WorldWideScience

Sample records for zno vertical nanowire

  1. Vertically integrated nanogenerator based on ZnO nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Aifang; Li, Hongyu; Tang, Haoying; Liu, Tengjiao; Jiang, Peng [National Center for Nanoscience and Technology, No.11, Beiyitiao Zhongguancun, Beijing 100190 (China); Wang, Zhong Lin [National Center for Nanoscience and Technology, No.11, Beiyitiao Zhongguancun, Beijing 100190 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2011-04-15

    We report a technique to construct a vertically integrated nanogenerator (VI-NG) based on ZnO nanowire (NW) arrays. The VI-NG consists of nine single NGs connected mixed parallel and serial by a layer-by-layer stacking. For the single layer NG, the peak output voltage and current are 0.045 V and 2.5 nA, respectively. The VI-NG produces an output power density of 2.8 nW/cm{sup 2} with a peak output voltage of 0.15 V and output current of 7.2 nA. The vertical integration of the multi-NG provides a feasible technique for effectively converting mechanical energies to electricity from environment. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Synthesis of vertical arrays of ultra long ZnO nanowires on noncrystalline substrates

    International Nuclear Information System (INIS)

    Kwon, Bong Jun; Lee, Kyung Moon; Shin, Hae-Young; Kim, Jinwoong; Liu, Jinzhang; Yoon, Seokhyun; Lee, Soonil; Ahn, Y.H.; Park, Ji-Yong

    2012-01-01

    Highlights: ► Arrays of vertical ultra-long ZnO nanowires with lengths upto 300 μm. ► Controls of lengths and diameters of vertical arrays of ZnO nanowires on SiO 2 substrates. ► Luminescent and electrical properties of ZnO nanowires prepared with different growth conditions. - Abstract: Vertically aligned arrays of ultralong ZnO nanowires were synthesized on SiO 2 substrates with carbothermal vapor phase transport method with Au seeding layer. High density of vertically aligned ZnO nanowires with lengths from a few to ∼300 μm could be grown by controlling growth conditions. Supply of high concentration of Zn vapor and control of the ratio between Zn vapor and oxygen are found to have the most significant effects on the growth of long ZnO nanowires in the vapor–solid growth mechanism. The nanowires are of high crystalline quality as confirmed by various structural, compositional, and luminescent measurements. Luminescent and electrical properties of ZnO nanowires with different growth conditions were also investigated.

  3. Growth and photoluminescence of vertically aligned ZnO nanowires/nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Fang Fang; Zhao Dongxu; Li Binghui; Zhang Zhenzhong; Zhang Jiying; Shen Dezhen, E-mail: dxzhao2000@yahoo.com.c [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone Changchun 130033 (China)

    2009-07-07

    By controlling the incoming gas flow, vertically aligned ZnO nanowires and nanowalls have been successfully synthesized on a Si (1 0 0) substrate by the simple physical vapour deposition method. The growth process of the ZnO nanowalls was observed by adjusting the growth time. The probable growth mechanisms of the ZnO nanowires and nanowalls were discussed in detail. In contrast to the photoluminescence results of nanowires, an enhancement of the LO phonon signal was observed in ZnO nanowalls, which was attributed to an additional channel of electron-phonon coupling induced by the residual strains in the ZnO nanowalls during the coalescence growth process.

  4. Growth of Vertically Aligned ZnO Nanowire Arrays Using Bilayered Metal Catalysts

    Science.gov (United States)

    2012-01-01

    12] J. P. Liu, C. X. Guo, C. M. Li et al., “Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and...cited. Vertically aligned, high-density ZnO nanowires (NWs) were grown for the first time on c-plane sapphire using binary alloys of Ni/Au or Cu/Au as...deleterious to the ZnO NW array growth. Significant improvement of the Au adhesion on the substrate was noted, opening the potential for direct

  5. Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays

    KAUST Repository

    Wei, Yaguang

    2010-09-08

    This article presents an effective approach for patterned growth of vertically aligned ZnO nanowire (NW) arrays with high throughput and low cost at wafer scale without using cleanroom technology. Periodic hole patterns are generated using laser interference lithography on substrates coated with the photoresist SU-8. ZnO NWs are selectively grown through the holes via a low-temperature hydrothermal method without using a catalyst and with a superior control over orientation, location/density, and as-synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass. This combined approach demonstrates a novel method of manufacturing large-scale patterned one-dimensional nanostructures on various substrates for applications in energy harvesting, sensing, optoelectronics, and electronic devices. © 2010 American Chemical Society.

  6. Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Basudev; Batabyal, Sudip K.; Pal, Amlan J. [Indian Association for the Cultivation of Science, Department of Solid State Physics, Kolkata 700032 (India)

    2007-05-23

    We fabricate dye-sensitized solar cells (DSSC) using vertically oriented, high density, and crystalline array of ZnO nanowires, which can be a suitable alternative to titanium dioxide nanoparticle films. The vertical nanowires provide fast routes or channels for electron transport to the substrate electrode. As an alternative to conventional ruthenium complex, we introduce Rose Bengal dye, which acts as a photosensitizer in the dye-sensitized solar cells. The dye energetically matches the ZnO with usual KI-I{sub 2} redox couple for dye-sensitized solar cell applications. (author)

  7. Blue electroluminescence nanodevice prototype based on vertical ZnO nanowire/polymer film on silicon substrate

    International Nuclear Information System (INIS)

    He Ying; Wang Junan; Chen Xiaoban; Zhang Wenfei; Zeng Xuyu; Gu Qiuwen

    2010-01-01

    We present a polymer-complexing soft template technique to construct the ZnO-nanowire/polymer light emitting device prototype that exhibits blue electrically driven emission with a relatively low-threshold voltage at room temperature in ambient atmosphere, and the ZnO-nanowire-based LED's emission wavelength is easily tuned by controlling the applied-excitation voltage. The nearly vertically aligned ZnO-nanowires with polymer film were used as emissive layers in the devices. The method uses polymer as binder in the LED device and dispersion medium in the luminescence layer, which stabilizes the quasi-arrays of ZnO nanowires embedding in a thin polymer film on silicon substrate and passivates the surface of ZnO nanocrystals, to prevent the quenching of luminescence. Additionally, the measurements of electrical properties showed that ZnO-nanowire/polymer film could significantly improve the conductivity of the film, which could be attributed to an increase in both Hall mobility and carrier concentration. The results indicated that the novel technique is a low-cost process for ZnO-based UV or blue light emission and reduces the requirement for achieving robust p-doping of ZnO film. It suggests that such ZnO-nanowire/polymer-based LEDs will be suitable for the electro-optical application.

  8. Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays

    KAUST Repository

    Wei, Yaguang; Wu, Wenzhuo; Guo, Rui; Yuan, Dajun; Das, Suman; Wang, Zhong Lin

    2010-01-01

    -synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass

  9. Heteroepitaxial Patterned Growth of Vertically Aligned and Periodically Distributed ZnO Nanowires on GaN Using Laser Interference Ablation

    KAUST Repository

    Yuan, Dajun

    2010-08-23

    A simple two-step method of fabricating vertically aligned and periodically distributed ZnO nanowires on gallium nitride (GaN) substrates is described. The method combines laser interference ablation (LIA) and low temperature hydrothermal decomposition. The ZnO nanowires grow heteroepitaxially on unablated regions of GaN over areas spanning 1 cm2, with a high degree of control over size, orientation, uniformity, and periodicity. High resolution transmission electron microscopy and scanning electron microscopy are utilized to study the structural characteristics of the LIA-patterned GaN substrate in detail. These studies reveal the possible mechanism for the preferential, site-selective growth of the ZnO nanowires. The method demonstrates high application potential for wafer-scale integration into sensor arrays, piezoelectric devices, and optoelectronic devices. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    Science.gov (United States)

    Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo

    2013-02-05

    In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.

  11. Plasmonic Properties of Vertically Aligned Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Nanowires (NWs/Ag sheath composites were produced to investigate plasmonic coupling between vertically aligned NWs for surface-enhanced Raman scattering (SERS applications. In this investigation, two types of vertical NW arrays were studied; those of ZnO NWs grown on nanosphere lithography patterned sapphire substrate via vapor-liquid-solid (VLS mechanism and Si NW arrays produced by wet chemical etching. Both types of vertical NW arrays were coated with a thin layer of silver by electroless silver plating for SERS enhancement studies. The experimental results show extremely strong SERS signals due to plasmonic coupling between the NWs, which was verified by COMSOL electric field simulations. We also compared the SERS enhancement intensity of aligned and random ZnO NWs, indicating that the aligned NWs show much stronger and repeatable SERS signal than those grown in nonaligned geometries.

  12. Vertical nanowire architectures

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfl-Tempfli, M.; Piraux, L.

    2010-01-01

    Nanowires and statistics: A statistical process for reading ultradense arrays of nanostructured materials is presented (see image). The experimental realization is achieved through selective nanowire growth using porous alumina templates. The statistical patterning approach is found to provide ri...

  13. Growth of vertically aligned ZnO nanorods using textured ZnO films

    Directory of Open Access Journals (Sweden)

    Meléndrez Manuel

    2011-01-01

    Full Text Available Abstract A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100 substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.

  14. ZnO based nanowires grown by chemical vapour deposition for selective hydrogenation of acetylene alcohols

    NARCIS (Netherlands)

    Protasova, L.N.; Rebrov, E.; Choy, K.L.; Pung, S.Y.; Engels, V.; Cabaj, M.; Wheatley, A.E.H.; Schouten, J.C.

    2011-01-01

    Vertically aligned ZnO nanowires (NWs) with a length of 1.5–10 µm and a mean diameter of ca. 150 nm were grown by chemical vapour deposition onto a c-oriented ZnO seed layer which was deposited by atomic layer deposition on Si substrates. The substrates were then spin-coated with an ethanol solution

  15. Adsorption property of volatile molecules on ZnO nanowires ...

    Indian Academy of Sciences (India)

    7

    Keywords: ZnO; interaction; ammonia; band structure; density of states. 1. 2. 3 .... Virtual NanoLab [18] software was utilized to construct the ZnO nanowires with 24 Zn ..... But in reality, the ZnO NWs shows a better response (80.2) towards NH3.

  16. A generic approach for vertical integration of nanowires

    International Nuclear Information System (INIS)

    Latu-Romain, E; Gilet, P; Noel, P; Garcia, J; Ferret, P; Rosina, M; Feuillet, G; Levy, F; Chelnokov, A

    2008-01-01

    We report on the collective integration technology of vertically aligned nanowires (NWs). Si and ZnO NWs have been used in order to develop a generic technological process. Both mineral and organic planarizations of the as-grown nanowires have been achieved. Chemical vapour deposition (CVD) oxides, spin on glass (SOG), and polymer have been investigated as filling materials. Polishing and/or etching of the composite structures have been set up so as to obtain a suitable morphology for the top and bottom electrical contacts. Electrical and optical characterizations of the integrated NWs have been performed. Contacts ohmicity has been demonstrated and specific contact resistances have been reported. The photoconducting properties of polymer-integrated ZnO NWs have also been investigated in the UV-visible range through collective electrical contacts. A small increase of the resistivity in the ZnO NWs under sub-bandgap illumination has been observed and discussed. A comparison of the photoluminescence (PL) spectra at 300 K of the as-grown and SOG-integrated ZnO nanowires has shown no significant impact of the integration process on the crystal quality of the NWs

  17. A generic approach for vertical integration of nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Latu-Romain, E; Gilet, P; Noel, P; Garcia, J; Ferret, P; Rosina, M; Feuillet, G; Levy, F; Chelnokov, A [CEA-LETI, MINATEC, 17 rue des Martyrs, Grenoble (France)

    2008-08-27

    We report on the collective integration technology of vertically aligned nanowires (NWs). Si and ZnO NWs have been used in order to develop a generic technological process. Both mineral and organic planarizations of the as-grown nanowires have been achieved. Chemical vapour deposition (CVD) oxides, spin on glass (SOG), and polymer have been investigated as filling materials. Polishing and/or etching of the composite structures have been set up so as to obtain a suitable morphology for the top and bottom electrical contacts. Electrical and optical characterizations of the integrated NWs have been performed. Contacts ohmicity has been demonstrated and specific contact resistances have been reported. The photoconducting properties of polymer-integrated ZnO NWs have also been investigated in the UV-visible range through collective electrical contacts. A small increase of the resistivity in the ZnO NWs under sub-bandgap illumination has been observed and discussed. A comparison of the photoluminescence (PL) spectra at 300 K of the as-grown and SOG-integrated ZnO nanowires has shown no significant impact of the integration process on the crystal quality of the NWs.

  18. A generic approach for vertical integration of nanowires.

    Science.gov (United States)

    Latu-Romain, E; Gilet, P; Noel, P; Garcia, J; Ferret, P; Rosina, M; Feuillet, G; Lévy, F; Chelnokov, A

    2008-08-27

    We report on the collective integration technology of vertically aligned nanowires (NWs). Si and ZnO NWs have been used in order to develop a generic technological process. Both mineral and organic planarizations of the as-grown nanowires have been achieved. Chemical vapour deposition (CVD) oxides, spin on glass (SOG), and polymer have been investigated as filling materials. Polishing and/or etching of the composite structures have been set up so as to obtain a suitable morphology for the top and bottom electrical contacts. Electrical and optical characterizations of the integrated NWs have been performed. Contacts ohmicity has been demonstrated and specific contact resistances have been reported. The photoconducting properties of polymer-integrated ZnO NWs have also been investigated in the UV-visible range through collective electrical contacts. A small increase of the resistivity in the ZnO NWs under sub-bandgap illumination has been observed and discussed. A comparison of the photoluminescence (PL) spectra at 300 K of the as-grown and SOG-integrated ZnO nanowires has shown no significant impact of the integration process on the crystal quality of the NWs.

  19. Permanent bending and alignment of ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Borschel, Christian; Spindler, Susann; Oertel, Michael; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Lerose, Damiana [MPI fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle/Saale (Germany); Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Bochmann, Arne [Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Christiansen, Silke H. [Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); MPI fuer die Physik des Lichts, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Nietzsche, Sandor [Zentrum fuer Elektronenmikroskopie, Friedrich-Schiller-Universitaet Jena, Ziegelmuehlenweg 1, 07743 Jena (Germany)

    2011-07-01

    Ion beams can be used to bend or re-align nanowires permanently, after they have been grown. We have irradiated ZnO nanowires with ions of different species and energy, achieving bending and alignment in various directions. We study the bending of single nanowires as well as the simultaneous alignment of large ensembles of ZnO nanowires in detail. Computer simulations show that the bending is initiated by ion beam induced damage. Dislocations are identified to relax stresses and make the bending and alignment permanent and resistant against annealing procedures.

  20. High mobility ZnO nanowires for terahertz detection applications

    International Nuclear Information System (INIS)

    Liu, Huiqiang; Peng, Rufang; Chu, Shijin; Chu, Sheng

    2014-01-01

    An oxide nanowire material was utilized for terahertz detection purpose. High quality ZnO nanowires were synthesized and field-effect transistors were fabricated. Electrical transport measurements demonstrated the nanowire with good transfer characteristics and fairly high electron mobility. It is shown that ZnO nanowires can be used as building blocks for the realization of terahertz detectors based on a one-dimensional plasmon detection configuration. Clear terahertz wave (∼0.3 THz) induced photovoltages were obtained at room temperature with varying incidence intensities. Further analysis showed that the terahertz photoresponse is closely related to the high electron mobility of the ZnO nanowire sample, which suggests that oxide nanoelectronics may find useful terahertz applications.

  1. Power generation from base excitation of a Kevlar composite beam with ZnO nanowires

    Science.gov (United States)

    Malakooti, Mohammad H.; Hwang, Hyun-Sik; Sodano, Henry A.

    2015-04-01

    One-dimensional nanostructures such as nanowires, nanorods, and nanotubes with piezoelectric properties have gained interest in the fabrication of small scale power harvesting systems. However, the practical applications of the nanoscale materials in structures with true mechanical strengths have not yet been demonstrated. In this paper, piezoelectric ZnO nanowires are integrated into the fiber reinforced polymer composites serving as an active phase to convert the induced strain energy from ambient vibration into electrical energy. Arrays of ZnO nanowires are grown vertically aligned on aramid fibers through a low-cost hydrothermal process. The modified fabrics with ZnO nanowires whiskers are then placed between two carbon fabrics as the top and the bottom electrodes. Finally, vacuum resin transfer molding technique is utilized to fabricate these multiscale composites. The fabricated composites are subjected to a base excitation using a shaker to generate charge due to the direct piezoelectric effect of ZnO nanowires. Measuring the generated potential difference between the two electrodes showed the energy harvesting application of these multiscale composites in addition to their superior mechanical properties. These results propose a new generation of power harvesting systems with enhanced mechanical properties.

  2. Mechanical transfer of ZnO nanowires for a flexible and conformal piezotronic strain sensor

    Science.gov (United States)

    Jenkins, Kory; Yang, Rusen

    2017-07-01

    We demonstrate a truly conformal and flexible piezotronic strain sensor using zinc oxide (ZnO) nanowires. Well-aligned, vertical ZnO nanowires are grown by chemical vapor deposition on a silicon wafer with a hydrothermally grown ZnO seed layer. The nanowires are infiltrated with polydimethylsiloxane and mechanically transferred from the silicon substrate. Plasma etching exposes the top surface of the nanowires before deposition of a gold (Au) top electrode. The bottom electrode is formed by silver paint which also adheres the sensor to the measured structure. To demonstrate the sensor’s ability to conform to complex surfaces, a stepped shaft with a shoulder fillet is used. The sensor is attached to the shoulder fillet of the stepped shaft, conforming to both the circumference of the shaft, and the radius of the fillet. A periodic bending displacement is applied to the end of the shaft. The strain induces a piezoelectric potential in the ZnO nanowires which controls the barrier height and conductivity at the gold/ZnO interface, by what is known as the piezotronic effect. The conductivity change is measured for periodically applied strains. The nonlinear current-voltage (I-V) response of the device is due to the Schottky contact between the ZnO nanowires and gold electrode. The geometry of the stepped shaft corresponds to a known stress concentration factor, and the strain experienced by the shaft is estimated with a COMSOL FEA study. The conformal nature of the strain sensor makes it suitable for structural monitoring applications involving complex geometries and stress concentrators.

  3. Mechanical behavior enhancement of ZnO nanowire by embedding different nanowires

    Directory of Open Access Journals (Sweden)

    Ali Vazinishayan

    2018-06-01

    Full Text Available In this work, we employed commercial finite element modeling (FEM software package ABAQUS to analyze mechanical properties of ZnO nanowire before and after embedding with different kinds of nanowires, having different materials and cross-section models such as Au (circular, Ag (pentagonal and Si (rectangular using three point bending technique. The length and diameter of the ZnO nanowire were measured to be 12,280 nm and 103.2 nm, respectively. In addition, Au, Ag and Si nanowires were considered to have the length of 12,280 nm and the diameter of 27 nm. It was found that after embedding Si nanowire with rectangular cross-section into the ZnO nanowire, the distribution of Von Misses stresses criterion, displacement and strain were decreased than the other nanowires embedded. The highest stiffness, the elastic deformation and the high strength against brittle failure have been made by Si nanowire comparison to the Au and Ag nanowires, respectively. Keywords: Nanowires, Material effects, Mechanical properties, Brittle failure

  4. Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps

    International Nuclear Information System (INIS)

    Park, Woojin; Jo, Gunho; Hong, Woong-Ki; Yoon, Jongwon; Choe, Minhyeok; Ji, Yongsung; Kim, Geunjin; Kahng, Yung Ho; Lee, Kwanghee; Lee, Takhee; Lee, Sangchul; Wang, Deli

    2011-01-01

    We investigated the enhanced photoresponse of ZnO nanowire transistors that was introduced with surface-roughness-induced traps by a simple chemical treatment with isopropyl alcohol (IPA). The enhanced photoresponse of IPA-treated ZnO nanowire devices is attributed to an increase in adsorbed oxygen on IPA-induced surface traps. The results of this study revealed that IPA-treated ZnO nanowire devices displayed higher photocurrent gains and faster photoswitching speed than transistors containing unmodified ZnO nanowires. Thus, chemical treatment with IPA can be a useful method for improving the photoresponse of ZnO nanowire devices.

  5. Mechanical behavior enhancement of ZnO nanowire by embedding different nanowires

    Science.gov (United States)

    Vazinishayan, Ali; Yang, Shuming; Lambada, Dasaradha Rao; Wang, Yiming

    2018-06-01

    In this work, we employed commercial finite element modeling (FEM) software package ABAQUS to analyze mechanical properties of ZnO nanowire before and after embedding with different kinds of nanowires, having different materials and cross-section models such as Au (circular), Ag (pentagonal) and Si (rectangular) using three point bending technique. The length and diameter of the ZnO nanowire were measured to be 12,280 nm and 103.2 nm, respectively. In addition, Au, Ag and Si nanowires were considered to have the length of 12,280 nm and the diameter of 27 nm. It was found that after embedding Si nanowire with rectangular cross-section into the ZnO nanowire, the distribution of Von Misses stresses criterion, displacement and strain were decreased than the other nanowires embedded. The highest stiffness, the elastic deformation and the high strength against brittle failure have been made by Si nanowire comparison to the Au and Ag nanowires, respectively.

  6. CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Zhang, Ran; Luo, Qiu-Ping; Chen, Hong-Yan; Yu, Xiao-Yun; Kuang, Dai-Bin; Su, Cheng-Yong

    2012-04-23

    A CdS/CdSe composite shell is assembled onto the surface of ZnO nanowire arrays with a simple spin-coating-based successive ionic layer adsorption and reaction method. The as-prepared photoelectrode exhibit a high photocurrent density in photoelectrochemical cells and also generates good power conversion efficiency in quantum-dot-sensitized solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing

    Science.gov (United States)

    Chang, Yi-Kuei; Hong, Franklin Chau-Nan

    2009-05-01

    A method with the potential to fabricate large-area nanowire field-effect transistors (NW-FETs) was demonstrated in this study. Using a high-speed roller (20-80 cm min-1), transfer printing was successfully employed to transfer vertically aligned zinc oxide (ZnO) nanowires grown on a donor substrate to a polydimethylsiloxane (PDMS) stamp and then print the ordered ZnO nanowire arrays on the received substrate for the fabrication of NW-FETs. ZnO NW-FETs fabricated by this method exhibit high performances with a threshold voltage of around 0.25 V, a current on/off ratio as high as 105, a subthreshold slope of 360 mV/dec, and a field-effect mobility of around 90 cm2 V-1 s-1. The excellent device characteristics suggest that the roll-transfer printing technique, which is compatible with the roll-to-roll (R2R) process and operated in atmosphere, has a good potential for the high-speed fabrication of large-area nanowire transistors for flexible devices and flat panel displays.

  8. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing

    International Nuclear Information System (INIS)

    Chang, Y-K; Hong, Franklin Chau-Nan

    2009-01-01

    A method with the potential to fabricate large-area nanowire field-effect transistors (NW-FETs) was demonstrated in this study. Using a high-speed roller (20-80 cm min -1 ), transfer printing was successfully employed to transfer vertically aligned zinc oxide (ZnO) nanowires grown on a donor substrate to a polydimethylsiloxane (PDMS) stamp and then print the ordered ZnO nanowire arrays on the received substrate for the fabrication of NW-FETs. ZnO NW-FETs fabricated by this method exhibit high performances with a threshold voltage of around 0.25 V, a current on/off ratio as high as 10 5 , a subthreshold slope of 360 mV/dec, and a field-effect mobility of around 90 cm 2 V -1 s -1 . The excellent device characteristics suggest that the roll-transfer printing technique, which is compatible with the roll-to-roll (R2R) process and operated in atmosphere, has a good potential for the high-speed fabrication of large-area nanowire transistors for flexible devices and flat panel displays.

  9. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y-K; Hong, Franklin Chau-Nan [Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)], E-mail: hong@mail.ncku.edu.tw

    2009-05-13

    A method with the potential to fabricate large-area nanowire field-effect transistors (NW-FETs) was demonstrated in this study. Using a high-speed roller (20-80 cm min{sup -1}), transfer printing was successfully employed to transfer vertically aligned zinc oxide (ZnO) nanowires grown on a donor substrate to a polydimethylsiloxane (PDMS) stamp and then print the ordered ZnO nanowire arrays on the received substrate for the fabrication of NW-FETs. ZnO NW-FETs fabricated by this method exhibit high performances with a threshold voltage of around 0.25 V, a current on/off ratio as high as 10{sup 5}, a subthreshold slope of 360 mV/dec, and a field-effect mobility of around 90 cm{sup 2} V{sup -1} s{sup -1}. The excellent device characteristics suggest that the roll-transfer printing technique, which is compatible with the roll-to-roll (R2R) process and operated in atmosphere, has a good potential for the high-speed fabrication of large-area nanowire transistors for flexible devices and flat panel displays.

  10. Effect of growth temperature on photoluminescence and piezoelectric characteristics of ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Water, Walter [Institute of Electro-Optical and Materials Science, National Formosa University, Yunlin 632, Taiwan (China); Fang, T.-H. [Institute of Electro-Optical and Materials Science, National Formosa University, Yunlin 632, Taiwan (China); Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China)], E-mail: fang.tehua@msa.hinet.net; Ji, L.-W.; Lee, C.-C. [Institute of Electro-Optical and Materials Science, National Formosa University, Yunlin 632, Taiwan (China)

    2009-02-25

    ZnO nanowire arrays were synthesized on Au-coated silicon (1 0 0) substrates by using vapour-liquid-solid process in this work. The effect of growth temperatures on the crystal structure and the surface morphology of ZnO nanowires were investigated by X-ray diffraction and scanning electron microscope. The absorption and optical characteristics of the nanowires were examined by Ultraviolet/Visible spectroscopy, and photoluminescence, respectively. The photoluminescence results exhibited ZnO nanowires had an ultraviolet and blue emission at 383 and 492 nm. Then a nanogenerator with ZnO nanowire arrays was fabricated and demonstrated Schottky-like current-voltage characteristics.

  11. Tunable, flexible antireflection layer of ZnO nanowires embedded in PDMS.

    Science.gov (United States)

    Kim, Min Kyu; Yi, Dong Kee; Paik, Ungyu

    2010-05-18

    In this article, we report the fabrication of ordered hybrid structures composed of ZnO nanowires and a polymeric matrix with a polymer precursor infiltrating the nanowire arrays. The antireflective properties of the resulting ZnO nanowire-embedded polydimethylsiloxane composite (ZPC) were investigated at various ZnO nanowire lengths and ZPC bending angles. Interestingly, we found that whereas the antireflective properties showed a strong dependence on the length of the embedded ZnO nanowires in PDMS, the bending of ZPC has little effect on the antireflective properties.

  12. Biofunctionalization of ZnO nanowires for DNA sensory applications

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Ulrich Christian; Gnauck, Martin; Ronning, Carsten [Institute of Solid State Physics, University of Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Moeller, Robert; Rudolph, Bettina; Fritzsche, Wolfgang [Institut fuer Photonische Technologien e.V., Albert-Einstein-Strasse 9, D-07745 Jena (Germany)

    2011-07-01

    In recent years, DNA detecting systems have received a growing interest due to promising fields of application like DNA diagnostics, gene analysis, virus detection or forensic applications. Nanowire-based DNA biosensor allows both miniaturization and easy continuous monitoring of a detection signal by electrical means. The label free detection scheme based on electrochemical changes of the surface potential during immobilization of specific DNA probes was heretofore mainly studied for silicon. In this work a surface decoration process with bifunctional molecules known as silanization was applied to VLS-grown ZnO nanowires which both feature a large sensitivity for surface modification, are biocompatible and easy to synthesize as well. Successfully bound DNA was proved by fluorescence microscopy. Dielectrophoresis (DEP) was chosen and optimized for quickly contacting the ZnO nanowires. Furthermore, electrical signal characterization was performed in preparation for DNA sensory applications.

  13. UV irradiation assisted growth of ZnO nanowires on optical fiber surface

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Bo; Shi, Tielin; Liao, Guanglan; Li, Xiaoping; Huang, Jie; Zhou, Temgyuan; Tang, Zirong, E-mail: zirong@mail.hust.edu.cn

    2017-06-01

    Highlights: • A new fabrication process combined a hydrothermal process with UV irradiation from optical fiber is developed. • The growth of ZnO nanowires is efficient in the utilization of UV light. • A novel hybrid structure which integrates ZnO nanowires on optical fiber surface is synthesized. • The UV assisted growth of ZnO nanowires shows preferred orientation and better quality. • A mechanism of growing ZnO nanowires under UV irradiation is proposed. - Abstract: In this paper, a novel approach was developed for the enhanced growth of ZnO nanowires on optical fiber surface. The method combined a hydrothermal process with the efficient UV irradiation from the fiber core, and the effects of UV irradiation on the growth behavior of ZnO nanowires were investigated. The results show that UV irradiation had great effects on the preferred growth orientation and the quality of the ZnO nanowires. The crystallization velocity along the c-axis would increase rapidly with the increase of the irradiation power, while the growth process in the lateral direction was marginally affected by the irradiation. The structure of ZnO nanowires also shows less oxygen vacancy with UV irradiation of higher power. The developed approach is applicable for the efficient growth of nanowires on the fiber surface, and the ZnO nanowires/optical fiber hybrid structures have great potentials for a wide variety of applications such as optical fiber sensors and probes.

  14. Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer

    OpenAIRE

    Jinzhang Liu; Nunzio Motta; Soonil Lee

    2012-01-01

    Summary ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS), a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the ...

  15. Fabrication of ZnO Nanowire Based Piezoelectric Generators and Related Structures

    Science.gov (United States)

    Opoku, Charles; Dahiya, Abhishek Singh; Oshman, Christopher; Cayrel, Frederic; Poulin-Vittrant, Guylaine; Alquier, Daniel; Camara, Nicolas

    Using vertically grown hydrothermal ZnO nanowires, we demonstrate the assembly of fully functional piezoelectric energy harvesters on plastics substrates. A seedless hydrothermal process is employed for the growth of single crystalline vertically orientated ZnO NWs at around 100oC. Flexible NG are assembled using ∼7 μm thick PDMS polymer matrix on a 3x3cm substrate. A representative device with an active area of 4cm2 is characterised revealing average output voltage generation of ∼22mV (±1.2) and -32mV (±0.16) in the positive and negative cycles after 3-4mm periodic deflection at 20Hz. A power density of ∼288nW/cm3 is estimated for the device. It is envisaged that such energy scavengers may find potential applications targeting self-powered systems, sensors and on-body charging of electronics.

  16. Study of the thermal conductivity of ZnO nanowires/PMMA composites

    International Nuclear Information System (INIS)

    Igamberdiev, Kh. T.; Yuldashev, Sh. U.; Cho, H. D.; Kang, T. W.; Rakhimova, Sh. M.; Akhmedov, T. Kh.

    2012-01-01

    From thermal conductivity measurements on ZnO nanowires (NWs)/poly(methyl methacrylate) PMMA composites, the thermal conductivities of the ZnO nanowires were determined. The thermal conductivity of a ZnO NW decreases considerably with decreasing nanowire diameter, and for a ZnO nanowire with a diameter of 250 nm, the thermal conductivity at room temperature is approximately two times lower than that of bulk ZnO at the same temperature. The results of this study show that the thermal conductivity of a ZnO NW is mainly determined by increased phonon-surface boundary scattering. These results could be useful for the design of ZnO-nanowire-based devices.

  17. Growth of ZnO nanowire arrays directly onto Si via substrate topographical adjustments using both wet chemical and dry etching methods

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nathan A., E-mail: 523615@swansea.ac.uk [Centre for Nanohealth, Department of Physics, College of Science, University of Swansea, Singleton Park SA2 8PP United Kingdom (United Kingdom); Evans, Jon E.; Jones, Daniel R. [Multidisciplinary Nanotechnology Centre, College of Engineering, University of Swansea, Singleton Park, SA2 8PP United Kingdom (United Kingdom); Lord, Alex M. [Centre for Nanohealth, College of Engineering, University of Swansea, Singleton Park, SA2 8PP United Kingdom (United Kingdom); Wilks, S.P. [Centre for Nanohealth, Department of Physics, College of Science, University of Swansea, Singleton Park SA2 8PP United Kingdom (United Kingdom)

    2015-03-15

    Highlights: • Arrays of catalyst-free ZnO NWs have been grown by CVD without seed layers on Si. • Si surface topography was altered by substrate etching, resulting in NW growth. • XPS analysis shows growth is related to topography and not surface contamination. • Using e-beam lithography with etching, selective nanowire growth is demonstrated. • Electrical measurements on the arrays show improved conduction through the Si. - Abstract: Arrays of CVD catalyst-free ZnO nanowires have been successfully grown without the use of seed layers, using both wet chemical and dry plasma etching methods to alter surface topography. XPS analysis indicates that the NW growth cannot be attributed to a substrate surface chemistry and is therefore directly related to the substrate topography. These nanowires demonstrate structural and optical properties typical of CVD ZnO nanowires. Moreover, the NW arrays exhibit a degree of vertical alignment of less than 20° from the substrate normal. Electrical measurements suggest an improved conduction path through the substrate over seed layer grown nanowires. Furthermore, the etching technique was combined with e-beam lithography to produce high resolution selective area nanowire growth. The ability to pattern uniform nanowires using mature dry etch technology coupled with the increased charge transport through the substrate demonstrates the potential of this technique in the vertical integration of nanowire arrays.

  18. Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse

    International Nuclear Information System (INIS)

    Biroju, Ravi K; Giri, P K; Tilak, Nikhil; Rajender, Gone; Dhara, S

    2015-01-01

    We demonstrate the graphene assisted catalyst free growth of ZnO nanowires (NWs) on chemical vapor deposited (CVD) and chemically processed graphene buffer layers at a relatively low growth temperature (580 °C) in the presence and absence of ZnO seed layers. In the case of CVD graphene covered with rapid thermal annealed ZnO buffer layer, the growth of vertically aligned ZnO NWs takes place, while the direct growth on CVD graphene, chemically derived graphene (graphene oxide and graphene quantum dots) without ZnO seed layer resulted in randomly oriented sparse ZnO NWs. Growth mechanism was studied from high resolution transmission electron microscopy and Raman spectroscopy of the hybrid structure. Further, we demonstrate strong UV, visible photoluminescence (PL) and enhanced photoconductivity (PC) from the CVD graphene–ZnO NWs hybrids as compared to the ZnO NWs grown without the graphene buffer layer. The evolution of crystalinity in ZnO NWs grown with ZnO seed layer and graphene buffer layer is correlated with the Gaussian line shape of UV and visible PL. This is further supported by the strong Raman mode at 438 cm −1 significant for the wurtzite phase of the ZnO NWs grown on different graphene substrates. The effect of the thickness of ZnO seed layers and the role of graphene buffer layers on the aligned growth of ZnO NWs and its enhanced PC are investigated systematically. Our results demonstrate the catalyst free growth and superior performance of graphene–ZnO NW hybrid UV photodetectors as compared to the bare ZnO NW based photodetectors. (paper)

  19. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei; Song, Jinhui; Lu, Ming-Yen; Chen, Min-Teng; Gao, Yifan; Chen, Lih-Juann; Wang, Zhong Lin

    2009-01-01

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive

  20. On the difficulties in characterizing ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, E; Bakin, A; Wehmann, H-H; Waag, A [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, D-38106 Braunschweig (Germany); Weimann, T; Hinze, P; Weber, D H [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, D-38116 Braunschweig (Germany); Goelzhaeuser, A [Physics of Supramolecular Systems, University of Bielefeld, Universitaetsstrasse 25, D-33615 Bielefeld (Germany)], E-mail: e.schlenker@tu-bs.de

    2008-09-10

    The electrical properties of single ZnO nanowires grown by vapor phase transport were investigated. While some samples were contacted by Ti/Au electrodes, another set of samples was investigated using a manipulator tip in a low energy electron point-source microscope. The deduced resistivities range from 1 to 10{sup 3} {omega}cm. Additionally, the resistivities of nanowires from multiple publications were brought together and compared to the values obtained from our measurements. The overview of all data shows enormous differences (10{sup -3}-10{sup 5} {omega}cm) in the measured resistivities. In order to reveal the origin of the discrepancies, the influence of growth parameters, measuring methods, contact resistances, crystal structures and ambient conditions are investigated and discussed in detail.

  1. On the difficulties in characterizing ZnO nanowires.

    Science.gov (United States)

    Schlenker, E; Bakin, A; Weimann, T; Hinze, P; Weber, D H; Gölzhäuser, A; Wehmann, H-H; Waag, A

    2008-09-10

    The electrical properties of single ZnO nanowires grown by vapor phase transport were investigated. While some samples were contacted by Ti/Au electrodes, another set of samples was investigated using a manipulator tip in a low energy electron point-source microscope. The deduced resistivities range from 1 to 10(3) Ωcm. Additionally, the resistivities of nanowires from multiple publications were brought together and compared to the values obtained from our measurements. The overview of all data shows enormous differences (10(-3)-10(5) Ωcm) in the measured resistivities. In order to reveal the origin of the discrepancies, the influence of growth parameters, measuring methods, contact resistances, crystal structures and ambient conditions are investigated and discussed in detail.

  2. Lasing in ZnO and CdS nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Thielmann, Andreas; Geburt, Sebastian; Kozlik, Michael; Kuehnel, Julian; Borschel, Christian; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2011-07-01

    The development of nanoscaled semiconductor lasers could be the key resolution to the still persistent size mismatch between integrated microelectronic devices and semiconductor optoelectronic devices. Semiconductor nanowires offer an elegant path to the development of nanoscaled lasers as their geometry with two planar end facets naturally combines a fiber-like waveguide with an optical resonator. The possible stimulation of the material's emission processes enables lasing of resonant optical modes. ZnO and CdS nanowires of different aspect ratios have been synthesized via the VLS mechanism and were characterized by SEM, EDX and ensemble PL measurements. Power dependent PL measurements on single nanowires excited with pulsed laser light at 355 nm have been performed between 10 K and room temperature and were set in correlation to the nanowires' respective morphology. Sharp emission lines which show characteristics of Fabry-Perot modes could be observed above a power threshold. The measured power dependencies reveal amplified stimulated emission and lasing at high excitation densities.

  3. Enhanced Piezoelectric Behavior of PVDF Nanocomposite by AC Dielectrophoresis Alignment of ZnO Nanowires

    Directory of Open Access Journals (Sweden)

    Kyungwho Choi

    2017-01-01

    Full Text Available In contrast to commercial piezoelectric ceramics, lead-free materials such as ZnO and a polymer matrix are proper candidates for use in ecofriendly applications. In this article, the authors represent a technique using ZnO nanowires with a polyvinylidene fluoride (PVDF matrix in a piezoelectric polymer composite. By aligning the nanowires in the matrix in a desired direction by AC dielectrophoresis, the piezoelectric behavior was enhanced. The dielectric constant of the composite was improved by increasing the concentration of the ZnO nanowires as well. Specifically, the resulting dielectric constant shows an improvement of 400% with aligned ZnO nanowires by increasing the poling effect compared to that of a randomly oriented nanowire composite without a poling process.

  4. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhao, Yuping; Li, Chengchen; Chen, Mingming; Yu, Xiao; Chang, Yunwei; Chen, Anqi; Zhu, Hai; Tang, Zikang

    2016-01-01

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  5. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuping; Li, Chengchen [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Mingming, E-mail: andychain@live.cn [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Yu, Xiao; Chang, Yunwei [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Anqi [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Zhu, Hai, E-mail: zhuhai5@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Tang, Zikang, E-mail: zktang@umac.mo [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); The Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau (China)

    2016-12-09

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  6. Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires

    International Nuclear Information System (INIS)

    Tian Jinghua; Hu Jie; Li Sisi; Zhang Fan; Liu Jun; Shi Jian; Li Xin; Chen Yong; Tian Zhongqun

    2011-01-01

    Seedless hydrothermal synthesis has been improved by introducing an adequate content of ammonia into the nutrient solution, allowing the fabrication of dense and ultralong ZnO nanowire arrays over large areas on a substrate. The presence of ammonia in the nutrient solution facilitates the high density nucleation of ZnO on the substrate which is critical for the nanowire growth. In order to achieve an optimal growth, the growth conditions have been studied systematically as a function of ammonia content, growth temperature and incubation time. The effect of polyethyleneimine (PEI) has also been studied but shown to be of no benefit to the nucleation of ZnO. Ultradense and ultralong ZnO nanowires could be obtained under optimal growth conditions, showing no fused structure at the foot of the nanowire arrays. Due to different reaction kinetics, four growth regimes could be attributed, including the first fast growth, equilibrium phase, second fast growth and final erosion. Combining this simple method with optical lithography, ZnO nanowires could be grown selectively on patterned areas. In addition, the as-grown ZnO nanowires could be used for the fabrication of a piezoelectric nanogenerator. Compared to the device of ZnO nanowires made by other methods, a more than twice voltage output has been obtained, thereby proving an improved performance of our growth method.

  7. Transport and structural characterization of solution-processable doped ZnO nanowires

    KAUST Repository

    Noriega, Rodrigo

    2009-08-18

    The use of ZnO nanowires has become a widespread topic of interest in optoelectronics. In order to correctly assess the quality, functionality, and possible applications of such nanostructures it is important to accurately understand their electrical and optical properties. Aluminum- and gallium-doped crystalline ZnO nanowires were synthesized using a low-temperature solution-based process, achieving dopant densities of the order of 1020 cm-3. A non-contact optical technique, photothermal deflection spectroscopy, is used to characterize ensembles of ZnO nanowires. By modeling the free charge carrier absorption as a Drude metal, we are able to calculate the free carrier density and mobility. Determining the location of the dopant atoms in the ZnO lattice is important to determine the doping mechanisms of the ZnO nanowires. Solid-state NMR is used to distinguish between coordination environments of the dopant atoms.

  8. Vertically aligned nanowires from boron-doped diamond.

    Science.gov (United States)

    Yang, Nianjun; Uetsuka, Hiroshi; Osawa, Eiji; Nebel, Christoph E

    2008-11-01

    Vertically aligned diamond nanowires with controlled geometrical properties like length and distance between wires were fabricated by use of nanodiamond particles as a hard mask and by use of reactive ion etching. The surface structure, electronic properties, and electrochemical functionalization of diamond nanowires were characterized by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) as well as electrochemical techniques. AFM and STM experiments show that diamond nanowire etched for 10 s have wire-typed structures with 3-10 nm in length and with typically 11 nm spacing in between. The electrode active area of diamond nanowires is enhanced by a factor of 2. The functionalization of nanowire tips with nitrophenyl molecules is characterized by STM on clean and on nitrophenyl molecule-modified diamond nanowires. Tip-modified diamond nanowires are promising with respect to biosensor applications where controlled biomolecule bonding is required to improve chemical stability and sensing significantly.

  9. Surface saturation effect on mechanical and optical properties of ZnO nanowires

    Directory of Open Access Journals (Sweden)

    S Yazdani

    2012-09-01

    Full Text Available  In this work, on the basis of density functional theory and the generalized gradient approximation (GGA we optimized the electronic structure of the unsaturated and hydrogen saturated ZnO nanowires with [0001] orientation. Studying the effects of a uniaxial strain on the nanowires, we calculated the Young’s modulus and the effective piezoelectric coefficient of the nanowires. Furthermore, the effect of this uniaxial strain on the imaginary part of dielectric function of the nanowires was investigated.

  10. Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer

    Directory of Open Access Journals (Sweden)

    Jinzhang Liu

    2012-05-01

    Full Text Available ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS, a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the decay time is prolonged by about a factor of four. We conclude that oxygen molecules diffusing in PDMS are responsible for the UV photoresponse.

  11. Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer.

    Science.gov (United States)

    Liu, Jinzhang; Motta, Nunzio; Lee, Soonil

    2012-01-01

    ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS), a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the decay time is prolonged by about a factor of four. We conclude that oxygen molecules diffusing in PDMS are responsible for the UV photoresponse.

  12. Young's modulus of individual ZnO nanowires

    International Nuclear Information System (INIS)

    Jiang, Dayong; Tian, Chunguang; Liu, Qingfei; Zhao, Man; Qin, Jieming; Hou, Jianhua; Gao, Shang; Liang, Qingcheng; Zhao, Jianxun

    2014-01-01

    We used a contact-mode atomic force microscopy (AFM) to study the mechanical properties of an individual ZnO nanowire in the open air. It is noteworthy that the Young's modulus can be determined by an AFM tip compressing a single nanowire on a rigid substrate, which can bring more repeatability and accuracy for the measurements. In particular, the calculated radial Young's modulus of ZnO nanowires is consistent with the data of ZnO bulks and thin films. We also present the Young's modulus with different diameters, and all these are discussed deeply

  13. Enhancement of Si solar cell efficiency using ZnO nanowires with various diameters

    Science.gov (United States)

    Gholizadeh, A.; Reyhani, A.; Parvin, P.; Mortazavi, S. Z.; Mehrabi, M.

    2018-01-01

    Here, Zinc Oxide nanowires are synthesized using thermal chemical vapor deposition of a Zn granulate source and used to enhance a significant Si-solar cell efficiency with simple and low cost method. The nanowires are grown in various O2 flow rates. Those affect the shape, yield, structure and the quality of ZnO nanowires according to scanning electron microscopy and x-ray diffraction analyses. This delineates that the ZnO nanostructure is dependent on the synthesis conditions. The photoluminescence spectroscopy of ZnO indicates optical emission at the Ultra-Violet and blue-green regions whose intensity varies as a function of diameter of ZnO nano-wires. The optical property of ZnO layer is measured by UV-visible and diffuse reflection spectroscopy that demonstrate high absorbance at 280-550 nm. Furthermore, the photovoltaic characterization of ZnO nanowires is investigated based on the drop casting on Si-solar cell. The ZnO nanowires with various diameters demonstrate different effects on the efficiency of Si-solar cells. We have shown that the reduction of the spectral reflectance and down-shifting process as well as the reduction of photon trapping are essential parameters on the efficiency of Si-solar cells. However, the latter is dominated here. In fact, the trapped photons during the electron-hole generation are dominant due to lessening the absorption rate in ZnO nano-wires. The results indicate that the mean diameters reduction of ZnO nanowires is also essential to improve the fill factor. The external and internal quantum efficiency analyses attest the efficiency improvement over the blue region which is related to the key parameters above.

  14. ZnO nanowire-based glucose biosensors with different coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juneui [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lim, Sangwoo, E-mail: swlim@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Fabrication of ZnO nanowire-based glucose biosensors using different coupling agents. Black-Right-Pointing-Pointer Highest sensitivity for (3-aminopropyl)methyldiethoxysilane-treated biosensor. Black-Right-Pointing-Pointer Larger amount of glucose oxidase and lower electron transfer resistance for (3-aminopropyl)methyldiethoxysilane-treated biosensor. - Abstract: ZnO-nanowire-based glucose biosensors were fabricated by immobilizing glucose oxidase (GOx) onto a linker attached to ZnO nanowires. Different coupling agents were used, namely (3-aminopropyl)trimethoxysilane (APTMS), (3-aminopropyl)triethoxysilane (APTES), and (3-aminopropyl)methyldiethoxysilane (APS), to increase the affinity of GOx binding to ZnO nanowires. The amount of GOx immobilized on the ZnO nanowires, the performance, sensitivity, and Michaelis-Menten constant of each biosensor, and the electron transfer resistance through the biosensor were all measured in order to investigate the effect of the coupling agent on the ZnO nanowire-based biosensor. Among the different biosensors, the APS-treated biosensor had the highest sensitivity (17.72 {mu}A cm{sup -2} mM{sup -1}) and the lowest Michaelis-Menten constant (1.37 mM). Since APS-treated ZnO nanowires showed the largest number of C-N groups and the lowest electron transfer resistance through the biosensor, we concluded that these properties were the key factors in the performance of APS-treated glucose biosensors.

  15. ZnO nanowire-based glucose biosensors with different coupling agents

    International Nuclear Information System (INIS)

    Jung, Juneui; Lim, Sangwoo

    2013-01-01

    Highlights: ► Fabrication of ZnO nanowire-based glucose biosensors using different coupling agents. ► Highest sensitivity for (3-aminopropyl)methyldiethoxysilane-treated biosensor. ► Larger amount of glucose oxidase and lower electron transfer resistance for (3-aminopropyl)methyldiethoxysilane-treated biosensor. - Abstract: ZnO-nanowire-based glucose biosensors were fabricated by immobilizing glucose oxidase (GOx) onto a linker attached to ZnO nanowires. Different coupling agents were used, namely (3-aminopropyl)trimethoxysilane (APTMS), (3-aminopropyl)triethoxysilane (APTES), and (3-aminopropyl)methyldiethoxysilane (APS), to increase the affinity of GOx binding to ZnO nanowires. The amount of GOx immobilized on the ZnO nanowires, the performance, sensitivity, and Michaelis–Menten constant of each biosensor, and the electron transfer resistance through the biosensor were all measured in order to investigate the effect of the coupling agent on the ZnO nanowire-based biosensor. Among the different biosensors, the APS-treated biosensor had the highest sensitivity (17.72 μA cm −2 mM −1 ) and the lowest Michaelis–Menten constant (1.37 mM). Since APS-treated ZnO nanowires showed the largest number of C-N groups and the lowest electron transfer resistance through the biosensor, we concluded that these properties were the key factors in the performance of APS-treated glucose biosensors.

  16. Transport and structural characterization of solution-processable doped ZnO nanowires

    KAUST Repository

    Noriega, Rodrigo; Goris, Ludwig; Rivnay, Jonathan; Scholl, Jonathan; Thompson, Linda M.; Palke, Aaron C.; Stebbins, Jonathan F.; Salleo, Alberto

    2009-01-01

    The use of ZnO nanowires has become a widespread topic of interest in optoelectronics. In order to correctly assess the quality, functionality, and possible applications of such nanostructures it is important to accurately understand

  17. Control of the ZnO nanowires nucleation site using microfluidic channels.

    Science.gov (United States)

    Lee, Sang Hyun; Lee, Hyun Jung; Oh, Dongcheol; Lee, Seog Woo; Goto, Hiroki; Buckmaster, Ryan; Yasukawa, Tomoyuki; Matsue, Tomokazu; Hong, Soon-Ku; Ko, HyunChul; Cho, Meoung-Whan; Yao, Takafumi

    2006-03-09

    We report on the growth of uniquely shaped ZnO nanowires with high surface area and patterned over large areas by using a poly(dimethylsiloxane) (PDMS) microfluidic channel technique. The synthesis uses first a patterned seed template fabricated by zinc acetate solution flowing though a microfluidic channel and then growth of ZnO nanowire at the seed using thermal chemical vapor deposition on a silicon substrate. Variations the ZnO nanowire by seed pattern formed within the microfluidic channel were also observed for different substrates and concentrations of the zinc acetate solution. The photocurrent properties of the patterned ZnO nanowires with high surface area, due to their unique shape, were also investigated. These specialized shapes and patterning technique increase the possibility of realizing one-dimensional nanostructure devices such as sensors and optoelectric devices.

  18. Electrochemical synthesis and characterization of hierarchically branched ZnO nanostructures on ensembles of gold nanowires

    International Nuclear Information System (INIS)

    Ongaro, Michael; Gambirasi, Arianna; Favaro, Monica; Ugo, Paolo

    2012-01-01

    Highlights: ► ZnO branched nanofibres for photoelectrochemical applications. ► Branched nanostructures are obtained by electrochemical deposition of ZnO on gold template nanowires. ► Branched nanowires crystallographic phase determined by electron back scatter diffraction. ► Branched structures display improved performances for the photoelectrochemical oxidation of water. - Abstract: This study presents an electrosynthetic methodology to obtain hierarchically structured ZnO electrodes with improved surface area, by exploiting gold nanowires ensembles (3D-NEEs) as the growing substrate. By this way, semiconductor electrodes organized in the shape of fir-like branches are obtained. Branched nanofibres are characterized by electron microscopy and electron backscatter diffraction (EBSD), the latter technique allowing the determination of the crystalline habit of individual nanostructures. The hierarchical branched nanowires show enhanced performances with respect to water photooxidation in comparison with already known nanostructured materials such as 1D-ZnO nanowires.

  19. Growth Mechanism Studies of ZnO Nanowires: Experimental Observations and Short-Circuit Diffusion Analysis.

    Science.gov (United States)

    Shih, Po-Hsun; Wu, Sheng Yun

    2017-07-21

    Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion.

  20. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa

    2010-04-29

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  1. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa; Lee, Seokwoo; Lee, Seung S

    2010-01-01

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  2. Improved efficiency in organic/inorganic hybrid solar cells by interfacial modification of ZnO nanowires with small molecules

    International Nuclear Information System (INIS)

    Chang, Sehoon; Park, Hyesung; Cheng, Jayce J; Rekemeyer, Paul H; Gradečak, Silvija

    2014-01-01

    We demonstrate improved photovoltaic performance of ZnO nanowire/poly(3-hexylthiophene) (P3HT) nanofiber hybrid devices using an interfacial modification of ZnO nanowires. Formation of cascade energy levels between the ZnO nanowire and P3HT nanofiber was achieved by interfacial modification of ZnO nanowires using small molecules tetraphenyldibenzoperiflanthene (DBP) and 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI). The successful demonstration of improved device performance owing to the cascade energy levels by small molecule modification is a promising approach toward highly efficient organic/inorganic hybrid solar cells. (paper)

  3. VLS-grown diffusion doped ZnO nanowires and their luminescence properties

    International Nuclear Information System (INIS)

    Roy, Pushan Guha; Dutta, Amartya; Das, Arpita; Bhattacharyya, Anirban; Sen, Sayantani; Pramanik, Pallabi

    2015-01-01

    Zinc Oxide (ZnO) nanowires were deposited by vapor–liquid–solid (VLS) method on to aluminum doped ZnO (AZO) thin films grown by sol-gel technique. For various device applications, current injection into such nanowires is critical. This is expected to be more efficient for ZnO nanowires deposited on to AZO compared to those deposited on to a foreign substrate such as silicon. In this work we compare the morphological and optical properties of nanowires grown on AZO with those grown under similar conditions on silicon (Si) wafers. For nanowires grown on silicon, diameters around 44 nm with heights around 2.2 μm were obtained. For the growth on to AZO, the diameters were around 90 nm while the heights were around 520 nm. Room temperature photoluminescence (RT-PL) measurements show improved near band-edge emission for nanowires grown on to AZO, indicating higher material quality. This is further established by low temperature photoluminescence (LT-PL) measurements where excitonic transitions with width as small as 14 meV have been obtained at 4 K for such structures. Electron energy loss spectroscopy (EELS) studies indicate the presence of Al in the nanowires, indicating a new technique for introduction of dopants into these structures. These results indicate that ZnO nanowires on sol-gel grown AZO thin films show promise in the development of various optoelectronic devices. (paper)

  4. Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate

    KAUST Repository

    Qin, Yong; Yang, Rusen; Wang, Zhong Lin

    2008-01-01

    A general method is presented for growing laterally aligned and patterned ZnO nanowire (NW) arrays on any substrate as long as it is flat. The orientation control is achieved using the combined effect from ZnO seed layer and the catalytically

  5. Influence of ZnO encapsulation on the luminescence property of GeO2 nanowires

    International Nuclear Information System (INIS)

    Kim, Hyunsu; Jin, Changhyun; Park, Sunghoon; Lee, Chongmu; Kwon, Youngjae; Lee, Sangmin

    2012-01-01

    GeO 2 -core/ZnO-shell nanowires were synthesized on (100) Si substrates by thermal evaporation of Ge powders, followed by atomic layer deposition of ZnO. X-ray diffraction, scanning electron microscopy and transmission electron microscopy analyses showed that the mean diameter and lengths of the core-shell nanowires were approximately 100 nm and from a few tens to a few hundreds of micrometers, respectively. Photoluminescence measurements showed that pure GeO 2 nanowires had a violet emission band centered at approximately 430 nm. In contrast, GeO 2 -core/ZnO-shell nanowires had both a sharp near-band edge (NBE) emission band centered at approximately 380 nm and a broad deep-level (DL) emission band centered at approximately 590 nm, which is characteristic of ZnO. GeO 2 -core/ZnO-shell nanowires showed a higher intensity ratio of NBE emission to DL emission than either GeO 2 or ZnO nanowires. In addition, the origin of the enhancement of luminescence in GeO 2 nanowires by ZnO encapsulation is discussed.

  6. Electrodeposition of ZnO nano-wires lattices with a controlled morphology

    International Nuclear Information System (INIS)

    Elias, J.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C.

    2006-01-01

    In this work, it is shown that the electrodeposition is a changeable low cost method which allows, according to the synthesis conditions, to obtain not only plane thin layers of ZnO but different nano-structures too. In a first part, are presented the formation conditions of a compact thin layer of nanocrystalline ZnO electrodeposited on a conducing glass substrate. This layer plays a buffer layer role for the deposition of a lattice of ZnO nano-wires. The step of nano-wires nucleation is not only determined by the electrochemical parameters but by the properties of the buffer layer too as the grain sizes and its thickness. In this context, the use of an electrodeposition method in two steps allows to control the nano-wires length and diameter and their density. The morphology and the structural and optical properties of these nano-structures have been analyzed by different techniques as the scanning and transmission electron microscopy, the X-ray diffraction and the optical spectroscopy. These studies show that ZnO nano-structures are formed of monocrystalline ZnO nano-wires, presenting a great developed surface and a great optical transparency in the visible. These properties make ZnO a good material for the development of nano-structured photovoltaic cells as the extremely thin absorber cells (PV ETA) or those with dye (DSSC) which are generally prepared with porous polycrystalline TiO 2 . Its replacement by a lattice of monocrystalline ZnO nano-wires allows to reduce considerably the number of grain boundaries and in consequence to improve the transport of the electrons. The results are then promising for the PV ETA cells with ZnO nano-wires. (O.M.)

  7. Ultraviolet photosensors fabricated with Ag nanowires coated with ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guan-Hung [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Hong, Franklin Chau-Nan, E-mail: hong@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); NCKU Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    We have developed a simple low temperature process to coat zinc oxide (ZnO) nanoparticles (NPs) on Ag nanowires (NWs) with well-controlled morphology. Triethanolamine (TEA) was employed to react with zinc acetate (Zn(CH{sub 3}COO){sub 2}) forming ZnO NPs. TEA was also found to enhance the nucleation and binding of ZnO NPs on the Ag nanowire surfaces facilitating a complete coverage of Ag nanowire surfaces with ZnO NPs. The effects of the process parameters including reaction time and reaction temperature were studied. The surfaces of 60 nm diameter Ag NWs could be completely covered with ZnO NPs with the final diameters of Ag-NWs@ZnO (core–shell NWs) turning into the range from 100 nm to 450 nm. The Ag-NWs@ZnO was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray mapping analysis, X-ray diffraction, and photoluminescence spectra. Finally, ultraviolet (UV) photosensors were fabricated using Ag-NWs@ZnO. They were found to improve photosensitivity with greatly enhanced fast response by reducing the recovery time by 2 orders, in comparison with the UV-sensors using single-crystalline ZnO NWs. - Highlights: • Solution process to coat ZnO nanoparticles on Ag nanowires has been developed. • Ultraviolet photosensing of ZnO nanoparticles coated on the Ag nanowires was found. • High defect concentration of ZnO nanoparticles enhanced the photosensing properties.

