

  10. Isotope fractionation of sandy-soil water during evaporation - an experimental study. (United States)

    Rao, Wen-Bo; Han, Liang-Feng; Tan, Hong-Bing; Wang, Shuai


    Soil samples containing water with known stable isotopic compositions were prepared. The soil water was recovered by using vacuum/heat distillation. The experiments were held under different conditions to control rates of water evaporation and water recovery. Recoveries, δ 18 O and δ 2 H values of the soil water were determined. Analyses of the data using a Rayleigh distillation model indicate that under the experimental conditions only loosely bound water is extractable in cases where the recovery is smaller than 100 %. Due to isotopic exchange between vapour and remaining water in the micro channels or capillaries of the soil matrix, isotopic fractionation may take place under near-equilibrium conditions. This causes the observed relationship between δ 2 H and δ 18 O of the extracted water samples to have a slope close to 8. The results of this study may indicate that, in arid zones when soil that initially contains water dries out, the slope of the relationship between δ 2 H and δ 18 O values should be close to 8. Thus, a smaller slope, as observed by some groundwater and soil water samples in arid zones, may be caused by evaporation of water before the water has entered the unsaturated zone.

  11. Characteristics of water infiltration in layered water repellent soils (United States)

    Hydrophobic soil can influence soil water infiltration, but information regarding the impacts of different levels of hydrophobicity within a layered soil profile is limited. An infiltration study was conducted to determine the effects of different levels of hydrophobicity and the position of the hyd...

  12. Dynamics of soil water evaporation during soil drying: laboratory experiment and numerical analysis. (United States)

    Han, Jiangbo; Zhou, Zhifang


    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3.

  13. Dynamics of Soil Water Evaporation during Soil Drying: Laboratory Experiment and Numerical Analysis (United States)

    Han, Jiangbo; Zhou, Zhifang


    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3. PMID:24489492

  14. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Valdes-Abellan, J.; Jiménez-Martínez, J.; Candela, L.; Tamoh, K.


    Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i) non-automatic and more time-consuming; ii) automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic). Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm). Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher. (Author)

  15. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Directory of Open Access Journals (Sweden)

    Javier Valdes-Abellan


    Full Text Available Abstract Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i non-automatic and more time-consuming; ii automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic. Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm. Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.

  16. Performance evaluation of TDT soil water content and watermark soil water potential sensors (United States)

    This study evaluated the performance of digitized Time Domain Transmissometry (TDT) soil water content sensors (Acclima, Inc., Meridian, ID) and resistance-based soil water potential sensors (Watermark 200, Irrometer Company, Inc., Riverside, CA) in two soils. The evaluation was performed by compar...

  17. Post-fire interactions between soil water repellency, soil fertility and plant growth in soil collected from a burned piñon-juniper woodland (United States)

    Fernelius, Kaitlynn J.; Madsen, Matthew D.; Hopkins, Bryan G.; Bansal, Sheel; Anderson, Val J.; Eggett, Dennis L.; Roundy, Bruce A.


    Woody plant encroachment can increase nutrient resources in the plant-mound zone. After a fire, this zone is often found to be water repellent. This study aimed to understand the effects of post-fire water repellency on soil water and inorganic nitrogen and their effects on plant growth of the introduced annual Bromus tectorum and native bunchgrass Pseudoroegneria spicata. Plots centered on burned Juniperus osteosperma trees were either left untreated or treated with surfactant to ameliorate water repellency. After two years, we excavated soil from the untreated and treated plots and placed it in zerotension lysimeter pots. In the greenhouse, half of the pots received an additional surfactant treatment. Pots were seeded separately with B. tectorum or P. spicata. Untreated soils had high runoff, decreased soilwater content, and elevated NO3eN in comparison to surfactant treated soils. The two plant species typically responded similar to the treatments. Above-ground biomass and microbial activity (estimated through soil CO2 gas emissions) was 16.8-fold and 9.5-fold higher in the surfactant-treated soils than repellent soils, respectably. This study demonstrates that water repellency can influence site recovery by decreasing soil water content, promoting inorganic N retention, and impairing plant growth and microbial activity.

  18. Management and Area-wide Evaluation of Water Conservation Zones in Agricultural Catchments for Biomass Production, Water Quality and Food Security

    International Nuclear Information System (INIS)


    Global land and water resources are under threat from both the agricultural and urban development to meet increased demand for food and from the resulting degradation of the environment. Poor crop yields due to water stress is one of the main reasons for the prevailing hunger and rural poverty in parts of the world. The Green Revolution of the 1960s and 1970s particularly in Latin America and Asia resulted in increased agricultural production and depended partly on water management. In the future, most food will still need to come from rain-fed agriculture. Water conservation zones in agricultural catchments, particularly in rainfed areas, play an important role in the capture and storage of water and nutrients from farmlands and wider catchments, and help improve crop production in times of need in these areas. Water conservation zones are considered to be an important part of water resource management strategies that have been developed to prevent reservoir siltation, reduce water quality degradation, mitigate flooding, enhance groundwater recharge and provide water for farming. In addition to making crop production possible in dry areas, water conservation zones minimize soil erosion, improve soil moisture status through capillary rise and enhance soil fertility and quality. These water conservation zones include natural and constructed wetlands (including riparian wetlands), farm ponds and riparian buffer zones. The management of water conservation zones has been a challenge due to the poor understanding of the relationship between upstream land use and the functions of these zones and their internal dynamics. Knowledge of sources and sinks of water and redefining water and nutrient budgets for water conservation zones are important for optimizing the capture, storage and use of water and nutrients in agricultural landscapes. The overall objective of this coordinated research project (CRP) was to assess and enhance ecosystem services provided by wetlands, ponds

  19. Radioecology of tritiated water in subarctic soils and vegetation

    International Nuclear Information System (INIS)

    Salonen, L.; Miettinen, J.K.


    The residence times of tritium in various types of soils and plants have been determined in southern and northern Finland. The experiments were conducted in forest and agricultural environments where tritiated water was applied to the soil surface in the form of a single fall of rain. After that the movement and loss of tritiated water from the unsaturated zone was followed over a 2-4-year period in some forest areas. Uptake and loss of tritium in the tissue-free water and organic compounds of some native plants was studied in each area. The results indicated that in the subarctic area the half-residence times of tritium in soils and plants were greatly dependent on the climatic conditions at the time of the labelling and during the short growing seasons and also on the rate of water movement in the soil. In the experiments started during the best growing season the half-residence times in soil and plants do not differ from those determined in more temperate latitudes. (author)

  20. Complex linkage between soil, soil water, atmosphere and Eucalyptus Plantations (United States)

    Shukla, C.; Tiwari, K. N.


    Eucalyptus is most widely planted genus grown in waste land of eastern region of India to meet the pulp industry requirements. Sustainability of these plantations is of concern because in spite of higher demand water and nutrients of plantations, they are mostly planted on low-fertility soils. This study has been conducted to quantify effect of 25 years old, a fully established eucalyptus plantations on i.) Alteration in physico-chemical and hydrological properties of soil of eucalyptus plantation in comparison to soil of natural grassland and ii.) Spatio-temporal variation in soil moisture under eucalyptus plantations. Soil physico-chemical properties of two adjacent plots covered with eucatuptus and natural grasses were analyzed for three consecutive depths (i.e. 0-30 cm, 30-60 cm and 60-90 cm) with five replications in each plot. Soil infiltration rate and saturated hydraulic conductivity (Ks) were measured in-situ to incorporate the influence of macro porosity caused due to roots of plantations. Daily soil moisture at an interval of 10 cm upto 160 cm depth with 3 replications and Leaf Area Index (LAI) at an interval of 15 days with 5 replications were recorded over the year. Significant variations found at level of 0.05 between soil properties of eucalyptus and natural grass land confirm the effect of plantations on soil properties. Comparative results of soil properties show significant alteration in soil texture such as percent of sand, organic matter and Ks found more by 20%, 9% and 22% respectively in eucalyptus plot as compare to natural grass land. Available soil moisture (ASM) was found constantly minimum in top soil excluding rainy season indicate upward movement of water and nutrients during dry season. Seasonal variation in temperature (T), relative humidity (RH) and leaf area index (LAI) influenced the soil moisture extraction phenomenon. This study clearly stated the impact of long term establishment of eucalyptus plantations make considerable

  1. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems. (United States)

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R


    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in

  2. Soil functional zone management: a vehicle for enhancing production and soil ecosystem services in row-crop agroecosystems

    Directory of Open Access Journals (Sweden)

    Alwyn eWilliams


    Full Text Available There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimetre-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of ‘active turnover’, optimized for crop growth and yield (provisioning services; and adjacent zones of ‘soil building’, that promote soil structure development, carbon storage and moisture regulation (regulating and supporting services. These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown. We present a conceptual model of ‘virtuous cycles’, illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple

  3. 76 FR 11334 - Safety Zone; Soil Sampling; Chicago River, Chicago, IL (United States)


    ...The Coast Guard is establishing a temporary safety zone on the North Branch of the Chicago River near Chicago, Illinois. This zone is intended to restrict vessels from a portion of the North Branch of the Chicago River due to soil sampling in this area. This temporary safety zone is necessary to protect the surrounding public and vessels from the hazards associated with the soil sampling efforts.

  4. Assessment of vulnerability zones for ground water pollution using ...

    Indian Academy of Sciences (India)

    D Anantha Rao


    May 22, 2018 ... and should always be free from contamination. But, the .... net Recharge, Aquifer media, Soil media, Topo- graphy, Impact of vadose zone .... The Yamuna River flows along this strike-slip ..... of factors such as inter-granular porosity, fractur- ing and ... from the basin boundary in the south-western part (figure ...

  5. Difficulties in the evaluation and measuring of soil water infiltration (United States)

    Pla-Sentís, Ildefonso


    Soil water infiltration is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the evaluation and measurement of water infiltration rates has become indispensable for the evaluation and modeling of the previously mentioned processes. Infiltration is one of the most difficult hydrological parameters to evaluate or measure accurately. Although the theoretical aspects of the process of soil water infiltration are well known since the middle of the past century, when several methods and models were already proposed for the evaluation of infiltration, still nowadays such evaluation is not frequently enough accurate for the purposes being used. This is partially due to deficiencies in the methodology being used for measuring infiltration, including some newly proposed methods and equipments, and in the use of non appropriate empirical models and approaches. In this contribution we present an analysis and discussion about the main difficulties found in the evaluation and measurement of soil water infiltration rates, and the more commonly committed errors, based on the past experiences of the author in the evaluation of soil water infiltration in many different soils and land conditions, and in their use for deducing soil water balances under variable and changing climates. It is concluded that there are not models or methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil

  6. [Effects of soil wetting pattern on the soil water-thermal environment and cotton root water consumption under mulched drip irrigation]. (United States)

    Li, Dong-wei; Li, Ming-si; Liu, Dong; Lyu, Mou-chao; Jia, Yan-hui


    Abstract: To explore the effects of soil wetting pattern on soil water-thermal environment and water consumption of cotton root under mulched drip irrigation, a field experiment with three drip intensities (1.69, 3.46 and 6.33 L · h(-1)), was carried out in Shihezi, Xinjiang Autonomous Region. The soil matric potential, soil temperature, cotton root distribution and water consumption were measured during the growing period of cotton. The results showed that the main factor influencing the soil temperature of cotton under plastic mulch was sunlight. There was no significant difference in the soil temperature and root water uptake under different treatments. The distribution of soil matrix suction in cotton root zone under plastic mulch was more homogeneous under ' wide and shallow' soil wetting pattern (W633). Under the 'wide and shallow' soil wetting pattern, the average difference of cotton root water consumption between inner row and outer row was 0.67 mm · d(-1), which was favorable to the cotton growing trimly at both inner and outer rows; for the 'narrow and deep' soil wetting pattern (W169), the same index was 0.88 mm · d(-1), which was unfavorable to cotton growing uniformly at both inner and outer rows. So, we should select the broad-shallow type soil wetting pattern in the design of drip irrigation under mulch.

  7. New Conceptual Model for Soil Treatment Units: Formation of Multiple Hydraulic Zones during Unsaturated Wastewater Infiltration. (United States)

    Geza, Mengistu; Lowe, Kathryn S; Huntzinger, Deborah N; McCray, John E


    Onsite wastewater treatment systems are commonly used in the United States to reclaim domestic wastewater. A distinct biomat forms at the infiltrative surface, causing resistance to flow and decreasing soil moisture below the biomat. To simulate these conditions, previous modeling studies have used a two-layer approach: a thin biomat layer (1-5 cm thick) and the native soil layer below the biomat. However, the effect of wastewater application extends below the biomat layer. We used numerical modeling supported by experimental data to justify a new conceptual model that includes an intermediate zone (IZ) below the biomat. The conceptual model was set up using Hydrus 2D and calibrated against soil moisture and water flux measurements. The estimated hydraulic conductivity value for the IZ was between biomat and the native soil. The IZ has important implications for wastewater treatment. When the IZ was not considered, a loading rate of 5 cm d resulted in an 8.5-cm ponding. With the IZ, the same loading rate resulted in a 9.5-cm ponding. Without the IZ, up to 3.1 cm d of wastewater could be applied without ponding; with the IZ, only up to 2.8 cm d could be applied without ponding. The IZ also plays a significant role in soil moisture distribution. Without the IZ, near-saturation conditions were observed only within the biomat, whereas near-saturation conditions extended below the biomat with the IZ. Accurate prediction of ponding is important to prevent surfacing of wastewater. The degree of water and air saturation influences pollutant treatment efficiency through residence time, volatility, and biochemical reactions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Improving agricultural drought monitoring in West Africa using root zone soil moisture estimates derived from NDVI (United States)

    McNally, A.; Funk, C. C.; Yatheendradas, S.; Michaelsen, J.; Cappelarere, B.; Peters-Lidard, C. D.; Verdin, J. P.


    The Famine Early Warning Systems Network (FEWS NET) relies heavily on remotely sensed rainfall and vegetation data to monitor agricultural drought in Sub-Saharan Africa and other places around the world. Analysts use satellite rainfall to calculate rainy season statistics and force crop water accounting models that show how the magnitude and timing of rainfall might lead to above or below average harvest. The Normalized Difference Vegetation Index (NDVI) is also an important indicator of growing season progress and is given more weight over regions where, for example, lack of rain gauges increases error in satellite rainfall estimates. Currently, however, near-real time NDVI is not integrated into a modeling framework that informs growing season predictions. To meet this need for our drought monitoring system a land surface model (LSM) is a critical component. We are currently enhancing the FEWS NET monitoring activities by configuring a custom instance of NASA's Land Information System (LIS) called the FEWS NET Land Data Assimilation System. Using the LIS Noah LSM, in-situ measurements, and remotely sensed data, we focus on the following questions: What is the relationship between NDVI and in-situ soil moisture measurements over the West Africa Sahel? How can we use this relationship to improve modeled water and energy fluxes over the West Africa Sahel? We investigate soil moisture and NDVI cross-correlation in the time and frequency domain to develop a transfer function model to predict soil moisture from NDVI. This work compares sites in southwest Niger, Benin, Burkina Faso, and Mali to test the generality of the transfer function. For several sites with fallow and millet vegetation in the Wankama catchment in southwest Niger we developed a non-parametric frequency response model, using NDVI inputs and soil moisture outputs, that accurately estimates root zone soil moisture (40-70cm). We extend this analysis by developing a low order parametric transfer function

  9. New soil water sensors for irrigation management (United States)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  10. Thematic issue on soil water infiltration (United States)

    Infiltration is the term applied to the process of water entry into the soil, generally by downward flow through all or part of the soil surface. Understanding of infiltration concept and processes has greatly improved, over the past 30 years, and new insights have been given into modeling of non-un...

  11. Soil water evaporation and crop residues (United States)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  12. The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product (United States)

    Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John


    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture

  13. Modeling Coupled Water and Heat Transport in the Root Zone of Winter Wheat under Non-Isothermal Conditions

    Directory of Open Access Journals (Sweden)

    Rong Ren


    Full Text Available Temperature is an integral part of soil quality in terms of moisture content; coupling between water and heat can render a soil fertile, and plays a role in water conservation. Although it is widely recognized that both water and heat transport are fundamental factors in the quantification of soil mass and energy balance, their computation is still limited in most models or practical applications in the root zone under non-isothermal conditions. This research was conducted to: (a implement a fully coupled mathematical model that contains the full coupled process of soil water and heat transport with plants focused on the influence of temperature gradient on soil water redistribution and on the influence of change in soil water movement on soil heat flux transport; (b verify the mathematical model with detailed field monitoring data; and (c analyze the accuracy of the model. Results show the high accuracy of the model in predicting the actual changes in soil water content and temperature as a function of time and soil depth. Moreover, the model can accurately reflect changes in soil moisture and heat transfer in different periods. With only a few empirical parameters, the proposed model will serve as guide in the field of surface irrigation.


    African Journals Online (AJOL)


    socio-cultural, economic system constraints for the implementation and maintenance of conservation .... Purpose of natural resource conservation is therefore ... the soil and water resources through traditional and ..... “Integrated Natural.

  15. Hydrologic inferences from strontium isotopes in pore water from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Futa, K.; Peterman, Z.E.


    Calcite is ubiquitous at Yucca Mountain, occurring in the soils and as fracture and cavity coatings within the volcanic tuff section. Strontium is a trace element in calcite, generally at the tens to hundreds of ppm level. Because calcite contains very little rubidium and the half-life of the 87 Rb parent is billions of years, the 87 Sr/ 86 Sr ratios of the calcite record the ratio in the water from which the calcite precipitated. Dissolution and reprecipitation does not alter these compositions so that, in the absence of other sources of strontium, one would expect the strontium ratios along a flow path to preserve variations inherited from strontium in the soil zone. Strontium isotope compositions of calcites from various settings in the Yucca Mountain region have contributed to the understanding of the unsaturated zone (UZ), especially in distinguishing unsaturated zone calcite from saturated zone calcite. Different populations of calcite have been compared, either to group them together or distinguish them from each other in terms of their strontium isotope compositions. Ground water and perched water have also been analyzed; this paper presents strontium isotope data obtained on pore water

  16. Soil processes and functions in critical zone observatories: hypotheses and experimental design

    NARCIS (Netherlands)

    Banwart, S.; Bernasconi, S.M.; Bloem, J.; Blum, W.; Ruiter, de P.C.; Gaans, van P.; Riemsdijk, van W.H.


    European Union policy on soil threats and soil protection has prioritized new research to address global soil threats. This research draws on the methodology of Critical Zone Observatories (CZOs) to focus a critical mass of international, multidisciplinary expertise at specific field sites. These

  17. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations

    Directory of Open Access Journals (Sweden)

    C. Albergel


    Full Text Available A long term data acquisition effort of profile soil moisture is under way in southwestern France at 13 automated weather stations. This ground network was developed in order to validate remote sensing and model soil moisture estimates. In this paper, both those in situ observations and a synthetic data set covering continental France are used to test a simple method to retrieve root zone soil moisture from a time series of surface soil moisture information. A recursive exponential filter equation using a time constant, T, is used to compute a soil water index. The Nash and Sutcliff coefficient is used as a criterion to optimise the T parameter for each ground station and for each model pixel of the synthetic data set. In general, the soil water indices derived from the surface soil moisture observations and simulations agree well with the reference root-zone soil moisture. Overall, the results show the potential of the exponential filter equation and of its recursive formulation to derive a soil water index from surface soil moisture estimates. This paper further investigates the correlation of the time scale parameter T with soil properties and climate conditions. While no significant relationship could be determined between T and the main soil properties (clay and sand fractions, bulk density and organic matter content, the modelled spatial variability and the observed inter-annual variability of T suggest that a weak climate effect may exist.

  18. Observing plants dealing with soil water stress: Daily soil moisture fluctuations derived from polymer tensiometers (United States)

    van der Ploeg, Martine; de Rooij, Gerrit


    fluctuations in water content changes, with both root water uptake and root water excretion. The magnitude of the water content change was in the same order for all treatments, thus suggesting compensatory uptake. References Bakker G, Van der Ploeg MJ, de Rooij GH, Hoogendam CW, Gooren HPA, Huiskes C, Koopal LK and Kruidhof H. New polymer tensiometers: Measuring matric pressures down to the wilting point. Vadose Zone J. 6: 196-202, 2007. Blackman PG and Davies WJ. Root to shoot communication in maize plants of the effects of soil drying. J. Exp. Bot. 36: 39-48, 1985. Davies WJ and Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 55-76, 1991. Gollan T, Passioura JB and Munns R. Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leafs. Aust. J. Plant Physiol. 13: 459-464, 1986. Gowing DJG, Davies WJ and Jones HG. A Positive Root-sourced Signal as an Indicator of Soil Drying in Apple, Malus x domestica Borkh. J. Exp. Bot. 41: 1535-1540, 1990. Grace J. Environmental controls of gas exchange in tropical rain forests. In: Press, M.C, J.D. Scholes and M.G. Barker (ed.). Physiological plant ecology: the 39th Symposium of the British Ecological Society. Blackwell Science, United Kingdom, 1999. Kool D, Agam N, Lazarovitch N, Heitman JL, Sauer TJ, Ben-Gal A. A review of approaches for evapotranspiration partitioning. Agricultural and Forest Meteorology 184: 56- 70, 2014. Mansfield TA and De Silva DLR. Sensory systems in the roots of plants and their role in controlling stomatal function in the leaves. Physiol. Chem. Phys. & Med. 26: 89-99, 1994. Sadras VO and Milroy SP. Soil-water thresholds for the responses of leaf expansion and gas exchange: a review. Field Crops Res. 47: 253-266, 1996. Schröder N, Lazarovitch N, Vanderborcht J, Vereecken H, Javaux M. Linking transpiration reduction to rhizosphere salinity using a 3D coupled soil-plant model. Plant Soil 2013

  19. In-situ measurements of soil-water conductivity

    International Nuclear Information System (INIS)

    Murphy, C.E.


    Radionuclides and other environmentally important materials often move in association with water. In terrestrial ecosystems, the storage and movement of water in the soil is of prime importance to the hydrologic cycle of the ecosystem. The soil-water conductivity (the rate at which water moves through the soil) is a necessary input to models of soil-water movement. In situ techniques for measurement of soil-water conductivity have the advantage of averaging soil-water properties over larger areas than most laboratory methods. The in situ techniques also cause minimum disturbance of the soil under investigation. Results of measurements using a period of soil-water drainage after initial wetting indicate that soil-water conductivity and its variation with soil-water content can be determined with reasonable accuracy for the plot where the measurements were made. Further investigations are being carried out to look at variability between plots within a soil type

  20. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document (United States)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.


    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  1. Passive Microwave Observation of Soil Water Infiltration (United States)

    Jackson, Thomas J.; Schmugge, Thomas J.; Rawls, Walter J.; ONeill, Peggy E.; Parlange, Marc B.


    Infiltration is a time varying process of water entry into soil. Experiments were conducted here using truck based microwave radiometers to observe small plots during and following sprinkler irrigation. Experiments were conducted on a sandy loam soil in 1994 and a silt loam in 1995. Sandy loam soils typically have higher infiltration capabilities than clays. For the sandy loam the observed brightness temperature (TB) quickly reached a nominally constant value during irrigation. When the irrigation was stopped the TB began to increase as drainage took place. The irrigation rates in 1995 with the silt loam soil exceeded the saturated conductivity of the soil. During irrigation the TB values exhibited a pattern that suggests the occurrence of coherent reflection, a rarely observed phenomena under natural conditions. These results suggested the existence of a sharp dielectric boundary (wet over dry soil) that was increasing in depth with time.

  2. Accumulation of Cd in agricultural soil under long-term reclaimed water irrigation

    International Nuclear Information System (INIS)

    Chen, Weiping; Lu, Sidan; Peng, Chi; Jiao, Wentao; Wang, Meie


    Safety of agricultural irrigation with reclaimed water is of great concern as some potential hazardous compounds like heavy metals may be accumulated in soils over time. Impacts of long-term reclaimed water on soil Cd pollution were evaluated based on the field investigation in two main crop areas in Beijing with long irrigation history and on simulation results of STEM-profile model. Under long-term reclaimed water, Cd content in the top 20 cm soil layer was greatly elevated and was more than 2 times higher than that in the deep soil layer. There was very small differences between the field measured and model simulated Cd content in the plow layer (top 20 cm) and entire soil layer. Long-term model prediction showed that reclaimed water irrigation had a low environmental risk of soil Cd pollution, but the risk would be aggravated when there were high metal loading from other sources. The risk is also depending on the soil and plant properties. -- Highlights: •Root zone soil Cd content was elevated by one time under long-term reclaimed water irrigation. •The STEM-profile model can well track the Cd balance in the soil profile. •Reclaimed water irrigation plays a limited role on soil Cd accumulation in Beijing croplands. -- There was a low risk of soil Cd pollution under long-term reclaimed water irrigation

  3. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil (United States)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir


    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  4. Enhanced biogeochemical cycling and subsequent reduction of hydraulic conductivity associated with soil-layer interfaces in the vadose zone (United States)

    Hansen, David J.; McGuire, Jennifer T.; Mohanty, Binayak P.


    Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In-situ collocated probes measured soil water content, matric potential, and Eh while water samples collected from the same locations were analyzed for Br−, Cl−, NO3−, SO42−, NH4+, Fe2+, and total sulfide. Compared to homogenous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron and sulfate reducing bacteria showed 1-2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface; the presence of which, likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. Findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation and/or slow the rate of transport of contaminants. PMID:22031578

  5. Water-induced convection in the Earth's mantle transition zone (United States)

    Richard, Guillaume C.; Bercovici, David


    Water enters the Earth's mantle by subduction of oceanic lithosphere. Most of this water immediately returns to the atmosphere through arc volcanism, but a part of it is expected as deep as the mantle transition zone (410-660 km depth). There, slabs can be deflected and linger before sinking into the lower mantle. Because it lowers the density and viscosity of the transition zone minerals (i.e., wadsleyite and ringwoodite), water is likely to affect the dynamics of the transition zone mantle overlying stagnant slabs. The consequences of water exchange between a floating slab and the transition zone are investigated. In particular, we focus on the possible onset of small-scale convection despite the adverse thermal gradient (i.e., mantle is cooled from below by the slab). The competition between thermal and hydrous effects on the density and thus on the convective stability of the top layer of the slab is examined numerically, including water-dependent density and viscosity and temperature-dependent water solubility. For plausible initial water content in a slab (≥0.5 wt %), an episode of convection is likely to occur after a relatively short time delay (5-20 Ma) after the slab enters the transition zone. However, water induced rheological weakening is seen to be a controlling parameter for the onset time of convection. Moreover, small-scale convection above a stagnant slab greatly enhances the rate of slab dehydration. Small-scale convection also facilitates heating of the slab, which in itself may prolong the residence time of the slab in the transition zone.

  6. Measured and simulated soil water evaporation from four Great Plains soils (United States)

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  7. Ecological estimation of the soils good for grape in Ganja-Gazakh zone

    International Nuclear Information System (INIS)

    Mammadov, Q.S.; Yusifova, M.M.


    Contemporary agricultural science improved the known adaptive approaches in the past, for it accounting natural peccularities of the concrete region is offered with the assistance of agroecological estimation of soil. Using of collecting materials of the soil ecological parameters of soil cover of the studing territory and applying the system of the private scales of the soil estimation on degree of display of their separate signs, the ecological estimation of the soils good for grape in Ganja-Gazakh zone where the highest ecological markshave been got mountain-grey-brown dark (97 marks) and grey-brown dark (96 marks) soils has been carried out

  8. Dynamics of Soil Water Evaporation during Soil Drying in the Presence of a Shallow Water Table: Laboratory Experiment and Numerical Analysis (United States)

    Han, J.; Lin, J.; Liu, P.; Li, W.


    Evaporation from a porous medium plays a key role in hydrological, agricultural, environmental, and engineering applications. Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3. Although the magnitude of condensation zone was much smaller than that for the evaporation zone, the importance of the contribution of condensation zone to soil water dynamics should not be underestimated. Results from our experiment and numerical simulation show that this condensation process resulted in an unexpected and apparent water content increase in the middle of vadose zone profile.

  9. Water movement through a shallow unsaturated zone in an inland arid region: Field drip irrigation experiment under matrix potential control (United States)

    Zhou, T.; Han, D.; Song, X.


    It is vital to study soil water movement in unsaturated zone for evaluating and improving current irrigation mode for prevention and control of soil secondary salinization, especially in inland arid area, where is characterized by strong evaporation, poor drainage system and shallow water table depth. In this study, we investigated the applicability of drip irrigation under matrix potential control during cotton growth seasons in an inland arid region of northwest China. Combined physical observation with stable isotopes tracing method, we studied soil water flow system and recharge sources of shallow groundwater in heavy (Pilot 1) and light (Pilot 2) saline-alkali cotton fields. Evaporation depths (about 50-60 cm) are about the same for both pilots, but infiltration depths (about 60 cm for Pilot 1 and 150 cm for Pilot 2) are very different due to different soil texture, soil structure and soil salt content. Middle layer (about 100 cm thick) is a critical barrier for water exchange between surface and deep layer. Irrigation water is the major source (about 79.6% for Pilot 1 and 81.6% for Pilot 2), while evapotranspiration is the major sink (about 80.7% for Pilot 1 and 83.1% for Pilot 2) of unsaturated zone. The increase of soil water storage is not enough to make up the water shortage of middle layer and thus drip irrigation water doesn't recharge into groundwater for both pilots. Water table rise (about 60 cm for Pilot 1 and 50 cm for Pilot 2) could be caused by lateral groundwater flow instead of vertical infiltration. This irrigation mode could retard the water table rise in this region. However, improving horizontal drainage system may be indispensable for sustainable agriculture development. The study can provide important basis for soil secondary salinization prevention and agricultural water management in inland arid areas.

  10. Application of the Soil and Water Assessment Tool (SWAT Model on a small tropical island (Great River Watershed, Jamaica as a tool in Integrated Watershed and Coastal Zone Management

    Directory of Open Access Journals (Sweden)

    Orville P. Grey


    Full Text Available The Great River Watershed, located in north-west Jamaica, is critical for development, particularly for housing, tourism, agriculture, and mining. It is a source of sediment and nutrient loading to the coastal environment including the Montego Bay Marine Park. We produced a modeling framework using the Soil and Water Assessment Tool (SWAT and GIS. The calculated model performance statistics for high flow discharge yielded a Nash-Sutcliffe Efficiency (NSE value of 0.68 and a R² value of 0.70 suggesting good measured and simulated (calibrated discharge correlation. Calibration and validation results for streamflow were similar to the observed streamflows. For the dry season the simulated urban landuse scenario predicted an increase in surface runoff in excess of 150%. During the wet season it is predicted to range from 98 to 234% presenting a significant risk of flooding, erosion and other environmental issues. The model should be used for the remaining 25 watersheds in Jamaica and elsewhere in the Caribbean. The models suggests that projected landuse changes will have serious impacts on available water (streamflow, stream health, potable water treatment, flooding and sensitive coastal ecosystems.