  8. ZnO quantum dots–decorated ZnO nanowires for the enhancement of antibacterial and photocatalytic performances

    International Nuclear Information System (INIS)

    Wu, Jyh Ming; Tsay, Li-Yi

    2015-01-01

    We demonstrate highly antibacterial activities for killing off Staphylococcus aureus and Escherichia coli using ZnO nanowires decorated with ZnO quantum dots (so-called ZnO QDs/NWs) under visible-light irradiation and dark conditions. The average size of the ZnO QDs is in the range of 3–5 nm; these were uniformly dispersed on the ZnO nanowires’ surface to form the ZnO QDs/NWs. A significant blue-shift effect was observed using photoluminescence (PL) spectra. The size of the ZnO QDs is strongly dependent on the material’s synthesis time. The ZnO QDs/NWs exhibited an excellent photocatalytic activity under visible-light irradiation. The ZnO QDs’ active sites (i.e. the O–H bond and Zn"2"+) accelerate the photogenerated-carrier migration from the QDs to the NWs. As a consequence, the electrons reacted with the dissolved oxygen to form oxygen ions and produced hydroperoxyl radicals to enhance photocatalytic activity. The antibacterial activities (as indicated by R-factor-inhibiting activity) of the ZnO QDs/NWs for killing off Staphylococcus aureus and Escherichia coli is around 4.9 and 5.5 under visible-light irradiation and dark conditions, respectively. The hydroxyl radicals served as an efficient oxidized agent for decomposing the organic dye and microorganism species. The antibacterial activities of the ZnO QDs/NWs in the dark may be attributed to the Zn"2"+ ions that were released from the ZnO QDs and infused into the microbial solution against the growth of bacteria thus disrupting the microorganism. The highly antibacterial and photocatalytic activity of the ZnO QDs/NWs can be well implanted on a screen window, thus offering a promising solution to inhibit the spread of germs under visible-light and dark conditions. (paper)

  9. Title: Using Alignment and 2D Network Simulations to Study Charge Transport Through Doped ZnO Nanowire Thin Film Electrodes

    KAUST Repository

    Phadke, Sujay; Lee, Jung-Yong; West, Jack; Peumans, Peter; Salleo, Alberto

    2011-01-01

    of magnitude lower than the single nanowire resistance. Simulations suggest that the conductivity of such thin film devices could be further enhanced by using longer nanowires. Solution processed Gallium doped ZnO nanowires are aligned on substrates using

  10. Electronic Transport Properties of One Dimensional Zno Nanowires Studied Using Maximally-Localized Wannier Functions

    Science.gov (United States)

    Sun, Xu; Gu, Yousong; Wang, Xueqiang

    2012-08-01

    One dimensional ZnO NWs with different diameters and lengths have been investigated using density functional theory (DFT) and Maximally Localized Wannier Functions (MLWFs). It is found that ZnO NWs are direct band gap semiconductors and there exist a turn on voltage for observable current. ZnO nanowires with different diameters and lengths show distinctive turn-on voltage thresholds in I-V characteristics curves. The diameters of ZnO NWs are greatly influent the transport properties of ZnO NWs. For the ZnO NW with large diameter that has more states and higher transmission coefficients leads to narrow band gap and low turn on voltage. In the case of thinner diameters, the length of ZnO NW can effects the electron tunneling and longer supercell lead to higher turn on voltage.

  11. Plasmon resonant cavities in vertical nanowire arrays

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.

    2014-07-15

    Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

  12. Tunable field emission characteristics of ZnO nanowires coated with varied thickness of lanthanum boride thin films

    International Nuclear Information System (INIS)

    Zhao, C.X.; Li, Y.F.; Chen, Jun; Deng, S.Z.; Xu, N.S.

    2013-01-01

    Lanthanum boride (LaB x ) thin films with various thicknesses were deposited on ZnO nanowire arrays by electron beam evaporation. Field emission characteristics of ZnO nanowires show close dependence on LaB x coating thickness. The turn-on field increases with increasing LaB x coating thickness from 10 nm to 50 nm. The observed phenomena were explained by a model that the tunneling at ZnO/LaB x interface dominates the emission process. - Highlights: ► Coating thickness dependence of field emission characteristics of ZnO nanowires was observed from LaB x coated ZnO nanowires. ► More stable field emission was observed from ZnO nanowires with LaB x coating. ► A model was proposed that the tunneling at ZnO/LaB x interface dominates the emission process

  13. Electrical properties of fluorine-doped ZnO nanowires formed by biased plasma treatment

    Science.gov (United States)

    Wang, Ying; Chen, Yicong; Song, Xiaomeng; Zhang, Zhipeng; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-05-01

    Doping is an effective method for tuning electrical properties of zinc oxide nanowires, which are used in nanoelectronic devices. Here, ZnO nanowires were prepared by a thermal oxidation method. Fluorine doping was achieved by a biased plasma treatment, with bias voltages of 100, 200, and 300 V. Transmission electron microscopy indicated that the nanowires treated at bias voltages of 100 and 200 V featured low crystallinity. When the bias voltage was 300 V, the nanowires showed single crystalline structures. Photoluminescence measurements revealed that concentrations of oxygen and surface defects decreased at high bias voltage. X-ray photoelectron spectroscopy suggested that the F content increased as the bias voltage was increased. The conductivity of the as-grown nanowires was less than 103 S/m; the conductivity of the treated nanowires ranged from 1 × 104-5 × 104, 1 × 104-1 × 105, and 1 × 103-2 × 104 S/m for bias voltage treatments at 100, 200, and 300 V, respectively. The conductivity improvements of nanowires formed at bias voltages of 100 and 200 V, were attributed to F-doping, defects and surface states. The conductivity of nanowires treated at 300 V was attributed to the presence of F ions. Thus, we provide a method of improving electrical properties of ZnO nanowires without altering their crystal structure.

  14. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires

    Science.gov (United States)

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-01

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  15. Synthesis of high aspect ratio ZnO nanowires with an inexpensive handcrafted electrochemical setup

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Ali, E-mail: at1361@aut.ac.ir, E-mail: atahery@aeoi.org.ir [Nuclear Science and Technology Institute (Iran, Islamic Republic of); Saramad, Shahyar; Setayeshi, Saeed [Amirkabir University of Technology, Faculty of Energy Engineering and Physics (Iran, Islamic Republic of)

    2016-12-15

    In this work, high aspect ratio zinc oxide nanowires are synthesized using templated one-step electrodeposition technique. Electrodeposition of the nanowires is done using a handcrafted electronic system. Nuclear track-etched polycarbonate membrane is used as a template to form the high aspect ratio nanowires. The result of X-ray diffraction and scanning electron microscopy shows that nanowires with a good crystallinity and an aspect ratio of more than 30 can be achieved in a suitable condition. The height of electrodeposited nanowires reaches to about 11 μm. Based on the obtained results, high aspect ratio ZnO nanowires can be formed using inexpensive electrodeposition setup with an acceptable quality.

  16. "High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires"

    Energy Technology Data Exchange (ETDEWEB)

    GARGAS, DANIEL; GAO, HANWEI; WANG, HUNGTA; PEIDONG, YANG

    2010-12-01

    External quantum efficiency (EQE) of photoluminescence as high as 20 percent from isolated ZnO nanowires were measured at room temperature. The EQE was found to be highly dependent on photoexcitation density, which underscores the importance of uniform optical excitation during the EQE measurement. An integrating sphere coupled to a microscopic imaging system was used in this work, which enabled the EQE measurement on isolated ZnO nanowires. The EQE values obtained here are significantly higher than those reported for ZnO materials in forms of bulk, thin films or powders. Additional insight on the radiative extraction factor of one-dimensional nanostructures was gained by measuring the internal quantum efficiency of individual nanowires. Such quantitative EQE measurements provide a sensitive, noninvasive method to characterize the optical properties of low-dimensional nanostructures and allow tuning of synthesis parameters for optimization of nanoscale materials.

  17. Photovoltaic device on a single ZnO nanowire p–n homojunction

    International Nuclear Information System (INIS)

    Cho, Hak Dong; Zakirov, Anvar S; Yuldashev, Shavkat U; Kang, Tae Won; Ahn, Chi Won; Yeo, Yung Kee

    2012-01-01

    A photovoltaic device was successfully grown solely based on the single ZnO p–n homojunction nanowire. The ZnO nanowire p–n diode consists of an as-grown n-type segment and an in situ arsenic-doped p-type segment. This p–n homojunction acts as a good photovoltaic cell, producing a photocurrent almost 45 times larger than the dark current under reverse-biased conditions. Our results demonstrate that the present ZnO p–n homojunction nanowire can be used as a self-powered ultraviolet photodetector as well as a photovoltaic cell, which can also be used as an ultralow electrical power source for nanoscale electronic, optoelectronic and medical devices. (paper)

  18. Homojunction p-n photodiodes based on As-doped single ZnO nanowire

    International Nuclear Information System (INIS)

    Cho, H. D.; Zakirov, A. S.; Yuldashev, Sh. U.; Kang, T. W.; Ahn, C. W.; Yeo, Y. K.

    2013-01-01

    Photovoltaic device was successfully grown solely based on the single ZnO p-n homojunction nanowire. The ZnO nanowire p-n diode consists of an as-grown n-type segment and an in-situ arsenic doped p-type segment. This p-n homojunction acts as a good photovoltaic cell, producing a photocurrent almost 45 times larger than the dark current under reverse-biased condition. Our results demonstrate that present ZnO p-n homojunction nanowire can be used as a self-powered ultraviolet photodetector as well as a photovoltaic cell, which can also be used as an ultralow electrical power source for nano-scale electronic, optoelectronic, and medical devices

  19. Quenching of the surface-state-related photoluminescence in Ni-coated ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Tang Yang [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences (China); Zhao Dongxu, E-mail: dxzhao2000@yahoo.com.c [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhang Jiying; Shen Dezhen [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China)

    2010-11-01

    Nickel-coated ZnO nanowires (NWs) were fabricated by electrodepositing Ni particles on ZnO NW arrays. The morphological, magnetic, and photoluminescent properties of the Ni-coated ZnO NWs were investigated. The Ni particles were deposited on the ZnO NWs' surface along its length to form a Ni/ZnO shell-core structure. The Ni-coated ZnO NWs exhibited more isotropic characteristic than the electrodeposited Ni films owing to the isotropic sphere structure of the Ni particles. A strong ultraviolet emission can be obtained from the Ni-coated ZnO NWs, while the green emission related to surface states was quenched by the passivated layer.

  20. Quenching of the surface-state-related photoluminescence in Ni-coated ZnO nanowires

    International Nuclear Information System (INIS)

    Tang Yang; Zhao Dongxu; Zhang Jiying; Shen Dezhen

    2010-01-01

    Nickel-coated ZnO nanowires (NWs) were fabricated by electrodepositing Ni particles on ZnO NW arrays. The morphological, magnetic, and photoluminescent properties of the Ni-coated ZnO NWs were investigated. The Ni particles were deposited on the ZnO NWs' surface along its length to form a Ni/ZnO shell-core structure. The Ni-coated ZnO NWs exhibited more isotropic characteristic than the electrodeposited Ni films owing to the isotropic sphere structure of the Ni particles. A strong ultraviolet emission can be obtained from the Ni-coated ZnO NWs, while the green emission related to surface states was quenched by the passivated layer.

  1. Nanostructured Zn and ZnO nanowire thin films for mechanical and self-cleaning applications

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Ummar Pasha [Advanced Centre of Research in High Energy Materials, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Hyderabad 500046 (India); Purkayastha, Debarun Dhar, E-mail: ddebarun@yahoo.com [Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103 (India); Krishna, M. Ghanashyam [Advanced Centre of Research in High Energy Materials, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Hyderabad 500046 (India); School of Physics, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Hyderabad 500046 (India); Madhurima, V. [Department of Physics, Central University of Tamil Nadu, Thiruvarur 610004 (India)

    2015-03-01

    Highlights: • Zn metal films were deposited by thermal evaporation, on various substrates. • Upon annealing Zn there is transformation of the Zn nanosheets into ZnO nanowires. • ZnO nanowires are superhydrophobic and exhibit wetting transition on UV exposure. • ZnO will be useful in self-cleaning, mechanical and oxidation resistance surfaces. - Abstract: Nanostructured Zn metal films were deposited by thermal evaporation, on borosilicate glass, Quartz, sapphire, lanthanum aluminate and yttria stabilized zirconia substrates. The as-deposited films are nanocrystalline and show a morphology that consists of triangular nanosheets. The films are hydrophobic with contact angles between 102° and 120° with hardness and Young's modulus between 0.15–0.8 GPa and 18–300 GPa, respectively. Thermal annealing of the films at 500 °C results only in partial oxidation of Zn to ZnO, which indicates good oxidation resistance. Annealing also causes transformation of the Zn nanosheets into ZnO nanowires that are polycrystalline in nature. The ZnO nanowires are superhydrophobic with contact angles between 159° and 162°, contact angle hysteresis between 5° and 10° and exhibit a reversible superhydrophobic–hydrophilic transition under UV irradiation. The nanowires are much softer than the as-deposited Zn metal films, with hardness between 0.02 and 0.4 GPa and Young's modulus between 3 and 35 GPa. The current study thus demonstrates a simple process for fabrication of nanostructured Zn metal films followed by a one-step transformation to nanowires with properties that will be very attractive for mechanical and self-cleaning applications.

  2. Enhanced photoelectric performance in self-powered UV detectors based on ZnO nanowires with plasmonic Au nanoparticles scattered electrolyte

    Science.gov (United States)

    Zeng, Yiyu; Ye, Zhizhen; Lu, Bin; Dai, Wei; Pan, Xinhua

    2016-04-01

    Vertically aligned ZnO nanowires (NWs) were grown on a fluorine-doped tin-oxide-coated glass substrate by a hydrothermal method. Au nanoparticles were well dispersed in the mixed solution of ethanol and deionized water. A simple self-powered ultraviolet detector based on solid-liquid heterojunction was fabricated, utilizing ZnO NWs as active photoanode and such prepared mixed solution as electrolyte. The introduction of Au nanoparticles results in considerable improvements in the responsivity and sensitivity of the device compared with the one using deionized water as electrolyte, which is attributed to the enhanced light harvesting by Au nanoparticles.

  3. Hydrothermal Growth and Application of ZnO Nanowire Films with ZnO and TiO2Buffer Layers in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jiang Chunhua

    2009-01-01

    Full Text Available Abstract This paper reports the effects of the seed layers prepared by spin-coating and dip-coating methods on the morphology and density of ZnO nanowire arrays, thus on the performance of ZnO nanowire-based dye-sensitized solar cells (DSSCs. The nanowire films with the thick ZnO buffer layer (~0.8–1 μm thick can improve the open circuit voltage of the DSSCs through suppressing carrier recombination, however, and cause the decrease of dye loading absorbed on ZnO nanowires. In order to further investigate the effect of TiO2buffer layer on the performance of ZnO nanowire-based DSSCs, compared with the ZnO nanowire-based DSSCs without a compact TiO2buffer layer, the photovoltaic conversion efficiency and open circuit voltage of the ZnO DSSCs with the compact TiO2layer (~50 nm thick were improved by 3.9–12.5 and 2.4–41.7%, respectively. This can be attributed to the introduction of the compact TiO2layer prepared by sputtering method, which effectively suppressed carrier recombination occurring across both the film–electrolyte interface and the substrate–electrolyte interface.

  4. pH-Dependent Toxicity of High Aspect Ratio ZnO Nanowires in Macrophages Due to Intracellular Dissolution

    KAUST Repository

    H. Müller, Karin

    2010-11-23

    High-aspect ratio ZnO nanowires have become one of the most promising products in the nanosciences within the past few years with a multitude of applications at the interface of optics and electronics. The interaction of zinc with cells and organisms is complex, with both deficiency and excess causing severe effects. The emerging significance of zinc for many cellular processes makes it imperative to investigate the biological safety of ZnO nanowires in order to guarantee their safe economic exploitation. In this study, ZnO nanowires were found to be toxic to human monocyte macrophages (HMMs) at similar concentrations as ZnCl2. Confocal microscopy on live cells confirmed a rise in intracellular Zn2+ concentrations prior to cell death. In vitro, ZnO nanowires dissolved very rapidly in a simulated body fluid of lysosomal pH, whereas they were comparatively stable at extracellular pH. Bright-field transmission electron microscopy (TEM) showed a rapid macrophage uptake of ZnO nanowire aggregates by phagocytosis. Nanowire dissolution occurred within membrane-bound compartments, triggered by the acidic pH of the lysosomes. ZnO nanowire dissolution was confirmed by scanning electron microscopy/energy-dispersive X-ray spectrometry. Deposition of electron-dense material throughout the ZnO nanowire structures observed by TEM could indicate adsorption of cellular components onto the wires or localized zinc-induced protein precipitation. Our study demonstrates that ZnO nanowire toxicity in HMMs is due to pH-triggered, intracellular release of ionic Zn2+ rather than the high-aspect nature of the wires. Cell death had features of necrosis as well as apoptosis, with mitochondria displaying severe structural changes. The implications of these findings for the application of ZnO nanowires are discussed. © 2010 American Chemical Society.

  5. Electrical and optical behavior of ZnO nanowires irradiated by ion beam

    DEFF Research Database (Denmark)

    Lisevski, Caroline I.; Fernandes Cauduro, André Luis; Franzen, Paulo L

    2015-01-01

    Zinc oxide nanowires have been attracting much interest due to their potential use in electronics and optoelectonics devices. In this work, we report on the photoluminescence and electrical behavior of ZnO nanowires grown by vapor-liquid-solid method and irradiated with 1.2 MeV He+ ions at several...... doses. The results strongly indicates the existence of an enhanced dynamic annealing effect during the low fluence irradiations allowing it to heal low migration barrier point-defects such as oxygen interstitials (OI), zinc interstitials (ZnI), zinc antisites (ZnO) and oxygen antisites (OZn...

  6. Self-assembled ZnO agave-like nanowires and anomalous superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y H; Li, Z Y; Wang, B; Wang, C X; Chen, D H; Yang, G W [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics Science and Engineering, Zhongshan University, Guangzhou 510275 (China)

    2005-09-07

    Thin films of ZnO agave-like nanowires were prepared on amorphous carbon thin layers on silicon substrates using thermal chemical vapour transport and condensation without any metal catalysts. The unusual superhydrophobicity of the fabricated surface was measured; the water contact angle reaches 151.1 deg. On the basis of experimental and theoretical analyses, it appears likely that the biomimetic microcomposite and nanocomposite surfaces of the prepared thin films of ZnO agave-like nanowires are responsible for the excellent superhydrophobicity.

  7. Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection

    Directory of Open Access Journals (Sweden)

    Huang Po-Jung

    2009-01-01

    Full Text Available Abstract ZnO nanowires were produced using an electrospinning method and used in gas sensors for the detection of ethanol at 220 °C. This electrospinning technique allows the direct placement of ZnO nanowires during their synthesis to bridge the sensor electrodes. An excellent sensitivity of nearly 90% was obtained at a low ethanol concentration of 10 ppm, and the rest obtained at higher ethanol concentrations, up to 600 ppm, all equal to or greater than 90%.

  8. Effects of mechanical strain on optical properties of ZnO nanowire

    Directory of Open Access Journals (Sweden)

    Ali Vazinishayan

    2018-02-01

    Full Text Available The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM software package ABAQUS and three-dimensional (3D finite-difference time-domain (FDTD methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  9. Magnetic properties of ZnO nanowires with Li dopants and Zn vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Xinhong; Cai, Ningning [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, P.O. Box 72, Beijing 100876 (China); Yang, Chuanghua [School of Physics and Telecommunication Engineering, Shanxi University of Technology (SNUT), Hanzhong 723001, Shanxi (China); Chen, Jun [Beijing Applied Physics and Computational Mathematics, Beijing 100088 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, P.O. Box 72, Beijing 100876 (China)

    2016-04-30

    The electronic and magnetic properties of ZnO nanowire with Li dopants and vacancies have been investigated using first-principles density functional theory. It is found that the Zn vacancy can induce magnetism while increasing the formation energy of the system. However, the calculated results indicate that the introduction of Li-dopants will reduce the formation energy of system. We also have studied the magnetic couplings with vacancies as well as their corresponding configurations with Li-dopants for four configurations of ZnO nanowires. The results show that ferromagnetic properties can be improved/reversed after the introduction of Li-dopants. Ferromagnetic mechanism is originated from the fierce p–p hybridization of O near the Fermi level. We find that ferromagnetism of Li-doped ZnO nanowires with Zn vacancies can be realized at room temperature and they are promising spintronic materials. - Highlights: • Li-dopants will reduce the formation energy of ZnO nanowires with Zn vacancy. • The fierce p–p hybridization of O near Fermi level is responsible for FM properties. • Li-doped ZnO–V{sub Zn} nanowire is a promising FM semiconductor material.

  10. Effects of mechanical strain on optical properties of ZnO nanowire

    Science.gov (United States)

    Vazinishayan, Ali; Lambada, Dasaradha Rao; Yang, Shuming; Zhang, Guofeng; Cheng, Biyao; Woldu, Yonas Tesfaye; Shafique, Shareen; Wang, Yiming; Anastase, Ndahimana

    2018-02-01

    The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW) before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM) software package ABAQUS and three-dimensional (3D) finite-difference time-domain (FDTD) methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  11. Dynamics of the deep-level emission in ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Dongchao; Rueckmann, Ilja; Voss, Tobias [Institut fuer Festkoerperphysik, Universitaet Bremen (Germany)

    2010-07-01

    Due to its wide direct band gap and large exciton binding energy (60 meV), ZnO nanowires possess an efficient near band-edge emission (NBE) in UV range. Additional energy levels in the band gap of ZnO, commonly introduced by point defects such as oxygen or zinc vacancies and Cu impurities, can largely weaken the UV emission by providing extra recombination routes for the electrons in conduction band. In ZnO nanowires this deep-level emission band (DLE) is expected to be largely activated by tunneling processes of holes trapped in the surface depletion layer after optical excitation. We studied the dependence of the DLE and NBE intensities of ZnO nanowires on the excitation power at different temperatures. For the experiments, the fundamental (1064 nm) and frequency-tripled (355 nm) pulses of an Nd:YAG microchip laser were used. The additional infrared laser radiation was used to directly populate the defect levels with electrons from the valence band. Our results show that the additional infrared photons lead to a reduction of the DLE while the NBE is enhanced. We discuss the implications of our results for the models of DLE in ZnO nanowires.

  12. Effect of cobalt doping on the mechanical properties of ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Vahtrus, Mikk; Šutka, Andris [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50412 Tartu (Estonia); Polyakov, Boris [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Oras, Sven; Antsov, Mikk [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50412 Tartu (Estonia); Doebelin, Nicola [RMS Foundation, Bischmattstrasse 12, Bettlach 2544 (Switzerland); Institute of Geological Sciences, University of Bern, Baltzerstrasse 1–3, Bern 3012 (Switzerland); Lõhmus, Rünno; Nõmmiste, Ergo [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50412 Tartu (Estonia); Vlassov, Sergei, E-mail: vlassovs@ut.ee [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50412 Tartu (Estonia)

    2016-11-15

    In this work, we investigate the influence of doping on the mechanical properties of ZnO nanowires (NWs) by comparing the mechanical properties of pure and Co-doped ZnO NWs grown in similar conditions and having the same crystallographic orientation [0001]. The mechanical characterization included three-point bending tests made with atomic force microscopy and cantilever beam bending tests performed inside scanning electron microscopy. It was found that the Young's modulus of ZnO NWs containing 5% of Co was approximately a third lower than that of the pure ZnO NWs. Bending strength values were comparable for both materials and in both cases were close to theoretical strength indicating high quality of NWs. Dependence of mechanical properties on NW diameter was found for both doped and undoped ZnO NWs. - Highlights: •Effect of Co doping on the mechanical properties of ZnO nanowires is studied. •Co substitutes Zn atoms in ZnO crystal lattice. •Co addition affects crystal lattice parameters. •Co addition results in significantly decreased Young's modulus of ZnO. •Bending strength for doped and undoped wires is close to the theoretical strength.

  13. Surfactant-assisted carbon doping in ZnO nanowires using Poly Ethylene Glycol (PEG)

    Energy Technology Data Exchange (ETDEWEB)

    Amanullah, Malik; Javed, Qurat-ul-Ain, E-mail: Quratulain@sns.nust.edu.pk; Rizwan, Syed

    2016-09-01

    Zinc Oxide (ZnO) provides unique properties owing to its wide bandgap, large resistivity range and possibility to tune the physical properties. The surfactant assisted carbon doping was made possible due to the lowering of surface energy. The ZnO and carbon doped ZnO (C-ZnO) nanowires fabricated by hydrothermal process, Poly Ethylene Glycol (PEG) is used as surfactant in hydrothermal synthesis followed by post growth annealing treatment at 600 °C–700 °C. At 5%–10% of diluted PEG carbon is doped in ZnO. The crystallinity, structural morphology and elemental composition analysis for ZnO and C-ZnO nanowires were carried out using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy techniques respectively. Carbon doping in ZnO nanowires in the presence of different percentage of surfactant is explained by calculating the change in surface energy with respect to change in PEG molecule concentration. It was found that the surface energy per molecule modulates from 3.92 × 10{sup −8} J/m{sup 2} to 8.16 × 10{sup −7} J/m{sup 2} in the PEG concentration range between 5% and 10%. Our results provides a new theoretical calculations, implemented on real system, to observe the details of PEG-assisted Carbon doping in II-VI semiconductor nanowires. - Highlights: • ZnO and C-ZnO was synthesized by PEG assisted post growth annealing process. • At 5% and 10% of PEG successful synthesis of C-ZnO was found. • XRD, SEM and EDX characterizations confirm the successful synthesis of ZnO and C-ZnO. • Change in surface energy with respect to PEG molecule concentration was calculated.

  14. Quantum dots coupled ZnO nanowire-array panels and their photocatalytic activities.

    Science.gov (United States)

    Liao, Yulong; Que, Wenxiu; Zhang, Jin; Zhong, Peng; Yuan, Yuan; Qiu, Xinku; Shen, Fengyu

    2013-02-01

    Fabrication and characterization of a heterojunction structured by CdS quantum dots@ZnO nanowire-array panels were presented. Firstly, ZnO nanowire-array panels were prepared by using a chemical bath deposition approach where wurtzite ZnO nanowires with a diameter of about 100 nm and 3 microm in length grew perpendicularly to glass substrate. Secondly, CdS quantum dots were deposited onto the surface of the ZnO nanowire-arrays by using successive ion layer absorption and reaction method, and the CdS shell/ZnO core heterojunction were thus obtained. Field emission scanning electron microscopy and transmission electron microscope were employed to characterize the morphological properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. X-ray diffraction was adopted to characterize the crystalline properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. Methyl orange was taken as a model compound to confirm the photocatalytic activities of the CdS shell/ZnO core heterojunction. Results indicate that CdS with narrow band gap not only acts as a visible-light sensitizer but also is responsible for an effective charge separation.

  15. A simple photolytic reactor employing Ag-doped ZnO nanowires for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Udom, Innocent; Zhang, Yangyang [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Ram, Manoj K., E-mail: mkram@usf.edu [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Stefanakos, Elias K. [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Hepp, Aloysius F. [Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Fl 33620 (United States); Elzein, Radwan; Schlaf, Rudy [Department of Electrical Engineering, University of South Florida, Tampa, Fl 33620 (United States); Goswami, D. Yogi [NASA Glenn Research Center, Research and Technology Directorate, MS 302-1, 21000 Brookpark Road, Cleveland, OH 44135 (United States)

    2014-08-01

    Well-aligned native zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) films were deposited on borosilicate glass via a simple, low-cost, low-temperature, scalable hydrothermal process. The as-synthesized ZnO and Ag-ZnO films were characterized by X-ray diffraction; scanning electron microscopy, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. A simple photolytic reactor was fabricated and later used to find the optimum experimental conditions for photocatalytic performance. The photodegradation of methyl orange in water was investigated using as-prepared ZnO and Ag-ZnO nanowires, and was compared to P25 (a commercial photocatalyst) in both visible and UV radiations. The P25 and Ag-ZnO showed a similar photodegradation performance under UV light, but Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. The optimized doping of Ag in Ag-ZnO enhanced photocatalytic activity in a simple reactor design and indicated potential applicability of Ag-ZnO for large-scale purification of water under solar irradiation. - Highlights: • Well-aligned zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) nanowires were developed. • Simple and effective photolytic reactor was fabricated for water purification. • Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. • Amount of Ag atoms in Ag-ZnO nanowires is a key to increase photocatalytic activity.

  16. A simple photolytic reactor employing Ag-doped ZnO nanowires for water purification

    International Nuclear Information System (INIS)

    Udom, Innocent; Zhang, Yangyang; Ram, Manoj K.; Stefanakos, Elias K.; Hepp, Aloysius F.; Elzein, Radwan; Schlaf, Rudy; Goswami, D. Yogi

    2014-01-01

    Well-aligned native zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) films were deposited on borosilicate glass via a simple, low-cost, low-temperature, scalable hydrothermal process. The as-synthesized ZnO and Ag-ZnO films were characterized by X-ray diffraction; scanning electron microscopy, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. A simple photolytic reactor was fabricated and later used to find the optimum experimental conditions for photocatalytic performance. The photodegradation of methyl orange in water was investigated using as-prepared ZnO and Ag-ZnO nanowires, and was compared to P25 (a commercial photocatalyst) in both visible and UV radiations. The P25 and Ag-ZnO showed a similar photodegradation performance under UV light, but Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. The optimized doping of Ag in Ag-ZnO enhanced photocatalytic activity in a simple reactor design and indicated potential applicability of Ag-ZnO for large-scale purification of water under solar irradiation. - Highlights: • Well-aligned zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) nanowires were developed. • Simple and effective photolytic reactor was fabricated for water purification. • Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. • Amount of Ag atoms in Ag-ZnO nanowires is a key to increase photocatalytic activity

  17. Synthesis and electrical characterization of vertically-aligned ZnO–CuO hybrid nanowire p–n junctions

    International Nuclear Information System (INIS)

    Pukird, Supakorn; Song, Wooseok; Noothongkaew, Suttinart; Kim, Seong Ku; Min, Bok Ki; Kim, Seong Jun; Kim, Ki Woong; Myung, Sung; An, Ki-Seok

    2015-01-01

    Highlights: • Vertically-aligned ZnO–CuO hybrid nanowire arrays were synthesized by a two-step thermal chemical vapor deposition process. • The diameter of parallel-connected ZnO and CuO NWs were estimated to be 146 ± 12 nm and 55 ± 11 nm, respectively, and the formation of high-quality hexagonal ZnO and monoclinic CuO NWs were observed. • Clear rectifying behavior related with thermionic emission of carriers and the presence of an electrical potential barrier between the ZnO and CuO NWs were observed. - Abstract: In order to form nanowire (NW)-based p–n junctions, vertically-aligned ZnO–CuO hybrid NW arrays were synthesized by a two-step thermal chemical vapor deposition process. The diameter of parallel-connected ZnO and CuO NWs were estimated to be 146 ± 12 nm and 55 ± 11 nm, respectively, as observed by scanning electron microscopy. Chemical and structural characterizations of ZnO–CuO hybrid NW arrays were performed using X-ray photoelectron spectroscopy and X-ray diffraction, resulting in the formation of high-quality hexagonal ZnO and monoclinic CuO NWs. The temperature dependence of I–V curves and impedance spectra suggested that clear rectifying behavior related with thermionic emission of carriers and the presence of an electrical potential barrier between the ZnO and CuO NWs

  18. Spatial mapping of exciton lifetimes in single ZnO nanowires

    Directory of Open Access Journals (Sweden)

    J. S. Reparaz

    2013-07-01

    Full Text Available We investigate the spatial dependence of the exciton lifetimes in single ZnO nanowires. We have found that the free exciton and bound exciton lifetimes exhibit a maximum at the center of nanowires, while they decrease by 30% towards the tips. This dependence is explained by considering the cavity-like properties of the nanowires in combination with the Purcell effect. We show that the lifetime of the bound-excitons scales with the localization energy to the power of 3/2, which validates the model of Rashba and Gurgenishvili at the nanoscale.

  19. ZnO nanowire co-growth on SiO2 and C by carbothermal reduction and vapour advection

    International Nuclear Information System (INIS)

    Vega, N C; Caram, J; Grinblat, G; Comedi, D; Wallar, R; LaPierre, R R; Tirado, M

    2012-01-01

    Vertically aligned ZnO nanowires (NWs) were grown on Au-nanocluster-seeded amorphous SiO 2 films by the advective transport and deposition of Zn vapours obtained from the carbothermal reaction of graphite and ZnO powders. Both the NW volume and visible-to-UV photoluminescence ratio were found to be strong functions of, and hence could be tailored by, the (ZnO+C) source–SiO 2 substrate distance. We observe C flakes on the ZnO NWs/SiO 2 substrates which exhibit short NWs that developed on both sides. The SiO 2 and C substrates/NW interfaces were studied in detail to determine growth mechanisms. NWs on Au-seeded SiO 2 were promoted by a rough ZnO seed layer whose formation was catalysed by the Au clusters. In contrast, NWs grew without any seed on C. A correlation comprising three orders of magnitude between the visible-to-UV photoluminescence intensity ratio and the NW volume is found, which results from a characteristic Zn partial pressure profile that fixes both O deficiency defect concentration and growth rate. (paper)

  20. Growth of ZnO nanowires on polypropylene membrane surface—Characterization and reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Bojarska, Marta, E-mail: m.bojarska@ichip.pw.edu.pl [Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw (Poland); Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117 (Germany); Nowak, Bartosz, E-mail: novakbartosz@gmail.com [Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw (Poland); Skowroński, Jarosław, E-mail: jaroslaw.skowronski@itee.radom.pl [Institute for Sustainable Technologies—National Research Institute, Pułaskiego 6/10, 26-600 Radom (Poland); Piątkiewicz, Wojciech, E-mail: w.piatkiewicz@polymemtech.com [Institute for Sustainable Technologies—National Research Institute, Pułaskiego 6/10, 26-600 Radom (Poland); PolymemTech Sp. z o.o., al. Niepodległości 118/90, 02-577 Warsaw (Poland); Gradoń, Leon, E-mail: l.gradon@ichip.pw.edu.pl [Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw (Poland)

    2017-01-01

    Highlights: • ZnO nanowires were grown on a polypropylene microfiltration capillary membrane. • Plasma treatment was used for membrane activation and hydrophilization. • The photocatalytic/antibacterial properties were studied upon light irradiation. • PP/ZnO nanowires membrane show good photocatalytic and antibacterial activity. • We report a new method for obtaining reactive membranes with ZnO nanowires. - Abstract: Need for a new membrane is clearly visible in recent studies, mostly due to the fouling phenomenon. Authors, focused on problem of biofouling caused by microorganisms that are present in water environment. An attempt to form a new membrane with zinc oxide (ZnO) nanowires was made; where plasma treatment was used as a first step of modification followed by chemical bath deposition. Such membrane will exhibit additional reactive properties. ZnO, because of its antibacterial and photocatalytic properties, is more and more often used in commercial applications. The authors used SEM imaging, measurement of the contact angle, XRD and the FT–IR analysis for membrane characterization. Amount of ZnO deposited on membrane surface was also investigated by dithizone method. Photocatalytic properties of such membranes were examined through methylene blue and humic acid degradation in laboratory scale modules with LEDs as either: wide range white or UV light source. Antibacterial and antifouling properties of polypropylene membranes modified with ZnO nanowires were examined through a series of tests involving microorganisms: model gram-positive and −negative bacteria. The obtained results showed that it is possible to modify the membrane surface in such a way, that additional reactive properties will be given. Thus, not only did the membrane become a physical barrier, but also turned out to be a reactive one.

  1. Highly aligned vertical GaN nanowires using submonolayer metal catalysts

    Science.gov (United States)

    Wang, George T [Albuquerque, NM; Li, Qiming [Albuquerque, NM; Creighton, J Randall [Albuquerque, NM

    2010-06-29

    A method for forming vertically oriented, crystallographically aligned nanowires (nanocolumns) using monolayer or submonolayer quantities of metal atoms to form uniformly sized metal islands that serve as catalysts for MOCVD growth of Group III nitride nanowires.

  2. Vertically integrated logic circuits constructed using ZnO-nanowire-based field-effect transistors on plastic substrates.

    Science.gov (United States)

    Kang, Jeongmin; Moon, Taeho; Jeon, Youngin; Kim, Hoyoung; Kim, Sangsig

    2013-05-01

    ZnO-nanowire-based logic circuits were constructed by the vertical integration of multilayered field-effect transistors (FETs) on plastic substrates. ZnO nanowires with an average diameter of -100 nm were synthesized by thermal chemical vapor deposition for use as the channel material in FETs. The ZnO-based FETs exhibited a high I(ON)/I(OFF) of > 10(6), with the characteristic of n-type depletion modes. For vertically integrated logic circuits, three multilayer FETs were sequentially prepared. The stacked FETs were connected in series via electrodes, and C-PVPs were used for the layer-isolation material. The NOT and NAND gates exhibited large logic-swing values of -93%. These results demonstrate the feasibility of three dimensional flexible logic circuits.

  3. Electron transport properties in ZnO nanowires/poly(3-hexylthiophene) hybrid nanostructure

    International Nuclear Information System (INIS)

    Cheng Ke; Cheng Gang; Wang Shujie; Fu Dongwei; Zou Bingsuo; Du Zuliang

    2010-01-01

    The ZnO nanowires (NWs) array/poly(3-hexylthiophene) (P3HT) hybrid prototype device was fabricated. An ultraviolet (UV) light of λ = 350 nm is used to investigate the photo-electric properties of the ZnO NWs array and hybrid structure. In this way, we can avoid the excitation of P3HT, which can give us a real electron transport ability of ZnO NWs itself. Our results demonstrated a higher and faster photo-electric response of 3 s for the hybrid structure while 9 s for the ZnO NWs array. The surface states related slow photo-electric response was also observed for them. The charge transfer mechanism and the influence of surface states were discussed. The current work provides us profound understandings on the electron transport ability of ZnO NWs array in a working hybrid polymer solar cell, which is crucial for optimizing the device performance.

  4. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan; Heo, Junseok; Bayraktaroglu, Adrian; Guo, Wei; Ng, Tien Khee; Phillips, Jamie; Ooi, Boon S.; Bhattacharya, Pallab

    2012-01-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non

  5. Magnetic properties in (Mn,Fe)-codoped ZnO nanowire

    International Nuclear Information System (INIS)

    Cao, Huawei; Lu, Pengfei; Cong, Zixiang; Yu, Zhongyuan; Cai, Ningning; Zhang, Xianlong; Gao, Tao; Wang, Shumin

    2013-01-01

    Using the first-principles density functional theory, we have studied the electronic structures and magnetic properties of Mn/Fe codoped ZnO nanowires systematically. The calculated results of formation energy indicate that the configuration of the lowest energy where Mn and Fe atoms form nearest neighbors on the outer cylindrical surface layer along the [0001] direction, will be determined. The magnetic coupling of 8 types of Mn/Fe codoped ZnO nanowires was investigated and ferromagnetic state was found in certain configurations. The mechanism is from the fierce hybridization between 3d of Mn and Fe with O 2p near the Fermi level. The relative energy difference for configuration VIII is 0.221 eV, which indicates that room temperature ferromagnetism could be obtained in such a system and Mn/Fe codoped ZnO nanowires are a promising nanoscale spintronic material. - Highlights: • The stable structure prefers that Mn/Fe form nearest neighbors on the outer surface. • The fierce p–d hybridization is responsible for ferromagnetic (FM) coupling. • Mn/Fe codoped ZnO nanowire is a promising FM semiconductor material

  6. Magnetic properties in (Mn,Fe)-codoped ZnO nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huawei [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Cong, Zixiang [School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100976 (China); Yu, Zhongyuan; Cai, Ningning; Zhang, Xianlong [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Gao, Tao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wang, Shumin [Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-12-02

    Using the first-principles density functional theory, we have studied the electronic structures and magnetic properties of Mn/Fe codoped ZnO nanowires systematically. The calculated results of formation energy indicate that the configuration of the lowest energy where Mn and Fe atoms form nearest neighbors on the outer cylindrical surface layer along the [0001] direction, will be determined. The magnetic coupling of 8 types of Mn/Fe codoped ZnO nanowires was investigated and ferromagnetic state was found in certain configurations. The mechanism is from the fierce hybridization between 3d of Mn and Fe with O 2p near the Fermi level. The relative energy difference for configuration VIII is 0.221 eV, which indicates that room temperature ferromagnetism could be obtained in such a system and Mn/Fe codoped ZnO nanowires are a promising nanoscale spintronic material. - Highlights: • The stable structure prefers that Mn/Fe form nearest neighbors on the outer surface. • The fierce p–d hybridization is responsible for ferromagnetic (FM) coupling. • Mn/Fe codoped ZnO nanowire is a promising FM semiconductor material.

  7. Enhanced Response Speed of ZnO Nanowire Photodetector by Coating with Photoresist

    Directory of Open Access Journals (Sweden)

    Xing Yang

    2016-01-01

    Full Text Available Spin-coating photoresist film on ZnO nanowire (NW was introduced into the fabrication procedure to improve photoresponse and recovery speed of a ZnO NW ultraviolet photoelectric detector. A ZnO NW was first assembled on prefabricated electrodes by dielectrophoresis. Then, photoresist was spin-coated on the nanowire. Finally, a metal layer was electrodeposited on the nanowire-electrode contacts. The response properties and I-V characteristics of ZnO NW photodetector were investigated by measuring the electrical current under different conditions. Measurement results demonstrated that the detector has an enhanced photoresponse and recovery speed after coating the nanowire with photoresist. The photoresponse and recovery characteristics of detectors with and without spin-coating were compared to demonstrate the effects of photoresist and the enhancement of response and recovery speed of the photodetector is ascribed to the reduced surface absorbed oxygen molecules and binding effect on the residual oxygen molecules after photoresist spin-coating. The results demonstrated that surface coating may be an effective and simple way to improve the response speed of the photoelectric device.

  8. Ferromagnetism in Gd doped ZnO nanowires: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Aravindh, S. Assa; Schwingenschloegl, Udo, E-mail: udo.schwingenschloegl@kaust.edu.sa, E-mail: iman.roqan@kaust.edu.sa; Roqan, Iman S., E-mail: udo.schwingenschloegl@kaust.edu.sa, E-mail: iman.roqan@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

    2014-12-21

    In several experimental studies, room temperature ferromagnetism in Gd-doped ZnO nanostructures has been achieved. However, the mechanism and the origin of the ferromagnetism remain controversial. We investigate the structural, magnetic, and electronic properties of Zn{sub 48}O{sub 48} nanowires doped with Gd, using density functional theory. Our findings indicate that substitutionally incorporated Gd atoms prefer occupying the surface Zn sites. Moreover, the formation energy increases with the distance between Gd atoms, signifying that no Gd-Gd segregation occurs in the nanowires within the concentration limit of ≤2%. Gd induces ferromagnetism in ZnO nanowires with magnetic coupling energy up to 21 meV in the neutral state, which increases with additional electron and O vacancy, revealing the role of carriers in magnetic exchange. The potential for achieving room temperature ferromagnetism and high T{sub C} in ZnO:Gd nanowires is evident from the large ferromagnetic coupling energy (200 meV) obtained with the O vacancy. Density of states shows that Fermi level overlaps with Gd f states with the introduction of O vacancy, indicating the possibility of s-f coupling. These results will assist in understanding experimental findings in Gd-doped ZnO nanowires.

  9. Ferromagnetism in Gd doped ZnO nanowires: A first principles study

    KAUST Repository

    Aravindh, S. Assa

    2014-12-19

    In several experimental studies, room temperature ferromagnetism in Gd-doped ZnO nanostructures has been achieved. However, the mechanism and the origin of the ferromagnetism remain controversial. We investigate the structural, magnetic, and electronic properties of Zn 48O48 nanowires doped with Gd, using density functional theory. Our findings indicate that substitutionally incorporated Gd atoms prefer occupying the surface Zn sites. Moreover, the formation energy increases with the distance between Gd atoms, signifying that no Gd-Gd segregation occurs in the nanowires within the concentration limit of ≤2%. Gd induces ferromagnetism in ZnO nanowires with magnetic coupling energy up to 21 meV in the neutral state, which increases with additional electron and O vacancy, revealing the role of carriers in magnetic exchange. The potential for achieving room temperature ferromagnetism and high TC in ZnO:Gd nanowires is evident from the large ferromagnetic coupling energy (200 meV) obtained with the O vacancy. Density of states shows that Fermi level overlaps with Gd f states with the introduction of O vacancy, indicating the possibility of s-f coupling. These results will assist in understanding experimental findings in Gd-doped ZnO nanowires.

  10. Ferromagnetism in Gd doped ZnO nanowires: A first principles study

    KAUST Repository

    Aravindh, S. Assa; Schwingenschlö gl, Udo; Roqan, Iman S.

    2014-01-01

    In several experimental studies, room temperature ferromagnetism in Gd-doped ZnO nanostructures has been achieved. However, the mechanism and the origin of the ferromagnetism remain controversial. We investigate the structural, magnetic, and electronic properties of Zn 48O48 nanowires doped with Gd, using density functional theory. Our findings indicate that substitutionally incorporated Gd atoms prefer occupying the surface Zn sites. Moreover, the formation energy increases with the distance between Gd atoms, signifying that no Gd-Gd segregation occurs in the nanowires within the concentration limit of ≤2%. Gd induces ferromagnetism in ZnO nanowires with magnetic coupling energy up to 21 meV in the neutral state, which increases with additional electron and O vacancy, revealing the role of carriers in magnetic exchange. The potential for achieving room temperature ferromagnetism and high TC in ZnO:Gd nanowires is evident from the large ferromagnetic coupling energy (200 meV) obtained with the O vacancy. Density of states shows that Fermi level overlaps with Gd f states with the introduction of O vacancy, indicating the possibility of s-f coupling. These results will assist in understanding experimental findings in Gd-doped ZnO nanowires.

  11. Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics.

    Science.gov (United States)

    Lin, Chenxi; Povinelli, Michelle L

    2011-09-12

    We design a partially aperiodic, vertically-aligned silicon nanowire array that maximizes photovoltaic absorption. The optimal structure is obtained using a random walk algorithm with transfer matrix method based electromagnetic forward solver. The optimal, aperiodic structure exhibits a 2.35 times enhancement in ultimate efficiency compared to its periodic counterpart. The spectral behavior mimics that of a periodic array with larger lattice constant. For our system, we find that randomly-selected, aperiodic structures invariably outperform the periodic array.

  12. ZnO nanowires: Synthesis and charge transfer mechanism in the detection of ammonia vapour

    Science.gov (United States)

    Nancy Anna Anasthasiya, A.; Ramya, S.; Rai, P. K.; Jeyaprakash, B. G.

    2018-01-01

    ZnO nanowires with hexagonal wurtzite structure were grown on the glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method. Both experimental and theoretical studies demonstrated that NH3 chemisorbed and transferred the charge to the surface of the nanowire via its nitrogen site to the zinc site of ZnO nanowires, leading to the detection of NH3 vapour. The adsorbed ammonia dissociated into NH2 and H due to steric repulsion, and then into N2 and H2 gas. The formation of the N2 gas during the desorption process confirmed by observing peak at 14 and 28 m/z in the GC-MS spectrum.

  13. High-performance UV detector made of ultra-long ZnO bridging nanowires

    International Nuclear Information System (INIS)

    Li Yanbo; Della Valle, Florent; Simonnet, Mathieu; Yamada, Ichiro; Delaunay, Jean-Jacques

    2009-01-01

    A nanowatt UV photoconductive detector made up of ultra-long (∼100 μm) ZnO bridging nanowires has been fabricated by a single-step chemical vapor deposition (CVD) process. The electrodes, forming comb-shaped thick ZnO layers, and the sensing elements, consisting of ZnO nanowires bridging the electrodes, were fabricated simultaneously in a single-step CVD process. The device showed drastic changes (10-10 5 times) in current under a wide range of UV irradiances (10 -8 -10 -2 W cm -2 ). Moreover, the detector exhibited fast response (rise and decay times of the order of 1 s) to UV illumination in air, but no response to visible light (hν<3.2 eV). Our approach provides a simple and cost-effective way to fabricate high-performance 'visible-blind' UV detectors.

  14. Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs

    International Nuclear Information System (INIS)

    He Ying; Wang Junan; Pei Changlong; Song Jizhong; Zhu Di; Chen Jie

    2010-01-01

    A novel high transparent thermolytic epoxy-silicone for high-brightness light-emitting diode (HB-LED) is introduced, which was synthesized by polymerization using silicone matrix via diglycidyl ether bisphenol-A epoxy resin (DGEBA) as reinforcing agent, and filling ZnO nanowires to modify thermal conductivity and control refractive index of the hybrid material. The interactions of ZnO nanowires with polymers are mediated by the ligands attached to the nanoparticles. Thus, the ligands markedly influence the properties of ZnO nanowires/epoxy-silicone composites. The refractive indices of the prepared hybrid adhesives can be tuned by the ZnO nanowires from 1.4711 to 1.5605. Light transmittance can be increased by 20% from 80 to 95%. The thermal conductivity of the transparent packaging adhesives is 0.89-0.90 W/mK.

  15. Title: Using Alignment and 2D Network Simulations to Study Charge Transport Through Doped ZnO Nanowire Thin Film Electrodes

    KAUST Repository

    Phadke, Sujay

    2011-09-30

    Factors affecting charge transport through ZnO nanowire mat films were studied by aligning ZnO nanowires on substrates and coupling experimental measurements with 2D nanowire network simulations. Gallium doped ZnO nanowires were aligned on thermally oxidized silicon wafer by shearing a nanowire dispersion in ethanol. Sheet resistances of nanowire thin films that had current flowing parallel to nanowire alignment direction were compared to thin films that had current flowing perpendicular to nanowire alignment direction. Perpendicular devices showed ∼5 fold greater sheet resistance than parallel devices supporting the hypothesis that aligning nanowires would increase conductivity of ZnO nanowire electrodes. 2-D nanowire network simulations of thin films showed that the device sheet resistance was dominated by inter-wire contact resistance. For a given resistivity of ZnO nanowires, the thin film electrodes would have the lowest possible sheet resistance if the inter-wire contact resistance was one order of magnitude lower than the single nanowire resistance. Simulations suggest that the conductivity of such thin film devices could be further enhanced by using longer nanowires. Solution processed Gallium doped ZnO nanowires are aligned on substrates using an innovative shear coating technique. Nanowire alignment has shown improvement in ZnO nanowire transparent electrode conductivity. 2D network simulations in conjunction with electrical measurements have revealed different regimes of operation of nanowire thin films and provided a guideline for improving electrical performance of nanowire electrodes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication

    Science.gov (United States)

    Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke

    2015-01-13

    Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.

  17. Determination of the specific resistance of individual freestanding ZnO nanowires with the low energy electron point source microscope

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Dirk Henning; Beyer, Andre; Voelkel, Berthold; Goelzhaeuser, Armin [Physik Supramolekularer Systeme, Universitaet Bielefeld (Germany); Schlenker, Eva; Bakin, Andrey; Waag, Andreas [Institut fuer Halbleitertechnik, Technische Universitaet Braunschweig (Germany)

    2008-07-01

    A low energy electron point source (LEEPS) microscope is used to determine the electrical conductivity of individual freestanding ZnO nanowires in UHV. The nanowires were contacted with a manipulation tip and I-V curves were taken at different wire lengths. From those, the specific resistance was calculated and separated from the contact resistance. By comparing the specific resistances of ZnO nanowires with diameters between 1100 and 48 nm, a large surface contribution for the thin nanowires was found. A geometric model for separation between surface and bulk contributions is given. The results of electrical transport measurements on vapor phase grown ZnO nanowires are discussed, as well as the size dependence of the wire resistance.

  18. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.; Golberg, D., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3058577 (Japan); Xu, Z., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kvashnin, D. G. [National University of Science and Technology, MISIS, Leninskiy Prospect 4, Moscow 119049 (Russian Federation); Tang, D.-M.; Xue, Y. M.; Bando, Y. [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Sorokin, P. B. [National University of Science and Technology, MISIS, Leninskiy Prospect 4, Moscow 119049 (Russian Federation); Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141700 (Russian Federation)

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  19. Electrodeposition of ZnO nano-wires lattices with a controlled morphology; Electrodepot de reseaux de nanofils de ZnO a morphologie controlee

    Energy Technology Data Exchange (ETDEWEB)

    Elias, J.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C. [Centre National de la Recherche Scientifique (CNRS), Lab. de Chimie Metallurgique des Terres Rares, UPR 209, 94 - Thiais (France)

    2006-07-01

    In this work, it is shown that the electrodeposition is a changeable low cost method which allows, according to the synthesis conditions, to obtain not only plane thin layers of ZnO but different nano-structures too. In a first part, are presented the formation conditions of a compact thin layer of nanocrystalline ZnO electrodeposited on a conducing glass substrate. This layer plays a buffer layer role for the deposition of a lattice of ZnO nano-wires. The step of nano-wires nucleation is not only determined by the electrochemical parameters but by the properties of the buffer layer too as the grain sizes and its thickness. In this context, the use of an electrodeposition method in two steps allows to control the nano-wires length and diameter and their density. The morphology and the structural and optical properties of these nano-structures have been analyzed by different techniques as the scanning and transmission electron microscopy, the X-ray diffraction and the optical spectroscopy. These studies show that ZnO nano-structures are formed of monocrystalline ZnO nano-wires, presenting a great developed surface and a great optical transparency in the visible. These properties make ZnO a good material for the development of nano-structured photovoltaic cells as the extremely thin absorber cells (PV ETA) or those with dye (DSSC) which are generally prepared with porous polycrystalline TiO{sub 2}. Its replacement by a lattice of monocrystalline ZnO nano-wires allows to reduce considerably the number of grain boundaries and in consequence to improve the transport of the electrons. The results are then promising for the PV ETA cells with ZnO nano-wires. (O.M.)

  20. Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Cao, B Q; Lorenz, M; Rahm, A; Wenckstern, H von; Czekalla, C; Lenzner, J; Benndorf, G; Grundmann, M

    2007-01-01

    Phosphorus-doped ZnO (ZnO:P) nanowires were successfully prepared by a novel high-pressure pulsed-laser deposition process using phosphorus pentoxide as the dopant source. Detailed cathodoluminescence studies of single ZnO:P nanowires revealed characteristic phosphorus acceptor-related peaks: neutral acceptor-bound exciton emission (A 0 , X, 3.356 eV), free-to-neutral-acceptor emission (e, A 0 , 3.314 eV), and donor-to-acceptor pair emission (DAP, ∼3.24 and ∼3.04 eV). This means that stable acceptor levels with a binding energy of about 122 meV have been induced in the nanowires by phosphorus doping. Moreover, the induced acceptors are distributed homogeneously along the doped nanowires

  1. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei

    2009-03-11

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive atomic force microscope (AFM) in contact mode. The output voltage pulse is generated when the tip contacts the stretched side (positive piezoelectric potential side) of the NW. In contrast, the n-type ZnO NW produces negative output voltage when scanned by the AFM tip, and the output voltage pulse is generated when the tip contacts the compressed side (negative potential side) of the NW. In reference to theoretical simulation, these experimentally observed phenomena have been systematically explained based on the mechanism proposed for a nanogenerator. © 2009 American Chemical Society.

  2. Diameter optimization of VLS-synthesized ZnO nanowires, using statistical design of experiment

    International Nuclear Information System (INIS)

    Shafiei, Sepideh; Nourbakhsh, Amirhasan; Ganjipour, Bahram; Zahedifar, Mostafa; Vakili-Nezhaad, Gholamreza

    2007-01-01

    The possibility of diameter optimization of ZnO nanowires by using statistical design of experiment (DoE) is investigated. In this study, nanowires were synthesized using a vapor-liquid-solid (VLS) growth method in a horizontal reactor. The effects of six synthesis parameters (synthesis time, synthesis temperature, thickness of gold layer, distance between ZnO holder and substrate, mass of ZnO and Ar flow rate) on the average diameter of a ZnO nanowire were examined using the fractional factorial design (FFD) coupled with response surface methodology (RSM). Using a 2 III 6-3 FFD, the main effects of the thickness of the gold layer, synthesis temperature and synthesis time were concluded to be the key factors influencing the diameter. Then Box-Behnken design (BBD) was exploited to create a response surface from the main factors. The total number of required runs for the DoE process is 25, 8 runs for FFD parameter screening and 17 runs for the response surface obtained by BBD. Three extra runs are done to confirm the predicted results

  3. Effects of ZnO nanowire synthesis parameters on the photovoltaic performance of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juneui; Myoung, Jihyun; Lim, Sangwoo, E-mail: swlim@yonsei.ac.kr

    2012-06-30

    Determination of the effects of ZnO nanowires on the efficiency of ZnO nanowire-based dye-sensitized solar cells (DSSCs) is important. In this study, we determined the effects of different OH{sup -} precursors, concentrations, the ratio of zinc nitrate to hexamethylene tetramine (HMT), and the hydrothermal synthesis temperature on the physical, crystal, and optical properties of ZnO nanowires and investigated the performance of the resulting DSSCs. We observed that ZnO nanowires synthesized using an equimolar ratio of HMT to zinc nitrate yielded a DSSC with high incident photon-to-current efficiency (IPCE), cell efficiency, short circuit current density (J{sub sc}), and fill factor (FF), and low ZnO-dye-electrolyte interface resistance due to an increased amount of dye and a decreased density of defects. Furthermore, ZnO nanowires made using optimal concentrations and ratios of zinc nitrate to HMT had a high surface area and low defect density. All the photovoltaic performance parameters of DSSCs assessed such as IPCE, cell efficiency, J{sub sc}, open circuit potential (V{sub oc}), and FF increased with synthesis temperature, which was related to a decrease in the resistance at the ZnO-dye-electrolyte interface. We attributed these results to an increased amount of dye facilitated by a large nanowire surface area and fast electron transfer because of the improved crystalline structure of the ZnO nanowires and their low defect density. By optimizing the ZnO nanowires, we increased DSSC efficiency to 0.26% using ZnO nanowires synthesized with 25 mM of both zinc nitrate and HMT at 90 Degree-Sign C, while only a 0.02% increase in efficiency was obtained when NH{sub 4}OH was used as OH{sup -} precursor. - Highlights: Black-Right-Pointing-Pointer Fabrication of ZnO nanowire-based dye-sensitized solar cells (DSSCs) Black-Right-Pointing-Pointer Correlation of synthesis parameters with ZnO nanowires' properties and DSSC performance Black

  4. First principles investigations on the electronic structure of anchor groups on ZnO nanowires and surfaces

    International Nuclear Information System (INIS)

    Dominguez, A.; Lorke, M.; Rosa, A. L.; Frauenheim, Th.; Schoenhalz, A. L.; Dalpian, G. M.; Rocha, A. R.

    2014-01-01

    We report on density functional theory investigations of the electronic properties of monofunctional ligands adsorbed on ZnO-(1010) surfaces and ZnO nanowires using semi-local and hybrid exchange-correlation functionals. We consider three anchor groups, namely thiol, amino, and carboxyl groups. Our results indicate that neither the carboxyl nor the amino group modify the transport and conductivity properties of ZnO. In contrast, the modification of the ZnO surface and nanostructure with thiol leads to insertion of molecular states in the band gap, thus suggesting that functionalization with this moiety may customize the optical properties of ZnO nanomaterials.

  5. Passivation of ZnO Nanowire Guests and 3D Inverse Opal Host Photoanodes for Dye-Sensitized Solar Cells

    KAUST Repository

    Labouchere, Philippe; Chandiran, Aravind Kumar; Moehl, Thomas; Harms, Hauke; Chavhan, Sudam; Tena-Zaera, Ramon; Nazeeruddin, Mohammad Khaja; Graetzel, Michael; Tetreault, Nicolas

    2014-01-01

    A hierarchical host-guest nanostructured photoanode is reported for dye-sensitized solar cells. It is composed of ZnO nanowires grown in situ into the macropores of a 3D ZnO inverse opal structure, which acts both as a seed layer and as a conductive

  6. Analysis of surface states in ZnO nanowire field effect transistors

    International Nuclear Information System (INIS)

    Shao, Ye; Yoon, Jongwon; Kim, Hyeongnam; Lee, Takhee; Lu, Wu

    2014-01-01

    Highlights: • The electron transport in ZnO nanowire FETs is space charged limited below a trap temperature. • Metallic contacts to ZnO nanowires exhibit non-linear behavior with a Schottky barrier height of ∼0.35 eV. • The surface state density is in the range of 1.04 × 10 10 –1.24 × 10 10 /cm 2 . • The trap activation energy is ∼0.26 eV. - Abstract: Nanowires (NWs) have attracted considerable interests for scaled electronic and optoelectronic device applications. However, NW based semiconductor devices normally suffer from surface states due to the existence of dangling bonds or surface reconstruction. Because of their large surface-to-volume ratio, surface states in NWs can easily affect the metallic contacts to NWs and electron transport in NW. Here, we present ZnO NW surface analysis by performing current–voltage characterization on ZnO NW Schottky barrier field effect transistors with different metal contacts (Ti, Al, Au) at both room temperature and cryogenic temperature. Our results show that three metal contacts are all Schottky contacts to ZnO NWs due to surface states. Our further study reveals: (a) the surface states related Schottky barrier height (SBH) can be extracted from a back to back Schottky diodes model and the SBH values are in the range of 0.34–0.37 eV for three metal contacts; (b) the trap activation energy determined from the Arrhenius plots of different Schottky metal contacts is in the range of 0.23–0.29 eV, which is oxygen vacancies related; and (c) based on the space-charge-limited model, the surface state density of ZnO NW is in the range of 1.04 × 10 10 –1.24 × 10 10 /cm 2

  7. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes.

    Science.gov (United States)

    Forticaux, Audrey; Hacialioglu, Salih; DeGrave, John P; Dziedzic, Rafal; Jin, Song

    2013-09-24

    We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates. Using transmission electron microscopy, heteroepitaxy was found between the basal planes of CGO nanoplates and ZnO NWs, which are their respective (001) crystallographic planes, by the observation of a hexagonal Moiré fringes pattern resulting from the slight mismatch between the c planes of ZnO and CGO. Careful analysis shows that this pattern can be described by a hexagonal supercell with a lattice parameter of almost exactly 11 and 12 times the a lattice constants for ZnO and CGO, respectively. The electrical properties of the individual CGO-ZnO mesoscale heterostructures were measured using a current-sensing atomic force microscopy setup to confirm the rectifying p-n diode behavior expected from the band alignment of p-type CGO and n-type ZnO wide band gap semiconductors. These 3D mesoscale heterostructures represent a new motif in nanoassembly for the integration of nanomaterials into functional devices with potential applications in electronics, photonics, and energy.

  8. Growth of high-aspect ratio horizontally-aligned ZnO nanowire arrays.

    Science.gov (United States)

    Soman, Pranav; Darnell, Max; Feldman, Marc D; Chen, Shaochen

    2011-08-01

    A method of fabricating horizontally-aligned zinc-oxide (ZnO) nanowire (NW) arrays with full control over the width and length is demonstrated. SEM images reveal the hexagonal structure typical of zinc oxide NWs. Arrays of high-aspect ratio horizontal ZnO NWs are fabricated by making use of the lateral overgrowth from dot patterns created by electron beam lithography (EBL). An array of patterned wires are lifted off and transferred to a flexible PDMS substrate with possible applications in several key nanotechnology areas.

  9. Passivation of ZnO Nanowire Guests and 3D Inverse Opal Host Photoanodes for Dye-Sensitized Solar Cells

    KAUST Repository

    Labouchere, Philippe

    2014-04-23

    A hierarchical host-guest nanostructured photoanode is reported for dye-sensitized solar cells. It is composed of ZnO nanowires grown in situ into the macropores of a 3D ZnO inverse opal structure, which acts both as a seed layer and as a conductive backbone host. Using a combination of self-assembly, hydrothermal or electrodeposition of single crystalline ZnO nanowires and TiO2 passivation, a novel photoanode with scattering capability for optimal light harvesting is fabricated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Engineering of the photoluminescence of ZnO nanowires by different growth and annealing environments

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; Sombrio, C I L; Franzen, P L

    2015-01-01

    Optical properties of ZnO nanowires were investigated through photoluminescence (PL) at room and low temperatures. An excitonic structure was observed in the UV band emission and we are able to distinguish between free excitons, bound excitons and donor acceptor pairs. The PL spectra shows deep...... level emissions ranging from 1.4 eV up to 2.8 eV, strongly depending on surface defects whereas the red emission (1.7 eV) is activated at cryogenic temperatures. We attribute the green luminescence (2.4 eV) emission to the presence of zinc vacancies into ZnO nanowires. Further evidences that confirm...... the mechanism are observed in the PL emission spectra after annealing in O2 or Ar environments....

  11. Luminescence property and large-scale production of ZnO nanowires by current heating deposition

    International Nuclear Information System (INIS)

    Singjai, P.; Jintakosol, T.; Singkarat, S.; Choopun, S.

    2007-01-01

    Large-scale production for ZnO nanowires has been demonstrated by current heating deposition. Based on the use of a solid-vapor phase carbothermal sublimation technique, a ZnO-graphite mixed rod was placed between two copper bars and gradually heated by passing current through it under constant flowing of argon gas at atmospheric pressure. The product seen as white films deposited on the rod surface was separated for further characterizations. The results have shown mainly comb-like structures of ZnO nanowires in diameter ranging from 50 to 200 nm and length up to several tens micrometers. From optical testing, ionoluminescence spectra of as-grown and annealed samples have shown high green emission intensities centered at 510 nm. In contrast, the small UV peak centered at 390 nm was observed clearly in the as-grown sample which almost disappeared after the annealing treatment

  12. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Demes, Thomas [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Ternon, Céline, E-mail: celine.ternon@grenoble-inp.fr [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, LTM, F-38000 Grenoble (France); Morisot, Fanny [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Riassetto, David [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Legallais, Maxime [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Roussel, Hervé; Langlet, Michel [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France)

    2017-07-15

    Highlights: • ZnO nanowires are grown on sol-gel ZnO seed layers by hydrothermal synthesis. • Ultra-thin and high aspect ratio nanowires are obtained without using additives. • Nanowire diameter is 20–25 nm regardless of growth time and seed morphology. • A nanowire growth model is developed on the basis of thermodynamic considerations. • The nanowires are intended for integration into electrically conductive nanonets. - Abstract: Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20–25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20–25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  13. Chemical bath deposited PbS thin films on ZnO nanowires for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Gertman, Ronen [Dept of Chemistry, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Osherov, Anna; Golan, Yuval [Dept of Materials Engineering, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Visoly-Fisher, Iris, E-mail: irisvf@bgu.ac.il [Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus 84990 (Israel)

    2014-01-01

    Photovoltaic devices usually exploit mid-range band-gap semiconductors which absorb in the visible range of the solar spectrum. However, much energy is lost in the IR and near-IR range. We combined the advantages of small band-gap, bulk-like PbS deposited by facile, cheap and direct chemical bath deposition (CBD), with the good electronic properties of ZnO and the large surface area of nanowires, towards low cost photovoltaic devices utilizing IR and near-IR light. Surprisingly, CBD of PbS on ZnO, and particularly on ZnO nanowires, was not studied hitherto. Therefore, the mechanism of PbS growth by chemical bath deposition on ZnO nanowires was studied in details. A visible proof is shown for a growth mechanism starting from amorphous Pb(OH){sub 2} layer, that evolved into the ‘ion-by-ion’ growth mechanism. The growth mechanism and the resulting morphology at low temperatures were controlled by the thiourea concentration. The grain size affected the magnitude of the band-gap and was controlled by the deposition temperatures. Deposition above 40 °C resulted in bulk-like PbS with an optical band-gap of 0.4 eV. Methods were demonstrated for achieving complete PbS coverage of the complex ZnO NW architecture, a crucial requirement in optoelectronic devices to prevent shorts. Measurements of photocurrents under white and near-IR (784 nm) illumination showed that despite a 200 meV barrier for electron transfer at the PbS/ZnO interface, extraction of photo-electrons from PbS to the ZnO was feasible. The ability to harvest electrons from a narrow band-gap semiconductor deposited on a large surface-area electrode can advance the field towards high efficiency, low cost IR and near-IR sensors and third generation solar cells. - Highlights: • PbS was deposited on ZnO nanowires using chemical bath deposition. • At 50 °C the growth mechanism starts from an amorphous Pb(OH){sub 2} layer. • At 5 °C the growth mechanism of PbS can be controlled by thiourea concentrations

  14. Photo-assisted hysteresis of electronic transport for ZnO nanowire transistors

    Science.gov (United States)

    Du, Qianqian; Ye, Jiandong; Xu, Zhonghua; Zhu, Shunming; Tang, Kun; Gu, Shulin; Zheng, Youdou

    2018-03-01

    Recently, ZnO nanowire field effect transistors (FETs) have received renewed interest due to their extraordinary low dimensionality and high sensitivity to external chemical environments and illumination conditions. These prominent properties have promising potential in nanoscale chemical and photo-sensors. In this article, we have fabricated ZnO nanowire FETs and have found hysteresis behavior in their transfer characteristics. The mechanism and dynamics of the hysteresis phenomena have been investigated in detail by varying the sweeping rate and range of the gate bias with and without light irradiation. Significantly, light irradiation is of great importance on charge trapping by regulating adsorption and desorption of oxygen at the interface of ZnO/SiO2. Carriers excited by light irradiation can dramatically promote trapping/detrapping processes. With the assistance of light illumination, we have demonstrated a photon-assisted nonvolatile memory which employs the ZnO nanowire FET. The device exhibits reliable programming/erasing operations and a large on/off ratio. The proposed proto-type memory has thus provided a possible novel path for creating a memory functionality to other low-dimensional material systems.

  15. Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires

    Directory of Open Access Journals (Sweden)

    Minggang Xia

    2014-05-01

    Full Text Available The electrical and thermal conductivities are measured for individual zinc oxide (ZnO nanowires with and without gallium ion (Ga+ implantation at room temperature. Our results show that Ga+ implantation enhances electrical conductivity by one order of magnitude from 1.01 × 103 Ω−1m−1 to 1.46 × 104 Ω−1m−1 and reduces its thermal conductivity by one order of magnitude from 12.7 Wm−1K−1 to 1.22 Wm−1K−1 for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga+ implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga+ point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga+-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

  16. Unusual electrochemical response of ZnO nanowires-decorated multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Mo Guangquan; Ye Jianshan; Zhang Weide

    2009-01-01

    A novel type of ZnO nanowires-modified multiwalled carbon nanotubes (MWCNTs) nanocomposite (ZnO-NWs/MWCNTs) has been prepared by a hydrothermal process. The ZnO-NWs/MWCNTs nanocomposite has a uniform surface distribution and large coverage of ZnO nanowires onto MWCNTs with 3D configuration, which was characterized by scanning electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy methods were applied to investigate the electrochemical properties of ZnO-NWs/MWCNTs nanocomposite. Surprisingly, unlike the conventional n-type semiconducting ZnO nanowires grown on Ta substrate, the ZnO-NWs/MWCNTs nanocomposite exhibits excellent electron transfer capability and gives a pair of well-defined symmetric redox peaks towards ferricyanide probe. What's more, the ZnO-NWs/MWCNTs nanocomposite shows remarkable electrocatalytic activity (current response increased 4 folds at 0.3 V) towards H 2 O 2 by comparing with bare MWCNTs. The ZnO-NWs/MWCNTs nanocomposite could find applications in novel biosensors and other electronic devices.

  17. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    Science.gov (United States)

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (Rair/Rgas = 12.8) compared to that (Rair/Rgas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors.

  18. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  19. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2016-03-01

    Full Text Available In this investigation, anodic aluminum oxide (AAO with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  20. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-03-24

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  1. Enhancement of exciton radiative recombination for In-doped ZnO nanowires with aluminum cylindrical micropillars

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jen-Cheng; Liang, Yu-Ting; Cheng, Fang-Ching; Fang, Chia-Hui; Chen, Hung-Ing; Tsai, Chung-Yuan [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC (China); Jiang, Joe-Air [Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Nee, Tzer-En, E-mail: neete@mail.cgu.edu.tw [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC (China)

    2013-04-15

    Zinc oxide (ZnO) has attracted intensive research effort in recent years, due to its unique properties and versatile applications. Recent work on the conservation of surface plasmon (SP) and light through period metal arrays has elucidated the propagation of SP resonance behavior. In this paper, we discuss the enhancement of exciton radiative recombination of the ZnO nanowires with Al cylindrical micropillars. Optical characterization of exciton interacted with SP resonance for indium-doped ZnO nanowires with Al cylindrical micropillars has been also investigated. From photoluminescence spectra of In-doped ZnO nanowires, it is found that the In-doped ZnO nanowires have a blue emission at 425 nm, which resulted from the ZnO band-to-band transition. Prior to the arrays of samples were annealed, a broad green emission centered at 500 nm was observed, which is attributed to ZnO native point defects. The relatively strong green band emission results from the radiative recombination that arises from the ionized oxygen vacancy and surface-defect related luminescence. Compare the In-doped ZnO on Si substrate, the enhancement of PL intensity for In-doped ZnO with deposited Al pattern film can be attributed to strong interaction with SP resonance and exciton over a broad temperature range. These experimental results indicate that Al cylindrical micropillars can significantly enhance carrier confinement and increase the quantum efficiency of In-doped ZnO/Al heterostructures due to the interaction of SP resonance between the In-doped ZnO nanowires and Al cylindrical micropillar structures, the surface-defect related luminescence, and the auxiliary test structures with variable micropillar parameters. -- Highlights: ► We examine the exciton radiative recombination of the ZnO nanowires. ► Al cylindrical micropillars affect the carrier recombination of ZnO/Al structures. ► The interaction of SP resonance between In-doped ZnO nanowire and Al pattern film. ► The carrier

  2. The Modulation of Optical Property and its Correlation with Microstructures of ZnO Nanowires

    Directory of Open Access Journals (Sweden)

    Hope Greg

    2009-01-01

    Full Text Available Abstract ZnO nanowires with both good crystallinity and oxygen vacancies defects were synthesized by thermal oxidation of Zn substrate pretreated in concentrated sulfuric acid under the air atmosphere, Ar- and air-mixed gas stream. The photoluminescence spectra reveal that only near-band-edge (NBE emission peak was observed for the sample grown in the air atmosphere; the broad blue–green and the red-shifted NBE emission peaks were observed for the sample grown in the mixed gas stream, indicating that the sample grown in the mixed gas stream has a defective structure and its optical properties can be modulated by controlling its structure. The high-resolution transmission electron microscope and the corresponding structural simulation confirm that the oxygen vacancies exist in the crystal of the nanowires grown in the mixed gas stream. The ZnO nanowires with oxygen vacancies defects exhibit better photocatalytic activity than the nanowires with good crystallinity. The photocatalytic process obeys the rules of first-order kinetic reaction, and the rate constants were calculated.

  3. Thermal growth and cathodoluminescence of Bi doped ZnO nanowires and rods

    International Nuclear Information System (INIS)

    Aleman, B; Hidalgo, P; Fernandez, P; Piqueras, J

    2009-01-01

    Bi doped ZnO nanowires and rods have been grown by a catalyst free evaporation-deposition method with precursors containing either ZnO and Bi 2 O 3 or ZnS and Bi 2 O 3 powders. The use of ZnS as a precursor was found to lead to a higher density of nano- and microstructures at lower temperatures than by using ZnO. Energy dispersive x-ray spectroscopy (EDS) shows that the Bi content in the wires and rods is in the range 0.15-0.35 at%. Bi incorporation was found to induce a red shift of the near band gap luminescence but no quantitative correlation between the shift and the amount of Bi, as measured by EDS, was observed. The I-V curves of single Bi doped wires had linear behaviour at low current and non-linear behaviour for high currents, qualitatively similar to that of undoped wires.

  4. Growth and Transfer of Monolithic Horizontal ZnO Nanowire Superstructures onto Flexible Substrates

    KAUST Repository

    Xu, Sheng

    2010-04-28

    A method of fabricating horizontally aligned ZnO nanowire (NW) arrays with full control over the width and length is demonstrated. A cross-sectional view of the NWs by transmission electron microscopy shows a "mushroom-like" structure. Novel monolithic multisegment superstructures are fabricated by making use of the lateral overgrowth. Ultralong horizontal ZnO NWs of an aspect ratio on the order often thousand are also demonstrated. These horizontal NWs are lifted off and transferred onto a flexible polymer substrate, which may have many great applications in horizontal ZnO NW-based nanosensor arrays, light-emitting diodes, optical gratings, integrated circuit interconnects, and high-output-power alternating-current nanogenerators. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA.

  5. Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate

    KAUST Repository

    Qin, Yong

    2008-12-04

    A general method is presented for growing laterally aligned and patterned ZnO nanowire (NW) arrays on any substrate as long as it is flat. The orientation control is achieved using the combined effect from ZnO seed layer and the catalytically inactive Cr (or Sn) layer for NW growth. The growth temperature (< 100 °C) is so low that the method can be applied to a wide range of substrates that can be inorganic, organic, single crystal, polycrystal, or amorphous. The laterally aligned ZnO NW arrays can be employed for various applications, such as gas sensor, field effect transistor, nanogenerator, and flexible electronics. © 2008 American Chemical Society.

  6. Fabrication and characterization of ZnO nanowires array electrodes with high photocurrent densities: Effects of the seed layer calcination time

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi-Jing; Liu, Ching-Fang; Hu, Chi-Chang, E-mail: cchu@che.nthu.edu.tw; Kuo, Jen-Hou; Boddula, Rajender

    2017-03-01

    In this work, we demonstrate that vertically grown ZnO nanowire (NW) arrays of the wurzite phase were successfully fabricated on fluorine doped tin oxide (FTO) substrates via a hydrothermal method. The coating of a seed layer onto the FTO substrates was found to favor the growth of a uniform ZnO NWs array which shows saturation in the photocurrent density with a relatively low potential bias. Furthermore, prolonging the calcination time of the seed layer makes the ZnO NWs behave the better charge separation and improve the photo-electrochemical performance. Under the irradiation at a 75 mW cm{sup −2} from a simulated sunlight source, the ZnO NWs array electrode prepared from the seed layer with calcination at 350 °C for 5 h shows a saturated photocurrent density of 514 μA cm{sup −2} and a maximum half-cell solar-to-hydrogen (HC-STH) efficiency of 0.26% was obtained at 0.6 V versus reversible hydrogen electrode (RHE) in neutral electrolyte. - Highlights: • The seed layer annealing time strongly influences the textural and photo-activity of ZnO NWs. • The average diameter and density of ZnO NWs were controlled to 47–70 nm and 46–70 NWs μm{sup −2}, respectively. • ZnO NWs show promising application potential in solar-electrocatalytic water splitting under potential bias. • The ZnO NWs with SL annealing time = 5 h achieve the highest HC-STH efficiency of 0.26% at 0.6 V.

  7. Synthesis of ZnO nanowire arrays on ZnO−TiO{sub 2} mixed oxide seed layer for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, T. [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Anandhan, N., E-mail: anandhan_kn@rediffmail.com [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Thangamuthu, R. [Electrochemical Materials Science Division, CSIR-Central Electrochemical Research Institute, Karaikudi (India); Mummoorthi, M. [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Ravi, G. [Photonic Crystal Lab, Department of Physics, Alagappa University, Karaikudi (India)

    2016-08-25

    ZnO nanowire arrays (NWAs) were synthesized on ZnO−TiO{sub 2} mixed oxide seeded FTO conducting glass plate by two-step sol-gel and hydrothermal method, respectively. X-ray diffraction patterns reveal the presence of mixed and hexagonal phases in seed layer and NWAs, respectively. Scanning electron microscope images showed that the FTO glass plate is uniformly covered with grains and a few nanorods in seed layer and dense NWAs are vertically grown on the seed layer. The hexagonal structure and high crystal quality have been confirmed by micro Raman spectra. Photoluminescence spectra also present that NWAs have high crystal quality and less atomic defects. UV spectra indicate that NWAs are absorbed more dye molecules and it has the band gap equal to bulk material. The efficiency of ZnO−TiO{sub 2} mixed oxide seed layer and ZnO NWAs is found to be 0.56 and 0.84% respectively. Electrochemical impedance spectra reveal that NWAs DSSC has high charge transfer recombination resistance than the seed layer DSSC. - Highlights: • ZnO nanowire arrays were synthesized by two-step sol-gel and hydrothermal method. • The crystal structure and crystalline quality of films are confirmed by Raman spectra. • The emission properties of films are investigated by photoluminescence spectra. • ZnO nanowire arrays (NWAs) have higher charge transfer recombination resistance. • The conversion efficiency of the seed layer and NWAs is to be 0.56 and 0.84%.

  8. Synthetic and effect of annealing on the luminescent properties of ZnO nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Zhao-Jun, E-mail: mzjmzj163@163.com [Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education of Ministry of Education, Tianjin University of Technology, Tianjin 300191 (China); Hao, Zhi-Hong [Tianjin Vocational Institute, Tianjin (China); Wu, Hai-Zhen; Yang, Qing; Zhuo, Ping; Yang, Hui; Xu, Jian-Ping; Zhang, Xiao-Song [Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education of Ministry of Education, Tianjin University of Technology, Tianjin 300191 (China); Li, Lan, E-mail: lilan2000us@126.com [Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education of Ministry of Education, Tianjin University of Technology, Tianjin 300191 (China)

    2016-07-15

    ZnO nanowires were successfully fabricated by using the hydrothermal method in the existence of the poly ethylene glycol (PEG) with the molecular weight of 200. The experimental results exhibit that the ZnO nanowires with the diameter of ~30 nm and the length of ten micrometers. PL spectra show a weak ultraviolet emission and an intense broad visible emission band for as-grown and annealed samples. These visible emission bands exhibit red-shifts from green (545 nm) to yellow (580 nm) and blue-shifts from yellow (580 nm) to green (520 nm) by annealing at aerobic or anaerobic environment, it indicates that the defect types are changed by annealed at different environment. Additionally, the red-shifts (520 nm) and blue-shifts (580) can match up the bimodal lorentzian fitting (520 nm and 583 nm) of as-growth, which suggest that the visible emission band (545 nm) is closely related to oxygen defects. The oxygen atomic can enter into the crystal lattice of ZnO and decrease the oxygen vacancy in air or oxygen, whereas, more oxygen vacancy defects is gave rise in vacuum annealed. We guess the energy levels of the intrinsic defects in ZnO nanowire maybe like that: the electrons of Zn{sub i} defects compound with holes of V{sub Zn}, O{sub i} and O{sub Zn} levels and conform to the yellow emission, and the green emission corresponds to the electron transition from the association defects deep donor level to the valence band.

  9. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Taylor Curtis

    2010-01-01

    Full Text Available Abstract Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20–80 nm in diameter, up to 6 μm in length, density <40 nm apart at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

  10. ZnO nanowires coated stainless steel meshes as hierarchical photocatalysts for catalytic photodegradation of four kinds of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Fu-Hsiang; Lo, Wei-Ju [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan (China); Chang, Yu-Cheng, E-mail: ychang0127@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung, 40724, Taiwan (China); Guo, Jin-You; Chen, Chien-Ming [Department of Materials Science and Engineering, Feng Chia University, Taichung, 40724, Taiwan (China)

    2016-09-05

    ZnO nanostructures were grown on the stainless steel mesh substrates using an aqueous chemical growth method. The different additives (such as 1,3-diaminopropane and polyethyleneimine) can be used to control the morphology of ZnO nanostructures. ZnO nanowires exhibit very prominent green emission and week UV emission from defect and band gap in the cathodoluminescence spectrum, respectively. The different morphology of ZnO nanostructures on the stainless steel mesh substrates can be used to irradiate UV light for the photocatalytic degradation of four kinds of organic pollutants, such as methylene blue, rhodamine 6G, methyl orange, and 4-nitrophenol. The ZnO nanowires can provide a higher surface-to-volume ratio and stronger defect emission, resulting in their highest photocatalytic performance in 10 W UV light irradiation. The ZnO nanowire arrays on the stainless steel mesh substrates provide a large-scale, facile, low-cost, high surface area, and high photocatalytic efficiency, which shall be of significant value for practical applications of the decomposition of environment pollutants and reusing of wastewater treatment. - Highlights: • ZnO NWs were grown on the stainless steel mesh by aqueous chemical growth method. • Longer ZnO NW arrays have been grown at short reaction time (2 h). • ZnO NWs revealed green emission from surface defect in the CL spectrum. • The different morphologies of ZnO were evaluated organic pollutant degradation. • ZnO NWs were also exhibited great photocatalytic activity and reusability.

  11. Homogeneous vertical ZnO nanorod arrays with high conductivity on an in situ Gd nanolayer

    KAUST Repository

    Flemban, Tahani H.; Singaravelu, Venkatesh; Devi, Assa Aravindh Sasikala; Roqan, Iman S.

    2015-01-01

    We demonstrate a novel, one-step, catalyst-free method for the production of size-controlled vertical highly conductive ZnO nanorod (NR) arrays with highly desirable characteristics by pulsed laser deposition using a Gd-doped ZnO target. Our study

  12. Photoelectrochemical performance of N-doped ZnO branched nanowire photoanodes

    Directory of Open Access Journals (Sweden)

    Shrok Allami

    2017-10-01

    Full Text Available A ZnO branched-nanowire (BNW photoanode was doped with N for use in a photoelectrochemical cell (PEC to generate H2 from water splitting. First, ZnO BNWs were synthesized by chemical bath deposition method. Two experimental methods were used for N-doping: the time-controlled direct-current glow discharge plasma (DCGDP and the DC magnetron plasma (DCMP methods, to optimize N-doping of the NW structure. X-ray photoelectron spectroscopy (XPS provided the N distribution and atomic percentage in the BNWs. The XPS results confirmed that N distribution into ZnO BNWs occurred by N substitution of O sites in the ZnO structure and through well-screened molecular N2. The morphologies and structures of the fabricated nanostructures were investigated by field-emission scanning electron microscopy and X-ray diffraction respectively. The photoanode performance was demonstrated in photoelectrochemical studies at various power densities under both dark and illuminated conditions. Increasing the N amount in the ZnO BNWs increased the photocurrent in the PEC. Keywords: Engineering, Condensed matter physics, Nanotechnology, Materials science

  13. Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging

    International Nuclear Information System (INIS)

    Berthing, Trine; Bonde, Sara; Rostgaard, Katrine R; Martinez, Karen L; Madsen, Morten Hannibal; Sørensen, Claus B; Nygård, Jesper

    2012-01-01

    The perspectives offered by vertical arrays of nanowires for biosensing applications in living cells depend on the access of individual nanowires to the cell interior. Recent results on electrical access and molecular delivery suggest that direct access is not always obtained. Here, we present a generic approach to directly visualize the membrane conformation of living cells interfaced with nanowire arrays, with single nanowire resolution. The method combines confocal z-stack imaging with an optimized cell membrane labelling strategy which was applied to HEK293 cells interfaced with 2–11 μm long and 3–7 μm spaced nanowires with various surface coatings (bare, aminosilane-coated or polyethyleneimine-coated indium arsenide). We demonstrate that, for all commonly used nanowire lengths, spacings and surface coatings, nanowires generally remain enclosed in a membrane compartment, and are thereby not in direct contact with the cell interior. (paper)

  14. Effects of external surface charges on the enhanced piezoelectric potential of ZnO and AlN nanowires and nanotubes

    Directory of Open Access Journals (Sweden)

    Seong Min Kim

    2012-12-01

    Full Text Available We theoretically investigate external surface charge effects on piezoelectric potential of ZnO and AlN nanowires (NWs and nanotubes (NTs under uniform compression. The free carrier depletion caused by negative surface charges via surface functionalization on vertically compressed ZnO and AlN NWs/NTs is simulated using finite element calculation; this indicates the enhancement of piezoelectric potential is due to the free carriers (electrons being fully depleted at the critical surface charge density. Numerical simulations reveal that full coverage of surface charges surrounding the NTs increases the piezoelectric output potential exponentially within a relatively smaller range of charge density compared to the case of NWs for a typical donor concentration (∼1017 cm−3. The model can be used to design functional high-power semiconducting piezoelectric nanogenerators.

  15. Electrical properties of lightly Ga-doped ZnO nanowires

    Science.gov (United States)

    Alagha, S.; Heedt, S.; Vakulov, D.; Mohammadbeigi, F.; Senthil Kumar, E.; Schäpers, Th; Isheim, D.; Watkins, S. P.; Kavanagh, K. L.

    2017-12-01

    We investigated the growth, crystal structure, elemental composition and electrical transport characteristics of ZnO nanowires, a promising candidate for optoelectronic applications in the UV-range. Nominally-undoped and Ga-doped ZnO nanowires were grown by metal-organic chemical vapor deposition. Photoluminescence measurements confirmed the incorporation of Ga via donor-bound exciton emission. With atom-probe tomography we estimated an upper limit of the Ga impurity concentration ({10}18 {{cm}}-3). We studied the electrical transport characteristics of these nanowires with a W-nanoprobe technique inside a scanning electron microscope and with lithographically-defined contacts allowing back-gated measurements. An increase in apparent resistivity by two orders of magnitude with decreasing radius was measured with both techniques with a much larger distribution width for the nanoprobe method. A drop in the effective carrier concentration and mobility was found with decreasing radius which can be attributed to carrier depletion and enhanced scattering due to surface states. Little evidence of a change in resistivity was observed with Ga doping, which indicates that the concentration of native or background dopants is higher than the Ga doping concentration.

  16. Penetration length-dependent hot electrons in the field emission from ZnO nanowires

    Science.gov (United States)

    Chen, Yicong; Song, Xiaomeng; Li, Zhibing; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-01-01

    In the framework of field emission, whether or not hot electrons can form in the semiconductor emitters under a surface penetration field is of great concern, which will provide not only a comprehensive physical picture of field emission from semiconductor but also guidance on how to improve device performance. However, apart from some theoretical work, its experimental evidence has not been reported yet. In this article, the field penetration length-dependent hot electrons were observed in the field emission of ZnO nanowires through the in-situ study of its electrical and field emission characteristic before and after NH3 plasma treatment in an ultrahigh vacuum system. After the treatment, most of the nanowires have an increased carrier density but reduced field emission current. The raised carrier density was caused by the increased content of oxygen vacancies, while the degraded field emission current was attributed to the lower kinetic energy of hot electrons caused by the shorter penetration length. All of these results suggest that the field emission properties of ZnO nanowires can be optimized by modifying their carrier density to balance both the kinetic energy of field induced hot electrons and the limitation of saturated current under a given field.

  17. Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Hasti [Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104 (United States); Baxter, Jason B., E-mail: jbaxter@drexel.ed [Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104 (United States)

    2011-02-15

    We report on electrodeposition of CdSe coatings onto ZnO nanowire arrays and determine the effect of processing conditions on material properties such as morphology and microstructure. CdSe-coated ZnO nanowire arrays have potential use in extremely thin absorber (ETA) solar cells, where CdSe absorbs visible light and injects photoexcited electrons into the ZnO nanowires. We show that room-temperature electrodeposition enables growth of CdSe coatings that are highly crystalline, uniform, and conformal with precise control over thickness and microstructure. X-ray diffraction and transmission electron microscopy show nanocrystalline CdSe in both hexagonal and cubic phases with grain size {approx}5 nm. Coating morphology depends on electrodeposition current density. Uniform and conformal coatings were achieved using moderate current densities of {approx}2 mA cm{sup -2} for nanowires with roughness factor of {approx}10, while lower current densities resulted in sparse nucleation and growth of larger, isolated islands. Electrodeposition charge density controls the thickness of the CdSe coating, which was exploited to investigate the evolution of the morphology at early stages of nucleation and growth. UV-vis transmission spectroscopy and photoelectrochemical solar cell measurements demonstrate that CdSe effectively sensitizes ZnO nanowires to visible light.

  18. Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells

    International Nuclear Information System (INIS)

    Majidi, Hasti; Baxter, Jason B.

    2011-01-01

    We report on electrodeposition of CdSe coatings onto ZnO nanowire arrays and determine the effect of processing conditions on material properties such as morphology and microstructure. CdSe-coated ZnO nanowire arrays have potential use in extremely thin absorber (ETA) solar cells, where CdSe absorbs visible light and injects photoexcited electrons into the ZnO nanowires. We show that room-temperature electrodeposition enables growth of CdSe coatings that are highly crystalline, uniform, and conformal with precise control over thickness and microstructure. X-ray diffraction and transmission electron microscopy show nanocrystalline CdSe in both hexagonal and cubic phases with grain size ∼5 nm. Coating morphology depends on electrodeposition current density. Uniform and conformal coatings were achieved using moderate current densities of ∼2 mA cm -2 for nanowires with roughness factor of ∼10, while lower current densities resulted in sparse nucleation and growth of larger, isolated islands. Electrodeposition charge density controls the thickness of the CdSe coating, which was exploited to investigate the evolution of the morphology at early stages of nucleation and growth. UV-vis transmission spectroscopy and photoelectrochemical solar cell measurements demonstrate that CdSe effectively sensitizes ZnO nanowires to visible light.

  19. Optoelectronic characterisation of an individual ZnO nanowire in contact with a micro-grid template

    International Nuclear Information System (INIS)

    Jiang Wei; Gao Hong; Xu Ling-Ling; Ma Jia-Ning; Zhang E; Wei Ping; Lin Jia-Qi

    2011-01-01

    Optoelectronic characterisation of an individual ZnO nanowire in contact with a micro-grid template has been studied. The low-cost micro-grid template made by photolithography is used to fabricate the ohmic contact metal electrodes. The current increases linearly with the bias, indicating good ohmic contacts between the nanowire and the electrodes. The resistivity of the ZnO nanowire is calculated to be 3.8 Ω·cm. We investigate the photoresponses of an individual ZnO nanowire under different light illumination using light emitting diodes (λ = 505 nm, 460 nm, 375 nm) as excitation sources in atmosphere. When individual ZnO nanowire is exposured to different light irradiation, we find that it is extremely sensitive to UV illumination; the conductance is much larger upon UV illumination than that in the dark at room temperature. This phenomenon may be related to the surface oxygen molecule adsorbtion, which indicates their potential application to the optoelectronic switching device. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Low-Temperature Rapid Fabrication of ZnO Nanowire UV Sensor Array by Laser-Induced Local Hydrothermal Growth

    Directory of Open Access Journals (Sweden)

    Sukjoon Hong

    2013-01-01

    Full Text Available We demonstrate ZnO nanowire based UV sensor by laser-induced hydrothermal growth of ZnO nanowire. By inducing a localized temperature rise using focused laser, ZnO nanowire array at ~15 μm size consists of individual nanowires with ~8 μm length and 200~400 nm diameter is readily synthesized on gold electrode within 30 min at the desired position. The laser-induced growth process is consecutively applied on two different points to bridge the micron gap between the electrodes. The resultant photoconductive ZnO NW interconnections display 2~3 orders increase in the current upon the UV exposure at a fixed voltage bias. It is also confirmed that the amount of photocurrent can be easily adjusted by changing the number of ZnO NW array junctions. The device exhibits clear response to the repeated UV illumination, suggesting that this process can be usefully applied for the facile fabrication of low-cost UV sensor array.

  1. A top-down approach to fabrication of high quality vertical heterostructure nanowire arrays

    NARCIS (Netherlands)

    Wang, Hua; Sun, Minghua; Ding, K.; Hill, M.T.; Ning, C.Z.

    2011-01-01

    We demonstrate a novel top-down approach for fabricating nanowires with unprecedented complexity and optical quality by taking advantage of a nanoscale self-masking effect. We realized vertical arrays of nanowires of 20-40 nm in diameter with 16 segments of complex longitudinal InGaAsP/InP

  2. Fast vertical growth of ZnO nanorods using a modified chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae-hyun [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, Hyukhyun, E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, Won-Jae [Department of Materials and Components Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of)

    2014-06-01

    Highlights: • We grew vertical ZnO nanorods by a modified CBD process with a fast growth rate. • We studied the effects of the CBD process by varying growth temperature, time, and concentration. • The ZnO nanorods grown by the modified CBD showed good morphological and structural properties. - Abstract: In this study, we grew vertical ZnO nanorods on seeded Si (1 0 0) substrates using a modified chemical bath deposition (CBD). We investigated the effects of the growth temperature, growth time and concentration on the morphological and structural properties of the ZnO nanorods using field emission gun scanning electron microscopy (FEG-SEM) and X-ray diffraction. This modified CBD method shows improved results over conventional CBD. ZnO nanorods with good structural XRD properties were grown with a very fast growth rate in a wide range of growth conditions and did not require post-growth annealing.

  3. Doping of ZnO nanowires using phosphorus diffusion from a spin-on doped glass source

    International Nuclear Information System (INIS)

    Bocheux, A.; Robin, I. C.; Bonaimé, J.; Hyot, B.; Feuillet, G.; Kolobov, A. V.; Fons, P.; Mitrofanov, K. V.; Tominaga, J.; Tamenori, Y.

    2014-01-01

    In this article, we report on ZnO nanowires that were phosphorus doped using a spin on dopant glass deposition and diffusion method. Photoluminescence measurements suggest that this process yields p-doped ZnO. The spatial location of P atoms was studied using x-ray near-edge absorption structure spectroscopy and it is concluded that the doping is amphoteric with P atoms located on both Zn and O sites

  4. Fabrication and gas sensing properties of vertically aligned Si nanowires

    Science.gov (United States)

    Mirzaei, Ali; Kang, Sung Yong; Choi, Sun-Woo; Kwon, Yong Jung; Choi, Myung Sik; Bang, Jae Hoon; Kim, Sang Sub; Kim, Hyoun Woo

    2018-01-01

    In this study, a peculiar configuration for a gas sensor consisting of vertically aligned silicon nanowires (VA-Si NWs) synthesized by metal-assisted chemical etching (MACE) is reported. Si NWs were prepared via a facile MACE method and subsequent thermal annealing. Etching was performed by generation of silver nanoparticles (Ag NPs) and subsequent etching in HF/H2O2 aqueous solution; the growth conditions were optimized by changing the process parameters. Highly vertically oriented arrays of Si NWs with a straight-line morphology were obtained, and a top-top electrode configuration was applied. The VA-Si NW gas sensor showed good sensing performance, and the VA-Si NWs exhibited a remarkable response (Rg/Ra = 11.5 ∼ 17.1) to H2 gas (10-50 ppm) at 100 °C which was the optimal working temperature. The formation mechanism and gas sensing mechanism of VA-Si NWs are described. The obtained results can suggest new approaches to making inexpensive, versatile, and portable sensors based on Si NWs having a novel top-top electrode structure that are fully compatible with well-developed Si technologies.

  5. Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation

    Science.gov (United States)

    Donatini, Fabrice; Pernot, Julien

    2018-03-01

    In semiconductor nanowires (NWs) the exciton diffusion coefficient can be determined using a scanning electron microscope fitted with a cathodoluminescence system. High spatial and temporal resolution cathodoluminescence experiments are needed to measure independently the exciton diffusion length and lifetime in single NWs. However, both diffusion length and lifetime can be affected by the electron beam bombardment during observation and measurement. Thus, in this work the exciton lifetime in a ZnO NW is measured versus the electron beam dose (EBD) via a time-resolved cathodoluminescence experiment with a temporal resolution of 50 ps. The behavior of the measured exciton lifetime is consistent with our recent work on the EBD dependence of the exciton diffusion length in similar NWs investigated under comparable SEM conditions. Combining the two results, the exciton diffusion coefficient in ZnO is determined at room temperature and is found constant over the full span of EBD.

  6. Sonochemical synthesis and optical properties of amorphous ZnO nanowires

    International Nuclear Information System (INIS)

    Zhou Shaomin; Yuan Ruijian; Lou Shiyun; Wang Yongqiang; Yuan Honglei; Zhu Gongyu; Liu Lisheng; Hao Yaoming; Li Ning

    2011-01-01

    Large-scale amorphous wire-like ZnO nanostructures were prepared by ultrasonic spray pyrolysis Zn(CO) 5 without involvement of any template or patterned catalyst. The as-obtained amorphous ZnO nanowires were characterized using scanning/transmission electron microscopy, X-ray diffraction/photoelectron spectroscopy, energy-dispersed X-ray spectrometry, selected area electronic diffraction, and high-resolution transmission electron microscopy. The results reveal the as-made noncrystalline samples are about 30–60 nm in diameter and several tens of microns in length and the growth mechanism is tentatively proposed as the self-assembly soft template mechanism. The photoluminescence spectra in all of the as-studied specimens exhibit one wide visible emission peak in about 508 nm. The corresponding PL intensity greatly increased with an annealing temperature, which has an application for a high efficiency vacuum fluorescent displays and a low-voltage phosphor.

  7. Single ZnO nanowire-PZT optothermal field effect transistors.

    Science.gov (United States)

    Hsieh, Chun-Yi; Lu, Meng-Lin; Chen, Ju-Ying; Chen, Yung-Ting; Chen, Yang-Fang; Shih, Wan Y; Shih, Wei-Heng

    2012-09-07

    A new type of pyroelectric field effect transistor based on a composite consisting of single zinc oxide nanowire and lead zirconate titanate (ZnO NW-PZT) has been developed. Under infrared (IR) laser illumination, the transconductance of the ZnO NW can be modulated by optothermal gating. The drain current can be increased or decreased by IR illumination depending on the polarization orientation of the Pb(Zr(0.3)Ti(0.7))O(3) (PZT) substrate. Furthermore, by combining the photocurrent behavior in the UV range and the optothermal gating effect in the IR range, the wide spectrum of response of current by light offers a variety of opportunities for nanoscale optoelectronic devices.

  8. CL from ZnO nanowires and microneedles Co-doped with N and Mn

    International Nuclear Information System (INIS)

    Herrera, M; Morales, A; Díaz, J A

    2014-01-01

    Cathodoluminescence (CL) was used to study the luminescence emission of ZnO : N, Mn nanowires and microneedles grown by thermal evaporation. CL spectra acquired at room temperature showed the presence of near band edge and defect-related emissions. The defect related emission comprised two bands centered at 2.28 and 2.5 eV. The first component was attributed to the formation of spinel ZnMn 2 O 4  and the second to the well-known ZnO green emission. CL spectra acquired at 100 K showed two emissions centered at 3.22 and 3.25 eV that were attributed to donor–acceptor pair (DAP) and FA transitions, respectively. It was proposed that substitutional nitrogen (N O ) and zinc interstitial (Zn i ) were acceptor and shallow-donor centers in the DAP transition. (paper)

  9. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests

    Directory of Open Access Journals (Sweden)

    Hyun Chan Kim

    2016-09-01

    Full Text Available This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO nanowire (NW grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices.

  10. The phonon-assisted tunneling mechanism of conduction in ZnO nanowires and films

    International Nuclear Information System (INIS)

    Pipinys, Povilas; Ohlckers, Per

    2010-01-01

    The phonon-assisted tunneling (PhAT) model is applied for an explanation of the conductivity dependence on temperature and temperature-dependent I-V characteristics measured by other investigators for zinc oxide (ZnO) nanowires and films. Our proposed model describes well not only conductivity dependence on temperature measured in a wide temperature range, but also temperature-dependent I-V data using the same set of parameters characterizing the material under investigation. The values of active phonons energy are estimated from a fit of the conductivity dependence to temperature data with the PhAT theory.

  11. Atomic Layer Deposition of Nickel on ZnO Nanowire Arrays for High-Performance Supercapacitors.

    Science.gov (United States)

    Ren, Qing-Hua; Zhang, Yan; Lu, Hong-Liang; Wang, Yong-Ping; Liu, Wen-Jun; Ji, Xin-Ming; Devi, Anjana; Jiang, An-Quan; Zhang, David Wei

    2018-01-10

    A novel hybrid core-shell structure of ZnO nanowires (NWs)/Ni as a pseudocapacitor electrode was successfully fabricated by atomic layer deposition of a nickel shell, and its capacitive performance was systemically investigated. Transmission electron microscopy and X-ray photoelectron spectroscopy results indicated that the NiO was formed at the interface between ZnO and Ni where the Ni was oxidized by ZnO during the ALD of the Ni layer. Electrochemical measurement results revealed that the Ti/ZnO NWs/Ni (1500 cycles) electrode with a 30 nm thick Ni-NiO shell layer had the best supercapacitor properties including ultrahigh specific capacitance (∼2440 F g -1 ), good rate capability (80.5%) under high current charge-discharge conditions, and a relatively better cycling stability (86.7% of the initial value remained after 750 cycles at 10 A g -1 ). These attractive capacitive behaviors are mainly attributed to the unique core-shell structure and the combined effect of ZnO NW arrays as short charge transfer pathways for ion diffusion and electron transfer as well as conductive Ni serving as channel for the fast electron transport to Ti substrate. This high-performance Ti/ZnO NWs/Ni hybrid structure is expected to be one of a promising electrodes for high-performance supercapacitor applications.

  12. Optical and electro-catalytic properties of bundled ZnO nanowires grown on a ITO substrate

    International Nuclear Information System (INIS)

    Xia Cao; Wang Ning; Wang Long

    2010-01-01

    Bundled wurtzite zinc oxide (ZnO) nanowires were fabricated in a facile manner on an ITO-conducting substrate via a microemulsion route without using any hard template or external electric/magnetic field. Structure and properties of the as-prepared ZnO electrode were investigated using scanning electron microscopy, X-ray diffraction, photoluminescence, Raman spectroscopy, as well as electrochemical tests. The ZnO electrode shows excellent optical and electrocatalytic ability, which may find further applications such as optoelectronics or as sensors as well as other modern industrial areas.

  13. High-resolution TEM characterization of ZnO core-shell nanowires for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Divitini, G; Ducati, C [Department of Materials Science, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Plank, N O V; Welland, M E [Nanoscience Centre, Department of Engineering, University of Cambridge, CB3 0FF (United Kingdom); Snaith, H J, E-mail: gd322@cam.ac.u [Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU (United Kingdom)

    2010-07-01

    Recently ZnO nanowire films have been used in very promising and inexpensive dye-sensitized solar cells (DSSC). It was found that the performance of the devices can be enhanced by functionalising the nanowires with a thin metal oxide coating. This nm-scale shell is believed to tailor the electronic structure of the nanowire, and help the absorption of the dye. Core-shell ZnO nanowire structures are synthesised at low temperature (below 120{sup 0}C) by consecutive hydrothermal growth steps. Different materials are investigated for the coating, including Mg, Al, Cs and Zr oxides. High resolution TEM is used to characterise the quality of both the nanowire core and the shell, and to monitor the thickness and the degree of crystallisation of the oxide coating. The interface between the nanowire core and the outer shell is investigated in order to understand the adhesion of the coating, and give valuable feedback for the synthesis process. Nanowire films are packaged into dye-sensitised solar cell prototypes; samples coated with ZrO{sub 2} and MgO show the largest enhancement in the photocurrent and open-circuit voltage and look very promising for further improvement.

  14. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Raul; Delamoreanu, Alexandru; Saidi, Bilel; Ivanova, Valentina [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054, Grenoble (France); Levy-Clement, Claude [CNRS, Institut de Chimie et des Materiaux de Paris-Est, 94320, Thiais (France)

    2014-09-15

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl{sub 2} to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl{sub 2} treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    International Nuclear Information System (INIS)

    Salazar, Raul; Delamoreanu, Alexandru; Saidi, Bilel; Ivanova, Valentina; Levy-Clement, Claude

    2014-01-01

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl 2 to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl 2 treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Efficient photocatalytic performance enhancement in Co-doped ZnO nanowires coupled with CuS nanoparticles

    Science.gov (United States)

    Li, Wei; Wang, Guojing; Feng, Yimeng; Li, Zhengcao

    2018-01-01

    In this research, a kind of highly efficient semiconductor photocatalyst was fabricated by depositing CuS nanoparticles uniformly on the surface of Co-doped ZnO nanowires. ZnO nanowires were synthesized by hydrothermal method and CuS nanoparticles were modified by successive ionic layer adsorption and reaction (SILAR). By conducting methyl orange (MO) degradation experiments under the illumination of visible light, the photocatalytic activity of Co-doped ZnO nanowires modified with CuS nanoparticles was found to be nearly three times active when compared to bare ZnO nanowires. Its superior photocatalytic performance has two main reasons. The doped Co2+ ions can inhibit the recombination of photo-generated electron-hole pairs and decrease the optical bandgap, while the p-n heterostructure can enhance the visible light absorption ability and promote the separation of photo-excited charge carriers. Furthermore, the effect of the amount of deposited CuS nanoparticles on the photocatalysis was also investigated. The photocatalytic efficiency firstly raised along with the increment of SILAR cycle times and reached a maximum at 10 cycles but then decreased as the cycle times continue to increase. This originates from that an excessive amount of CuS would not only cover the active reacting sites, but also serve as recombination centers. Overall, this new nanostructure is expected to work as an efficient photocatalyst.

  17. pH-Dependent Toxicity of High Aspect Ratio ZnO Nanowires in Macrophages Due to Intracellular Dissolution

    KAUST Repository

    H. Müller, Karin; Kulkarni, Jaideep; Motskin, Michael; Goode, Angela; Winship, Peter; Skepper, Jeremy N.; Ryan, Mary P.; Porter, Alexandra E.

    2010-01-01

    exploitation. In this study, ZnO nanowires were found to be toxic to human monocyte macrophages (HMMs) at similar concentrations as ZnCl2. Confocal microscopy on live cells confirmed a rise in intracellular Zn2+ concentrations prior to cell death. In vitro, Zn

  18. A ZnO nanowire-based photo-inverter with pulse-induced fast recovery.

    Science.gov (United States)

    Raza, Syed Raza Ali; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil

    2013-11-21

    We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.

  19. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.

    Science.gov (United States)

    Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E

    2015-09-02

    The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.

  20. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.

    Science.gov (United States)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten

    2016-01-11

    Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of Vertically Aligned ZnO Nano rods on Various Substrates

    International Nuclear Information System (INIS)

    Hassan, J.J.; Hassan, Z.; Abu Hassan, H.; Mahdi, M.A.

    2011-01-01

    We successfully synthesized vertically aligned ZnO nano rods on Si, GaN, Sic, Al 2 O 3 , ITO, and quartz substrates using microwave assisted chemical bath deposition (MA-CBD) method. All these types of substrates were seeded with PVA-ZnO nano composites layer prior to the nano rods growth. The effect of substrate type on the morphology of the ZnO nano rods was studied. The diameter of grown ZnO nano rods ranged from 50 nm to 200 nm. Structural quality and morphology of ZnO nano rods were determined by x-ray diffraction and scanning electron microscopy, which revealed hexagonal wurtzite structures perpendicular to the substrate along the z-axis in the direction of (002). Photoluminescence measurements of grown ZnO nano rods on all substrates exhibited high UV peak intensity. Raman scattering studies were conducted to estimate the lattice vibration modes. (author)

  2. Earth-Abundant Oxygen Evolution Catalysts Coupled onto ZnO Nanowire Arrays for Efficient Photoelectrochemical Water Cleavage

    Science.gov (United States)

    Jiang, Chaoran; Moniz, Savio J A; Khraisheh, Majeda; Tang, Junwang

    2014-01-01

    ZnO has long been considered as a model UV-driven photoanode for photoelectrochemical water splitting, but its performance has been limited by fast charge-carrier recombination, extremely poor stability in aqueous solution, and slow kinetics of water oxidation. These issues were addressed by applying a strategy of optimization and passivation of hydrothermally grown 1D ZnO nanowire arrays. The length and diameter of bare ZnO nanowires were optimized by varying the growth time and precursor concentration to achieve optimal photoelectrochemical performance. The addition of earth-abundant cobalt phosphate (Co-Pi) and nickel borate (Ni-B) oxygen evolution catalysts onto ZnO nanowires resulted in substantial cathodic shifts in onset potential to as low as about 0.3 V versus the reversible hydrogen electrode (RHE) for Ni-B/ZnO, for which a maximum photocurrent density of 1.1 mA cm−2 at 0.9 V (vs. RHE) with applied bias photon-to-current efficiency of 0.4 % and an unprecedented near-unity incident photon-to-current efficiency at 370 nm. In addition the potential required for saturated photocurrent was dramatically reduced from 1.6 to 0.9 V versus RHE. Furthermore, the stability of these ZnO nanowires was significantly enhanced by using Ni-B compared to Co-Pi due to its superior chemical robustness, and it thus has additional functionality as a stable protecting layer on the ZnO surface. These remarkable enhancements in both photocatalytic activity and stability directly address the current severe limitations in the use of ZnO-based photoelectrodes for water-splitting applications, and can be applied to other photoanodes for efficient solar-driven fuel synthesis. PMID:25156820

  3. Access to residual carrier concentration in ZnO nanowires by calibrated scanning spreading resistance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L., E-mail: lin.wang@insa-lyon.fr; Brémond, G. [Institut des Nanotechnologies de Lyon (INL), Université de Lyon, CNRS UMR 5270, INSA Lyon, Bat. Blaise Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne (France); Chauveau, J. M. [Centre de Recherche sur l' Hétéro-Epitaxie et ses Applications (CRHEA), CNRS UPR10, rue Bernard Grégory 06560 Valbonne Sophia Antipolis (France); Physics Department, University of Nice Sophia Antipolis (UNS), Parc Valrose, 06103 Nice (France); Brenier, R. [Institut Lumière Matière (ILM), Université de Lyon, CNRS UMR 5306, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne (France); Sallet, V.; Jomard, F.; Sartel, C. [Groupe d' Étude de la Matière Condensée (GEMaC), CNRS-Université de Versailles St Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles (France)

    2016-03-28

    Scanning spreading resistance microscopy (SSRM) was performed on non-intentionally doped (nid) ZnO nanowires (NWs) grown by metal-organic chemical vapor deposition in order to measure their residual carrier concentration. For this purpose, an SSRM calibration profile has been developed on homoepitaxial ZnO:Ga multilayer staircase structures grown by molecular beam epitaxy. The Ga density measured by SIMS varies in the 1.7 × 10{sup 17 }cm{sup −3} to 3 × 10{sup 20 }cm{sup −3} range. From measurements on such Ga doped multi-layers, a monotonic decrease in SSRM resistance with increasing Ga density was established, indicating SSRM being a well-adapted technique for two dimensional dopant/carrier profiling on ZnO at nanoscale. Finally, relevant SSRM signal contrasts were detected on nid ZnO NWs, and the residual carrier concentration is estimated in the 1–3 × 10{sup 18 }cm{sup −3} range, in agreement with the result from four-probe measurements.

  4. Thermal growth and cathodoluminescence of Bi doped ZnO nanowires and rods

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, B; Hidalgo, P; Fernandez, P; Piqueras, J, E-mail: balemanl@fis.ucm.e [Departamento de Fisica de Materiales, Facultad de Ciencias FIsicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2009-11-21

    Bi doped ZnO nanowires and rods have been grown by a catalyst free evaporation-deposition method with precursors containing either ZnO and Bi{sub 2}O{sub 3} or ZnS and Bi{sub 2}O{sub 3} powders. The use of ZnS as a precursor was found to lead to a higher density of nano- and microstructures at lower temperatures than by using ZnO. Energy dispersive x-ray spectroscopy (EDS) shows that the Bi content in the wires and rods is in the range 0.15-0.35 at%. Bi incorporation was found to induce a red shift of the near band gap luminescence but no quantitative correlation between the shift and the amount of Bi, as measured by EDS, was observed. The I-V curves of single Bi doped wires had linear behaviour at low current and non-linear behaviour for high currents, qualitatively similar to that of undoped wires.

  5. Vertically aligned ZnO nanorods on porous silicon substrates: Effect of growth time

    Directory of Open Access Journals (Sweden)

    R. Shabannia

    2015-04-01

    Full Text Available Vertically aligned ZnO nanorods were successfully grown on porous silicon (PS substrates by chemical bath deposition at a low temperature. X-ray diffraction, field-emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, and photoluminescence (PL analyses were carried out to investigate the effect of growth duration (2 h to 8 h on the optical and structural properties of the aligned ZnO nanorods. Strong and sharp ZnO (0 0 2 peaks of the ZnO nanorods proved that the aligned ZnO nanorods were preferentially fabricated along the c-axis of the hexagonal wurtzite structure. FESEM images demonstrated that the ZnO nanorod arrays were well aligned along the c-axis and perpendicular to the PS substrates regardless of the growth duration. The TEM image showed that the top surfaces of the ZnO nanorods were round with a smooth curvature. PL spectra demonstrated that the ZnO nanorods grown for 5 h exhibited the sharpest and most intense PL peaks within the ultraviolet range among all samples.

  6. Vertical architecture for enhancement mode power transistors based on GaN nanowires

    Science.gov (United States)

    Yu, F.; Rümmler, D.; Hartmann, J.; Caccamo, L.; Schimpke, T.; Strassburg, M.; Gad, A. E.; Bakin, A.; Wehmann, H.-H.; Witzigmann, B.; Wasisto, H. S.; Waag, A.

    2016-05-01

    The demonstration of vertical GaN wrap-around gated field-effect transistors using GaN nanowires is reported. The nanowires with smooth a-plane sidewalls have hexagonal geometry made by top-down etching. A 7-nanowire transistor exhibits enhancement mode operation with threshold voltage of 1.2 V, on/off current ratio as high as 108, and subthreshold slope as small as 68 mV/dec. Although there is space charge limited current behavior at small source-drain voltages (Vds), the drain current (Id) and transconductance (gm) reach up to 314 mA/mm and 125 mS/mm, respectively, when normalized with hexagonal nanowire circumference. The measured breakdown voltage is around 140 V. This vertical approach provides a way to next-generation GaN-based power devices.

  7. Fabrication of vertical nanowire resonators for aerosol exposure assessment

    Science.gov (United States)

    Merzsch, Stephan; Wasisto, Hutomo Suryo; Stranz, Andrej; Hinze, Peter; Weimann, Thomas; Peiner, Erwin; Waag, Andreas

    2013-05-01

    Vertical silicon nanowire (SiNW) resonators are designed and fabricated in order to assess exposure to aerosol nanoparticles (NPs). To realize SiNW arrays, nanolithography and inductively coupled plasma (ICP) deep reactive ion etching (DRIE) at cryogenic temperature are utilized in a top-down fabrication of SiNW arrays which have high aspect ratios (i.e., up to 34). For nanolithography process, a resist film thickness of 350 nm is applied in a vacuum contact mode to serve as a mask. A pattern including various diameters and distances for creating pillars is used (i.e., 400 nm up to 5 μm). In dry etching process, the etch rate is set high of 1.5 μm/min to avoid underetching. The etch profiles of Si wires can be controlled aiming to have either perpendicularly, negatively or positively profiled sidewalls by adjusting the etching parameters (e.g., temperature and oxygen content). Moreover, to further miniaturize the wire, multiple sacrificial thermal oxidations and subsequent oxide stripping are used yielding SiNW arrays of 650 nm in diameter and 40 μm in length. In the resonant frequency test, a piezoelectric shear actuator is integrated with the SiNWs inside a scanning electron microscope (SEM) chamber. The observation of the SiNW deflections are performed and viewed from the topside of the SiNWs to reduce the measurement redundancy. Having a high deflection of ~10 μm during its resonant frequency of 452 kHz and a low mass of 31 pg, the proposed SiNW is potential for assisting the development of a portable aerosol resonant sensor.

  8. Vertically aligned nanowires on flexible silicone using a supported alumina template prepared by pulsed anodization

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.

    2009-01-01

    Carpets of vertically aligned nanowires on flexible substrates are successfully realized by a template method. Applying special pulsed anodization conditions, defect-free nanoporous alumina structures supported on polydimethylsiloxane (PDMS), a flexible silicone elastomer, are created. By using...... this template with nanopores ending on a conducting underlayer, a high-density nanowire array can be simply grown by direct DCelectrodeposition on the top of the silicone rubber....