  11. [Nutrient Characteristics and Nitrogen Forms of Rhizosphere Soils Under Four Typical Plants in the Littoral Zone of TGR]. (United States)

    Wang, Xiao-feng; Yuan, Xing-zhong; Liu, Hong; Zhang, Lei; Yu, Jian-jun; Yue, Jun-sheng


    The Three Gorges Reservoir (TGR), which is the largest water conservancy project ever built in tne world, produced a drawdown area of about 348.93 km2 because of water level control. The biological geochemical cycle of the soil in the drawdown zone has been changed as the result of long-term winter flooding and summer drought and vegetation covering. The loss of soil nitrogen in the drawdown zone poses a threat to the water environmental in TGR. Pengxi river, is an important anabranch, which has the largest drawdown area has been selected in the present study. The four typical vegetation, contained Cynodon dactylon, Cyperus rotundus, Anthium sibiricum and Zea mays L. as the control, were studied to measure nutrient characteristics and nitrogen forms of rhizosphere and non-rhizosphere soils in three distribution areas with different soil types (paddy soil, purple soil and fluvo-aquic soils). The variables measured included organic matter (OM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), hydrolysis N, available P and available K, pH, ion-exchangeable N (IEE-N), weak acid extractable N (CF-N) , iron-manganese oxides N (IMOF-N), organic matter sulfide N (OSF-N), added up four N forms for total transferable N (TF-N) and TN minus TF-N for non-transferable N (NTF-N). The results showed: (1) pH of rhizosphere soil was generally lower than that of non-rhizosphere soil under different vegetation in different type soils because the possible organic acid and H+ released form plant roots and cation absorption differences, and the OM, TP, TN and hydrolysis N of rhizosphere soil were generally higher than those of non-rhizosphere soil, and that the enrichment ratio (ER) of all the four nutrient indicators showed Cyperus rotundus > Cynodon dactylon > Zea mays L. > Anthium sibiricum. Available P showed enrichment in the rhizosphere of three natural vegetations but lose under corn, and available K, TK showed different ER in different conditions. (2) IEF-N CF


    Directory of Open Access Journals (Sweden)

    Díaz, F


    Full Text Available Dryland farming on Fuerteventura and Lanzarote (Canary Islands, Spain, which has an annual rainfall of less than 150 mm/year, has been based traditionally on water harvesting techniques (known locally as “gavias”. Periods of high productivity alternate with those of very low yield. The systems are sustainable in that they reduce erosive processes, contribute to soil and soil-water conservation and are largely responsible for maintaining the soil’s farming potential. In this paper we present the chemical fertility status and nutrient balance of soils in five “gavia” systems. The results are compared with those obtained in adjacent soils where this water harvesting technique is not used. The main crops are wheat, barley, maize, lentils and chick-peas. Since neither organic nor inorganic fertilisers are used, nutrients are derived mainly from sediments carried by runoff water. Nutrients are lost mainly through crop harvesting and harvest residues. The soils where water harvesting is used have lower salt and sodium in the exchange complex, are higher in carbon, nitrogen, copper and zinc and have similar phosphorous and potassium content. It is concluded that the systems improve the soil’s natural fertility and also that natural renovation of nutrients occurs thanks to the surface deposits of sediments, which mix with the arable layer. The system helps ensure adequate fertility levels, habitual in arid regions, thus allowing dryland farming to be carried out.

  13. Heavy metals contamination characteristics in soil of different mining activity zones

    Institute of Scientific and Technical Information of China (English)

    LIAO Guo-li; LIAO Da-xue; LI Quan-ming


    Depending upon the polluted features of various mining activities in a typical nonferrous metal mine, the contaminated soil area was divided into four zones which were polluted by tailings, mine drainage, dust deposition in wind and spreading minerals during vehicle transportation, respectively. In each zone, soil samples were collected. Total 28 soil samples were dug and analyzed by ICP-AES and other relevant methods. The results indicate that the average contents of Zn, Pb, Cd, Cu and As in soils are 508.6, 384.8, 7.53, 356 and 44.6 mg/kg, respectively. But the contents of heavy metals in different zone have distinct differences. The proportion of oxidizing association with organic substance is small. Difference of the association of heavy metals is small in different polluted zones.

  14. Application of a very detailed soil survey method in viticultural zoning in Catalonia, Spain

    Directory of Open Access Journals (Sweden)

    Josep Miquel Ubalde


    Significance and impact of study: This study showed how very detailed soil maps, which can be difficult to interpret and put into practice, can be valorised as viticultural zoning maps by means of a simple methodology.

  15. Effect of long-term irrigation patterns on phosphorus forms and distribution in the brown soil zone.

    Directory of Open Access Journals (Sweden)

    Chang Liu

    Full Text Available Continuous application of P fertilizers under different irrigation patterns can change soil phosphorus (P chemical behavior and increase soil P levels that are of environmental concern. To assess the effect of long-term different irrigation patterns on soil P fractions and availability, this study examined sequential changes in soil organic P and inorganic P from furrow irrigation (FI, surface drip irrigation (SUR, and subsurface drip irrigation (SDI in the brown soil zone (0-60 cm during 1998 to 2011. Analyses of soil P behavior showed that the levels of total P are frequently high on top soil layers. The total P (TP contents of the entire soil profiles under three irrigation treatments were 830.2-3180.1 mg/kg. The contents of available P (AP were 72.6-319.3 mg P/kg soil through soil profiles. The greatest TP and AP contents were obtained within the upper soil layers in FI. Results of Hedley's P fractionation indicate that HCl-P is a dominant form and the proportion to TP ranges from 29% to 43% in all three methods. The contents of various fractions of P were positively correlated with the levels of total carbon (TC, total inorganic carbon (TIC, and calcium (Ca, whereas the P fractions had negative correlation with pH in all soil samples. Regression models proved that NaHCO3-Po was an important factor in determining the amount of AP in FI. H2O-Po, NaHCO3-Po, and NaOH-Pi were related to available P values in SUR. NaHCO3-Po and NaOH-Po played important roles in SDI. The tomato yield under SUR was higher than SDI and FI. The difference of P availability was also controlled by the physicochemical soil properties under different irrigation schedule. SUR was a reasonable irrigation pattern to improve the utilization efficiency of water and fertilizer.

  16. Model for tritiated water transport in soil

    International Nuclear Information System (INIS)

    Galeriu, D.; Paunescu, N.


    Chemical forms of tritium released from nuclear facilities are mostly water (HTO) and hydrogen (HT, TT). Elemental tritium is inert in vegetation and superior animals, but the microorganisms from soil oxidize HT to HTO. After an atmospheric HT emission, in short time an equivalent quantity of HTO is re-emitted from soil. In the vicinity of a tritium source the spatial and temporary distribution of HTO is dependent on the chemical form of tritium releases. During routine tritium releases (continuously and constant releases), the local distribution of tritium reaches equilibrium, and specific activities of tritium in environmental compartments are almost equal. The situation is very different after an accidental emission. Having in view, harmful effects of tritium when it is incorporated into the body several models were developed for environmental tritium transport and dose assessment. The tritium transport into the soil is an important part of the environmental tritium behavior, but, unfortunately, in spite of the importance of this problem the corresponding modeling is unsatisfactory. The aim of this paper was the improvement of the TRICAIAP model, and the application of the model to BIOMOVS scenario. The BIOMOVS scenario predicts HTO concentrations in soil during 30 days, after one hour atmospheric HTO emission. The most important conclusions of the paper are: the principal carrier of tritium into the soil is water; the transfer processes are the reactions of water in soil and the diffusion due to concentration gradient; atmosphere-soil transport is dependent of surface characteristics (granulation, humidity, roughness, etc.); the conversion rate of HT to HTO is not well known and is dependent on active microorganism concentration in soil and on soil humidity. More experimental data are needed to decrease the uncertainty of transfer parameter, for the definition of the influence of vegetation, etc. (authors)

  17. Using soil water sensors to improve irrigation management (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and som...

  18. Zone peculiarities of natural conditions, affecting ran food stuffs and drinking water contamination with radionuclides

    International Nuclear Information System (INIS)

    Marej, A.N.


    The effect of natural conditions on the USSR territory connected with peculiar types of soil on the behaviour of radionuclides fallen from stratosphere is considered. Characteristics of tundra, taiga partially-wooded steppe, step.oe, mountain and semi-desert zones are presented. Peculiarities of soils in different geographical zones of the USSR conditioned by various properties and compositions have a significant effect on 90 Sr and especially 137 Cs migration intensity from the soil into plants and organisms of animals through biological chains. The administration of radionuclides in the ration with food stuffs obtained on the surface of reservoirs where zonality low is also rightful, is studied. It is established that indexes of 90 Sr and 137 Cs buildup in tissues of hydrobionts are in reverse dependence on calcium and potassium content in water. Therefore, maximum levels of 90 Sr and 137 Cs buildup in fish is characteristic of zones with the low content of these elements. The degree of water mineralization in ponds has a clear zonality which increases in the direction from the North to the South. The degree of pond well-drained nature is of great importance

  19. Radiation state of environment in the 30-km zone of Chernobyl NPP, water objects

    International Nuclear Information System (INIS)

    Sukhoruchkin, A.K.


    The level of radioactivity in the zone of Chernobyl NPP before the accident is shown. The extremely high level of radioactive contamination produced by the release from the ChNPP at the accident declined as short-lived nuclides decayed. The aerial γ surveys of the 5 km zone of the ChNPP in October, 1986 and September, 1987 are shown. The radiation hygienic parameters of long-lived nuclides at the moment of release are presented. The main contribution to the dose in inhalation is expected from transuranium nuclides, and in ingestion, 90 Sr. The radiation situation in the 30 km zone is at present determined by 137 Cs, 90 Sr and transuranium nuclides, and such nuclide mixture is very unfavorable from the radiobiological point of view. The dosimetric monitoring of them is discussed. The soil contamination density in the 5 km zone is shown. The circumstances of the rich water resources in the region are explained, and the state of contamination is shown. The observation of radioactive contamination of the surface water of Pripyat River is described, and the results are shown. Much concern in the 30 km zone was aroused by the radiation state of groundwater at the places of the forced temporary burial of solid radioactive waste. The state of the cooling water pond in relation to Pripyat River is reported. (K.I.)

  20. Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux (United States)

    Akbariyeh, Simin; Bartelt-Hunt, Shannon; Snow, Daniel; Li, Xu; Tang, Zhenghong; Li, Yusong


    Contamination of groundwater from nitrogen fertilizers in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have considered a controlled field work to investigate the influence of soil heterogeneity and groundwater flow on nitrate-N distribution in both root zone and deep vadose zone. In this work, a numerical model was developed to simulate nitrate-N transport and transformation beneath a center pivot-irrigated corn field on Nebraska Management System Evaluation area over a three-year period. The model was based on a realistic three-dimensional sediment lithology, as well as carefully controlled irrigation and fertilizer application plans. In parallel, a homogeneous soil domain, containing the major sediment type of the site (i.e. sandy loam), was developed to conduct the same water flow and nitrate-N leaching simulations. Simulated nitrate-N concentrations were compared with the monitored nitrate-N concentrations in 10 multi-level sampling wells over a three-year period. Although soil heterogeneity was mainly observed from top soil to 3 m below the surface, heterogeneity controlled the spatial distribution of nitrate-N concentration. Soil heterogeneity, however, has minimal impact on the total mass of nitrate-N in the domain. In the deeper saturated zone, short-term variations of nitrate-N concentration correlated with the groundwater level fluctuations.

  1. Interacting vegetative and thermal contributions to water movement in desert soil (United States)

    Garcia, C.A.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Šimůnek, J.; Wheatcraft, S.W.


    Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil–plant–atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001–December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments.

  2. Soil and ground-water remediation techniques

    International Nuclear Information System (INIS)

    Beck, P.


    Urban areas typically contain numerous sites underlain by soils or ground waters which are contaminated to levels that exceed clean-up guidelines and are hazardous to public health. Contamination most commonly results from the disposal, careless use and spillage of chemicals, or the historic importation of contaminated fill onto properties undergoing redevelopment. Contaminants of concern in soil and ground water include: inorganic chemicals such as heavy metals; radioactive metals; salt and inorganic pesticides, and a range of organic chemicals included within petroleum fuels, coal tar products, PCB oils, chlorinated solvents, and pesticides. Dealing with contaminated sites is a major problem affecting all urban areas and a wide range of different remedial technologies are available. This chapter reviews the more commonly used methods for ground-water and soil remediation, paying particular regard to efficiency and applicability of specific treatments to different site conditions. (author). 43 refs., 1 tab., 27 figs

  3. Predicting Plant-Accessible Water in the Critical Zone: Mountain Ecosystems in a Mediterranean Climate (United States)

    Klos, P. Z.; Goulden, M.; Riebe, C. S.; Tague, C.; O'Geen, A. T.; Flinchum, B. A.; Safeeq, M.; Conklin, M. H.; Hart, S. C.; Asefaw Berhe, A.; Hartsough, P. C.; Holbrook, S.; Bales, R. C.


    Enhanced understanding of subsurface water storage, and the below-ground architecture and processes that create it, will advance our ability to predict how the impacts of climate change - including drought, forest mortality, wildland fire, and strained water security - will take form in the decades to come. Previous research has examined the importance of plant-accessible water in soil, but in upland landscapes within Mediterranean climates the soil is often only the upper extent of subsurface water storage. We draw insights from both this previous research and a case study of the Southern Sierra Critical Zone Observatory to: define attributes of subsurface storage, review observed patterns in its distribution, highlight nested methods for its estimation across scales, and showcase the fundamental processes controlling its formation. We observe that forest ecosystems at our sites subsist on lasting plant-accessible stores of subsurface water during the summer dry period and during multi-year droughts. This indicates that trees in these forest ecosystems are rooted deeply in the weathered, highly porous saprolite, which reaches up to 10-20 m beneath the surface. This confirms the importance of large volumes of subsurface water in supporting ecosystem resistance to climate and landscape change across a range of spatiotemporal scales. This research enhances the ability to predict the extent of deep subsurface storage across landscapes; aiding in the advancement of both critical zone science and the management of natural resources emanating from similar mountain ecosystems worldwide.

  4. An efficient soil water balance model based on hybrid numerical and statistical methods (United States)

    Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei


    Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new

  5. Modeling Water Pollution of Soil


    V. Doležel; P. Procházka; V. Křístek


    The government of the Czech Republic decided that in the location to the west of Prague, capital city of the Czech Republic, some deep mines should be closed because of their low efficiency of coal mined i.e. small amounts and low quality of the coal extracted in the final stage of mining. The locations near Prague influenced the decision to do maintenance on the abandoned mines, as the thread of soil pollution was unacceptably high in the neighborhood of the capital city. Before the mines we...

  6. Soil Water: Advanced Crop and Soil Science. A Course of Study. (United States)

    Miller, Larry E.

    The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…

  7. Investigation of Influence Zones Induced by Shallow Tunnelling in Soft Soils

    NARCIS (Netherlands)

    Vu Minh, N.; Broere, W.; Bosch, J.W.


    The extent of the influence zone affected by shallow tunnelling depends on the value of volume loss which normally represents the amount of over-excavation and stress changes induced in the soil. This paper combines upper and lower estimates of volume loss for different soft soils and

  8. Effect of rain drop washes on soil fertility in cotton production zone of ...

    African Journals Online (AJOL)

    Crop production in the Sahel is limited by nutrients availability. The study aimed to estimate the contribution of avifauna, crop rotation and trees to soil fertility and crop production improvement. Pot experiment was carried out with soils sampled in Faidherbia albida parklands in cotton production zone of West Burkina Faso.

  9. Relationships between soil-based management zones and canopy sensing for corn nitrogen management (United States)

    Integrating soil-based management zones (MZ) with crop-based active canopy sensors to direct spatially variable nitrogen (N) applications has been proposed for improving N fertilizer management of corn (Zea mays L.). Analyses are needed to evaluate relationships between canopy sensing and soil-based...

  10. The forming of the complexes of soil mezofauna in the zone of radioactive contamination

    International Nuclear Information System (INIS)

    Maksimova, S.L.


    We carried out the pedobiological research in the different biogeocenoses in the zone of radioactive contamination. Based on the obtained data we can conclude a direct correlation between the viability of the soil invertebrates and the background gamma-radiation intensity. All the facts indicate that soil animal complexes in biogeocenoses exposed to radiation for a long time impact clearly noticeable suppression

  11. Cacao Crop Management Zones Determination Based on Soil Properties and Crop Yield

    Directory of Open Access Journals (Sweden)

    Perla Silva Matos de Carvalho

    Full Text Available ABSTRACT: The use of management zones has ensured yield success for numerous agricultural crops. In spite of this potential, studies applying precision agricultural techniques to cacao plantations are scarce or almost nonexistent. The aim of the present study was to delineate management zones for cacao crop, create maps combining soil physical properties and cacao tree yield, and identify what combinations best fit within the soil chemical properties. The study was conducted in 2014 on a cacao plantation in a Nitossolo Háplico Eutrófico (Rhodic Paleudult in Bahia, Brazil. Soil samples were collected in a regular sampling grid with 120 sampling points in the 0.00-0.20 m soil layer, and pH(H2O, P, K+, Ca2+, Mg2+, Na+, H+Al, Fe, Zn, Cu, Mn, SB, V, TOC, effective CEC, CEC at pH 7.0, coarse sand, fine sand, clay, and silt were determined. Yield was measured in all the 120 points every month and stratified into annual, harvest, and early-harvest cacao yields. Data were subjected to geostatistical analysis, followed by ordinary kriging interpolation. The management zones were defined through a Fuzzy K-Means algorithm for combinations between soil physical properties and cacao tree yield. Concordance analysis was carried out between the delineated zones and soil chemical properties using Kappa coefficients. The zones that best classified the soil chemical properties were defined from the early-harvest cacao yield map associated with the clay or sand fractions. Silt content proved to be an inadequate variable for defining management zones for cacao production. The delineated management zones described the spatial variability of the soil chemical properties, and are therefore important for site-specific management in the cacao crop.

  12. Determination of degradation rates of organic substances in the unsaturated soil zone depending on the grain size fractions of various soil types (United States)

    Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora


    Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes

  13. Grey water impact on soil physical properties

    Directory of Open Access Journals (Sweden)

    Miguel L. Murcia-Sarmiento


    Full Text Available Due to the increasing demand for food produced by the increase in population, water as an indispensable element in the growth cycle of plants every day becomes a fundamental aspect of production. The demand for the use of this resource is necessary to search for alternatives that should be evaluated to avoid potential negative impacts. In this paper, the changes in some physical properties of soil irrigated with synthetic gray water were evaluated. The experimental design involved: one factor: home water and two treatments; without treated water (T1 and treated water (T2. The variables to consider in the soil were: electrical conductivity (EC, exchangeable sodium percentage (ESP, average weighted diameter (MWD and soil moisture retention (RHS. The water used in drip irrigation high frequency was monitored by tensiometer for producing a bean crop (Phaseolous vulgaris L. As filtration system used was employed a unit composed of a sand filter (FLA and a subsurface flow wetland artificial (HFSS. The treatments showed significant differences in the PSI and the RHS. The FLA+HFSS system is an alternative to the gray water treatment due to increased sodium retention.

  14. Dynamics of mobile form of plutonium isotopes in soils within 10-km zone of Chernobyl NPP

    International Nuclear Information System (INIS)

    Shuktomova, I.I.


    The dynamics of the mobile forms of plutonium isotopes depending on the time of there presence in environment were studied on samples of five soil varieties within the limits of the 10-km zone of Chernobyl NPP. Seasonal dynamic study of the extracted plutonium isotopes showed the increase (5-10 fold) in the amount of mobile forms of radionuclides in all soil samples. Studying the dynamics of total sum of mobile forms of isotopes in soils showed their decrease in general

  15. Soil - water relationships in the Weatherley catchment, South Africa

    African Journals Online (AJOL)


    Apr 24, 2009 ... Soil water content is influenced by soil and terrain factors, but studies on the predictive value of diagnostic .... Results for particle size analyses (Soil Classification ...... negating the importance of the negative intercept value in.

  16. An overview of soil water sensors for salinity & irrigation management (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. Accurate irrigation management is even more important in salt affected soils ...

  17. Effectiveness of streamside management zones on water quality: pretreatment measurements (United States)

    J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; E. Treasure


    The objective of this paired watershed study is to quantify the effects of upland forest harvesting and Streamside Management Zones (SMZs) on stream water quantity and quality in North Carolina. Four watersheds ranging from 12 to 28 hectares (i.e., two on Hill Forest and two on Umstead Research Farm) with perennial stream channels were gauged for flow monitoring and...

  18. Root zone water quality model (RZWQM2): Model use, calibration and validation (United States)

    Ma, Liwang; Ahuja, Lajpat; Nolan, B.T.; Malone, Robert; Trout, Thomas; Qi, Z.


    The Root Zone Water Quality Model (RZWQM2) has been used widely for simulating agricultural management effects on crop production and soil and water quality. Although it is a one-dimensional model, it has many desirable features for the modeling community. This article outlines the principles of calibrating the model component by component with one or more datasets and validating the model with independent datasets. Users should consult the RZWQM2 user manual distributed along with the model and a more detailed protocol on how to calibrate RZWQM2 provided in a book chapter. Two case studies (or examples) are included in this article. One is from an irrigated maize study in Colorado to illustrate the use of field and laboratory measured soil hydraulic properties on simulated soil water and crop production. It also demonstrates the interaction between soil and plant parameters in simulated plant responses to water stresses. The other is from a maize-soybean rotation study in Iowa to show a manual calibration of the model for crop yield, soil water, and N leaching in tile-drained soils. Although the commonly used trial-and-error calibration method works well for experienced users, as shown in the second example, an automated calibration procedure is more objective, as shown in the first example. Furthermore, the incorporation of the Parameter Estimation Software (PEST) into RZWQM2 made the calibration of the model more efficient than a grid (ordered) search of model parameters. In addition, PEST provides sensitivity and uncertainty analyses that should help users in selecting the right parameters to calibrate.

  19. Partial root zone drying (PRD) sustains yield of potatoes (Solanum tuberosum L.) at reduced water supply

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Andersen, Mathias Neumann; Liu, Fulai


    Partial root zone drying (PRD) is a new water-saving irrigation strategy being tested in many crop species. Until now it has not been investigated in potatoes (Solanum tuberosum L.). A field experiment on sandy soil in Denmark was conducted under a mobile rainout shelter to study effects of two...... subsurface drip irrigation treatments ((1) Full Irrigation (FI) receiving 100% of evaporative demand; and (2) PRD receiving 70% water of FI) on potato yield, tuber size, leaf water relations and irrigation water use efficiency (IWUE). The PRD treatment was started just after the end of tuber initiation...... for two months during tuber bulking and maturing stage and was shifted from one side to the other side of the plants every 5-10 days when FI plants had used 20-25 mm. Compared to FI plants, stomatal conductance was generally lower in the PRD-treated plants, whereas leaf water potential tended to be lower...

  20. Soil and Water Conservation Activities for Scouts. (United States)

    Soil Conservation Service (USDA), Washington, DC.

    The purpose of the learning activities outlined in this booklet is to help Scouts understand some conservation principles which hopefully will lead to the development of an attitude of concern for the environment and a commitment to help with the task of using and managing soil, water, and other natural resources for long range needs as well as…

  1. Development of a soil water dispersion index (SOWADIN) for testing the effectiveness of a soil-wetting agent

    International Nuclear Information System (INIS)

    Sawada, Y.; Aylmore, L.A.G.; Hainsworth, J.M.


    Computer-assisted tomography (CAT) applied to gamma-ray attenuation measurement has been used to develop an index termed the soil water dispersion index (SOWADIN), which describes quantitatively the amount and distribution of water in soil columns. The index, which is determined by classifying pixels in a scanned slice into three categories according to their attenuation coefficients, contains two numerical values. The first value corresponds to the water content of the scanned slice and the second value is a measure of the dispersion of the water throughout the slice. Artificially wetted zones were created in soil columns to give one-third of the scanned layer wetted with various patterns of wetted-area distribution. The SOWADIN values obtained accurately reflected the differences in water distribution associated with the different patterns. Application of SOWADIN to columns of a water-repellent sand before and after treatment with a soil-wetting agent clearly illustrates both the increase in water content and improvement in water distribution in the soil column following treatment. 33 refs., 3 figs., 2 tabs

  2. Theory of evapotranspiration. 2. Soil and intercepted water evaporation


    Budagovskyi, Anatolij Ivanovič; Novák, Viliam


    Evaporation of water from the soil is described and quantified. Formation of the soil dry surface layer is quantitatively described, as a process resulting from the difference between the evaporation and upward soil water flux to the soil evaporating level. The results of evaporation analysis are generalized even for the case of water evaporation from the soil under canopy and interaction between evaporation rate and canopy transpiration is accounted for. Relationships describing evapotranspi...

  3. Impacts of terracing on soil erosion control and crop yield in two agro-ecological zones of Rwanda (United States)

    Rutebuka, Jules; Ryken, Nick; Uwimanzi, Aline; Nkundwakazi, Olive; Verdoodt, Ann


    Soil erosion remains a serious limiting factor to the agricultural production in Rwanda. Terracing has been widely adopted in many parts of the country in the past years, but its effectiveness is not yet known. Besides the standard radical (bench) terraces promoted by the government, also progressive terraces (with living hedges) become adopted mainly by the farmers. The aim of this study was to measure short-term (two consecutive rainy seasons 2016A and 2016B) run-off and soil losses for existing radical (RT) and progressive (PT) terraces versus non-protected (NP) fields using erosion plots installed in two agro-ecological zones, i.e. Buberuka highlands (site Tangata) and Eastern plateau (site Murehe) and determine their impacts on soil fertility and crop production. The erosion plot experiment started with a topsoil fertility assessment and during the experiment, maize was grown as farmer's cropping preference in the area. Runoff data were captured after each rainfall event and the collected water samples were dried to determine soil loss. Both erosion control measures reduced soil losses in Tangata, with effectiveness indices ranging from 43 to 100% when compared to the NP plots. RT showed the highest effectiveness, especially in season A. In Murehe, RT minimized runoff and soil losses in both seasons. Yet, the PT were largely inefficient, leading to soil losses exceeding those on the NP plots (ineffectiveness index of -78% and -65% in season A and B, respectively). Though topsoil fertility assessment in the erosion plots showed that the soil quality parameters were significantly higher in RT and NP plots compared to the PT plots on both sites, maize grain yield was not correlated with the physical effectiveness of the erosion control measures. Finally, the effectiveness of soil erosion control measures as well as their positive impacts on soil fertility and production differ not only by terracing type but also by agro-ecological zone and the management or

  4. Surface Runoff and Snowmelt Infiltration into the Soil on Plowlands in the Forest-Steppe and Steppe Zones of the East European Plain (United States)

    Barabanov, A. T.; Dolgov, S. V.; Koronkevich, N. I.; Panov, V. I.; Petel'ko, A. I.


    Long-term series of observations over the spring water balance elements on fields with hydrologically contrasting agricultural backgrounds―a loose soil after fall moldboard plowing and a plowland compacted by 12-16% compared to the former soil (perennial grasses, winter crops, stubble)―have been analyzed. The values of surface runoff and water infiltration into the soil in the steppe and forest-steppe zones of European Russia have been calculated for the spring (flooding) period and the entire cold season. The hydrological role of fall plowing has been shown, and water balance elements for the current (1981-2016) and preceding (1957-1980) periods have been compared. A significant decrease in runoff and an increase of water reserve in the soil have been revealed on all plowland types. Consequences of changes in the spring water balance on plowland have been analyzed.

  5. A statistical approach for water movement in the unsaturated zone

    International Nuclear Information System (INIS)

    Tielin Zang.


    This thesis presents a statistical approach for estimating and analyzing the downward transport pattern and distribution of soil water by the use of pattern analysis of space-time correlation structures. This approach, called the Space-time-Correlation Field, is mainly based on the analyses of correlation functions simultaneously in the space and time domain. The overall purpose of this work is to derive an alternative statistical procedure in soil moisture analysis without involving detailed information on hydraulic parameters and to visualize the dynamics of soil water variability in the space and time domains. A numerical model using method of characteristics is employed to provide hypothetical time series to use in the statistical method, which is, after the verification and calibration, applied to the field measured time series. The results of the application show that the space-time correlation fields reveal effects of soil layers with different hydraulic properties and boundaries between them. It is concluded that the approach poses special advantages when visualizing time and space dependent properties simultaneously. It can be used to investigate the hydrological response of soil water dynamics and characteristics in different dimensions (space and time) and scales. This approach can be used to identify the dominant component in unsaturated flow systems. It is possible to estimate the pattern and the propagation rate downwards of moisture movement in the soil profile. Small-scale soil heterogeneities can be identified by the correlation field. Since the correlation field technique give a statistical measure of the dependent property that varies within the space-time field, it is possible to interpolate the fields to points where observations are not available, estimating spatial or temporal averages from discrete observations. (au)

  6. Geoelectric imaging for saline water intrusion in Geopark zone of Ciletuh Bay, Indonesia (United States)

    Ardi, N. D.; Iryanti, M.; Asmoro, C. P.; Yusuf, A.; Sundana, A. N. A.; Safura, H. Y.; Fitri, M.; Anggraeni, M.; Kurniawan, R.; Afrianti, R.; Sumarni


    Saline water intrusion in estuary is an urgent ecological encounter across the world. The Ciletuh Bay, located in the southern Sukabumi district, is an area with high cultivated potential becoming one of the most important geology tourism zones in Indonesia. However, salt water intrusion along the creek is a natural spectacle that disturbs the economic growth of the whole region. This research was intended at plotting the subsurface level of saltwater interventions into aquifers at the northern part of Ciletuh creek, Indonesia. The study implemented geoelectric imaging methods. 37 imaging datum were acquired using Wenner array configuration. The saline water were identified across the study area. The result of two dimensional cross-sectional resistivity shows that there is an indication of sea content in our measured soil, i.e. the smallest resistivity value is 0.579 Ωm found at a depth of 12.4 m to 19.8 m at a track length of 35 m to 60 m is categorized in the clayey which shows low groundwater quality. However, when compared with the results of direct observation of groundwater from the wells of residents, the water obtained is brackish water. A water chemistry test is conducted to ascertain the initial results of this method so that a potential sea intrusion potential map can be interpreted more clearly. This can consequently help as an extrapolative model to define depth to saline water at any site within the saline water zone in the study area.

  7. Gravel admix, vegetation, and soil water interactions in protective barriers: Experimental design, construction, and initial conditions

    International Nuclear Information System (INIS)

    Waugh, W.J.


    The purpose of this study is to measure the interactive effects of gravel admix and greater precipitation on soil water storage and plant abundance. The study is one of many tasks in the Protective Barrier Development Program for the disposal of Hanford defense waste. A factorial field-plot experiment was set up at the site selected as the borrow area for barrier topsoil. Gravel admix, vegetation, and enhanced precipitation treatments were randomly assigned to the plots using a split-split plot design structure. Changes in soil water storage and plant cover were monitored using neutron probe and point intercept methods, respectively. The first-year results suggest that water extraction by plants will offset gravel-caused increases in soil water storage. Near-surface soil water contents were much lower in graveled plots with plants than in nongraveled plots without plants. Large inherent variability in deep soil water storage masked any effects gravel may have had on water content below the root zone. In the future, this source of variation will be removed by differencing monthly data series and testing for changes in soil water storage. Tests of the effects of greater precipitation on soil water storage were inconclusive. A telling test will be possible in the spring of 1988, following the first wet season during which normal precipitation is doubled. 26 refs., 9 figs., 9 tabs

  8. Identification of hydrologic and geochemical pathways using high frequency sampling, REE aqueous sampling and soil characterization at Koiliaris Critical Zone Observatory, Crete

    Energy Technology Data Exchange (ETDEWEB)

    Moraetis, Daniel, E-mail: [Department of Environmental Engineering, Technical University of Crete, 73100 Chania (Greece); Stamati, Fotini; Kotronakis, Manolis; Fragia, Tasoula; Paranychnianakis, Nikolaos; Nikolaidis, Nikolaos P. [Department of Environmental Engineering, Technical University of Crete, 73100 Chania (Greece)


    Highlights: > Identification of hydrological and geochemical pathways within a complex watershed. > Water increased N-NO{sub 3} concentration and E.C. values during flash flood events. > Soil degradation and impact on water infiltration within the Koiliaris watershed. > Analysis of Rare Earth Elements in water bodies for identification of karstic water. - Abstract: Koiliaris River watershed is a Critical Zone Observatory that represents severely degraded soils due to intensive agricultural activities and biophysical factors. It has typical Mediterranean soils under the imminent threat of desertification which is expected to intensify due to projected climate change. High frequency hydro-chemical monitoring with targeted sampling for Rare Earth Elements (REE) analysis of different water bodies and geochemical characterization of soils were used for the identification of hydrologic and geochemical pathways. The high frequency monitoring of water chemical data highlighted the chemical alterations of water in Koiliaris River during flash flood events. Soil physical and chemical characterization surveys were used to identify erodibility patterns within the watershed and the influence of soils on surface and ground water chemistry. The methodology presented can be used to identify the impacts of degraded soils to surface and ground water quality as well as in the design of methods to minimize the impacts of land use practices.

  9. Soil and periphyton indicators of anthropogenic water-quality changes in a rainfall-driven wetland (United States)

    McCormick, P.V.


    Surface soils and periphyton communities were sampled across an oligotrophic, soft-water wetland to document changes associated with pulsed inputs of nutrient- and mineral-rich canal drainage waters. A gradient of canal-water influence was indicated by the surface-water specific conductance, which ranged between 743 and 963 ??S cm-1 in the canals to as low as 60 ??S cm-1 in the rainfall-driven wetland interior. Changes in soil chemistry and periphyton taxonomic composition across this gradient were described using piecewise regressions models. The greatest increase in soil phosphorus (P) concentration occurred at sites closest to the canal while soil mineral (sulfur, calcium) concentrations increased most rapidly at the lower end of the gradient. Multiple periphyton shifts occurred at the lower end of the gradient and included; (1) a decline in desmids and non-desmid filamentous chlorophytes, and their replacement by a diatom-dominated community; (2) the loss of soft-water diatom indicator species and their replacement by hard-water species. Increased dominance by cyanobacteria and eutrophic diatom indicators occurred closer to the canals. Soil and periphyton changes indicated four zones of increasing canal influence across the wetland: (1) a zone of increasing mineral concentrations where soft-water taxa remained dominant; (2) a transition towards hard-water, oligotrophic diatoms as mineral concentrations increased further; (3) a zone of dominance by these hard-water species; (4) a zone of rapidly increasing P concentrations and dominance by eutrophic taxa. In contrast to conclusions drawn from routine water-chemistry monitoring, measures of chemical and biological change presented here indicate that most of this rainfall-driven peatland receives some influence from canal discharges. These changes are multifaceted and induced by shifts in multiple chemical constituents. ?? 2010 US Government.

  10. Quantitative imaging of water flow in soil and roots using neutron radiography and deuterated water

    Energy Technology Data Exchange (ETDEWEB)

    Zarebanadkouki, Mohsen


    proximal segments than in the distal segments. In lupines most of the water uptake occurred in the lateral roots. The function of the taproot was to collect water from the laterals and transport it to the shoots. This function is ensured by a low radial conductivity and a high axial conductive. We also applied the technique to measure how rhizosphere affects root water uptake. As was recently reported in the literature, in this study was also observed that the soil in the immediate vicinity of the roots, the so called rhizosphere, becomes hydrophobic as the soil dries. For the first time, it was shown that hydrophobicity of the rhizosphere decreased root water uptake after drying and subsequent irrigation. It was concluded that, after drying, the rhizosphere became a significant resistance to the local flow of water into the roots. This may change the pattern of the water uptake zone along the roots. The significance of this study is the development of a new method to locally quantify water flow into roots of living plants. This method makes it possible to quantitatively measure where and how fast roots take up water in soils. This technique will allow understanding the function of roots in different plants, during root maturation and in response to varying external conditions, such as water content, transpiration demand, nutrient supply, and many other factors. The answer to these questions would open wide ranges of agronomy applications aimed at managing irrigation practice.

  11. Quantitative imaging of water flow in soil and roots using neutron radiography and deuterated water

    International Nuclear Information System (INIS)

    Zarebanadkouki, Mohsen


    segments. In lupines most of the water uptake occurred in the lateral roots. The function of the taproot was to collect water from the laterals and transport it to the shoots. This function is ensured by a low radial conductivity and a high axial conductive. We also applied the technique to measure how rhizosphere affects root water uptake. As was recently reported in the literature, in this study was also observed that the soil in the immediate vicinity of the roots, the so called rhizosphere, becomes hydrophobic as the soil dries. For the first time, it was shown that hydrophobicity of the rhizosphere decreased root water uptake after drying and subsequent irrigation. It was concluded that, after drying, the rhizosphere became a significant resistance to the local flow of water into the roots. This may change the pattern of the water uptake zone along the roots. The significance of this study is the development of a new method to locally quantify water flow into roots of living plants. This method makes it possible to quantitatively measure where and how fast roots take up water in soils. This technique will allow understanding the function of roots in different plants, during root maturation and in response to varying external conditions, such as water content, transpiration demand, nutrient supply, and many other factors. The answer to these questions would open wide ranges of agronomy applications aimed at managing irrigation practice.

  12. Long-term flow rates and biomat zone hydrology in soil columns receiving septic tank effluent. (United States)

    Beal, C D; Gardner, E A; Kirchhof, G; Menzies, N W


    Soil absorption systems (SAS) are used commonly to treat and disperse septic tank effluent (STE). SAS can hydraulically fail as a result of the low permeable biomat zone that develops on the infiltrative surface. The objectives of this experiment were to compare the hydraulic properties of biomats grown in soils of different textures, to investigate the long-term acceptance rates (LTAR) from prolonged application of STE, and to assess if soils were of major importance in determining LTAR. The STE was applied to repacked sand, Oxisol and Vertisol soil columns over a period of 16 months, at equivalent hydraulic loading rates of 50, 35 and 8L/m(2)/d, respectively. Infiltration rates, soil matric potentials, and biomat hydraulic properties were measured either directly from the soil columns or calculated using established soil physics theory. Biomats 1 to 2 cm thick developed in all soils columns with hydraulic resistances of 27 to 39 d. These biomats reduced a 4 order of magnitude variation in saturated hydraulic conductivity (K(s)) between the soils to a one order of magnitude variation in LTAR. A relationship between biomat resistance and organic loading rate was observed in all soils. Saturated hydraulic conductivity influenced the rate and extent of biomat development. However, once the biomat was established, the LTAR was governed by the resistance of the biomat and the sub-biomat soil unsaturated flow regime induced by the biomat. Results show that whilst initial soil K(s) is likely to be important in the establishment of the biomat zone in a trench, LTAR is determined by the biomat resistance and the unsaturated soil hydraulic conductivity, not the K(s) of a soil. The results call into question the commonly used approach of basing the LTAR, and ultimately trench length in SAS, on the initial K(s) of soils.

  13. Water and vapor transfer in vadose zone of Gobi desert and riparian in the hyper arid environment of Ejina, China (United States)

    Du, C.; Yu, J.; Sun, F.; Liu, X.


    To reveal how water and vapor transfer in vadose zone affect evapotranspiration in Gobi desert and riparian in hyper arid region is important for understanding eco-hydrological process. Field studies and numerical simulations were imported to evaluate the water and vapor movement processes under non isothermal and lower water content conditions. The soil profiles (12 layers) in Gobi desert and riparian sites of Ejina were installed with sensors to monitor soil moisture and temperature for 1 year. The meteorological conditions and water table were measured by micro weather stations and mini-Divers respectively in the two sites. Soil properties, including particles composition, moisture, bulk density, water retention curve, and saturated hydraulic conductivity of two site soil profiles, was measured. The observations showed that soil temperatures for the two sites displayed large diurnal and seasonal fluctuations. Temperature gradients with depth resulted in a downward in summer and upward in winter and became driving force for thermal vapor movement. Soil moistures in Gobi desert site were very low and varied slowly with time. While the soil moistures in riparian site were complicated due to root distribution but water potentials remained uniform with time. The hydrus-1D was employed to simulate evapotranspiration processes. The simulation results showed the significant difference of evaporation rate in the Gobi desert and riparian sites.

  14. Measurement and inference of profile soil-water dynamics at different hillslope positions in a semiarid agricultural watershed (United States)

    Green, Timothy R.; Erskine, Robert H.


    Dynamics of profile soil water vary with terrain, soil, and plant characteristics. The objectives addressed here are to quantify dynamic soil water content over a range of slope positions, infer soil profile water fluxes, and identify locations most likely influenced by multidimensional flow. The instrumented 56 ha watershed lies mostly within a dryland (rainfed) wheat field in semiarid eastern Colorado. Dielectric capacitance sensors were used to infer hourly soil water content for approximately 8 years (minus missing data) at 18 hillslope positions and four or more depths. Based on previous research and a new algorithm, sensor measurements (resonant frequency) were rescaled to estimate soil permittivity, then corrected for temperature effects on bulk electrical conductivity before inferring soil water content. Using a mass-conservation method, we analyzed multitemporal changes in soil water content at each sensor to infer the dynamics of water flux at different depths and landscape positions. At summit positions vertical processes appear to control profile soil water dynamics. At downslope positions infrequent overland flow and unsaturated subsurface lateral flow appear to influence soil water dynamics. Crop water use accounts for much of the variability in soil water between transects that are either cropped or fallow in alternating years, while soil hydraulic properties and near-surface hydrology affect soil water variability across landscape positions within each management zone. The observed spatiotemporal patterns exhibit the joint effects of short-term hydrology and long-term soil development. Quantitative methods of analyzing soil water patterns in space and time improve our understanding of dominant soil hydrological processes and provide alternative measures of model performance.

  15. Modelling soil water dynamics and crop water uptake at the field level

    NARCIS (Netherlands)

    Kabat, P.; Feddes, R.A.


    Parametrization approaches to model soil water dynamics and crop water uptake at field level were analysed. Averaging and numerical difficulties in applying numerical soil water flow models to heterogeneous soils are highlighted. Simplified parametrization approaches to the soil water flow, such as

  16. Use of in-situ Dual Vacuum Extraction trademark for remediation of soil and ground water

    International Nuclear Information System (INIS)

    Dodson, M.E.; Trowbridge, B.E.; Ott, D.


    Dual Vacuum Extraction trademark provides a rapid and cost-effective method of remediating soil and ground water contaminated with volatile organic compounds. The system involves the removal of both water and vapors through the same borehole by use of entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an underground storage tank was responsible for a hydrocarbon plume spreading over approximately 50,000 ft 2 . The release produced vadose-zone contamination in the silty and sandy clays from 10 to 30 ft below ground surface (bgs) with total petroleum hydrocarbon (TPH) concentrations up to 1,400 mg/kg. In addition, a layer of free-floating liquid hydrocarbon was present on a shallow aquifer located at 25 ft bgs in thicknesses ranging from 0.5 to 3.0 ft. An in-situ dual-extraction system was installed to remediate the soils and ground water to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hr a day, with an operating efficiency of over 99%. After 196 days (28 weeks), over 17,000 lb of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings in the area of highest initial hydrocarbon concentrations indicated that TPH and benzene, toluene, ethylbenzene, xylene (BTEX) concentrations had decreased over 99% from initial soil concentrations

  17. A New Soil Water and Bulk Electrical Conductivity Sensor Technology for Irrigation and Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Evett, Steve; Schwartz, Robert; Casanova, Joaquin [Soil and Water Management Research Unit, Conservation and Production Research Laboratory, USDA-ARS, Bushland, Texas (United States); Anderson, Scott [Acclima, Inc., 2260 East Commercial Street, Meridian, Idaho 83642 (United States)


    Existing soil water content sensing systems based on electromagnetic (EM) properties of soils often over estimate and sometimes underestimate water content in saline and salt-affected soils due to severe interference from the soil bulk electrical conductivity (BEC), which varies strongly with temperature and which can vary greatly throughout an irrigation season and across a field. Many soil water sensors, especially those based on capacitance measurements, have been shown to be unsuitable in salt-affected or clayey soils (Evett et al., 2012a). The ability to measure both soil water content and BEC can be helpful for the management of irrigation and leaching regimes. Neutron probe is capable of accurately sensing water content in salt-affected soils but has the disadvantages of being: (1) labour-intensive, (2) not able to be left unattended in the field, (3) subject to onerous regulations, and (4) not able to sense salinity. The Waveguide-On-Access-Tube (WOAT) system based on time domain reflectometry (TDR) principles, recently developed by Evett et al. (2012) is a new promising technology. This system can be installed at below 3 m in 20-cm sensor segments to cover as much of the crop root zone as needed for irrigation management. It can also be installed to measure the complete soil profile from the surface to below the root zone, allowing the measurement of crop water use and water use efficiency - knowledge of which is key for irrigation and farm management, and for the development of new drought tolerant and water efficient crop varieties and hybrids, as well as watershed and environmental management.

  18. Temperature effect on tert-butyl alcohol (TBA) biodegradation kinetics in hyporheic zone soils. (United States)

    Greenwood, Mark H; Sims, Ronald C; McLean, Joan E; Doucette, William J


    Remediation of tert-butyl alcohol (TBA) in subsurface waters should be taken into consideration at reformulated gasoline contaminated sites since it is a biodegradation intermediate of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-butyl formate (TBF). The effect of temperature on TBA biodegradation has not been not been published in the literature. Biodegradation of [U 14C] TBA was determined using hyporheic zone soil microcosms. First order mineralization rate constants of TBA at 5 degrees C, 15 degrees C and 25 degrees C were 7.84 +/- 0.14 x 10-3, 9.07 +/- 0.09 x 10-3, and 15.3 +/- 0.3 x 10-3 days-1, respectively (or 2.86 +/- 0.05, 3.31 +/- 0.03, 5.60 +/- 0.14 years-1, respectively). Temperature had a statistically significant effect on the mineralization rates and was modelled using the Arrhenius equation with frequency factor (A) and activation energy (Ea) of 154 day-1 and 23,006 mol/J, respectively. Results of this study are the first to determine mineralization rates of TBA for different temperatures. The kinetic rates determined in this study can be used in groundwater fate and transport modelling of TBA at the Ronan, MT site and provide an estimate for TBA removal at other similar shallow aquifer sites and hyporheic zones as a function of seasonal change in temperature.

  19. Deciphering heavy metal contamination zones in soils of a granitic ...

    Indian Academy of Sciences (India)

    ., Ba, Cr, Cu,. Ni, Pb, Rb, Sr ... metal contamination in soils of different regions. The study ... in the Hyderabad city. ... A network of first and second order streams ... In this case, redun- ...... strategy for developing countries; In: Lead, mercury, cad-.

  20. Pre-study Tierp. Soils, rocks and deformation zones

    International Nuclear Information System (INIS)

    Bergman, T.; Johansson, Rune; Linden, A.H.; Rudmark, L.; Stephens, M.; Isaksson, Hans; Lindroos, H.


    Soil and geology of the Tierp area is described, as well as the Baltic area Loevstabukten. It is found that several areas might be of interest for further investigations as potential sites for a Swedish repository for spent fuels

  1. Response of three soil water sensors to variable solution electrical conductivity in different soils (United States)

    Commercial dielectric soil water sensors may improve management of irrigated agriculture by providing continuous field soil water information. Use of these sensors is partly limited by sensor sensitivity to variations in soil salinity and texture, which force expensive, time consuming, soil specific...

  2. Assessment of the soil water content temporal variations in an agricultural area of Galicia (NW Spain) (United States)

    Mestas-Valero, Roger Manuel; Miras-Avalos, Jose Manuel; Paz-González, Antonio


    The direct and continuous assessment of the temporal variation on soil water content is of paramount importance for agricultural practices and, in particular, for the management of water resources. Soil water content is affected by many factors such as topography, particle size, clay and organic matter contents, and tillage systems. There are several techniques to measure or estimate soil water content. Among them, Frequency Domain Reflectometry (FDR) stands out. It is based on measuring the dielectrical constant of the soil environment. This technique allows to describe water dynamics in time and space, to determine the main patterns of soil moisture, the water uptake by roots, the evapotranspiration and the drainage. Therefore, the aim of this study was to assess the daily variation of soil water content in the root-influenced zone in plots devoted to maize and grassland as a function of the soil water volumetric content. The studied site is located in an experimental field of the Centre for Agricultural Research (CIAM) in Mabegondo located in the province of A Coruña, Spain (43°14'N, 8°15'W; 91 masl). The study was carried out from June 2008 to September 2009 in a field devoted to maize (Zea mays, L.) and another field devoted to grassland. The soil of these sites is silt-clay textured. Long-term mean annual temperature and rainfall figures are 13.3 °C and 1288 mm, respectively. During the study period, maize crop was subjected to conventional agricultural practices. A weekly evaluation of the phenological stage of the crop was performed. An EnviroSCAN FDR equipment, comprising six capacitance sensors, was installed in the studied sites following the manufacturer's recommendations, thus assuring a proper contact between the probe and the soil. Soil water content in the root-influenced zone (40 cm depth in grassland and 60 cm depth in maize were considered) was hourly monitored in 20 cm ranges (0-20 cm, 20-40 cm, and 40-60 cm) using FDR. Evaluations were

  3. Field tracer investigation of unsaturated zone flow paths and mechanisms in agricultural soils of northwestern Mississippi, USA (United States)

    Perkins, K.S.; Nimmo, J.R.; Rose, C.E.; Coupe, R.H.


    In many farmed areas, intensive application of agricultural chemicals and withdrawal of groundwater for irrigation have led to water quality and supply issues. Unsaturated-zone processes, including preferential flow, play a major role in these effects but are not well understood. In the Bogue Phalia basin, an intensely agricultural area in the Delta region of northwestern Mississippi, the fine-textured soils often exhibit surface ponding and runoff after irrigation and rainfall as well as extensive surface cracking during prolonged dry periods. Fields are typically land-formed to promote surface flow into drainage ditches and streams that feed into larger river ecosystems. Downward flow of water below the root zone is considered minimal; regional groundwater models predict only 5% or less of precipitation recharges the heavily used alluvial aquifer. In this study transport mechanisms within and below the root zone of a fallow soybean field were assessed by performing a 2-m ring infiltration test with tracers and subsurface monitoring instruments. Seven months after tracer application, 48 continuous cores were collected for tracer extraction to define the extent of water movement and quantify preferential flow using a mass-balance approach. Vertical water movement was rapid below the pond indicating the importance of vertical preferential flow paths in the shallow unsaturated zone, especially to depths where agricultural disturbance occurs. Lateral flow of water at shallow depths was extensive and spatially non-uniform, reaching up to 10. m from the pond within 2. months. Within 1. month, the wetting front reached a textural boundary at 4-5. m between the fine-textured soil and sandy alluvium, now a potential capillary barrier which, prior to extensive irrigation withdrawals, was below the water table. Within 10. weeks, tracer was detectable at the water table which is presently about 12. m below land surface. Results indicate that 43% of percolation may be through


    Near-stream and upslope soil chemical properties were analyzed to infer linkages between soil and surface water chemistry at the Bear Brook Watershed in Maine [BBWM]. Organic and mineral soil samples were collected along six 20 m transects perpendicular to the stream and one 200 ...

  5. Soil Systems for Upscaling Saturated Hydraulic Conductivity (Ksat) for Hydrological Modeling in the Critical Zone (United States)

    Successful hydrological model predictions depend on appropriate framing of scale and the spatial-temporal accuracy of input parameters describing soil hydraulic properties. Saturated soil hydraulic conductivity (Ksat) is one of the most important properties influencing water movement through soil un...

  6. Effect of restoring soil hydrological poperties on water conservation

    NARCIS (Netherlands)

    Moore, D.; Kostka, S.J.; Boerth, T.J.; Franklin, M.A.; Ritsema, C.J.; Dekker, L.W.; Oostindie, K.; Stoof, C.R.; Park, D.M.


    Water repellency in soil is more wide spread than previously thought ¿ and has a significant impact on irrigation efficiency and water conservation. Soil water repellency has been identified in many soil types under a wide array of climatic conditions world wide. Consequences include increased

  7. Moisture variability resulting from water repellency in Dutch soils

    NARCIS (Netherlands)

    Dekker, L.W.


    The present study suggests that many soils in the Netherlands, in natural as well as in agricultural areas, may be water repellent to some degree, challenging the common perception that soil water repellency is only an interesting aberration. When dry, water repellent soils resist or retard

  8. Estimation of areal soil water content through microwave remote sensing

    NARCIS (Netherlands)

    Oevelen, van P.J.


    In this thesis the use of microwave remote sensing to estimate soil water content is investigated. A general framework is described which is applicable to both passive and active microwave remote sensing of soil water content. The various steps necessary to estimate areal soil water content

  9. Soil manganese redox cycling in suboxic zones: Effects on soil carbon stability (United States)

    Suboxic soil environments contain a disproportionately higher concentration of highly reactive free radicals relative to the surrounding soil matrix, which may have significant implications for soil organic matter cycling and stabilization. This study investigated how Mn-ozidizin...

  10. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater. (United States)

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G


    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  11. In-situ active/passive bioreclamation of vadose zone soils contaminated with gasoline and waste oil using soil vapor extraction/bioventing: Laboratory pilot study to full scale site operation

    International Nuclear Information System (INIS)

    Zachary, S.P.; Everett, L.G.


    The use of soil venting to supply oxygen and remove metabolites from the biodegradation of light hydrocarbons is a cost effective in-situ remediation approach. To date, little data exists on the effective in-situ bioreclamation of vadose zone soil contaminated with waste/hydraulic oil without excavation or the addition of water or nutrients to degrade the heavy petroleum contaminants. Gasoline and waste/hydraulic oil contaminated soils below an active commercial building required an in-situ non-disruptive remediation approach. Initial soil vapor samples collected from the vadose zone revealed CO 2 concentrations in excess of 16% and O 2 concentrations of less than 1% by volume. Soil samples were collected from below the building within the contaminated vadose zone for laboratory chemical and physical analysis as well as to conduct a laboratory biotreatability study. The laboratory biotreatability study was conducted for 30 days to simulate vadose zone bioventing conditions using soil taken from the contaminated vadose zone. Results of the biotreatability study revealed that the waste oil concentrations had been reduced from 960 mg/Kg to non-detectable concentrations within 30 days and the volatile hydrocarbon content had decreased exponentially to less than 0.1% of the original concentration. Post treatability study biological enumeration revealed an increase in the microbial population of two orders of magnitude

  12. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity (United States)

    Soil water retention curve (SWRC) and saturated hydraulic conductivity (SHC) are key hydraulic properties for unsaturated zone hydrology and groundwater. Not only are the SWRC and SHC measurements time-consuming, their results are scale dependent. Although prediction of the SWRC and SHC from availab...

  13. Littoral zones in shallow lakes. Contribution to water quality in relation to water level regime

    NARCIS (Netherlands)

    Sollie, S.


    Littoral zones with emergent vegetation are very narrow or even lacking in Dutch shallow lakes due to a combination of changed water level regime and unfavorable shore morphometry. These zones are important as a habitat for plants and animals, increasing species diversity. It has also been

  14. Steam stripping of the unsaturated zone of contaminated sub-soils: the effect of diffusion/dispersion in the start-up phase

    NARCIS (Netherlands)

    Brouwers, Jos; Gilding, B.H.


    The unsteady process of steam stripping of the unsaturated zone of soils contaminated with volatile organic compounds (VOCs) is addressed. A model is presented. It accounts for the effects of water and contaminants remaining in vapour phase, as well as diffusion and dispersion of contaminants in

  15. Modeling Regional Soil Water Balance in Farmland of the Middle Reaches of Heihe River Basin

    Directory of Open Access Journals (Sweden)

    Jiang Li


    Full Text Available Quantifying components of soil water balance in farmland of the middle reaches of Heihe River Basin is essential for efficiently scheduling and allocating limited water resources for irrigation in this arid region. A soil water balance model based on empirical assumptions in the vadose zone of farmland was developed and simulation results were compared/validated with results by the numerical model HYDRUS-1D. Results showed a good coherence between the simulated results of the water balance models and the HYDRUS-1D model in soil water storage, evapotranspiration, deep percolation and groundwater recharge, which indicated that the water balance model was suitable for simulating soil water movement in the study area. Considering the spatial distribution of cropping patterns, groundwater depth and agricultural management, ArcGIS was applied for the pre-/post-processing of the water balance model to quantify the spatial distribution of components of soil water balance in the major cropland in middle reaches of Heihe River Basin. Then, distributions of components of soil water balance in the major cropland under different water-saving irrigation practices during the growing season were predicted and discussed. Simulation results demonstrated that evapotranspiration of the main crops would be more prominently influenced by irrigation quota under deep groundwater depth than that under shallow groundwater depth. Groundwater recharge would increase with the increase of irrigation quota and decrease with the increase of groundwater depth. In general, when groundwater depth reached 3 m, groundwater recharge from root zone was negligible for spring wheat. While when it reached 6 m, groundwater recharge was negligible for maize. Water-saving irrigation practices would help to reduce groundwater recharge with a slight decrease of crop water consumption.

  16. Dynamics of Soil Properties and Plant Composition during Postagrogenic Evolution in Different Bioclimatic Zones (United States)

    Telesnina, V. M.; Kurganova, I. N.; Lopes de Gerenyu, V. O.; Ovsepyan, L. A.; Lichko, V. I.; Ermolaev, A. M.; Mirin, D. M.


    The postagrogenic dynamics of acidity and some parameters of humus status have been studied in relation to the restoration of zonal vegetation in southern taiga (podzolic and soddy-podzolic soils ( Retisols)), coniferous-broadleaved (subtaiga) forest (gray forest soil ( Luvic Phaeozem)), and forest-steppe (gray forest soil ( Haplic Phaeozem)) subzones. The most significant transformation of the studied properties of soils under changing vegetation has been revealed for poor sandy soils of southern taiga. The degree of changes in the content and stocks of organic carbon, the enrichment of humus in nitrogen, and acidity in the 0- to 20-cm soil layer during the postagrogenic evolution decreases from north to south. The adequate reflection of soil physicochemical properties in changes of plant cover is determined by the climatic zone and the land use pattern. A correlation between the changes in the soil acidity and the portion of acidophilic species in the plant cover is revealed for the southern taiga subzone. A positive relationship is found between the content of organic carbon and the share of species preferring humus-rich soils in the forest-steppe zone.

  17. Waste storage in the vadose zone affected by water vapor condensation and leaching

    International Nuclear Information System (INIS)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.


    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab

  18. Estimating soil water evaporation using radar measurements (United States)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.


    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  19. Soil water repellency at old crude oil spill sites

    International Nuclear Information System (INIS)

    Roy, J.L.


    This thesis presents the current state of knowledge regarding the cause of soil water repellency and characterizes disaggregated nonwettable surface soils found at old crude oil spill sites. Pollution-induced water repellency generally develops following prolonged exposures of soil to liquid- or vapour-phase petroleum hydrocarbons. The condition varies significantly in terms of severity and persistence. Soil water repellency retards plant growth and disturbs the hydrological balance of ecosystems. Disaggregated water-repellent soils are also very susceptible to dispersal by erosion, posing a threat to the productivity of surrounding soils. The author described the probable causes of soil water repellency under the following three main themes: (1) accumulation of hydrophobic organic material in soil, (2) redistribution and re-organisation of this material in soil, and (3) stabilisation of the hydrophobic organic material. This final process is necessary to ensure persistence of induced water repellency symptoms. Petroleum residues as water-repellent substances in weathered nonwettable oil-contaminated soils were also discussed and a hypothesis about soil water repellency was presented which deals with flexible conformation in organic matter coatings. Processes leading to the development of soil water repellency following crude oil contamination were also described. It was determined that soil water repellency is a function of the packing density and the chain conformation of amphiphilic organic molecules in the outermost layer of soil organic matter coatings. This research suggests that the fractional coverage of alkyl chains on soil particle surfaces determines the degree of water repellency that is displayed by soil. It was shown that prompt remediation of some oil-contaminated plots can effectively prevent the development of soil water repellency. 4 refs., 32 tabs., 22 figs., 5 appendices

  20. Supercritical water decontamination of town gas soil

    International Nuclear Information System (INIS)

    Kocher, B.S.; Azzam, F.O.; Lee, S.


    Town gas sites represent a large environmental problem that exists in more than 2,000 sites across North America alone. The major contaminants in town gas sods are polycyclic aromatic hydrocarbons (PAHs). These are stable compounds that migrate deep into the soil and are traditionally very difficult to remove by conventional remediation processes. Supercritical fluids offer enhanced solvating properties along with reduced mass transfer resistances that make them ideal for removing compounds that are difficult or impossible to remove by conventional processes. Supercritical water is ideal for removing PAHs and other hydrocarbons from soil due to its high solvating power towards most hydrocarbon species. Supercritical water was investigated for its ability to remediate two different town gas sods containing from 3--20 wt% contamination. The sod was remediated in a 300-cc semi-continuous system to a more environmentally acceptable level

  1. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer, E-mail:; Ronen, Zeev, E-mail:


    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10{sup 5} to 10{sup 7} copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  2. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    International Nuclear Information System (INIS)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev


    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10"5 to 10"7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  3. Oil migration through unsaturated soils and its effect on the Vadose Zone Interactive Processes (VIP) model output

    International Nuclear Information System (INIS)

    Joseph, A.T.; Grenney, W.J.; Stevens, D.K.


    The VIP model, which simulates the concentration profiles of the hazardous compounds in the soil, water, and the air phases, assumes a fixed oily phase. The purpose of this study was to measure oil migration in soil systems and to determine its effect on the VIP model output. Experiments were conducted to demonstrate the mobility of an oil through the unsaturated zone of the soil. The studies were conducted in laboratory scale glass columns. A light petroleum oil and two types of soil were used. The experiments demonstrated that oil migrates down significantly through the soil columns. The extent of migration depended on the volume of oil applied and the type of soil. However, the applied oil was completely immobilized in the columns. The model was modified to incorporate oil migration. The modified model can be expected to produce more realistic contaminant concentration profiles during land treatment of oily wastes when compared to that produced by the present version of the VIP model. (Author)

  4. Soil erosion from harvested sites versus streamside management zone sediment deposition in the Piedmont of Virginia (United States)

    William A. Lakel; W. Michael Aust; C. Andrew Dolloff; Amy W. Easterbrook


    Forestry best management practices were primarily developed to address two major issues related to soil erosion: water quality and site productivity. Sixteen watersheds managed as loblolly pine plantations in the piedmont region were monitored for soil erosion and water quality prior to treatment. Subsequently, all watersheds were harvested with clearcutting, ground-...

  5. Patterns in Soil Electrical Resistivity Across Land Uses in the Calhoun Critical Zone Observatory Landscape (United States)

    Markewitz, D.; Sutter, L.; Richter, D. D., Jr.


    Soil Electrical Resistivity Tomography (ERT) was measured across the Calhoun Critical Zone Observatory in relation to land use cover. ERT can help identify patterns in soil and saprolite physical attributes and moisture content through multiple meters. ERT data were generated with an AGI Supersting R8 with a 28 probe dipole-dipole array on a 1.5 meter spacing providing information through the upper 9 m. In Nov/Dec 2016 ten soil pits were dug to 3m depth in agricultural fields, pine forests, and hardwood forests across the CCZO and ERT measures were taken centered on these pits. ERT values ranged from 200 to 2500 Ohm-m. ERT patterns in the agricultural field demonstrated a limited resistivity gradient (200-700 Ohm-m) appearing moist throughout. In contrast, research areas under pine and hardwood forest had stronger resistivity gradients reflecting both moisture and physical attributes (i.e., texture or rock content). For example, research area 2 under pine had an area of higher resistivity that correlated with a band of saprolite that was readily visible in the exposed profile. In research area 7 and 8 that included both pine and hardwood forest resistivity gradients had contradictory patterns of high to low resistivity from top to bottom. In research area 7 resistivity was highest at the surface and decreased with depth, a common pattern when water table is at depth. In research area 8 the inverse was observed with low resistivity above and resistivity increasing with depth, a pattern observed in upper landscape positions on ridges with moist clay above dry saprolite. ERT patterns did reflect a large difference in the measured agricultural fields compared to forest while other difference appeared to reflect landscape position.

  6. Hydrologic and Soil Science in a Mediterranean Critical Zone Observatory: Koiliaris River Basin (United States)

    Nikolaidis, Nikolaos; Stamati, Fotini; Schnoor, Jerald; Moraetis, Daniel; Kotronakis, Manolis


    detection of potential effects on water quality. The watershed is one of the Critical Zone Observatories in the FP7 funded project SoilTrEC.