  9. A novel method for preparing vertically grown single-crystalline gold nanowires

    International Nuclear Information System (INIS)

    Tung, H-T; Nien, Y-T; Chen, I-G; Song, J-M

    2008-01-01

    A surfactant-free, template-less and seed-less method, namely the thermal-assisted photoreduction (TAP) process, has been developed to synthesize vertically grown Au nanowires (30-80 nm in diameter and about 2 μm in length) on the surface of thin film titanium dioxide (TiO 2 ), which is locally excited by blackbody radiation. The Au nanowires thus produced are single-crystalline with a preferred [11 bar 0] growth direction. The electrical behavior investigated using a nanomanipulation device indicates that the Au nanowires possess an excellent electrical resistivity of about 3.49 x 10 -8 Ω m.

  10. Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate.

    Science.gov (United States)

    Hong, Sukjoon; Yeo, Junyeob; Manorotkul, Wanit; Kang, Hyun Wook; Lee, Jinhwan; Han, Seungyong; Rho, Yoonsoo; Suh, Young Duk; Sung, Hyung Jin; Ko, Seung Hwan

    2013-05-07

    We develop a digital direct writing method for ZnO NW micro-patterned growth on a large scale by selective laser decomposition of zinc acetate. For ZnO NW growth, by replacing the bulk heating with the scanning focused laser as a fully digital local heat source, zinc acetate crystallites can be selectively activated as a ZnO seed pattern to grow ZnO nanowires locally on a larger area. Together with the selective laser sintering process of metal nanoparticles, more than 10,000 UV sensors have been demonstrated on a 4 cm × 4 cm glass substrate to develop all-solution processible, all-laser mask-less digital fabrication of electronic devices including active layer and metal electrodes without any conventional vacuum deposition, photolithographic process, premade mask, high temperature and vacuum environment.

  11. Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors

    Science.gov (United States)

    2014-01-01

    This paper studies the effect of atomic layer deposition (ALD) temperature on the performance of top-down ZnO nanowire transistors. Electrical characteristics are presented for 10-μm ZnO nanowire field-effect transistors (FETs) and for deposition temperatures in the range 120°C to 210°C. Well-behaved transistor output characteristics are obtained for all deposition temperatures. It is shown that the maximum field-effect mobility occurs for an ALD temperature of 190°C. This maximum field-effect mobility corresponds with a maximum Hall effect bulk mobility and with a ZnO film that is stoichiometric. The optimized transistors have a field-effect mobility of 10 cm2/V.s, which is approximately ten times higher than can typically be achieved in thin-film amorphous silicon transistors. Furthermore, simulations indicate that the drain current and field-effect mobility extraction are limited by the contact resistance. When the effects of contact resistance are de-embedded, a field-effect mobility of 129 cm2/V.s is obtained. This excellent result demonstrates the promise of top-down ZnO nanowire technology for a wide variety of applications such as high-performance thin-film electronics, flexible electronics, and biosensing. PMID:25276107

  12. Photoluminescence study of as-grown vertically standing wurtzite InP nanowire ensembles.

    Science.gov (United States)

    Iqbal, Azhar; Beech, Jason P; Anttu, Nicklas; Pistol, Mats-Erik; Samuelson, Lars; Borgström, Magnus T; Yartsev, Arkady

    2013-03-22

    We demonstrate a method that enables the study of photoluminescence of as-grown nanowires on a native substrate by non-destructively suppressing the contribution of substrate photoluminescence. This is achieved by using polarized photo-excitation and photoluminescence and by making an appropriate choice of incident angle of both excitation beam and photoluminescence collection direction. Using TE-polarized excitation at a wavelength of 488 nm at an incident angle of ∼70° we suppress the InP substrate photoluminescence relative to that of the InP nanowires by about 80 times. Consequently, the photoluminescence originating from the nanowires becomes comparable to and easily distinguishable from the substrate photoluminescence. The measured photoluminescence, which peaks at photon energies of ∼1.35 eV and ∼1.49 eV, corresponds to the InP substrate with zinc-blende crystal structure and to the InP nanowires with wurtzite crystal structure, respectively. The photoluminescence quantum yield of the nanowires was found to be ∼20 times lower than that of the InP substrate. The nanowires, grown vertically in a random ensemble, neither exhibit substantial emission polarization selectivity to the axis of the nanowires nor follow excitation polarization preferences observed previously for a single nanowire.

  13. Temperature-dependent photoluminescence analysis of ZnO nanowire array annealed in air

    Science.gov (United States)

    Sun, Yanan; Gu, Xiuquan; Zhao, Yulong; Wang, Linmeng; Qiang, Yinghuai

    2018-05-01

    ZnO nanowire arrays (NWAs) were prepared on transparent conducting fluorine doped tin oxide (FTO) substrates through a facile hydrothermal method, followed by a 500 °C annealing to improve their crystalline qualities and photoelectrochemical (PEC) activities. It was found that the annealing didn't change the morphology, but resulted in a significant reduction of the donor concentration. Temperature-dependent photoluminescence (PL) was carried out for a comprehensive analysis of the effect from annealing. Noteworthy, four dominant peaks were identified from the 10 K spectrum of a 500 °C annealed sample, and they were assigned to FX, D0X, (e, D0) and (e, D0) -1LO, respectively. Of them, the FX emission was only existed below 130 K, while the room-temperature (RT) PL spectrum was dominated by the D0X emission.

  14. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan

    2012-05-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 ?J/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by timeresolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density. © 2012 Optical Society of America.

  15. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires.

    Science.gov (United States)

    Sapkota, Keshab R; Chen, Weimin; Maloney, F Scott; Poudyal, Uma; Wang, Wenyong

    2016-10-14

    We report magnetoresistance (MR) manipulation and sign reversal induced by carrier concentration modulation in Mn-doped ZnO nanowires. At low temperatures positive magnetoresistance was initially observed. When the carrier concentration was increased through the application of a gate voltage, the magnetoresistance also increased and reached a maximum value. However, further increasing the carrier concentration caused the MR to decrease, and eventually an MR sign reversal from positive to negative was observed. An MR change from a maximum positive value of 25% to a minimum negative value of 7% was observed at 5 K and 50 KOe. The observed MR behavior was modeled by considering combined effects of quantum correction to carrier conductivity and bound magnetic polarons. This work could provide important insights into the mechanisms that govern magnetotransport in dilute magnetic oxides, and it also demonstrated an effective approach to manipulating magnetoresistance in these materials that have important spintronic applications.

  16. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    Science.gov (United States)

    Demes, Thomas; Ternon, Céline; Morisot, Fanny; Riassetto, David; Legallais, Maxime; Roussel, Hervé; Langlet, Michel

    2017-07-01

    Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20-25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20-25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  17. Growth specificity of vertical ZnO nanorods on patterned seeded substrates through integrated chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Maniam, S.M. [Centre for Quantum Technologies, National University of Singapore (Singapore); Sundaramurthy, J. [Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS) (Singapore); Arokiaraj, J. [3M R and D Center (Singapore); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Rajarathnam, D. [CERAR, University of South Australia, Mawson Lakes, SA-5095 (Australia); Srinivasan, M.P. [Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS) (Singapore); Jian, L.K. [Singapore Synchrotron Light Source (SSLS), National University of Singapore (NUS) (Singapore)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Simple integrated chemical process was adopted for specific ZnO nanorod growth. Black-Right-Pointing-Pointer Size and orientation of nanorods are well controlled by optimum reaction time and temperature. Black-Right-Pointing-Pointer Different site-selective ZnO nanorod growths are demonstrated. - Abstract: A simple and cost effective method has been employed for the random growth and oriented ZnO nanorod arrays over as-prepared and patterned seeded glass substrates by low temperature two step growth process and growth specificity by direct laser writing (DLW) process. Scanning electron microscopy (SEM) images and X-ray diffraction analysis confirm the growth of vertical ZnO nanorods with perfect (0 0 2) orientation along c-axis which is in conjunction with optimizing the parameters at different reaction times and temperatures. Transmission electron microscopy (TEM) images show the formation of vertical ZnO nanorods with diameter and length of {approx}120 nm and {approx}400 nm respectively. Photoluminescence (PL) spectroscopic studies show a narrow emission at {approx}385 nm and a broad visible emission from 450 to 600 nm. Further, site-selective ZnO nanorod growth is demonstrated for its high degree of control over size, orientation, uniformity, and periodicity on a positive photoresist ZnO seed layer by simple geometrical (line, circle and ring) patterns of 10 {mu}m and 5 {mu}m dimensions. The demonstrated control over size, orientation and periodicity of ZnO nanorods process opens up an opportunity to develop multifunctional properties which promises their potential applications in sensor, piezoelectric, and optoelectronic devices.

  18. Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition

    Science.gov (United States)

    Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D.; Renevier, Hubert; Consonni, Vincent

    2017-03-01

    The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol-gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 107 nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.

  19. Conducting properties of nearly depleted ZnO nanowire UV sensors fabricated by dielectrophoresis

    International Nuclear Information System (INIS)

    García Núñez, C; García Marín, A; Piqueras, J; Pau, J L; Nanterne, P; Kung, P

    2013-01-01

    ZnO nanowires (NWs) with different radii (r NW ) have been aligned between pre-patterned electrodes using dielectrophoresis (DEP) for the fabrication of high gain UV sensors. The DEP conditions (voltage amplitude and frequency) and electrode material, geometry and size were optimized to enhance the efficiency during the DEP process. To understand the alignment mechanism of the ZnO NWs, the dielectrophoretic force (F DEP ) was analyzed as a function of the DEP conditions and NW dimensions. These studies showed that the DEP alignment process tends to trap NWs with a smaller radius. The effects of NW size on device performance were analyzed by means of I–V measurements in darkness and under illumination (200 nm NW decreases due to the reduction of the conduction volume, until saturation is reached for r NW 8 A W −1 (measured at 5 V and λ NW , presenting a clear blue-shift for NWs with a lower radius (r NW 2 reduces the dynamic range of the photoresponse due to a strong increase of the dark current. (paper)

  20. Identifying individual n- and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator

    KAUST Repository

    Lin, S S

    2009-08-18

    Based on a comparative study between the piezoelectric outputs of n-type nanowires (NWs) and n-core/p-shell NWs along with the previous study (Lu et al 2009 Nano. Lett. 9 1223), we demonstrate a one-step technique for identifying the conductivity type of individual ZnO nanowires (NWs) based on the output of a piezoelectric nanogenerator without destroying the sample. A negative piezoelectric output voltage indicates an NW is n-type and it appears after the tip scans across the center of the NW, while a positive output voltage reveals p-type conductivity and it appears before the tip scans across the central line of the NW. This atomic force microscopy based technique is reliable for statistically mapping the majority carrier type in ZnO NWs arrays. The technique may also be applied to other wurtzite semiconductors, such as GaN, CdS and ZnS. © 2009 IOP Publishing Ltd.

  1. Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte

    Directory of Open Access Journals (Sweden)

    Yüzer Hayrettin

    2010-01-01

    Full Text Available Abstract A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM, energy-dispersive X-ray (EDX methods and X-Ray diffraction (XRD. It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially.

  2. Homogeneous vertical ZnO nanorod arrays with high conductivity on an in situ Gd nanolayer

    KAUST Repository

    Flemban, Tahani H.

    2015-10-30

    We demonstrate a novel, one-step, catalyst-free method for the production of size-controlled vertical highly conductive ZnO nanorod (NR) arrays with highly desirable characteristics by pulsed laser deposition using a Gd-doped ZnO target. Our study shows that an in situ transparent and conductive Gd nanolayer (with a uniform thickness of ∼1 nm) at the interface between a lattice-matched (11-20) a-sapphire substrate and ZnO is formed during the deposition. This nanolayer significantly induces a relaxation mechanism that controls the dislocation distribution along the growth direction; which consequently improves the formation of homogeneous vertically aligned ZnO NRs. We demonstrate that both the lattice orientation of the substrate and the Gd characteristics are important in enhancing the NR synthesis, and we report precise control of the NR density by changing the oxygen partial pressure. We show that these NRs possess high optical and electrical quality, with a mobility of 177 cm2 (V s)-1, which is comparable to the best-reported mobility of ZnO NRs. Therefore, this new and simple method has significant potential for improving the performance of materials used in a wide range of electronic and optoelectronic applications.

  3. Impedance analysis of PbS colloidal quantum dot solar cells with different ZnO nanowire lengths

    Science.gov (United States)

    Fukuda, Takeshi; Takahashi, Akihiro; Wang, Haibin; Takahira, Kazuya; Kubo, Takaya; Segawa, Hiroshi

    2018-03-01

    The photoconversion efficiency of colloidal quantum dot (QD) solar cells has been markedly improved by optimizing the surface passivation and device structure, and details of device physics are now under investigation. In this study, we investigated the resistance and capacitance components at the ZnO/PbS-QD interface and inside a PbS-QD layer by measuring the impedance spectrum while the interface area was controlled by changing the ZnO nanowire length. By evaluating the dependence of optical intensity and DC bias voltage on the ZnO nanowire length, only the capacitance was observed to be influenced by the interface area, and this indicates that photoinduced carriers are generated at the surface of PbS-QD. In addition, since the capacitance is proportional to the surface area of the QD, the interface area can be evaluated from the capacitance. Finally, photovoltaic performance was observed to increase with increasing ZnO nanowire length owing to the large interface area, and this result is in good agreement with the capacitance measurement.

  4. Epitaxial III-V nanowires on silicon for vertical devices

    NARCIS (Netherlands)

    Bakkers, E.P.A.M.; Borgström, M.T.; Einden, Van Den W.; Weert, van M.H.M.; Helman, A.; Verheijen, M.A.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the Vapor-Liquid-Solid (VLS) mechanism with laser ablation as well as metal organic vapor phase epitaxy. The VLS growth enables the fabrication of complex axial and radial

  5. Facile preparation of branched hierarchical ZnO nanowire arrays with enhanced photocatalytic activity: A photodegradation kinetic model

    Science.gov (United States)

    Ebrahimi, M.; Yousefzadeh, S.; Samadi, M.; Dong, Chunyang; Zhang, Jinlong; Moshfegh, A. Z.

    2018-03-01

    Branched hierarchical zinc oxide nanowires (BH-ZnO NWs) were fabricated successfully by a facile and rapid synthesis using two-step growth process. Initially, ZnO NWs have been prepared by anodizing zinc foil at room temperature and followed by annealing treatment. Then, the BH- ZnO NWs were grown on the ZnO NWs by a solution based method at very low temperature (31 oC). The BH- ZnO NWs with different aspect ratio were obtained by varying reaction time (0.5, 2, 5, 10 h). Photocatalytic activity of the samples was studied under both UV and visible light. The results indicated that the optimized BH-ZnO NWs (5 h) as a photocatalyst exhibited the highest photoactivity with about 3 times higher than the ZnO NWs under UV light. In addition, it was also determined that photodegradation rate constant (k) for the BH- ZnO NWs surface obeys a linear function with the branch length (l) and their correlation was described by using a proposed kinetic model.

  6. Gate-Tunable Spin Exchange Interactions and Inversion of Magnetoresistance in Single Ferromagnetic ZnO Nanowires.

    Science.gov (United States)

    Modepalli, Vijayakumar; Jin, Mi-Jin; Park, Jungmin; Jo, Junhyeon; Kim, Ji-Hyun; Baik, Jeong Min; Seo, Changwon; Kim, Jeongyong; Yoo, Jung-Woo

    2016-04-26

    Electrical control of ferromagnetism in semiconductor nanostructures offers the promise of nonvolatile functionality in future semiconductor spintronics. Here, we demonstrate a dramatic gate-induced change of ferromagnetism in ZnO nanowire (NW) field-effect transistors (FETs). Ferromagnetism in our ZnO NWs arose from oxygen vacancies, which constitute deep levels hosting unpaired electron spins. The magnetic transition temperature of the studied ZnO NWs was estimated to be well above room temperature. The in situ UV confocal photoluminescence (PL) study confirmed oxygen vacancy mediated ferromagnetism in the studied ZnO NW FET devices. Both the estimated carrier concentration and temperature-dependent conductivity reveal the studied ZnO NWs are at the crossover of the metal-insulator transition. In particular, gate-induced modulation of the carrier concentration in the ZnO NW FET significantly alters carrier-mediated exchange interactions, which causes even inversion of magnetoresistance (MR) from negative to positive values. Upon sweeping the gate bias from -40 to +50 V, the MRs estimated at 2 K and 2 T were changed from -11.3% to +4.1%. Detailed analysis on the gate-dependent MR behavior clearly showed enhanced spin splitting energy with increasing carrier concentration. Gate-voltage-dependent PL spectra of an individual NW device confirmed the localization of oxygen vacancy-induced spins, indicating that gate-tunable indirect exchange coupling between localized magnetic moments played an important role in the remarkable change of the MR.

  7. Silver nanowires network encapsulated by low temperature sol-gel ZnO for transparent flexible electrodes with ambient stability

    Science.gov (United States)

    Shin, Wonjung; Cho, Wonki; Baik, Seung Jae

    2018-01-01

    As a geometrically engineered realization of transparent electrode, Ag nanowires network is promising for its superior characteristics both on electrical conductivity and optical transmittance. However, for a potential commercialization of Ag nanowires network, further investigations on encapsulation materials are necessary to prevent degradation caused by ambient aging. In addition, the temperature range of the coating process for the encapsulation material needs to be low enough to prevent degradation of polymer substrates during the film coating processes, when considering emerging flexible device application of transparent electrodes. We present experimental results showing that low temperature sol-gel ZnO processed under 130 °C is an effective encapsulation material preventing ambient oxidation of Ag nanowires network without degrading electrical, optical, and mechanical properties.

  8. Vertical Silicon Nanowire Platform for Low Power Electronics and Clean Energy Applications

    Directory of Open Access Journals (Sweden)

    D.-L. Kwong

    2012-01-01

    Full Text Available This paper reviews the progress of the vertical top-down nanowire technology platform developed to explore novel device architectures and integration schemes for green electronics and clean energy applications. Under electronics domain, besides having ultimate scaling potential, the vertical wire offers (1 CMOS circuits with much smaller foot print as compared to planar transistor at the same technology node, (2 a natural platform for tunneling FETs, and (3 a route to fabricate stacked nonvolatile memory cells. Under clean energy harvesting area, vertical wires could provide (1 cost reduction in photovoltaic energy conversion through enhanced light trapping and (2 a fully CMOS compatible thermoelectric engine converting waste-heat into electricity. In addition to progress review, we discuss the challenges and future prospects with vertical nanowires platform.

  9. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  10. Vertical nanowire arrays as a versatile platform for protein detection and analysis

    DEFF Research Database (Denmark)

    Rostgaard, Katrine R.; Frederiksen, Rune S.; Liu, Yi-Chi

    2013-01-01

    solutions. Here we show that vertical arrays of nanowires (NWs) can overcome several bottlenecks of using nanoarrays for extraction and analysis of proteins. The high aspect ratio of the NWs results in a large surface area available for protein immobilization and renders passivation of the surface between...

  11. Vertical resistivity in nanocrystalline ZnO and amorphous InGaZnO

    Science.gov (United States)

    McCandless, Jonathan P.; Leedy, Kevin D.; Schuette, Michael L.

    2018-02-01

    The goal is to gain additional insight into physical mechanisms and the role of microstructure on the formation of ohmic contacts and the reduction of contact resistance. We have measured a decreasing film resistivity in the vertical direction with increasing thickness of pulsed-laser deposited ZnO and IGZO. As the ZnO thickness increases from 122 nm to 441 nm, a reduction in resistivity from 3.29 Ω-cm to 0.364 Ω-cm occurred. The IGZO resistivity changes from 72.4 Ω-cm to 0.642 Ω-cm as the film is increased from 108nm to 219 nm. In the ZnO, the size of nanocolumnar grains increase with thickness resulting in fewer grain boundaries, and in the amorphous IGZO, the thicker region exhibits tunnel-like artifacts which may contribute to the reduced resistivity.

  12. The role of substrate surface alteration in the fabrication of vertically aligned CdTe nanowires

    International Nuclear Information System (INIS)

    Neretina, S; Devenyi, G A; Preston, J S; Mascher, P; Hughes, R A; Sochinskii, N V

    2008-01-01

    Previously we have described the deposition of vertically aligned wurtzite CdTe nanowires derived from an unusual catalytically driven growth mode. This growth mode could only proceed when the surface of the substrate was corrupted with an alcohol layer, although the role of the corruption was not fully understood. Here, we present a study detailing the remarkable role that this substrate surface alteration plays in the development of CdTe nanowires; it dramatically improves the size uniformity and largely eliminates lateral growth. These effects are demonstrated to arise from the altered surface's ability to limit Ostwald ripening of the catalytic seed material and by providing a surface unable to promote the epitaxial relationship needed to sustain a lateral growth mode. The axial growth of the CdTe nanowires is found to be exclusively driven through the direct impingement of adatoms onto the catalytic seeds leading to a self-limiting wire height associated with the sublimation of material from the sidewall facets. The work presented furthers the development of the mechanisms needed to promote high quality substrate-based vertically aligned CdTe nanowires. With our present understanding of the growth mechanism being a combination of selective area epitaxy and a catalytically driven vapour-liquid-solid growth mode, these results also raise the intriguing possibility of employing this growth mode in other material systems in an effort to produce superior nanowires

  13. Fabrication of a Combustion-Reacted High-Performance ZnO Electron Transport Layer with Silver Nanowire Electrodes for Organic Solar Cells.

    Science.gov (United States)

    Park, Minkyu; Lee, Sang-Hoon; Kim, Donghyuk; Kang, Juhoon; Lee, Jung-Yong; Han, Seung Min

    2018-02-28

    Herein, a new methodology for solution-processed ZnO fabrication on Ag nanowire network electrode via combustion reaction is reported, where the amount of heat emitted during combustion was minimized by controlling the reaction temperature to avoid damaging the underlying Ag nanowires. The degree of participation of acetylacetones, which are volatile fuels in the combustion reaction, was found to vary with the reaction temperature, as revealed by thermogravimetric and compositional analyses. An optimized processing temperature of 180 °C was chosen to successfully fabricate a combustion-reacted ZnO and Ag nanowire hybrid electrode with a sheet resistance of 30 Ω/sq and transmittance of 87%. A combustion-reacted ZnO on Ag nanowire hybrid structure was demonstrated as an efficient transparent electrode and electron transport layer for the PTB7-Th-based polymer solar cells. The superior electrical conductivity of combustion-reacted ZnO, compared to that of conventional sol-gel ZnO, increased the external quantum efficiency over the entire absorption range, whereas a unique light scattering effect due to the presence of nanopores in the combustion-derived ZnO further enhanced the external quantum efficiency in the 450-550 nm wavelength range. A power conversion efficiency of 8.48% was demonstrated for the PTB7-Th-based polymer solar cell with the use of a combustion-reacted ZnO/Ag NW hybrid transparent electrode.

  14. ZnO nanowire/TiO2 nanoparticle photoanodes prepared by the ultrasonic irradiation assisted dip-coating method

    International Nuclear Information System (INIS)

    Gan Xiaoyan; Li Xiaomin; Gao Xiangdong; Zhuge Fuwei; Yu Weidong

    2010-01-01

    Hybrid ZnO/TiO 2 photoanodes for dye-sensitized solar cells were prepared by combining ZnO nanowire (NW) arrays and TiO 2 nanoparticles (NPs) with the assistance of the ultrasonic irradiation assisted dip-coating method. Results show that the ultrasonic irradiation was an efficient way to promote the gap filling of TiO 2 NPs in the interstices of ZnO NWs. Hybrid ZnO NW/TiO 2 NP electrodes prepared with ultrasonic treatment exhibited better gap filling efficiency and higher visible absorptance. The overall conversion efficiency of the hybrid electrode was 0.79%, representing 35% improvement compared with that of the traditional one (0.58%). The enlarged surface area and improved attachments of TiO 2 NPs onto the walls of ZnO NWs induced by the application of ultrasonic irradiation may be the underlying reason. Electrochemical impedance spectroscopy measurements indicated that hybrid electrodes combined the advantages of improved electron transport along the ZnO NWs and increased surface area provided by infiltrated TiO 2 NPs, both of which are responsible for the improved cell efficiency.

  15. ZnO nanowire-based nano-floating gate memory with Pt nanocrystals embedded in Al{sub 2}O{sub 3} gate oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Donghyuk; Kang, Jeongmin; Lee, Myoungwon; Jang, Jaewon; Yun, Junggwon; Jeong, Dong-Young; Yoon, Changjoon; Koo, Jamin; Kim, Sangsig [Department of Electrical Engineering and Institute for Nano Science, Korea University, Seoul 136-701 (Korea, Republic of)], E-mail: sangsig@korea.ac.kr

    2008-10-01

    The memory characteristics of ZnO nanowire-based nano-floating gate memory (NFGM) with Pt nanocrystals acting as the floating gate nodes were investigated in this work. Pt nanocrystals were embedded between Al{sub 2}O{sub 3} tunneling and control oxide layers deposited on ZnO nanowire channels. For a representative ZnO nanowire-based NFGM with embedded Pt nanocrystals, a threshold voltage shift of 3.8 V was observed in its drain current versus gate voltage (I{sub DS}-V{sub GS}) measurements for a double sweep of the gate voltage, revealing that the deep effective potential wells built into the nanocrystals provide our NFGM with a large charge storage capacity. Details of the charge storage effect observed in this memory device are discussed in this paper.

  16. ZnO nanowire-based nano-floating gate memory with Pt nanocrystals embedded in Al2O3 gate oxides

    International Nuclear Information System (INIS)

    Yeom, Donghyuk; Kang, Jeongmin; Lee, Myoungwon; Jang, Jaewon; Yun, Junggwon; Jeong, Dong-Young; Yoon, Changjoon; Koo, Jamin; Kim, Sangsig

    2008-01-01

    The memory characteristics of ZnO nanowire-based nano-floating gate memory (NFGM) with Pt nanocrystals acting as the floating gate nodes were investigated in this work. Pt nanocrystals were embedded between Al 2 O 3 tunneling and control oxide layers deposited on ZnO nanowire channels. For a representative ZnO nanowire-based NFGM with embedded Pt nanocrystals, a threshold voltage shift of 3.8 V was observed in its drain current versus gate voltage (I DS -V GS ) measurements for a double sweep of the gate voltage, revealing that the deep effective potential wells built into the nanocrystals provide our NFGM with a large charge storage capacity. Details of the charge storage effect observed in this memory device are discussed in this paper

  17. A top-down approach to fabrication of high quality vertical heterostructure nanowire arrays.

    Science.gov (United States)

    Wang, Hua; Sun, Minghua; Ding, Kang; Hill, Martin T; Ning, Cun-Zheng

    2011-04-13

    We demonstrate a novel top-down approach for fabricating nanowires with unprecedented complexity and optical quality by taking advantage of a nanoscale self-masking effect. We realized vertical arrays of nanowires of 20-40 nm in diameter with 16 segments of complex longitudinal InGaAsP/InP structures. The unprecedented high quality of etched wires is evidenced by the narrowest photoluminescence linewidth ever produced in similar wavelengths, indistinguishable from that of the corresponding wafer. This top-down, mask-free, large scale approach is compatible with the established device fabrication processes and could serve as an important alternative to the bottom-up approach, significantly expanding ranges and varieties of applications of nanowire technology.

  18. Characteristics of CVD graphene nanoribbon formed by a ZnO nanowire hardmask

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Goo; Kang, Jang Won; Lee, Seung Yong; Hwang, Hyeon Jun; Lee, Young Gon; Park, Seong-Ju; Lee, Byoung Hun [School of Material Science and Engineering, Gwangju Institute of Science and Technology, Oryong-dong 1, Buk-gu, Gwangju, 500-712 (Korea, Republic of); Lee, Sang Kyung; Cho, Chun Hum [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Oryong-dong 1, Buk-gu, Gwangju, 500-712 (Korea, Republic of); Heo, Jinseong; Chung, Hyun-Jong; Yang, Heejun [Semiconductor Devices Lab, Samsung Advanced Institute of Technology, Yongin (Korea, Republic of); Seo, Sunae [Department of Physics, Sejong University, Gunja-Dong, Kwanggin-gu, Seoul (Korea, Republic of); Ko, Ki Young; Ahn, Jinho, E-mail: bhl@gist.ac.kr [Division of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul, 133-791 (Korea, Republic of)

    2011-07-22

    A graphene nanoribbon (GNR) is an important basic structure to open a bandgap in graphene. The GNR processes reported in the literature are complex, time-consuming, and expensive; moreover, the device yield is relatively low. In this paper, a simple new process to fabricate a long and straight graphene nanoribbon with a high yield has been proposed. This process utilizes CVD graphene substrate and a ZnO nanowire as the hardmask for patterning. 8 {mu}m long and 50-100 nm wide GNRs were successfully demonstrated in high density without any trimming, and {approx} 10% device yield was realized with a top-down patterning process. After passivating the surfaces of the GNRs using a low temperature atomic layer deposition (ALD) of Al{sub 2}O{sub 3}, high performance GNR MOSFETs with symmetric drain-current-gate-voltage (I{sub d}-V{sub g}) curves were demonstrated and a field effect mobility up to {approx} 1200 cm{sup 2} V{sup -1} s{sup -1} was achieved at V{sub d} = 10 mV.

  19. Surface state modulation through wet chemical treatment as a route to controlling the electrical properties of ZnO nanowire arrays investigated with XPS

    International Nuclear Information System (INIS)

    Lord, Alex M.; Maffeis, Thierry G.; Allen, Martin W.; Morgan, David; Davies, Philip R.; Jones, Daniel R.; Evans, Jonathan E.; Smith, Nathan A.; Wilks, Steve P.

    2014-01-01

    Highlights: • Direct measurement of the surface band bending exhibited by ZnO nanowires using monochromatic XPS. • Modulation of the surface depletion region using wet chemical treatment (EtOH, H 2 O 2 ). • The measured surface potential barrier agrees with electrical measurements of individual nanowires. • H 2 O 2 depletes the nanowire of charge carriers while EtOH donates electrons at the surface. • EtOH has the effect of restoring the surface potential barrier of oxidised nanowires. - Abstract: ZnO is a wide bandgap semiconductor that has many potential applications including solar cell electrodes, transparent thin film transistors and gas/biological sensors. Since the surfaces of ZnO materials have no amorphous or oxidised layers, they are very environmentally sensitive, making control of their semiconductor properties challenging. In particular, the electronic properties of ZnO nanostructures are dominated by surface effects while surface conduction layers have been observed in thin films and bulk crystals. Therefore, the ability to use the ZnO materials in a controlled way depends on the development of simple techniques to modulate their surface electronic properties. Here, we use monochromatic x-ray photoelectron spectroscopy (XPS) to investigate the use of different wet chemical treatments (EtOH, H 2 O 2 ) to control the electronic properties of ZnO nanowires by modulating the surface depletion region. The valence band and core level XPS spectra are used to explore the relationship between the surface chemistry of the nanowires and the surface band bending

  20. An Enhanced UV-Vis-NIR an d Flexible Photodetector Based on Electrospun ZnO Nanowire Array/PbS Quantum Dots Film Heterostructure.

    Science.gov (United States)

    Zheng, Zhi; Gan, Lin; Zhang, Jianbing; Zhuge, Fuwei; Zhai, Tianyou

    2017-03-01

    ZnO nanostructure-based photodetectors have a wide applications in many aspects, however, the response range of which are mainly restricted in the UV region dictated by its bandgap. Herein, UV-vis-NIR sensitive ZnO photodetectors consisting of ZnO nanowires (NW) array/PbS quantum dots (QDs) heterostructures are fabricated through modified electrospining method and an exchanging process. Besides wider response region compared to pure ZnO NWs based photodetectors, the heterostructures based photodetectors have faster response and recovery speed in UV range. Moreover, such photodetectors demonstrate good flexibility as well, which maintain almost constant performances under extreme (up to 180°) and repeat (up to 200 cycles) bending conditions in UV-vis-NIR range. Finally, this strategy is further verified on other kinds of 1D nanowires and 0D QDs, and similar enhancement on the performance of corresponding photodetecetors can be acquired, evidencing the universality of this strategy.

  1. Optimization of CVD parameters for long ZnO NWs grown on ITO

    Indian Academy of Sciences (India)

    The optimization of chemical vapour deposition (CVD) parameters for long and vertically aligned (VA) ZnO nanowires (NWs) were investigated. Typical ZnO NWs as a single crystal grown on indium tin oxide (ITO)-coated glass substrate were successfully synthesized. First, the conducted side of ITO–glass substrate was ...

  2. Synthesis of ZnO Nanowires via Hotwire Thermal Evaporation of Brass (CuZn) Assisted by Vapor Phase Transport of Methanol

    OpenAIRE

    Tamil Many K. Thandavan; Siti Meriam Abdul Gani; Chiow San Wong; Roslan Md Nor

    2014-01-01

    Zinc oxide (ZnO) nanowires (NWs) were synthesized using vapor phase transport (VPT) and thermal evaporation of Zn from CuZn. Time dependence of ZnO NWs growth was investigated for 5, 10, 15, 20, 25, and 30 minutes. Significant changes were observed from the field electron scanning electron microscopy (FESEM) images as well as from the X-ray diffraction (XRD) profile. The photoluminescence (PL) profile was attributed to the contribution of oxygen vacancy, zinc interstitials, and hydrogen defec...

  3. The Development of High-Density Vertical Silicon Nanowires and Their Application in a Heterojunction Diode

    Directory of Open Access Journals (Sweden)

    Wen-Chung Chang

    2016-06-01

    Full Text Available Vertically aligned p-type silicon nanowire (SiNW arrays were fabricated through metal-assisted chemical etching (MACE of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM, X-ray diffraction (XRD, and current−voltage (I−V measurements. Nonlinear and rectifying I−V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions.

  4. Effects of ZnS layer on the performance improvement of the photosensitive ZnO nanowire arrays solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Hafiz Muhammad Asif [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an, 710049 (China); Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an, 710049 (China); Gao, Yanping; Xing, Yonglei [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an, 710049 (China); Kong, Ling Bing, E-mail: ELBKong@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 (Singapore)

    2016-08-01

    The impact of ZnS layer as an interface modification on the photosensitive ZnO nanowire arrays solar cells was studied. CdS, CdSe and ZnS were deposited on ZnO nanowire arrays by SILAR method. When a ZnS layer was deposited, the quantum dot barrier was indirectly become in contact with the electrolyte, which thus restrained the flow of electrons. The CdS sensitized solar cells has an efficiency of 0.55% with the deposition of the ZnS(3) layer, that is, with a deposition of three times, whereas the CdS/CdSe co-sensitized solar cells has an efficiency of 2.03% with the deposition of the ZnS(1) layer. It was also noted that as the thickness of the of ZnS layer was increased, V{sub oc}, I{sub sc} and efficiencies of both the solar cells were first increased and then decreased. In addition, the CdS/N719 solar cells has an efficiency of 0.75% with the deposition of the ZnS(2) layer. - Highlights: • The impact of ZnS layer on the photosensitive ZnO nanowire solar cells was studied. • ZnS layer restrained the flow of electrons to the electrolyte. • CdS/CdSe co-sensitized solar cells have higher efficiency than CdS solar cells. • When ZnS layer was increased, V{sub oc} and I{sub sc} firstly increased and then decreased.

  5. Non-classical logic inverter coupling a ZnO nanowire-based Schottky barrier transistor and adjacent Schottky diode.

    Science.gov (United States)

    Hosseini Shokouh, Seyed Hossein; Raza, Syed Raza Ali; Lee, Hee Sung; Im, Seongil

    2014-08-21

    On a single ZnO nanowire (NW), we fabricated an inverter-type device comprising a Schottky diode (SD) and field-effect transistor (FET), aiming at 1-dimensional (1D) electronic circuits with low power consumption. The SD and adjacent FET worked respectively as the load and driver, so that voltage signals could be easily extracted as the output. In addition, NW FET with a transparent conducting oxide as top gate turned out to be very photosensitive, although ZnO NW SD was blind to visible light. Based on this, we could achieve an array of photo-inverter cells on one NW. Our non-classical inverter is regarded as quite practical for both logic and photo-sensing due to its performance as well as simple device configuration.

  6. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    OpenAIRE

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-?m line width, 9-?m pitch, and 6-?m height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed...

  7. Chemical bath deposition of ZnO nanowire-nanoparticle composite electrodes for use in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ku, C-H; Wu, J-J [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2007-12-19

    ZnO nanowire (NW)-layered basic zinc acetate (LBZA)/ZnO nanoparticle (NP) composite electrodes with different NP occupying extents have been synthesized using a simple wet-chemical route for use in dye-sensitized solar cells (DSSCs). By employing mercurochrome as the sensitizer, superior efficiencies ({eta}) of 1.27-2.37% are obtained using the ZnO NW-LBZA/ZnO NP composite electrodes composed of a 5.5 {mu}m thick NW array with different NP occupying extents in comparison with the ZnO NW DSSC ({eta} = 0.45%). It suggests that the ZnO NW-LBZA/ZnO NP composite films which possess a considerable enlarged surface area by NPs growth, without sacrificing electron transport efficiency of single-crystalline ZnO NWs at the same time, are promising photoanodes for use in DSSCs. In addition to the extent of NP occupation, the overall efficiency of the ZnO NW-LBZA/ZnO NP composite DSSC is also influenced by the thickness of the composite film as well as the LBZA fraction and the cracks within the composite. The fraction of LBZA affected by the NP growth period and post-annealing conditions is found to play a crucial role in electron transport through the composite anode. Up to now, a high efficiency DSSC of 3.2% is achieved using a mercurochrome-sensitized and 6.2 {mu}m thick NW-NP composite film.

  8. Fast Response and High Sensitivity of ZnO Nanowires-Cobalt Phthalocyanine Heterojunction Based H2S Sensor.

    Science.gov (United States)

    Kumar, Ashwini; Samanta, Soumen; Singh, Ajay; Roy, Mainak; Singh, Surendra; Basu, Saibal; Chehimi, Mohmad M; Roy, Kallol; Ramgir, Niranjan; Navaneethan, M; Hayakawa, Y; Debnath, Anil K; Aswal, Dinesh K; Gupta, Shiv K

    2015-08-19

    The room temperature chemiresistive response of n-type ZnO nanowire (ZnO NWs) films modified with different thicknesses of p-type cobalt phthalocyanine (CoPc) has been studied. With increasing thickness of CoPc (>15 nm), heterojunction films exhibit a transition from n- to p-type conduction due to uniform coating of CoPc on ZnO. The heterojunction films prepared with a 25 nm thick CoPc layer exhibit the highest response (268% at 10 ppm of H2S) and the fastest response (26 s) among all samples. The X-ray photoelectron spectroscopy and work function measurements reveal that electron transfer takes place from ZnO to CoPc, resulting in formation of a p-n junction with a barrier height of 0.4 eV and a depletion layer width of ∼8.9 nm. The detailed XPS analysis suggests that these heterojunction films with 25 nm thick CoPc exhibit the least content of chemisorbed oxygen, enabling the direct interaction of H2S with the CoPc molecule, and therefore exhibit the fastest response. The improved response is attributed to the high susceptibility of the p-n junctions to the H2S gas, which manipulates the depletion layer width and controls the charge transport.

  9. Structural and optical properties of ZnMgO nanostructures formed by Mg in-diffused ZnO nanowires

    International Nuclear Information System (INIS)

    Pan, C.-J.; Hsu, H.-C.; Cheng, H.-M.; Wu, C.-Y.; Hsieh, W.-F.

    2007-01-01

    ZnMgO nanostructures with wurtzite phase were prepared by thermal diffusion of Mg into the ZnO nanowires. As ZnO light-emitting devices have been operated by using ZnMgO layers as energy barrier layers to confine the carriers, it is essential to realize the characterization of ZnMgO particularly. In this work, the Mg content in Zn 1 -x Mg x O alloy determined by X-ray diffraction (XRD) and photoluminescence (PL) shows a good coincidence. The variation of lattice constant and the blueshift of near-band-edge emission indicate that Zn 2+ ions are successfully substituted by Mg 2+ ions in the ZnO lattice. In Raman-scattering studies, the change of E 2 (high) phonon line shape in ZnO:Mg nanostructures reveals the microscopic substitutional disorder. In addition to the host phonons of ZnO, two additional bands around 383 and 510 cm -1 are presumably attributed to the Mg-related vibrational modes. - Graphical abstract: We reported the synthesis of the ZnMgO nanostructures prepared by a simple vapor transport method. Magnesium-related anomalous modes are observed by Raman spectra for the first time in ZnMgO system

  10. Microwave-assisted aqueous synthesis of ultralong ZnO nanowires: photoluminescence and photovoltaic performance for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Min, C.; Shen, X.; Sheng, W. [Jiangsu University, School of Materials Science and Engineering, Zhenjiang (China)

    2009-09-15

    Ultralong ZnO nanowires were successfully prepared on a large scale by a microwave-assisted aqueous route without using any surfactant or template at relatively low temperature of 120 C. The obtained nanowires were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectrum (EDX). The growth mechanism and photoluminescence of the one-dimensional nanostructure, and photovoltaic performances for dye-sensitized solar cell (DSSC) of the nanowires were discussed in detail. (orig.)

  11. A III-V nanowire channel on silicon for high-performance vertical transistors.

    Science.gov (United States)

    Tomioka, Katsuhiro; Yoshimura, Masatoshi; Fukui, Takashi

    2012-08-09

    Silicon transistors are expected to have new gate architectures, channel materials and switching mechanisms in ten years' time. The trend in transistor scaling has already led to a change in gate structure from two dimensions to three, used in fin field-effect transistors, to avoid problems inherent in miniaturization such as high off-state leakage current and the short-channel effect. At present, planar and fin architectures using III-V materials, specifically InGaAs, are being explored as alternative fast channels on silicon because of their high electron mobility and high-quality interface with gate dielectrics. The idea of surrounding-gate transistors, in which the gate is wrapped around a nanowire channel to provide the best possible electrostatic gate control, using InGaAs channels on silicon, however, has been less well investigated because of difficulties in integrating free-standing InGaAs nanostructures on silicon. Here we report the position-controlled growth of vertical InGaAs nanowires on silicon without any buffering technique and demonstrate surrounding-gate transistors using InGaAs nanowires and InGaAs/InP/InAlAs/InGaAs core-multishell nanowires as channels. Surrounding-gate transistors using core-multishell nanowire channels with a six-sided, high-electron-mobility transistor structure greatly enhance the on-state current and transconductance while keeping good gate controllability. These devices provide a route to making vertically oriented transistors for the next generation of field-effect transistors and may be useful as building blocks for wireless networks on silicon platforms.

  12. Performance analysis and simulation of vertical gallium nitride nanowire transistors

    Science.gov (United States)

    Witzigmann, Bernd; Yu, Feng; Frank, Kristian; Strempel, Klaas; Fatahilah, Muhammad Fahlesa; Schumacher, Hans Werner; Wasisto, Hutomo Suryo; Römer, Friedhard; Waag, Andreas

    2018-06-01

    Gallium nitride (GaN) nanowire transistors are analyzed using hydrodynamic simulation. Both p-body and n-body devices are compared in terms of threshold voltage, saturation behavior and transconductance. The calculations are calibrated using experimental data. The threshold voltage can be tuned from enhancement to depletion mode with wire doping. Surface states cause a shift of threshold voltage and saturation current. The saturation current depends on the gate design, with a composite gate acting as field plate in the p-body device. He joined Bell Laboratories, Murray Hill, NJ, as a Technical Staff Member. In October 2001, he joined the Optical Access and Transport Division, Agere Systems, Alhambra, CA. In 2004, he was appointed an Assistant Professor at ETH Zurich,. Since 2008, at the University of Kassel, Kassel, Germany, and he has been a Professor the Head of the Computational Electronics and Photonics Group, and co-director of CINSaT since 2010. His research interests include computational optoelectronics, process and device design of semiconductor photonic devices, microwave components, and electromagnetics modeling for nanophotonics. Dr. Witzigmann is a senior member of the SPIE and IEEE.

  13. Fabrication and characterization of solution processed vertically aligned ZnO microrods

    Energy Technology Data Exchange (ETDEWEB)

    Gadallah, A.-S., E-mail: agadallah@niles.edu.eg [Laboratoire de Nanotechnologie et d’Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6279, Université de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France); Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt)

    2014-08-30

    Simple and effective cost high quality vertically aligned densely packed ZnO microrods have been prepared using solution processed two-step deposition process, specifically sol–gel spin coating combined with chemical bath deposition. X-ray diffraction pattern and scanning electron microscope show that there has been preferential crystal orientation along c-axis and the growth of the microrods has occurred normal to the glass substrate and the facets of the these microrods are hexagons. Photoluminescence measurements showed an emission band in the UV region and another weak band in the visible region with the emission intensity of UV band grows superlinearly with the excitation intensity. The film shows an electrical resistivity of 136 Ω cm as evaluated from four-point probe method. The fabricated film has been used as UV detector through Au/SiO{sub 2}/ZnO structure on glass substrate as the structure shows higher current under illumination compared to without illumination.

  14. Interfacial passivation of CdS layer to CdSe quantum dots-sensitized electrodeposited ZnO nanowire thin films

    International Nuclear Information System (INIS)

    Zhang, Jingbo; Sun, Chuanzhen; Bai, Shouli; Luo, Ruixian; Chen, Aifan; Sun, Lina; Lin, Yuan

    2013-01-01

    ZnO porous thin films with nanowire structure were deposited by the one-step electrochemical deposition method. And a CdS layer was coated on the as-deposited ZnO nanowire thin films by successive ionic layer adsorption and reaction (SILAR) method to passivate surface states. Then the films were further sensitized by CdSe quantum dots (QDs) to serve as a photoanode for fabricating quantum dots-sensitized solar cells (QDSSCs). The effect of the CdS interfacial passivation layer on the performance of the QDSSCs was systematically investigated by varying the SILAR cycle number and heating the passivation layer. The amorphous CdS layer with an optimized thickness can effectively suppress the recombination of the injected electrons with holes on QDs and the redox electrolyte. The newly formed CdS layer on the surface of the ZnO nanowire thin film obviously prolongs the electron lifetime in the passivated ZnO nanoporous thin film because of the lower surface trap density in the ZnO nanowires after CdS deposition, which is favorable to the higher short-circuit photocurrent density (J sc ). For the CdSe QDs-sensitized ZnO nanoporous thin film with the interfacial passivation layer, the J sc and conversion efficiency can reach a maximum of 8.36 mA cm −2 and 2.36%, respectively. The conversion efficiency was improved by 83.47% compared with that of the cell based on the CdSe QDs-sensitized ZnO nanoporous thin film without CdS interfacial passivation (0.39%)

  15. Ultrahigh Density Array of Vertically Aligned Small-molecular Organic Nanowires on Arbitrary Substrates

    Science.gov (United States)

    Starko-Bowes, Ryan; Pramanik, Sandipan

    2013-01-01

    In recent years π-conjugated organic semiconductors have emerged as the active material in a number of diverse applications including large-area, low-cost displays, photovoltaics, printable and flexible electronics and organic spin valves. Organics allow (a) low-cost, low-temperature processing and (b) molecular-level design of electronic, optical and spin transport characteristics. Such features are not readily available for mainstream inorganic semiconductors, which have enabled organics to carve a niche in the silicon-dominated electronics market. The first generation of organic-based devices has focused on thin film geometries, grown by physical vapor deposition or solution processing. However, it has been realized that organic nanostructures can be used to enhance performance of above-mentioned applications and significant effort has been invested in exploring methods for organic nanostructure fabrication. A particularly interesting class of organic nanostructures is the one in which vertically oriented organic nanowires, nanorods or nanotubes are organized in a well-regimented, high-density array. Such structures are highly versatile and are ideal morphological architectures for various applications such as chemical sensors, split-dipole nanoantennas, photovoltaic devices with radially heterostructured "core-shell" nanowires, and memory devices with a cross-point geometry. Such architecture is generally realized by a template-directed approach. In the past this method has been used to grow metal and inorganic semiconductor nanowire arrays. More recently π-conjugated polymer nanowires have been grown within nanoporous templates. However, these approaches have had limited success in growing nanowires of technologically important π-conjugated small molecular weight organics, such as tris-8-hydroxyquinoline aluminum (Alq3), rubrene and methanofullerenes, which are commonly used in diverse areas including organic displays, photovoltaics, thin film transistors

  16. Taxel-addressable matrix of vertical nanowire piezotronic transistors

    Science.gov (United States)

    Wang, Zhong Lin; Wu, Wenzhuo; Wen, Xiaonan

    2015-05-05

    A tactile sensing matrix includes a substrate, a first plurality of elongated electrode structures, a plurality of vertically aligned piezoelectric members, an insulating layer infused into the piezoelectric members and a second plurality of elongated electrode structures. The first plurality of elongated electrode structures is disposed on the substrate along a first orientation. The vertically aligned piezoelectric members is disposed on the first plurality of elongated electrode structures and form a matrix having columns of piezoelectric members disposed along the first orientation and rows of piezoelectric members disposed along a second orientation that is transverse to the first orientation. The second plurality of elongated electrode structures is disposed on the insulating layer along the second orientation. The elongated electrode structures form a Schottky contact with the piezoelectric members. When pressure is applied to the piezoelectric members, current flow therethrough is modulated.

  17. Synthesis of ZnO Nanowires via Hotwire Thermal Evaporation of Brass (CuZn Assisted by Vapor Phase Transport of Methanol

    Directory of Open Access Journals (Sweden)

    Tamil Many K. Thandavan

    2014-01-01

    Full Text Available Zinc oxide (ZnO nanowires (NWs were synthesized using vapor phase transport (VPT and thermal evaporation of Zn from CuZn. Time dependence of ZnO NWs growth was investigated for 5, 10, 15, 20, 25, and 30 minutes. Significant changes were observed from the field electron scanning electron microscopy (FESEM images as well as from the X-ray diffraction (XRD profile. The photoluminescence (PL profile was attributed to the contribution of oxygen vacancy, zinc interstitials, and hydrogen defects in the ZnO NWs. Raman scattering results show a significant peak at 143 cm−1 and possible functionalization on the wall of ZnO NWs. Growth of ZnO NWs in (0002 with an estimated distance between adjacent lattice planes 0.26 nm was determined from transmission electron microscopy (TEM analysis.

  18. Three-dimensional vertical Si nanowire MOS capacitor model structure for the study of electrical versus geometrical Si nanowire characteristics

    Science.gov (United States)

    Hourdakis, E.; Casanova, A.; Larrieu, G.; Nassiopoulou, A. G.

    2018-05-01

    Three-dimensional (3D) Si surface nanostructuring is interesting towards increasing the capacitance density of a metal-oxidesemiconductor (MOS) capacitor, while keeping reduced footprint for miniaturization. Si nanowires (SiNWs) can be used in this respect. With the aim of understanding the electrical versus geometrical characteristics of such capacitors, we fabricated and studied a MOS capacitor with highly ordered arrays of vertical Si nanowires of different lengths and thermal silicon oxide dielectric, in comparison to similar flat MOS capacitors. The high homogeneity and ordering of the SiNWs allowed the determination of the single SiNW capacitance and intrinsic series resistance, as well as other electrical characteristics (density of interface states, flat-band voltage and leakage current) in relation to the geometrical characteristics of the SiNWs. The SiNW capacitors demonstrated increased capacitance density compared to the flat case, while maintaining a cutoff frequency above 1 MHz, much higher than in other reports in the literature. Finally, our model system has been shown to constitute an excellent platform for the study of SiNW capacitors with either grown or deposited dielectrics, as for example high-k dielectrics for further increasing the capacitance density. This will be the subject of future work.

  19. Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications

    International Nuclear Information System (INIS)

    Lupan, O.; Pauporté, T.; Viana, B.; Aschehoug, P.

    2011-01-01

    Highlights: ► High quality copper-doped zinc oxide nanowires were electrochemically grown at low temperature. ► ZnO:Cu nanowires have been epitaxially grown on Mg-doped p-GaN single-crystalline layers. ► The (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction was used to fabricate a light-emitting diode structure. ► The photo- and electroluminescence emission was red-shifted to the violet spectral region compared to pure ZnO. ► The results are of importance for band-gap engineering of ZnO and for color-tunable LED. - Abstract: Copper-doped zinc oxide (ZnO:Cu) nanowires (NWs) were electrochemically deposited at low temperature on fluor-doped tin oxide (FTO) substrates. The electrochemical behavior of the Cu–Zn system for Cu-doped ZnO electrodeposition was studied and the electrochemical reaction mechanism is discussed. The synthesized ZnO arrayed layers were investigated by using SEM, XRD, EDX, photoluminescence and Raman techniques. X-ray diffraction analysis demonstrates a decrease in the lattice parameters of Cu-doped ZnO NWs. Structural analyses show that the nanomaterial is of hexagonal structure with the Cu incorporated in ZnO NWs probably by substituting zinc in the host lattice. Photoluminescence studies on pure and Cu-doped ZnO NWs shows that the near band edge emission is red-shifted by about 5 or 12 nm depending on Cu(II) concentration in the electrolytic bath solution (3 or 6 μmol l −1 ). Cu-doped ZnO NWs have been also epitaxially grown on Mg doped p-GaN single-crystalline layers and the (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction has been used to fabricate a light-emitting diode (LED) structure. The emission was red-shifted to the visible violet spectral region compared to pure ZnO. The present work demonstrates the ability of electrodeposition to produce high quality ZnO nanowires with tailored optical properties by doping. The obtained results are of great importance for further studies on bandgap engineering of ZnO, for color-tunable LED applications

  20. Microstructural and optical properties of nanocrystalline ZnO deposited onto vertically aligned carbon nanotubes by physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Borkar, Tushar [Department of Materials Science and Engineering and Center for Advanced Research and Technology, University of North Texas, Denton 76203 (United States); Chang, Won Seok [Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Hwang, Jun Yeon, E-mail: Junyeon.Hwang@kist.re.kr [Department of Materials Science and Engineering and Center for Advanced Research and Technology, University of North Texas, Denton 76203 (United States); Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeonbuk 565-902 (Korea, Republic of); Shepherd, Nigel D.; Banerjee, Rajarshi [Department of Materials Science and Engineering and Center for Advanced Research and Technology, University of North Texas, Denton 76203 (United States)

    2012-10-15

    Nanocrystalline ZnO films with thicknesses of 5 nm, 10 nm, 20 nm, and 50 nm were deposited via magnetron sputtering onto the surface of vertically aligned multi-walled carbon nanotubes (MWCNTs). The ZnO/CNTs heterostructures were characterized by scanning electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. No structural degradation of the CNTs was observed and photoluminescence (PL) measurements of the nanostructured ZnO layers show that the optical properties of these films are typical of ZnO deposited at low temperatures. The results indicate that magnetron sputtering is a viable technique for growing heterostructures and depositing functional layers onto CNTs.

  1. Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission.

    Science.gov (United States)

    Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang

    2014-01-01

    A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.

  2. Thermo-enhanced field emission from ZnO nanowires: Role of defects and application in a diode flat panel X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhipeng; Chen, Daokun; Chen, Wenqing; Chen, Yicong; Song, Xiaomeng; Zhan, Runze; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun, E-mail: stscjun@mail.sysu.edu.cn

    2017-03-31

    Highlights: • A thermo-enhanced field emission phenomenon was observed from dendritic ZnO nanowires under the temperature of 323–723 K. • Defect-assisted field emission mechanism was proposed and quantitative calculation fits well with the experiment results. • The mechanism was verified by the field emission from ZnO nanowires with different defect concentrations. • A diode X-ray source making use of thermo-enhanced field emission phenomenon was proposed for separate tuning of dose and energy. - Abstract: A thermo-enhanced field emission phenomenon was observed from ZnO nanowires. The field emission current increased by almost two orders of magnitude under a constant applied electric field, and the turn-on field decreased from 6.04 MV/m to 5.0 MV/m when the temperature increased from 323 to 723 K. The Poole–Frenkel electron excitation from the defect-induced trapping centers to the conduction band under high electric fields is believed to be the primary cause of the observed phenomenon. The experimental results fit well with the proposed physical model. The field emission from ZnO nanowires with different defect concentrations further confirmed the role of defects. Using the thermo-enhanced field emission phenomenon, a diode flat panel X-ray source was demonstrated, for which the energy and dose can be separately tuned. The thermo-enhanced field emission phenomenon observed from ZnO nanowires could be an effective way to realize a large area flat panel multi-energy X-ray source.

  3. Observation of linear I-V curves on vertical GaAs nanowires with atomic force microscope

    Science.gov (United States)

    Geydt, P.; Alekseev, P. A.; Dunaevskiy, M.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2015-12-01

    In this work we demonstrate the possibility of studying the current-voltage characteristics for single vertically standing semiconductor nanowires on standard AFM equipped by current measuring module in PeakForce Tapping mode. On the basis of research of eight different samples of p-doped GaAs nanowires grown on different GaAs substrates, peculiar electrical effects were revealed. It was found how covering of substrate surface by SiOx layer increases the current, as well as phosphorous passivation of the grown nanowires. Elimination of the Schottky barrier between golden cap and the top parts of nanowires was observed. It was additionally studied that charge accumulation on the shell of single nanowires affects its resistivity and causes the hysteresis loops on I-V curves.

  4. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    Science.gov (United States)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  5. Parameters Influencing the Growth of ZnO Nanowires as Efficient Low Temperature Flexible Perovskite-Based Solar Cells

    Directory of Open Access Journals (Sweden)

    Alex Dymshits

    2016-01-01

    Full Text Available Hybrid organic-inorganic perovskite has proved to be a superior material for photovoltaic solar cells. In this work we investigate the parameters influencing the growth of ZnO nanowires (NWs for use as an efficient low temperature photoanode in perovskite-based solar cells. The structure of the solar cell is FTO (SnO2:F-glass (or PET-ITO (In2O3·(SnO2 (ITO on, polyethylene terephthalate (PET/ZnAc seed layer/ZnO NWs/CH3NH3PbI3/Spiro-OMeTAD/Au. The influence of the growth rate and the diameter of the ZnO NWs on the photovoltaic performance were carefully studied. The ZnO NWs perovskite-based solar cell demonstrates impressive power conversion efficiency of 9.06% on a rigid substrate with current density over 21 mA/cm2. In addition, we successfully fabricated flexible perovskite solar cells while maintaining all fabrication processes at low temperature, achieving power conversion efficiency of 6.4% with excellent stability for over 75 bending cycles.

  6. Fabrication and Characterization of ZnO Nanowire-based Piezoelectric Nanogenerators for Low Frequency Mechanical Energy Harvesting

    Science.gov (United States)

    Poulin-Vittrant, G.; Oshman, C.; Opoku, C.; Dahiya, A. S.; Camara, N.; Alquier, D.; Hue, L.-P. Tran Huu; Lethiecq, M.

    The present work investigates the possibility to charge a Lithium micro-battery (LiB) via direct conversion of ambient mechanical energy into electricity using piezoelectric ZnO nanowire (NW) based microgenerators (PGs). An estimate is provided for the power levels at the different stages of mechanical-to-electrical energy conversion chain, in the following areas: (1) PG output, (2) power management block and (3) LiB storage unit. Also covered in this work is the synthesis, which is a prerequisite for realising such PGs. ZnO NWs of 2 μm in length and 200 nm in diameter have been grown using a low temperature (PET substrates (25 × 25 mm2). Substrates containing bi-layer metal layers with dissimilar electro-negativities functioned as a galvanic cell in the growth nutrients, which acted as an electrolyte medium. This necessitated ZnO NWs growth on conductive surfaces, even in the absence of seed layers and/or substrate with specific lattice parameters. Finally, the assembly steps undertaken to realise the fully functional PGs are discussed, and the performances of the final PG are described thereafter. Subjecting such devices to a 10 Hz sinusoidal bending force resulted in a measured PG output of ∼56 mV peak to peak, on 1 MΩ resistive load.

  7. Vertical Silicon Nanowire Field Effect Transistors with Nanoscale Gate-All-Around

    Science.gov (United States)

    Guerfi, Youssouf; Larrieu, Guilhem

    2016-04-01

    Nanowires are considered building blocks for the ultimate scaling of MOS transistors, capable of pushing devices until the most extreme boundaries of miniaturization thanks to their physical and geometrical properties. In particular, nanowires' suitability for forming a gate-all-around (GAA) configuration confers to the device an optimum electrostatic control of the gate over the conduction channel and then a better immunity against the short channel effects (SCE). In this letter, a large-scale process of GAA vertical silicon nanowire (VNW) MOSFETs is presented. A top-down approach is adopted for the realization of VNWs with an optimum reproducibility followed by thin layer engineering at nanoscale. Good overall electrical performances were obtained, with excellent electrostatic behavior (a subthreshold slope (SS) of 95 mV/dec and a drain induced barrier lowering (DIBL) of 25 mV/V) for a 15-nm gate length. Finally, a first demonstration of dual integration of n-type and p-type VNW transistors for the realization of CMOS inverter is proposed.

  8. Vertical Growth of Superconducting Crystalline Hollow Nanowires by He+ Focused Ion Beam Induced Deposition.

    Science.gov (United States)

    Córdoba, Rosa; Ibarra, Alfonso; Mailly, Dominique; De Teresa, José Ma

    2018-02-14

    Novel physical properties appear when the size of a superconductor is reduced to the nanoscale, in the range of its superconducting coherence length (ξ 0 ). Such nanosuperconductors are being investigated for potential applications in nanoelectronics and quantum computing. The design of three-dimensional nanosuperconductors allows one to conceive novel schemes for such applications. Here, we report for the first time the use of a He + focused-ion-beam-microscope in combination with the W(CO) 6 precursor to grow three-dimensional superconducting hollow nanowires as small as 32 nm in diameter and with an aspect ratio (length/diameter) of as much as 200. Such extreme resolution is achieved by using a small He + beam spot of 1 nm for the growth of the nanowires. As shown by transmission electron microscopy, they display grains of large size fitting with face-centered cubic WC 1-x phase. The nanowires, which are grown vertically to the substrate, are felled on the substrate by means of a nanomanipulator for their electrical characterization. They become superconducting at 6.4 K and show large critical magnetic field and critical current density resulting from their quasi-one-dimensional superconducting character. These results pave the way for future nanoelectronic devices based on three-dimensional nanosuperconductors.

  9. Structural and photoluminescence characterization of vertically aligned multiwalled carbon nanotubes coated with ZnO by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ouldhamadouche, N. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere BP 32229 44322 Nantes cedex 3 (France); Laboratoire de Physique des Materiaux, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El Alla. 16111, Bab Ezzouaur (Algeria); Achour, A., E-mail: a_aminph@yahoo.fr [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere BP 32229 44322 Nantes cedex 3 (France); Musa, I.; Ait Aissa, K.; Massuyeau, F.; Jouan, P.Y. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere BP 32229 44322 Nantes cedex 3 (France); Kechouane, M. [Laboratoire de Physique des Materiaux, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El Alla. 16111, Bab Ezzouaur (Algeria); Le Brizoual, L.; Faulques, E.; Barreau, N.; Djouadi, M.A. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere BP 32229 44322 Nantes cedex 3 (France)

    2012-05-01

    Zinc oxide (ZnO) nanostructures are very attractive in various optoelectronic applications such as light emitting devices. A fabrication process of these ZnO nanostructures which gives a good crystalline quality and being compatible with that of micro-fabrication has significant importance for practical application. In this work ZnO films with different thicknesses were deposited by RF-sputtering on vertically aligned multiwalled carbon nanotube (MWCNTs) template in order to obtain ZnO nanorods. The obtained hybrid structures (ZnO/MWCNTs) were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and time resolved photoluminescence spectroscopy (PL). Results show that the ZnO/MWCNTs have a nanorod structure like morphology with a good crystalline quality of the deposited ZnO on the MWCNTs. PL measurements reveal an enhancement of the band edge signal of ZnO/MWCNTs which is three times of magnitude higher compared to the ZnO film deposited on silicon. Moreover, the intensity enhancement varies as function of the ZnO thickness. Such hybrid structures are promising for optoelectronic application, such as blue-violet sources.

  10. Highly stable field emission from ZnO nanowire field emitters controlled by an amorphous indium–gallium–zinc-oxide thin film transistor

    Science.gov (United States)

    Li, Xiaojie; Wang, Ying; Zhang, Zhipeng; Ou, Hai; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-04-01

    Lowering the driving voltage and improving the stability of nanowire field emitters are essential for them to be applied in devices. In this study the characteristics of zinc oxide (ZnO) nanowire field emitter arrays (FEAs) controlled by an amorphous indium–gallium–zinc-oxide thin film transistor (a-IGZO TFT) were studied. A low driving voltage along with stabilization of the field emission current were achieved. Modulation of field emission currents up to three orders of magnitude was achieved at a gate voltage of 0–32 V for a constant anode voltage. Additionally, a-IGZO TFT control can dramatically reduce the emission current fluctuation (i.e., from 46.11 to 1.79% at an emission current of ∼3.7 µA). Both the a-IGZO TFT and ZnO nanowire FEAs were prepared on glass substrates in our research, demonstrating the feasibility of realizing large area a-IGZO TFT-controlled ZnO nanowire FEAs.

  11. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles.

    Science.gov (United States)

    Ibupoto, Zafar Hussain; Khun, Kimleang; Eriksson, Martin; AlSalhi, Mohammad; Atif, Muhammad; Ansari, Anees; Willander, Magnus

    2013-08-19

    Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c -axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role.

  12. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zafar Hussain Ibupoto

    2013-08-01

    Full Text Available Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD and field emission scanning electron microscopy (FESEM techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002 peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role.

  13. Effect of indium on photovoltaic property of n-ZnO/p-Si heterojunction device prepared using solution-synthesized ZnO nanowire film

    Science.gov (United States)

    Kathalingam, Adaikalam; Kim, Hyun-Seok; Park, Hyung-Moo; Valanarasu, Santiyagu; Mahalingam, Thaiyan

    2015-01-01

    Preparation of n-ZnO/p-Si heterostructures using solution-synthesized ZnO nanowire films and their photovoltaic characterization is reported. The solution-grown ZnO nanowire film is characterized using scanning electron microscope, electron dispersive x-ray, and optical absorption studies. Electrical and photovoltaic properties of the fabricated heterostructures are studied using e-beam-evaporated aluminum as metal contacts. In order to use transparent contact and to simultaneously collect the photogenerated carriers, sandwich-type solar cells were fabricated using ZnO nanorod films grown on p-silicon and indium tin oxide (ITO) coated glass as ITO/n-ZnO NR/p-Si. The electrical properties of these structures are analyzed from current-voltage (I-V) characteristics. ZnO nanowire film thickness-dependent photovoltaic properties are also studied. Indium metal was also deposited over the ZnO nanowires and its effects on the photovoltaic response of the devices were studied. The results demonstrated that all the samples exhibit a strong rectifying behavior indicating the diode nature of the devices. The sandwich-type ITO/n-ZnO NR/p-Si solar cells exhibit improved photovoltaic performance over the Al-metal-coated n-ZnO/p-Si structures. The indium deposition is found to show enhancement in photovoltaic behavior with a maximum open-circuit voltage (Voc) of 0.3 V and short-circuit current (Isc) of 70×10-6 A under ultraviolet light excitation.

  14. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    Science.gov (United States)

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi

    2017-12-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.

  15. Photoelectric properties and charge dynamics in ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} and ZnO nanowires/In{sub 2}O{sub 3}/Cu{sub 4}Bi{sub 4}S{sub 9} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangyang, E-mail: lxy081276@126.com, E-mail: yzgu@henu.edu.cn; Wang, Shun; Gu, Yuzong, E-mail: lxy081276@126.com, E-mail: yzgu@henu.edu.cn [Institue of Microsystems Physics and School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Zhang, Jingwei; Zhang, Jiwei [The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004 (China)

    2014-12-28

    ZnO nanowires arrays were preformed in a horizontal double-tube system. Two types of heterostructures (ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} and ZnO nanowires/In{sub 2}O{sub 3}/Cu{sub 4}Bi{sub 4}S{sub 9}) and three-dimensional solar cells were fabricated with ZnO nanowires arrays as working electrode, In{sub 2}O{sub 3} as buffer layer, and Cu{sub 4}Bi{sub 4}S{sub 9} as inorganic dye and hole collector. It is suggested that two types of heterostructures have the similar absorption properties with single Cu{sub 4}Bi{sub 4}S{sub 9}. However, the results of steady state and electric field-induced surface photovoltage indicate that ZnO nanowires/In{sub 2}O{sub 3}/Cu{sub 4}Bi{sub 4}S{sub 9} exhibits the higher photovoltaic response than ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9}. Using the transient surface photovoltage spectroscopy, we further studied the separation and transport mechanism of photogenerated charges. Furthermore, Cu{sub 4}Bi{sub 4}S{sub 9}/In{sub 2}O{sub 3}/ZnO cells presents the better performance than Cu{sub 4}Bi{sub 4}S{sub 9}/ZnO cells and the highest efficiencies are about 6.4% and 5.2%, respectively. It is suggested that direct paths, interface barrier, built-in electric field, and double energy level matchings between conduction bands (Cu{sub 4}Bi{sub 4}S{sub 9} and In{sub 2}O{sub 3}, In{sub 2}O{sub 3} and ZnO) have obvious effect on the separation of photogenerated charges. Then we discussed the synthetic action on the charge dynamics from these factors.

  16. Nucleation, Growth Mechanism, and Controlled Coating of ZnO ALD onto Vertically Aligned N-Doped CNTs.

    Science.gov (United States)

    Silva, R M; Ferro, M C; Araujo, J R; Achete, C A; Clavel, G; Silva, R F; Pinna, N

    2016-07-19

    Zinc oxide thin films were deposited on vertically aligned nitrogen-doped carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) from diethylzinc and water. The study demonstrates that doping CNTs with nitrogen is an effective approach for the "activation" of the CNTs surface for the ALD of metal oxides. Conformal ZnO coatings are already obtained after 50 ALD cycles, whereas at lower ALD cycles an island growth mode is observed. Moreover, the process allows for a uniform growth from the top to the bottom of the vertically aligned N-CNT arrays. X-ray photoelectron spectroscopy demonstrates that ZnO nucleation takes place at the N-containing species on the surface of the CNTs by the formation of the Zn-N bonds at the interface between the CNTs and the ZnO film.

  17. Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties

    Directory of Open Access Journals (Sweden)

    W. Z. Liu

    2011-06-01

    Full Text Available Single crystalline ZnO nanowires were fabricated on Si (100 substrates by catalyst-free high-pressure pulsed laser deposition. It is found that the nanowires start to form when the substrate temperature and growth pressure exceed the critical values of 700 oC and 700 Pa, and their size strongly depends on these growth conditions. That is, the aspect ratio of the nanowires decreases with increasing temperature or decreasing pressure. Such a size dependence on growth conditions was discussed in terms of surface migration and scattering of ablated atoms. Room-temperature photoluminescence spectrum of ZnO nanowires shows a dominant near-band-edge emission peak at 3.28 eV and a visible emission band centered at 2.39 eV. Temperature-dependent photoluminescence studies reveal that the former consists of the acceptor-bound exciton and free exciton emissions; while the latter varies in intensity with the aspect ratio of the nanowires and is attributed to the surface-mediated deep level emission.

  18. High sensitivity, fast speed and self-powered ultraviolet photodetectors based on ZnO micro/nanowire networks

    Directory of Open Access Journals (Sweden)

    Zhiming Bai

    2014-02-01

    Full Text Available Ultraviolet (UV photodetectors (PDs based on ZnO micro/nanowire (MNW networks with Pt contacts have been fabricated on glass substrates. The PDs exhibited a high photosensitivity (5×103 for 365 nm UV light with a fast recovery time (0.2 s at a reverse bias voltage of 2 V. The light induced modulation of Schottky barrier and MNW–MNW junction barrier was employed to account for the results. It was also observed that the PD had a high on–off ratio of 800 without external bias. The photovoltaic effect was proposed to explain the self-powered phenomenon.

  19. Self-bridging of vertical silicon nanowires and a universal capacitive force model for spontaneous attraction in nanostructures.

    Science.gov (United States)

    Sun, Zhelin; Wang, Deli; Xiang, Jie

    2014-11-25

    Spontaneous attractions between free-standing nanostructures have often caused adhesion or stiction that affects a wide range of nanoscale devices, particularly nano/microelectromechanical systems. Previous understandings of the attraction mechanisms have included capillary force, van der Waals/Casimir forces, and surface polar charges. However, none of these mechanisms universally applies to simple semiconductor structures such as silicon nanowire arrays that often exhibit bunching or adhesions. Here we propose a simple capacitive force model to quantitatively study the universal spontaneous attraction that often causes stiction among semiconductor or metallic nanostructures such as vertical nanowire arrays with inevitably nonuniform size variations due to fabrication. When nanostructures are uniform in size, they share the same substrate potential. The presence of slight size differences will break the symmetry in the capacitive network formed between the nanowires, substrate, and their environment, giving rise to electrostatic attraction forces due to the relative potential difference between neighboring wires. Our model is experimentally verified using arrays of vertical silicon nanowire pairs with varied spacing, diameter, and size differences. Threshold nanowire spacing, diameter, or size difference between the nearest neighbors has been identified beyond which the nanowires start to exhibit spontaneous attraction that leads to bridging when electrostatic forces overcome elastic restoration forces. This work illustrates a universal understanding of spontaneous attraction that will impact the design, fabrication, and reliable operation of nanoscale devices and systems.

  20. Transmission XMCD-PEEM imaging of an engineered vertical FEBID cobalt nanowire with a domain wall

    Science.gov (United States)

    Wartelle, A.; Pablo-Navarro, J.; Staňo, M.; Bochmann, S.; Pairis, S.; Rioult, M.; Thirion, C.; Belkhou, R.; de Teresa, J. M.; Magén, C.; Fruchart, O.

    2018-01-01

    Using focused electron-beam-induced deposition, we fabricate a vertical, platinum-coated cobalt nanowire with a controlled three-dimensional structure. The latter is engineered to feature bends along the height: these are used as pinning sites for domain walls, which are obtained at remanence after saturation of the nanostructure in a horizontally applied magnetic field. The presence of domain walls is investigated using x-ray magnetic circular dichroism (XMCD) coupled to photoemission electron microscopy (PEEM). The vertical geometry of our sample combined with the low incidence of the x-ray beam produce an extended wire shadow which we use to recover the wire’s magnetic configuration. In this transmission configuration, the whole sample volume is probed, thus circumventing the limitation of PEEM to surfaces. This article reports on the first study of magnetic nanostructures standing perpendicular to the substrate with XMCD-PEEM. The use of this technique in shadow mode enabled us to confirm the presence of a domain wall without direct imaging of the nanowire.

  1. Vertically grown Ge nanowire Schottky diodes on Si and Ge substrates

    Science.gov (United States)

    Chandra, Nishant; Tracy, Clarence J.; Cho, Jeong-Hyun; Picraux, S. T.; Hathwar, Raghuraj; Goodnick, Stephen M.

    2015-07-01

    The processing and performance of Schottky diodes formed from arrays of vertical Ge nanowires (NWs) grown on Ge and Si substrates are reported. The goal of this work is to investigate CMOS compatible processes for integrating NWs as components of vertically scaled integrated circuits, and elucidate transport in vertical Schottky NWs. Vertical phosphorus (P) doped Ge NWs were grown using vapor-liquid-solid epitaxy, and nickel (Ni)-Ge Schottky contacts were made to the tops of the NWs. Current-voltage (I-V) characteristics were measured for variable ranges of NW diameters and numbers of nanowires in the arrays, and the I-V characteristics were fit using modified thermionic emission theory to extract the barrier height and ideality factor. As grown NWs did not show rectifying behavior due to the presence of heavy P side-wall doping during growth, resulting in a tunnel contact. After sidewall etching using a dilute peroxide solution, rectifying behavior was obtained. Schottky barrier heights of 0.3-0.4 V and ideality factors close to 2 were extracted using thermionic emission theory, although the model does not give an accurate fit across the whole bias range. Attempts to account for enhanced side-wall conduction due to non-uniform P doping profile during growth through a simple shunt resistance improve the fit, but are still insufficient to provide a good fit. Full three-dimensional numerical modeling using Silvaco Atlas indicates that at least part of this effect is due to the presence of fixed charge and acceptor like traps on the NW surface, which leads to effectively high ideality factors.

  2. A theoretical study on the effect of piezoelectric charges on the surface potential and surface depletion region of ZnO nanowires

    International Nuclear Information System (INIS)

    Purahmad, Mohsen; Stroscio, Michael A; Dutta, Mitra

    2013-01-01

    The electrostatic potential and depletion width in piezoelectric semiconductor nanowires are derived by considering a non-depleted region and a surface depleted region and solving the Poisson equation. By determining the piezoelectric-induced charge density, in terms of equivalent density of charges, the effect of piezoelectric charges on the surface depletion region and the distributed electric potential in nanowire have been investigated. The numerical results demonstrate that the ZnO NWs with a smaller radius have a larger surface depletion region which results in a stronger surface potential and depletion region perturbation by induced piezoelectric charges. (paper)

  3. Magnetic nanoparticles as a seed layer for growing ZnO nanowires for optical applications

    International Nuclear Information System (INIS)

    AlSalhi, M S; Atif, M; Ansari, Anees A; Khun, K; Ibupoto, Z H; Willander, M

    2013-01-01

    In the present work, cerium oxide CeO 2 nanoparticles were synthesised by sol-gel method and used for the growth of ZnO nanorods. The synthesised nanoparticles were studied by x-ray diffraction technique [XRD]. Furthermore, these nanoparticles were used as seed layer for the growth of ZnO nanorods by following the hydrothermal growth method. The structural study of ZnO nanorods was carried out by using field emission scanning electron microscopy [FESEM], and x-ray diffraction [XRD] techniques. This study demonstrated that the grown ZnO nanorods are well align, uniform, good in crystal quality and possess diameter of less than 200 nm. Energy dispersive x-rays [EDX] revealed that the ZnO nanorods are only composed of zinc, cerium as seed atom and oxygen atoms and no any other impurity in the grown nanorods. Moreover, photoluminescence [PL] approach was applied for the optical characterisation and it was observed that the near-band-edge emission [NBE] was same to that of zinc acetate seed layer, however the green emission and orange/red emission peaks were slightly raised due to possible higher level of defects in the cerium oxide seeded ZnO nanorods. This study provides an alternative approach for the synthesis of controlled ZnO nanorods using cerium oxide nanoparticles as seed nucleation layer which in reverse describe the application of these nanoparticles as well as due to controlled morphology of ZnO nanorods the performance of nanodevices based on ZnO can be increased using these particles as seed.

  4. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires

    Directory of Open Access Journals (Sweden)

    Rodolfo Araneo

    2014-12-01

    Full Text Available Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews.

  5. Pd/PdO functionalization of SnO{sub 2} nanowires and ZnO nanotetrapods

    Energy Technology Data Exchange (ETDEWEB)

    De Zorzi, C.; Rossetto, G. [ICIS-CNR, Padova (Italy); Calestani, D.; Zha, M.Z.; Zappettini, A.; Lazzarini, L.; Villani, M.; Zanotti, L. [IMEM-CNR, Parma (Italy); El Habra, N. [ICIS-CNR, Padova (Italy); Dipt. Scienze Chimiche, Universita di Padova (Italy)

    2011-08-15

    Tin oxide (SnO{sub 2}) and zinc oxide (ZnO) nanostructures are widely studied because of their peculiar physical and chemical properties and the large number of possible application fields. Surface functionalization of these materials is a very important topic because it is a powerful tool for modifying or tuning their properties, in order to better match the device requests. For example, palladium/palladium oxide (Pd/PdO) nanoparticles are often used to enhance selectivity of chemoresistive gas sensing properties of metal-oxide nanostructures. SnO{sub 2} nanowires and ZnO nanotetrapods have been grown on large areas by a combination of metal evaporation and controlled oxidation, while a MOCVD (Metal Organic Chemical Vapor Deposition) process has been chosen in order to deposit Pd/PdO nanoparticles on the surface of the obtained oxide nanostructures. Samples morphology, structure and composition have been studied by means of SEM and TEM microscopy, EDS microanalysis and X-Ray diffraction. The different results, obtained as a function of the synthesis and annealing parameters, are discussed focusing the attention to the experimental conditions that allowed the authors to obtain an optimal ''spotted'' coverage of oxide nanostructures, which is often required for gas sensing application. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Enhancement in red emission at room temperature from europium doped ZnO nanowires by 1,10 phenanthroline-europium interface induced resonant excitations

    Directory of Open Access Journals (Sweden)

    Soumen Dhara

    2017-02-01

    Full Text Available We show that europium doped ZnO nanowires after surface modification with organic ligand, 1,10 phenanthroline (phen leads to strong red emission at 613 nm which is a characteristic emission from the atomic levels of Eu3+. Surface modification with phen leads to formation of phenanthroline-europium interface on the surface of the nanowires due to attachment of Eu3+ ions. After an optimized surface modification with phen, intensity of both the UV emission (band edge and red emission improved by two orders of magnitude at room temperature. We observed multiple energy transfer pathways to the energy levels of Eu3+ ions through the phenanthroline-europium interface, which found to be very effective to the significant enhancement of emission from the dopant Eu3+. This study shows a new insight in to the energy transfer process from phen to the europium doped ZnO system.

  7. ZnO nanowires for the modification of evanescence-field sensors and the development of novel solar cells; ZnO-Nanodraehte zur Modifizierung von Evaneszenzfeldsensoren und der Entwicklung neuartiger Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, Susanne

    2008-10-02

    The photoluminescence of single structures and the nanowire ensemble were analyzed and compared. This pursued in dependence on the excitation density and the sample temperature. The excitonic emission contributes essentially to the near-band-edge photoluminescence. The ZnO nanowire ensemble exhibits a laser threshold of 500 kW/cm{sup 2} at room temperature. To the photoluminescence spectra the single exciton processes were assigned. The wave-guiding properties were practically detected by means of optical microscopy and micromanipulation. While the main topic of this thesis lied in the analysis of the optical properties of the ZnO nanowires in the last part the implementation of nanostructures in hybrid solar cells was discussed and first results of the characterization of the material complex of p-conducting polymer (Clevios P) and ZnO nanowires presented.

  8. Low-Cost and High-Productivity Three-Dimensional Nanocapacitors Based on Stand-Up ZnO Nanowires for Energy Storage.

    Science.gov (United States)

    Wei, Lei; Liu, Qi-Xuan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Lu, Hong-Liang; Jiang, Anquan; Zhang, David Wei

    2016-12-01

    Highly powered electrostatic capacitors based on nanostructures with a high aspect ratio are becoming critical for advanced energy storage technology because of their high burst power and energy storage capability. We report the fabrication process and the electrical characteristics of high capacitance density capacitors with three-dimensional solid-state nanocapacitors based on a ZnO nanowire template. Stand-up ZnO nanowires are grown face down on p-type Si substrates coated with a ZnO seed layer using a hydrothermal method. Stacks of AlZnO/Al2O3/AlZnO are then deposited sequentially on the ZnO nanowires using atomic layer deposition. The fabricated capacitor has a high capacitance density up to 92 fF/μm(2) at 1 kHz (around ten times that of the planar capacitor without nanowires) and an extremely low leakage current density of 3.4 × 10(-8) A/cm(2) at 2 V for a 5-nm Al2O3 dielectric. Additionally, the charge-discharge characteristics of the capacitor were investigated, indicating that the resistance-capacitance time constants were 550 ns for both the charging and discharging processes and the time constant was not dependent on the voltage. This reflects good power characteristics of the fabricated capacitors. Therefore, the current work provides an exciting strategy to fabricate low-cost and easily processable, high capacitance density capacitors for energy storage.

  9. High-gain subnanowatt power consumption hybrid complementary logic inverter with WSe2 nanosheet and ZnO nanowire transistors on glass.

    Science.gov (United States)

    Shokouh, Seyed Hossein Hosseini; Pezeshki, Atiye; Ali Raza, Syed Raza; Lee, Hee Sung; Min, Sung-Wook; Jeon, Pyo Jin; Shin, Jae Min; Im, Seongil

    2015-01-07

    A 1D-2D hybrid complementary logic inverter comprising of ZnO nanowire and WSe2 nanosheet field-effect transistors (FETs) is fabricated on glass, which shows excellent static and dynamic electrical performances with a voltage gain of ≈60, sub-nanowatt power consumption, and at least 1 kHz inverting speed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nanofabrication of Arrays of Silicon Field Emitters with Vertical Silicon Nanowire Current Limiters and Self-Aligned Gates

    Science.gov (United States)

    2016-08-19

    limiters, MEMS, NEMS, field emission, cold cathodes (Some figures may appear in colour only in the online journal) 1. Introduction Dense arrays of silicon... attention has been given to densely packed, highly ordered, top-down fabricated, single crystal vertical silicon nanowire devices that are embedded

  11. Growth and characterization of ZnO nanowires for optical applications

    International Nuclear Information System (INIS)

    AlSalhi, M S; Atif, M; Ansari, A A; Khun, K; Ibupoto, Z H; Willander, M

    2013-01-01

    In the present work, cerium oxide CeO 2 nanoparticles were synthesized by the sol–gel method and used for the growth of ZnO nanorods. The synthesized nanoparticles were studied by x-ray diffraction (XRD) and Raman spectroscopic techniques. Furthermore, these nanoparticles were used as the seed layer for the growth of ZnO nanorods by following the hydrothermal growth method. The structural study of ZnO nanorods was carried out by means of field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and XRD techniques. This study demonstrated that the grown ZnO nanorods are well aligned, uniform, of good crystal quality and have diameters of less than 200 nm. Energy dispersive x-ray (EDX) analysis revealed that the ZnO nanorods are composed only of zinc, cerium as the seed atom, and oxygen atoms, with no other impurities in the grown nanorods. Moreover, a photoluminescence (PL) approach was applied for the optical characterization, and it was observed that the near-band-edge (NBE) emission was the same as that of the zinc acetate seed layer, however the green and orange/red emission peaks were slightly raised due to possibly higher levels of defects in the cerium oxide seeded ZnO nanorods. This study provides an alternative approach for the controlled synthesis of ZnO nanorods using cerium oxide nanoparticles as the seed nucleation layer, improving both the morphology of the nanorods and the performance of devices based upon them. (paper)

  12. Catalyst-free growth of ZnO nanowires on ITO seed/glass by thermal evaporation method: Effects of ITO seed layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M. [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hassan, Z. [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2016-07-19

    A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and UV-Vis spectrophotometer.

  13. Increased short circuit current in organic photovoltaic using high-surface area electrode based on ZnO nanowires decorated with CdTe quantum dots.

    Science.gov (United States)

    Aga, R S; Gunther, D; Ueda, A; Pan, Z; Collins, W E; Mu, R; Singer, K D

    2009-11-18

    A photosensitized high-surface area transparent electrode has been employed to increase the short circuit current of a photovoltaic device with a blend of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) as the active layer. This is achieved by directly growing ZnO nanowires on indium tin oxide (ITO) film via a physical vapor method. The nanowire surface is then decorated with CdTe quantum dots by pulsed electron-beam deposition (PED). The nanowires alone provided a 20-fold increase in the short circuit current under visible light illumination. This was further increased by a factor of approximately 1.5 by the photosensitization effect of CdTe, which has an optical absorption of up to 820 nm.

  14. Near-Field Imaging of Free Carriers in ZnO Nanowires with a Scanning Probe Tip Made of Heavily Doped Germanium

    Science.gov (United States)

    Sakat, Emilie; Giliberti, Valeria; Bollani, Monica; Notargiacomo, Andrea; Pea, Marialilia; Finazzi, Marco; Pellegrini, Giovanni; Hugonin, Jean-Paul; Weber-Bargioni, Alexander; Melli, Mauro; Sassolini, Simone; Cabrini, Stefano; Biagioni, Paolo; Ortolani, Michele; Baldassarre, Leonetta

    2017-11-01

    A novel scanning probe tip made of heavily doped semiconductor is fabricated and used instead of standard gold-coated tips in infrared scattering-type near-field microscopy. Midinfrared near-field microscopy experiments are conducted on ZnO nanowires with a lateral resolution better than 100 nm, using tips made of heavily electron-doped germanium with a plasma frequency in the midinfrared (plasma wavelength of 9.5 μ m ). Nanowires embedded in a dielectric matrix are imaged at two wavelengths, 11.3 and 8.0 μ m , above and below the plasma wavelength of the tips. An opposite sign of the imaging contrasts between the nanowire and the dielectric matrix is observed at the two infrared wavelengths, indicating a clear role of the free-electron plasma in the heavily doped germanium tip in building the imaging contrast. Electromagnetic simulations with a multispherical dipole model accounting for the finite size of the tip are well consistent with the experiments. By comparison of the simulated and measured imaging contrasts, an estimate for the local free-carrier density in the investigated ZnO nanowires in the low 1019 cm-3 range is retrieved. The results are benchmarked against the scattering intensity and phase maps obtained on the same sample with a gold-coated probe tip in pseudoheterodyne detection mode.

  15. In situ ZnO nanowire growth to promote the PVDF piezo phase and the ZnO-PVDF hybrid self-rectified nanogenerator as a touch sensor.

    Science.gov (United States)

    Li, Zetang; Zhang, Xu; Li, Guanghe

    2014-03-28

    A PVDF-ZnO nanowires (NWs) hybrid generator (PZHG) was designed. A simple, cost effective method to produce the PVDF β phase by nano force is introduced. With the ZnO NWs growing, the in situ nano extension force promotes the phase change. A theoretical analysis of the ZnO NWs acting as a self-rectifier of the nano generator is established. The ZnO NWs acted as a self-adjustment diode to control the current output of the PZHG by piezo-electric and semi-conductive effects. Based on the self-controllability of the piezoelectric output, three kinds of finger touching are distinguished by the output performances of the PZHG, which is applicable to an LCD touch pad.

  16. Enhanced Performance of Nanowire-Based All-TiO2 Solar Cells using Subnanometer-Thick Atomic Layer Deposited ZnO Embedded Layer

    International Nuclear Information System (INIS)

    Ghobadi, Amir; Yavuz, Halil I.; Ulusoy, T. Gamze; Icli, K. Cagatay; Ozenbas, Macit; Okyay, Ali K.

    2015-01-01

    In this paper, the effect of angstrom-thick atomic layer deposited (ALD) ZnO embedded layer on photovoltaic (PV) performance of Nanowire-Based All-TiO 2 solar cells has been systematically investigated. Our results indicate that by varying the thickness of ZnO layer the efficiency of the solar cell can be significantly changed. It is shown that the efficiency has its maximum for optimal thickness of 1 ALD cycle in which this ultrathin ZnO layer improves device performance through passivation of surface traps without hampering injection efficiency of photogenerated electrons. The mechanisms contributing to this unprecedented change in PV performance of the cell have been scrutinized and discussed

  17. Efficiency enhancement of dye-sensitized solar cells by optimization of electrospun ZnO nanowire/nanoparticle hybrid photoanode and combined modification

    International Nuclear Information System (INIS)

    Song, Lixin; Du, Pingfan; Xiong, Jie; Ko, Frank; Cui, Can

    2015-01-01

    ZnO nanoparticles (ZNPs) and ZnO nanowires (ZNWs) were fabricated via electrospinning and calcination. The ZNPs and ZNWs were blended with different mass ratio by varying ZNWs from 0% to 100% and serviced as photoanodic film of dye-sensitized solar cells (DSSCs) via spin coating. The efficiency of these DSSCs reached a maximum of 2.6% at 20 wt% ZNWs. In order to improve the photovoltaic properties of ZNWs/ZNPs hybrid photoanodic film, the ZNWs/ZNPs hybrid film was modified by the incorporation of multi-walled carbon nanotubes (MWCNTs) into ZnO matrix including both ZNPs and ZNWs combined with TiCl 4 post-treatment. As a result, the efficiency of DSSCs increased from 2.6% to 3.8%, which is mainly attributed to the increased dye loading, faster electron transport, and less electron loss

  18. Micro-size antenna structure with vertical nanowires for wireless power transmission and communication.

    Science.gov (United States)

    Kang, Jong-Gu; Jeong, Yeri; Shin, Jeong Hee; Choi, Ji-Woong; Sohn, Jung Inn; Cha, Seung Nam; Jang, Jae Eun

    2014-11-01

    For biomedical implanted devices, a wireless power or a signal transmission is essential to protect an infection and to enhance durability. In this study, we present a magnetic induction technique for a power transmission without any wire connection between transmitter (Tx) and receiver (Rx) in a micro scale. Due to a micro size effect of a flat spiral coil, a magnetic inductance is not high. To enhance the magnetic inductance, a three dimensional magnetic core is added to an antenna structure, which is consisted of ZnO nano wires coated by a nickel (Ni) layer. ZnO nano wires easily supply a large effective surface area with a vertical structural effect to the magnetic core structure, which induces a higher magnetic inductance with a ferro-magnetic material Ni. The magnetic induction antenna with the magnetic core shows a high inductance value, a low reflection power and a strong power transmission. The power transmission efficiencies are tested under the air and the water medium are almost the same values, so that the magnetic induction technique is quite proper to body implanted systems.

  19. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.

    Science.gov (United States)

    Barako, Michael T; Isaacson, Scott G; Lian, Feifei; Pop, Eric; Dauskardt, Reinhold H; Goodson, Kenneth E; Tice, Jesse

    2017-12-06

    Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm 2 K W -1 , over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

  20. On the growth and photocatalytic activity of the vertically aligned ZnO nanorods grafted by CdS shells

    Energy Technology Data Exchange (ETDEWEB)

    Zirak, M. [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Moradlou, O. [Department of Chemistry, Faculty of Sciences, Alzahra University, P.O. Box 1993893973, Tehran (Iran, Islamic Republic of); Bayati, M.R. [Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695-7907 (United States); Nien, Y.T. [Department of Materials Science and Engineering, National Formosa University, Huwei District, Taiwan (China); Moshfegh, A.Z., E-mail: moshfegh@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-8969, Tehran (Iran, Islamic Republic of)

    2013-05-15

    We have studied systematically photocatalytic properties of the vertically aligned ZnO@CdS core–shell nanorods where the features were grown through a multistep procedure including sol–gel for the formation of ZnO seed layer, hydrothermal process to grow ZnO nanorods, and successive ion layer adsorption and reaction (SILAR) process to deposit CdS nanoshells onto the ZnO nanorods. Formation of the ZnO seed layer and vertically aligned ZnO nanorods (d ∼ 40 nm) with a hexagonal cross-section was confirmed by AFM and SEM imaging. Successful capping of ZnO nanorods with homogeneous CdS nanocrystallites (∼5 nm) was ascertained by HRTEM diffraction and imaging. Optical properties of the samples were also studied using UV–vis spectrophotometry. It was found that the absorption edge of the CdS shell has a red shift when its thickness increases. Photocatalytic activity of the samples was examined by photodecomposition of methylene blue under UV and visible lights where the maximum reaction rate constant was found to be 0.012 min{sup −1} under UV illumination and 0.007 min{sup −1} under visible light. The difference in catalytic activities of the ZnO@CdS core–shell nanorods under UV and visible irradiations was explained based upon the electronic structure as well as the arrangement of the energy levels in the ZnO@CdS core–shells. It is shown that the structure and photocatalytic efficiency of the samples can be tuned by manipulating the SILAR variables.

  1. On the growth and photocatalytic activity of the vertically aligned ZnO nanorods grafted by CdS shells

    Science.gov (United States)

    Zirak, M.; Moradlou, O.; Bayati, M. R.; Nien, Y. T.; Moshfegh, A. Z.

    2013-05-01

    We have studied systematically photocatalytic properties of the vertically aligned ZnO@CdS core-shell nanorods where the features were grown through a multistep procedure including sol-gel for the formation of ZnO seed layer, hydrothermal process to grow ZnO nanorods, and successive ion layer adsorption and reaction (SILAR) process to deposit CdS nanoshells onto the ZnO nanorods. Formation of the ZnO seed layer and vertically aligned ZnO nanorods (d ∼ 40 nm) with a hexagonal cross-section was confirmed by AFM and SEM imaging. Successful capping of ZnO nanorods with homogeneous CdS nanocrystallites (∼5 nm) was ascertained by HRTEM diffraction and imaging. Optical properties of the samples were also studied using UV-vis spectrophotometry. It was found that the absorption edge of the CdS shell has a red shift when its thickness increases. Photocatalytic activity of the samples was examined by photodecomposition of methylene blue under UV and visible lights where the maximum reaction rate constant was found to be 0.012 min-1 under UV illumination and 0.007 min-1 under visible light. The difference in catalytic activities of the ZnO@CdS core-shell nanorods under UV and visible irradiations was explained based upon the electronic structure as well as the arrangement of the energy levels in the ZnO@CdS core-shells. It is shown that the structure and photocatalytic efficiency of the samples can be tuned by manipulating the SILAR variables.

  2. On the growth and photocatalytic activity of the vertically aligned ZnO nanorods grafted by CdS shells

    International Nuclear Information System (INIS)

    Zirak, M.; Moradlou, O.; Bayati, M.R.; Nien, Y.T.; Moshfegh, A.Z.

    2013-01-01

    We have studied systematically photocatalytic properties of the vertically aligned ZnO@CdS core–shell nanorods where the features were grown through a multistep procedure including sol–gel for the formation of ZnO seed layer, hydrothermal process to grow ZnO nanorods, and successive ion layer adsorption and reaction (SILAR) process to deposit CdS nanoshells onto the ZnO nanorods. Formation of the ZnO seed layer and vertically aligned ZnO nanorods (d ∼ 40 nm) with a hexagonal cross-section was confirmed by AFM and SEM imaging. Successful capping of ZnO nanorods with homogeneous CdS nanocrystallites (∼5 nm) was ascertained by HRTEM diffraction and imaging. Optical properties of the samples were also studied using UV–vis spectrophotometry. It was found that the absorption edge of the CdS shell has a red shift when its thickness increases. Photocatalytic activity of the samples was examined by photodecomposition of methylene blue under UV and visible lights where the maximum reaction rate constant was found to be 0.012 min −1 under UV illumination and 0.007 min −1 under visible light. The difference in catalytic activities of the ZnO@CdS core–shell nanorods under UV and visible irradiations was explained based upon the electronic structure as well as the arrangement of the energy levels in the ZnO@CdS core–shells. It is shown that the structure and photocatalytic efficiency of the samples can be tuned by manipulating the SILAR variables.

  3. Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits.

    Science.gov (United States)

    Nam, SungWoo; Jiang, Xiaocheng; Xiong, Qihua; Ham, Donhee; Lieber, Charles M

    2009-12-15

    Three-dimensional (3D), multi-transistor-layer, integrated circuits represent an important technological pursuit promising advantages in integration density, operation speed, and power consumption compared with 2D circuits. We report fully functional, 3D integrated complementary metal-oxide-semiconductor (CMOS) circuits based on separate interconnected layers of high-mobility n-type indium arsenide (n-InAs) and p-type germanium/silicon core/shell (p-Ge/Si) nanowire (NW) field-effect transistors (FETs). The DC voltage output (V(out)) versus input (V(in)) response of vertically interconnected CMOS inverters showed sharp switching at close to the ideal value of one-half the supply voltage and, moreover, exhibited substantial DC gain of approximately 45. The gain and the rail-to-rail output switching are consistent with the large noise margin and minimal static power consumption of CMOS. Vertically interconnected, three-stage CMOS ring oscillators were also fabricated by using layer-1 InAs NW n-FETs and layer-2 Ge/Si NW p-FETs. Significantly, measurements of these circuits demonstrated stable, self-sustained oscillations with a maximum frequency of 108 MHz, which represents the highest-frequency integrated circuit based on chemically synthesized nanoscale materials. These results highlight the flexibility of bottom-up assembly of distinct nanoscale materials and suggest substantial promise for 3D integrated circuits.

  4. Silicon nanowires enhanced proliferation and neuronal differentiation of neural stem cell with vertically surface microenvironment.

    Science.gov (United States)

    Yan, Qiuting; Fang, Lipao; Wei, Jiyu; Xiao, Guipeng; Lv, Meihong; Ma, Quanhong; Liu, Chunfeng; Wang, Wang

    2017-09-01

    Owing to its biocompatibility, noncytotoxicity, biodegradability and three-dimensional structure, vertically silicon nanowires (SiNWs) arrays are a promising scaffold material for tissue engineering, regenerative medicine and relevant medical applications. Recently, its osteogenic differentiation effects, reorganization of cytoskeleton and regulation of the fate on stem cells have been demonstrated. However, it still remains unknown whether SiNWs arrays could affect the proliferation and neuronal differentiation of neural stem cells (NSCs) or not. In the present study, we have employed vertically aligned SiNWs arrays as culture systems for NSCs and proved that the scaffold material could promote the proliferation and neuronal differentiation of NSCs while maintaining excellent cell viability and stemness. Immunofluorescence imaging analysis, Western blot and RT-PCR results reveal that NSCs proliferation and neuronal differentiation efficiency on SiNWs arrays are significant greater than that on silicon wafers. These results implicate SiNWs arrays could offer a powerful platform for NSCs research and NSCs-based therapy in the field of neural tissue engineering.

  5. Application of Chemical Doping and Architectural Design Principles To Fabricate Nanowire Co2Ni3ZnO8 Arrays for Aqueous Asymmetric Supercapacitors.

    Science.gov (United States)

    Liu, Qi; Yang, Bin; Liu, Jingyuan; Yuan, Yi; Zhang, Hongsen; Liu, Lianhe; Wang, Jun; Li, Rumin

    2016-08-10

    Electrode materials derived from transition metal oxides have a serious problem of low electron transfer rate, which restricts their practical application. However, chemically doped graphene transforms the chemical bonding configuration to enhance electron transfer rate and, therefore, facilitates the successful fabrication of Co2Ni3ZnO8 nanowire arrays. In addition, the Co2Ni3ZnO8 electrode materials, considered as Ni and Zn ions doped into Co3O4, have a high electron transfer rate and electrochemical response capability, because the doping increases the degree of crystal defect and reaction of Co/Ni ions with the electrolyte. Hence, the Co2Ni3ZnO8 electrode exhibits a high rate property and excellent electrochemical cycle stability, as determined by electrochemical analysis of the relationship between specific capacitance, IR drop, Coulomb efficiency, and different current densities. From the results of a three-electrode system of electrochemical measurement, the Co2Ni3ZnO8 electrode demonstrates a specific capacitance of 1115 F g(-1) and retains 89.9% capacitance after 2000 cycles at a current density of 4 A g(-1). The energy density of the asymmetric supercapacitor (AC//Co2Ni3ZnO8) is 54.04 W h kg(-1) at the power density of 3200 W kg(-1).

  6. Hydrothermal growth and characterization of vertically well-aligned and dense ZnO nanorods on glass and silicon using a simple optimizer system

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, Sabah M., E-mail: Sabahaskari14@gmail.com; Ahmed, Naser M.; Abd-Alghafour, Nabeel M. [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Hassan, Z., E-mail: zai@usm.my [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); CRI Natural Sciences, Universiti Sains Malaysia, Penang 11800 (Malaysia); Talib, Rawnaq A. [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Polymer Research Center, University of Basra (Iraq); Omar, A. F. [School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia)

    2016-07-06

    Vertically, well-aligned and high density ZnO nanorods were successfully hydrothermally grown on glass and silicon substrates using a simple and low cost system. The mechanism of synthesis of ZnO nanorods, generated with our system under hydrothermal conditions, is investigated in this report. Field-emission scanning electron microscopy indicated that the fabricated ZnO nanorods on both substrates have hexagonal shape with diameters ranging from 20 nm to 70 nm which grew vertically from the substrate. XRD analysis confirms the formation of wurtzite ZnO phase with a preferred orientation along (002) direction perpendicular on the substrate and enhanced crystallinity. The low value of the tensile strain (0.126 %) revealed that ZnO nanorods preferred to grow along the c-axis for both substrates. Photoluminescence spectra exhibited a strong, sharp UV near band edge emission peak with narrow FWHM values for both samples.

  7. Hydrothermal growth and characterization of vertically well-aligned and dense ZnO nanorods on glass and silicon using a simple optimizer system

    International Nuclear Information System (INIS)

    Mohammad, Sabah M.; Ahmed, Naser M.; Abd-Alghafour, Nabeel M.; Hassan, Z.; Talib, Rawnaq A.; Omar, A. F.

    2016-01-01

    Vertically, well-aligned and high density ZnO nanorods were successfully hydrothermally grown on glass and silicon substrates using a simple and low cost system. The mechanism of synthesis of ZnO nanorods, generated with our system under hydrothermal conditions, is investigated in this report. Field-emission scanning electron microscopy indicated that the fabricated ZnO nanorods on both substrates have hexagonal shape with diameters ranging from 20 nm to 70 nm which grew vertically from the substrate. XRD analysis confirms the formation of wurtzite ZnO phase with a preferred orientation along (002) direction perpendicular on the substrate and enhanced crystallinity. The low value of the tensile strain (0.126 %) revealed that ZnO nanorods preferred to grow along the c-axis for both substrates. Photoluminescence spectra exhibited a strong, sharp UV near band edge emission peak with narrow FWHM values for both samples.

  8. Magnetic and optical properties of Mn-doped ZnO vertically aligned nanorods synthesized by hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Panda, J.; Sasmal, I.; Nath, T. K., E-mail: tnath@phy.iitkgp.ernet.in, E-mail: tapnath@gmail.com [Department of Physics, Indian Institute Technology Kharagpur, West Bengal, 721302 (India)

    2016-03-15

    In this paper we have reported the synthesis of high quality vertically aligned undoped and Mn-doped ZnO single crystalline nanorods arrays on Si (100) substrates using two steps process, namely, initial slow seed layer formation followed by solution growth employing wet chemical hydrothermal method. The shapes of the as grown single crystalline nanorods are hexagonal. The diameter and length of the as grown undoped ZnO nanorods varies in the range of 80-150 nm and 1.0 - 1.4 μm, respectively. Along with the lattice parameters of the hexagonal crystal structure, the diameter and length of Mn doped ZnO nanorods are found to increase slightly as compared to the undoped ZnO nanorods. The X-ray photoelectron spectroscopy confirms the presence of Mn atoms in Mn{sup 2+} state in the single crystalline ZnO nanorods. The recorded photoluminescence spectrum contains two emissions peaks having UV exciton emissions along with a green-yellow emission. The green-yellow emissions provide the evidence of singly ionized oxygen vacancies. The magnetic field dependent magnetization measurements [M (H)] and zero field cooled (ZFC) and field cooled (FC) magnetization [M(T)] measurements have been carried out at different isothermal conditions in the temperature range of 5-300 K. The Mn doped ZnO nanorods clearly show room temperature ferromagnetic ordering near room temperature down to 5 K. The observed magnetization may be attributed to the long range ferromagnetic interaction between bound magnetic polarons led by singly charged oxygen vacancies.

  9. Schottky-Gated Probe-Free ZnO Nanowire Biosensor

    KAUST Repository

    Yeh, Ping-Hung

    2009-12-28

    (Figure Presented) A nanowire-based nanosensor for detecting biologically and chemically charged molecules that is probe-free and highly sensitive is demonstrated. The device relies on the nonsymmetrical Schottky contact under reverse bias (see figure) and is much more sensitive than the device based on the symmetric ohmic contact. This approach serves as a guideline for designing more practical chemical and biochemical sensors. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA.

  10. Phonon Confinement Induced Non-Concomitant Near-Infrared Emission along a Single ZnO Nanowire: Spatial Evolution Study of Phononic and Photonic Properties

    Directory of Open Access Journals (Sweden)

    Po-Hsun Shih

    2017-10-01

    Full Text Available The impact of mixed defects on ZnO phononic and photonic properties at the nanoscale is only now being investigated. Here we report an effective strategy to study the distribution of defects along the growth direction of a single ZnO nanowire (NW, performed qualitatively as well as quantitatively using energy dispersive spectroscopy (EDS, confocal Raman-, and photoluminescence (PL-mapping technique. A non-concomitant near-infrared (NIR emission of 1.53 ± 0.01 eV was observed near the bottom region of 2.05 ± 0.05 μm along a single ZnO NW and could be successfully explained by the radiative recombination of shallowly trapped electrons V_O^(** with deeply trapped holes at V_Zn^''. A linear chain model modified from a phonon confinement model was used to describe the growth of short-range correlations between the mean distance of defects and its evolution with spatial position along the axial growth direction by fitting the E2H mode. Our results are expected to provide new insights into improving the study of the photonic and photonic properties of a single nanowire.

  11. Vertically Aligned Niobium Nanowire Arrays for Fast-Charging Micro-Supercapacitors.

    Science.gov (United States)

    Mirvakili, Seyed M; Hunter, Ian W

    2017-07-01

    Planar micro-supercapacitors are attractive for system on chip technologies and surface mount devices due to their large areal capacitance and energy/power density compared to the traditional oxide-based capacitors. In the present work, a novel material, niobium nanowires, in form of vertically aligned electrodes for application in high performance planar micro-supercapacitors is introduced. Specific capacitance of up to 1 kF m -2 (100 mF cm -2 ) with peak energy and power density of 2 kJ m -2 (6.2 MJ m -3 or 1.7 mWh cm -3 ) and 150 kW m -2 (480 MW m -3 or 480 W cm -3 ), respectively, is achieved. This remarkable power density, originating from the extremely low equivalent series resistance value of 0.27 Ω (2.49 µΩ m 2 or 24.9 mΩ cm 2 ) and large specific capacitance, is among the highest for planar micro-supercapacitors electrodes made of nanomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Massive transfer of vertically aligned Si nanowire array onto alien substrates and their characteristics

    International Nuclear Information System (INIS)

    Shiu, Shu-Chia; Hung, Shih-Che; Chao, Jiun-Jie; Lin, Ching-Fuh

    2009-01-01

    Si nanowires (NWs) are promising materials for future electronic, photovoltaic, and sensor applications. So far the Si NWs are mainly formed on particular substrates or at high temperatures, greatly limiting their application flexibility. Here we report a low temperature process for forming and massively transferring vertically aligned Si NWs on alien substrates with a large density of about (3-5) x 10 7 NWs/mm 2 . The X-ray diffraction spectrum reveals that the transferred NWs exhibit almost the same crystal property as the bulk Si. Our investigation further shows that the transferred NWs have exceptional optical characteristics. The transferred Si NWs of 12.14 μm exhibit the transmittance as low as 0.3% in the near infrared region and 0.07% in the visible region. The extracted absorption coefficient of Si NWs in the near infrared region is about 3 x 10 3 cm -1 , over 30 times larger than that of the bulk Si. Because of the low temperature process, it enables a large variety of alien substrates such as glass and plastics to be used. In addition, the exceptional properties of the transferred NWs offer potential applications for photovoltaic, photo-detectors, sensors, and flexible electronics.

  13. High performance non-volatile ferroelectric copolymer memory based on a ZnO nanowire transistor fabricated on a transparent substrate

    International Nuclear Information System (INIS)

    Nedic, Stanko; Welland, Mark; Tea Chun, Young; Chu, Daping; Hong, Woong-Ki

    2014-01-01

    A high performance ferroelectric non-volatile memory device based on a top-gate ZnO nanowire (NW) transistor fabricated on a glass substrate is demonstrated. The ZnO NW channel was spin-coated with a poly (vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer acting as a top-gate dielectric without buffer layer. Electrical conductance modulation and memory hysteresis are achieved by a gate electric field induced reversible electrical polarization switching of the P(VDF-TrFE) thin film. Furthermore, the fabricated device exhibits a memory window of ∼16.5 V, a high drain current on/off ratio of ∼10 5 , a gate leakage current below ∼300 pA, and excellent retention characteristics for over 10 4 s

  14. Layer-by-layer-assembled quantum dot multilayer sensitizers: how the number of layers affects the photovoltaic properties of one-dimensional ZnO nanowire electrodes.

    Science.gov (United States)

    Jin, Ho; Choi, Sukyung; Lim, Sang-Hoon; Rhee, Shi-Woo; Lee, Hyo Joong; Kim, Sungjee

    2014-01-13

    Layer cake: Multilayered CdSe quantum dot (QD) sensitizers are layer-by-layer assembled onto ZnO nanowires by making use of electrostatic interactions to study the effect of the layer number on the photovoltaic properties. The photovoltaic performance of QD-sensitized solar cells critically depends on this number as a result of the balance between light-harvesting efficiency and carrier-recombination probability. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High Temperature Sensors Using Vertically Aligned ZnO Nanowires, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires new instrumentation technologies that can be applied to measure dynamic quantities such as acceleration and flow velocity under extreme temperatures...

  16. Stable field emission from arrays of vertically aligned free-standing metallic nanowires

    DEFF Research Database (Denmark)

    Xavier, S.; Mátéfi-Tempfli, Stefan; Ferain, E.

    2008-01-01

    We present a fully elaborated process to grow arrays of metallic nanowires with controlled geometry and density, based on electrochemical filling of nanopores in track-etched templates. Nanowire growth is performed at room temperature, atmospheric pressure and is compatible with low cost...

  17. Impact of first-step potential and time on the vertical growth of ZnO nanorods on ITO substrate by two-step electrochemical deposition

    International Nuclear Information System (INIS)

    Kim, Tae Gyoum; Jang, Jin-Tak; Ryu, Hyukhyun; Lee, Won-Jae

    2013-01-01

    Highlights: •We grew vertical ZnO nanorods on ITO substrate using a two-step continuous potential process. •The nucleation for the ZnO nanorods growth was changed by first-step potential and duration. •The vertical ZnO nanorods were well grown when first-step potential was −1.2 V and 10 s. -- Abstract: In this study, we analyzed the growth of ZnO nanorods on an ITO (indium doped tin oxide) substrate by electrochemical deposition using a two-step, continuous potential process. We examined the effect of changing the first-step potential as well as the first-step duration on the morphological, structural and optical properties of ZnO nanorods, measured via using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and photoluminescence (PL), respectively. As a result, vertical ZnO nanorods were grown on ITO substrate without the need for a template when the first-step potential was set to −1.2 V for a duration of 10 s, and the second-step potential was set to −0.7 V for a duration of 1190 s. The ZnO nanorods on this sample showed the highest XRD (0 0 2)/(1 0 0) peak intensity ratio and the highest PL near band edge emission to deep level emission peak intensity ratio (NBE/DLE). In this study, the nucleation for vertical ZnO nanorod growth on an ITO substrate was found to be affected by changes in the first-step potential and first-step duration

  18. In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO2 sensor

    Science.gov (United States)

    Chen, Xiangxiang; Shen, Yanbai; Zhang, Wei; Zhang, Jin; Wei, Dezhou; Lu, Rui; Zhu, Lijia; Li, Hansen; Shen, Yansong

    2018-03-01

    ZnO nanowire (ZNW) arrays were in-situ grown on the sensing electrode via a facile hydrothermal route for NO2 sensing application. ZNW arrays were prepared by a seed layer deposition on the surface of the sensing electrode using a dipping process in a Zn(CH3COO)2·2H2O ethanol solution followed by a seed growth using a hydrothermal route in the Zn(NO3)2·6H2O-HMTA (C6H12N4) system. The microstructural characterizations of the ZNW arrays by means of XRD, FESEM, TEM, FTIR and XPS showed that ZnO nanowires with the diameters of 80-90 nm and the lengths of 0.6-1 μm had a single crystal hexagonal wurtzite structure. Gas sensing properties demonstrated the response of the sensor based on the ZNW arrays was linearly proportional to the NO2 concentration in the range of 1-30 ppm with good reproducibility and selectivity. The maximum sensor response to NO2 was obtained at an operating temperature of 250 °C. The response and recovery times reduced rapidly with increasing the operating temperature. The growth mechanism and sensing mechanism of the ZNW arrays were discussed in accordance with the deposition of the seed layer and the modulation of the depletion layer, respectively.

  19. Immobilization of horseradish peroxidase on ZnO nanowires/macroporous SiO2 composites for the complete decolorization of anthraquinone dyes.

    Science.gov (United States)

    Sun, Huaiyan; Jin, Xinyu; Jiang, Feng; Zhang, Ruifeng

    2018-03-01

    A zinc oxide (ZnO) nanowires/macroporous silicon dioxide composite was used as support to immobilize horseradish peroxidase (HRP) simply by in situ cross-linking method. As cross-linker was adsorbed on the surface of ZnO nanowires, the cross-linked HRP was quite different from the traditional cross-linking enzyme aggregates on both structure and catalytic performance. Among three epoxy compounds, diethylene glycol diglycidyl ether (DDE) was the best cross-linker, with which the loading amount of HRP with pI of 5.3 reached as high as 118.1 mg/g and specific activity was up to 14.9 U/mg-support. The mass loss of HRP cross-linked with DDE was negligible during 50-H leaching at 4 °C, and the thermal stability of the immobilized HRP was also quite good. The catalytic performance of immobilized HRP to decolorize anthraquinone dye was explored by using Reactive Blue 19 (RB 19) and Acid Violet 109 (AV 109) as model substrates. The results indicated that the immobilized HRP exhibited high decolorization efficiency and good reusability. The decolorization efficiency reached 94.3% and 95.9% for AV 109 and RB 19 within the first 30 Min, respectively. A complete decolorization of these two dyes has been realized within 2-3 H by using this new biocatalysis system. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  20. Piezo-generator integrating a vertical array of GaN nanowires.

    Science.gov (United States)

    Jamond, N; Chrétien, P; Houzé, F; Lu, L; Largeau, L; Maugain, O; Travers, L; Harmand, J C; Glas, F; Lefeuvre, E; Tchernycheva, M; Gogneau, N

    2016-08-12

    We demonstrate the first piezo-generator integrating a vertical array of GaN nanowires (NWs). We perform a systematic multi-scale analysis, going from single wire properties to macroscopic device fabrication and characterization, which allows us to establish for GaN NWs the relationship between the material properties and the piezo-generation, and to propose an efficient piezo-generator design. The piezo-conversion of individual MBE-grown p-doped GaN NWs in a dense array is assessed by atomic force microscopy (AFM) equipped with a Resiscope module yielding an average output voltage of 228 ± 120 mV and a maximum value of 350 mV generated per NW. In the case of p-doped GaN NWs, the piezo-generation is achieved when a positive piezo-potential is created inside the nanostructures, i.e. when the NWs are submitted to compressive deformation. The understanding of the piezo-generation mechanism in our GaN NWs, gained from AFM analyses, is applied to design a piezo-generator operated under compressive strain. The device consists of NW arrays of several square millimeters in size embedded into spin-on glass with a Schottky contact for rectification and collection of piezo-generated carriers. The generator delivers a maximum power density of ∼12.7 mW cm(-3). This value sets the new state of the art for piezo-generators based on GaN NWs and more generally on nitride NWs, and offers promising prospects for the use of GaN NWs as high-efficiency ultra-compact energy harvesters.

  1. A Grazing-Incidence Small-Angle X-Ray Scattering View of Vertically Aligned ZnO Nano wires

    International Nuclear Information System (INIS)

    Lavcevic, M.L.; Silovic, L.; Dubcek, P.; Pavlovic, M.; Bernstorff, S.