  7. Micelles as Soil and Water Decontamination Agents. (United States)

    Shah, Afzal; Shahzad, Suniya; Munir, Azeema; Nadagouda, Mallikarjuna N; Khan, Gul Shahzada; Shams, Dilawar Farhan; Dionysiou, Dionysios D; Rana, Usman Ali


    Contaminated soil and water pose a serious threat to human health and ecosystem. For the treatment of industrial effluents or minimizing their detrimental effects, preventive and remedial approaches must be adopted prior to the occurrence of any severe environmental, health, or safety hazard. Conventional treatment methods of wastewater are insufficient, complicated, and expensive. Therefore, a method that could use environmentally friendly surfactants for the simultaneous removal of both organic and inorganic contaminants from wastewater is deemed a smart approach. Surfactants containing potential donor ligands can coordinate with metal ions, and thus such compounds can be used for the removal of toxic metals and organometallic compounds from aqueous systems. Surfactants form host-guest complexes with the hydrophobic contaminants of water and soil by a mechanism involving the encapsulation of hydrophobes into the self-assembled aggregates (micelles) of surfactants. However, because undefined amounts of surfactants may be released into the aqueous systems, attention must be paid to their own environmental risks as well. Moreover, surfactant remediation methods must be carefully analyzed in the laboratory before field implementation. The use of biosurfactants is the best choice for the removal of water toxins as such surfactants are associated with the characteristics of biodegradability, versatility, recovery, and reuse. This Review is focused on the currently employed surfactant-based soil and wastewater treatment technologies owing to their critical role in the implementation of certain solutions for controlling pollution level, which is necessary to protect human health and ensure the quality standard of the aquatic environment.

  8. Quantifying the role of vegetation in controlling the time-variant age of evapotranspiration, soil water and stream flow (United States)

    Smith, A.; Tetzlaff, D.; Soulsby, C.


    Identifying the sources of water which sustain plant water uptake is an essential prerequisite to understanding the interactions of vegetation and water within the critical zone. Estimating the sources of root-water uptake is complicated by ecohydrological separation, or the notion of "two-water worlds" which distinguishes more mobile and immobile water sources which respectively sustain streamflow and evapotranspiration. Water mobility within the soil determines both the transit time/residence time of water through/in soils and the subsequent age of root-uptake and xylem water. We used time-variant StorAge Selection (SAS) functions to conceptualise the transit/residence times in the critical zone using a dual-storage soil column differentiating gravity (mobile) and tension dependent (immobile) water, calibrated to measured stable isotope signatures of soil water. Storage-discharge relationships [Brutsaert and Nieber, 1977] were used to identify gravity and tension dependent storages. A temporally variable distribution for root water uptake was identified using simulated stable isotopes in xylem and soil water. Composition of δ2H and δ18O was measured in soil water at 4 depths (5, 10, 15, and 20 cm) on 10 occasions, and 5 times for xylem water within the dominant heather (Calluna sp. and Erica sp.) vegetation in a Scottish Highland catchment over a two-year period. Within a 50 cm soil column, we found that more than 53% of the total stored water was water that was present before the start of the simulation. Mean residence times of the mobile water in the upper 20 cm of the soil were 16, 25, 36, and 44 days, respectively. Mean evaporation transit time varied between 9 and 40 days, driven by seasonal changes and precipitation events. Lastly, mean transit times of xylem water ranged between 95-205 days, driven by changes in soil moisture. During low soil moisture (i.e. lower than mean soil moisture), root-uptake was from lower depths, while higher than mean soil

  9. Modelling soil anaerobiosis from water retention characteristics and soil respiration

    NARCIS (Netherlands)

    Schurgers, G.; Dörsch, P.; Bakken, L.; Leffelaar, P.A.; Egil Haugen, L.


    Oxygen is a prerequisite for some and an inhibitor to other microbial functions in soils, hence the temporal and spatial distribution of oxygen within the soil matrix is crucial in soil biogeochemistry and soil biology. Various attempts have been made to model the anaerobic fraction of the soil

  10. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y.


    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture

  11. Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.


    Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of

  12. Prestudy Oesthammar. Soils, rocks and deformation zones. Supplementary work 1998

    International Nuclear Information System (INIS)

    Bergman, S.; Bergman, T.; Johansson, Rune; Stephens, M.; Isaksson, Hans


    Soil and geology of the Forsmark and Hargshamn areas are described, as well the Baltic area outside Forsmark. It is found that some parts, especially at Hargshamn, might be of interest for further investigations as potential sites for a Swedish repository for spent fuels

  13. Transport assessment - arid: measurement and prediction of water movement below the root zone

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.


    The amount of water transported below the root-zone and available for drainage (recharge) must be known in order to quantify the potential for leaching at low-level waste sites. Under arid site conditions, we quantified drainage by using weighing lysimeters containing sandy soil and measured 6 and 11 cm of drainage for a 1-yr period (June 1983-May 1984) from grass-covered and bare-soil surfaces, respectively. Precipitation during this period at our test site near Richland, Washington, was 25 cm. Similar drainage values were estimated from neutron probe measurements of water content profile changes in an adjacent grass-covered site. These data suggest that significant amounts of drainage can occur at arid sites when soils are coarse textured and precipitation occurs during fall and winter months. Model simulations predicted drainage values comparable to those measured with our weighing lysimeters. Long-term, 500- to 1000-yr predictions of leaching are possible with our model simulations. However, additional studies are needed to evaluate the effect of soil variability and stochastic rainfall inputs on drainage estimates, particularly for arid sites

  14. Transport assessment - arid: measurement and prediction of water movement below the root zone

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.


    The amount of water transported below the root-zone and available for drainage (recharge) must be known in order to quantify the potential for leaching at low-level waste sites. Under arid site conditions, we quantified drainage by using weighing lysimeters containing sandy soil and measured 6 and 11 cm of drainage for a 1-yr period (June 1983-May 1984) from grass-covered and bare-soil surfaces, respectively. Precipitation during this period at our test site near Richland, Washington, was 25 cm. Similar drainage values were estimated from neutron probe measurements of water content profile changes in an adjacent grass-covered site. These data suggest that significant amounts of drainage can occur at arid sites when soils are coarse textured and precipitation occurs during fall and winter months. Model simulations predicted drainage values comparable to those measured with our weighing lysimeters. Long-term, 500- to 1000-yr predictions of leaching are possible with our model simulations. However, additional studies are needed to evaluate the effect of soil variability and stochastic rainfall inputs on drainage estimates, particularly for arid sites. 15 references, 9 figures, 1 table

  15. Influence of multimodality soil on their hydrodynamic behavior: case of soils of the unsaturated zone of Allada plateau

    CSIR Research Space (South Africa)

    Soclo, WP


    Full Text Available soils that have multimodal behavior. Haverkamp and Reggiani (2002), have established for soils whose particle-size have a monomodal behavior a shape similarity between the cumulative particle-size distribution curve and the water retention curve h ( ). A...

  16. Role of soil characteristics on analysis of water flow in shallow land

    International Nuclear Information System (INIS)

    Tohaya, Takayuki; Wakabayashi, Noriaki; Wadachi, Yoshiki.


    Analysis of water flow on posutulated model grounds has been carried out by using 2-dimensional finite element analytical model, to clarify the effects of soil characteristics (hydroulic conductivities in saturated and unsaturated zones, moisture content - water head relationship, porosity, etc.) of a shallow land layer on variations in water tables and water flow rates. Results thus obtained indicate that hydroulic conductivities in saturated and unsaturated zones play an important role in governing the development of a water table, especially the hydroulic conductivity of the top layer and of the layers near the water table give significant effect on the water table development. It was found through multiple regression analyses of the variation of the water table that among soil characteristics following parameters give pronounced effect on the development of the water table in the order; the relationship between moisture content of the unsaturated zone and pressure head, the distance between the water table and ground surface, and the saturated hydroulic conductivity of the layer immediately above the water table. (author)

  17. Forecasting operational demand for an urban water supply zone (United States)

    Zhou, S. L.; McMahon, T. A.; Walton, A.; Lewis, J.


    A time series forecasting model of hourly water consumption 24 h in advance for an urban zone within the Melbourne (Australia) water supply system is developed. The model comprises two modules—daily and hourly. The daily module is formulated as a set of equations representing the effects of three factors on water use namely seasonality, climatic correlation, and autocorrelation. The hourly module is developed to disaggregate the estimated daily consumption into hourly consumption. The models were calibrated using hourly and daily data for a 6 year period, and independently validated over an additional seven month period. Over this latter period, the hourly forecast model accounted for 66% of the variance in the peak hourly water consumption with a standard error of 162 l/p/d.

  18. Analysis of total iodine in soils of some agro-ecological zones of Ghana

    International Nuclear Information System (INIS)

    Kwakye, P.K.; Osei-Agyeman, K.; Frimpong, K.A.; Adams, A.B.; Okae-Anti, D.


    Iodine is beneficial in human nutrition and to a lesser extent in plant nutrition. Availability of this element in the soil is thought to be via ocean-atmosphere precipitation, iodine minerals and redistribution by vegetation, but very little is known about levels of iodine in Ghanaian soils. We analyzed for the content of total iodine alongside pH, organic carbon, total nitrogen, cation exchange capacity, sand, silt and clay in top soils of selected agro-ecological zones. These soils occur at various locations spanning from the coastline to the far interior. Variations in nutrient elements were attributed to diverse parent materials from which these soils originated and the complex interactions of organic matter, type of clay, acidity-alkalinity and leaching processes. The soils recorded low total iodine content of 0.08 - 3.92 μg g - 1. There was a decreasing trend of iodine from the coastal zone inwards in the order of 1.85, 0.84 and μg g - 1 for the coastal savanna, semi-deciduous rainforest and Guinea savanna agro-ecological zones respectively. Iodine very weakly negatively correlated with C and N and showed a moderate positive correlation with clay content and moderate negative correlations with pH and sand content. (author)

  19. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.


    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  20. Estimation of Soil Water Retention Curve Using Fractal Dimension ...

    African Journals Online (AJOL)



    Dec 1, 2017 ... ABSTRACT: The soil water retention curve (SWRC) is a fundamental hydraulic property majorly used to study flow transport in soils and calculate ... suitable to model the heterogeneous soil structure with tortuous pore space (Rieu ... so, soil texture determined according to the USDA texture classification.

  1. Regional and Detailed Survey for Radon Activities in Soil-Gas and Groundwater in the Okchon Zone, Korea (United States)

    Je, H.-K.; Chon, H.-T.


    The Okchon zone in Korea provides a typical example of natural geological materials enriched in potentially toxic elements including uranium which is parent nuclide for radon gas. For the purpose of radon radioactivity risk assessment, making the map of radon risk grade from Okchon zone, regional and detailed field surveys were carried out during 3 years. The study area is located in the central part of Korea, called the Okchon zone (about 5,100 km2), which occur in a 80km wide, northeast-trending belt that extends across the Korean Peninsula. The Okchon zone is underlain by metasedimentary rocks of unknown age that are composed mainly of black slate, phyllite, shale, and limestone. The three research areas (defined as Boeun, Chungju, and Nonsan) for detailed survey were selected from the results of regional survey. Results of detailed radon survey indicated a wide range of radon activities for soil-gases (148-1,843 pCi/L) and ground waters (23-5,540 pCi/L). About 15 percent of soil-gas samples exceeded 1,000 pCi/L and 84 percent of ground water samples exceeded the MCL (maximum contaminant level) of drinking water, 300 pCi/L, which proposed by U.S. Environmental Protection Agency in 1999. For detailed survey, radon activities of soil-gas and ground water were classified as bedrock geology, based on 1/50,000 geological map and field research. For soil-gas measurements, mean values of radon activity from black slate-shale (789 pCi/L) were highest among the other base rocks. And for groundwater measurements, mean value of radon activities were decreased in the order of granite (1,345 pCi/L) > black shale-slate (915 pCi/L) > metasediments (617 pCi/L). Result of indoor radon measurement from detailed survey areas showed that about 50% of houses exceeded the indoor guideline, 4 pCi/L. For the radon risk assessment in indoor environment showed that probability of lung cancer risk from the houses located on the granite base rock (3.0×10-2) was highest among the other

  2. Automated Passive Capillary Lysimeters for Estimating Water Drainage in the Vadose Zone (United States)

    Jabro, J.; Evans, R.


    In this study, we demonstrated and evaluated the performance and accuracy of an automated PCAP lysimeters that we designed for in-situ continuous measuring and estimating of drainage water below the rootzone of a sugarbeet-potato-barley rotation under two irrigation frequencies. Twelve automated PCAPs with sampling surface dimensions of 31 cm width * 91 cm long and 87 cm in height were placed 90 cm below the soil surface in a Lihen sandy loam. Our state-of-the-art design incorporated Bluetooth wireless technology to enable an automated datalogger to transmit drainage water data simultaneously every 15 minutes to a remote host and had a greater efficiency than other types of lysimeters. It also offered a significantly larger coverage area (2700 cm2) than similarly designed vadose zone lysimeters. The cumulative manually extracted drainage water was compared with the cumulative volume of drainage water recorded by the datalogger from the tipping bucket using several statistical methods. Our results indicated that our automated PCAPs are accurate and provided convenient means for estimating water drainage in the vadose zone without the need for costly and manually time-consuming supportive systems.

  3. Bottom-water observations in the Vema fracture zone (United States)

    Eittreim, Stephen L.; Biscaye, Pierre E.; Jacobs, Stanley S.


    The Vema fracture zone trough, at 11°N between 41° and 45°E, is open to the west at the 5000-m level but is silled at the 4650-m level on the east where it intersects the axis of the Mid-Atlantic Ridge. The trough is filled with Antarctic Bottom Water (AABW) with a potential temperature of 1.32°C and salinity of 34.82 ppt. The bottom water is thermally well mixed in a nearly homogeneous layer about 700 m thick. The great thickness of this bottom layer, as compared with the bottom-water structure of the western Atlantic basin, may result from enhanced mixing induced by topographic constriction at the west end of the fracture zone trough. A benthic thermocline, with potential temperature gradients of about 1.2 mdeg m-1, is associated with an abrupt increase in turbidity with depth at about 1200 m above bottom. A transitional layer of more moderate temperature gradients, about 0.4 mdeg m-1, lies between the benthic thermocline above and the AABW below. The AABW layer whose depth-averaged suspended paniculate concentrations range from 8 to 19 μg L-1, is consistently higher in turbidity than the overlying waters. At the eastern end of the trough, 140 m below sill depth, very low northeastward current velocities, with maximums of 3 cm s-1, were recorded for an 11-day period.

  4. Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils (United States)

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris; Belnap, Jayne; Kuske, Cheryl R.


    Soil microbial communities in dryland ecosystems play important roles as root associates of the widely spaced plants and as the dominant members of biological soil crusts (biocrusts) colonizing the plant interspaces. We employed rRNA gene sequencing (bacterial 16S/fungal large subunit) and shotgun metagenomic sequencing to compare the microbial communities inhabiting the root zones of the dominant shrub, Larrea tridentata (creosote bush), and the interspace biocrusts in a Mojave desert shrubland within the Nevada Free Air CO2 Enrichment (FACE) experiment. Most of the numerically abundant bacteria and fungi were present in both the biocrusts and root zones, although the proportional abundance of those members differed significantly between habitats. Biocrust bacteria were predominantly Cyanobacteria while root zones harbored significantly more Actinobacteria and Proteobacteria. Pezizomycetes fungi dominated the biocrusts while Dothideomycetes were highest in root zones. Functional gene abundances in metagenome sequence datasets reflected the taxonomic differences noted in the 16S rRNA datasets. For example, functional categories related to photosynthesis, circadian clock proteins, and heterocyst-associated genes were enriched in the biocrusts, where populations of Cyanobacteria were larger. Genes related to potassium metabolism were also more abundant in the biocrusts, suggesting differences in nutrient cycling between biocrusts and root zones. Finally, ten years of elevated atmospheric CO2 did not result in large shifts in taxonomic composition of the bacterial or fungal communities or the functional gene inventories in the shotgun metagenomes.

  5. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)


    available scarce water resources in dry land agriculture, but direct measurement thereof for multiple locations in the field is not always feasible. Therefore, pedotransfer functions (PTFs) were developed to estimate soil water retention at FC and PWP for dryland soils of India. A soil database available for Arid Western India ...

  6. Effects of fire ash on soil water retention

    NARCIS (Netherlands)

    Stoof, C.R.; Wesseling, J.G.; Ritsema, C.J.


    Despite the pronounced effect of fire on soil hydrological systems, information on the direct effect of fire on soil water retention characteristics is limited and contradictory. To increase understanding in this area, the effect of fire on soil water retention was evaluated using laboratory burning

  7. A one-dimensional model for simulating soil water movement ...

    African Journals Online (AJOL)

    ... regression analysis revealed the relati-onship to be exponential. The values of calculated and measured soil water content and total evapotranspiration decreased with number of days after rain or irrigation. The nodal soil water content also decreased with the soil depth. (Journal of Applied Science and Technology: 2001 ...

  8. Field, laboratory and estimated soil-water content limits

    African Journals Online (AJOL)


    Jan 21, 2005 ... silt (0.002 to 0.05 mm) percentage to estimate the soil-water content at a given soil-water .... ar and br are the intercept and slope values of the regres- .... tions use the particle size classification of the South African Soil.

  9. Effect of Irrigation Timing on Root Zone Soil Temperature, Root Growth and Grain Yield and Chemical Composition in Corn

    Directory of Open Access Journals (Sweden)

    Xuejun Dong


    Full Text Available High air temperatures during the crop growing season can reduce harvestable yields in major agronomic crops worldwide. Repeated and prolonged high night air temperature stress may compromise plant growth and yield. Crop varieties with improved heat tolerance traits as well as crop management strategies at the farm scale are thus needed for climate change mitigation. Crop yield is especially sensitive to night-time warming trends. Current studies are mostly directed to the elevated night-time air temperature and its impact on crop growth and yield, but less attention is given to the understanding of night-time soil temperature management. Delivering irrigation water through drip early evening may reduce soil temperature and thus improve plant growth. In addition, corn growers typically use high-stature varieties that inevitably incur excessive respiratory carbon loss from roots and transpiration water loss under high night temperature conditions. The main objective of this study was to see if root-zone soil temperature can be reduced through drip irrigation applied at night-time, vs. daytime, using three corn hybrids of different above-ground architecture in Uvalde, TX where day and night temperatures during corn growing season are above U.S. averages. The experiment was conducted in 2014. Our results suggested that delivering well-water at night-time through drip irrigation reduced root-zone soil temperature by 0.6 °C, increase root length five folds, plant height 2%, and marginally increased grain yield by 10%. However, irrigation timing did not significantly affect leaf chlorophyll level and kernel crude protein, phosphorous, fat and starch concentrations. Different from our hypothesis, the shorter, more compact corn hybrid did not exhibit a higher yield and growth as compared with taller hybrids. As adjusting irrigation timing would not incur an extra cost for farmers, the finding reported here had immediate practical implications for farm

  10. Soil-Water Repellency Characteristic Curves for Soil Profiles with Organic Carbon Gradients

    DEFF Research Database (Denmark)

    Wijewardana, Nadeeka Senani; Muller, Karin; Moldrup, Per


    Soil water repellency (SWR) of soils is a property with significant consequences for agricultural water management, water infiltration, contaminant transport, and for soil erosion. It is caused by the presence of hydrophobic agents on mineral grain surfaces. Soils were samples in different depths......, and the sessile drop method (SDM). The aim to (i) compare the methods, (ii) characterize the soil-water repellency characteristic curves (SWRCC) being SWR as a function of the volumetric soil-water content (θ) or matric potential (ψ), and (iii) find relationships between SWRCC parameters and SOC content. The WDPT...... at three forest sites in Japan and three pasture sites in New Zealand, covering soil organic carbon (SOC) contents between 1 and 26%. The SWR was measured over a range of water contents by three common methods; the water drop penetration time (WDPT) test, the molarity of an ethanol droplet (MED) method...

  11. Remote sensing in the mixing zone. [water pollution in Wisconsin (United States)

    Villemonte, J. R.; Hoopes, J. A.; Wu, D. S.; Lillesand, T. M.


    Characteristics of dispersion and diffusion as the mechanisms by which pollutants are transported in natural river courses were studied with the view of providing additional data for the establishment of water quality guidelines and effluent outfall design protocols. Work has been divided into four basic categories which are directed at the basic goal of developing relationships which will permit the estimation of the nature and extent of the mixing zone as a function of those variables which characterize the outfall structure, the effluent, and the river, as well as climatological conditions. The four basic categories of effort are: (1) the development of mathematical models; (2) laboratory studies of physical models; (3) field surveys involving ground and aerial sensing; and (4) correlation between aerial photographic imagery and mixing zone characteristics.

  12. Measuring Soil Water Potential for Water Management in Agriculture: A Review

    Directory of Open Access Journals (Sweden)

    Marco Bittelli


    Full Text Available Soil water potential is a soil property affecting a large variety of bio-physical processes, such as seed germination, plant growth and plant nutrition. Gradients in soil water potential are the driving forces of water movement, affecting water infiltration, redistribution, percolation, evaporation and plants’ transpiration. The total soil water potential is given by the sum of gravity, matric, osmotic and hydrostatic potential. The quantification of the soil water potential is necessary for a variety of applications both in agricultural and horticultural systems such as optimization of irrigation volumes and fertilization. In recent decades, a large number of experimental methods have been developed to measure the soil water potential, and a large body of knowledge is now available on theory and applications. In this review, the main techniques used to measure the soil water potential are discussed. Subsequently, some examples are provided where the measurement of soil water potential is utilized for a sustainable use of water resources in agriculture.

  13. HYDRUS simulations of the effects of dual-drip subsurface irrigation and a physical barrier on water movement and solute transport in soils


    El-Nesr, MN; Alazba, AA; Šimůnek, J


    Subsurface drip irrigation systems, compared to other irrigation systems, enhance the delivery of water and nutrients directly into the root zone. However, in light-textured soils, certain quantities of water may percolate below the root zone due to the subsurface position of drip lines and/or poor management of irrigation systems. The main objective of this paper is to evaluate three technologies to enhance a spatial distribution of water and solutes in the root zone and to limit downward le...

  14. Soil water regime under homogeneous eucalyptus and pine forests

    International Nuclear Information System (INIS)

    Lima, W.P.; Reichardt, K.


    Measurement of precipitation and monthly soil water content during two consecutive years, in 6-year old plantations of eucalypt and pine, and also in an open plot containing natural herbaceous vegetation, were used to compare the soil water regime of these vegetation covers. Precipitation was measured in the open plot with a recording and a non-recording rain gage. Soil water was assessed by the neutron scattering technique to a depth of 1,80 meters. Results indicate that there was, in general, water available in the soil over the entire period of study in all three vegetation conditions. The annual range of soil water in eucalypt, pine, and in natural herbaceous vegetation was essentially similar. The analysis of the average soil water regime showed that the soil under herbaceous vegetation was, generally, more umid than the soil under eucalypt and pine during the period of soil water recharge (September through February); during the period of soil water depletion, the opposite was true. Collectively, the results permit the conclusion that there were no adverse effects on the soil water regime which could be ascribed to reflorestation with eucalypt or pine, as compared with that observed for the natural herbaceous vegetation [pt

  15. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions (United States)

    Cai, Gaochao; Vanderborght, Jan; Langensiepen, Matthias; Schnepf, Andrea; Hüging, Hubert; Vereecken, Harry


    How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil-plant-atmosphere system. Physically based root water uptake (RWU) models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes-Jarvis (FJ) model and the physically based Couvreur (C) model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC), water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities. The impact of differences in

  16. Transformations of humus and soil mantle in the urbanized areas of the Chernobyl NPP exclusion zone

    International Nuclear Information System (INIS)

    Tyutyunnik, Yu.G.; Bednaya, S.M.


    Presented are investigations into the demutation processes of the towns plant community in the Chernobyl NPP exclusion zone (Pripyat, Chernobyl, Chernobyl-2). Demonstrated is the specific nature of the reduction of humus and soil mantle in the abandoned towns under the impact of the natural factors. 21 refs., 5 tab., 7 figs

  17. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania. (United States)

    Gaines, Katie P; Stanley, Jane W; Meinzer, Frederick C; McCulloh, Katherine A; Woodruff, David R; Chen, Weile; Adams, Thomas S; Lin, Henry; Eissenstat, David M


    We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process models. The study took place at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We asked two main questions: (i) Do trees in a mixed-hardwood, humid temperate forest in a central Pennsylvania catchment rely on deep roots for water during dry portions of the growing season? (ii) What is the role of tree genus, size, soil depth and hillslope position on the depth of water extraction by trees? Based on multiple lines of evidence, including stable isotope natural abundance, sap flux and soil moisture depletion patterns with depth, the majority of water uptake during the dry part of the growing season occurred, on average, at less than ∼60 cm soil depth throughout the catchment. While there were some trends in depth of water uptake related to genus, tree size and soil depth, water uptake was more uniformly shallow than we expected. Our results suggest that these types of forests may rely considerably on water sources that are quite shallow, even in the drier parts of the growing season. © The Author 2015. Published by Oxford University Press.

  18. Soil Water and Temperature System (SWATS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)


    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  19. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    International Nuclear Information System (INIS)

    Li, X.; Sawatsky, N.


    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils

  20. Monitoring network for radon in soil and water

    International Nuclear Information System (INIS)

    Tamez, E.; Pena, P.; Segovia, N.; Salazar, S.


    With the purpose to analyze the radon fluctuations on soil and ground waters that may be presented in seismic zones, it was installed a radon detection network that is localized as in the Pacific coasts, as in the Gulf of Mexico some of them localized near Laguna Verde power plant. The radon is detected systematically with solid state track detectors, LR115 Type II, which register the alpha particles of their radioactive decay. The evaluation of the alpha particles tracks was made with a counting system of spark type. Additionally, recently some automatic detection systems (silicide photodiodes) have been installed which register continuously the alpha particles, obtaining radon flux variations starting from registers got during short periods which are programmable between some hours and some tenths of days. Here are presented some results obtained with these systems. (Author)

  1. Stable and radioactive isotopes in the study of the unsaturated soil zone

    International Nuclear Information System (INIS)


    This publication brings together the main results with conclusions and recommendations on the usefulness of studies of the oxygen 18, deuterium and tritium in water in the unsaturated zone. A separate abstract was prepared for each of the 9 papers

  2. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)

    Priyabrata Santra


    Mar 27, 2018 ... of the global population (Millennium Ecosystem. Assessment 2005). Likewise, there is a .... Therefore, the main objective of this study was to develop PTFs for arid soils of India to estimate soil water content at FC and PWP.

  3. Root activity and soil feeding zones of some Bajra hybrids (Pennisetum typhoids Stapf.)

    International Nuclear Information System (INIS)



    Root activity and soil feeding zones of five bajra hybrids (Hybrid D-356, HB-3, HB-4, HB-1 and Bil-3B) were determined under natural field conditions by placement of 32 P labelled superphosphate enclosed in gelatinous capsules at different soil locations around the plant. Percent root activity varied significantly from one depth to another and it decreased with increase in depths and lateral distances. More than 44 percent of the root activity occurred in a soil feeding zone consisting of 0-15 cm depth having double of this much lateral distance. Percent root activity in HB-3 and HB-4 was almost found identical both horizontally and vertically. Hybrid D-356 and HB-1 approximated more than 38 percent root activity in a soil feeding zone of 0-15 cm in depth and 0-10 cm in lateral distance. 32 P placement in capsules appeared to hold promise over Hall's technique since it overcomes the differences caused by disturbance of the feeding activity of roots at the point of 32 P injection into the soil. (author)

  4. Underground waters and soil contamination studies

    International Nuclear Information System (INIS)

    Ferreira, Vinicius V.M.; Camargos, Claudio C.; Santos, Rosana A.M.


    Maybe the greatest problem associated to the nuclear energy is what to do with the waste generated. As example, in Portugal, two of the most important of uranium mines produced a significant amount of waste, now deposited in several storage facilities. To evaluate the impacts generated, samples of water, sediments and soils were analyzed. The space distribution of these samples revealed that the contamination is restricted in the vicinity of the mining areas, and the biggest problem happened due to the illegal use of waters for irrigation, originated from the mine effluents treatment stations. In Brazil, the radioactive waste remains a problem for the authorities and population, since there is not until now a final repository to storage them. The objective of this work is to do studies with the software FRAC3DVS, which simulates the contamination of soils and underground waters due to radioactive and no radioactive sources of pollution. The obtained results show that this tool can help in environmental evaluations and decision making processes in the site selection of a radioactive waste repository. (author)

  5. Uranium in soils and water; Uran in Boden und Wasser

    Energy Technology Data Exchange (ETDEWEB)

    Dienemann, Claudia; Utermann, Jens


    The report of the Umweltbundesamt (Federal Environmental Agency) on uranium in soils and water covers the following chapters: (1) Introduction. (2) Deposits and properties: Use of uranium; toxic effects on human beings, uranium in ground water and drinking water, uranium in surface waters, uranium in soils, uranium in the air. (3) Legal regulations. (4) Uranium deposits, uranium mining, polluted area recultivation. (5) Diffuse uranium entry in soils and water: uranium insertion due to fertilizers, uranium insertion due to atmospheric precipitation, uranium insertion from the air. (6) Diffuse uranium release from soils and transfer in to the food chain. (7) Conclusions and recommendations.

  6. Temperature effect on tert-butyl alcohol (TBA biodegradation kinetics in hyporheic zone soils

    Directory of Open Access Journals (Sweden)

    Sims Ronald C


    Full Text Available Abstract Background Remediation of tert-butyl alcohol (TBA in subsurface waters should be taken into consideration at reformulated gasoline contaminated sites since it is a biodegradation intermediate of methyl tert-butyl ether (MTBE, ethyl tert-butyl ether (ETBE, and tert-butyl formate (TBF. The effect of temperature on TBA biodegradation has not been not been published in the literature. Methods Biodegradation of [U 14C] TBA was determined using hyporheic zone soil microcosms. Results First order mineralization rate constants of TBA at 5°C, 15°C and 25°C were 7.84 ± 0.14 × 10-3, 9.07 ± 0.09 × 10-3, and 15.3 ± 0.3 × 10-3 days-1, respectively (or 2.86 ± 0.05, 3.31 ± 0.03, 5.60 ± 0.14 years-1, respectively. Temperature had a statistically significant effect on the mineralization rates and was modelled using the Arrhenius equation with frequency factor (A and activation energy (Ea of 154 day-1 and 23,006 mol/J, respectively. Conclusion Results of this study are the first to determine mineralization rates of TBA for different temperatures. The kinetic rates determined in this study can be used in groundwater fate and transport modelling of TBA at the Ronan, MT site and provide an estimate for TBA removal at other similar shallow aquifer sites and hyporheic zones as a function of seasonal change in temperature.

  7. Impacts of mining on water and soil. (United States)

    Warhate, S R; Yenkie, M K N; Pokale, W K


    Out of seven coal mines situated in Wardha River Valley located at Wani (Dist. Yavatmal), five open caste coal mines are run by Western Coal Field Ltd, India. The results of 25 water and 19 soil samples (including one over burden) from Nilapur, Bramhani, Kolera, Gowari, Pimpari and Aheri for their pH, TDS, hardness, alkalinity, fluoride, chloride, nitrite, nitrate, phosphate, sulfate, cadmium, lead, zinc, copper, nickel, arsenic, manganese, sodium and potassium are studied in the present work. Statistical analysis and graphical presentation of the results are discussed in this paper.

  8. Structure-Dependent Water-Induced Linear Reduction Model for Predicting Gas Diffusivity and Tortuosity in Repacked and Intact Soil

    DEFF Research Database (Denmark)

    Møldrup, Per; Chamindu, T. K. K. Deepagoda; Hamamoto, S.


    The soil-gas diffusion is a primary driver of transport, reactions, emissions, and uptake of vadose zone gases, including oxygen, greenhouse gases, fumigants, and spilled volatile organics. The soil-gas diffusion coefficient, Dp, depends not only on soil moisture content, texture, and compaction...... but also on the local-scale variability of these. Different predictive models have been developed to estimate Dp in intact and repacked soil, but clear guidelines for model choice at a given soil state are lacking. In this study, the water-induced linear reduction (WLR) model for repacked soil is made...... air) in repacked soils containing between 0 and 54% clay. With Cm = 2.1, the SWLR model on average gave excellent predictions for 290 intact soils, performing well across soil depths, textures, and compactions (dry bulk densities). The SWLR model generally outperformed similar, simple Dp/Do models...