    2013-01-01

    We report a grazing-incidence small-angle X-ray scattering study of ZnO films with vertically aligned and randomly distributed nano wires, grown through a hydrothermal growth process on nano structured ZnO seeding coatings and deposited by electron beam evaporation on silicon and glass, respectively. The comparison of the scattering patterns of seeding coatings and nano wires showed that the scattering of vertically aligned nano wires exhibited a specific feature: the dominant characteristic of their scattering patterns is the appearance of fine structure effects around the specular peak. These effects were clarified by the combined reflection and scattering phenomena, suggested for the aligned nano wires-substrate system. Furthermore, they enabled the calculation of the average gyration radius of nano wires in horizontal direction. The calculated value was in good agreement with the radii of nano wires estimated by surface electron microscopy. Therefore, the observed feature in the scattering pattern can serve as evidence of the aligned growth of nano wires.

  2. Excellent field emission properties of vertically oriented CuO nanowire films

    Directory of Open Access Journals (Sweden)

    Long Feng

    2018-04-01

    Full Text Available Oriented CuO nanowire films were synthesized on a large scale using simple method of direct heating copper grids in air. The field emission properties of the sample can be enhanced by improving the aspect ratio of the nanowires just through a facile method of controlling the synthesis conditions. Although the density of the nanowires is large enough, the screen effect is not an important factor in this field emission process because few nanowires sticking out above the rest. Benefiting from the unique geometrical and structural features, the CuO nanowire samples show excellent field emission (FE properties. The FE measurements of CuO nanowire films illustrate that the sample synthesized at 500 °C for 8 h has a comparatively low turn-on field of 0.68 V/μm, a low threshold field of 1.1 V/μm, and a large field enhancement factor β of 16782 (a record high value for CuO nanostructures, to the best of our knowledge, indicating that the samples are promising candidates for field emission applications.

  3. Detecting Liquefied Petroleum Gas (LPG) at Room Temperature Using ZnSnO3/ZnO Nanowire Piezo-Nanogenerator as Self-Powered Gas Sensor.

    Science.gov (United States)

    Fu, Yongming; Nie, Yuxin; Zhao, Yayu; Wang, Penglei; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2015-05-20

    High sensitivity, selectivity, and reliability have been achieved from ZnSnO3/ZnO nanowire (NW) piezo-nanogenerator (NG) as self-powered gas sensor (SPGS) for detecting liquefied petroleum gas (LPG) at room temperature (RT). After being exposed to 8000 ppm LPG, the output piezo-voltage of ZnSnO3/ZnO NW SPGS under compressive deformation is 0.089 V, much smaller than that in air ambience (0.533 V). The sensitivity of the SPGS against 8000 ppm LPG is up to 83.23, and the low limit of detection is 600 ppm. The SPGS has lower sensitivity against H2S, H2, ethanol, methanol and saturated water vapor than LPG, indicating good selectivity for detecting LPG. After two months, the decline of the sensing performance is less than 6%. Such piezo-LPG sensing at RT can be ascribed to the new piezo-surface coupling effect of ZnSnO3/ZnO nanocomposites. The practical application of the device driven by human motion has also been simply demonstrated. This work provides a novel approach to fabricate RT-LPG sensors and promotes the development of self-powered sensing system.

  4. Electrical, photoelectrical and morphological properties of ZnO nanofiber networks grown on SiO{sub 2} and on Si nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Nadia Celeste; Comedi, David [Universidad Nacional de Tucuman (FACET/UNT), (Argentina). Facultad de Ciencias Exactas y Tecnologia. Dept. de Fisica. Lab. de Fisica del Solido; Audebert, Fernando [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Tirado, Monica, E-mail: mtirado@herrera.unt.edu.ar [Universidad Nacional de Tucuman (FACET/UNT), (Argentina). Facultad de Ciencias Exactas y Tecnologia. Dept. de Fisica. Lab. de Nanomateriales y de Propiedades Dielectricas; Rodriguez, Andres; Rodriguez, Tomas [Universidad Politecnica de Madrid (ETSIT/UPM), Madrid (Spain). Escuela Tecnica Superior de Ingenieros de Telecomucacion. Tecnologia Electronica; Hughes, Gareth M.; Grovenor, Chris R.M. [University of Oxford, Parks Road, OX (United Kingdom). Dept. of Materials

    2013-11-01

    ZnO nanofibre networks (NFNs) were grown by vapour transport method on Si-based substrates. One type of substrate was SiO{sub 2} thermally grown on Si and another consisted of a Si wafer onto which Si nanowires (NWs) had been grown having Au nanoparticles catalysts. The ZnO-NFN morphology was observed by scanning electron microscopy on samples grown at 600 Degree-Sign C and 720 Degree-Sign C substrate temperature, while an focused ion beam was used to study the ZnO NFN/Si NWs/Si and ZnO NFN/SiO{sub 2} interfaces. Photoluminescence, electrical conductance and photo conductance of ZnO-NFN was studied for the sample grown on SiO{sub 2}. The photoluminescence spectra show strong peaks due to exciton recombination and lattice defects. The ZnO-NFN presents quasi-persistent photoconductivity effects and ohmic I-V characteristics which become nonlinear and hysteretic as the applied voltage is increased. The electrical conductance as a function of temperature can be described by a modified three dimensional variable hopping model with nanometer-ranged typical hopping distances. (author)

  5. Aqueous chemical growth of free standing vertical ZnO nanoprisms, nanorods and nanodiskettes with improved texture co-efficient and tunable size uniformity

    Energy Technology Data Exchange (ETDEWEB)

    Ram, S.D.G. [Bharath Niketan Engineering College, Department of Physics, Aundipatti (India); Ravi, G.; Mahalingam, T. [Alagappa University, Department of Physics, Karaikudi (India); Athimoolam, A. [Fatima Michael College of Engineering and Technology, Department of Physics, Madurai (India); Kulandainathan, M.A. [Central Electro Chemical Research Institute, Karaikudi (India)

    2011-12-15

    Tuning the morphology, size and aspect ratio of free standing ZnO nanostructured arrays by a simple hydrothermal method is reported. Pre-coated ZnO seed layers of two different thicknesses ({approx}350 nm or 550 nm) were used as substrates to grow ZnO nanostructures for the study. Various parameters such as chemical ambience, pH of the solution, strength of the Zn{sup 2+} atoms and thickness of seed bed are varied to analyze their effects on the resultant ZnO nanostructures. Vertically oriented hexagonal nanorods, multi-angular nanorods, hexagonal diskette and popcorn-like nanostructures are obtained by altering the experimental parameters. All the produced nanostructures were analysed by X-ray powder diffraction analysis and found to be grown in the (002) orientation of wurtzite ZnO. The texture co-efficient of ZnO layer was improved by combining a thick seed layer with higher cationic strength. Surface morphological studies reveal various nanostructures such as nanorods, diskettes and popcorn-like structures based on various preparation conditions. The optical property of the closest packed nanorods array was recorded by UV-VIS spectrometry, and the band gap value simulated from the results reflect the near characteristic band gap of ZnO. The surface roughness profile taken from the Atomic Force Microscopy reveals a roughness of less than 320 nm. (orig.)

  6. The fabrication of ZnO nanowire field-effect transistors combining dielectrophoresis and hot-pressing

    International Nuclear Information System (INIS)

    Chang, Y-K; Chau-N H, Franklin

    2009-01-01

    Zinc oxide nanowire field-effect transistors (NW-FETs) were fabricated combining the dielectrophoresis (DEP) and the hot-pressing methods. DEP was used to position both ends of the nanowires on top of the source and the drain electrodes, respectively. Hot-pressing of nanowires on the electrodes was then employed to ensure good contacts between the nanowires and the electrodes. The good device performance achieved with our method of fabrication indicates that DEP combined with hot-pressing has the potential to be applied to the fabrication of flexible electronics on a roll-to-roll basis.

  7. Vertically building Zn2SnO4 nanowire arrays on stainless steel mesh toward fabrication of large-area, flexible dye-sensitized solar cells.

    Science.gov (United States)

    Li, Zhengdao; Zhou, Yong; Bao, Chunxiong; Xue, Guogang; Zhang, Jiyuan; Liu, Jianguo; Yu, Tao; Zou, Zhigang

    2012-06-07

    Zn(2)SnO(4) nanowire arrays were for the first time grown onto a stainless steel mesh (SSM) in a binary ethylenediamine (En)/water solvent system using a solvothermal route. The morphology evolution following this reaction was carefully followed to understand the formation mechanism. The SSM-supported Zn(2)SnO(4) nanowire was utilized as a photoanode for fabrication of large-area (10 cm × 5 cm size as a typical sample), flexible dye-sensitized solar cells (DSSCs). The synthesized Zn(2)SnO(4) nanowires exhibit great bendability and flexibility, proving potential advantage over other metal oxide nanowires such as TiO(2), ZnO, and SnO(2) for application in flexible solar cells. Relative to the analogous Zn(2)SnO(4) nanoparticle-based flexible DSSCs, the nanowire geometry proves to enhance solar energy conversion efficiency through enhancement of electron transport. The bendable nature of the DSSCs without obvious degradation of efficiency and facile scale up gives the as-made flexible solar cell device potential for practical application.

  8. Influence of defects and nanoscale strain on the photovoltaic properties of CdS/CdSe nanocomposite co-sensitized ZnO nanowire solar cells

    International Nuclear Information System (INIS)

    Jung, Kyungeun; Lee, Jeongwon; Kim, Young-Min; Kim, Joosun; Kim, Choong-Un; Lee, Man-Jong

    2016-01-01

    Highlights: • CdSe/CdS nanocomposites were coated on ZnO nanowires using solution processes. • In situ CdSe/CdS co-sensitizers resulted in a 3-fold increase in efficiency. • Nano-strain analyses at interfaces and CdS layers were performed. • Drastic decrease of nano-strain in CdSe/CdS was observed. • Relaxed nano-strain was attributed to the increase of efficiency. - Abstract: This paper reports the mechanism of the power conversion efficiency (PCE) improvement in the ZnO nanowires (NW) based solar cells by using CdS/CdSe nanocomposite sensitizers instead of a single CdS quantum-dot (QD) sensitization layer. Two cells with the different type of the sensitization layers were essentially consists of the high-density ZnO nanowire (NW) and a sensitization layer of either CdS-QD or CdS/CdSe nanocomposite, which were produced by an in-situ sequential assembly process of both ionic layer absorption and reaction (SILAR) and chemical bath deposition (CBD). Measurement on the PCE revealed that the cell with CdS/CdSe nanocomposite showed a three-fold increase in PCE compared to the one with a CdS-QD layer. While such improvement in PCE appeared to be consistent with the step-wise band alignment mechanism suggested for the type-II heterojunction of CdSe/CdS/ZnO structures, our microstructural analysis of the cell structure yielded results strongly indicating that the reduction of both interface defects and misfit strain in the CdS lattices plays an additional role on the PCE improvement. Analyses on the interface and the CdS crystallinity using high-resolution electron microscopy (HRTEM) combined with the geometric phase analysis (GPA) revealed that the addition of CdSe effectively reduced the lattice strain in the CdS without introducing misfit dislocations at CdS/CdSe interface, probably owing to Se anion diffusion (or exchange) to the defective SILAR CdS layer during the CBD process. Although an entire enhancement in PCE by the addition of CdSe layer seen in our

  9. Hybrid nanostructure heterojunction solar cells fabricated using vertically aligned ZnO nanotubes grown on reduced graphene oxide.

    Science.gov (United States)

    Yang, Kaikun; Xu, Congkang; Huang, Liwei; Zou, Lianfeng; Wang, Howard

    2011-10-07

    Using reduced graphene oxide (rGO) films as the transparent conductive coating, inorganic/organic hybrid nanostructure heterojunction photovoltaic devices have been fabricated through hydrothermal synthesis of vertically aligned ZnO nanorods (ZnO-NRs) and nanotubes (ZnO-NTs) on rGO films followed by the spin casting of a poly(3-hexylthiophene) (P3HT) film. The data show that larger interfacial area in ZnO-NT/P3HT composites improves the exciton dissociation and the higher electrode conductance of rGO films helps the power output. This study offers an alternative to manufacturing nanostructure heterojunction solar cells at low temperatures using potentially low cost materials.

  10. Microstructural changes in CdSe-coated ZnO nanowires evaluated by in situ annealing in transmission electron microscopy and x-ray diffraction

    International Nuclear Information System (INIS)

    Majidi, Hasti; Baxter, Jason B; Winkler, Christopher R; Taheri, Mitra L

    2012-01-01

    We report on the crystallite growth and phase change of electrodeposited CdSe coatings on ZnO nanowires during annealing. Both in situ transmission electron microscopy (TEM) and x-ray diffraction (XRD) reveal that the nanocrystal size increases from ∼3 to ∼10 nm upon annealing at 350 °C for 1 h and then to more than 30 nm during another 1 h at 400 °C, exhibiting two distinct growth regimes. Nanocrystal growth occurs together with a structural change from zinc blende to wurtzite. The structural transition begins at 350 °C, which results in the formation of stacking faults. Increased crystallite size, comparable to the coating thickness, can improve charge separation in extremely thin absorber solar cells. We demonstrate a nearly two-fold improvement in power conversion efficiency upon annealing. (paper)

  11. Microstructural changes in CdSe-coated ZnO nanowires evaluated by in situ annealing in transmission electron microscopy and x-ray diffraction

    Science.gov (United States)

    Majidi, Hasti; Winkler, Christopher R.; Taheri, Mitra L.; Baxter, Jason B.

    2012-07-01

    We report on the crystallite growth and phase change of electrodeposited CdSe coatings on ZnO nanowires during annealing. Both in situ transmission electron microscopy (TEM) and x-ray diffraction (XRD) reveal that the nanocrystal size increases from ˜3 to ˜10 nm upon annealing at 350 °C for 1 h and then to more than 30 nm during another 1 h at 400 °C, exhibiting two distinct growth regimes. Nanocrystal growth occurs together with a structural change from zinc blende to wurtzite. The structural transition begins at 350 °C, which results in the formation of stacking faults. Increased crystallite size, comparable to the coating thickness, can improve charge separation in extremely thin absorber solar cells. We demonstrate a nearly two-fold improvement in power conversion efficiency upon annealing.

  12. Dramatically enhanced ultraviolet photosensing mechanism in a n-ZnO nanowires/i-MgO/n-Si structure with highly dense nanowires and ultrathin MgO layers

    International Nuclear Information System (INIS)

    Kim, Dong Chan; Jung, Byung Oh; Cho, Hyung Koun; Lee, Ju Ho; Lee, Jeong Yong; Lee, Jun Hee

    2011-01-01

    This study reports that the visible-blind ultraviolet (UV) photodetecting properties of ZnO nanowire based photodetectors were remarkably improved by introducing ultrathin insulating MgO layers between the ZnO nanowires and Si substrates. All layers were grown without pause by metal organic chemical vapor deposition and the density and vertical arrangement of the ZnO nanowires were strongly dependent on the thickness of the MgO layers. The sample in which an MgO layer with a thickness of 8 nm was inserted had high density nanowires with a vertical alignment and showed dramatically improved UV photosensing performance (photo-to-dark current ratio = 1344.5 and recovery time = 350 ms). The photoresponse spectrum revealed good visible-blind UV detectivity with a sharp cut off at 378 nm and a high UV/visible rejection ratio. A detailed discussion regarding the developed UV photosensing mechanism from the introduction of the i-MgO layers and highly dense nanowires in the n-ZnO nanowires/i-MgO/n-Si substrates structure is presented in this work.

  13. Ultra violet sensors based on nanostructured ZnO spheres in network of nanowires: a novel approach

    OpenAIRE

    Hullavarad, SS; Hullavarad, NV; Karulkar, PC; Luykx, A; Valdivia, P

    2007-01-01

    AbstractThe ZnO nanostructures consisting of micro spheres in a network of nano wires were synthesized by direct vapor phase method. X-ray Photoelectron Spectroscopy measurements were carried out to understand the chemical nature of the sample. ZnO nanostructures exhibited band edge luminescence at 383 nm. The nanostructure based ZnO thin films were used to fabricate UV sensors. The photoresponse measurements were carried out and the responsivity was measured to be 50 mA W−1. The rise a...

  14. Ultra violet sensors based on nanostructured ZnO spheres in network of nanowires: a novel approach

    Directory of Open Access Journals (Sweden)

    Luykx A

    2007-01-01

    Full Text Available AbstractThe ZnO nanostructures consisting of micro spheres in a network of nano wires were synthesized by direct vapor phase method. X-ray Photoelectron Spectroscopy measurements were carried out to understand the chemical nature of the sample. ZnO nanostructures exhibited band edge luminescence at 383 nm. The nanostructure based ZnO thin films were used to fabricate UV sensors. The photoresponse measurements were carried out and the responsivity was measured to be 50 mA W−1. The rise and decay time measurements were also measured.

  15. Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Yung-Jr, E-mail: yungjrhung@gmail.com [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Department of Photonics, National Sun Yat-sen University, No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, San-Liang [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Beng, Looi Choon [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Chang, Hsuan-Chen [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, Kuei-Yi; Huang, Ying-Sheng [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China)

    2014-04-01

    Top-down fabrication strategies are proposed and demonstrated to realize arrays of vertically-aligned silicon nanowire bundles and bundle arrays of carbon nanotube–silicon nanowire (CNT–SiNW) heterojunctions, aiming for releasing the electrostatic screening effect and improving the field emission characteristics. The trade-off between the reduction in the electrostatic screening effect and the decrease of emission sites leads to an optimal SiNW bundle arrangement which enables the lowest turn-on electric field of 1.4 V/μm and highest emission current density of 191 μA/cm{sup 2} among all testing SiNW samples. Benefiting from the superior thermal and electrical properties of CNTs and the flexible patterning technologies available for SiNWs, bundle arrays of CNT–SiNW heterojunctions show improved and highly-uniform field emission with a lower turn-on electric field of 0.9 V/μm and higher emission current density of 5.86 mA/cm{sup 2}. The application of these materials and their corresponding fabrication approaches is not limited to the field emission but can be used for a variety of emerging fields like nanoelectronics, lithium-ion batteries, and solar cells. - Highlights: • Aligned silicon nanowire (SiNW) bundle arrays are realized with top-down methods. • Growing carbon nanotubes atop SiNW bundle arrays enable uniform field emission. • A turn-on field of 0.9 V/μm and an emission current of > 5 mA/cm{sup 2} are achieved.

  16. Fabrication and characterization of well-aligned zinc oxide nanowire arrays and their realizations in Schottky-device applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kin Mun; Grote, Fabian; Sun, Hui; Lei, Yong [Institute of Materials Physics, Center for Nanotechnology, University of Muenster (Germany); Wen, Liaoyong; Fang, Yaoguo [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 201800 (China)

    2011-07-01

    Highly ordered arrays of vertical zinc oxide (ZnO) nanowires (NWs) or nanopores were fabricated in our group by first thermal evaporating a thin film of gold on the ultrathin alumina membrane (UTAM). The UTAM was then utilized as a substrate for the growth of the ordered arrays using a chemical vapour deposition (CVD) process. Alternatively, a modified CVD process was also used to fabricate ultra-long ZnO NWs with the length of the nanowire exceeding 100 micrometres. Subsequently, densely packed arrays of ZnO NWs Schottky diodes were synthesized by transferring the long NWs on a substrate using a dry contact printing method and the electrical contacts were made on the NWs with a photolithographic process. The interesting electrical properties of the ZnO NWs, diodes or other metal oxide NWs such as the field emission, electron transport and piezoelectric properties were characterized by current-voltage or by other appropriate measurements.

  17. Surface/Interface Carrier-Transport Modulation for Constructing Photon-Alternative Ultraviolet Detectors Based on Self-Bending-Assembled ZnO Nanowires.

    Science.gov (United States)

    Guo, Zhen; Zhou, Lianqun; Tang, Yuguo; Li, Lin; Zhang, Zhiqi; Yang, Hongbo; Ma, Hanbin; Nathan, Arokia; Zhao, Dongxu

    2017-09-13

    Surface/interface charge-carrier generation, diffusion, and recombination/transport modulation are especially important in the construction of photodetectors with high efficiency in the field of nanoscience. In the paper, a kind of ultraviolet (UV) detector is designed based on ZnO nanostructures considering photon-trapping, surface plasmonic resonance (SPR), piezophototronic effects, interface carrier-trapping/transport control, and collection. Through carefully optimized surface/interface carrier-transport modulation, a designed device with detectivity as high as 1.69 × 10 16 /1.71 × 10 16 cm·Hz 1/2 /W irradiating with 380 nm photons under ultralow bias of 0.2 V is realized by alternating nanoparticle/nanowire active layers, respectively, and the designed UV photodetectors show fast and slow recovery processes of 0.27 and 4.52 ms, respectively, which well-satisfy practical needs. Further, it is observed that UV photodetection could be performed within an alternative response by varying correlated key parameters, through efficient surface/interface carrier-transport modulation, spectrally resolved photoresponse of the detector revealing controlled detection in the UV region based on the ZnO nanomaterial, photodetection allowed or limited by varying the active layers, irradiation distance from one of the electrodes, standing states, or electric field. The detailed carrier generation, diffusion, and recombination/transport processes are well illustrated to explain charge-carrier dynamics contributing to the photoresponse behavior.

  18. High-performance ambipolar self-assembled Au/Ag nanowire based vertical quantum dot field effect transistor.

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Wang, Jianlong; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2016-10-07

    Most lateral PbSe quantum dot field effect transistors (QD FETs) show a low on current/off current (I on/I off) ratio in charge transport measurements. A new strategy to provide generally better performance is to design PbSe QD FETs with vertical architecture, in which the structure parameters can be tuned flexibly. Here, we fabricated a novel room-temperature operated vertical quantum dot field effect transistor with a channel of 580 nm, where self-assembled Au/Ag nanowires served as source transparent electrodes and PbSe quantum dots as active channels. Through investigating the electrical characterization, the ambipolar device exhibited excellent characteristics with a high I on/I off current ratio of about 1 × 10(5) and a low sub-threshold slope (0.26 V/decade) in the p-type regime. The all-solution processing vertical architecture provides a convenient way for low cost, large-area integration of the device.

  19. Functionalised zinc oxide nanowire gas sensors: Enhanced NO(2) gas sensor response by chemical modification of nanowire surfaces.

    Science.gov (United States)

    Waclawik, Eric R; Chang, Jin; Ponzoni, Andrea; Concina, Isabella; Zappa, Dario; Comini, Elisabetta; Motta, Nunzio; Faglia, Guido; Sberveglieri, Giorgio

    2012-01-01

    Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO(2) produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO(2) down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO(2) compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO(2) target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.

  20. In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Boris, E-mail: boriss.polakovs@ut.ee [Institute of Physics, University of Tartu, Riia st. 142, Tartu (Estonia); Institute of Solid State Physics, University of Latvia, Kengaraga st. 8, Riga (Latvia); Dorogin, Leonid M; Lohmus, Ants [Institute of Physics, University of Tartu, Riia st. 142, Tartu (Estonia); Romanov, Alexey E [Institute of Physics, University of Tartu, Riia st. 142, Tartu (Estonia); Ioffe Physical Technical Institute, RAS, Politehnicheskaja st. 26, St. Petersburg (Russian Federation); Lohmus, Rynno [Institute of Physics, University of Tartu, Riia st. 142, Tartu (Estonia)

    2012-01-15

    A novel method for measuring the kinetic friction force in situ was developed for zinc oxide nanowires on highly oriented pyrolytic graphite and oxidised silicon wafers. The experiments were performed inside a scanning electron microscope and used a nanomanipulation device as an actuator, which also had an atomic force microscope tip attached to it as a probe. A simple model based on the Timoshenko elastic beam theory was applied to interpret the elastic deformation of a sliding nanowire (NW) and to determine the distributed kinetic friction force.

  1. Fabrication and Characterization of Vertically Aligned ZnO Nanorod Arrays via Inverted Monolayer Colloidal Crystals Mask

    Science.gov (United States)

    Chen, Cheng; Ding, Taotao; Qi, Zhiqiang; Zhang, Wei; Zhang, Jun; Xu, Juan; Chen, Jingwen; Dai, Jiangnan; Chen, Changqing

    2018-04-01

    The periodically ordered ZnO nanorod (NR) arrays have been successfully synthesized via a hydrothermal approach on the silicon substrates by templating of the TiO2 ring deriving from the polystyrene (PS) nanosphere monolayer colloidal crystals (MCC). With the inverted MCC mask, sol-gel-derived ZnO seeds could serve as the periodic nucleation positions for the site-specific growth of ZnO NRs. The large-scale patterned arrays of single ZnO NR with good side-orientation can be readily produced. According to the experimental results, the as-integrated ZnO NR arrays showed an excellent crystal quality and optical property, very suitable for optoelectronic applications such as stimulated emitters and ZnO photonic crystal devices.

  2. Piezoelectric coupling in a field-effect transistor with a nanohybrid channel of ZnO nanorods grown vertically on graphene.

    Science.gov (United States)

    Quang Dang, Vinh; Kim, Do-Il; Thai Duy, Le; Kim, Bo-Yeong; Hwang, Byeong-Ung; Jang, Mi; Shin, Kyung-Sik; Kim, Sang-Woo; Lee, Nae-Eung

    2014-12-21

    Piezoelectric coupling phenomena in a graphene field-effect transistor (GFET) with a nano-hybrid channel of chemical-vapor-deposited Gr (CVD Gr) and vertically aligned ZnO nanorods (NRs) under mechanical pressurization were investigated. Transfer characteristics of the hybrid channel GFET clearly indicated that the piezoelectric effect of ZnO NRs under static or dynamic pressure modulated the channel conductivity (σ) and caused a positive shift of 0.25% per kPa in the Dirac point. However, the GFET without ZnO NRs showed no change in either σ or the Dirac point. Analysis of the Dirac point shifts indicated transfer of electrons from the CVD Gr to ZnO NRs due to modulation of their interfacial barrier height under pressure. High responsiveness of the hybrid channel device with fast response and recovery times was evident in the time-dependent behavior at a small gate bias. In addition, the hybrid channel FET could be gated by mechanical pressurization only. Therefore, a piezoelectric-coupled hybrid channel GFET can be used as a pressure-sensing device with low power consumption and a fast response time. Hybridization of piezoelectric 1D nanomaterials with a 2D semiconducting channel in FETs enables a new design for future nanodevices.

  3. Optical Properties of Electrophoretically Manipulated ZnO Nanowire Suspensions and Their High Application Potential in Smart Window Devices

    OpenAIRE

    Šutka, A; Timusk, M; Saal, K; Kisand, V

    2015-01-01

    Optical properties of zinc oxide nanowire (NW) dilute suspensions in polydimethylsiloxane (PDMS) were investigated. Optical transmittance was found to decrease at the transition from chaotically oriented state to electrophoretically ordered state with the alignment of the NW along the direction of incident light. Previously reported observations of the behavior of dispersions containing oblong particles indicate that the transition of the orientation of particles from chaotic to ordered state...

  4. Analytical simulation of RBS spectra of nanowire samples

    Energy Technology Data Exchange (ETDEWEB)

    Barradas, Nuno P., E-mail: nunoni@ctn.ist.utl.pt [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); García Núñez, C. [Laboratorio de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Redondo-Cubero, A. [Laboratorio de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Shen, G.; Kung, P. [Department of Electrical and Computer Engineering, The University of Alabama, AL 35487 (United States); Pau, J.L. [Laboratorio de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2016-03-15

    Almost all, if not all, general purpose codes for analysis of Ion Beam Analysis data have been originally developed to handle laterally homogeneous samples only. This is the case of RUMP, NDF, SIMNRA, and even of the Monte Carlo code Corteo. General-purpose codes usually include only limited support for lateral inhomogeneity. In this work, we show analytical simulations of samples that consist of a layer of parallel oriented nanowires on a substrate, using a model implemented in NDF. We apply the code to real samples, made of vertical ZnO nanowires on a sapphire substrate. Two configurations of the nanowires were studied: 40 nm diameter, 4.1 μm height, 3.5% surface coverage; and 55 nm diameter, 1.1 μm height, 42% surface coverage. We discuss the accuracy and limits of applicability of the analysis.

  5. Piezoelectric-Induced Triboelectric Hybrid Nanogenerators Based on the ZnO Nanowire Layer Decorated on the Au/polydimethylsiloxane-Al Structure for Enhanced Triboelectric Performance.

    Science.gov (United States)

    Jirayupat, Chaiyanut; Wongwiriyapan, Winadda; Kasamechonchung, Panita; Wutikhun, Tuksadon; Tantisantisom, Kittipong; Rayanasukha, Yossawat; Jiemsakul, Thanakorn; Tansarawiput, Chookiat; Liangruksa, Monrudee; Khanchaitit, Paisan; Horprathum, Mati; Porntheeraphat, Supanit; Klamchuen, Annop

    2018-02-21

    Here, we demonstrate a novel device structure design to enhance the electrical conversion output of a triboelectric device through the piezoelectric effect called as the piezo-induced triboelectric (PIT) device. By utilizing the piezopotential of ZnO nanowires embedded into the polydimethylsiloxane (PDMS) layer attached on the top electrode of the conventional triboelectric device (Au/PDMS-Al), the PIT device exhibits an output power density of 50 μW/cm 2 , which is larger than that of the conventional triboelectric device by up to 100 folds under the external applied force of 8.5 N. We found that the effect of the external piezopotential on the top Au electrode of the triboelectric device not only enhances the electron transfer from the Al electrode to PDMS but also boosts the internal built-in potential of the triboelectric device through an external electric field of the piezoelectric layer. Furthermore, 100 light-emitting diodes (LEDs) could be lighted up via the PIT device, whereas the conventional device could illuminate less than 20 LED bulbs. Thus, our results highlight that the enhancement of the triboelectric output can be achieved by using a PIT device structure, which enables us to develop hybrid nanogenerators for various self-power electronics such as wearable and mobile devices.

  6. Immobilized Candida antarctica lipase B on ZnO nanowires/macroporous silica composites for catalyzing chiral resolution of (R,S)-2-octanol.

    Science.gov (United States)

    Shang, Chuan-Yang; Li, Wei-Xun; Zhang, Rui-Feng

    2014-01-01

    ZnO nanowires were successfully introduced into a macroporous SiO2 by in situ hydrothermal growth in 3D pores. The obtained composites were characterized by SEM and XRD, and used as supports to immobilize Candida antarctica lipase B (CALB) through adsorption. The high specific surface area (233 m(2)/g) and strong electrostatic interaction resulted that the average loading amount of the composite supports (196.8 mg/g) was 3-4 times of that of macroporous SiO2 and approximate to that of a silica-based mesoporous material. Both adsorption capacity and the activity of the CALB immobilized on the composite supports almost kept unchanged as the samples were soaked in buffer solution for 48 h. The chiral resolution of 2-octanol was catalyzed by immobilized CALB. A maximum molar conversion of 49.1% was achieved with 99% enantiomeric excess of (R)-2-octanol acetate under the optimal condition: a reaction using 1.0 mol/L (R,S)-2-octanol, 2.0 mol/L vinyl acetate and 4.0 wt.% water content at 60°C for 8h. After fifteen recycles the immobilized lipase could retain 96.9% of relative activity and 93.8% of relative enantioselectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Analog performance of vertical nanowire TFETs as a function of temperature and transport mechanism

    Science.gov (United States)

    Martino, Marcio Dalla Valle; Neves, Felipe; Ghedini Der Agopian, Paula; Martino, João Antonio; Vandooren, Anne; Rooyackers, Rita; Simoen, Eddy; Thean, Aaron; Claeys, Cor

    2015-10-01

    The goal of this work is to study the analog performance of tunnel field effect transistors (TFETs) and its susceptibility to temperature variation and to different dominant transport mechanisms. The experimental input characteristic of nanowire TFETs with different source compositions (100% Si and Si1-xGex) has been presented, leading to the extraction of the Activation Energy for each bias condition. These first results have been connected to the prevailing transport mechanism for each configuration, namely band-to-band tunneling (BTBT) or trap assisted tunneling (TAT). Afterward, this work analyzes the analog behavior, with the intrinsic voltage gain calculated in terms of Early voltage, transistor efficiency, transconductance and output conductance. Comparing the results for devices with different source compositions, it is interesting to note how the analog trends vary depending on the source characteristics and the prevailing transport mechanisms. This behavior results in a different suitability analysis depending on the working temperature. In other words, devices with full-Silicon source and non-abrupt junction profile present the worst intrinsic voltage gain at room temperature, but the best results for high temperatures. This was possible since, among the 4 studied devices, this configuration was the only one with a positive intrinsic voltage gain dependence on the temperature variation.

  8. Dye-sensitized solar cells with vertically aligned TiO2 nanowire arrays grown on carbon fibers.

    Science.gov (United States)

    Cai, Xin; Wu, Hongwei; Hou, Shaocong; Peng, Ming; Yu, Xiao; Zou, Dechun

    2014-02-01

    One-dimensional semiconductor TiO2 nanowires (TNWs) have received widespread attention from solar cell and related optoelectronics scientists. The controllable synthesis of ordered TNW arrays on arbitrary substrates would benefit both fundamental research and practical applications. Herein, vertically aligned TNW arrays in situ grown on carbon fiber (CF) substrates through a facile, controllable, and seed-assisted thermal process is presented. Also, hierarchical TiO2 -nanoparticle/TNW arrays were prepared that favor both the dye loading and depressed charge recombination of the CF/TNW photoanode. An impressive conversion efficiency of 2.48 % (under air mass 1.5 global illumination) and an apparent efficiency of 4.18 % (with a diffuse board) due to the 3D light harvesting of the wire solar cell were achieved. Moreover, efficient and inexpensive wire solar cells made from all-CF electrodes and completely flexible CF-based wire solar cells were demonstrated, taking into account actual application requirements. This work may provide an intriguing avenue for the pursuit of lightweight, cost-effective, and high-performance flexible/wearable solar cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Contact light-emitting diodes based on vertical ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Panin, G. N. [Dongguk University, Seoul (Korea, Republic of); Russian Academy of Sciences, Chernogolovka, Moscow district (Russian Federation); Cho, H. D.; Lee, S. W.; Kang, T. W. [Dongguk University, Seoul (Korea, Republic of)

    2014-05-15

    We report vertical contact light-emitting diodes (VCLEDs), that are based on heterojunctions formed by using the point contacts of n-ZnO nanorods (NRs) to the p-type semiconductor substrate and that are fabricated using a new approach to the formation of LEDs (Appl. Phys. Lett. 98, 093110 (2011)). A p-type GaN film grown on a sapphire substrate was used to form n-ZnO NRs/pGaN VCLEDs on a large area of about 4 cm{sup 2}. The VCLEDs emitted a pure blue electroluminescence with high efficiency. Electroluminescence at 470 nm, which is visible to the naked eye, started at small current of about 50 μA and is attributed to the good optical properties of the structurally perfect heterojunctions in the point contacts. The VCLED configuration allows the creation of ZnO/p-GaN nano-LEDs of high density and high-quality with a greatly reduced concentration of nonradiative defects in the active regions. The VCLEDs showed the high brightness of light required for active matrix displays and general solid-state lighting.

  10. Piezo-Phototronic Enhanced UV Sensing Based on a Nanowire Photodetector Array.

    Science.gov (United States)

    Han, Xun; Du, Weiming; Yu, Ruomeng; Pan, Caofeng; Wang, Zhong Lin

    2015-12-22

    A large array of Schottky UV photodetectors (PDs) based on vertical aligned ZnO nanowires is achieved. By introducing the piezo-phototronic effect, the performance of the PD array is enhanced up to seven times in photoreponsivity, six times in sensitivity, and 2.8 times in detection limit. The UV PD array may have applications in optoelectronic systems, adaptive optical computing, and communication. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope.

    Science.gov (United States)

    Polyakov, Boris; Dorogin, Leonid M; Vlassov, Sergei; Kink, Ilmar; Romanov, Alexey E; Lohmus, Rynno

    2012-11-01

    A novel method for in situ measurement of the static and kinetic friction is developed and demonstrated for zinc oxide nanowires (NWs) on oxidised silicon wafers. The experiments are performed inside a scanning electron microscope (SEM) equipped with a nanomanipulator with an atomic force microscope tip as a probe. NWs are pushed by the tip from one end until complete displacement is achieved, while NW bending is monitored by the SEM. The elastic bending profile of a NW during the manipulation process is used to calculate the static and kinetic friction forces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Enhanced field emission of ZnO nanoneedle arrays via solution etching at room temperature

    DEFF Research Database (Denmark)

    Ma, Huanming; Qin, Zhiwei; Wang, Zaide

    2017-01-01

    ZnO nanoneedle arrays (ZnO nns) were synthesized by a facile two-step solution-phase method based on the etching of pre-synthesized ZnO nanowire arrays (ZnO nws) with flat ends at room temperature. Field emission measurement results showed that the turn-on electronic fields of ZnO nns and nws wer...

  13. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.

    Science.gov (United States)

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-04-07

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute).

  14. Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor

    International Nuclear Information System (INIS)

    Li, Hung-Hsien; Yang, Chi-En; Kei, Chi-Chung; Su, Chung-Yi; Dai, Wei-Syuan; Tseng, Jung-Kuei; Yang, Po-Yu; Chou, Jung-Chuan; Cheng, Huang-Chung

    2013-01-01

    An extended-gate field-effect transistor (EGFET) of coaxial-structured ZnO/silicon nanowires as pH sensor was demonstrated in this paper. The oriented 1-μm-long silicon nanowires with the diameter of about 50 nm were vertically synthesized by the electroless metal deposition method at room temperature and were sequentially capped with the ZnO films using atomic layer deposition at 50 °C. The transfer characteristics (I DS –V REF ) of such ZnO/silicon nanowire EGFET sensor exhibited the sensitivity and linearity of 46.25 mV/pH and 0.9902, respectively for the different pH solutions (pH 1–pH 13). In contrast to the ZnO thin-film ones, the ZnO/silicon nanowire EGFET sensor achieved much better sensitivity and superior linearity. It was attributed to a high surface-to-volume ratio of the nanowire structures, reflecting a larger effective sensing area. The output voltage and time characteristics were also measured to indicate good reliability and durability for the ZnO/silicon nanowires sensor. Furthermore, the hysteresis was 9.74 mV after the solution was changed as pH 7 → pH 3 → pH 7 → pH 11 → pH 7. - Highlights: ► Coaxial-structured ZnO/silicon nanowire EGFET was demonstrated as pH sensor. ► EMD and ALD methods were proposed to fabricate ZnO/silicon nanowires. ► ZnO/silicon nanowire EGFET sensor achieved better sensitivity and linearity. ► ZnO/silicon nanowire EGFET sensor had good reliability and durability

  15. Functionalized vertically aligned ZnO nanorods for application in electrolyte-insulator-semiconductor based pH sensors and label-free immuno-sensors

    International Nuclear Information System (INIS)

    Kumar, Narendra; Senapati, Sujata; Kumar, Jitendra; Panda, Siddhartha; Kumar, Satyendra

    2016-01-01

    Vertically aligned ZnO nanorods were grown on a SiO 2 /Si surface by optimization of the temperature and atmosphere for annealing of the seed. The seed layer annealed at 500 °C in vacuum provided well separated and uniform seeds which also provided the best condition to get densely packed, uniformly distributed, and vertically aligned nanorods. These nanorods grown on the substrates were used to fabricate electrolyte-insulator-semiconductor (EIS) devices for pH sensing. Etching of ZnO at acidic pH prevents the direct use of nanorods for pH sensing. Therefore, the nanorods functionalised with 3-aminopropyltriethoxysilane (APTES) were utilized for pH sensing and showed the pH sensitivity of 50.1 mV/pH. APTES is also known to be used as a linker to immobilize biomolecules (such as antibodies). The EIS device with APTES functionalized nanorods was used for the label free detection of prostate-specific antigen (PSA). Finally, voltage shifts of 23 mV and 35 mV were observed with PSA concentrations of 1 ng/ml and 100 ng/ml, respectively. (paper)

  16. Vertically oriented CoO@FeOOH nanowire arrays anchored on carbon cloth as a highly efficient electrode for oxygen evolution reaction

    International Nuclear Information System (INIS)

    Wang, Yin; Ni, Yuanman; Liu, Bing; Shang, Shuxia; Yang, Song; Cao, Minhua; Hu, Changwen

    2017-01-01

    Graphical abstract: Three-dimensional CoO@FeOOH nanowire arrays grown on carbon cloth were constructed, which exhibit good electrocatalytic activity towards OER in alkaline solution. Display Omitted -- Abstract: Developing high efficiency electrocatalysts for electrocatalytic oxygen evolution reaction (OER) is a key to water splitting. In this work, we demonstrate the preparation of CoO@FeOOH core-shell nanowire (NWs) grown on three-dimensional (3D) carbon cloth (CC@CoO@FeOOH-NWAs) by hydrothermal method followed by electrodeposition process as well as its highly efficient activity for water oxidation. In this hybrid structure, CoO@FeOOH-NWs with an average diameter of 100 nm is vertically grown on the surface of carbon fibers of the carbon cloth. The combination of CoO@FeOOH catalyst with good electron transfer substrate exhibits exceptionally good electrocatalytic activity and long-term durability towards oxygen evolution reaction in alkaline solution. It needs an overpotential as low as 255 mV to achieve the current density of 10 mA cm −2 , with a Tafel slope of 82 mV dec −1 and also exhibits a good stability in 20 h. In addition, the nanowire array structure is well retained after the durability test with high current density of 50 mA cm −2 . Our strategy provides a guide to rational design of micro-structures of the materials to achieve their high performance.

  17. A simple route to vertical array of quasi-1D ZnO nanofilms on FTO surfaces: 1D-crystal growth of nanoseeds under ammonia-assisted hydrolysis process

    Directory of Open Access Journals (Sweden)

    Abd Rahman Mohd Yusri

    2011-01-01

    Full Text Available Abstract A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively. The as-prepared quasi-NRs products were pure ZnO phase in nature without the presence of any zinc complexes as confirmed by the XRD characterisation. Room-temperature optical absorption spectroscopy exhibits the presence of two separate excitonic characters inferring that the as-prepared ZnO quasi-NRs are high-crystallinity properties in nature. The mechanism of growth for the ZnO quasi-NRs will be proposed. Due to their simplicity, the method should become a potential alternative for a rapid and cost-effective preparation of high-quality ZnO quasi-NRs nanofilms for use in photovoltaic or photocatalytics applications. PACS: 81.07.Bc; 81.16.-c; 81.07.Gf.

  18. Vertically aligned ZnO nanorods via self-assembled spray pyrolyzed nanoparticles for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Dwivedi, Charu; Dutta, V

    2012-01-01

    Well-aligned zinc oxide (ZnO) nanorods are fabricated on indium-tin-oxide (ITO) coated glass substrates via self-assembly of ZnO nanoparticles created using continuous spray pyrolysis (CoSP) technique. The method involves pre-treatment by dip-coating the substrate with a solution comprising of zinc salt for creating a seed layer, and then spray-pyrolyzed ZnO nanoparticles self-assemble on the pre-treated substrate. The effect of the substrate pre-treatment and the deposition time (t dep ) of nanoparticles is investigated. The results show that the substrate pre-treatment influences the growth of ZnO nanorods which are absent without the pre-treatment. Nanoparticle collection and nanorod growth on different substrates are done simultaneously. The thin films of as-grown nanorods are used as photoelectrode materials to fabricate dye-sensitized solar cells (DSSCs) and the effect of nanorods grown for different times has been studied. The best performance with this cell structure is found for the layer with t dep =15 min, which showed a conversion efficiency of 1.77% for the cell area of 0.25 cm 2

  19. Effect of Temperature and Growth Time on Vertically Aligned ZnO Nanorods by Simplified Hydrothermal Technique for Photoelectrochemical Cells.

    Science.gov (United States)

    Mohd Fudzi, Laimy; Zainal, Zulkarnain; Lim, Hong Ngee; Chang, Sook-Keng; Holi, Araa Mebdir; Sarif Mohd Ali, Mahanim

    2018-04-29

    Despite its large band gap, ZnO has wide applicability in many fields ranging from gas sensors to solar cells. ZnO was chosen over other materials because of its large exciton binding energy (60 meV) and its stability to high-energy radiation. In this study, ZnO nanorods were deposited on ITO glass via a simple dip coating followed by a hydrothermal growth. The morphological, structural and compositional characteristics of the prepared films were analyzed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible spectroscopy (UV-Vis). Photoelectrochemical conversion efficiencies were evaluated via photocurrent measurements under calibrated halogen lamp illumination. Thin film prepared at 120 °C for 4 h of hydrothermal treatment possessed a hexagonal wurtzite structure with the crystallite size of 19.2 nm. The average diameter of the ZnO nanorods was 37.7 nm and the thickness was found to be 2680.2 nm. According to FESEM images, as the hydrothermal growth temperature increases, the nanorod diameter become smaller. Moreover, the thickness of the nanorods increase with the growth time. Therefore, the sample prepared at 120 °C for 4 h displayed an impressive photoresponse by achieving high current density of 0.1944 mA/cm².

  20. Strain analysis of nanowire interfaces in multiscale composites

    Science.gov (United States)

    Malakooti, Mohammad H.; Zhou, Zhi; Spears, John H.; Shankwitz, Timothy J.; Sodano, Henry A.

    2016-04-01

    Recently, the reinforcement-matrix interface of fiber reinforced polymers has been modified through grafting nanostructures - particularly carbon nanotubes and ZnO nanowires - on to the fiber surface. This type of interface engineering has made a great impact on the development of multiscale composites that have high stiffness, interfacial strength, toughness, and vibrational damping - qualities that are mutually exclusive to a degree in most raw materials. Although the efficacy of such nanostructured interfaces has been established, the reinforcement mechanisms of these multiscale composites have not been explored. Here, strain transfer across a nanowire interphase is studied in order to gain a heightened understanding of the working principles of physical interface modification and the formation of a functional gradient. This problem is studied using a functionally graded piezoelectric interface composed of vertically aligned lead zirconate titanate nanowires, as their piezoelectric properties can be utilized to precisely control the strain on one side of the interface. The displacement and strain across the nanowire interface is captured using digital image correlation. It is demonstrated that the material gradient created through nanowires cause a smooth strain transfer from reinforcement phase into matrix phase that eliminates the stress concentration between these phases, which have highly mismatched elasticity.

  1. Site-specific nucleation and controlled growth of a vertical tellurium nanowire array for high performance field emitters

    International Nuclear Information System (INIS)

    Safdar, Muhammad; Zhan Xueying; Mirza, Misbah; Wang Zhenxing; Sun Lianfeng; He Jun; Niu Mutong; Zhang Jinping; Zhao Qing

    2013-01-01

    We report the controlled growth of highly ordered and well aligned one-dimensional tellurium nanostructure arrays via a one-step catalyst-free physical vapor deposition method. The density, size and fine structures of tellurium nanowires are systematically studied and optimized. Field emission measurement was performed to display notable dependence on nanostructure morphologies. The ordered nanowire array based field emitter has a turn-on field as low as 3.27 V μm −1 and a higher field enhancement factor of 3270. Our finding offers the possibility of controlling the growth of tellurium nanowire arrays and opens up new means for their potential applications in electronic devices and displays. (paper)

  2. Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes

    Science.gov (United States)

    Gayen, R. N.; Bhattacharyya, S. R.; Jana, P.

    2014-09-01

    Zinc oxide (ZnO) nanowire based Schottky barrier diodes are fabricated by depositing Pd metal contact on top of vertically well-aligned ZnO nanowire arrays. A vertical array of ZnO nanowires on indium tin oxide (ITO) coated glass substrates is synthesized by hybrid wet chemical route. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) measurement confirm the formation of stoichiometric well-aligned hexagonal (h-ZnO) nanowire arrays with wurtzite structure. Temperature dependent current-voltage (I-V) measurements on palladium-ZnO (Pd/ZnO) nanowire Schottky junctions in the temperature range 303-383 K exhibit excellent rectifying character. From these nonlinear I-V plots, different electrical parameters of diode-like reverse saturation current, barrier height and ideality factor are determined as a function of temperature assuming pure thermionic emission model. The ideality factor is found to decrease while the barrier height increases with the increase in temperature. The series resistance values calculated from Cheung’s functions also show temperature dependency. Such behavior can be attributed to the presence of defects that traps carriers, and barrier height inhomogeneity at the interface of the barrier junction. After barrier height inhomogeneity correction, considering a Gaussian distributed barrier height fluctuation across the Pd/ZnO interface, the estimated values of mean barrier height and modified Richardson constant are more closely matched to the theoretically predicted value for Pd/ZnO Schottky barrier diodes. The variation of density of interface states as a function of interface state energy is also calculated.

  3. Role of work function in field emission enhancement of Au island decorated vertically aligned ZnO nanotapers

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Avanendra [School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha (India); Senapati, Kartik, E-mail: kartik@niser.ac.in [School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha (India); Kumar, Mohit; Som, Tapobrata [SUNAG Laboratory, Institute of Physics, Bhubaneswar 751005, Odisha (India); Sinha, Anil K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India); Sahoo, Pratap K., E-mail: pratap.sahoo@niser.ac.in [School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha (India)

    2017-07-31

    Highlights: • Hydrothermally synthesized nanotapers were decorated by gold corrugation using simple evaporation techniques for large area applications. • A significantly enhanced field emission properties of nanotapers were achieved. • The metal induced midgap states formed at the ZnO-Au interface and the reduced effective work function are responsible for low turn-on field. • TUNA measurements revealed a very uniform spatial emission profile in the Au decorated nanotapers. - Abstract: In this report, we demonstrate significantly enhanced field emission properties of ZnO nanotapers achieved via a corrugated decoration of Au. Field emission experiments on these Au-decorated ZnO nanotapers showed emission current densities comparable to the best results in the literature. Au decoration of 5 nm also reduced the effective turn-on field to ∼0.54 V/μm, compared to the as grown ZnO nanotapers, which showed a turn-on field of ∼1.1 V/μm. Tunneling atomic force microscopy measurements revealed a very uniform spatial emission profile in the 5 nm Au decorated nanotapers, which is a basic requirement for any large scale application. We believe that metal induced mid-gap states formed at the ZnO–Au interface are responsible for the observed low turn-on field because such interface states are known to reduce the effective work function. A direct measurement of effective work function using Kelvin probe force microscopy indeed showed more than 1.1 eV drop in the case of 5 nm Au decorated ZnO nanotapers compared to the pristine nanotapers, supporting the above argument.

  4. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications.

    Science.gov (United States)

    Ou, Canlin; Sanchez-Jimenez, Pedro E; Datta, Anuja; Boughey, Francesca L; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-06-08

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix.

  5. Failure mechanisms and electromechanical coupling in semiconducting nanowires

    Directory of Open Access Journals (Sweden)

    Peng B.

    2010-06-01

    Full Text Available One dimensional nanostructures, like nanowires and nanotubes, are increasingly being researched for the development of next generation devices like logic gates, transistors, and solar cells. In particular, semiconducting nanowires with a nonsymmetric wurtzitic crystal structure, such as zinc oxide (ZnO and gallium nitride (GaN, have drawn immense research interests due to their electromechanical coupling. The designing of the future nanowire-based devices requires component-level characterization of individual nanowires. In this paper, we present a unique experimental set-up to characterize the mechanical and electromechanical behaviour of individual nanowires. Using this set-up and complementary atomistic simulations, mechanical properties of ZnO nanowires and electromechanical properties of GaN nanowires were investigated. In ZnO nanowires, elastic modulus was found to depend on nanowire diameter decreasing from 190 GPa to 140 GPa as the wire diameter increased from 5 nm to 80 nm. Inconsistent failure mechanisms were observed in ZnO nanowires. Experiments revealed a brittle fracture, whereas simulations using a pairwise potential predicted a phase transformation prior to failure. This inconsistency is addressed in detail from an experimental as well as computational perspective. Lastly, in addition to mechanical properties, preliminary results on the electromechanical properties of gallium nitride nanowires are also reported. Initial investigations reveal that the piezoresistive and piezoelectric behaviour of nanowires is different from bulk gallium nitride.

  6. Catalyst-free fabrication of novel ZnO/CuO core-Shell nanowires heterojunction: Controlled growth, structural and optoelectronic properties

    Science.gov (United States)

    Khan, Muhammad Arif; Wahab, Yussof; Muhammad, Rosnita; Tahir, Muhammad; Sakrani, Samsudi

    2018-03-01

    Development of controlled growth and vertically aligned ZnO/CuO core-shell heterojunction nanowires (NWs) with large area by a catalyst free vapor deposition and oxidation approach has been investigated. Structural characterization reveals successful fabrication of a core ZnO nanowire having single crystalline hexagonal wurtzite structure along [002] direction and CuO nanostructure shell with thickness (8-10 nm) having polycrystalline monoclinic structure. The optical property analysis suggests that the reflectance spectrum of ZnO/CuO heterostructure nanowires is decreased by 18% in the visible range, which correspondingly shows high absorption in this region as compared to pristine ZnO nanowires. The current-voltage (I-V) characteristics of core-shell heterojunction nanowires measured by conductive atomic force microscopy (C-AFM) shows excellent rectifying behavior, which indicates the characteristics of a good p-n junction. The high-resolution transmission electron microscopy (HRTEM) has confirmed the sharp junction interface between the core-shell heterojunction nanowire arrays. The valence band offset and conduction band offset at ZnO/CuO heterointerfaces are measured to be 2.4 ± 0.05 and 0.23 ± 0.005 eV respectively, using X-ray photoelectron spectroscopy (XPS) and a type-II band alignment structure is found. The results of this study contribute to the development of new advanced device heterostructures for solar energy conversion and optoelectronics applications.

  7. Mechanism and Growth of Flexible ZnO Nanostructure Arrays in a Facile Controlled Way

    Directory of Open Access Journals (Sweden)

    Yangping Sheng

    2011-01-01

    Full Text Available Nanostructure arrays-based flexible devices have revolutionary impacts on the application of traditional semiconductor devices. Here, a one-step method to synthesize flexible ZnO nanostructure arrays on Zn-plated flexible substrate in Zn(NO32/NH3⋅H2O solution system at 70–90∘C was developed. We found out that the decomposition of Zn(OH2 precipitations, formed in lower NH3⋅H2O concentration, in the bulk solution facilitates the formation of flower-like structure. In higher temperature, 90∘C, ZnO nanoplate arrays were synthesized by the hydrolysis of zinc hydroxide. Highly dense ZnO nanoparticale layer formed by the reaction of NH3⋅H2O with Zn plating layer in the initial self-seed process could improve the vertical alignment of the nanowires arrays. The diameter of ZnO nanowire arrays, from 200 nm to 60 nm, could be effectively controlled by changing the stability of Zn(NH342+ complex ions by varying the ratio of Zn(NO32 to NH3⋅H2O which further influence the release rate of Zn2+ ions. This is also conformed by different amounts of the Zn vacancy as determined by different UV emissions of the PL spectra in the range of 380–403 nm.

  8. Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor

    KAUST Repository

    Gao, Zhiyuan; Zhou, Jun; Gu, Yudong; Fei, Peng; Hao, Yue; Bao, Gang; Wang, Zhong Lin

    2009-01-01

    We have investigated the effects of piezoelectric potential in a ZnO nanowire on the transport characteristics of the nanowire based field effect transistor through numerical calculations and experimental observations. Under different straining

  9. Biofunctionalization of zinc oxide nanowires for DNA sensory applications

    Directory of Open Access Journals (Sweden)

    Rudolph Bettina

    2011-01-01

    Full Text Available Abstract We report on the biofunctionalization of zinc oxide nanowires for the attachment of DNA target molecules on the nanowire surface. With the organosilane glycidyloxypropyltrimethoxysilane acting as a bifunctional linker, amino-modified capture molecule oligonucleotides have been immobilized on the nanowire surface. The dye-marked DNA molecules were detected via fluorescence microscopy, and our results reveal a successful attachment of DNA capture molecules onto the nanowire surface. The electrical field effect induced by the negatively charged attached DNA molecules should be able to control the electrical properties of the nanowires and gives way to a ZnO nanowire-based biosensing device.

  10. High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye.

    Science.gov (United States)

    Hong, Deyi; Zang, Weili; Guo, Xiao; Fu, Yongming; He, Haoxuan; Sun, Jing; Xing, Lili; Liu, Baodan; Xue, Xinyu

    2016-08-24

    High piezo-photocatalytic efficiency of degrading organic pollutants has been realized from CuS/ZnO nanowires using both solar and mechanical energy. CuS/ZnO heterostructured nanowire arrays are compactly/vertically aligned on stainless steel mesh by a simple two-step wet-chemical method. The mesh-supported nanocomposites can facilitate an efficient light harvesting due to the large surface area and can also be easily removed from the treated solution. Under both solar and ultrasonic irradiation, CuS/ZnO nanowires can rapidly degrade methylene blue (MB) in aqueous solution, and the recyclability is investigated. In this process, the ultrasonic assistance can greatly enhance the photocatalytic activity. Such a performance can be attributed to the coupling of the built-in electric field of heterostructures and the piezoelectric field of ZnO nanowires. The built-in electric field of the heterostructure can effectively separate the photogenerated electrons/holes and facilitate the carrier transportation. The CuS component can improve the visible light utilization. The piezoelectric field created by ZnO nanowires can further separate the photogenerated electrons/holes through driving them to migrate along opposite directions. The present results demonstrate a new water-pollution solution in green technologies for the environmental remediation at the industrial level.

  11. Interactions between semiconductor nanowires and living cells.

    Science.gov (United States)

    Prinz, Christelle N

    2015-06-17

    Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.

  12. Pyrolytically grown indium sulfide sensitized zinc oxide nanowires for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Komurcu, Pelin; Can, Emre Kaan; Aydin, Erkan; Semiz, Levent [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Gurol, Alp Eren; Alkan, Fatma Merve [Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Sankir, Mehmet; Sankir, Nurdan Demirci [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey)

    2015-11-15

    Zinc oxide (ZnO) nanowires, sensitized with spray pyrolyzed indium sulfide, were obtained by chemical bath deposition. The XRD analysis indicated dominant evolution of hexagonal ZnO phase. Significant gain in photoelectrochemical current using ZnO nanowires is largely accountable to enhancement of the visible light absorption and the formation of heterostructure. The maximum photoconversion efficiency of 2.77% was calculated for the indium sulfide sensitized ZnO nanowire photoelectrodes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Production of zinc oxide nanowires power with precisely defined morphology

    Science.gov (United States)

    Mičová, Júlia; Remeš, Zdeněk; Chan, Yu-Ying

    2017-12-01

    The interest about zinc oxide is increasing thanks to its unique chemical and physical properties. Our attention has focused on preparation powder of 1D nanostructures of ZnO nanowires with precisely defined morphology include characterization size (length and diameter) and shape controlled in the scanning electron microscopy (SEM). We have compared results of SEM with dynamic light scattering (DLS) technique. We have found out that SEM method gives more accurate results. We have proposed transformation process from ZnO nanowires on substrates to ZnO nanowires powder by ultrasound peeling to colloid followed by lyophilization. This method of the mass production of the ZnO nanowires powder has some advantages: simplicity, cost effective, large-scale and environment friendly.

  14. A study of the effects of aligned vertically growth time on ZnO nanorods deposited for the first time on Teflon substrate

    Science.gov (United States)

    Farhat, O. F.; Halim, M. M.; Ahmed, Naser M.; Oglat, Ammar A.; Abuelsamen, A. A.; Bououdina, M.; Qaeed, M. A.

    2017-12-01

    In this study, ZnO nanorods (NRs) were well deposited on Teflon substrates (PTFE) via a chemical bath deposition (CBD) method at low temperature. The consequences of growth time (1 h-4 h) on the structural and optical properties of the aligned ZnO (NRs) were investigated through X-ray diffraction, field-emission scanning electron microscopy (FESEM), and photoluminescence (PL) analyses. The results show that the ZnO (NRs) were preferred to grew aligned along the c-axis as hexagonal wurtzite structure as proved by the sharp and strong ZnO (002) peaks of the ZnO (NRs). Irrespective of the growth continuation, FESEM photos confirmed that the ZnO nanorods arrays were fit to be aligned along the c-axis and perpendicular to (PTFE) substrates. The ZnO nanorods that exhibited the sharper stand most intense PL peaks among the sample were grown for 3hs as demonstrated by PL spectra. The device further showed a sensitivity of 4068 to low-power (1.25 mW/cm2) 375 nm light pulses without an external bias. The measurements of photoresponse demonstrated the highly reproducible characteristics of the fabricated UV detector with rapid response and baseline recovery times of 48.05 ms. Thus, this work introduced a simple, low-cost method of fabricating rapid-response, and highly photosensitive UV detectors with zero power consumption on Teflon substrates.

  15. Growing vertical ZnO nanorod arrays within graphite: efficient isolation of large size and high quality single-layer graphene.

    Science.gov (United States)

    Ding, Ling; E, Yifeng; Fan, Louzhen; Yang, Shihe

    2013-07-18

    We report a unique strategy for efficiently exfoliating large size and high quality single-layer graphene directly from graphite into DMF dispersions by growing ZnO nanorod arrays between the graphene layers in graphite.

  16. Investigation on the Tunable-Length Zinc Oxide Nanowire Arrays for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Shou-Yi Kuo

    2014-01-01

    Full Text Available We had successfully fabricated ZnO-based nanowires by vapor transport method in the furnace tube. ZnO nanowire arrays grown in 600°C for 30 minutes, 60 minutes, 90 minutes, and 120 minutes had applied to the dye-sensitized solar cells. The dye loading is proportional to the total equivalent surface area of ZnO nanowire arrays in the cells and plays an important role in improving power conversion efficiency. The highest efficiency was observed in DSSC sample with ZnO nanowires grown for 90 minutes, which had the largest equivalent surface area and also the highest dye loading. According to our experimental results, the enhancement in power conversion efficiency is attributed to the higher light harvesting and reduction of carrier recombination. In addition, ZnO nanowires also contribute to the photocurrent in the UV region.

  17. Rapid Hydrothermal Synthesis of Zinc Oxide Nanowires by Annealing Methods on Seed Layers

    Directory of Open Access Journals (Sweden)

    Jang Bo Shim

    2011-01-01

    Full Text Available Well-aligned zinc oxide (ZnO nanowire arrays were successfully synthesized on a glass substrate using the rapid microwave heating process. The ZnO seed layers were produced by spinning the precursor solutions onto the substrate. Among coatings, the ZnO seed layers were annealed at 100°C for 5 minutes to ensure particle adhesion to the glass surface in air, nitrogen, and vacuum atmospheres. The annealing treatment of the ZnO seed layer was most important for achieving the high quality of ZnO nanowire arrays as ZnO seed nanoparticles of larger than 30 nm in diameter evolve into ZnO nanowire arrays. Transmission electron microscopy analysis revealed a single-crystalline lattice of the ZnO nanowires. Because of their low power (140 W, low operating temperatures (90°C, easy fabrication (variable microwave sintering system, and low cost (90% cost reduction compared with gas condensation methods, high quality ZnO nanowires created with the rapid microwave heating process show great promise for use in flexible solar cells and flexible display devices.

  18. Oxide p-n Heterojunction of Cu2O/ZnO Nanowires and Their Photovoltaic Performance

    Directory of Open Access Journals (Sweden)

    Seung Ki Baek

    2013-01-01

    Full Text Available Oxide p-n heterojunction devices consisting of p-Cu2O/n-ZnO nanowires were fabricated on ITO/glass substrates and their photovoltaic performances were investigated. The vertically arrayed ZnO nanowires were grown by metal organic chemical vapor deposition, which was followed by the electrodeposition of the p-type Cu2O layer. Prior to the fabrication of solar cells, the effect of bath pH on properties of the absorber layers was studied to determine the optimal condition of the Cu2O electrodeposition process. With the constant pH 11 solution, the Cu2O layer preferred the (111 orientation, which gave low electrical resistivity and high optical absorption. The Cu2O (pH 11/ZnO nanowire-based solar cell exhibited a higher conversion efficiency of 0.27% than the planar structure solar cell (0.13%, because of the effective charge collection in the long wavelength region and because of the enhanced junction area.

  19. EDITORIAL: Nanowires for energy Nanowires for energy

    Science.gov (United States)

    LaPierre, Ray; Sunkara, Mahendra

    2012-05-01

    This special issue of Nanotechnology focuses on studies illustrating the application of nanowires for energy including solar cells, efficient lighting and water splitting. Over the next three decades, nanotechnology will make significant contributions towards meeting the increased energy needs of the planet, now known as the TeraWatt challenge. Nanowires in particular are poised to contribute significantly in this development as presented in the review by Hiralal et al [1]. Nanowires exhibit light trapping properties that can act as a broadband anti-reflection coating to enhance the efficiency of solar cells. In this issue, Li et al [2] and Wang et al [3] present the optical properties of silicon nanowire and nanocone arrays. In addition to enhanced optical properties, core-shell nanowires also have the potential for efficient charge carrier collection across the nanowire diameter as presented in the contribution by Yu et al [4] for radial junction a-Si solar cells. Hybrid approaches that combine organic and inorganic materials also have potential for high efficiency photovoltaics. A Si-based hybrid solar cell is presented by Zhang et al [5] with a photoconversion efficiency of over 7%. The quintessential example of hybrid solar cells is the dye-sensitized solar cell (DSSC) where an organic absorber (dye) coats an inorganic material (typically a ZnO nanostructure). Herman et al [6] present a method of enhancing the efficiency of a DSSC by increasing the hetero-interfacial area with a unique hierarchical weeping willow ZnO structure. The increased surface area allows for higher dye loading, light harvesting, and reduced charge recombination through direct conduction along the ZnO branches. Another unique ZnO growth method is presented by Calestani et al [7] using a solution-free and catalyst-free approach by pulsed electron deposition (PED). Nanowires can also make more efficient use of electrical power. Light emitting diodes, for example, will eventually become the

  20. Anodized ZnO nanostructures for photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Mao-Chia [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Wang, TsingHai [Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, Bin-Jui [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Lin, Jing-Chie, E-mail: jclin4046@gmail.com [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Wu, Ching-Chen [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China)

    2016-01-01

    Highlights: • ZnO nanostructures were synthesized by electrochemical anodic process. • The parameter of ZnO nanostructure was anodic potential. • The model of growth of ZnO nanostructure was investigated. - Abstract: Zinc oxide (ZnO) nanostructures were fabricated on the polished zinc foil by anodic deposition in an alkaline solution containing 1.0 M NaOH and 0.25 M Zn(NO{sub 3}){sub 2}. Potentiostatic anodization was conducted at two potentials (−0.7 V in the passive region and −1.0 V in the active region vs. SCE) which are higher than the open circuit potential (−1.03 V vs. SCE) and as-obtained ZnO nanostrcutures were investigated focusing on their structural, optical, electrical and photoelectrochemical (PEC) characteristics. All samples were confirmed ZnO by X-ray photoelectron spectroscopy and Raman spectra. Observations in the SEM images clearly showed that ZnO nanostructures prepared at −0.7 V vs. SCE were composed of nanowires at while those obtained at −1.0 V vs. SCE possessed nanosheets morphology. Result from transmission electron microscope and X-ray diffraction patterns suggested that the ZnO nanowires belonged to single crystalline with a preferred orientation of (0 0 2) whereas the ZnO nanosheets were polycrystalline. Following PEC experiments indicated that ZnO nanowires had higher photocurrent density of 0.32 mA/cm{sup 2} at 0.5 V vs. SCE under 100 mW/cm{sup 2} illumination. This value was about 1.9 times higher than that of ZnO nanosheets. Observed higher photocurrent was likely due to the single crystalline, preferred (0 0 2) orientation, higher carrier concentration and lower charge transfer resistance.

  1. Guiding modes of semi-infinite nanowire and their dispersion character

    International Nuclear Information System (INIS)

    Sun, Yuming; Su, Yuehua; Dai, Zhenhong; Wang, Weitian

    2014-01-01

    Conventionally, the optical properties of finite semiconductor nanowires have been understood and explained in terms of an infinite nanowire. This work describes completely different photonic modes for a semi-finite nanowire based on a rigorous theoretical method, and the implications for the finite one. First, the special eigenvalue problem charactered by the end results in a distinctive mode spectrum for the semi-infinite dielectric nanowire. Meanwhile, the results show hybrid degenerate modes away from cutoff frequency, and transverse electric–transverse magnetic (TE–TM) degeneracy. Second, accompanying a different mode spectrum, a semi-finite nanowire also shows a distinctive dispersion relation compared to an infinite nanowire. Taking a semi-infinite, ZnO nanowire as an example, we find that the ℏω−k z space is not continuous in the interested photon energy window, implying that there is no uniform polariton dispersion relation for semi-infinite nanowire. Our method is shown correct through a field-reconstruction for a thin ZnO nanowire (55 nm in radius) and position determination of FP modes for a ZnO nanowire (200 nm in diameter). The results are of great significance to correctly understand the guiding and lasing mechanisms of semiconductor nanowires. (paper)

  2. High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide-Vertical ZnO Nanorods on an AlGaN/GaN Layer.

    Science.gov (United States)

    Minh Triet, Nguyen; Thai Duy, Le; Hwang, Byeong-Ung; Hanif, Adeela; Siddiqui, Saqib; Park, Kyung-Ho; Cho, Chu-Young; Lee, Nae-Eung

    2017-09-13

    A Schottky diode based on a heterojunction of three-dimensional (3D) nanohybrid materials, formed by hybridizing reduced graphene oxide (RGO) with epitaxial vertical zinc oxide nanorods (ZnO NRs) and Al 0.27 GaN 0.73 (∼25 nm)/GaN is presented as a new class of high-performance chemical sensors. The RGO nanosheet layer coated on the ZnO NRs enables the formation of a direct Schottky contact with the AlGaN layer. The sensing results of the Schottky diode with respect to NO 2 , SO 2 , and HCHO gases exhibit high sensitivity (0.88-1.88 ppm -1 ), fast response (∼2 min), and good reproducibility down to 120 ppb concentration levels at room temperature. The sensing mechanism of the Schottky diode can be explained by the effective modulation of the reverse saturation current due to the change in thermionic emission carrier transport caused by ultrasensitive changes in the Schottky barrier of a van der Waals heterostructure between RGO and AlGaN layers upon interaction with gas molecules. Advances in the design of a Schottky diode gas sensor based on the heterojunction of high-mobility two-dimensional electron gas channel and highly responsive 3D-engineered sensing nanomaterials have potential not only for the enhancement of sensitivity and selectivity but also for improving operation capability at room temperature.

  3. Growth and luminescence characterization of large-scale zinc oxide nanowires

    CERN Document Server

    Dai, L; Wang, W J; Zhou, T; Hu, B Q

    2003-01-01

    Large-scale zinc oxide (ZnO) nanowires were grown via a simple chemical reaction involving water vapour. Electron microscopy observations reveal that the ZnO nanowires are single crystalline and grow along the c-axis ([001]) direction. Room temperature photoluminescence measurements show a striking blue emission at 466 nm along with two other emissions in the ultraviolet and yellow regions. Annealing treatment of the as-grown ZnO nanowires results in an apparent reduction of the intensity of the blue emission, which indicates that the blue emission might be originating from the oxygen or zinc defects generated in the process of growth of the ZnO nanowires.

  4. Study of quantum confinement effects in ZnO nanostructures

    Science.gov (United States)

    Movlarooy, Tayebeh

    2018-03-01

    Motivation to fact that zinc oxide nanowires and nanotubes with successful synthesis and the mechanism of formation, stability and electronic properties have been investigated; in this study the structural, electronic properties and quantum confinement effects of zinc oxide nanotubes and nanowires with different diameters are discussed. The calculations within density functional theory and the pseudo potential approximation are done. The electronic structure and energy gap for Armchair and zigzag ZnO nanotubes with a diameter of about 4 to 55 Angstrom and ZnO nanowires with a diameter range of 4 to 23 Å is calculated. The results revealed that due to the quantum confinement effects, by reducing the diameter of nanowires and nanotubes, the energy gap increases. Zinc oxide semiconductor nanostructures since having direct band gap with size-dependent and quantum confinement effect are recommended as an appropriate candidate for making nanoscale optoelectronic devices.

  5. Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls

    KAUST Repository

    Wang, Xudong

    2009-02-05

    This paper presents a controlled, large scale fabrication of mesoporous ZnO thin films. The entire ZnO mesoporous film is one piece of a single crystal, while high porosity made of nanowalls is present. The growth mechanism was proposed in comparison with the growth of ZnO nanowires. The ZnO mesoporous film was successfully applied as a gas sensor. The fabrication and growth analysis of the mesoporous ZnO thin film gi ve general guidance for the controlled growth of nanostructures. It also pro vides a unique structure with a superhigh surface-to-volume ratio for surface-related applications. © 2009 American Chemical Society.

  6. Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, Frank; Schiek, Manuela; Al-Shamery, Katharina

    Single crystalline nanowires from fluorescing organic molecules like para-phenylenes or thiophenes are supposed to become key elements in future integrated optoelectronic devices [1]. For a sophisticated design of devices based on nanowires the basic principles of the nanowire formation have...... atomic force microscopy and from polarized far-field optical microscopy for various prototypical molecules are reproduced by electrostatic and Monte Carlo calculations. Based on the crystal structure, predictions on the growth habit from other conjugated molecules become in reach....

  7. Light-induced antifungal activity of TiO{sub 2} nanoparticles/ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, N. [Nano-Physics Research Lab., Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Abdi, Y., E-mail: y.abdi@ut.ac.ir [Nano-Physics Research Lab., Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Haghighi, F. [Department of Medical Mycology, School of Medical sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Antifungal activity of TiO{sub 2}/ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO{sub 2} nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO{sub 2}/ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO{sub 2} (anatase and rutile) and ZnO. TiO{sub 2}/ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO{sub 2} nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO{sub 2} nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  8. Light-induced antifungal activity of TiO2 nanoparticles/ZnO nanowires

    International Nuclear Information System (INIS)

    Haghighi, N.; Abdi, Y.; Haghighi, F.

    2011-01-01

    Antifungal activity of TiO 2 /ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO 2 nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO 2 /ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO 2 (anatase and rutile) and ZnO. TiO 2 /ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO 2 nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO 2 nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  9. Catalyst growth of single crystal aligned ZnO nanorods on ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongxu; Andreazza, Caroline; Andreazza, Pascal [Centre de Recherche sur la Matiere Divisee, CNRS-Universite d' Orleans, 1b rue de la Ferollerie, 45071 Orleans cedex 2 (France)

    2005-02-01

    One dimensional ZnO nanorods were successfully fabricated on Si substrates via a simple physical vapor-phase transport method at 950 C. A ZnO shell covered Au/Zn alloy is assumed as the nucleation site, then ZnO nanorods grow following a vapor-solid (VS) process. In order to guide the nanorod growth a c-axis oriented ZnO thin film and Au catalyst were first deposited on Si (100) surface. SEM images show nanorods grown on this substrate are vertical to the substrate surface. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. SYNTHESIS AND PHOTOLUMINESCENCE STUDIES ON ZINC OXIDE NANOWIRES

    Directory of Open Access Journals (Sweden)

    Nguyen Ngoc Long

    2017-11-01

    Full Text Available Semiconductor single crystal ZnO nanowires have been successfully synthesized by a simple method based on thermal evaporation of ZnO powders mixed with graphite. Metallic catalysts, carrying gases, and vacuum conditions are not necessary. The x-ray diffraction (XRD analysis shows that the ZnO nanowires are highly crystallized and have a typical wurtzite hexagonal structure with lattice constants a = 0.3246 nm and c = 0.5203 nm. The scanning electron microscopy (SEM images of nanowires indicate that diameters of the ZnO nanowires normally range from 100 to 300 nm and their lengths are several tens of micrometers. Photoluminescence (PL and photoluminescence excitation (PLE spectra of the nanowires were measured in the range of temperature from 15 K to the room temperature. Photoluminescence spectra at low temperatures exhibit a group of ultraviolet (UV narrow peaks in the region 368 nm ~ 390 nm, and a blue-green very broad peak at 500 nm. Origin of the emission lines in PL spectra and the lines in PLE spectra is discussed.

  11. Resistance Fluctuations in GaAs Nanowire Grids

    Directory of Open Access Journals (Sweden)

    Ivan Marasović

    2014-01-01

    Full Text Available We present a numerical study on resistance fluctuations in a series of nanowire-based grids. Each grid is made of GaAs nanowires arranged in parallel with metallic contacts crossing all nanowires perpendicularly. Electrical properties of GaAs nanowires known from previous experimental research are used as input parameters in the simulation procedure. Due to the nonhomogeneous doping, the resistivity changes along nanowire. Allowing two possible nanowire orientations (“upwards” or “downwards”, the resulting grid is partially disordered in vertical direction which causes resistance fluctuations. The system is modeled using a two-dimensional random resistor network. Transfer-matrix computation algorithm is used to calculate the total network resistance. It is found that probability density function (PDF of resistance fluctuations for a series of nanowire grids changes from Gaussian behavior towards the Bramwell-Holdsworth-Pinton distribution when both nanowire orientations are equally represented in the grid.

  12. Taheri-Saramad x-ray detector (TSXD): a novel high spatial resolution x-ray imager based on ZnO nano scintillator wires in polycarbonate membrane.

    Science.gov (United States)

    Taheri, A; Saramad, S; Ghalenoei, S; Setayeshi, S

    2014-01-01

    A novel x-ray imager based on ZnO nanowires is designed and fabricated. The proposed architecture is based on scintillation properties of ZnO nanostructures in a polycarbonate track-etched membrane. Because of higher refractive index of ZnO nanowire compared to the membrane, the nanowire acts as an optical fiber that prevents the generated optical photons to spread inside the detector. This effect improves the spatial resolution of the imager. The detection quantum efficiency and spatial resolution of the fabricated imager are 11% and <6.8 μm, respectively.

  13. Taheri-Saramad x-ray detector (TSXD): A novel high spatial resolution x-ray imager based on ZnO nano scintillator wires in polycarbonate membrane

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, A., E-mail: at1361@aut.ac.ir; Saramad, S.; Ghalenoei, S.; Setayeshi, S. [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)

    2014-01-15

    A novel x-ray imager based on ZnO nanowires is designed and fabricated. The proposed architecture is based on scintillation properties of ZnO nanostructures in a polycarbonate track-etched membrane. Because of higher refractive index of ZnO nanowire compared to the membrane, the nanowire acts as an optical fiber that prevents the generated optical photons to spread inside the detector. This effect improves the spatial resolution of the imager. The detection quantum efficiency and spatial resolution of the fabricated imager are 11% and <6.8 μm, respectively.

  14. Semiconductor Nanowires and Nanotubes for Energy Conversion

    Science.gov (United States)

    Fardy, Melissa Anne

    Se nanowires allowed their thermoelectric properties to be controllably tuned by increasing their carrier concentration or hole mobility. After optimal annealing, single PbSe nanowires exhibited a thermoelectric figure of merit (ZT) of 0.12 at 300 K. In addition, using a field-effect gated device, the Seebeck coefficient of single PbSe nanowires could be tuned from 64 to 193 muV˙K-1. This direct electrical field control of the electrical conductivity and Seebeck coefficient suggests a powerful strategy for optimizing ZT in thermoelectric devices and these results represent the first demonstration of field-effect modulation of the thermoelectric figure of merit in a single semiconductor nanowire. This novel strategy for thermoelectric property modulation could prove especially important in optimizing the thermoelectric properties of semiconductors where reproducible doping is difficult to achieve. Recent theoretical work has shown large enhancements in ZT for single-crystal nanowires containing nanoscale interfaces along their lengths. M2O3(ZnO) n ( M = In, Ga, Fe) superlattice nanowires were synthesized via a novel solid-state diffusion approach to investigate this possible enhancement. Using atomic resolution Z-contrast STEM imaging a detailed structural analysis was performed on In2-xGaxO3(ZnO) n nanowires, leading to the discovery that octahedral inclusions within the superlattice structure are likely generated through a defect-assisted process. Single-nanowire thermal and electrical measurements on In2-x GaxO3(ZnO)n reveal a simultaneous improvement in all contributing factors to the thermoelectric figure of merit, giving an order of magnitude enhancement over similar bulk materials at room temperature. This is the first report of enhancement of all three thermoelectric parameters (Seebeck coefficient, electrical conductivity, and thermal resistivity) for a nanowire system. Photoelectrochemical water splitting is another exciting renewable energy application that can

  15. Dimensional effects in semiconductor nanowires; Dimensionseffekte in Halbleiternanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Stichtenoth, Daniel

    2008-06-23

    Nanomaterials show new physical properties, which are determined by their size and morphology. These new properties can be ascribed to the higher surface to volume ratio, to quantum size effects or to a form anisotropy. They may enable new technologies. The nanowires studied in this work have a diameter of 4 to 400 nm and a length up to 100 {mu}m. The semiconductor material used is mainly zinc oxide (ZnO), zinc sulfide (ZnS) and gallium arsenide (GaAs). All nanowires were synthesized according to the vapor liquid solid mechanism, which was originally postulated for the growth of silicon whiskers. Respective modifications for the growth of compound semiconductor nanowires are discussed. Detailed luminescence studies on ZnO nanowires with different diameters show pronounced size effects which can be attributed to the origins given above. Similar to bulk material, a tuning of the material properties is often essential for a further functionalization of the nanowires. This is typical realized by doping the source material. It becomes apparent, that a controlled doping of nanowires during the growth process is not successful. Here an alternative method is chosen: the doping after the growth by ion implantation. However, the doping by ion implantation goes always along with the creation of crystal defects. The defects have to be annihilated in order to reach an activation of th introduced dopants. At high ion fluences and ion masses the sputtering of surface atoms becomes more important. This results in a characteristic change in the morphology of the nanowires. In detail, the doping of ZnO and ZnS nanowires with color centers (manganese and rare earth elements) is demonstrated. Especially, the intra 3d luminescence of manganese implanted ZnS nanostructures shows a strong dependence of the nanowire diameter and morphology. This dependence can be described by expanding Foersters model (which describes an energy transfer to the color centers) by a dimensional parameter

  16. Influence of the Hydrothermal Method Growth Parameters on the Zinc Oxide Nanowires Deposited on Several Substrates

    Directory of Open Access Journals (Sweden)

    Concepción Mejía-García

    2014-01-01

    Full Text Available We report the synthesis of ZnO nanowires grown on several substrates (PET, glass, and Si using a two-step process: (a preparation of the seed layer on the substrate by spin coating, from solutions of zinc acetate dihydrate and 1-propanol, and (b growth of the ZnO nanostructures by dipping the substrate in an equimolar solution of zinc nitrate hexahydrate and hexamethylenetetramine. Subsequently, films were thermally treated with a commercial microwave oven (350 and 700 W for 5, 20, and 35 min. The ZnO nanowires obtained were characterized structurally, morphologically, and optically using XRD, SEM, and UV-VIS transmission, respectively. XRD patterns spectra revealed the presence of Zn(OH2 on the films grown on glass and Si substrates. A preferential orientation along c-axis directions for films grown on PET substrate was observed. An analysis by SEM revealed that the growth of the ZnO nanowires on PET and glass is better than the growth on Si when the same growth parameters are used. On glass substrates, ZnO nanowires less than 50 nm in diameter and between 200 nm and 1200 nm in length were obtained. The ZnO nanowires band gap energy for the films grown on PET and glass was obtained from optical transmission spectra.

  17. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  18. Materials and Devices Research of PPV-ZnO Nanowires for Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhang Xiao-Zhou

    2012-01-01

    Full Text Available Bulk heterojunction photovoltaic devices, which use the conjugated polymer poly(2-methoxyl-5-(2′-ethylhexyloxy-1,4-phenylenevinylene (MEH-PPV as the electron donor and crystalline ZnO nanowires as the electron acceptor, have been studied in this work. The ZnO nanowires were prepared through a chemical vapor deposition mechanism. The dissolved MEH-PPV polymer was spin-coated onto the nanowires. The scanning electron microscope images showed that the ZnO nanowires were covered with a single layer of the polymer, and these materials were used to design a heterojunction solar cell. This solar cell displayed improved performance compared with the devices that were made from only the MEH-PPV polymer. This observed improvement is correlated with the improved electron transport that is perpendicular to the plane of the film. A solar power conversion efficiency of 1.37% was achieved under an AM1.5 illumination.

  19. On quantum efficiency of photoluminescence in ZnO layers and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Reshchikov, M.A., E-mail: mreshchi@vcu.ed [Physics Department, Virginia Commonwealth University, 701 W. Grace St., Richmond, VA 23284 (United States); El-Shaer, A.; Behrends, A.; Bakin, A.; Waag, A. [Institute of Semiconductor Technology, Technical University of Braunschweig, Braunschweig D-38106 (Germany)

    2009-12-15

    In this work we studied PL in ZnO layers and nanostructures, including ZnO homoepitaxial layers on ZnO substrate and ZnO-Zn{sub 1-x}Mg{sub x}O single quantum well (SQW) structures grown on sapphire substrates by MBE, and ZnO nanowires grown on sapphire by MOCVD. The external quantum efficiency (QE) of PL in O-face ZnO layers exceeded that in Zn-face ZnO layers by two orders of magnitude at low temperatures. In a sample with SQW the combined external QE from the 4.6-nm-wide SQW and 50-nm-thick Zn{sub 1-x}Mg{sub x}O barriers achieved 28% at 15 K. The highest external QE was observed in one of the samples with ZnO nanowires-52% at 15 K and 2% at 300 K. Contribution of defect-related PL bands in ZnO nanowires samples was extremely low.

  20. Direct-write fabrication of a nanoscale digital logic element on a single nanowire

    International Nuclear Information System (INIS)

    Roy, Somenath; Gao Zhiqiang

    2010-01-01

    In this paper we report on the 'direct-write' fabrication and electrical characteristics of a nanoscale logic inverter, integrating enhancement-mode (E-mode) and depletion-mode (D-mode) field-effect transistors (FETs) on a single zinc oxide (ZnO) nanowire. 'Direct-writing' of platinum metal electrodes and a dielectric layer is executed on individual single-crystalline ZnO nanowires using either a focused electron beam (FEB) or a focused ion beam (FIB). We fabricate a top-gate FET structure, in which the gate electrode wraps around the ZnO nanowire, resulting in a more efficient gate response than the conventional back-gate nanowire transistors. For E-mode device operation, the gate electrode (platinum) is deposited directly onto the ZnO nanowire by a FEB, which creates a Schottky barrier and in turn a fully depleted channel. Conversely, sandwiching an insulating layer between the FIB-deposited gate electrode and the nanowire channel makes D-mode operation possible. Integrated E- and D-mode FETs on a single nanowire exhibit the characteristics of a direct-coupled FET logic (DCFL) inverter with a high gain and noise margin.

  1. Morphological transition of ZnO nanostructures influenced by magnesium doping

    International Nuclear Information System (INIS)

    Premkumar, T.; Zhou, Y.S.; Gao, Y.; Baskar, K.; Jiang, L.; Lu, Y.F.

    2012-01-01

    Wurtzite zinc oxide (ZnO) nanochains have been synthesized through high-pressure pulsed laser deposition. The chain-like ZnO nanostructures were obtained from magnesium (Mg) doped ZnO targets, whereas vertically aligned nanorods were obtained from primitive ZnO targets. The Mg doping has influenced the morphological transition of ZnO nanostructures from nanorods to nanochains. The field emission scanning electron microscope images revealed the growth of beaded ZnO nanochains. The ZnO nanochains of different diameters 40 and 120 nm were obtained. The corresponding micro-Raman spectra showed strong E 2H mode of ZnO, which confirmed the good crystallinity of the nanochains. In addition to near band edge emission at 3.28 eV, ZnO nanochains show broad deep level emission at 2.42 eV than that of ZnO nanorods.

  2. Zinc Oxide Nanowire Interphase for Enhanced Lightweight Polymer Fiber Composites

    Science.gov (United States)

    Sodano, Henry A.; Brett, Robert

    2011-01-01

    The objective of this work was to increase the interfacial strength between aramid fiber and epoxy matrix. This was achieved by functionalizing the aramid fiber followed by growth of a layer of ZnO nanowires on the fiber surface such that when embedded into the polymer, the load transfer and bonding area could be substantially enhanced. The functionalization procedure developed here created functional carboxylic acid surface groups that chemically interact with the ZnO and thus greatly enhance the strength of the interface between the fiber and the ZnO.

  3. Nanowire Lasers

    Directory of Open Access Journals (Sweden)

    Couteau C.

    2015-05-01

    Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  4. High-yield growth and characterization of ⟨100⟩ InP p−n diode nanowires

    NARCIS (Netherlands)

    Cavalli, A.; Wang, J.; Zadeh, I.E.; Reimer, M.E.; Verheijen, M.A.; Soini, M.; Plissard, S.R.; Zwiller, V.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2016-01-01

    Semiconductor nanowires are nanoscale structures holding promise in many fields such as optoelectronics, quantum computing, and thermoelectrics. Nanowires are usually grown vertically on (111)-oriented substrates, while (100) is the standard in semiconductor technology. The ability to grow and to

  5. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde; Turner, Stuart G.; Yang, Ping; Van Tendeloo, Gustaaf; Lebedev, Oleg I.; Wu, Tao

    2014-01-01

    challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia

  6. Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor

    KAUST Repository

    Gao, Zhiyuan

    2009-01-01

    We have investigated the effects of piezoelectric potential in a ZnO nanowire on the transport characteristics of the nanowire based field effect transistor through numerical calculations and experimental observations. Under different straining conditions including stretching, compressing, twisting, and their combination, a piezoelectric potential is created throughout the nanowire to modulatealternate the transport property of the metal-ZnO nanowire contacts, resulting in a switch between symmetric and asymmetric contacts at the two ends, or even turning an Ohmic contact type into a diode. The commonly observed natural rectifying behavior of the as-fabricated ZnO nanowire can be attributed to the strain that was unpurposely created in the nanowire during device fabrication and material handling. This work provides further evidence on piezopotential governed electronic transport and devices, e.g., piezotronics.

  7. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    Science.gov (United States)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  8. Vertically cross-linked and porous CoNi2S4 nanosheets-decorated SiC nanowires with exceptional capacitive performance as a free-standing electrode for asymmetric supercapacitors

    Science.gov (United States)

    Zhao, Jian; Li, Zhenjiang; Zhang, Meng; Meng, Alan; Li, Qingdang

    2016-11-01

    In this paper, a simple, low-cost and mild hydrothermal technology of growing vertically cross-linked ternary nickel cobalt sulfides nanosheets (CoNi2S4 NSs) with porous characteristics on SiC nanowires (SiC NWs) supporters with outstanding resistances to oxidation and corrosion, good conductivity and large specific surface area deposited directly on carbon cloth (CC) is successfully developed, forming a new family of free-standing advanced hybrid electrode for asymmetric supercapacitors (ASCs). Such integrated electrode (SiC NWs@CoNi2S4 NSs) manifests intriguing electrochemical characteristics such as high specific capacity (231.1 mA h g-1 at 2 A g-1) and rate capability due to the synergistic effect of SiC NWs and CoNi2S4 NSs with unique morphology. Additionally, an asymmetric supercapacitor is also assembled via using this special hybrid architectures as positive electrode and activated carbon (AC) on Ni foam (NF) as negative electrode, and it can yield a high energy density of 57.8 W h kg-1 with a power density of 1.6 kW kg-1 and long cycling lifespan. This study constitutes an emerging attractive strategy to reasonably design and fabricate novel SiC NWs-based nanostructured electrodes with enhanced capacity, which holds great potential to be the candidate of electrode materials for environmentally benign as well as high-performance energy storage devices.

  9. Vertical epitaxial wire-on-wire growth of Ge/Si on Si(100) substrate.

    Science.gov (United States)

    Shimizu, Tomohiro; Zhang, Zhang; Shingubara, Shoso; Senz, Stephan; Gösele, Ulrich

    2009-04-01

    Vertically aligned epitaxial Ge/Si heterostructure nanowire arrays on Si(100) substrates were prepared by a two-step chemical vapor deposition method in anodic aluminum oxide templates. n-Butylgermane vapor was employed as new safer precursor for Ge nanowire growth instead of germane. First a Si nanowire was grown by the vapor liquid solid growth mechanism using Au as catalyst and silane. The second step was the growth of Ge nanowires on top of the Si nanowires. The method presented will allow preparing epitaxially grown vertical heterostructure nanowires consisting of multiple materials on an arbitrary substrate avoiding undesired lateral growth.

  10. Metal-dielectric-CNT nanowires for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Bond, Tiziana C.; Altun, Ali; Park, Hyung Gyu

    2017-10-03

    A sensor with a substrate includes nanowires extending vertically from the substrate, a hafnia coating on the nanowires that provides hafnia coated nanowires, and a noble metal coating on the hafnia coated nanowires. The top of the hafnia and noble metal coated nanowires bent onto one another to create a canopy forest structure. There are numerous randomly arranged holes that let through scattered light. The many points of contact, hot spots, amplify signals. The methods include the steps of providing a Raman spectroscopy substrate, introducing nano crystals to the Raman spectroscopy substrate, growing a forest of nanowires from the nano crystals on the Raman spectroscopy substrate, coating the nanowires with hafnia providing hafnia coated nanowires, and coating the hafnia coated nanowires with a noble metal or other metal.

  11. EDTA-assisted synthesis of rose-like ZnO architectures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 201800 (China); Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800 (China); Fang, Yaoguo [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 201800 (China); Peng, Liwei; Wu, Minghong [Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800 (China); Pan, Dengyu

    2010-10-15

    Rose-like ZnO nanostructures were prepared by a low-temperature solution route with assistance of ethylenediaminetetraacetic acid disodium (EDTA-2Na). The morphology of ZnO nanostructures was found to change from nanowire arrays to rose- and tower-like architectures with increasing the molar ratio of EDTA-2Na/Zn{sup 2+}. Also, the shape evolution of ZnO nanostructures with time was observed from flat nanosheets to wrinkled nanosheets and to rose-like nanostructures. EDTA-2Na as a strong complexing agent was found to play a key role in the shape evolution. Photoluminescence spectra show that the rose-like ZnO architectures have more defects than the nanowire arrays. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Photo-driven autonomous hydrogen generation system based on hierarchically shelled ZnO nanostructures

    International Nuclear Information System (INIS)

    Kim, Heejin; Yong, Kijung

    2013-01-01

    A quantum dot semiconductor sensitized hierarchically shelled one-dimensional ZnO nanostructure has been applied as a quasi-artificial leaf for hydrogen generation. The optimized ZnO nanostructure consists of one dimensional nanowire as a core and two-dimensional nanosheet on the nanowire surface. Furthermore, the quantum dot semiconductors deposited on the ZnO nanostructures provide visible light harvesting properties. To realize the artificial leaf, we applied the ZnO based nanostructure as a photoelectrode with non-wired Z-scheme system. The demonstrated un-assisted photoelectrochemical system showed the hydrogen generation properties under 1 sun condition irradiation. In addition, the quantum dot modified photoelectrode showed 2 mA/cm 2 current density at the un-assisted condition

  13. Catalyst-free vapor-phase transport growth of vertically aligned ZnO nanorods on 6H-SiC and (11-20)Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mofor, A.C.; Bakin, A.S.; Elshaer, A.; Waag, A. [Inst. of Semiconductor Technology, Technical Univ. Braunschweig (Germany); Fuhrmann, D.; Hangleiter, A. [Inst. of Applied Physics, Technical Univ. Braunschweig (Germany); Bertram, F.; Christen, J. [Dept. of Solid State Physics, Univ. of Magdeburg (Germany)

    2006-03-15

    ZnO nanostructures are expected to pave the way for many interesting applications in optoelectronics, spin electronics gas sensor technology and biomedicine. Fabrication methods, especially for nanorods have been based mostly on catalyst-assisted growth methods that employ metal-organic sources and other contaminating agents like graphite to grow ZnO nanorods at relatively high temperatures. We report on the growth of ZnO nanorods on 6H-SiC and (11-20)Al{sub 2}O{sub 3} using purely elemental sources, without catalysis and at relatively low temperatures and growth pressure in a specially designed vapor-phase transport system. ZnO nanorods with widths of 80-900 nm and lengths of 4-12 {mu}m were obtained. Nanorod concentrations of up to 10{sup 9} cm{sup -2} with homogenous luminescence and high purity were noted. (orig.)

  14. Tuning electronic properties of In2O3 nanowires by doping control

    International Nuclear Information System (INIS)

    Lei, B.; Li, C.; Zhang, D.; Tang, D.; Zhou, C.

    2004-01-01

    We present two effective routes to tune the electronic properties of single-crystalline In 2 O 3 nanowires by controlling the doping. The first method involves using different O 2 concentrations during the synthesis. Lightly (heavily) doped nanowires were produced by using high (low) O 2 concentrations, respectively, as revealed by the conductances and threshold voltages of nanowire-based field-effect transistors. Our second method exploits post-synthesis baking, as baking heavily doped nanowires in ambient air led to suppressed conduction and a positive shift of the threshold voltage, whereas baking lightly doped nanowires in vacuum displayed the opposite behavior. Our approaches offer viable ways to tune the electronic properties of many nonstoichiometric metal oxide systems such as In 2 O 3 , SnO 2 , and ZnO nanowires for various applications

  15. Piezoelectric properties of zinc oxide nanowires: an ab initio study.

    Science.gov (United States)

    Korir, K K; Cicero, G; Catellani, A

    2013-11-29

    Nanowires made of materials with non-centrosymmetric crystal structures are expected to be ideal building blocks for self-powered nanodevices due to their piezoelectric properties, yet a controversial explanation of the effective operational mechanisms and size effects still delays their real exploitation. To solve this controversy, we propose a methodology based on DFT calculations of the response of nanostructures to external deformations that allows us to distinguish between the different (bulk and surface) contributions: we apply this scheme to evaluate the piezoelectric properties of ZnO [0001] nanowires, with a diameter up to 2.3 nm. Our results reveal that, while surface and confinement effects are negligible, effective strain energies, and thus the nanowire mechanical response, are dependent on size. Our unified approach allows for a proper definition of piezoelectric coefficients for nanostructures, and explains in a rigorous way the reason why nanowires are found to be more sensitive to mechanical deformation than the corresponding bulk material.

  16. Large-area fabrication of patterned ZnO-nanowire arrays using light stamping lithography.

    Science.gov (United States)

    Hwang, Jae K; Cho, Sangho; Seo, Eun K; Myoung, Jae M; Sung, Myung M

    2009-12-01

    We demonstrate selective adsorption and alignment of ZnO nanowires on patterned poly(dimethylsiloxane) (PDMS) thin layers with (aminopropyl)siloxane self-assembled monolayers (SAMs). Light stamping lithography (LSL) was used to prepare patterned PDMS thin layers as neutral passivation regions on Si substrates. (3-Aminopropyl)triethoxysilane-based SAMs were selectively formed only on regions exposing the silanol groups of the Si substrates. The patterned positively charged amino groups define and direct the selective adsorption of ZnO nanowires with negative surface charges in the protic solvent. This procedure can be adopted in automated printing machines that generate patterned ZnO-nanowire arrays on large-area substrates. To demonstrate its usefulness, the LSL method was applied to prepare ZnO-nanowire transistor arrays on 4-in. Si wafers.

  17. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.

    Science.gov (United States)

    Madaria, Anuj R; Yao, Maoqing; Chi, Chunyung; Huang, Ningfeng; Lin, Chenxi; Li, Ruijuan; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2012-06-13

    Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.

  18. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    DEFF Research Database (Denmark)

    Persson, H.; Købler, Carsten; Mølhave, Kristian

    2013-01-01

    beam milling and scanning electron microscopy, highly curved but intact nuclear membranes are observed, showing no direct contact between the nanowires and the DNA. The nanowires possibly induce cellular stress and high respiration rates, which trigger the formation of ROS, which in turn results in DNA......Nanowires are commonly used as tools for interfacing living cells, acting as biomolecule-delivery vectors or electrodes. It is generally assumed that the small size of the nanowires ensures a minimal cellular perturbation, yet the effects of nanowires on cell migration and proliferation remain...... largely unknown. Fibroblast behaviour on vertical nanowire arrays is investigated, and it is shown that cell motility and proliferation rate are reduced on nanowires. Fibroblasts cultured on long nanowires exhibit failed cell division, DNA damage, increased ROS content and respiration. Using focused ion...

  19. Low temperature synthesis of Zn nanowires by physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Philipp; Kast, Michael; Brueckl, Hubert [Austrian Research Centers GmbH ARC, Nano- Systemtechnologies, Donau-City-Strasse 1, A-1220 Wien (Austria)

    2007-07-01

    We demonstrate catalytic growth of zinc nanowires by physical vapor deposition at modest temperatures of 125-175 C on various substrates. In contrast to conventional approaches using tube furnaces our home-built growth system allows to control the vapor sources and the substrate temperature separately. The silicon substrates were sputter coated with a thin gold layer as metal catalyst. The samples were heated to the growth temperature and subsequently exposed to the zinc vapor at high vacuum conditions. The work pressure was adjusted by the partial pressure of oxygen or argon flow gas. Scanning electron microscopy and atomic force microscopy characterizations revealed that the nanowires exhibit straight, uniform morphology and have diameters in the range of 50-350 nm and lengths up to 70 {mu}m. The Zn nanowires grow independently of the substrates crystal orientation via a catalytic vapor-solid growth mechanism. Since no nanowire formation was observed without gold coating, we expect that the onedimensional growth is initiated by a surface reactive Au seed. ZnO nanowires can be produced in the same preparation chamber by oxidation at 500 C in 1atm (80% Ar, 20% O{sub 2}) for 1 hour. ZnO is highly attractive for sensor applications.

  20. Novel bilayer structure ZnO based photoanode for enhancing conversion efficiency in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jin [Electronic Materials Research Laboratory, School of Electronic and Information Engineering, Xi' an, Jiaotong University, Xi' an 710049, Shaanxi (China); Que Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, School of Electronic and Information Engineering, Xi' an, Jiaotong University, Xi' an 710049, Shaanxi (China); Jia Qiaoying; Zhong Peng; Liao Yulong [Electronic Materials Research Laboratory, School of Electronic and Information Engineering, Xi' an, Jiaotong University, Xi' an 710049, Shaanxi (China); Ye Xiangdong; Ding Yucheng [State Key Laboratory of Manufacturing Systems Engineering, Xi' an, Jiaotong University, Xi' an 710049, Shaanxi (China)

    2011-07-07

    Highlights: > The ZnO nanocrystallite aggregates on the ZnO nanowire arrays (ZnO-(NCAs/NWs)) photoanode are successfully fabricated. > Results indicate that such a configuration of the ZnO-(NCAs/NWs) photoanode can significantly improve the efficiency of the DSSC. > The electron transport properties of the DSSC based on the ZnO-(NCAs/NWs) photoanode is discussed deeply. - Abstract: ZnO film with a novel bilayer structure, which consists of ZnO nanowire (ZnO NW) arrays as underlayer and polydisperse ZnO nanocrystallite aggregates (ZnO NCAs) as overlayer, is fabricated and studied as dye-sensitized solar-cell (DSSC) photoanode. Results indicate that such a configuration of the ZnO nanocrystallite aggregates on the ZnO nanowire arrays (ZnO-(NCAs/NWs)) can significantly improve the efficiency of the DSSC due to its fast electron transport, relatively high surface area and enhanced light-scattering capability. The short-circuit current density (J{sub sc}) and the energy-conversion efficiency ({eta}) of the DSSC based on the ZnO-(NCAs/NWs) photoanode are estimated and the values are 9.19 mA cm{sup -2} and 3.02%, respectively, which are much better than those of the cells formed only by the ZnO NWs (J{sub sc} = 4.02 mA cm{sup -2}, {eta} = 1.04%) or the ZnO NCAs (J{sub sc} = 7.14 mA cm{sup -2}, {eta} = 2.56%) photoanode. Moreover, the electron transport properties of the DSSC based on the ZnO-(NCAs/NWs) photoanode are also discussed.

  1. Silicon nanowire networks for multi-stage thermoelectric modules

    International Nuclear Information System (INIS)

    Norris, Kate J.; Garrett, Matthew P.; Zhang, Junce; Coleman, Elane; Tompa, Gary S.; Kobayashi, Nobuhiko P.

    2015-01-01

    Highlights: • Fabricated flexible single, double, and quadruple stacked Si thermoelectric modules. • Measured an enhanced power production of 27%, showing vertical stacking is scalable. • Vertically scalable thermoelectric module design of semiconducting nanowires. • Design can utilize either p or n-type semiconductors, both types are not required. • ΔT increases with thickness therefore power/area can increase as modules are stacked. - Abstract: We present the fabrication and characterization of single, double, and quadruple stacked flexible silicon nanowire network based thermoelectric modules. From double to quadruple stacked modules, power production increased 27%, demonstrating that stacking multiple nanowire thermoelectric devices in series is a scalable method to generate power by supplying larger temperature gradient. We present a vertically scalable multi-stage thermoelectric module design using semiconducting nanowires, eliminating the need for both n-type and p-type semiconductors for modules

  2. UV-assisted room temperature gas sensing of GaN-core/ZnO-shell nanowires

    International Nuclear Information System (INIS)

    Park, Sunghoon; Ko, Hyunsung; Kim, Soohyun; Lee, Chongmu

    2014-01-01

    GaN is highly sensitive to low concentrations of H 2 in ambient air and is almost insensitive to most other common gases. However, enhancing the sensing performance and the detection limit of GaN is a challenge. This study examined the H 2 -gas-sensing properties of GaN nanowires encapsulated with ZnO. GaN-core/ZnO-shell nanowires were fabricated by using a two-step process comprising the thermal evaporation of GaN powders and the atomic layer deposition of ZnO. The core-shell nanowires ranged from 80 to 120 nm in diameter and from a few tens to a few hundreds of micrometers in length, with a mean shell layer thickness of ∼8 nm. Multiple-networked pristine GaN nanowire and ZnO-encapsulated GaN (or GaN-core/ZnO-shell) nanowire sensors showed responses of 120 - 147% and 179 - 389%, respectively, to 500 - 2,500 ppm of H 2 at room temperature under UV (254 nm) illumination. The underlying mechanism of the enhanced response of the GaN nanowire to H 2 gas when using ZnO encapsulation and UV irradiation is discussed.

  3. Facile Conversion Synthesis of Densely-Formed Branched ZnO-Nanowire Arrays for Quantum-Dot-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Lee, Woojin; Kang, Suji; Hwang, Taehyun; Kim, Kunsu; Woo, Hyungsub; Lee, Byungho; Kim, Jaewon; Kim, Jinhyun; Park, Byungwoo

    2015-01-01

    Highlights: •3-D hierarchically branched ZnO nanowires by a facile synthesis with seed nucleation. •Nanobranching enhances the efficiency by a factor of two compared with the bare QDSC. •Attributed to the increased sensitizer by ∼80% and decreased transmittance by ∼17%. •Optimized nanostructures correlate with the light-harvesting and carrier-collection efficiencies. -- Abstract: An effective way of synthesizing densely-formed branched ZnO-nanowire arrays was developed by a straightforward conversion reaction of ZnS into ZnO. Hierarchically structured ZnO nanowires are utilized for quantum-dot-sensitized solar cells (QDSCs), having resulted in the conversion-efficiency enhancement by a factor of two compared to the bare ZnO nanowires. This is attributed to the increased CdS-quantum-dot sensitizer by ∼80% and decreased diffused transmittance by ∼17%, induced by the densely-formed branched nanowires. The correlations between the branched nanostructures and photovoltaic performances are systematically investigated in terms of light absorption, charge-transfer resistance, and carrier lifetime. This facile and controllable branched nanowire synthesis is anticipated to be applicable to other semiconductor photoanodes for efficient light harvesting and charge collecting properties

  4. ZnO Nanostructures for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2017-11-01

    Full Text Available This review focuses on the most recent applications of zinc oxide (ZnO nanostructures for tissue engineering. ZnO is one of the most investigated metal oxides, thanks to its multifunctional properties coupled with the ease of preparing various morphologies, such as nanowires, nanorods, and nanoparticles. Most ZnO applications are based on its semiconducting, catalytic and piezoelectric properties. However, several works have highlighted that ZnO nanostructures may successfully promote the growth, proliferation and differentiation of several cell lines, in combination with the rise of promising antibacterial activities. In particular, osteogenesis and angiogenesis have been effectively demonstrated in numerous cases. Such peculiarities have been observed both for pure nanostructured ZnO scaffolds as well as for three-dimensional ZnO-based hybrid composite scaffolds, fabricated by additive manufacturing technologies. Therefore, all these findings suggest that ZnO nanostructures represent a powerful tool in promoting the acceleration of diverse biological processes, finally leading to the formation of new living tissue useful for organ repair.

  5. Additional compound semiconductor nanowires for photonics

    Science.gov (United States)

    Ishikawa, F.

    2016-02-01

    GaAs related compound semiconductor heterostructures are one of the most developed materials for photonics. Those have realized various photonic devices with high efficiency, e. g., lasers, electro-optical modulators, and solar cells. To extend the functions of the materials system, diluted nitride and bismide has been paid attention over the past decade. They can largely decrease the band gap of the alloys, providing the greater tunability of band gap and strain status, eventually suppressing the non-radiative Auger recombinations. On the other hand, selective oxidation for AlGaAs is a vital technique for vertical surface emitting lasers. That enables precisely controlled oxides in the system, enabling the optical and electrical confinement, heat transfer, and mechanical robustness. We introduce the above functions into GaAs nanowires. GaAs/GaAsN core-shell nanowires showed clear redshift of the emitting wavelength toward infrared regime. Further, the introduction of N elongated the carrier lifetime at room temperature indicating the passivation of non-radiative surface recombinations. GaAs/GaAsBi nanowire shows the redshift with metamorphic surface morphology. Selective and whole oxidations of GaAs/AlGaAs core-shell nanowires produce semiconductor/oxide composite GaAs/AlGaOx and oxide GaOx/AlGaOx core-shell nanowires, respectively. Possibly sourced from nano-particle species, the oxide shell shows white luminescence. Those property should extend the functions of the nanowires for their application to photonics.

  6. Preparation and gas-sensing property of parallel-aligned ZnO ...

    Indian Academy of Sciences (India)

    binding energy (60 meV) and a large bandgap (3·37 eV) energy, has many ... Con- siderable efforts have been made to fabricate ZnO nanowires, nanobelts .... In such a case, the data could be fitted to a straight line .... The re-oxidation pro-.

  7. Exogenous Gene Integration for Microalgal Cell Transformation Using a Nanowire-Incorporated Microdevice.

    Science.gov (United States)

    Bae, Sunwoong; Park, Seunghye; Kim, Jung; Choi, Jong Seob; Kim, Kyung Hoon; Kwon, Donguk; Jin, EonSeon; Park, Inkyu; Kim, Do Hyun; Seo, Tae Seok

    2015-12-16

    Superior green algal cells showing high lipid production and rapid growth rate are considered as an alternative for the next generation green energy resources. To achieve the biomass based energy generation, transformed microalgae with superlative properties should be developed through genetic engineering. Contrary to the normal cells, microalgae have rigid cell walls, so that target gene delivery into cells is challengeable. In this study, we report a ZnO nanowire-incorporated microdevice for a high throughput microalgal transformation. The proposed microdevice was equipped with not only a ZnO nanowire in the microchannel for gene delivery into cells but also a pneumatic polydimethylsiloxane (PDMS) microvalve to modulate the cellular attachment and detachment from the nanowire. As a model, hygromycin B resistance gene cassette (Hyg3) was functionalized on the hydrothermally grown ZnO nanowires through a disulfide bond and released into green algal cells, Chlamydomonas reinhardtii, by reductive cleavage. During Hyg3 gene delivery, a monolithic PDMS membrane was bent down, so that algal cells were pushed down toward ZnO nanowires. The supply of vacuum in the pneumatic line made the PDMS membrane bend up, enabling the gene delivered algal cells to be recovered from the outlet of the microchannel. We successfully confirmed Hyg3 gene integrated in microalgae by amplifying the inserted gene through polymerase chain reaction (PCR) and DNA sequencing. The efficiency of the gene delivery to algal cells using the ZnO nanowire-incorporated microdevice was 6.52 × 10(4)- and 9.66 × 10(4)-fold higher than that of a traditional glass bead beating and electroporation.

  8. Integrated ZnO nanotube arrays as efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Y., E-mail: yxi6@cqu.edu.cn [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Wu, W.Z.; Fang, H. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Hu, C.G. [Department of Applied Physics, Chongqing University, Chongqing 400044 (China)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Tuning the reaction parameters, we got the best reaction conditions on ITO glass. Black-Right-Pointing-Pointer Introduce ZnO NTs design of photoanode featuring high aspect ratio structure. Black-Right-Pointing-Pointer The design strategy integrates the optical fibers or ITO with ZnO NTs grown. - Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material and has been considered as an alternative material in dye-sensitized solar cell (DSSC) applications. A high-performance nanotube (NT) photoanode must have a large surface area for dye adsorption in order to enhance conversion efficiency. In this work, the way of hydrothermally grown ZnO NT arrays on the indium tin oxide (ITO) substrate is presented by utilizing a systematic study. By adjusting the hydrothermal reaction parameters, we attained the optimizing reaction conditions on the ITO substrate. Moreover, ZnO NT arrays are introduced as a photoanode on various substrates, such as optical fiber and ITO glass, for DSSCs applications. We took the contrast test with conversion efficiency of the DSSC based on ZnO NT arrays versus ZnO nanowire arrays on the ITO substrate, which the DSSC based on ZnO NT arrays shows significantly enhanced power conversion efficiency. Furthermore, the conversion efficiency of DSSC based on the ZnO NT arrays grown on an optical fiber substrate is enhanced up to 1.44%.

  9. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  10. High electro-catalytic activities of glucose oxidase embedded one-dimensional ZnO nanostructures

    International Nuclear Information System (INIS)

    Sarkar, Nirmal K; Bhattacharyya, Swapan K

    2013-01-01

    One-dimensional ZnO nanorods and nanowires are separately synthesized on Zn substrate by simple hydrothermal processes at low temperatures. Electro-catalytic responses of glucose oxidase/ZnO/Zn electrodes using these two synthesized nanostructures of ZnO are reported and compared with others available in literature. It is apparent the Michaelis–Menten constant, K M app , for the present ZnO nanowire, having a greater aspect ratio, is found to be the lowest when compared with others. This sensor shows lower oxidation peak potential with a long detection range of 6.6 μM–380 mM and the highest sensitivity of ∼35.1 μA cm −2 mM −1 , among the reported values in the literature. Enzyme catalytic efficiency and turnover numbers are also found to be remarkably high. (paper)

  11. Absorptive lasing mode suppression in ZnO nano- and microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Wille, M.; Michalsky, T.; Krüger, E.; Grundmann, M.; Schmidt-Grund, R. [Universität Leipzig, Institut für Experimentelle Physik II, Linnéstraße 5, 04103 Leipzig (Germany)

    2016-08-08

    We conclusively explain the different lasing mode energies in ZnO nano- and microcavities observed by us and reported in literature. The limited penetration depth of usually used excitation lasers results in an inhomogeneous spatial gain region depending on the structure size and geometry. Hence, weakly or even nonexcited areas remain present after excitation, where modes are instantaneously suppressed by excitonic absorption. We compare the effects for ZnO microwires, nanowires, and tetrapod-like structures at room temperature and demonstrate that the corresponding mode selective effect is most pronounced for whispering-gallery modes in microwires with a hexagonal cross section. Furthermore, the absorptive lasing mode suppression will be demonstrated by correlating the spot size of the excitation laser and the lasing mode characteristic of a single ZnO nanowire.

  12. Copper Nanowire Production for Interconnect Applications

    Science.gov (United States)

    Han, Jin-Woo (Inventor); Meyyappan, Meyya (Inventor)

    2014-01-01

    A method of fabricating metallic Cu nanowires with lengths up to about 25 micrometers and diameters in a range 20-100 nanometers, or greater if desired. Vertically oriented or laterally oriented copper oxide structures (CuO and/or Cu2O) are grown on a Cu substrate. The copper oxide structures are reduced with 99+ percent H or H2, and in this reduction process the lengths decrease (to no more than about 25 micrometers), the density of surviving nanostructures on a substrate decreases, and the diameters of the surviving nanostructures have a range, of about 20-100 nanometers. The resulting nanowires are substantially pure Cu and can be oriented laterally (for local or global interconnects) or can be oriented vertically (for standard vertical interconnects).

  13. Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy.

    Science.gov (United States)

    Frederiksen, Rune; Tutuncuoglu, Gozde; Matteini, Federico; Martinez, Karen L; Fontcuberta I Morral, Anna; Alarcon-Llado, Esther

    2017-09-20

    Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications.

  14. Microstructure development in zinc oxide nanowires and iron oxohydroxide nanotubes by cathodic electrodeposition in nanopores

    NARCIS (Netherlands)

    Maas, M.G.; Rodijk, E.J.B.; Maijenburg, A.W.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    The cathodic electrodeposition of crystalline ZnO nanowires and amorphous FeO(OH) nanotubes in polycarbonate track-etched membranes with pore diameters of 50–200 nm is reported. Nitrate was used as a sacrificial precursor for the electrochemical generation of hydroxyl ions that raised the pH of the

  15. Electrostatically Gated Graphene-Zinc Oxide Nanowire Heterojunction.

    Science.gov (United States)

    You, Xueqiu; Pak, James Jungho

    2015-03-01

    This paper presents an electrostatically gated graphene-ZnO nanowire (NW) heterojunction for the purpose of device applications for the first time. A sub-nanometer-thick energy barrier width was formed between a monatomic graphene layer and electrochemically grown ZnO NWs. Because of the narrow energy barrier, electrons can tunnel through the barrier when a voltage is applied across the junction. A near-ohmic current-voltage (I-V) curve was obtained from the graphene-electrochemically grown ZnO NW heterojunction. This near-ohmic contact changed to asymmetric I-V Schottky contact when the samples were exposed to an oxygen environment. It is believed that the adsorbed oxygen atoms or molecules on the ZnO NW surface capture free electrons of the ZnO NWs, thereby creating a depletion region in the ZnO NWs. Consequentially, the electron concentration in the ZnO NWs is dramatically reduced, and the energy barrier width of the graphene-ZnO NW heterojunction increases greatly. This increased energy barrier width reduces the electron tunneling probability, resulting in a typical Schottky contact. By adjusting the back-gate voltage to control the graphene-ZnO NW Schottky energy barrier height, a large modulation on the junction current (on/off ratio of 10(3)) was achieved.

  16. Ordered ZnO/AZO/PAM nanowire arrays prepared by seed-layer-assisted electrochemical deposition

    International Nuclear Information System (INIS)

    Shen, Yu-Min; Pan, Chih-Huang; Wang, Sheng-Chang; Huang, Jow-Lay

    2011-01-01

    An Al-doped ZnO (AZO) seed layer is prepared on the back side of a porous alumina membrane (PAM) substrate by spin coating followed by annealing in a vacuum at 400 °C. Zinc oxide in ordered arrays mediated by a high aspect ratio and an ordered pore array of AZO/PAM is synthesized. The ZnO nanowire array is prepared via a 3-electrode electrochemical deposition process using ZnSO 4 and H 2 O 2 solutions at a potential of − 1 V (versus saturated calomel electrode) and temperatures of 65 and 80 °C. The microstructure and chemical composition of the AZO seed layer and ZnO/AZO/PAM nanowire arrays are characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive X-ray spectroscopy (EDS). Results indicate that the ZnO/AZO/PAM nanowire arrays were assembled in the nanochannel of the porous alumina template with diameters of 110–140 nm. The crystallinity of the ZnO nanowires depends on the AZO seed layer during the annealing process. The nucleation and growth process of ZnO/AZO/PAM nanowires are interpreted by the seed-layer-assisted growth mechanism.