  9. Evaluation of factors affecting soil carbon sequestration services of stormwater wet retention ponds in varying climate zones. (United States)

    Merriman, L S; Moore, T L C; Wang, J W; Osmond, D L; Al-Rubaei, A M; Smolek, A P; Blecken, G T; Viklander, M; Hunt, W F


    The carbon sequestration services of stormwater wet retention ponds were investigated in four different climates: U.S., Northern Sweden, Southern Sweden, and Singapore, representing a range of annual mean temperatures, growing season lengths and rainfall depths: geographic factors that were not statistically compared, but have great effect on carbon (C) accumulation. A chronosequence was used to estimate C accumulations rates; C accumulation and decomposition rates were not directly measured. C accumulated significantly over time in vegetated shallow water areas (0-30cm) in the USA (78.4gCm -2 yr -1 ), in vegetated temporary inundation zones in Sweden (75.8gCm -2 yr -1 ), and in all ponds in Singapore (135gCm -2 yr -1 ). Vegetative production appeared to exert a stronger influence on relative C accumulation rates than decomposition. Comparing among the four climatic zones, the effects of increasing rainfall and growing season lengths (vegetative production) outweighed the effects of higher temperature on decomposition rates. Littoral vegetation was a significant source to the soil C pool relative to C sources draining from watersheds. Establishment of vegetation in the shallow water zones of retention ponds is vital to providing a C source to the soil. Thus, the width of littoral shelves containing this vegetation along the perimeter may be increased if C sequestration is a design goal. This assessment establishes that stormwater wet retention ponds can sequester C across different climate zones with generally annual rainfall and lengths of growing season being important general factors for C accumulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Environmental drivers of soil microbial community structure and function at the Avon River Critical Zone Observatory. (United States)

    Gleeson, Deirdre; Mathes, Falko; Farrell, Mark; Leopold, Matthias


    The Critical Zone is defined as the thin, permeable layer from the tops of the trees to the bottom of the bedrock that sustains terrestrial life on Earth. The geometry and shape of the various weathering zones are known as the critical zone architecture. At the centre of the Critical Zone are soils and the microorganisms that inhabit them. In Western Australia, the million-year-old stable weathering history and more recent lateral erosion during the past hundreds of thousands of years have created a geomorphic setting where deep weathering zones are now exposed on the surface along the flanks of many lateritic hills. These old weathering zones provide diverse physical and chemical properties that influence near surface pedologic conditions and thus likely shape current surface microbiology. Here, we present data derived from a small lateritic hill on the UWA Farm Ridgefield. Spatial soil sampling revealed the contrasting distribution patterns of simple soil parameters such as pH (CaCl2) and electric conductivity. These are clearly linked with underlying changes of the critical zone architecture and show a strong contrast with low values of pH3.3 at the top of the hill to pH5.3 at the bottom. These parameters were identified as major drivers of microbial spatial variability in terms of bacterial and archaeal community composition but not abundance. In addition, we used sensitive (14)C labelling to assess turnover of three model organic nitrogen compounds - an important biogeochemical functional trait relating to nutrient availability. Though generally rapid and in the order of rates reported elsewhere (t½10h). In conclusion, we have shown that the weathering and erosion history of ancient Western Australia affects the surface pedology and has consequences for microbial community structure and function. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ecophysiology of Trembling Aspen in Response to Root-Zone Conditions and Competition on Reclaimed Mine Soil. (United States)

    Bockstette, S.; Landhäusser, S.; Pinno, B.; Dyck, M. F.


    Reclaimed soils are typically characterized by increased bulk densities, penetration resistances and poor soil structure as well as associated problems with hydrology and aeration. As a result, available rooting space for planted tree seedlings is often restricted to a shallow layer of topsoil, which is usually of higher quality and is cultivated prior to planting. This may hinder the development of healthy root systems, thus drastically increasing the risk for plant stress by limiting access to soil resources such as water, nutrients and oxygen. These problems are exacerbated when herbaceous plants compete for the same resources within this limited root-zone. To understand how limited rooting space affects the physiology of young trees, we experimentally manipulated soil conditions and levels of competition at a reclaimed mine site in central Alberta, Canada. The site was characterized by heavily compacted, fine textured subsoil (~2.0 Mg ha-1), capped with 15 cm of topsoil (~1.5 Mg ha-1). In a replicated study (n=6) half the plots were treated with a subsoil plow to a depth of about 60 cm to increase available rooting spece. Subsequently, trembling aspen (Populus tremuloides Michx.) and smooth brome (Bromus inermis L.) were planted to create four vegetation covers: aspen (a), brome (b), aspen + brome (ab) and control (c) (no vegetation). Various soil properties, including texture, bulk density, penetration resistance and water availability, in conjunction with plant parameters such as root and shoot growth, leaf area development, sap flow, and stomatal conductance have since been monitored, both in-situ and through destructive sampling. Our results indicate that the soil treatment was effective in lowering bulk densities and penetration resistance, while improving moisture retention characteristics. Tree seedling growth and leaf area development were significantly greater without competition, but did not differ between soil treatments. The soil treatment generally

  12. Predicting the Campbell Soil Water Retention Function: Comparing Visible–Near-Infrared Spectroscopy with Classical Pedotransfer Function

    DEFF Research Database (Denmark)

    Chrysodonta, Zampela Pittaki; Møldrup, Per; Knadel, Maria


    The soil water retention curve (SWRC) is essential for the modeling of water flow and chemical transport in the vadose zone. The Campbell function and its b (pore-size distribution index) parameter fitted to measured data is a simple method to quantify retention under relatively moist conditions...

  13. Modeling of Soil Water and Salt Dynamics and Its Effects on Root Water Uptake in Heihe Arid Wetland, Gansu, China

    Directory of Open Access Journals (Sweden)

    Huijie Li


    Full Text Available In the Heihe River basin, China, increased salinity and water shortages present serious threats to the sustainability of arid wetlands. It is critical to understand the interactions between soil water and salts (from saline shallow groundwater and the river and their effects on plant growth under the influence of shallow groundwater and irrigation. In this study, the Hydrus-1D model was used in an arid wetland of the Middle Heihe River to investigate the effects of the dynamics of soil water, soil salinization, and depth to water table (DWT as well as groundwater salinity on Chinese tamarisk root water uptake. The modeled soil water and electrical conductivity of soil solution (ECsw are in good agreement with the observations, as indicated by RMSE values (0.031 and 0.046 cm3·cm−3 for soil water content, 0.037 and 0.035 dS·m−1 for ECsw, during the model calibration and validation periods, respectively. The calibrated model was used in scenario analyses considering different DWTs, salinity levels and the introduction of preseason irrigation. The results showed that (I Chinese tamarisk root distribution was greatly affected by soil water and salt distribution in the soil profile, with about 73.8% of the roots being distributed in the 20–60 cm layer; (II root water uptake accounted for 91.0% of the potential maximal value when water stress was considered, and for 41.6% when both water and salt stress were considered; (III root water uptake was very sensitive to fluctuations of the water table, and was greatly reduced when the DWT was either dropped or raised 60% of the 2012 reference depth; (IV arid wetland vegetation exhibited a high level of groundwater dependence even though shallow groundwater resulted in increased soil salinization and (V preseason irrigation could effectively increase root water uptake by leaching salts from the root zone. We concluded that a suitable water table and groundwater salinity coupled with proper irrigation

  14. Interaction of Brilliant Blue dye solution with soil and its effect on mobility of compounds around the zones of preferenial flows at spruce stand

    Directory of Open Access Journals (Sweden)

    Bebej Juraj


    Full Text Available We performed field experiment with 10 g l−1 concentration of Brilliant Blue solutes in 100 l of water sprinkling on 1 × 1 m surface of the Dystric Cambisol. Consequently, four vertical profiles were exposed at experimental plot after 2 hours (CUT 2, 24 hours (CUT 24, 27 hours (CUT 27 and after 504 hours (CUT 504 in order to analyse spatiotemporal interactions among the BB solution (Na-salts, soil exchangeable complex and fine earth soil (% samples extracted from both the high and low coloured zones located around the optically visualised macropore preferred flow (PF zones. The concentration changes were quantifying via soil profiles not affected by BB (termed as REF located in the close vicinity of experimental plot. Observed changes in pH (H2O, chemical composition of fineearth soil, as well as in concentration of Na+ in soil exchangeable complex to suggest, the BB dye solution didn’t represent an inert tracer, but compounds strongly involved in reaction with surrounding soils. Recorded chemical trends seems to be the result both the competitive processes between the Na+ of BB dye solution and composition of surrounding soil exchangeable complex, as well and the spatial-temporal controlled mechanism of dye solution transfer in soil.

  15. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

    Directory of Open Access Journals (Sweden)

    G. Cai


    Full Text Available How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil–plant–atmosphere system. Physically based root water uptake (RWU models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes–Jarvis (FJ model and the physically based Couvreur (C model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC, water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities

  16. Validation of a spatial–temporal soil water movement and plant water uptake model

    KAUST Repository



    © 2014, (publisher). All rights reserved. Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil

  17. On site experiments of the slanted soil treatment systems for domestic gray water. (United States)

    Itayama, Tomoaki; Kiji, Masato; Suetsugu, Aya; Tanaka, Nobuyuki; Saito, Takeshi; Iwami, Norio; Mizuochi, Motoyuki; Inamori, Yuhei


    In order to make a breakthrough for the acute problem of water shortage in the world, the key words "decentralization and re-use" are very important for new sustainable sanitation systems that will be developed. Therefore, we focused on a new treatments system called "a slanted soil treatment system" which combines a biotoilet system with a domestic grey water treatment system. Because this system is a low cost and compact system, the system can be easily introduced to homes in urban areas or in the suburbs of cities in many developing countries. In this study, we performed on site experiments carried out on Shikoku Island, Japan, for several years. We obtained the following results. The slanted soil treatment system could remove organic pollutants and total nitrogen and total phosphorus in grey water effectively. Furthermore, the system performance became high in the case of the high concentration of the influent water. The nitrification reaction and denitrification reaction were speculated to exist due to aerobic zones and anaerobic zones present in the slanted soil treatment system. The slanted soil treatment system could perform for approximately 3 years with zero maintenance. The plug flow model of 1st order reaction kinetics could describe the reaction in the slanted soil treatment system. However, it is necessary to improve the system to maintain the performance in all seasons.

  18. Simulated and measured soil wetting patterns for overlap zone ...

    African Journals Online (AJOL)



    Oct 17, 2011 ... Drip irrigation is one of the most useful methods that is widely used in the arid and semi- ... Simulations of the water content and wetting front were close to the observed data. ... many researchers have employed numerical models to ... Field experiments were conducted in 2010 at the management of.

  19. Soil water sensor response to bulk electrical conductivity (United States)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  20. Water repellent soils: a state-of-the-art (United States)

    Leonard F. DeBano


    Water repellency in soils was first described by Schreiner and Shorey (1910), who found that some soils in California could not be wetted and thereby were not suitable for agriculture. Waxy organic substances were responsible for the water repellency. Other studies in the early 1900's on the fairy ring phenomenon suggested that water repellency could be caused by...

  1. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)


    Soil water retention, Dry lands, Western India, Pedotransfer functions, Soil moisture calculator. 1. 2. 3. 4 ..... samples although it is known that structure and macro-porosity of the sample affect water retention (Unger ..... and OC content has positive influence on water retention whereas interaction of clay and OC has negative ...

  2. Implications of soil mixing for NAPL source zone remediation: Column studies and modeling of field-scale systems. (United States)

    Olson, Mitchell R; Sale, Tom C


    Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (>96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to >99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential (United States)

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi


    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  4. Multisensor Capacitance Probes for Simultaneously Monitoring Rice Field Soil-Water- Crop-Ambient Conditions. (United States)

    Brinkhoff, James; Hornbuckle, John; Dowling, Thomas


    Multisensor capacitance probes (MCPs) have traditionally been used for soil moisture monitoring and irrigation scheduling. This paper presents a new application of these probes, namely the simultaneous monitoring of ponded water level, soil moisture, and temperature profile, conditions which are particularly important for rice crops in temperate growing regions and for rice grown with prolonged periods of drying. WiFi-based loggers are used to concurrently collect the data from the MCPs and ultrasonic distance sensors (giving an independent reading of water depth). Models are fit to MCP water depth vs volumetric water content (VWC) characteristics from laboratory measurements, variability from probe-to-probe is assessed, and the methodology is verified using measurements from a rice field throughout a growing season. The root-mean-squared error of the water depth calculated from MCP VWC over the rice growing season was 6.6 mm. MCPs are used to simultaneously monitor ponded water depth, soil moisture content when ponded water is drained, and temperatures in root, water, crop and ambient zones. The insulation effect of ponded water against cold-temperature effects is demonstrated with low and high water levels. The developed approach offers advantages in gaining the full soil-plant-atmosphere continuum in a single robust sensor.

  5. Spatio-temporal assessment of soil erosion risk in different agricultural zones of the Inle Lake region, southern Shan State, Myanmar. (United States)

    Htwe, Thin Nwe; Brinkmann, Katja; Buerkert, Andreas


    Myanmar is one of Southeast Asia's climatically most diverse countries, where sheet, rill, and gully erosion affect crop yields and subsequently livelihood strategies of many people. In the unique wetland ecosystem of Inle Lake, soil erosion in surrounding uplands lead to sedimentation and pollution of the water body. The current study uses the Revised Universal Soil Loss Equation (RUSLE) to identify soil erosion risks of the Inle Lake region in space and time and to assess the relationship between soil erosion and degradation for different agricultural zones and cropping systems. Altogether, 85% of soil losses occurred on barren land along the steep slopes. The hotspot of soil erosion risk is situated in the western uplands characterized by unsustainable land use practices combined with a steep topography. The estimated average soil losses amounted to 19.9, 10.1, and 26.2 t ha(-1) yr(-1) in 1989, 2000, and 2009, respectively. These fluctuations were mainly the results of changes in precipitation and land cover (deforestation (-19%) and expansion of annual cropland (+35%) from 1989 to 2009). Most farmers in the study area have not yet adopted effective soil protection measures to mitigate the effects of soil erosion such as land degradation and water pollution of the lake reservoir. This urgently needs to be addressed by policy makers and extension services.

  6. Laboratory and numerical experiments on water and energy fluxes during freezing and thawing in the unsaturated zone (United States)

    Holländer, Hartmut; Montasir Islam, Md.; Šimunek, Jirka


    Frozen soil has a major effect in many hydrologic processes, and its effects are difficult to predict. A prime example is flood forecasting during spring snowmelt within the Canadian Prairies. One key driver for the extent of flooding is the antecedent soil moisture and the possibility for water to infiltrate into frozen soils. Therefore, these situations are crucial for accurate flood prediction during every spring. The main objective of this study was to evaluate the water flow and heat transport within HYDRUS-1D version 4.16 and with Hansson's model, which is a detailed freezing/thawing module (Hansson et al., 2004), to predict the impact of frozen and partly frozen soil on infiltration. We developed a standardized data set of water flow and heat transport into (partial) frozen soil by laboratory experiments using fine sand. Temperature, soil moisture, and percolated water were observed at different freezing conditions as well as at thawing conditions. Significant variation in soil moisture was found between the top and the bottom of the soil column at the starting of the thawing period. However, with increasing temperature, the lower depth of the soil column showed higher moisture as the soil became enriched with moisture due to the release of heat by soil particles during the thawing cycle. We applied vadose zone modeling using the results from the laboratory experiments. The simulated water content by HYDRUS-1D 4.16 showed large errors compared to the observed data showing by negative Nash-Sutcliffe Efficiency. Hansson's model was not able to predict soil water fluxes due to its unstable behavior (Šimunek et al., 2016). The soil temperature profile simulated using HYDRUS-1D 4.16 was not able to predict the release of latent heat during the phase change of water that was visible in Hansson's model. Hansson's model includes the energy gain/loss due to the phase change in the amount of latent energy stored in the modified heat transport equation. However, in

  7. Soil processes and functions across an international network of critical zone observations: introduction to experimental methods and initial results

    NARCIS (Netherlands)

    Banwart, S.; Menon, M.; Bernasconi, S.M.; Bloem, J.; Ruiter, de P.C.; Weng, L.P.


    Growth in human population and demand for wealth creates ever-increasing pressure on global soils, leading to soil losses and degradation worldwide. Critical Zone science studies the impact linkages between these pressures, the resulting environmental state of soils, and potential interventions to

  8. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater. (United States)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev


    In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than -200mV. Perchlorate was reduced continuously from ∼1150mg/L at the inlet to ∼300mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10 5 to 10 7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Decomposition of Phragmites australis rhizomes in artificial land-water transitional zones (ALWTZs) and management implications (United States)

    Han, Zhen; Cui, Baoshan; Zhang, Yongtao


    Rhizomes are essential organs for growth and expansion of Phragmites australis. They function as an important source of organic matter and as a nutrient source, especially in the artificial land-water transitional zones (ALWTZs) of shallow lakes. In this study, decomposition experiments on 1- to 6-year-old P. australis rhizomes were conducted in the ALWTZ of Lake Baiyangdian to evaluate the contribution of the rhizomes to organic matter accumulation and nutrient release. Mass loss and changes in nutrient content were measured after 3, 7, 15, 30, 60, 90, 120, and 180 days. The decomposition process was modeled with a composite exponential model. The Pearson correlation analysis was used to analyze the relationships between mass loss and litter quality factors. A multiple stepwise regression model was utilized to determine the dominant factors that affect mass loss. Results showed that the decomposition rates in water were significantly higher than those in soil for 1- to 6-year-old rhizomes. However, the sequence of decomposition rates was identical in both water and soil. Significant relationships between mass loss and litter quality factors were observed at a later stage, and P-related factors proved to have a more significant impact than N-related factors on mass loss. According to multiple stepwise models, the C/P ratio was found to be the dominant factor affecting the mass loss in water, and the C/N and C/P ratios were the main factors affecting the mass loss in soil. The combined effects of harvesting, ditch broadening, and control of water depth should be considered for lake administrators.

  10. Plant species effects on soil nutrients and chemistry in arid ecological zones. (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A


    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  11. Water organic pollution and eutrophication influence soil microbial processes, increasing soil respiration of estuarine wetlands: site study in jiuduansha wetland. (United States)

    Zhang, Yue; Wang, Lei; Hu, Yu; Xi, Xuefei; Tang, Yushu; Chen, Jinhai; Fu, Xiaohua; Sun, Ying


    Undisturbed natural wetlands are important carbon sinks due to their low soil respiration. When compared with inland alpine wetlands, estuarine wetlands in densely populated areas are subjected to great pressure associated with environmental pollution. However, the effects of water pollution and eutrophication on soil respiration of estuarine and their mechanism have still not been thoroughly investigated. In this study, two representative zones of a tidal wetland located in the upstream and downstream were investigated to determine the effects of water organic pollution and eutrophication on soil respiration of estuarine wetlands and its mechanism. The results showed that eutrophication, which is a result of there being an excess of nutrients including nitrogen and phosphorus, and organic pollutants in the water near Shang shoal located upstream were higher than in downstream Xia shoal. Due to the absorption and interception function of shoals, there to be more nitrogen, phosphorus and organic matter in Shang shoal soil than in Xia shoal. Abundant nitrogen, phosphorus and organic carbon input to soil of Shang shoal promoted reproduction and growth of some highly heterotrophic metabolic microorganisms such as β-Proteobacteria, γ-Proteobacteria and Acidobacteria which is not conducive to carbon sequestration. These results imply that the performance of pollutant interception and purification function of estuarine wetlands may weaken their carbon sequestration function to some extent.

  12. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan


    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  13. 33 CFR 165.1192 - Security Zones; Waters surrounding San Francisco International Airport and Oakland International... (United States)


    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zones; Waters..., California. 165.1192 Section 165.1192 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Security Zones; Waters surrounding San Francisco International Airport and Oakland International Airport...

  14. Field soil-water properties measured through radiation techniques

    International Nuclear Information System (INIS)


    This report shows a major effort to make soil physics applicable to the behaviour of the field soils and presents a rich and diverse set of data which are essential for the development of effective soil-water management practices that improve and conserve the quality and quantity of agricultural lands. This piece of research has shown that the neutron moisture meter together with some complementary instruments like tensiometers, can be used not only to measure soil water contents but also be extremely handy to measure soil hydraulic characteristics and soil water flow. It is, however, recognized that hydraulic conductivity is highly sensitive to small changes in soil water content and texture, being extremely variable spatially and temporally

  15. Assessment of soil-gas, soil, and water contamination at the former hospital landfill, Fort Gordon, Georgia, 2009-2010 (United States)

    Falls, Fred W.; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.


    Soil gas, soil, and water were assessed for organic and inorganic constituents at the former hospital landfill located in a 75-acre study area near the Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia, from April to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone of a creek adjacent to the landfill and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Results from the hyporheic-zone assessment in the unnamed tributary adjacent to the study area indicated that total petroleum hydrocarbons and octane were the most frequently detected organic compounds in groundwater beneath the creek bed. The highest concentrations for these compounds were detected in the upstream samplers of the hyporheic-zone study area. The effort to delineate landfill activity in the study area focused on the western 14 acres of the 75-acre study area where the hyporheic-zone study identified the highest concentrations of organic compounds. This also is the part of the study area where a debris field also was identified in the southern part of the 14 acres. The southern part of this 14-acre study area, including the debris field, is steeper and not as heavily wooded, compared to the central and northern parts. Fifty-two soil-gas samplers were used for the July 2010 soil-gas survey in the 14-acre study area and mostly detected total petroleum hydrocarbons, and gasoline and diesel compounds. The highest soil-gas masses for total petroleum hydrocarbons, diesel compounds, and the only valid detection of perchloroethene

  16. Heavy metal concentrations and distribution in surface soils of the Bassa Industrial Zone 1, Douala, Cameroon

    International Nuclear Information System (INIS)

    Asaah, Victor A.; Abimbola, Akinlolu F.; Suh, Cheo E.


    Partial extraction was carried out on 33 soil samples collected from the Bassa Industrial Zone 1, Douala, Cameroon. From the samples analyzed the following metal concentrations (range) were obtained (in ppm): Ag (0-1.3), As (0-64), Cd(0-7.3), Co(0-31), Cr(34-423), Cu(12-909), Mn(55-3282), Mo(0-81.6), Ni(9-284), Pb (0-3320), Sb (0-30), Sc (0.6-7.5), V (26-110), Zn (30-3782) and Fe (in wt%) (1.50-47.31). Results obtained reveal background and anomalous populations for most of the metals except Sc and V, which have only background populations. Multi-element geochemical anomalies occur within the vicinity of industries, waste dump sites, metal workshops and mechanical workshops. R-mode factor analysis reveals three element associations and two singular elements (As, Cd) accounting for 94% of the total data variance. The three associations are: Ag-Cu-Cr-Fe-Mn-Mo-Ni-Sb; Co-Cu-Pb-Sb-Zn and Sc-V. The geoaccumulation indices show that soils in the Bassa Industrial Zone are moderately to very highly pollute. These metal-laden soils constitute a major health risk to the local population and a cause for concern. This study successfully relates the concentration and distribution of toxic metals in the soils of Bassa Industrial Zone to urban effluents generated mainly from industrial activities. (author)

  17. Generalization of some results of a vertical radionuclide migration study in soils of 30-km zone

    International Nuclear Information System (INIS)

    Ziborov, A.M.; Sadol'ko, I.V.; Sushchik, Yu.Ya.; Tikhanov, Eh.K.; Proskuryakov, A.G.; Kuz'michev, V.N.; Shcheglov, A.I.


    Results of radionuclide distribution study in a vertical profile of soils are presented under different landscape geochemical conditions in 1989-1991. It is ascertained that radionuclide migration process in geochemical profile of soils of 30-km zone is in early stage of development. More than 90% of radioactivity concentrates in the upper 5-10 cm layer whereas measurable radioactivity fixes at a depth up to 1 m. The process of deepening of radioactivity reserve center takes place in the surface soil layer. Now it equals 1,5-3 cm. Peculiarities of the vertical radionuclide distribution haven't brightly pronounced character depending on soil types and are at the formation stage. 12 figs.; 2 tabs

  18. Radionuclide migration in soil within the estrangement zone of ChNPP

    International Nuclear Information System (INIS)

    Mikhalkin, G.S.; Arkhipov, A.N.; Arkhipov, N.P.; Sukhoruchkin, A.K.


    The problems of the radionuclide migration and redistribution in soil within the estrangement zone of ChNPP have been discussed. It has been demonstrated that the surface radioactive contamination of soil that has been represented principally by the particles of the waste nuclear fuel eventually migrates into soil depth. In this case the radionuclides remain principally the fuel matrix components, the fuel matrix decomposing gradually and releasing the radionuclides. The mechanisms of the radionuclide migration can be described with the quasi-diffusion migration model in most cases. On the 5th year since the accident the major portion of the radionuclides (95-99%) is still kept within 0-5 cm layer of soil. 3 figs.; 7 tabs

  19. A Comparison of Soil-Water Sampling Techniques (United States)

    Tindall, J. A.; Figueroa-Johnson, M.; Friedel, M. J.


    The representativeness of soil pore water extracted by suction lysimeters in ground-water monitoring studies is a problem that often confounds interpretation of measured data. Current soil water sampling techniques cannot identify the soil volume from which a pore water sample is extracted, neither macroscopic, microscopic, or preferential flowpath. This research was undertaken to compare values of extracted suction lysimeters samples from intact soil cores with samples obtained by the direct extraction methods to determine what portion of soil pore water is sampled by each method. Intact soil cores (30 centimeter (cm) diameter by 40 cm height) were extracted from two different sites - a sandy soil near Altamonte Springs, Florida and a clayey soil near Centralia in Boone County, Missouri. Isotopically labeled water (O18? - analyzed by mass spectrometry) and bromide concentrations (KBr- - measured using ion chromatography) from water samples taken by suction lysimeters was compared with samples obtained by direct extraction methods of centrifugation and azeotropic distillation. Water samples collected by direct extraction were about 0.25 ? more negative (depleted) than that collected by suction lysimeter values from a sandy soil and about 2-7 ? more negative from a well structured clayey soil. Results indicate that the majority of soil water in well-structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. In cases where a sufficient volume of water has passed through the soil profile and displaced previous pore water, suction lysimeters will collect a representative sample of soil pore water from the sampled depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeter should be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The data also indicate that each extraction method be use to sample a different

  20. Toward a standardized soil carbon database platform in the US Critical Zone Observatory Network (United States)

    Filley, T. R.; Marini, L.; Todd-Brown, K. E.; Malhotra, A.; Harden, J. W.; Kumar, P.


    Within the soil carbon community of the US Critical Zone Observatory (CZO) Network, efforts are underway to promote network-level data syntheses and modeling projects and to identify barriers to data intercomparability. This represents a challenging goal given the diversity of soil carbon sampling methodologies, spatial and vertical resolution, carbon pool isolation protocols, subsequent measurement techniques, and matrix terminology. During the last annual meeting of the CZO SOC Working Group, Dec 11, 2016, it was decided that integration with, and potentially adoption of, a widely used, active, and mature data aggregation, archival, and visualization platform was the easiest route to achieve this ultimate goal. Additionally, to assess the state of deep and shallow soil C data among the CZO sites it was recommended that a comprehensive survey must be undertaken to identify data gaps and catalog the various soil sampling and analysis methodologies. The International Soil Carbon Network (ISCN) has a long history of leadership in the development of soil C data aggregation, archiving, and visualization tools and currently houses data for over 70,000 soil cores contributed from international soil carbon community. Over the past year, members of the CZO network and the ISCN have met to discuss logistics of adopting the ISCN template within the CZO. Collaborative efforts among all of the CZO site data managers, led by the Intensively Managed Landscapes CZO, will evaluate feasibility of adoption of the ISCN template, or some modification thereof, and distribution to the appropriate soil scientists for data upload and aggregation. Partnering with ISCN also ensures that soil characteristics from the US CZO are placed in a developing global soil context and paves the way for future integration of data from other international CZO networks. This poster will provide an update of this overall effort along with a summary of data products, partnering networks, and recommendations

  1. Predicting and mapping soil available water capacity in Korea

    Directory of Open Access Journals (Sweden)

    Suk Young Hong


    Full Text Available The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at −10 and −1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at −10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively. Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.

  2. Predicting and mapping soil available water capacity in Korea. (United States)

    Hong, Suk Young; Minasny, Budiman; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo


    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at -10 and -1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at -10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.

  3. Improvement of Water Movement in an Undulating Sandy Soil Prone to Water Repellency

    NARCIS (Netherlands)

    Oostindie, K.; Dekker, L.W.; Wesseling, J.G.; Ritsema, C.J.


    The temporal dynamics of water repellency in soils strongly influence water flow. We investigated the variability of soil water content in a slight slope on a sandy fairway exhibiting water-repellent behavior. A time domain reflectometry (TDR) array of 60 probes measured water contents at 3-h

  4. Effects of soil management techniques on soil water erosion in apricot orchards. (United States)

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi


    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide

  5. Soil physical degradation by human activities in the zone II of the basin of Burgos, Tamaulipas, Mexico

    International Nuclear Information System (INIS)

    Arias Mino, F.; Espinosa Rmirez, M.; Andrade Limas, E.; Castro Meza, B.; Romero Diaz, A.


    The objective of this work was to characterize the physical degradation of the soil for antropic activities during the years 2007 and 2008 in the II zone of the Burgos Basin in Tamaulipas, Mexico. In this region, human action manifests itself due to activities such as agriculture, livestock and industry. The conventional farming, based mainly on the cultivation of sorghum, is characterized by great mechanization and tilling the soil which has contributed in large measure to aggravate erosion processes. There is also some logging, mainly for charcoal production and, recently, has joined the exploration and exploitation of natural gas. We used the methodology for Assessment of Soil Degradation (ASSOD) to identify, located and define the types of soil degradation within physiographic units. Results showed that nearly 74% of the study area presents some kind of degradation. The main process was water erosion, followed, by compaction and wind erosion. The main factors are essentially overgrazing and inadequate farming practices. Approximately 60% of the units evaluated presented a moderate level of degradation, but the speed of this process indicates that maintenance works are needed to reverse. (Author) 7 refs.

  6. Water repellency of clay, sand and organic soils in Finland

    Directory of Open Access Journals (Sweden)

    K. RASA


    Full Text Available Water repellency (WR delays soil wetting process, increases preferential flow and may give rise to surface runoff and consequent erosion. WR is commonly recognized in the soils of warm and temperate climates. To explore the occurrence of WR in soils in Finland, soil R index was studied on 12 sites of different soil types. The effects of soil management practice, vegetation age, soil moisture and drying temperature on WR were studied by a mini-infiltrometer with samples from depths of 0-5 and 5-10 cm. All studied sites exhibited WR (R index >1.95 at the time of sampling. WR increased as follows: sand (R = 1.8-5.0 < clay (R = 2.4-10.3 < organic (R = 7.9-undefined. At clay and sand, WR was generally higher at the soil surface and at the older sites (14 yr., where organic matter is accumulated. Below 41 vol. % water content these mineral soils were water repellent whereas organic soil exhibited WR even at saturation. These results show that soil WR also reduces water infiltration at the prevalent field moisture regime in the soils of boreal climate. The ageing of vegetation increases WR and on the other hand, cultivation reduces or hinders the development of WR.;

  7. Water erosion and soil water infiltration in different stages of corn development and tillage systems


    Daniel F. de Carvalho; Eliete N. Eduardo; Wilk S. de Almeida; Lucas A. F. Santos; Teodorico Alves Sobrinho


    ABSTRACTThis study evaluated soil and water losses, soil water infiltration and infiltration rate models in soil tillage systems and corn (Zea mays, L.) development stages under simulated rainfall. The treatments were: cultivation along contour lines, cultivation down the slope and exposed soil. Soil losses and infiltration in each treatment were quantified for rains applied using a portable simulator, at 0, 30, 60 and 75 days after planting. Infiltration rates were estimated using the models...

  8. Soil contamination in the impact zone of mining enterprises in the Bashkir Transural region (United States)

    Opekunova, M. G.; Somov, V. V.; Papyan, E. E.


    The results of long-term studies of the contents of bulk forms of metals (Cu, Zn, Fe, Ni, Pb, Mn, Co, and Cd) and their mobile compounds in soils of background and human-disturbed areas within the Krasnoural'sk-Sibai-Gai copper-zinc and Baimak-Buribai mixed copper mineralization zones in the Bashkir Transural region are discussed. It is shown that soils of the region are characterized by abnormally high natural total contents of heavy metals (HMs) typomorphic for ore mineralization: Cu, Zn, and Fe for the Sibai province and Cu, Zn, and Ni for the Baimak province. In the case of a shallow depth of the ores, the concentrations of HMs in the soils are close to or higher than the tentative permissible concentration values. The concentrations of mobile HM compounds in soils of background areas and their percentage in the total HM content strongly vary from year to year in dependence on weather conditions, position in the soil catenas, species composition of vegetation, and distance from the source of technogenic contamination. The high natural variability in the content of mobile HM compounds in soils complicates the reliable determination of the regional geochemical background and necessitates annual estimation of background parameters for the purposes of the ecological monitoring of soils. The bulk content of Cu and Zn content in soils near mining enterprises exceeds the regional geochemical background values by 2-12 times and the tentative permissible concentrations of these metals by 2-4 times. Anthropogenic contamination results in a sharp rise in the content of mobile HM compounds in soils. Their highest concentrations exceed the maximum permissible concentrations by 26 times for Cu, 18 times for Zn, and 2 times for Pb. Soil contamination in the impact zone of mining enterprises is extremely dangerous or dangerous. However, because of the high temporal variability in the migration and accumulation of HMs in the soils, the recent decline in the ore mining

  9. Soil monitoring in agro-ecosystems of high mountain zone in Quindio

    International Nuclear Information System (INIS)

    Sadeghian, Siavosh; Orozco, O l; Murgueitio, E


    Were evaluated soil characteristics in 4 common agro-ecosystems of high mountain zone of Quindio department, soil forest exhibit better indicators that others systems. Low macro porosity and hydraulic conductivity were consequences more important of cattle ranching systems. In pinus plantations were registered lower value of organic matter, pH, interchanging bases, gravimetric moisture and microbial activity CO 2 . As a result of pinus establishment on pasture ground increase drainable porosity and hydraulic conductivity. In granadilla cultivation were lower organism diversity and structural stability

  10. Ammonia-Oxidizing Archaea Show More Distinct Biogeographic Distribution Patterns than Ammonia-Oxidizing Bacteria across the Black Soil Zone of Northeast China. (United States)

    Liu, Junjie; Yu, Zhenhua; Yao, Qin; Sui, Yueyu; Shi, Yu; Chu, Haiyan; Tang, Caixian; Franks, Ashley E; Jin, Jian; Liu, Xiaobing; Wang, Guanghua


    Black soils (Mollisols) of northeast China are highly productive and agriculturally important for food production. Ammonia-oxidizing microbes play an important role in N cycling in the black soils. However, the information related to the composition and distribution of ammonia-oxidizing microbes in the black soils has not yet been addressed. In this study, we used the amoA gene to quantify the abundance and community composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) across the black soil zone. The amoA abundance of AOA was remarkably larger than that of AOB, with ratios of AOA/AOB in the range from 3.1 to 91.0 across all soil samples. The abundance of AOA amoA was positively correlated with total soil C content ( p 0.05). In contrast, the abundance of AOB amoA positively correlated with soil pH ( p = 0.009) but not with total soil C. Alpha diversity of AOA did not correlate with any soil parameter, however, alpha diversity of AOB was affected by multiple soil factors, such as soil pH, total P, N, and C, available K content, and soil water content. Canonical correspondence analysis indicated that the AOA community was mainly affected by the sampling latitude, followed by soil pH, total P and C; while the AOB community was mainly determined by soil pH, as well as total P, C and N, water content, and sampling latitude, which highlighted that the AOA community was more geographically distributed in the black soil zone of northeast China than AOB community. In addition, the pairwise analyses showed that the potential nitrification rate (PNR) was not correlated with alpha diversity but weakly positively with the abundance of the AOA community ( p = 0.048), whereas PNR significantly correlated positively with the richness ( p = 0.003), diversity ( p = 0.001) and abundance ( p < 0.001) of the AOB community, which suggested that AOB community might make a greater contribution to nitrification than AOA community in the black soils when

  11. Estimating fate and transport of multiple contaminants in the vadose zone using a multi-layered soil column and three-phase equilibrium partitioning model

    International Nuclear Information System (INIS)

    Rucker, Gregory G.


    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use. (authors)

  12. Modeling and Prediction of Soil Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per


    Soil water vapor sorption isotherms describe the relationship between water activity (aw) and moisture content along adsorption and desorption paths. The isotherms are important for modeling numerous soil processes and are also used to estimate several soil (specific surface area, clay content.......93) for a wide range of soils; and (ii) develop and test regression models for estimating the isotherms from clay content. Preliminary results show reasonable fits of the majority of the investigated empirical and theoretical models to the measured data although some models were not capable to fit both sorption...... directions accurately. Evaluation of the developed prediction equations showed good estimation of the sorption/desorption isotherms for tested soils....

  13. Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems (United States)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.


    25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.

  14. Percolation behavior of tritiated water into a soil packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka (Japan); Takeishi, T. [Faculty of Engineering, Kyushu University, Motooka Nishi-ku, Fukuoka (Japan)


    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  15. Percolation behavior of tritiated water into a soil packed bed

    International Nuclear Information System (INIS)

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S.; Takeishi, T.


    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  16. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil

    International Nuclear Information System (INIS)

    Du Laing, G.; Vanthuyne, D.R.J.; Vandecasteele, B.; Tack, F.M.G.; Verloo, M.G.


    Options for wetland creation or restoration might be limited because of the presence of contaminants in the soil. The influence of hydrological management on the pore water concentrations of Cd, Cr, Cu, Fe, Mn, Ni and Zn in the upper soil layer of a contaminated overbank sedimentation zone was investigated in a greenhouse experiment. Flooding conditions led to increased Fe, Mn, Ni and Cr concentrations and decreased Cd, Cu and Zn concentrations in the pore water of the upper soil layer. Keeping the soil at field capacity resulted in a low pore water concentration of Fe, Mn and Ni while the Cd, Cu, Cr and Zn concentrations increased. Alternating hydrological conditions caused metal concentrations in the pore water to fluctuate. Formation and re-oxidation of small amounts of sulphides appeared dominant in determining the mobility of Cd, Cu, and to a lesser extent Zn, while Ni behaviour was consistent with Fe/Mn oxidation and reduction. These effects were strongly dependent on the duration of the flooded periods. The shorter the flooded periods, the better the metal concentrations could be linked to the mobility of Ca in the pore water, which is attributed to a fluctuating CO 2 pressure. - The hydrological regime is a key factor in determining the metal concentration in the pore water of a contaminated sediment-derived soil

  17. Evaluation of Physicochemical Characteristics of Water and Soil ...

    African Journals Online (AJOL)


    analysis of the Soil and water samples shows traces of heavy metals when compared ... The research thus point out the need for environmental Education and proper ..... Macro invertebrate community pattems and diversity in relation to water ...

  18. Assessment of produced water contaminated soils to determine remediation requirements

    International Nuclear Information System (INIS)

    Clodfelter, C.


    Produced water and drilling fluids can impact the agricultural properties of soil and result in potential regulatory and legal liabilities. Produced water typically is classified as saline or a brine and affects surface soils by increasing the sodium and chloride content. Sources of produced water which can lead to problems include spills from flowlines and tank batteries, permitted surface water discharges and pit areas, particularly the larger pits including reserve pits, emergency pits and saltwater disposal pits. Methods to assess produced water spills include soil sampling with various chemical analyses and surface geophysical methods. A variety of laboratory analytical methods are available for soil assessment which include electrical conductivity, sodium adsorption ratio, cation exchange capacity, exchangeable sodium percent and others. Limiting the list of analytical parameters to reduce cost and still obtain the data necessary to assess the extent of contamination and determine remediation requirements can be difficult. The advantage to using analytical techniques is that often regulatory remediation standards are tied to soil properties determined from laboratory analysis. Surface geophysical techniques can be an inexpensive method to rapidly determine the extent and relative magnitude of saline soils. Data interpretations can also provide an indication of the horizontal as well as the vertical extent of impacted soils. The following discussion focuses on produced water spills on soil and assessment of the impacted soil. Produced water typically contains dissolved hydrocarbons which are not addressed in this discussion

  19. Net carbon allocation in soybean seedlings as influenced by soil water stress at two soil temperatures

    International Nuclear Information System (INIS)

    McCoy, E.L.; Boersma, L.; Ekasingh, M.


    The influence of water stress at two soil temperatures on allocation of net photoassimilated carbon in soybean (Glycine max [L.] Merr.) was investigated using compartmental analysis. The experimental phase employed classical 14 C labeling methodology with plants equilibrated at soil water potentials of -0.04, -0.25 and -0.50 MPa; and soil temperatures of 25 and 10C. Carbon immobilization in the shoot apex generally followed leaf elongation rates with decreases in both parameters at increasing water stress at both soil temperatures. However, where moderate water stress resulted in dramatic declines in leaf elongation rates, carbon immobilization rates were sharply decreased only at severe water stress levels. Carbon immobilization was decreased in the roots and nodules of the nonwater stressed treatment by the lower soil temperature. This relation was reversed with severe water stress, and carbon immobilization in the roots and nodules was increased at the lower soil temperature. Apparently, the increased demand for growth and/or carbon storage in these tissues with increased water stress overcame the low soil temperature limitations. Both carbon pool sizes and partitioning of carbon to the sink tissues increased with moderate water stress at 25C soil temperature. Increased pool sizes were consistent with whole plant osmotic adjustment at moderate water stress. Increased partitioning to the sinks was consistent with carbon translocation processes being less severely influenced by water stress than is photosynthesis

  20. Inverse estimation of soil hydraulic properties and water repellency following artificially induced drought stress

    Directory of Open Access Journals (Sweden)

    Filipović Vilim


    Full Text Available Global climate change is projected to continue and result in prolonged and more intense droughts, which can increase soil water repellency (SWR. To be able to estimate the consequences of SWR on vadose zone hydrology, it is important to determine soil hydraulic properties (SHP. Sequential modeling using HYDRUS (2D/3D was performed on an experimental field site with artificially imposed drought scenarios (moderately M and severely S stressed and a control plot. First, inverse modeling was performed for SHP estimation based on water and ethanol infiltration experimental data, followed by model validation on one selected irrigation event. Finally, hillslope modeling was performed to assess water balance for 2014. Results suggest that prolonged dry periods can increase soil water repellency. Inverse modeling was successfully performed for infiltrating liquids, water and ethanol, with R2 and model efficiency (E values both > 0.9. SHP derived from the ethanol measurements showed large differences in van Genuchten-Mualem (VGM parameters for the M and S plots compared to water infiltration experiments. SWR resulted in large saturated hydraulic conductivity (Ks decrease on the M and S scenarios. After validation of SHP on water content measurements during a selected irrigation event, one year simulations (2014 showed that water repellency increases surface runoff in non-structured soils at hillslopes.

  1. Soil volumetric water content measurements using TDR technique

    Directory of Open Access Journals (Sweden)

    S. Vincenzi


    Full Text Available A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results of the analysis of the TDR wave forms. The analysis is based on the calculation of the travel time of the TDR signal in the wave guide embedded in the soil.

  2. Soil water repellency in north-eastern Greece with adverse effects of drying on the persistence

    NARCIS (Netherlands)

    Ziogas, A.K.; Dekker, L.W.; Oostindie, K.; Ritsema, C.J.


    Many soils may be water repellent to some degree, challenging the common perception that soil water repellency is only an interesting aberration. When dry, water repellent soils resist or retard water infiltration into the soil matrix. Soil water repellency often leads to the development of unstable

  3. Organic pollutants and heavy metals in rainwater runoff and their fate in the unsaturated soil zone. Final report

    International Nuclear Information System (INIS)

    Grotehusmann, D.; Rohlfing, R.; Weyer, G.; Dittrich, D.; Gowik, P.; Pernak, P.


    This bibliographic study is part of the BMFT intergrated project ''Possibilitiis and limits of [ drainage in consederation of the soil and groundwater protection''. Subjects: Environmental relevance and general distribution of organic pollutants; organic pollutants in rain water, soil, and groundwater; fate of organic pollutants in soil; environmental relevance of heavy metals in soil, rain water, and runof; fate of heavy metals in the unsaturated soil rare. (orig./BBR) [de

  4. Soil variability and effectiveness of soil and water conservation in the Sahel.

    NARCIS (Netherlands)

    Hien, F.G.; Rietkerk, M.; Stroosnijder, L.


    Sahelian sylvopastoral lands often degrade into bare and crusted areas where regeneration of soil and vegetation is impossible in the short term unless soil and water conservation measures are implemented. Five combinations of tillage with and without mulch on three crust type/soil type combinations

  5. Drainage estimation to aquifer and water use irrigation efficiency in semi-arid zone for a long period of time (United States)

    Jiménez-Martínez, J.; Molinero-Huguet, J.; Candela, L.


    Water requirements for different crop types according to soil type and climate conditions play not only an important role in agricultural efficiency production, though also for water resources management and control of pollutants in drainage water. The key issue to attain these objectives is the irrigation efficiency. Application of computer codes for irrigation simulation constitutes a fast and inexpensive approach to study optimal agricultural management practices. To simulate daily water balance in the soil, vadose zone and aquifer the VisualBALAN V. 2.0 code was applied to an experimental area under irrigation characterized by its aridity. The test was carried out in three experimental plots for annual row crops (lettuce and melon), perennial vegetables (artichoke), and fruit trees (citrus) under common agricultural practices in open air for October 1999-September 2008. Drip irrigation was applied to crops production due to the scarcity of water resources and the need for water conservation. Water level change was monitored in the top unconfined aquifer for each experimental plot. Results of water balance modelling show a good agreement between observed and estimated water level values. For the study period, mean drainage obtained values were 343 mm, 261 mm and 205 mm for lettuce and melon, artichoke and citrus respectively. Assessment of water use efficiency was based on the IE indicator proposed by the ASCE Task Committee. For the modelled period, water use efficiency was estimated as 73, 71 and 78 % of the applied dose (irrigation + precipitation) for lettuce and melon, artichoke and citrus, respectively.

  6. Water, solute and heat transport in the soil: the Australian connection (United States)

    Knight, John


    The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.

  7. Integrated use of soil physical and water isotope methods for ecohydrological characterization of desertified areas (United States)

    Külls, Christoph; Nunes, Alice; Köbel-Batista, Melanie; Branquinho, Cristina; Bianconi, Nadja; Costantini, Eduardo


    marked decrease in water permeability at 0.04, 0.20, or 0.40 m depth. Soil isotope profiles indicated that percolation beneath the root zone and groundwater recharge ranges from 21.7 mm/y to 29.7 mm/y. The recharge rate was positively related to mean annual rainfall and soil organic matter, and interestingly, increased with aridity and desertification. The difference between mean annual rainfall and percolation was positively related to plant cover and in inverse proportion to the aridity index. Our results highlight the importance of combining different methods of site characterization by soil physics, soil water isotopes and soil water chemistry (chloride) with vegetation data, providing a more specific analysis of ecohydrological conditions and their relation to ecosystem functioning and recovery potential. The field protocol applied can provide relevant information for guiding restoration strategies. Costantini, E. A. C., Urbano, F., Aramini, G., Barbetti, R., Bellino, F., Bocci, M., & Tascone, F. (2009). Rationale and methods for compiling an atlas of desertification in Italy. Land Degradation & Development, 20(3), 261-276. Garvelmann, J., Külls, C., & Weiler, M. (2012). A porewater-based stable isotope approach for the investigation of subsurface hydrological processes. Hydrology and Earth System Sciences, 16(2), 631-640.

  8. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood


    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  9. Dielectric Relaxation of Bound Water versus Soil Matric Pressure

    NARCIS (Netherlands)

    Hilhorst, M.A.; Dirksen, C.; Kampers, F.W.H.; Feddes, R.A.


    The electrical permittivity of soil is a function of the water content, which facilitates water content measurements. The permittivity of soil is also a function of the frequency of the applied electric field. This frequency dependence can be described by the relationship between the dielectric

  10. Linkages between forest soils and water quality and quantity (United States)

    Daniel G. Neary; George G. Ice; C. Rhett Jackson


    The most sustainable and best quality fresh water sources in the world originate in forest ecosystems. The biological, chemical, and physical characteristics of forest soils are particularly well suited to delivering high quality water to streams, moderating stream hydrology, and providing diverse aquatic habitat. Forest soils feature litter layers and...

  11. Soil water use by Ceanothus velutinus and two grasses. (United States)

    W. Lopushinsky; G.O. Klock


    Seasonal trends of soil water content in plots of snowbrush (Ceanothus velutinus Dougl.), orchard grass (Dactylis glomerata L), and pinegrass (Calamagrostis rubes- cens Buckl.) and in bare plots were measured on a burned-over forest watershed in north-central Washington. A comparison of soil water contents at depths of 12, 24,...

  12. Estimation of soil water retention curve using fractal dimension ...

    African Journals Online (AJOL)

    The soil water retention curve (SWRC) is a fundamental hydraulic property majorly used to study flow transport in soils and calculate plant-available water. Since, direct measurement of SWRC is time-consuming and expensive, different models have been developed to estimate SWRC. In this study, a fractal-based model ...

  13. Characteristics of soil water retention curve at macro-scale

    Institute of Scientific and Technical Information of China (English)


    Scale adaptable hydrological models have attracted more and more attentions in the hydrological modeling research community, and the constitutive relationship at the macro-scale is one of the most important issues, upon which there are not enough research activities yet. Taking the constitutive relationships of soil water movement--soil water retention curve (SWRC) as an example, this study extends the definition of SWRC at the micro-scale to that at the macro-scale, and aided by Monte Carlo method we demonstrate that soil property and the spatial distribution of soil moisture will affect the features of SWRC greatly. Furthermore, we assume that the spatial distribution of soil moisture is the result of self-organization of climate, soil, ground water and soil water movement under the specific boundary conditions, and we also carry out numerical experiments of soil water movement at the vertical direction in order to explore the relationship between SWRC at the macro-scale and the combinations of climate, soil, and groundwater. The results show that SWRCs at the macro-scale and micro-scale presents totally different features, e.g., the essential hysteresis phenomenon which is exaggerated with increasing aridity index and rising groundwater table. Soil property plays an important role in the shape of SWRC which will even lead to a rectangular shape under drier conditions, and power function form of SWRC widely adopted in hydrological model might be revised for most situations at the macro-scale.

  14. Water Erosion in Different Slope Lengths on Bare Soil

    Directory of Open Access Journals (Sweden)

    Bárbara Bagio

    Full Text Available ABSTRACT Water erosion degrades the soil and contaminates the environment, and one influential factor on erosion is slope length. The aim of this study was to quantify losses of soil (SL and water (WL in a Humic Cambisol in a field experiment under natural rainfall conditions from July 4, 2014 to June 18, 2015 in individual events of 41 erosive rains in the Southern Plateau of Santa Catarina and to estimate soil losses through the USLE and RUSLE models. The treatments consisted of slope lengths of 11, 22, 33, and 44 m, with an average degree of slope of 8 %, on bare and uncropped soil that had been cultivated with corn prior to the study. At the end of the corn cycle, the stalk residue was removed from the surface, leaving the roots of the crop in the soil. Soil loss by water erosion is related linearly and positively to the increase in slope length in the span between 11 and 44 m. Soil losses were related to water losses and the Erosivity Index (EI30, while water losses were related to rain depth. Soil losses estimated by the USLE and RUSLE model showed lower values than the values observed experimentally in the field, especially the values estimated by the USLE. The values of factor L calculated for slope length of 11, 22, 33, and 44 m for the two versions (USLE and RUSLE of the soil loss prediction model showed satisfactory results in relation to the values of soil losses observed.

  15. 78 FR 23135 - Safety Zone; Blue Water Resort & Casino West Coast Nationals; Parker, AZ (United States)


    ...-AA00 Safety Zone; Blue Water Resort & Casino West Coast Nationals; Parker, AZ AGENCY: Coast Guard, DHS... Water Resort & Casino West Coast Nationals. This temporary safety zone is necessary to provide for the....). RPM Racing Enterprises is sponsoring the Blue Water Resort & Casino West Coast Nationals, which is...

  16. Soil water balance scenario studies using predicted soil hydraulic parameters

    NARCIS (Netherlands)

    Nemes, A.; Wösten, J.H.M.; Bouma, J.; Várallyay, G.


    Pedotransfer functions (PTFs) have become a topic drawing increasing interest within the field of soil and environmental research because they can provide important soil physical data at relatively low cost. Few studies, however, explore which contributions PTFs can make to land-use planning, in

  17. Soil Water Balance and Recharge Monitoring at the Hanford Site - FY09 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Saunders, Danielle L.; Strickland, Christopher E.; Waichler, Scott R.; Clayton, Ray E.


    Recharge provides the primary driving force for transporting contaminants from the vadose zone to underlying aquifer systems. Quantification of recharge rates is important for assessing contaminant transport and fate and for evaluating remediation alternatives. This report describes the status of soil water balance and recharge monitoring performed by Pacific Northwest National Laboratory at the Hanford Site for Fiscal Year 2009. Previously reported data for Fiscal Years 2004 - 2008 are updated with data collected in Fiscal Year 2009 and summarized.

  18. Intrinsic Problems In Determination Of Soil Texture In Calcareous Soils Of Arid Zones

    Directory of Open Access Journals (Sweden)

    Mozna A. Ahmed


    Full Text Available This study aimed at studying the effect of removal of CaCO3 on the texture of the soil profile and that of the control section in some Aridisols of the Sudan. Sixty soil profiles were sampled from Shendi area latitude1636 and longitude 33 48 River Nile State Sudan. These soils were analyzed for CaCO3 and 20 of these profiles were found to be of relatively appreciable calcareousness and were therefore selected for this study. The following three weighted soil textures were determined 1 before any removal of the CaCO3 Texture1 2 after the removal of CaCO3 Texture2 3 after amending the texture by adding the clay sized CaCO3 to the silt fraction Texture 3. Statistical analysis revealed significant differences among soil separates in the three textures except between clay of T2 and clay of T3 and among sand fractions in the three textures. That was not unexpected because the first texture included both mineral separates plus their equivalent size of CaCO3 the second texture included only the mineral separates in complete absence of CaCO3 while texture 3 was an amended texture. The change in the textural class amounted to 72 of the profiles. Statistical analysis in the weighted texture of the control section revealed that this texture was not affected except in two profiles. That could be attributed to the fact that the clay content of the soils of the study area did not fall at or near the boundary between any two major textural classes used in the Soil Taxonomy. The size of the CaCO3 was found in the order of clay size silt size sand size.

  19. Soil water content drives spatiotemporal patterns of CO2 and N2O emissions from a Mediterranean riparian forest soil

    Directory of Open Access Journals (Sweden)

    S. Poblador


    Full Text Available Riparian zones play a fundamental role in regulating the amount of carbon (C and nitrogen (N that is exported from catchments. However, C and N removal via soil gaseous pathways can influence local budgets of greenhouse gas (GHG emissions and contribute to climate change. Over a year, we quantified soil effluxes of carbon dioxide (CO2 and nitrous oxide (N2O from a Mediterranean riparian forest in order to understand the role of these ecosystems on catchment GHG emissions. In addition, we evaluated the main soil microbial processes that produce GHG (mineralization, nitrification, and denitrification and how changes in soil properties can modify the GHG production over time and space. Riparian soils emitted larger amounts of CO2 (1.2–10 g C m−2 d−1 than N2O (0.001–0.2 mg N m−2 d−1 to the atmosphere attributed to high respiration and low denitrification rates. Both CO2 and N2O emissions showed a marked (but antagonistic spatial gradient as a result of variations in soil water content across the riparian zone. Deep groundwater tables fueled large soil CO2 effluxes near the hillslope, while N2O emissions were higher in the wet zones adjacent to the stream channel. However, both CO2 and N2O emissions peaked after spring rewetting events, when optimal conditions of soil water content, temperature, and N availability favor microbial respiration, nitrification, and denitrification. Overall, our results highlight the role of water availability on riparian soil biogeochemistry and GHG emissions and suggest that climate change alterations in hydrologic regimes can affect the microbial processes that produce GHG as well as the contribution of these systems to regional and global biogeochemical cycles.

  20. Complexation humic substances of soils with metal ions as the main way migration of matals from soil to water (United States)

    Dinu, Marina


    Organic matter (OM) of natural waters can bind with the ions metals (IM) entering the system, thus reducing their toxic properties. OM in water consists predominantly (up to 80%) of humic acids (HA), represented by highmolecular, dyed, polyfunctional compounds. The natural-climatic zones feature various ratios of fulvic (FA) and humic acids. An important specific feature of metals as contamination elements is the fact that when they occur in the environment, their potential toxicity and bioavailability depend significantly on their speciation. In recent years, lakes have been continuously enriched in hazardous elements such as Pb, Cd, Al, and Cr on a global (regional) basis. The most important organic ligands are humic matter (HM) washed out from soils in water and metals occur in natural waters as free ions, simple complexes with inorganic and organic ligands, and mineral and organic particles of molecules and ions sorbed on the surface. The occurrence of soluble metal forms in natural waters depends on the presence of organic and inorganic anions. However, direct determinations are rather difficult. The goal was the calculation and analysis of the forms of metals in the system catchment basin, based on the chemical composition of the water body and the structural features of soil humic substances (HS).We used the following analytical techniques - leaching of humic substances from soil and sample preparation (Orlov DS, 1985), the functional characteristics of humic substances - spectral analysis methods, the definition of conditional stability constants of complexes - electrochemical methods of analysis. Our results show thet HAs of selected soil types are different in functions, and these differences effect substantially the complexing process. When analyzing the results obtained in the course of spectrometric investigation of HMs in selected soil types, we determined the following main HA characteristics: (1) predominance of oxygen bearing groups in HM of the

  1. Combining different frequencies for electrical heating of saturated and unsaturated soil zones

    Energy Technology Data Exchange (ETDEWEB)

    Roland, U.; Holzer, F.; Kopinke, F.D. [Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Leipzig (Germany)


    In situ electrical heating of soil was studied applying different frequencies: low-frequency energy for resistive heating and radio-frequency energy for dielectric heating. Steep temperature gradients were observed for each heating mode under the condition of the coexistence of saturated and unsaturated soil zones. By combining the two heating modes, this undesired effect can be avoided, thus allowing efficient soil remediation especially when organic phases are accumulated at the capillary fringe. A parallel application of both frequencies was demonstrated as the most suitable method to reduce temperature gradients. By using electronic filters, both electric fields can be established by only one electrode array. This innovative concept is especially applicable for optimizing thermal remediation of light non-aqueous phase liquid contaminations or realizing thermally-enhanced electrokinetic removal of heavy metals. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Integration of ground-water and vadose-zone geochemistry to investigate hydrochemical evolution

    International Nuclear Information System (INIS)

    Fisher, R.S.; Mullican, W.F.


    This paper summarizes the results of an extensive groundwater-sampling program conducted in the Hueco Bolson and Diablo Plateau area of West Texas. The origin, hydrochemical evolution, and age of groundwater in arid lands of Trans-Pecos Texas were investigated by combining mineralogic analyses of soils and aquifer matrix, chemical analyses of readily soluble materials in soils and water extracted from the thick, unsaturated zone, and chemical and isotopic analyses of groundwater from three principal aquifers, the Diablo Plateau, Hueco Bolson, and Rio Grande alluvial aquifers. Repeated groundwater sampling over a 3-year period and quarterly sampling of selected wells revealed no significant short-term chemical or isotopic variability. Groundwater ages range from recent to nearly 28,000 years; the distribution of ages reflects relative permeability (transmissivity) of the aquifers. Most groundwaters evolve from calcium-bicarbonate to sodium-sulfate types because of carbonate and sulfate mineral dissolution coupled with exchange of aqueous calcium and magnesium for sodium on clay minerals. Water in the Rio Grande alluvial aquifer evolved to a sodium-chloride type as a result of extensive evapotranspiration on irrigated fields. The appendices list detailed results of field measurements of temperature, pH, Eh, dissolved oxygen, and major ion concentrations

  3. Patterns of zone management uncertainty in cotton using tarnished plant bug distributions, NDVI, soil EC, yield and thermal imagery (United States)

    Management zones for various crops have been delineated using NDVI (Normalized Difference Vegetation Index), apparent bulk soil electrical conductivity (ECa - Veris), and yield data; however, estimations of uncertainty for these data layers are equally important considerations. The objective of this...

  4. Shipping Fairways, Lanes, and Zones for US waters (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Various shipping zones delineate activities and regulations for marine vessel traffic. Traffic lanes define specific traffic flow, while traffic separation zones...

  5. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. (United States)

    Seleiman, Mahmoud F; Kheir, Ahmed M S


    Soil salinity and atmosphere temperature change have negative impacts on crop productivity and its quality and can pose a significant risk to soil properties in semi-arid regions. We conducted two field experiments in North (first zone) and South (second zone) of Egypt to investigate the effects of soil bagasse ash (10 ton ha -1 ), foliar thiourea (240 g ha -1 ) and their combination in comparison to the control treatment on saline soil properties and productivity and quality traits of wheat. All studied treatments were received the recommended rate of N, P and K fertilizations. Combination of soil bagasse ash and foliar thiourea application resulted in a significant improvement of most studied soil properties (i.e. EC, compaction, hydraulic conductivity, OM and available P, K, N contents) after harvest in comparison to other treatments in both of zones. Also, it enhanced growth and grain yield of wheat in terms of photosynthesis related attributes and yield components. Moreover, combination of soil bagasse ash and foliar thiourea application resulted in superior grain quality traits in terms of carbohydrate, fibre, protein and ash contents than separated application of soil bagasse ash, foliar thiourea or even control treatment. In conclusion, combination of soil bagasse ash and foliar thiourea application can be used as suitable option to enhance plant nutrition, wheat productivity and improve wheat grain quality and soil traits in saline soil as well as can alleviate heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. In-situ hydrodynamic characterization of a soil by means of an infiltration experiment. Application to a sandy soil in the central zone of Senegal

    International Nuclear Information System (INIS)

    Haverkamp, R.; Hamon, G.; Vauclin, M.; Vachaud, G.


    A new method is presented for predicting the hydraulic conductivity curve of an unsaturated soil from the relation between effective pressure and water content and the law of cumulative infiltration. With this method, which is based on the conceptual model proposed by Mualem (1976), it is possible to determine the parameter n as a function of the type of soil by fitting the cumulative infiltration law obtained numerically by solution of the Richards equation to that obtained experimentally. This approach is tested on experimental results obtained using the internal drainage method on sandy soil in the Central Zone of Senegal. It is shown that the moisture profiles calculated with the aid of the predicted hydraulic conductivity curve are in very good agreement with the measured profiles. This method seems well suited for studying the spatial variability of hydrodynamic characteristics since it is simple to set up and precise, and a large number of experiments can be performed in a short space of time. (author)

  7. Evaluating the Performance of a Surface Barrier on Reducing Soil-Water Flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.; Clayton, Ray E.


    One of the most common effective techniques for contaminant remediation in the vadose zone is to use a surface barrier to reduce or eliminate soil-water flow to reduce the contaminant flux to the underlying groundwater. Confirming the reduction of the soil-water flux rate is challenging because of the difficulty of determining the very low soil-water flux beneath the barrier. We propose a hydraulic-conductivity factor, fK, as a conservative indicator for quantifying the reduction of soil-water flow. The factor can be calculated using the measured soil-water content or pressure but does not require the knowledge of the saturated hydraulic conductivity or the hydraulic gradient. The formulas were tested by comparing with changes in hydraulic conductivity, K, from a drainage experiment. The pressure-based formula was further applied to evaluate the performance of the interim surface barrier at T Tank Farm on Hanford Site. Three years after barrier emplacement, the hydraulic conductivity decreased by a factor between 3.8 and 13.0 at the 1-, 2- and 5-m depths. The difference between the conductivity-reduction factor and the flux-rate-reduction factor, fq, was quantified with a numerical simulation. With the calculated fK, the numerically determined fK/fq ratio, and the assumed pre-barrier soil-water flux rate of 100 mm yr-1, the estimated soil-water flux rate 3 years after barrier emplacement was no more than 8.5 mm yr-1 at or above the 5-m depth.

  8. Large zero-tension plate lysimeters for soil water and solute collection in undisturbed soils

    Directory of Open Access Journals (Sweden)

    A. Peters


    Full Text Available Water collection from undisturbed unsaturated soils to estimate in situ water and solute fluxes in the field is a challenge, in particular if soils are heterogeneous. Large sampling devices are required if preferential flow paths are present. We present a modular plate system that allows installation of large zero-tension lysimeter plates under undisturbed soils in the field. To investigate the influence of the lysimeter on the water flow field in the soil, a numerical 2-D simulation study was conducted for homogeneous soils with uni- and bimodal pore-size distributions and stochastic Miller-Miller heterogeneity. The collection efficiency was found to be highly dependent on the hydraulic functions, infiltration rate, and lysimeter size, and was furthermore affected by the degree of heterogeneity. In homogeneous soils with high saturated conductivities the devices perform poorly and even large lysimeters (width 250 cm can be bypassed by the soil water. Heterogeneities of soil hydraulic properties result into a network of flow channels that enhance the sampling efficiency of the lysimeter plates. Solute breakthrough into zero-tension lysimeter occurs slightly retarded as compared to the free soil, but concentrations in the collected water are similar to the mean flux concentration in the undisturbed soil. To validate the results from the numerical study, a dual tracer study with seven lysimeters of 1.25×1.25 m area was conducted in the field. Three lysimeters were installed underneath a 1.2 m filling of contaminated silty sand, the others deeper in the undisturbed soil. The lysimeters directly underneath the filled soil material collected water with a collection efficiency of 45%. The deeper lysimeters did not collect any water. The arrival of the tracers showed that almost all collected water came from preferential flow paths.

  9. Characterization of field-measured soil-water properties

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Reichardt, K.; Wierenga, P.J.


    As part of a five-year co-ordinated research programme of the International Atomic Energy Agency, the Use of Radiation and Isotope Techniques in Studies of Soil-Water Regimes, soil physicists examined soil-water properties of one or two field sites in 11 different countries (Brazil, Belgium, Cyprus, Chile, Israel, Japan, Madagascar, Nigeria, Senegal, Syria and Thailand). The results indicate that the redistribution method yields values of soil-water properties that have a large degree of uncertainty, and that this uncertainty is not necessarily related to the kind of soil being analysed. Regardless of the fundamental cause of this uncertainty (experimental and computational errors versus natural soil variability), the conclusion is that further developments of field technology depend upon stochastic rather than deterministic concepts

  10. Measurement of dinitrogen fixation by Biological soil crust (BSC) from the Sahelian zone: an isotopic method. (United States)

    Ehrhardt, F.; Alavoine, G.; Bertrand, I.


    Amongst the described ecological roles of Biological Soil Crust, N fixation is of importance for soil fertility, especially in arid and semi-arid ecosystems with low inputs. In BSC, the quantification of N fixation fluxes using an indirect method is widespread, usually with the Acetylene Reduction Assay (ARA) which consists in measuring the nitrogenase activity through the process of acetylene reduction into ethylene. A converting factor, still discussed in the literature and greatly depending of the constitutive organisms of the BSC, is the tool used to convert the amount of reduced ethylene into quantitative fixed Nitrogen. The aim of this poster is to describe an isotopic direct method to quantify the atmospheric dinitrogen fixation fluxes in BSC, while minimizing the variability due to manipulations. Nine different BSC from the Sahelian zone were selected and placed in an incubation room at 28° C in dark and light conditions during three days, while moisture equivalent to pF=2 was regularly adjusted using the gravimetric method with needles and deionized water, in order to activate and reach a dynamic stability of their metabolisms. Subsequently, each crust was placed into a gas-tight glass vial for incubation with a reconstituted 15N2 enriched atmosphere (31.61 % atom 15N, while the proportion of each main gas present in the air was conserved, i.e. 78% N2, 21% O2 and 0.04% CO2). Principal difficulties are to guarantee the airtighness of the system, to avoid crust desiccation and to keep the crust metabolically active under stable conditions for six hours. Several tests were performed to determine the optimum time for 15N2 incubation. Three replicated control samples per crust were also stabilized for three days and then dried at 105° C, without any incubation with 15N2 enriched atmosphere. Total N and 15N were then measured in the grounded (80μm) and dried (105° C) crust, using a Flash EA elemental analyzer (Eurovector, Milan, Italy) coupled to a Delta

  11. CO2 response to rewetting of hydrophobic soils - Can soil water repellency inhibit the 'Birch effect'? (United States)

    Sanchez-Garcia, Carmen; Urbanek, Emilia; Doerr, Stefan


    Rewetting of dry soils is known to cause a short-term CO2 pulse commonly known as the 'Birch effect'. The displacement of CO2 with water during the process of wetting has been recognised as one of the sources of this pulse. The 'Birch effect' has been extensively observed in many soils, but some studies report a lack of such phenomenon, suggesting soil water repellency (SWR) as a potential cause. Water infiltration in water repellent soils can be severely restricted, causing overland flow or increased preferential flow, resulting in only a small proportion of soil pores being filled with water and therefore small gas-water replacement during wetting. Despite the suggestions of a different response of CO2 fluxes to wetting under hydrophobic conditions, this theory has never been tested. The aim of this study is to test the hypothesis that CO2 pulse does not occur during rewetting of water repellent soils. Dry homogeneous soils at water-repellent and wettable status have been rewetted with different amounts of water. CO2 flux as a response to wetting has been continuously measured with the CO2 flux analyser. Delays in infiltration and non-uniform heterogeneous water flow were observed in water repellent soils, causing an altered response in the CO2 pulse in comparison to typically observed 'Birch effect' in wettable systems. The main conclusion from the study is that water repellency not only affects water relations in soil, but has also an impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  12. Revegetation of the riparian zone of the Three Gorges Dam Reservoir leads to increased soil bacterial diversity. (United States)

    Ren, Qingshui; Li, Changxiao; Yang, Wenhang; Song, Hong; Ma, Peng; Wang, Chaoying; Schneider, Rebecca L; Morreale, Stephen J


    As one of the most active components in soil, bacteria can affect soil physicochemical properties, its biological characteristics, and even its quality and health. We characterized dynamics of the soil bacterial diversity in planted (with Taxodium distichum) and unplanted soil in the riparian zone of the Three Gorges Dam Reservoir (TGDR), in southwestern China, in order to accurately quantify the changes in long-term soil bacterial community structure after revegetation. Measurements were taken annually in situ in the TGDR over the course of 5 years, from 2012 to 2016. Soil chemical properties and bacterial diversity were analyzed in both the planted and unplanted soil. After revegetation, the soil chemical properties in planted soil were significantly different than in unplanted soil. The effects of treatment, time, and the interaction of both time and treatment had significant impacts on most diversity indices. Specifically, the bacterial community diversity indices in planted soil were significantly higher and more stable than that in unplanted soil. The correlation analyses indicated that the diversity indices correlated with the pH value, organic matter, and soil available nutrients. After revegetation in the riparian zone of the TGDR, the soil quality and health is closely related to the observed bacterial diversity, and a higher bacterial diversity avails the maintenance of soil functionality. Thus, more reforestation should be carried out in the riparian zone of the TGDR, so as to effectively mitigate the negative ecological impacts of the dam. Vegetating the reservoir banks with Taxodium distichum proved successful, but planting mixed stands of native tree species could promote even higher riparian soil biodiversity and improved levels of ecosystem functioning within the TGDR.

  13. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, ...

  14. Water erosion and soil water infiltration in different stages of corn development and tillage systems

    Directory of Open Access Journals (Sweden)

    Daniel F. de Carvalho


    Full Text Available ABSTRACTThis study evaluated soil and water losses, soil water infiltration and infiltration rate models in soil tillage systems and corn (Zea mays, L. development stages under simulated rainfall. The treatments were: cultivation along contour lines, cultivation down the slope and exposed soil. Soil losses and infiltration in each treatment were quantified for rains applied using a portable simulator, at 0, 30, 60 and 75 days after planting. Infiltration rates were estimated using the models of Kostiakov-Lewis, Horton and Philip. Based on the obtained results, the combination of effects between soil tillage system and corn development stages reduces soil and water losses. The contour tillage system promoted improvements in soil physical properties, favoring the reduction of erosion in 59.7% (water loss and 86.6% (soil loss at 75 days after planting, and the increase in the stable infiltration rate in 223.3%, compared with the exposed soil. Associated to soil cover, contour cultivation reduces soil and water losses, and the former is more influenced by management. Horton model is the most adequate to represent soil water infiltration rate under the evaluated conditions.

  15. Field evaluation of a direct push deployed sensor probe for vertical soil water content profiling (United States)

    Vienken, Thomas; Reboulet, Ed; Leven, Carsten; Kreck, Manuel; Zschornack, Ludwig; Dietrich, Peter


    Reliable high-resolution information about vertical variations in soil water content, i.e. total porosity in the saturated zone, is essential for flow and transport predictions within the subsurface. However, porosity measurements are often associated with high efforts and high uncertainties, e.g. caused by soil disturbance during sampling or sensor installation procedures. In hydrogeological practice, commonly applied tools for the investigation of vertical soil water content distribution include gravimetric laboratory analyses of soil samples and neutron probe measurements. A yet less well established technique is the use of direct push-deployed sensor probes. Each of these methods is associated with inherent advantages and limitations due to their underlying measurement principles and operation modes. The presented study describes results of a joint field evaluation of the individual methods under different depositional and hydrogeological conditions with special focus on the performance on the direct push-deployed water content profiler. Therefore, direct push-profiling results from three different test sites are compared with results obtained from gravimetric analysis of soil cores and neutron probe measurements. In direct comparison, the applied direct push-based sensor probe proved to be a suitable alternative for vertical soil water content profiling to neutron probe technology, and, in addition, proved to be advantageous over gravimetric analysis in terms vertical resolution and time efficiency. Results of this study identify application-specific limitations of the methods and thereby highlight the need for careful data evaluation, even though neutron probe measurements and gravimetric analyses of soil samples are well established techniques (see Vienken et al. 2013). Reference: Vienken, T., Reboulet, E., Leven, C., Kreck, M., Zschornack, L., Dietrich, P., 2013. Field comparison of selected methods for vertical soil water content profiling. Journal of

  16. Water and forests in the Mediterranean hot climate zone: a review based on a hydraulic interpretation of tree functioning

    Energy Technology Data Exchange (ETDEWEB)

    Soares David, T.; Assunção Pinto, C.; Nadezhdina, N.; Soares David, J.


    Aim of the study: Water scarcity is the main limitation to forest growth and tree survival in the Mediterranean hot climate zone. This paper reviews literature on the relations between water and forests in the region, and their implications on forest and water resources management. The analysis is based on a hydraulic interpretation of tree functioning. Area of the study: The review covers research carried out in the Mediterranean hot climate zone, put into perspective of wider/global research on the subject. The scales of analysis range from the tree to catchment levels. Material and Methods: For literature review we used Sc opus, Web of Science and Go ogle Scholar as bibliographic databases. Data from two Quercus suber sites in Portugal were used for illustrative purposes. Main results: We identify knowledge gaps and discuss options to better adapt forest management to climate change under a tree water use/availability perspective. Forest management is also discussed within the wider context of catchment water balance: water is a constraint for biomass production, but also for other human activities such as urban supply, industry and irrigated agriculture. Research highlights: Given the scarce and variable (in space and in time) water availability in the region, further research is needed on: mapping the spatial heterogeneity of water availability to trees; adjustment of tree density to local conditions; silviculture practices that do not damage soil properties or roots; irrigation of forest plantations in some specific areas; tree breeding. Also, a closer cooperation between forest and water managers is needed. (Author)

  17. Validation of a spatial–temporal soil water movement and plant water uptake model

    KAUST Repository



    © 2014, (publisher). All rights reserved. Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil parameters that are averaged over the soil profile. However, many applications require models to more accurately represent the soil–plant–atmosphere continuum, in particular, water movement and saturation within specific parts of the soil profile. In this paper a mathematical model for water uptake by a plant root system from unsaturated soil is presented. The model provides an estimate of the water content level within the soil at different depths, and the uptake of water by the root system. The model was validated using field data, which include hourly water content values at five different soil depths under a grass/herb cover over 1 year, to obtain a fully calibrated system for plant water uptake with respect to climate conditions. When compared quantitatively to a simple water balance model, the proposed model achieves a better fit to the experimental data due to its ability to vary water content with depth. To accurately model the water content in the soil profile, the soil water retention curve and saturated hydraulic conductivity needed to vary with depth.

  18. Surf Zone Hydrodynamics and its Utilization in Biotechnical Stabilization of Water Reservoir Banks

    Directory of Open Access Journals (Sweden)

    Petr Pelikán


    Full Text Available The water reservoir banks are eroded mainly by two factors. The first one is wave action (i.e. wave abrasion affecting the bank in direction from the reservoir. The second one is the influence of water flowing downward over the bank surface in direction from land into the reservoir (e.g. rainfall. The determination of regular altitudinal emplacement of proper designed particular biotechnical stabilization elements is the most important factor on which the right functionality of whole construction depends. Surf zone hydrodynamics solves the wave and water level changes inside the region extending from the wave breaking point to the limit of wave up-rush. The paper is focused on the utilization of piece of knowledge from a part of sea coast hydrodynamics and new approach in its application in the conditions of inland water bodies when designing the biotechnical stabilization elements along the shorelines. The “reinforced grass carpets” as a type of biotechnical method of bank stabilization are presented in the paper; whether the growth of grass root system is dependent on presence or absence of geomats in the soil structure and proceeding of their establishment on the shorelines.

  19. Measuring Low Concentrations of Liquid Water in Soil (United States)

    Buehler, Martin


    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  20. Monitoring changes in soil water content on adjustable soil slopes of a soil column using time domain reflectometry (TDR) techniques

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhd Tahir; Lakam Anak Mejus; Johari Abdul Latif


    Time Domain Reflectometry (TDR) is one of non-destructive methods and widely used in hydrology and soil science for accurate and flexible measurement of soil water content The TDR technique is based on measuring the dielectric constant of soil from the propagation of an electromagnetic pulse traveling along installed probe rods (parallel wire transmission line). An adjustable soil column i.e., 80 cm (L) x 35 cm (H) x 44 cm (W) instrumented with six pairs of vertically installed CS615 reflectometer probes (TDR rods) was developed and wetted under a laboratory simulated rainfall and their sub-surface moisture variations as the slope changes were monitored using TDR method Soil samples for gravimetric determination of water content, converted to a volume basis were taken at selected times and locations after the final TDR reading for every slope change made of the soil column Comparisons of water contents by TDR with those from grawmetric samples at different slopes of soil column were examined. The accuracy was found to be comparable and to some extent dependent upon the variability of the soil. This study also suggests that the response of slope (above 20 degrees) to the gradual increase in water content profile may cause soil saturation faster and increased overland flow (runoff especially on weak soil conditions

  1. Wetland Ecohydrology: stochastic description of water level fluctuations across the soil surface (United States)

    Tamea, S.; Muneepeerakul, R.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I.


    Wetlands provide a suite of social and ecological critical functions such as being habitats of disease-carrying vectors, providing buffer zones against hurricanes, controlling sediment transport, filtering nutrients and contaminants, and a repository of great biological diversity. More recently, wetlands have also been recognized as crucial for carbon storage in the context of global climate change. Despite such importance, quantitative approaches to many aspects of wetlands are far from adequate. Therefore, improving our quantitative understanding of wetlands is necessary to our ability to maintain, manage, and restore these invaluable environments. In wetlands, hydrologic factors and ecosystem processes interplay and generate unique characteristics and a delicate balance between biotic and abiotic elements. The main hydrologic driver of wetland ecosystems is the position of the water level that, being above or below ground, determines the submergence or exposure of soil. When the water level is above the soil surface, soil saturation and lack of oxygen causes hypoxia, anaerobic functioning of microorganisms and anoxic stress in plants, that might lead to the death of non-adapted organisms. When the water level lies below the soil surface, the ecosystem becomes groundwater-dependent, and pedological and physiological aspects play their role in the soil water balance. We propose here a quantitative description of wetland ecohydrology, through a stochastic process-based water balance, driven by a marked compound Poisson noise representing rainfall events. The model includes processes such as rainfall infiltration, evapotranspiration, capillary rise, and the contribution of external water bodies, which are quantified in a simple yet realistic way. The semi-analytical steady-state probability distributions of water level spanning across the soil surface are validated with data from the Everglades (Florida, USA). The model and its results allow for a quantitative

  2. A computational model of pile vertical vibration in saturated soil based on the radial disturbed zone of pile driving

    International Nuclear Information System (INIS)

    Li Qiang; Shi Qian; Wang Kuihua


    In this study, a simplified computational model of pile vertical vibration was developed. The model was based on the inhomogeneous radial disturbed zone of soil in the vicinity of a pile disturbed by pile driving. The model contained two regions: the disturbed zone, which was located in the immediate vicinity of the pile, and the undisturbed region, external to the disturbed zone. In the model, excess pore pressure in the disturbed zone caused by pile driving was assumed to follow a logarithmic distribution. The relationships of stress and strain in the disturbed zone were based on the principle of effective stress under plain strain conditions. The external zone was governed by the poroelastic theory proposed by Biot. With the use of a variable separation method, an analytical solution in the frequency domain was obtained. Furthermore, a semi-analytical solution was attained by employing a numerical convolution method. Numerical results from the frequency and time domain indicated that the equivalent radius of the disturbed zone and the ratio of excess pore pressure had a significant effect on pile dynamic response. However, actual interactions between pile and soil will be weaker due to the presence of the radial disturbed zone, which is caused by pile driving. Consequently, the ideal undisturbed model overestimates the interaction between pile and soil; however, the proposed model reflects the interaction of pile and soil better than the perfect contact model. Numerical results indicate that the model can account for the time effect of pile dynamic tests.

  3. Uranium migration in a podzol. The role of colloids in the non-saturated zone and the phreatic water: application to the Landes de Gascogne area

    International Nuclear Information System (INIS)

    Crancon, P.


    The non-saturated zone of a soil represents the interface between the atmosphere and the phreatic water. The confinement efficiency of the non-saturated zone above the phreatic water depends on the fastness of water transfers and on the type of pollutant transport mechanisms. Uranium (VI) can combine with humid acids to form very stable complexes. The aggregates of the absorbing complex are highly sensible to the variations of the ionic force of the environment. This sensitiveness can be at the origin of a strong remobilization of the colloid humic compounds of the soil, and of their migration towards the underground water. In this situation, the uranium complexed by humic compounds can rapidly migrate in the soil. The comparative reactive transport of the total uranium and its isotopes has been studied in a site, the Landes de Gascogne podzol (SW France), where metallic uranium has been sprinkled on the surface of the soil. The field study has been completed with an experimental column transport study using uranium isotopes tracer techniques. The field study shows that most of uranium is trapped in the very first cm of the soil. However, anomalous high uranium concentrations are observed in underground waters, more than 2 km away from the contaminated areas. This demonstrates that a fast and long distance transport process exists for uranium in the unsaturated zone. In the sandy soil of the study area, natural argillo-humic colloids migrate with the velocity of water but can be delayed when the ionic force of the underground waters increases. It is shown that uranium is strongly linked with the thin grain size fraction ( 233 U allows to discriminate between the uranium transported through the sand in a non-reactive way, and the uranium desorbed from the argillo-humic aggregates and the sand grain coatings. A fast reduction of the ionic force of the environment during the tests shows an important remobilization of uranium from the soil. When the complex relations

  4. Spatial prediction of near surface soil water retention functions using hydrogeophysics (United States)

    Gibson, J. P.; Franz, T. E.


    The hydrological community often turns to widely available spatial datasets such as SSURGO to characterize the spatial variability of soil across a landscape of interest. This has served as a reasonable first approximation when lacking localized soil data. However, previous work has shown that information loss within land surface models primarily stems from parameterization. Localized soil sampling is both expensive and time intense, and thus a need exists in connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with larger spatial datasets. In this work, we utilize 2 geophysical techniques; cosmic ray neutron probe and electromagnetic induction, to identify temporally stable soil moisture patterns. This is achieved by measuring numerous times over a range of wet to dry field conditions in order to apply an empirical orthogonal function. We then present measured water retention functions of shallow cores extracted within each temporally stable zone. Lastly, we use soil moisture patterns as a covariate to predict soil hydraulic properties in areas without measurement and validate using a leave-one-out cross validation analysis. Using these approaches to better constrain soil hydraulic property variability, we speculate that further research can better estimate hydrologic fluxes in areas of interest.

  5. Potential for ground-water contamination from movement of wastewater through the unsaturated zone, upper Mojave River Basin, California (United States)

    Umari, A.M.; Martin, P.M.; Schroeder, R.A.; Duell, L.F.; Fay, R.G.


    Septic-tank wastewater disposed in 30-foot-deep seepage pits (dry wells) at 46,000 residences is estimated to equal 18 percent of the natural recharge to the sole-source aquifer in the rapidly developing upper Mojave River Basin (Victor Valley) in the high desert northeast of Los Angeles. Vertical rates of movement of the wastewater wetting front through the unsaturated zone at three newly occupied residences ranged from 0.07 to 1.0 foot per day. These rates translate to traveltimes of several months to several years for the wastewater wetting front to reach the water table and imply that wastewater from many disposal systems already has reached the water table, which averages about 150 feet below land surface in the Victor Valley. As wastewater percolates from seepage pits into the adjacent unsaturated zone, the nitrogen present in reduced form is rapidly converted to nitrate. Analyses on soil-core extracts and soil moisturefrom suction lysimeters installed beneath the seepage pits at eight residences showed that nitrate concentrations and nitrate/ chloride ratios generally become lower with increasing depth. The intervals of greatest decline seemed to coincide with finer soil texture or were near the water table. Nitrate-reducing bacteria were tested for and found to be present in soil cores from two residences. Sparse nitrogen-15 data from suction lysimeters at one of these residences, where thenitrate concentration decreased by about one-half at a depth of 200 feet, indicate that the nitrate decline was accompanied by nitrogen-15 enrichment in the residual nitrate with an isotope-separation factor of about -10 permil. Despite the potential input of abundant nitrogen with the domestic wastewater recharge, nitrate concentrations in the area's ground water are generally low. The absence of high nitrate concentrations in the ground water is consistent with the existence of denitrification, a microbial nitrogen-removal mechanism, as wastewater moves through the

  6. Delineation of ground-water contamination using soil-gas analyses near Jackson, Tennessee (United States)

    Lee, R.W.


    An investigation of the ground-water resources near Jackson, West Tennessee, was conducted during 1988-89. The study included determination of the occurrence of contaminants in the shallow aquifer using soil-gas analyses in the unsaturated zone. Between 1980 and 1988, an underground fuel-storage tank leaked about 3,000 gallons of unleaded fuel to the water table about 4 feet below land surface. A survey of soil gas using a gas chromatograph equipped with a photoionization detector showed concentrations of volatile organic compounds greater than IO, 000 parts per million near the leak These compounds were detected in an area about 240 feet long and 110 feet wide extending west from the point source. The chromatograms provided two distinct 'fingerprints' of volatile organic compounds. The first revealed the presence of benzene, toluene, andxylenes, which are constituents of unleaded fuel, in addition to other volatile compounds, in soil gas in the area near the leak The second did not reveal any detectable benzene, toluene, or xylenes in the soil-gas samples, but showed the presence of other unidentified volatile organic compounds in soil gas north of the storage tank. The distribution of total concentrations of volatile organic compounds in the unsaturated zone indicated that a second plume about 200 feet long and 90 feet wide was present about 100 feet north of the storage tank The second plume could have been the result of previous activities at this site during the 1950's or earlier. Activities at the site are believed to have included storage of solvents used at the nearby railyard and flushing of tanks containing tar onto a gravel-covered parking area. The delineation of these plumes has shown that soil-gas analyses can be a useful technique for identifying areas of contamination with volatile organic compounds in shallow water-table aquifers and may have broad applications in similar situations where the water table is relatively close to the surface.

  7. Soil water diffusivity as a function of water content and time

    International Nuclear Information System (INIS)

    Guerrini, I.A.


    The soil-water diffusivity has been studied as a function of water content and time. From the idea of studying the horizontal movement of water in swelling soils, a simple formulation has been achieved which allows for the diffusivity, water content dependency and time dependency, to be estimated, not only of this kind of soil, but for any other soil as well. It was observed that the internal rearrangement of soil particles is a more important phenomenon than swelling, being responsible for time dependency. The method 2γ is utilized, which makes it possible to simultaneously determine the water content and density, point by point, in a soil column. The diffusivity data thus obtained are compared to those obtained when time dependency is not considered. Finally, a new soil parameter, α, is introduced and the values obtained agrees with the internal rearrangment assumption and time dependency for diffusivity (Author) [pt

  8. Evaluating the role of soil variability on groundwater pollution and recharge at regional scale by integrating a process-based vadose zone model in a stochastic approach (United States)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi


    Interpreting and predicting the evolution of water resources and soils at regional scale are continuing challenges for natural scientists. Examples include non-point source (NPS) pollution of soil and surface and subsurface water from agricultural chemicals and pathogens, as well as overexploitation of groundwater resources. The presence and build up of NPS pollutants may be harmful for both soil and groundwater resources. The accumulation of salts and trace elements in soils can significantly impact crop productivity, while loading of salts, nitrates, trace elements and pesticides into groundwater supplies can deteriorate a source of drinking and irrigation water. Consequently, predicting the spatial distribution and fate of NPS pollutants in soils at applicative scales is now considered crucial for maintaining the fragile balance between crop productivity and the negative environmental impacts of NPS pollutants, which is a basis of sustainable agriculture. Soil scientists and hydrologists are regularly asked to assist state agencies to understand these critical environmental issues. The most frequent inquiries are related to the development of mathematical models needed for analyzing the impacts of alternative land-use and best management use and management of soil and water resources. Different modelling solutions exist, mainly differing on the role of the vadose zone and its horizontal and vertical variability in the predictive models. The vadose zone (the region from the soil surface to the groundwater surface) is a complex physical, chemical and biological ecosystem that controls the passage of NPS pollutants from the soil surface where they have been deposited or accumulated due to agricultural activities, to groundwater. Physically based distributed hydrological models require the internal variability of the vadose zone be explored at a variety of scales. The equations describing fluxes and storage of water and solutes in the unsaturated zone used in these

  9. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India (United States)

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar


    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  10. A framework for sourcing of evaporation between saturated and unsaturated zone in bare soil condition


    Balugani, E.; Lubczynski, M.W.; Metselaar, Klaas


    Sourcing subsurface evaporation (Ess) into groundwater (Eg) and unsaturated zone (Eu) components has received little scientific attention so far, despite its importance in water management and agriculture. We propose a novel sourcing framework, with its implementation in dedicated post-processing software called SOURCE (used along with the HYDRUS1D model), to study evaporation sourcing dynamics, define quantitatively “shallow” and “deep” water table conditions and test the applicability of wa...

  11. Climate, soil, and vegetation controls on the temporal variability of vadose zone transport

    NARCIS (Netherlands)

    Harman, C.J.; Rao, P.S.C.; Basu, N.B.; McGrath, G.S.; Kumar, P.; Sivapalan, M.


    Temporal patterns of solute transport and transformation through the vadose zone are driven by the stochastic variability of water fluxes. This is determined by the hydrologic filtering of precipitation variability into infiltration, storage, drainage, and evapotranspiration. In this work we develop

  12. A framework for sourcing of evaporation between saturated and unsaturated zone in bare soil condition

    NARCIS (Netherlands)

    Balugani, E.; Lubczynski, M.W.; Metselaar, Klaas


    Sourcing subsurface evaporation (Ess) into groundwater (Eg) and unsaturated zone (Eu) components has received little scientific attention so far, despite its importance in water management and agriculture. We propose a novel sourcing framework, with its

  13. A framework for sourcing of evaporation between saturated and unsaturated zone in bare soil condition

    NARCIS (Netherlands)

    Balugani, E.; Lubczynski, M.; Metselaar, K.A.


    Sourcing subsurface evaporation (Ess) into groundwater (Eg) and unsaturated zone (Eu) components has received little scientific attention so far, despite its importance in water management and agriculture. We propose a novel sourcing framework, with its implementation in dedicated post-processing

  14. Effects of soil water and heat relationship under various snow cover during freezing-thawing periods in Songnen Plain, China. (United States)

    Fu, Qiang; Hou, Renjie; Li, Tianxiao; Jiang, Ruiqi; Yan, Peiru; Ma, Ziao; Zhou, Zhaoqiang


    In this study, the spatial variations of soil water and heat under bare land (BL), natural snow (NS), compacted snow (CS) and thick snow (TS) treatments were analyzed. The relationship curve between soil temperature and water content conforms to the exponential filtering model, by means of the functional form of the model, it was defined as soil water and heat relation function model. On this basis, soil water and heat function models of 10, 20, 40, 60, 100, and 140 cm were established. Finally, a spatial variation law of the relationship effect was described based on analysising of the differences between the predicted and measured results. During freezing period, the effects of external factors on soil were hindered by snow cover. As the snow increased, the accuracy of the function model gradually improved. During melting period, infiltration by snowmelt affected the relationship between the soil temperature and moisture. With the increasing of snow, the accuracy of the function models gradually decreased. The relationship effects of soil water and heat increased with increasing depth within the frozen zone. In contrast, below the frozen layer, the relationship of soil water and heat was weaker, and the function models were less accurate.

  15. Soil macrofauna community structure along a gradient of land use intensification in the humid forest zone of southern Cameroon.

    NARCIS (Netherlands)

    Madong à Birang,


    The impact of land use systems on soil macrofauna community structures is described as well as their relationships with the vegetation and soil parameters in the humid forest zone of southernCameroon

  16. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Ahmadi, Seyed Hamid; Lærke, Poul Erik


    Experiments were conducted in lysimeters with sandy soil under an automatic rain-out shelter to study the effects of subsurface drip irrigation treatments, full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD), on nitrogen (N) dynamics in the soil-plant system of potatoes...

  17. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements

    NARCIS (Netherlands)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Ardizzone, Joseph V.; Colliander, Andreas; Conaty, Austin; Crow, Wade; Jackson, Thomas J.; Jones, Lucas A.; Kimball, John S.; Koster, Randal D.; Mahanama, Sarith P.; Smith, Edmond B.; Berg, Aaron; Bircher, Simone; Bosch, David; Caldwell, Todd G.; Cosh, Michael; Holifield Collins, Chandra D.; Jensen, Karsten H.; Livingston, Stan; Lopez-baeza, Ernesto; Martínez-fernández, José; Mcnairn, Heather; Moghaddam, Mahta; Pacheco, Anna; Pellarin, Thierry; Prueger, John; Rowlandson, Tracy; Seyfried, Mark; Starks, Patrick; Su, Bob; Thibeault, Marc; Van Der Velde, Rogier; Walker, Jeffrey; Wu, Xiaoling; Zeng, Yijian


    The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present

  18. Root growth and hydraulic conductivity of southern pine seedlings in response to soil temperature and water availability after planting (United States)

    Mary Anne Sword Sayer; John C. Brissette; James P. Barnett


    Comparison of the root system growth and water transport of southern pine species after planting in different root-zone environments is needed to guide decisions regarding when, and what species to plant. Evaluation of how seed source affects root system responses to soil conditions will allow seed sources to be matched to planting conditions. The root growth and...

  19. Ground penetrating radar for determining volumetric soil water content ; results of comparative measurements at two test sites

    NARCIS (Netherlands)

    Overmeeren, R.A. van; Sariowan, S.V.; Gehrels, J.C.


    Ground penetrating radar (GPR) can provide information on the soil water content of the unsaturated zone in sandy deposits via measurements from the surface, and so avoids drilling. Proof of this was found from measurements of radar wave velocities carried out ten times over 13 months at two test

  20. Soil-atmosphere trace gas exchange in semiarid and arid zones. (United States)

    Galbally, Ian E; Kirstine, Wayne V; Meyer, C P Mick; Wang, Ying Ping


    A review is presented on trace gas exchange of CH4, CO, N2O, and NOx arising from agriculture and natural sources in the world's semiarid and arid zones due to soil processes. These gases are important contributors to the radiative forcing and the chemistry of the atmosphere. Quantitative information is summarized from the available studies. Between 5 and 40% of the global soil-atmosphere exchange for these gases (CH4, CO, N2O, and NOx) may occur in semiarid and arid zones, but for each of these gases there are fewer than a dozen studies to support the individual estimates, and these are from a limited number of locations. Significant differences in the biophysical and chemical processes controlling these trace gas exchanges are identified through the comparison of semiarid and arid zones with the moist temperate or wet/dry savanna land regions. Therefore, there is a poorly quantified understanding of the contribution of these regions to the global trace gas cycles and atmospheric chemistry. More importantly, there is a poor understanding of the feedback between these exchanges, global change, and regional land use and air pollution issues. A set of research issues is presented.

  1. Root distribution of paddy and wheat grown on differing soil and water conditions

    International Nuclear Information System (INIS)

    Jha, M.N.; Subbiah, B.V.


    Two varieties of paddy and one variety of wheat were grown on two soil texture types - paddy on silty clay loam and wheat on sandy loam. Wheat crop was grown on a well drained plot and given normally scheduled irrigation while paddy was given normal and restricted irrigation. The root distribution pattern of these crops was determined. Under normal irrigation, NP 130 showed greater proportion of roots in a soil zone of 16 cm depth and 16.5 cm lateral distance. In case of Padma, the trend was similar to NP 130. More roots were found in a soil zone of 8 cm depth and 22.5 cm lateral distance. Under restricted irrigation, NP 130 showed greater proportion upto 16 cm depth and 22.5 cm lateral distance. In case of Padma, larger proportion of roots was found to be in a soil zone of 8 cm depth and 16.5 cm lateral distance. The root distribution of wheat described almost cylindrical geometry with little overall lateral growth. Regardless of treatments, roots showed a tendency to describe a cylindrical geometry (of about 1.5 cm dia and 32 cm depth). Water stress does effect the root distribution pattern of crops. Other conditions remaining the same, the narrow root cylinder described by the crops of paddy and wheat could possibly be a genetically controlled behaviour. 32 P plant injection technique was used in the study. (author)

  2. Hot spots and hot moments in riparian zones: potential for improved water quality management (United States)

    Despite considerable heterogeneity over space and time, biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. Recently, these heterogeneous processes have been co...

  3. Measuring and understanding soil water repellency through novel interdisciplinary approaches (United States)

    Balshaw, Helen; Douglas, Peter; Doerr, Stefan; Davies, Matthew


    Food security and production is one of the key global issues faced by society. It has become evermore essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency - can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount and mixture, in a seemingly unpredictable way. Our research to date involves two new approaches for studying soil wetting. 1) We challenge the theoretical basis of current ideas on the measured water/soil contact angle measurements. Much past and current discussion involves Wenzel and Cassie-Baxter models to explain anomalously high contact angles for organics on soils, however here we propose that these anomalously high measured contact angles are a consequence of the measurement of a water drop on an irregular non-planar surface rather than the thermodynamic factors of the Cassie-Baxter and Wenzel models. In our analysis we have successfully used a much simpler geometric approach for non-flat surfaces such as soil. 2) Fluorescent and phosphorescent

  4. Farm scale application of EMI and FDR sensors to measuring and mapping soil water content (United States)

    Rallo, Giovanni; Provenzano, Giuseppe


    Soil water content (SWC) controls most water exchange processes within and between the soil-plants-atmosphere continuum and can therefore be considered as a practical variable for irrigation farmer choices. A better knowledge of spatial SWC patterns could improve farmer's awareness about critical crop water status conditions and enhance their capacity to characterize their behavior at the field or farm scale. However, accurate soil moisture measurement across spatial and temporal scales is still a challenging task and, specifically at intermediate spatial (0.1-100 ha) and temporal (minutes to days) scales, a data gap remains that limits our understanding over reliability of the SWC spatial measurements and its practical applicability in irrigation scheduling. In this work we compare the integrated EM38 (Geonics Ltd. Canada) response, collected at different sensor positions above ground to that obtained by integrating the depth profile of volumetric SWC measured with Diviner 2000 (Sentek) in conjunction with the depth response function of the EM38 when operated in both horizontal and vertical dipole configurations. On a 1.0-ha Olive grove site in Sicliy (Italy), 200 data points were collected before and after irrigation or precipitation events following a systematic sampling grid with focused measurements around the tree. Inside two different zone of the field, characterized from different soil physical properties, two Diviner 2000 access tube (1.2 m) were installed and used for the EM38 calibration. After calibration, the work aimed to propose the combined use of the FDR and EMI sensors to measuring and mapping root zone soil water content. We found strong correlations (R2 = 0.66) between Diviner 2000 SWC averaged to a depth of 1.2 m and ECa from an EM38 held in the vertical mode above the soil surface. The site-specific relationship between FDR-based SWC and ECa was linear for the purposes of estimating SWC over the explored range of ECa monitored at field levels

  5. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City]. (United States)

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu


    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy.

  6. Sugarcane productivity correlated with physical-chemical attributes to create soil management zone

    Directory of Open Access Journals (Sweden)

    Flávio Carlos Dalchiavon


    Full Text Available The socioeconomic importance of sugar cane in Brazil is unquestionable because it is the raw material for the production of ethanol and sugar. The accurate spatial intervention in the management of the crop, resulting zones of soil management, increases productivity as well as its agricultural yields. The spatial and Person's correlations between sugarcane attributes and physico-chemical attributes of a Typic Tropustalf were studied in the growing season of 2009, in Suzanápolis, State of São Paulo, Brazil (20°28'10'' S lat.; 50°49'20'' W long., in order to obtain the one that best correlates with agricultural productivity. Thus, the geostatistical grid with 120 sampling points was installed to soil and data collection in a plot of 14.6 ha with second crop sugarcane. Due to their substantial and excellent linear and spatial correlations with the productivity of the sugarcane, the population of plants and the organic matter content of the soil, by evidencing substantial correlations, linear and spatial, with the productivity of sugarcane, were indicators of management zones strongly attached to such productivity.

  7. Landuse legacies of old-field succession and soil structure at the Calhoun Criticl Zone Observatory in SC, USA. (United States)

    Brecheisen, Z. S.; Richter, D. D., Jr.; Callaham, M.; Carrera-Martinez, R.; Heine, P.


    The pre-colonial Southern Piedmont was an incredibly stable CZ with erosion rates between 0.35-3m/Myr on a 4th order interfluve. With soils and saprolite weathered up to 30m in total depth bedrock with multi-million year residence times under continual forest cover prior to widespread agricultural disturbance. With this biogeomorphic stability came time for soil macroporosity and soil structure to be established and maintained by the activities of soil fauna, plant root growth and death, and tree-fall tip-up events serving to continually mix and aerate the soil. Greatly accelerated surficial agricultural erosion (ca. 1750-1930) has fundamentally altered the Calhoun Critical Zone Observatory forest community dynamics aboveground and the soil structure, hydrology, and biogeochemistry belowground. The arrival of the plow to the Southern Piedmont marked the destruction of soil structure, macropore networks, and many of the macroinvertebrate soil engineers. This transformation came via forest clearing, soil tilling, compaction, and wholesale soil erosion, with the region having lost an estimated average of 18cm of soil across the landscape. In the temporal LULC progression from hardwood forests, to cultivated farms, to reforestation, secondary forest soil structure is expected to remain altered compared to the reference hardwood ecosystems. The research presented herein seeks to quantify CZ soil structure regeneration in old-field pine soil profiles' Ksat, aggregation, texture, macro-invertebrates, and direct measurements of topsoil porosity using X-ray computed tomography analysis on 15cm soil cores.

  8. Characteristics of soil under variations in clay, water saturation, and water flow rates, and the implications upon soil remediation

    International Nuclear Information System (INIS)

    Aikman, M.; Mirotchnik, K.; Kantzas, A.


    A potential remediation method for hydrocarbon contaminated soils was discussed. The new method was based on the use of proven and economic petroleum reservoir engineering methods for soil remediation. The methods that were applied included water and gas displacement methods together with horizontal boreholes as the flow inlet and outlets. This system could be used in the case of spills that seep beneath a plant or other immovable infrastructure which requires in-situ treatment schemes to decontaminate the soil. A study was conducted to characterize native soils and water samples from industrial plants in central Alberta and Sarnia, Ontario and to determine the variables that impact upon the flow conditions of synthetic test materials. The methods used to characterize the soils included X-Ray computed tomographic analysis, grain size and density measurements, and X-Ray diffraction. Clay content, initial water saturation, and water and gas flow rate were the variables that impacted on the flow conditions

  9. Normalization of water flow rate for external fire fighting of the buildings in settlements with zone water supply

    Directory of Open Access Journals (Sweden)

    Deryushev Leonid Georgievich


    Full Text Available In the article the requirements for fire safety assurance are justified for the objects, in which water is supplied with account for serial and parallel area zoning. In the process of zoning the district is segregated into such parts, for which head rate in any point of selection of water from network will not exceed 6 bar. In the current regulatory rules the requirements for the calculation of the costs of water points are stated, as well as in case of extinguishing fires at the sites with water-supply systems zones. It is recommended to analyze each zone of the system of water-supply separately, without interrelation with the common water feeders, water consumers and services of fire extinguishing. Such an approach to assign water discharge for fire extinguishing results in the decrease of fire safety of an object, deforms calculation technique of outside systems of water-supply of the similar-type objects located in different parts of the terrain. Taking the number of fires and water consumption for fire suppression by the number of residents in each zone, we thus underestimate the capacity of the pipeline system. It is offered to make changes in Norms and Standards in force on fire safety of settlements. The recommendations on regulation of the number of fires and water flow for fire fighting in residential objects with zoned systems of water-supply are formulated.

  10. Prediction of the Soil Water Characteristic from Soil Particle Volume Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus


    Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw......*-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  11. Water infiltration into homogeneous soils: a new concept

    International Nuclear Information System (INIS)

    Manfredni, S.


    A new concept for the analytical description of the process of water infiltration into homogeneous soils is presented. The concept uses a new definition of a 'gravitational diffusivity' which permits the generalization of both cases, horizontal and vertical infiltration. The efficiency of the new concept in describing the infiltration process, for short and intermediate times, is proved through experimental data obtained during water infiltration into air-dry soil columns. Its advantages are discussed comparing soil water contents predicted by the numerical solution proposed by PHILLIP (1955, 1957) [pt

  12. 77 FR 75017 - Security Zone; On the Waters in Kailua Bay, Oahu, HI (United States)


    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket Number USCG-2012-1038] RIN 1625-AA87 Security Zone; On the Waters in Kailua Bay, Oahu, HI AGENCY: Coast Guard, DHS. ACTION... to read as follows: Sec. 165.T14-215 Security Zone; On the Waters in Kailua Bay, Oahu, HI. (a...

  13. 76 FR 23708 - Safety Zone; Pierce County Department of Emergency Management Regional Water Exercise, East... (United States)


    ...-AA00 Safety Zone; Pierce County Department of Emergency Management Regional Water Exercise, East... the Regional Water Rescue Exercise. Basis and Purpose The Pierce County, Washington, Department of... to read as follows: Sec. 165.T13-0251 Safety Zone; Pierce County Department of Emergency Management...

  14. Towards Understanding Soil Forming in Santa Clotilde Critical Zone Observatory: Modelling Soil Mixing Processes in a Hillslope using Luminescence Techniques (United States)

    Sanchez, A. R.; Laguna, A.; Reimann, T.; Giráldez, J. V.; Peña, A.; Wallinga, J.; Vanwalleghem, T.


    Different geomorphological processes such as bioturbation and erosion-deposition intervene in soil formation and landscape evolution. The latter processes produce the alteration and degradation of the materials that compose the rocks. The degree to which the bedrock is weathered is estimated through the fraction of the bedrock which is mixing in the soil either vertically or laterally. This study presents an analytical solution for the diffusion-advection equation to quantify bioturbation and erosion-depositions rates in profiles along a catena. The model is calibrated with age-depth data obtained from profiles using the luminescence dating based on single grain Infrared Stimulated Luminescence (IRSL). Luminescence techniques contribute to a direct measurement of the bioturbation and erosion-deposition processes. Single-grain IRSL techniques is applied to feldspar minerals of fifteen samples which were collected from four soil profiles at different depths along a catena in Santa Clotilde Critical Zone Observatory, Cordoba province, SE Spain. A sensitivity analysis is studied to know the importance of the parameters in the analytical model. An uncertainty analysis is carried out to stablish the better fit of the parameters to the measured age-depth data. The results indicate a diffusion constant at 20 cm in depth of 47 (mm2/year) in the hill-base profile and 4.8 (mm2/year) in the hilltop profile. The model has high uncertainty in the estimation of erosion and deposition rates. This study reveals the potential of luminescence single-grain techniques to quantify pedoturbation processes.

  15. Performance of chromatographic systems to model soil-water sorption. (United States)

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí


    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The application of in situ air sparging as an innovative soils and ground water remediation technology

    International Nuclear Information System (INIS)

    Marley, M.C.; Hazebrouck, D.J.; Walsh, M.T.


    Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination. An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system. In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels

  17. Spatial analysis and hazard assessment on soil total nitrogen in the middle subtropical zone of China (United States)

    Lu, Peng; Lin, Wenpeng; Niu, Zheng; Su, Yirong; Wu, Jinshui


    Nitrogen (N) is one of the main factors affecting environmental pollution. In recent years, non-point source pollution and water body eutrophication have become increasing concerns for both scientists and the policy-makers. In order to assess the environmental hazard of soil total N pollution, a typical ecological unit was selected as the experimental site. This paper showed that Box-Cox transformation achieved normality in the data set, and dampened the effect of outliers. The best theoretical model of soil total N was a Gaussian model. Spatial variability of soil total N at NE60° and NE150° directions showed that it had a strip anisotropic structure. The ordinary kriging estimate of soil total N concentration was mapped. The spatial distribution pattern of soil total N in the direction of NE150° displayed a strip-shaped structure. Kriging standard deviations (KSD) provided valuable information that will increase the accuracy of total N mapping. The probability kriging method is useful to assess the hazard of N pollution by providing the conditional probability of N concentration exceeding the threshold value, where we found soil total N>2.0g/kg. The probability distribution of soil total N will be helpful to conduct hazard assessment, optimal fertilization, and develop management practices to control the non-point sources of N pollution.

  18. Non-destructive estimates of soil carbonic anhydrase activity and associated soil water oxygen isotope composition (United States)

    Jones, Sam P.; Ogée, Jérôme; Sauze, Joana; Wohl, Steven; Saavedra, Noelia; Fernández-Prado, Noelia; Maire, Juliette; Launois, Thomas; Bosc, Alexandre; Wingate, Lisa


    The contribution of photosynthesis and soil respiration to net land-atmosphere carbon dioxide (CO2) exchange can be estimated based on the differential influence of leaves and soils on budgets of the oxygen isotope composition (δ18O) of atmospheric CO2. To do so, the activity of carbonic anhydrases (CAs), a group of enzymes that catalyse the hydration of CO2 in soils and plants, needs to be understood. Measurements of soil CA activity typically involve the inversion of models describing the δ18O of CO2 fluxes to solve for the apparent, potentially catalysed, rate of CO2 hydration. This requires information about the δ18O of CO2 in isotopic equilibrium with soil water, typically obtained from destructive, depth-resolved sampling and extraction of soil water. In doing so, an assumption is made about the soil water pool that CO2 interacts with, which may bias estimates of CA activity if incorrect. Furthermore, this can represent a significant challenge in data collection given the potential for spatial and temporal variability in the δ18O of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by inferring the rate of CO2 hydration and the δ18O of soil water from the relationship between the δ18O of CO2 fluxes and the δ18O of CO2 at the soil surface measured at different ambient CO2 conditions. This approach was tested through laboratory incubations of air-dried soils that were re-wetted with three waters of different δ18O. Gas exchange measurements were made on these soils to estimate the rate of hydration and the δ18O of soil water, followed by soil water extraction to allow for comparison. Estimated rates of CO2 hydration were 6.8-14.6 times greater than the theoretical uncatalysed rate of hydration, indicating that CA were active in these soils. Importantly, these estimates were not significantly different among water treatments, suggesting

  19. Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan

    International Nuclear Information System (INIS)

    Yang, T.F.; Walia, V.; Chyi, L.L.; Fu, C.C.; Chen, C.-H.; Liu, T.K.; Song, S.R.; Lee, C.Y.; Lee, M.


    An automatic station for soil gas monitoring was set up on an active fault zone of SW Taiwan. After more than one year of continuous measurements, some spike-like anomalous high radon and thoron concentrations could be observed. A similar soil radon spectrum was also obtained from an independent monitoring station, which was only 100m away. These anomalous peaks usually occurred a few days or weeks before the earthquakes (M L >=4.5). This indicates that variations of both soil radon and thoron can serve as useful tools for earthquake surveillance, esp. at fault zones

  20. Field-measured, hourly soil water evaporation stages in relation to reference evapotranspiration rate and soil to air temperature ratio (United States)

    Soil water evaporation takes critical water supplies away from crops, especially in areas where both rainfall and irrigation water are limited. This study measured bare soil water evaporation from clay loam, silt loam, sandy loam, and fine sand soils. It found that on average almost half of the ir...

  1. Responses of seminal wheat seedling roots to soil water deficits. (United States)

    Trejo, Carlos; Else, Mark A; Atkinson, Christopher J


    The aims of this paper are to develop our understanding of the ways by which soil water deficits influence early wheat root growth responses, particularly how seminal roots respond to soil drying and the extent to which information on differences in soil water content are conveyed to the shoot and their impact on shoot behaviour. To achieve this, wheat seedlings have been grown, individually for around 25 days after germination in segmented soil columns within vertical plastic compartments. Roots were exposed to different soil volumetric moisture contents (SVMC) within the two compartments. Experiments where the soil in the lower compartment was allowed to dry to different extents, while the upper was maintained close to field capacity, showed that wheat seedlings allocated proportionally more root dry matter to the lower drier soil compartment. The total production of root, irrespective of the upper or lower SVMC, was similar and there were no detected effects on leaf growth rate or gas exchange. The response of seminal roots to proportionally increase their allocation of dry matter, to the drier soil was unexpected with such plasticity of roots system development traditionally linked to heterogeneous nutrient distribution than accessing soil water. In experiments where the upper soil compartment was allowed to dry, root growth slowed and leaf growth and gas exchange declined. Subsequent experiments used root growth rates to determine when seminal root tips first came into contact with drying soil, with the intentions of determining how the observed root growth rates were maintained as an explanation for the observed changes in root allocation. Measurements of seminal root ABA and ethylene from roots within the drying soil are interpreted with respect to what is known about the physiological control of root growth in drying soil. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil

    KAUST Repository

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio


    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils.From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls.Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  3. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil. (United States)

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio


    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils. From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls. Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  4. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil

    KAUST Repository

    Raddadi, Noura


    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils.From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls.Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  5. Response of Eucalyptus grandis trees to soil water deficits

    CSIR Research Space (South Africa)

    Dye, PJ


    Full Text Available , and sap flow rates revealed that prevention of soil water recharge resulted in only moderate drought stress. At Site 1, the trees abstracted water down to 8 m below the surface, whereas trees at Site 2 obtained most of their water from depths below 8 m. I...

  6. Use of neutron water and gamma density gauges in soil water studies

    International Nuclear Information System (INIS)

    Kirda, C.


    Irrigation practices should be improved to increase effective use of water and thereby increasing irrigated areas as well as securing soil productivity under irrigated agriculture. Under dry farming systems of rainfed agriculture, different tillage practices should be tested for improved soil water conservation and rain harvesting. The research work addressing the above mentioned problems requires methods to measure soil water content accurately and conveniently. In the following article, the methods which are currently used to measure field soil water content were discussed. 34 refs, 13 figs, 13 tabs

  7. Exponential increase of publications related to soil water repellency

    NARCIS (Netherlands)

    Dekker, L.W.; Oostindie, K.; Ritsema, C.J.


    Soil water repellency is much more wide-spread than formerly thought. During the last decades, it has been a topic of study for soil scientists and hydrologists in at least 21 States of the USA, in Canada, Australia, New Zealand, Mexico, Colombia, Chile, Congo, Nepal, India, Hong Kong, Taiwan,

  8. Water repellency of two forest soils after biochar addition (United States)

    D. S. Page-Dumroese; P. R. Robichaud; R. E. Brown; J. M. Tirocke


    Practical application of black carbon (biochar) to improve forest soil may be limited because biochar is hydrophobic. In a laboratory, we tested the water repellency of biochar application (mixed or surface applied) to two forest soils of varying texture (a granitic coarse-textured Inceptisol and an ash cap fine-textured Andisol) at four different application rates (0...

  9. The chemistry of salt-affected soils and waters (United States)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  10. Respiration testing for bioventing and biosparging remediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    Gray, A.L.; Brown, A.; Moore, B.J.; Payne, R.E.


    Respiration tests were performed to measure the effect of subsurface aeration on the biodegradation rates of petroleum hydrocarbon contamination in vadose zone soils (bioventing) and ground water (biosparging). The aerobic biodegradation of petroleum contamination is typically limited by the absence of oxygen in the soil and ground water. Therefore, the goal of these bioremediation technologies is to increase the oxygen concentration in the subsurface and thereby enhance the natural aerobic biodegradation of the organic contamination. One case study for biosparging bioremediation testing is presented. At this site atmospheric air was injected into the ground water to increase the dissolved oxygen concentration in the ground water surrounding a well, and to aerate the smear zone above the ground water table. Aeration flow rates of 3 to 8 cfm (0.09 to 0.23 m 3 /min) were sufficient to increase the dissolved oxygen concentration. Petroleum hydrocarbon biodegradation rates of 32 to 47 microg/l/hour were calculated based on measurements of dissolved oxygen concentration in ground water. The results of this test have demonstrated that biosparging enhances the biodegradation of petroleum hydrocarbons, but the results as they apply to remediation are not known. Two case studies for bioventing respiration testing are presented

  11. Modeling of soil-water-structure interaction

    DEFF Research Database (Denmark)

    Tang, Tian

    as the developed nonlinear soil displacements and stresses under monotonic and cyclic loading. With the FVM nonlinear coupled soil models as a basis, multiphysics modeling of wave-seabed-structure interaction is carried out. The computations are done in an open source code environment, OpenFOAM, where FVM models...


    Directory of Open Access Journals (Sweden)



    Full Text Available Soil is an important water compartment into a watershed scale, mainly due to its role in providing water to plants and to the influence of antecedent moisture on the runoff initiation. The aim of this research is to assess the permanence of water effectiveness in the soil under preserved-vegetation constraints in the Caatinga biome, in the semiarid northeastern Brazil. For this purpose, hourly soil moisture measurements were collected with TDR and analyzed between 2003 and 2010 for three soil-vegetation associations in the Aiuaba Experimental Basin. The results showed that in nine months per year soil moisture was below wilting point for two associations, whose soils are Chromic Luvisol and Haplic Lixisol (Abruptic. In the third association, where the shallow soil Lithic Leptosol prevails, water was found non-effective four months per year. A possible reason for the high water permanence in the shallowest soil is the percolation process, generating sub-surface flow, which barely occurs in the deeper soils. In situ observations indicates that the long period of soil moisture below the wilting point was not enough to avoid the blooming season of the Caatinga vegetation during the rainy periods. Indeed, after the beginning of each rainy season, there is a growth of dense green vegetation, regardless of the long period under water shortage.

  13. Soil water content evaluation considering time-invariant spatial pattern and space-variant temporal change (United States)

    Hu, W.; Si, B. C.


    Soil water content (SWC) varies in space and time. The objective of this study was to evaluate soil water content distribution using a statistical model. The model divides spatial SWC series into time-invariant spatial patterns, space-invariant temporal changes, and space- and time-dependent redistribution terms. The redistribution term is responsible for the temporal changes in spatial patterns of SWC. An empirical orthogonal function was used to separate the total variations of redistribution terms into the sum of the product of spatial structures (EOFs) and temporally-varying coefficients (ECs). Model performance was evaluated using SWC data of near-surface (0-0.2 m) and root-zone (0-1.0 m) from a Canadian Prairie landscape. Three significant EOFs were identified for redistribution term for both soil layers. EOF1 dominated the variations of redistribution terms and it resulted in more changes (recharge or discharge) in SWC at wetter locations. Depth to CaCO3 layer and organic carbon were the two most important controlling factors of EOF1, and together, they explained over 80% of the variations in EOF1. Weak correlation existed between either EOF2 or EOF3 and the observed factors. A reasonable prediction of SWC distribution was obtained with this model using cross validation. The model performed better in the root zone than in the near surface, and it outperformed conventional EOF method in case soil moisture deviated from the average conditions.

  14. The estimation of soil water fluxes using lysimeter data (United States)

    Wegehenkel, M.


    The validation of soil water balance models regarding soil water fluxes in the field is still a problem. This requires time series of measured model outputs. In our study, a soil water balance model was validated using lysimeter time series of measured model outputs. The soil water balance model used in our study was the Hydrus-1D-model. This model was tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin, Germany. One potential source of error in lysimeter experiments is preferential flow caused by an artificial channeling of water due to the occurrence of air space between the soil monolith and the inside wall of the lysimeters. To analyse such sources of errors, Hydrus-1D was applied with different modelling procedures. The first procedure consists of a general uncalibrated appli-cation of Hydrus-1D. The second one includes a calibration of soil hydraulic parameters via inverse modelling of different percolation events with Hydrus-1D. In the third procedure, the model DUALP_1D was applied with the optimized hydraulic parameter set to test the hy-pothesis of the existence of preferential flow paths in the lysimeters. The results of the different modelling procedures indicated that, in addition to a precise determination of the soil water retention functions, vegetation parameters such as rooting depth should also be taken into account. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.

  15. Catchment organisation, free energy dynamics and network control on critical zone water flows (United States)

    Zehe, E.; Ehret, U.; Kleidon, A.; Jackisch, C.; Scherer, U.; Blume, T.


    as that these flow structures organize and dominate flows of water, dissolved matter and sediments during rainfall driven conditions at various scales: - Surface connected vertical flow structures of anecic worm burrows or soil cracks organize and dominated vertical flows at the plot scale - this is usually referred to as preferential flow; - Rill networks at the soil surface organise and dominate hillslope scale overland flow response and sediment yields; - Subsurface pipe networks at the bedrock interface organize and dominate hillslope scale lateral subsurface water and tracer flows; - The river net organizes and dominates flows of water, dissolved matter and sediments to the catchment outlet and finally across continental gradients to the sea. Fundamental progress with respect to the parameterization of hydrological models, subscale flow networks and to understand the adaptation of hydro-geo ecosystems to change could be achieved by discovering principles that govern the organization of catchments flow networks in particular at least during steady state conditions. This insight has inspired various scientists to suggest principles for organization of ecosystems, landscapes and flow networks; as Bejans constructural law, Minimum Energy Expenditure , Maximum Entropy Production. In line with these studies we suggest that a thermodynamic/energetic treatment of the catchment is might be a key for understanding the underlying principles that govern organisation of flow and transport. Our approach is to employ a) physically based hydrological model that address at least all the relevant hydrological processes in the critical zone in a coupled way, behavioural representations of the observed organisation of flow structures and textural elements, that are consistent with observations in two well investigated research catchments and have been tested against distributed observations of soil moisture and catchment scale discharge; to simulate the full concert of hydrological

  16. Prediction of the soil water retention curve for structured soil from saturation to oven-dryness

    DEFF Research Database (Denmark)

    Karup, Dan; Møldrup, Per; Tuller, Markus


    . Independently measured SWRCs for 171 undisturbed soil samples with organic matter contents that ranged from 3 to 14% were used for model validation. The results indicate that consideration of the silt and organic matter fractions, in addition to the clay fraction, improved predictions for the dry-end SWRC......The soil water retention curve (SWRC) is the most fundamental soil hydraulic function required for modelling soil–plant–atmospheric water flow and transport processes. The SWRC is intimately linked to the distribution of the size of pores, the composition of the solid phase and the soil specific...... surface area. Detailed measurement of the SWRC is impractical in many cases because of the excessively long equilibration times inherent to most standard methods, especially for fine textured soil. Consequently, it is more efficient to predict the SWRCbased on easy-to-measure basic soil properties...

  17. Water Stress Assessment in Jharkhand State Using Soil Data and ...

    African Journals Online (AJOL)

    Michael Horsfall

    2 Department of Remote Sensing, Birla Institute of Technology, Mesra, Ranchi. .... technology. Remote sensing and GIS have proved to be an effective tool in soil and water resource assessment (Rinos; .... ral_hazard/landslides/nhls0007.

  18. Elevated carbon dioxide: impacts on soil and plant water relations

    National Research Council Canada - National Science Library

    Kirkham, M. B


    .... Focusing on this critical issue, Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations presents research conducted on field-grown sorghum, winter wheat, and rangeland plants under elevated CO2...

  19. Soil and Water Conservation Districts of New Mexico (United States)

    Earth Data Analysis Center, University of New Mexico — The New Mexico Soil and Water Conservation District (SWCD) shapefile includes forty-seven boudaries which cover each SWCD throughout the State.

  20. A stochastic analysis of the influence of soil and climatic variability on the estimate of pesticide ground water polution potential (United States)

    Jury, William A.; Gruber, Joachim


    Soil and climatic variability contribute in an unknown manner to the leaching of pesticides below the surface soil zone where degradation occurs at maximum levels. In this paper we couple the climatic variability model of Eagleson (1978) to the soil variability transport model of Jury (1982) to produce a probability density distribution of residual mass fraction (RMF) remaining after leaching below the surface degradation zone. Estimates of the RMF distribution are shown to be much more sensitive to soil variability than climatic variability, except when the residence time of the chemical is shorter than one year. When soil variability dominates climatic variability, the applied water distribution may be replaced by a constant average water application rate without serious error. Simulations of leaching are run with 10 pesticides in two climates and in two representative soil types with a range of soil variability. Variability in soil or climate act to produce a nonnegligible probability of survival of a small value of residual mass even for relatively immobile compounds which are predicted to degrade completely by a simple model which neglects variability. However, the simpler model may still be useful for screening pesticides for groundwater pollution potential if somewhat larger residual masses of a given compound are tolerated. Monte Carlo simulations of the RMF distribution agreed well with model predictions over a wide range of pesticide properties.

  1. An evaluation of soil water outlooks for winter wheat in south-eastern Australia (United States)

    Western, A. W.; Dassanayake, K. B.; Perera, K. C.; Alves, O.; Young, G.; Argent, R.


    Abstract: Soil moisture is a key limiting resource for rain-fed cropping in Australian broad-acre cropping zones. Seasonal rainfall and temperature outlooks are standard operational services offered by the Australian Bureau of Meteorology and are routinely used to support agricultural decisions. This presentation examines the performance of proposed soil water seasonal outlooks in the context of wheat cropping in south-eastern Australia (autumn planting, late spring harvest). We used weather ensembles simulated by the Predictive Ocean-Atmosphere Model for Australia (POAMA), as input to the Agricultural Production Simulator (APSIM) to construct ensemble soil water "outlooks" at twenty sites. Hindcasts were made over a 33 year period using the 33 POAMA ensemble mem