  17. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes

    KAUST Repository

    Hu, Liangbing

    2011-01-01

    We designed and fabricated binder-free, 3D porous silicon nanostructures for Li-ion battery anodes, where Si nanoparticles electrically contact current collectors via vertically grown silicon nanowires. When compared with a Si nanowire anode, the areal capacity was increased by a factor of 4 without having to use long, high temperature steps under vacuum that vapour-liquid-solid Si nanowire growth entails. © 2011 The Royal Society of Chemistry.

  18. Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays.

    Science.gov (United States)

    Anttu, Nicklas

    2013-03-01

    Semiconductor nanowire arrays have shown promise for next-generation photovoltaics and photodetection, but enhanced understanding of the light-nanowire interaction is still needed. Here, we study theoretically the absorption of light in an array of vertical InP nanowires by moving continuously, first from the electrostatic limit to the nanophotonic regime and then to the geometrical optics limit. We show how the absorption per volume of semiconductor material in the array can be varied by a factor of 200, ranging from 10 times weaker to 20 times stronger than in a bulk semiconductor sample.

  19. Broadband absorption of semiconductor nanowire arrays for photovoltaic applications

    International Nuclear Information System (INIS)

    Huang, Ningfeng; Lin, Chenxi; Povinelli, Michelle L

    2012-01-01

    We use electromagnetic simulations to carry out a systematic study of broadband absorption in vertically-aligned semiconductor nanowire arrays for photovoltaic applications. We study six semiconductor materials that are commonly used for solar cells. We optimize the structural parameters of each nanowire array to maximize the ultimate efficiency. We plot the maximal ultimate efficiency as a function of height to determine how it approaches the perfect-absorption limit. We further show that the ultimate efficiencies of optimized nanowire arrays exceed those of equal-height thin films for all six materials and over a wide range of heights from 100 nm to 100 µm

  20. Catalyst-free, III-V nanowire photovoltaics

    Science.gov (United States)

    Davies, D. G.; Lambert, N.; Fry, P. W.; Foster, A.; Krysa, A. B.; Wilson, L. R.

    2014-05-01

    We report on room temperature, photovoltaic operation of catalyst-free GaAs p-i-n junction nanowire arrays. Growth studies were first performed to determine the optimum conditions for controlling the vertical and lateral growth of the nanowires. Following this, devices consisting of axial p-i-n junctions were fabricated by planarising the nanowire arrays with a hard baked polymer. We discuss the photovoltaic properties of this proof-of-concept device, and significant improvements to be made during the growth.

  1. Luminescence of one dimensional ZnO, GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanostructure through thermal evaporation of Zn and Ge powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Vuong-Hung, E-mail: vuong.phamhung@hust.edu.vn; Kien, Vu Trung; Tam, Phuong Dinh; Huy, Pham Thanh

    2016-07-15

    Graphical abstract: - Highlights: • ZnO and GeO{sub 2}–ZnGeO{sub 4} nanowires were fabricated by thermal evaporation of Zn and Ge powder mixture. • Morphology of specimens were observed to have a nanowire structure to rod-like morphology. • Strong NBE emission band with suppressed visible green emission band were observed on the dominant ZnO nanowires. • Strong emission of ∼530 nm were observed on the GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires. - Abstract: This paper reports the first attempt for fabrication of thermal evaporated Zn–Ge powder mixture to achieve near-band-edge (NBE) emission of ZnO and visible emission of GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires with controllable intensities. The nanowires were fabricated by thermal evaporation of Zn and Ge powder mixture, particularly, by using different Zn:Ge ratio, temperature and evaporated times. The morphology of nanowires was depended on the Zn and Ge ratio that was observed to have a nanowire structure to rod-like morphology. The thermal evaporation of Zn:Ge powder mixture resulted in formation of dominant ZnO or GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires as a function of evaporated parameters. These results suggest that the application of thermal evaporation of Zn and Ge mixture for potential application in synthesis of ZnO or GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires for optoelectronic field.

  2. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array

    International Nuclear Information System (INIS)

    Deng, S; Zhang, X; Loh, K P; Fan, H M; Sow, C H; Cheng, C-L; Foo, Y L

    2009-01-01

    An effective surface-enhanced Raman scattering (SERS) template based on a 3D hybrid Ag nanocluster (NC)-decorated ZnO nanowire array was fabricated through a simple process of depositing Ag NCs on ZnO nanowire arrays. The effects of particle size and excitation energy on the Raman scattering in these hybrid systems have been investigated using rhodamine 6G as a standard analyte. The results indicate that the hybrid nanosystem with 150 nm Ag NCs produces a larger SERS enhancement factor of 3.2 x 10 8 , which is much higher than that of 10 nm Ag NCs (6.0 x 10 6 ) under 532 nm excitation energy. The hybrid nanowire arrays were further applied to obtain SERS spectra of the two-photon absorption (TPA) chromophore T7. Finite-difference time-domain simulations reveal the presence of an enhanced field associated with inter-wire plasmon coupling of the 150 nm Ag NCs on adjacent ZnO nanowires; such a field was absent in the case of the 10 nm Ag NC-coated ZnO nanowire. Such hybrid nanosystems could be used as SERS substrates more effectively than assembled Ag NC film due to the enhanced light-scattering local field and the inter-wire plasmon-enhanced electromagnetic field.

  3. Fabrication of multilayer nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jasveer, E-mail: kaurjasveer89@gmail.com; Singh, Avtar; Kumar, Davinder [Department of Physics, Punjabi University Patiala, 147002, Punjab (India); Thakur, Anup; Kaur, Raminder, E-mail: raminder-k-saini@yahoo.com [Department of Basic and Applied Sciences, Punjabi University Patiala, 147002, Punjab (India)

    2016-05-06

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  4. Fabrication of multilayer nanowires

    International Nuclear Information System (INIS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-01-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  5. Nanowire Growth for Photovoltaics

    DEFF Research Database (Denmark)

    Holm, Jeppe Vilstrup

    Solar cells commercial success is based on an efficiency/cost calculation. Nanowire solar cells is one of the foremost candidates to implement third generation photo voltaics, which are both very efficient and cheap to produce. This thesis is about our progress towards commercial nanowire solar...... cells. Resonance effects between the light and nanowire causes an inherent concentration of the sunlight into the nanowires, and means that a sparse array of nanowires (less than 5% of the area) can absorb all the incoming light. The resonance effects, as well as a graded index of refraction, also traps...... the light. The concentration and light trapping means that single junction nanowire solar cells have a higher theoretical maximum efficiency than equivalent planar solar cells. We have demonstrated the built-in light concentration of nanowires, by growing, contacting and characterizing a solar cell...

  6. Characteristics of threading dislocations in ZnO grown on facet-controlled epitaxial overgrown GaN templates

    International Nuclear Information System (INIS)

    Zhou, H L; Chua, S J; Chow, S Y; Pan, H; Zhu, Y W; Feng, Y P; Wang, L S; Zang, K Y; Liu, W; Tripathy, S

    2007-01-01

    Using transmission electron microscopy (TEM), the authors have investigated the behavior of threading dislocations in ZnO selectively grown on a facet-controlled epitaxial overgrown GaN template. In this case, the ZnO is grown by a vapor transport method. The TEM study in the overgrown regions shows that all the pure-edge type dislocations in ZnO are parallel toward the mask area and vertical propagation of dislocation to the ZnO surface is minimized. Using such a selective growth technique on a faceted semi-polar GaN surface, a reduction of threading dislocation density in ZnO could be achieved

  7. A versatile method to grow localized arrays of nanowires for highly sensitive capacitive devices

    DEFF Research Database (Denmark)

    Antohe, V.A.; Radu, A.; Yunus, S.

    2008-01-01

    We propose a new approach to increase the detection efficiency of the capacitive sensing devices, by growing vertically aligned nanowires arrays, localized and confined on small interdigited electrodes structures. The metallic tracks are made using optical lithography, and the nanowires are reali...

  8. Modulation of fluorescence signals from biomolecules along nanowires due to interaction of light with oriented nanostructures

    DEFF Research Database (Denmark)

    Frederiksen, Rune Schøneberg; Alarcon-Llado, Esther; Madsen, Morten H.

    2015-01-01

    High aspect ratio nanostructures have gained increasing interest as highly sensitive platforms for biosensing. Here, well-defined biofunctionalized vertical indium arsenide nanowires are used to map the interaction of light with nanowires depending on their orientation and the excitation waveleng...

  9. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    KAUST Repository

    Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L.; Dayeh, Shadi A.; Wu, Tao

    2016-01-01

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices. © 2016 American Chemical Society.

  10. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    KAUST Repository

    Shen, Youde

    2016-06-02

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices. © 2016 American Chemical Society.

  11. Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.

    Science.gov (United States)

    Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto

    2017-02-08

    The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.

  12. ZnO nanorods for simultaneous light trapping and transparent electrode application in solar cells

    KAUST Repository

    Khan, Yasser

    2011-10-01

    Efficacy of using vertically grown ZnO nanorod array in enhancing electromagnetic field intensity and serving as the top contact layer (transparent electrodes) for solar cells was investigated. © 2011 IEEE.

  13. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    International Nuclear Information System (INIS)

    Nam, Chang-Yong; Stein, Aaron; Kisslinger, Kim; Black, Charles T.

    2015-01-01

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ∼10 19  cm −3 carrier density, and ∼0.1 cm 2 V −1 s −1 electron mobility, reflecting highly nanocrystalline internal structure. The results demonstrate the potential application of infiltration synthesis in fabricating metal oxide electronic devices

  14. The Self- and Directed Assembly of Nanowires

    Science.gov (United States)

    Smith, Benjamin David

    alignment with respect to nearest neighbor particles. All experiments showed order parameters indicating a slight preference for orientational ordering that was relatively insensitive to segment size, nanowire size, and nanowire coating. Monte Carlo simulations pointed towards this alignment as a consequence of small differences in the van der Waals attractions between the segments. Experimentally, ordering might to be limited by the large size of the nanowires, which results in kinetically trapped structures. In an attempt to obtain better ordering within rows, silica coated nanowires with partial Au cores were made. The synthesis involved silica-coating the nanowires and selectively etching a Ag segment. These particles have extremely different VDWs attractions between their segments, as the Au cores are much more attractive than the solvent-filled etched ends. The assembly of these partially etched nanowires (PENs) is detailed in Chapters 4, 5, and 6. When allowed to self-assemble, we observed the formation of either vertically or horizontally oriented arrays depending on PEN composition. The formation of vertically oriented arrays of anisotropic particles is important, since not many methods to produce these structures are currently available for particles of this size. We examined the effects of PEN length, PEN diameter, and the size, number, and location of the core segments. Our findings showed a large etched segment at one end (which resulted in a large offset in the center of mass and concentrated the VDWs attractions to one end of the particle) resulted in the best columnar assemblies. These vertically orientated arrays formed in a two part process. First, after PENs sedimented, they fell flat and oriented parallel to the surface. These PENs then sampled many orientations, including rotating out of the surface plane. When higher surface concentrations of particles built as more PENs fell to the surface of the cover slip, neighboring particles stabilized vertical

  15. Sponge-Templated Macroporous Graphene Network for Piezoelectric ZnO Nanogenerator.

    Science.gov (United States)

    Li, Xinda; Chen, Yi; Kumar, Amit; Mahmoud, Ahmed; Nychka, John A; Chung, Hyun-Joong

    2015-09-23

    We report a simple approach to fabricate zinc oxide (ZnO) nanowire based electricity generators on three-dimensional (3D) graphene networks by utilizing a commercial polyurethane (PU) sponge as a structural template. Here, a 3D network of graphene oxide is deposited from solution on the template and then is chemically reduced. Following steps of ZnO nanowire growth, polydimethylsiloxane (PDMS) backfilling and electrode lamination completes the fabrication processes. When compared to conventional generators with 2D planar geometry, the sponge template provides a 3D structure that has a potential to increase power density per unit area. The modified one-pot ZnO synthesis method allows the whole process to be inexpensive and environmentally benign. The nanogenerator yields an open circuit voltage of ∼0.5 V and short circuit current density of ∼2 μA/cm(2), while the output was found to be consistent after ∼3000 cycles. Finite element analysis of stress distribution showed that external stress is concentrated to deform ZnO nanowires by orders of magnitude compared to surrounding PU and PDMS, in agreement with our experiment. It is shown that the backfilled PDMS plays a crucial role for the stress concentration, which leads to an efficient electricity generation.

  16. Directed self-assembly of hybrid oxide/polymer core/shell nanowires with transport optimized morphology for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shanju; Pelligra, Candice I.; Keskar, Gayatri; Majewski, Pawel W.; Taylor, Andre D.; Pfefferle, Lisa D.; Osuji, Chinedum O. [Department of Chemical and Environmental Engineering, Yale University, New Haven, CT (United States); Jiang, Jie; Ismail-Beigi, Sohrab [Department of Applied Physics, Yale University, New Haven, CT (United States)

    2012-01-03

    An entirely bottom-up approach for the preparation of liquid crystalline suspensions of core-shell nanowires for ordered bulk heterojunction photovoltaics is demonstrated. Side-on attachment of polythiophene derivatives to ZnO nanowires promotes a co-axial polymer backbone-nanowire arrangement which favors high hole mobility. This strategy offers structural control over multiple length scales and a viable means of fabricating ordered films over large areas. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Al-doped ZnO seed layer-dependent crystallographic control of ZnO nanorods by using electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyo-Soo; Choi, Nak-Jung [Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung 429-793 (Korea, Republic of); Kim, Kyoung-Bo [Department of Metallurgical and Materials Engineering, Inha Technical College, Incheon 402-752 (Korea, Republic of); Kim, Moojin [Department of Renewable Energy, Jungwon University, Goesan-gun, Chungbuk 367-805 (Korea, Republic of); Lee, Sung-Nam, E-mail: snlee@kpu.ac.kr [Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung 429-793 (Korea, Republic of)

    2016-10-15

    Highlights: • Polar and semipolar ZnO NRs were successfully achieved by hydrothermal synthesis. • Semipolar and polar ZnO NRs were grown on ZnO and AZO/m-sapphire, respectively. • Al % of AZO/m-sapphire enhanced the lateral growth rate of polar ZnO NRs. - Abstract: We investigated the effect of an Al-doped ZnO film on the crystallographic direction of ZnO nanorods (NRs) using electrochemical deposition. From high-solution X-ray diffraction measurements, the crystallographic plane of ZnO NRs grown on (1 0 0) ZnO/m-plane sapphire was (1 0 1). The surface grain size of the (100) Al-doped ZnO (AZO) film decreased with increasing Al content in the ZnO seed layer, implying that the Al dopant accelerated the three-dimensional (3D) growth of the AZO film. In addition, it was found that with increasing Al doping concentration of the AZO seed layer, the crystal orientation of the ZnO NRs grown on the AZO seed layer changed from [1 0 1] to [0 0 1]. With increasing Al content of the nonpolar (1 0 0) AZO seed layer, the small surface grains with a few crystallographic planes of the AZO film changed from semipolar (1 0 1) ZnO NRs to polar (0 0 1) ZnO NRs due to the increase of the vertical [0 0 1] growth rate of the ZnO NRs owing to excellent electrical properties.

  18. From nanodiamond to nanowires.

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, A.; Materials Science Division

    2005-01-01

    Recent advances in the fabrication and characterization of semiconductor and metallic nanowires are proving very successful in meeting the high expectations of nanotechnologists. Although the nanoscience surrounding sp{sup 3} bonded carbon nanotubes has continued to flourish over recent years the successful synthesis of the sp{sup 3} analogue, diamond nanowires, has been limited. This prompts questions as to whether diamond nanowires are fundamentally unstable. By applying knowledge obtained from examining the structural transformations in nanodiamond, a framework for analyzing the structure and stability of diamond nanowires may be established. One possible framework will be discussed here, supported by results of ab initio density functional theory calculations used to study the structural relaxation of nanodiamond and diamond nanowires. The results show that the structural stability and electronic properties of diamond nanowires are dependent on the surface morphology, crystallographic direction of the principal axis, and the degree of surface hydrogenation.

  19. Sensitization of nano-porous ZnO photo-anode by a conjugated conducting polymer

    Energy Technology Data Exchange (ETDEWEB)

    Sirimanne, P.M. [Nano-Science Laboratory, Institute of Fundamental Studies, Hantana Road, Kandy (Sri Lanka); Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Premalal, E.V.A. [Nano-Science Laboratory, Institute of Fundamental Studies, Hantana Road, Kandy (Sri Lanka); Minoura, H. [Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan)

    2011-01-15

    Hybrid ZnO films are prepared via one-step electrochemical process. Extraction of organic component from hybrid films results tiny wires like ZnO columns perpendicular to the substrate. Visible light sensitive-conjugated polymer poly(2-methoxy-5-[2 ethylhexyloxy]-1-4-phenylenevinylene, MEH-PPV) was embedded in highly porous ZnO ceramic by a solvent vaporization technique. An attempt was made to fabricate polymer sensitized photovoltaic cell by coupling polymer embedded ZnO electrodes with an electrolyte. Maximum photovoltage of 490 mV is observed for the cell with the configuration of ZnO vertical stroke MEH-PPV vertical stroke I{sup -}/I{sub 3}{sup -} cell. (author)

  20. Synthesis and microstructural characterization of growth direction controlled ZnO nanorods using a buffer layer

    International Nuclear Information System (INIS)

    Park, Dong Jun; Kim, Dong Chan; Lee, Jeong Yong; Cho, Hyung Koun

    2006-01-01

    The growth direction and morphology of one-dimensional ZnO nanostructures grown by metal-organic chemical vapour deposition (MOCVD) were modulated by changing the growth temperature of previously deposited ZnO buffer layers that were used as a template. The ZnO nanorods grown on the low-temperature deposited buffer layer were regularly inclined with respect to the substrate surface and show in-plane alignment with azimuthally six-fold symmetry. In contrast, deposition of the buffer layer at higher growth temperature led to the formation of vertically well-aligned ZnO nanorods. In addition, the ZnO nanorods grown on the buffer layer deposited at low growth temperature show a growth direction of [1 0 1-bar 0], unlike the conventional ZnO nanorods showing a growth direction of [0001]. The microstructural analysis and atomic modelling of the formation of regularly inclined nanorods using transmission electron microscopy are presented

  1. Lasing and ion beam doping of semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Geburt, Sebastian

    2013-01-31

    Semiconductor nanowires exhibit extraordinary optical properties like highly localized light emission, efficient waveguiding and light amplification. Even the stimulation of laser oscillations can be achieved at optical pumping, making nanowires promising for optoelectronic applications. For successful integration into future devices, three major key challenges have to be faced: (1) the understanding of the fundamental properties, (2) the modification of the emission characteristics and (3) the investigation of the efficiency-limiting factors. All key challenges are addressed in this thesis: (1) The fundamental properties of CdS nanowire have been investigated to uncover the size limits for photonic nanowire lasers. Laser oscillations were observed at room temperature and the emission characteristics were correlated to the morphology, which allowed the determination of a minimum diameter and length necessary for lasing. (2) The emission characteristics of ZnO nanowires have been successfully modified by ion beam doping with Co. The structural investigations revealed a good recovery of the ion induced damage in the crystal lattice. Optical activation of the implanted Co ions was achieved and an intense intra-3d-emission confirmed successful modification. (3) The temporal decay of excited luminescence centers strongly depends on the interplay of luminescent ions and defects, thus offering an approach to investigate the efficiency-limiting processes. Mn implanted ZnS nanowires were investigated, as the temporal decay of the incorporated Mn ions can be described by a Foerster energy transfer model modified for nanostructures. The defect concentration was varied systematically by several approaches and the model could successfully fit the transients in all cases. The emission properties of Tb implanted ZnS nanowires were investigated and the temporal decay of the intra-4f-emission could also be fitted by the model, proving its accuracy for an additional element.

  2. Lasing and ion beam doping of semiconductor nanowires

    International Nuclear Information System (INIS)

    Geburt, Sebastian

    2013-01-01

    Semiconductor nanowires exhibit extraordinary optical properties like highly localized light emission, efficient waveguiding and light amplification. Even the stimulation of laser oscillations can be achieved at optical pumping, making nanowires promising for optoelectronic applications. For successful integration into future devices, three major key challenges have to be faced: (1) the understanding of the fundamental properties, (2) the modification of the emission characteristics and (3) the investigation of the efficiency-limiting factors. All key challenges are addressed in this thesis: (1) The fundamental properties of CdS nanowire have been investigated to uncover the size limits for photonic nanowire lasers. Laser oscillations were observed at room temperature and the emission characteristics were correlated to the morphology, which allowed the determination of a minimum diameter and length necessary for lasing. (2) The emission characteristics of ZnO nanowires have been successfully modified by ion beam doping with Co. The structural investigations revealed a good recovery of the ion induced damage in the crystal lattice. Optical activation of the implanted Co ions was achieved and an intense intra-3d-emission confirmed successful modification. (3) The temporal decay of excited luminescence centers strongly depends on the interplay of luminescent ions and defects, thus offering an approach to investigate the efficiency-limiting processes. Mn implanted ZnS nanowires were investigated, as the temporal decay of the incorporated Mn ions can be described by a Foerster energy transfer model modified for nanostructures. The defect concentration was varied systematically by several approaches and the model could successfully fit the transients in all cases. The emission properties of Tb implanted ZnS nanowires were investigated and the temporal decay of the intra-4f-emission could also be fitted by the model, proving its accuracy for an additional element.

  3. Piezoelectric and optoelectronic properties of electrospinning hybrid PVDF and ZnO nanofibers

    Science.gov (United States)

    Ma, Jian; Zhang, Qian; Lin, Kabin; Zhou, Lei; Ni, Zhonghua

    2018-03-01

    Polyvinylidene fluoride (PVDF) is a unique ferroelectric polymer with significant promise for energy harvesting, data storage, and sensing applications. ZnO is a wide direct band gap semiconductor (3.37 eV), commonly used as ultraviolet photodetectors, nanoelectronics, photonicsand piezoelectric generators. In this study, we produced high output piezoelectric energy harvesting materials using hybrid PVDF/ZnO nanofibers deposited via electrospinning. The strong electric fields and stretching forces during the electrospinning process helps to align dipoles in the nanofiber crystal such that the nonpolar α-phase (random orientation of dipoles) is transformed into polar β-phase in produced nanofibers. The effect of the additional ZnO nanowires on the nanofiber β-phase composition and output voltage are investigated. The maximum output voltage generated by a single hybrid PVDF and ZnO nanofiber (33 wt% ZnO nanowires) is over 300% of the voltage produced by a single nanofiber made of pure PVDF. The ZnO NWs served not only as a piezoelectric material, but also as a semiconducting material. The electrical conductivity of the hybrid PVDF/ZnO nanofibers increased by more than a factor of 4 when exposed under ultraviolet (UV) light.

  4. Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Iwan, S., E-mail: iwan-sugihartono@unj.ac.id [Jurusan Fisika, FMIPA-UNJ, Rawamangun, Jakarta (Indonesia); Prodi Ilmu Material, Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Fauzia, Vivi [Prodi Ilmu Material, Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Umar, A. A. [Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor (Malaysia); Sun, X. W. [School of Electrical & Electronic Engineering, Nanyang Technological University, Nanyang Avenue (Singapore)

    2016-04-19

    Zinc oxide (ZnO) nanorods were fabricated by a hydrothermal reaction on silicon (Si) substrate at 95 °C for 6 hours. The ZnO seed layer was fabricated by depositing ZnO thin films on Si substrates by ultrasonic spray pyrolisis (USP). The annealing effects on crystal structure and optical properties of ZnO nanorods were investigated. The post-annealing treatment was performed at 800 °C with different environments. The annealed of ZnO nanorods were characterized by X-ray diffraction (XRD) and photoluminescence (PL) in order to analyze crystal structure and optical properties, respectively. The results show the orientations of [002], [101], [102], and [103] diffraction peaks were observed and hexagonal wurtzite structure of ZnO nanorods were vertically grown on Si substrates. The room temperature PL spectra show ultra-violet (UV) and visible emissions. The annealed of ZnO nanorods in vacuum condition (3.8 × 10{sup −3} Torr) has dominant UV emission. Meanwhile, non-annealed of ZnO nanorods has dominant visible emission. It was expected that the annealed of ZnO in vacuum condition suppresses the existence of native defects in ZnO nanorods.

  5. Growth of antimony doped P-type zinc oxide nanowires for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong Lin; Pradel, Ken

    2016-09-27

    In a method of growing p-type nanowires, a nanowire growth solution of zinc nitrate (Zn(NO.sub.3).sub.2), hexamethylenetetramine (HMTA) and polyethylenemine (800 M.sub.w PEI) is prepared. A dopant solution to the growth solution, the dopant solution including an equal molar ration of sodium hydroxide (NaOH), glycolic acid (C.sub.2H.sub.4O.sub.3) and antimony acetate (Sb(CH.sub.3COO).sub.3) in water is prepared. The dopant solution and the growth solution combine to generate a resulting solution that includes antimony to zinc in a ratio of between 0.2% molar to 2.0% molar, the resulting solution having a top surface. An ammonia solution is added to the resulting solution. A ZnO seed layer is applied to a substrate and the substrate is placed into the top surface of the resulting solution with the ZnO seed layer facing downwardly for a predetermined time until Sb-doped ZnO nanowires having a length of at least 5 .mu.m have grown from the ZnO seed layer.

  6. Interfacial engineering of CuO nanorod/ZnO nanowire hybrid nanostructure photoanode in dye-sensitized solar cell

    Science.gov (United States)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Gur, Emre; Kocak, Yusuf

    2018-01-01

    Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires' layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.

  7. Nanowire Photovoltaic Devices

    Science.gov (United States)

    Forbes, David

    2015-01-01

    Firefly Technologies, in collaboration with the Rochester Institute of Technology and the University of Wisconsin-Madison, developed synthesis methods for highly strained nanowires. Two synthesis routes resulted in successful nanowire epitaxy: direct nucleation and growth on the substrate and a novel selective-epitaxy route based on nanolithography using diblock copolymers. The indium-arsenide (InAs) nanowires are implemented in situ within the epitaxy environment-a significant innovation relative to conventional semiconductor nanowire generation using ex situ gold nanoparticles. The introduction of these nanoscale features may enable an intermediate band solar cell while simultaneously increasing the effective absorption volume that can otherwise limit short-circuit current generated by thin quantized layers. The use of nanowires for photovoltaics decouples the absorption process from the current extraction process by virtue of the high aspect ratio. While no functional solar cells resulted from this effort, considerable fundamental understanding of the nanowire epitaxy kinetics and nanopatterning process was developed. This approach could, in principle, be an enabling technology for heterointegration of dissimilar materials. The technology also is applicable to virtual substrates. Incorporating nanowires onto a recrystallized germanium/metal foil substrate would potentially solve the problem of grain boundary shunting of generated carriers by restricting the cross-sectional area of the nanowire (tens of nanometers in diameter) to sizes smaller than the recrystallized grains (0.5 to 1 micron(exp 2).

  8. Functionalised Silver Nanowire Structures

    International Nuclear Information System (INIS)

    Andrew, Piers; Ilie, Adelina

    2007-01-01

    Crystalline silver nanowires 60-100 nm in diameter and tens of micrometres in length have been fabricated using a low temperature, solution synthesis technique. We explore the potential of this method to produce functional nanowire structures using two different strategies to attach active molecules to the nanowires: adsorption and displacement. Initially, as-produced silver nanowires capped with a uniaxial-growth-inducing polymer layer were functionalised by solution adsorption of a semiconducting conjugated polymer to generate fluorescent nanowire structures. The influence of nanowire surface chemistry was investigated by displacing the capping polymer with an alkanethiol self-assembled monolayer, followed by solution adsorption functionalisation. The success of molecular attachment was monitored by electron microscopy, absorption and fluorescence spectroscopy and confocal fluorescence microscopy. We examined how the optical properties of such adsorbed molecules are affected by the metallic nanowires, and observed transfer of excitation energy between dye molecules mediated by surface plasmons propagating on the nanowires. Non-contact dynamic force microscopy measurements were used to map the work-function of individual wires, revealing inhomogeneity of the polymer surface coverage

  9. Stability of Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, F.; Schiek, M.; Wallmann, I.

    2011-01-01

    The morphological stability of organic nanowires over time and under thermal load is of major importance for their use in any device. In this study the growth and stability of organic nanowires from a naphthyl end-capped thiophene grown by organic molecular beam deposition is investigated via ato...

  10. Effect of ZnO decoration on the photovoltaic performance of TiO{sub 2} based dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Long; Zhai, Bao-gai [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); Ma, Qing-lan [School of Electronics and Information, Nantong University, Jiangsu 226019 (China); Huang, Yuan Ming, E-mail: dongshanisland@126.com [School of Electronics and Information, Nantong University, Jiangsu 226019 (China)

    2014-08-25

    Highlights: • Various ZnO morphologies coated TiO{sub 2} photoanodes are formed and applied to DSSCs. • The effect of photoanode morphology on performance of DSSCs was studied. • ZnO NRs@TiO{sub 2} electrode provides more dye absorption and fast transfer pathway. • The η of DSSC with ZnO NRs@TiO{sub 2} is increased over fourfold than other DSSCs. - Abstract: ZnO nanoparticles and one-dimensional vertically aligned ZnO nanorods were grown on the TiO{sub 2} layers in the photoanodes via the hydrothermal method at 60 and 90 °C, respectively. The effect of ZnO decoration on the photovoltaic performance of TiO{sub 2} based dye sensitized solar cells (DSSCs) was investigated. The morphologies, crystalline structures and optical properties of the synthesized ZnO nanoparticles and ZnO nanorods were characterized by field-emission scanning electron microscope, X-ray diffractometer and photoluminescence spectroscopy, respectively. The photocurrent–voltage curves of the fabricated DSSCs showed that the ZnO nanorods decorated DSSCs exhibited better photovoltaic performance than the ZnO nanoparticles decorated DSSCs. The improved performance of the ZnO nanorods decorated DSSCs can be ascribed to the fact that the vertically aligned ZnO nanorods provide high specific surface area for dye adsorption and the efficient pathway for electron transportation.

  11. Aligned nanowire growth using lithography-assisted bonding of a polycarbonate template for neural probe electrodes

    International Nuclear Information System (INIS)

    Yoon, Hargsoon; Deshpande, Devesh C; Ramachandran, Vasuda; Varadan, Vijay K

    2008-01-01

    This research presents a fabrication method of vertically aligned nanowires on substrates using lithography-assisted template bonding (LATB) towards developing highly efficient electrodes for biomedical applications at low cost. A polycarbonate template containing cylindrical nanopores is attached to a substrate and the nanopores are selectively opened with a modified lithography process. Vertically aligned nanowires are grown by electrochemical deposition through these open pores on polyimide film and silicon substrates. The process of opening the nanopores is optimized to yield uniform growth of nanowires. The morphological, crystalline, and electrochemical properties of the resulting vertically aligned nanowires are discussed using scanning electron microscopy (SEM), x-ray diffraction (XRD), and electrochemical analysis tools. The potential application of this simple and inexpensive fabrication technology is discussed in the development of neural probe electrodes

  12. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells

    KAUST Repository

    Lan, Xinzheng; Bai, Jing; Masala, Silvia; Thon, Susanna; Ren, Yuan; Kramer, Illan J.; Hoogland, Sjoerd H.; Simchi, Arash; Koleilat, Ghada I.; Paz-Soldan, Daniel; Ning, Zhijun; Labelle, André J.; Kim, Jinyoung; Jabbour, Ghassan E.; Sargent, E. H.

    2013-01-01

    Herein, a solution-processed, bottom-up-fabricated, nanowire network electrode is developed. This electrode features a ZnO template which is converted into locally connected, infiltratable, TiO2 nanowires. This new electrode is used to build a depleted bulk heterojunction solar cell employing hybrid-passivated colloidal quantum dots. The new electrode allows the application of a thicker, and thus more light-absorbing, colloidal quantum dot active layer, from which charge extraction of an efficiency comparable to that obtained from a thinner, planar device could be obtained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells

    KAUST Repository

    Lan, Xinzheng

    2013-01-06

    Herein, a solution-processed, bottom-up-fabricated, nanowire network electrode is developed. This electrode features a ZnO template which is converted into locally connected, infiltratable, TiO2 nanowires. This new electrode is used to build a depleted bulk heterojunction solar cell employing hybrid-passivated colloidal quantum dots. The new electrode allows the application of a thicker, and thus more light-absorbing, colloidal quantum dot active layer, from which charge extraction of an efficiency comparable to that obtained from a thinner, planar device could be obtained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Aqueous chemical growth and application of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Postels, Bianca; Kasprzak, Anna; Mofor, Augustine C.; Wehmann, Hergo-Heinrich; Bakin, Andrey; Waag, Andreas [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany)

    2007-07-01

    A very promising fabrication process for ZnO nanostructures is the aqueous chemical growth (ACG), since it is a cost efficient and low temperature approach. Using this growth technique we generated wafer-scale ZnO nanorod arrays on Si, sapphire, ITO coated glass and even on flexible polymer substrates. ACG is found to be only weakly influenced by the substrate material and we are also able to control the dimensions of the ZnO nanorods. Another benefit of ACG is the ability to fabricate patterned arrays of ZnO nanorods by a selective growth process on structured metallised surfaces. Results of structural analysis with SEM and XRD are reported. Additionally, optical properties were investigated by PL measurements. First attempts on the preparation of dye sensitised solar cells (DSSCs) are also reported. Here, the traditional sintered TiO{sub 2} nanoparticles are replaced by a densely packed and vertically aligned array of ACG ZnO nanorods. The size and morphology of the ZnO nanorods can be controlled. The influence of the length of the nanorods on the cell properties is investigated. A vapour phase transport technique was also used as alternative growth method.

  15. Electrochemical preparation of vertically aligned, hollow CdSe nanotubes and their p-n junction hybrids with electrodeposited Cu2O.

    Science.gov (United States)

    Debgupta, Joyashish; Devarapalli, Ramireddy; Rahman, Shakeelur; Shelke, Manjusha V; Pillai, Vijayamohanan K

    2014-08-07

    Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, "as grown" CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ∼ 470 μA cm(-2)) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar device prepared with electrodeposited CdSe films (not nanotubes) and Cu2O on FTO. This has been attributed to the hollow 1-D nature of CdSe NTs, which provides enhanced inner and outer surface areas for better absorption of light and also assists faster transport of photogenerated charge carriers.

  16. Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: a universal set of parameters for bridging prepatterned microelectrodes.

    Science.gov (United States)

    Maijenburg, A W; Maas, M G; Rodijk, E J B; Ahmed, W; Kooij, E S; Carlen, E T; Blank, D H A; ten Elshof, J E

    2011-03-15

    Nanowires and nanotubes were synthesized from metals and metal oxides using templated cathodic electrodeposition. With templated electrodeposition, small structures are electrodeposited using a template that is the inverse of the final desired shape. Dielectrophoresis was used for the alignment of the as-formed nanowires and nanotubes between prepatterned electrodes. For reproducible nanowire alignment, a universal set of dielectrophoresis parameters to align any arbitrary nanowire material was determined. The parameters include peak-to-peak potential and frequency, thickness of the silicon oxide layer, grounding of the silicon substrate, and nature of the solvent medium used. It involves applying a field with a frequency >10(5) Hz, an insulating silicon oxide layer with a thickness of 2.5 μm or more, grounding of the underlying silicon substrate, and the use of a solvent medium with a low dielectric constant. In our experiments, we obtained good results by using a peak-to-peak potential of 2.1 V at a frequency of 1.2 × 10(5) Hz. Furthermore, an indirect alignment technique is proposed that prevents short circuiting of nanowires after contacting both electrodes. After alignment, a considerably lower resistivity was found for ZnO nanowires made by templated electrodeposition (2.2-3.4 × 10(-3) Ωm) compared to ZnO nanorods synthesized by electrodeposition (10 Ωm) or molecular beam epitaxy (MBE) (500 Ωm). Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Piezoelectric properties of zinc oxide nanowires: an ab initio study

    International Nuclear Information System (INIS)

    Korir, K K; Cicero, G; Catellani, A

    2013-01-01

    Nanowires made of materials with non-centrosymmetric crystal structures are expected to be ideal building blocks for self-powered nanodevices due to their piezoelectric properties, yet a controversial explanation of the effective operational mechanisms and size effects still delays their real exploitation. To solve this controversy, we propose a methodology based on DFT calculations of the response of nanostructures to external deformations that allows us to distinguish between the different (bulk and surface) contributions: we apply this scheme to evaluate the piezoelectric properties of ZnO [0001] nanowires, with a diameter up to 2.3 nm. Our results reveal that, while surface and confinement effects are negligible, effective strain energies, and thus the nanowire mechanical response, are dependent on size. Our unified approach allows for a proper definition of piezoelectric coefficients for nanostructures, and explains in a rigorous way the reason why nanowires are found to be more sensitive to mechanical deformation than the corresponding bulk material. (paper)

  18. A novel hierarchical ZnO disordered/ordered bilayer nanostructured film for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yamin, E-mail: yaminfengccnuphy@outlook.com; Wu, Fei; Jiang, Jian; Zhu, Jianhui; Fodjouong, Ghislain Joel; Meng, Gaoxiang; Xing, Yanmin; Wang, Wenwu; Huang, Xintang, E-mail: xthuang@phy.ccnu.edu.cn

    2013-12-25

    Graphical abstract: A novel hierarchical disordered/ordered bilayer ZnO nanostructured film in the length of 18 μm have been successfully synthesized on the FTO substrate; the hierarchical ZnO nanostructured film electrodes applied in DSSCs exhibit photoelectric conversion efficiency as high as 5.16%. Highlights: •A novel hierarchical ZnO structure film was fabricated on a FTO substrate. •Hierarchical ZnO film is applied as the electrodes for dye sensitized solar cells. •The film possess high specific surface area and fast electron transport effect. •The light-scattering effect of the hierarchical film is pronounced. •The energy conversion efficiency of hierarchical ZnO electrode reaches to 5.16%. -- Abstract: A novel hierarchical ZnO nanostructured film is synthesized via a chemical bath deposition (CBD) method followed by a treatment of thermal decomposition onto a fluorine-doped tin oxide (FTO) substrate. This hierarchical film is composed of disordered ZnO nanorods (NRs) (top layer) and ordered ZnO nanowires (NWs) (bottom layer). The products possess the following features such as high specific surface area, fast electron transport, and pronounced light-scattering effect, which are quite suitable for dye sensitized solar cells (DSSCs) applications. A light-to-electricity conversion efficiency of 5.16% is achieved when the hierarchical ZnO nanostructured film is used as the photoanode under 100 mW cm{sup −2} illumination. This efficiency is found to be much higher than that of the DSSCs with pure ordered ZnO NWs (1.45%) and disordered ZnO NRs (3.31%) photoanodes.

  19. A novel hierarchical ZnO disordered/ordered bilayer nanostructured film for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Feng, Yamin; Wu, Fei; Jiang, Jian; Zhu, Jianhui; Fodjouong, Ghislain Joel; Meng, Gaoxiang; Xing, Yanmin; Wang, Wenwu; Huang, Xintang

    2013-01-01

    Graphical abstract: A novel hierarchical disordered/ordered bilayer ZnO nanostructured film in the length of 18 μm have been successfully synthesized on the FTO substrate; the hierarchical ZnO nanostructured film electrodes applied in DSSCs exhibit photoelectric conversion efficiency as high as 5.16%. Highlights: •A novel hierarchical ZnO structure film was fabricated on a FTO substrate. •Hierarchical ZnO film is applied as the electrodes for dye sensitized solar cells. •The film possess high specific surface area and fast electron transport effect. •The light-scattering effect of the hierarchical film is pronounced. •The energy conversion efficiency of hierarchical ZnO electrode reaches to 5.16%. -- Abstract: A novel hierarchical ZnO nanostructured film is synthesized via a chemical bath deposition (CBD) method followed by a treatment of thermal decomposition onto a fluorine-doped tin oxide (FTO) substrate. This hierarchical film is composed of disordered ZnO nanorods (NRs) (top layer) and ordered ZnO nanowires (NWs) (bottom layer). The products possess the following features such as high specific surface area, fast electron transport, and pronounced light-scattering effect, which are quite suitable for dye sensitized solar cells (DSSCs) applications. A light-to-electricity conversion efficiency of 5.16% is achieved when the hierarchical ZnO nanostructured film is used as the photoanode under 100 mW cm −2 illumination. This efficiency is found to be much higher than that of the DSSCs with pure ordered ZnO NWs (1.45%) and disordered ZnO NRs (3.31%) photoanodes

  20. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.; Peters, Craig; Brongersma, Mark; Cui, Yi; McGehee, Mike

    2010-01-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  1. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  2. Magnetic properties of nickel nanowires decorated with cobalt nanoparticles fabricated by two step electrochemical deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Maaz, K., E-mail: maaz@impcas.ac.cn [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Nanomaterials Research Group, Physics Division, PINSTECH, Nilore, 45650, Islamabad (Pakistan); Duan, J.L. [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Karim, S. [Nanomaterials Research Group, Physics Division, PINSTECH, Nilore, 45650, Islamabad (Pakistan); Chen, Y.H.; Yao, H.J.; Mo, D.; Sun, Y.M. [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Liu, J., E-mail: j.liu@impcas.ac.cn [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2016-10-01

    We demonstrate fabrication and magnetic characterization of novel nanostructures composed of Ni nanowires decorated with Co nanoparticles by two step etching and electrochemical deposition in polycarbonate template. Structural analysis confirmed the formation of nickel nanowires with diameter of 62 nm which are surrounded by cobalt nanoparticles of about 15 nm in diameter. By electron microscopy analyses it is evident that the nanoparticles are distributed on the surface of the nanowires. Analysis of magnetization data indicates that ferromagnetic Ni nanowires exhibit an easy axis of magnetization parallel to the wire long-axis while the angular dependence of coercivity indicates that magnetization reversal occurs through the curling process in these nanowires. An exchange bias accompanied by vertical shift in magnetization was observed below ∼20 K, measured under a cooling field of 1 kOe, which is attributed to the spin interactions between the spin-glass like surface layer and ferromagnetic core of the nanowires and nanoparticles. - Highlights: • Co-decorated Ni nanowires were fabricated by two-step electrodeposition technique. • The nanoparticles are distributed on the surface of nanowires. • Magnetization reversal occurs through the curling process in the nanowires. • Temperature dependent coercivity follows thermal activation model.

  3. Substrate and Mg doping effects in GaAs nanowires

    Directory of Open Access Journals (Sweden)

    Perumal Kannappan

    2017-10-01

    Full Text Available Mg doping of GaAs nanowires has been established as a viable alternative to Be doping in order to achieve p-type electrical conductivity. Although reports on the optical properties are available, few reports exist about the physical properties of intermediate-to-high Mg doping in GaAs nanowires grown by molecular beam epitaxy (MBE on GaAs(111B and Si(111 substrates. In this work, we address this topic and present further understanding on the fundamental aspects. As the Mg doping was increased, structural and optical investigations revealed: i a lower influence of the polytypic nature of the GaAs nanowires on their electronic structure; ii a considerable reduction of the density of vertical nanowires, which is almost null for growth on Si(111; iii the occurrence of a higher WZ phase fraction, in particular for growth on Si(111; iv an increase of the activation energy to release the less bound carrier in the radiative state from nanowires grown on GaAs(111B; and v a higher influence of defects on the activation of nonradiative de-excitation channels in the case of nanowires only grown on Si(111. Back-gate field effect transistors were fabricated with individual nanowires and the p-type electrical conductivity was measured with free hole concentration ranging from 2.7 × 1016 cm−3 to 1.4 × 1017 cm−3. The estimated electrical mobility was in the range ≈0.3–39 cm2/Vs and the dominant scattering mechanism is ascribed to the WZ/ZB interfaces. Electrical and optical measurements showed a lower influence of the polytypic structure of the nanowires on their electronic structure. The involvement of Mg in one of the radiative transitions observed for growth on the Si(111 substrate is suggested.

  4. Fabricating ZnO single microwire light-emitting diode with transparent conductive ITO film

    International Nuclear Information System (INIS)

    Xu, Yingtian; Dai, Jun; Shi, Zhifeng; Long, Beihong; Wu, Bin; Cai, Xupu; Chu, Xianwei; Du, Guotong; Zhang, Baolin; Yin, Jingzhi

    2014-01-01

    In this paper, n-ZnO single microwire/p + -Si heterojunction LEDs are fabricated using the transparent conductive ITO film as an electrode. A distinct UV emission resulting from free exciton recombination in a ZnO single microwire is observed in the electroluminescence. Size difference of ZnO single microwire shows significant influence on emission efficiency. The EL spectra of n-ZnO single microwire/p-Si heterostructure exhibited relatively stronger UV emission which was compared with the EL spectra of n-ZnO single nanowire/p-Si heterostructure and n-ZnO film/p-Si heterostructure, respectively. - Highlights: • The ZnO microwires were synthesized with a vapor phase transport method. • ZnO single microwire/Si LEDs were fabricated using the ITO film as an electrode. • The EL spectra had been compared with n-ZnO film/p-Si heterostructure. • The EL spectra had been compared with n-ZnO single nanowire/p-Si heterostructure

  5. Superhydrophobic multi-scale ZnO nanostructures fabricated by chemical vapor deposition method.

    Science.gov (United States)

    Zhou, Ming; Feng, Chengheng; Wu, Chunxia; Ma, Weiwei; Cai, Lan

    2009-07-01

    The ZnO nanostructures were synthesized on Si(100) substrates by chemical vapor deposition (CVD) method. Different Morphologies of ZnO nanostructures, such as nanoparticle film, micro-pillar and micro-nano multi-structure, were obtained with different conditions. The results of XRD and TEM showed the good quality of ZnO crystal growth. Selected area electron diffraction analysis indicates the individual nano-wire is single crystal. The wettability of ZnO was studied by contact angle admeasuring apparatus. We found that the wettability can be changed from hydrophobic to super-hydrophobic when the structure changed from smooth particle film to single micro-pillar, nano-wire and micro-nano multi-scale structure. Compared with the particle film with contact angle (CA) of 90.7 degrees, the CA of single scale microstructure and sparse micro-nano multi-scale structure is 130-140 degrees, 140-150 degrees respectively. But when the surface is dense micro-nano multi-scale structure such as nano-lawn, the CA can reach to 168.2 degrees . The results indicate that microstructure of surface is very important to the surface wettability. The wettability on the micro-nano multi-structure is better than single-scale structure, and that of dense micro-nano multi-structure is better than sparse multi-structure.

  6. Nanotubes and nanowires

    Indian Academy of Sciences (India)

    Unknown

    junction nanotubes by the pyrolysis of appropriate organic precursors. ... By making use of carbon nanotubes, nanowires of metals, metal ..... The use of activated carbon in place of ..... required for the complete removal of the carbon template.

  7. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  8. Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators

    KAUST Repository

    Xi, Yi; Song, Jinhui; Xu, Sheng; Yang, Rusen; Gao, Zhiyuan; Hu, Chenguo; Wang, Zhong Lin

    2009-01-01

    We present a systematic study of the growth of hexagonal ZnO nanotube arrays using a solution chemical method by varying the growth temperature (<100 °C), time and solution concentration. A piezoelectric nanogenerator using the as-grown ZnO nanotube arrays has been demonstrated for the first time. The nanogenerator gives an output voltage up to 35 mV. The detailed profile of the observed electric output is understood based on the calculated piezoelectric potential in the nanotube with consideration of the Schottky contact formed between the metal tip and the nanotube; and the mechanism agrees with that proposed for nanowire based nanogenerator. Our study shows that ZnO nanotubes can also be used for harvesting mechanical energy. © 2009 The Royal Society of Chemistry.

  9. Adsorption property of volatile molecules on ZnO nanowires ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... 2Centre for Fire Explosive and Environment Safety, Defence Research and Development Organisation, Ministry ... present work, Zn site was chosen as an adsorption site for a ... Virtual NanoLab [18] software was utilized to construct the ..... In reality, there will be plenty of vapour molecules that interact over.

  10. Biofunctionalized Magnetic Nanowires

    KAUST Repository

    Kosel, Jurgen

    2013-12-19

    Magnetic nanowires can be used as an alternative method overcoming the limitations of current cancer treatments that lack specificity and are highly cytotoxic. Nanowires are developed so that they selectively attach to cancer cells via antibodies, potentially destroying them when a magnetic field induces their vibration. This will transmit a mechanical force to the targeted cells, which is expected to induce apoptosis on the cancer cells.

  11. Biofunctionalized Magnetic Nanowires

    KAUST Repository

    Kosel, Jü rgen; Ravasi, Timothy; Contreras Gerenas, Maria Fernanda

    2013-01-01

    Magnetic nanowires can be used as an alternative method overcoming the limitations of current cancer treatments that lack specificity and are highly cytotoxic. Nanowires are developed so that they selectively attach to cancer cells via antibodies, potentially destroying them when a magnetic field induces their vibration. This will transmit a mechanical force to the targeted cells, which is expected to induce apoptosis on the cancer cells.

  12. Nanowire structures and electrical devices

    Science.gov (United States)

    Bezryadin, Alexey; Remeika, Mikas

    2010-07-06

    The present invention provides structures and devices comprising conductive segments and conductance constricting segments of a nanowire, such as metallic, superconducting or semiconducting nanowire. The present invention provides structures and devices comprising conductive nanowire segments and conductance constricting nanowire segments having accurately selected phases including crystalline and amorphous states, compositions, morphologies and physical dimensions, including selected cross sectional dimensions, shapes and lengths along the length of a nanowire. Further, the present invention provides methods of processing nanowires capable of patterning a nanowire to form a plurality of conductance constricting segments having selected positions along the length of a nanowire, including conductance constricting segments having reduced cross sectional dimensions and conductance constricting segments comprising one or more insulating materials such as metal oxides.

  13. Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells

    Science.gov (United States)

    Deinega, Alexei; John, Sajeev

    2012-10-01

    We introduce a finite difference discretization of semiconductor drift-diffusion equations using cylindrical partial waves. It can be applied to describe the photo-generated current in radial pn-junction nanowire solar cells. We demonstrate that the cylindrically symmetric (l=0) partial wave accurately describes the electronic response of a square lattice of silicon nanowires at normal incidence. We investigate the accuracy of our discretization scheme by using different mesh resolution along the radial direction r and compare with 3D (x, y, z) discretization. We consider both straight nanowires and nanowires with radius modulation along the vertical axis. The charge carrier generation profile inside each nanowire is calculated using an independent finite-difference time-domain simulation.

  14. Effect of diffusion from a lateral surface on the rate of GaN nanowire growth

    International Nuclear Information System (INIS)

    Sibirev, N. V.; Tchernycheva, M.; Cirlin, G. E.; Patriarche, G.; Harmand, J. C.; Dubrovskii, V. G.

    2012-01-01

    The kinetics of the growth of GaN crystalline nanowires on a Si (111) surface with no catalyst is studied experimentally and theoretically. Noncatalytic GaN nanowires were grown by molecular-beam epitaxy with AlN inserts, which makes it possible to determine the rate of the vertical growth of nanowires. A model for the formation of GaN nanowires is developed, and an expression for their rate of growth is derived. It is shown that, in the general case, the dependence of the rate of growth on the nanowire diameter has a minimum. The diameter corresponding to the experimentally observed minimum of the rate of growth steadily increases with increasing diffusion flux from the lateral surface.

  15. Highly sensitive uric acid biosensor based on individual zinc oxide micro/nanowires

    International Nuclear Information System (INIS)

    Zhao, Yanguang; Yan, Xiaoqin; Kang, Zhuo; Lin, Pei; Fang, Xiaofei; Lei, Yang; Ma, Siwei; Zhang, Yue

    2013-01-01

    We describe the use of individual zinc oxide (ZnO) micro/nanowires in an electrochemical biosensor for uric acid. The wires were synthesized by chemical vapor deposition and possess uniform morphology and high crystallinity as revealed by scanning electron microscopy, X-ray diffraction, and photoluminescence studies. The enzyme uricase was then immobilized on the surface of the ZnO micro/nanowires by physical adsorption, and this was proven by Raman spectroscopy and fluorescence microscopy. The resulting uric acid biosensor undergoes fast electron transfer between the active site of the enzyme and the surface of the electrode. It displays high sensitivity (89.74 μA cm −2 mM −1 ) and a wide linear analytical range (between 0.1 mM and 0.59 mM concentrations of uric acid). This study also demonstrates the potential of the use of individual ZnO micro/nanowires for the construction of highly sensitive nano-sized biosensors. (author)

  16. A universal approach to electrically connecting nanowire arrays using nanoparticles—application to a novel gas sensor architecture

    Science.gov (United States)

    Parthangal, Prahalad M.; Cavicchi, Richard E.; Zachariah, Michael R.

    2006-08-01

    We report on a novel, in situ approach toward connecting and electrically contacting vertically aligned nanowire arrays using conductive nanoparticles. The utility of the approach is demonstrated by development of a gas sensing device employing this nano-architecture. Well-aligned, single-crystalline zinc oxide nanowires were grown through a direct thermal evaporation process at 550 °C on gold catalyst layers. Electrical contact to the top of the nanowire array was established by creating a contiguous nanoparticle film through electrostatic attachment of conductive gold nanoparticles exclusively onto the tips of nanowires. A gas sensing device was constructed using such an arrangement and the nanowire assembly was found to be sensitive to both reducing (methanol) and oxidizing (nitrous oxides) gases. This assembly approach is amenable to any nanowire array for which a top contact electrode is needed.

  17. A universal approach to electrically connecting nanowire arrays using nanoparticles-application to a novel gas sensor architecture

    International Nuclear Information System (INIS)

    Parthangal, Prahalad M; Cavicchi, Richard E; Zachariah, Michael R

    2006-01-01

    We report on a novel, in situ approach toward connecting and electrically contacting vertically aligned nanowire arrays using conductive nanoparticles. The utility of the approach is demonstrated by development of a gas sensing device employing this nano-architecture. Well-aligned, single-crystalline zinc oxide nanowires were grown through a direct thermal evaporation process at 550 deg. C on gold catalyst layers. Electrical contact to the top of the nanowire array was established by creating a contiguous nanoparticle film through electrostatic attachment of conductive gold nanoparticles exclusively onto the tips of nanowires. A gas sensing device was constructed using such an arrangement and the nanowire assembly was found to be sensitive to both reducing (methanol) and oxidizing (nitrous oxides) gases. This assembly approach is amenable to any nanowire array for which a top contact electrode is needed

  18. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Aaretti Kaleva

    2017-07-01

    Full Text Available In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications.

  19. Photovoltaic devices based on quantum dot functionalized nanowire arrays embedded in an organic matrix

    Science.gov (United States)

    Kung, Patrick; Harris, Nicholas; Shen, Gang; Wilbert, David S.; Baughman, William; Balci, Soner; Dawahre, Nabil; Butler, Lee; Rivera, Elmer; Nikles, David; Kim, Seongsin M.

    2012-01-01

    Quantum dot (QD) functionalized nanowire arrays are attractive structures for low cost high efficiency solar cells. QDs have the potential for higher quantum efficiency, increased stability and lifetime compared to traditional dyes, as well as the potential for multiple electron generation per photon. Nanowire array scaffolds constitute efficient, low resistance electron transport pathways which minimize the hopping mechanism in the charge transport process of quantum dot solar cells. However, the use of liquid electrolytes as a hole transport medium within such scaffold device structures have led to significant degradation of the QDs. In this work, we first present the synthesis uniform single crystalline ZnO nanowire arrays and their functionalization with InP/ZnS core-shell quantum dots. The structures are characterized using electron microscopy, optical absorption, photoluminescence and Raman spectroscopy. Complementing photoluminescence, transmission electron microanalysis is used to reveal the successful QD attachment process and the atomistic interface between the ZnO and the QD. Energy dispersive spectroscopy reveals the co-localized presence of indium, phosphorus, and sulphur, suggestive of the core-shell nature of the QDs. The functionalized nanowire arrays are subsequently embedded in a poly-3(hexylthiophene) hole transport matrix with a high degree of polymer infiltration to complete the device structure prior to measurement.

  20. Annealing effects of ZnO nanorods on dye-sensitized solar cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jooyoung; Lee, Juneyoung [Department of Chemical and Biomolecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 120-749 (Korea, Republic of); Lim, Sangwoo, E-mail: swlim@yonsei.ac.k [Department of Chemical and Biomolecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 120-749 (Korea, Republic of)

    2010-06-01

    Dye-sensitized solar cells (DSSCs) were fabricated using ZnO nanorod arrays vertically grown on fluorine-doped tin oxide (FTO) glass using a low-temperature hydrothermal method. When the ZnO seed layer was annealed, greater DSSC efficiency was obtained. This may be attributed to the improvement of adhesion between the FTO and the seed layer and the corresponding effective growth of the ZnO nanorods. The DSSCs fabricated using ZnO nanorods which underwent annealing were more efficient than those that did not undergo annealing. The ZnO nanorods which were annealed in N{sub 2}/H{sub 2} or O{sub 2} had increased dye loadings due to higher OH concentrations on the hydrophilic surface, which contributed to the improved DSSC efficiency. The fill factor increased after the annealing of the ZnO nanorods, potentially due to the improved crystallinity of the ZnO nanorods. In this study, annealing of both the seed layer and the ZnO nanorods resulted in the greatest DSSC efficiency.

  1. ZnO nanorods/polyaniline heterojunctions for low-power flexible light sensors

    Energy Technology Data Exchange (ETDEWEB)

    Talib, Rawnaq A.; Abdullah, M.J. [Nano-Optoelectronics Research and Technology (NOR) Laboratory, School of Physics, Universiti Sains Malaysia, 11800, Penang (Malaysia); Al-Salman, Husam S. [Department of Physics, College of Science, University of Basrah, Basrah (Iraq); Mohammad, Sabah M. [Nano-Optoelectronics Research and Technology (NOR) Laboratory, School of Physics, Universiti Sains Malaysia, 11800, Penang (Malaysia); Allam, Nageh K., E-mail: nageh.allam@aucegypt.edu [Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835 (Egypt)

    2016-09-15

    Zinc oxide nanorods (ZnO NRs) were directly grown on p-type polyaniline (PAni)/polyethylene terephthalate (PET) using chemical bath deposition method at low temperature. Field emission scanning electron microscopy and X-ray diffraction techniques were used to study the morphology and structure of the fabricated films. The resulted ZnO NRs are hexagonal and grew vertically on the PAni surface in the (002) direction along the c-axis. The compressive strain, Raman and photoluminescence measurements confirmed the high-quality crystal structure of the formed ZnO NRs with no damage of the PAni surface. The photodetector made using ZnO NRs/PAni junction showed a sensitivity of 85% and a quantum efficiency of 12.3% at 5 V. - Highlights: • ZnO NRs/polyaniline p-n junction photodetectors were fabricated on flexible substrates. • The fabricated ZnO NRs grew along the (002) direction. • The fabricated ZnO NRs have low compressive strain. • The ZnO NRs/PAni junction showed a high sensitivity of 85%. • The photodetectors showed quantum efficiency as high as 12%.

  2. Ultra-low reflection porous silicon nanowires for solar cell applications

    OpenAIRE

    Najar , Adel; Charrier , Joël; Pirasteh , Parastesh; Sougrat , R.

    2012-01-01

    International audience; High density vertically aligned Porous Silicon NanoWires (PSiNWs) were fabricated on silicon substrate using metal assisted chemical etching process. A linear dependency of nanowire length to the etching time was obtained and the change in the growth rate of PSiNWs by increasing etching durations was shown. A typical 2D bright-field TEM image used for volume reconstruction of the sample shows the pores size varying from 10 to 50 nm. Furthermore, reflectivity measuremen...

  3. Electronic transport mechanisms in scaled gate-all-around silicon nanowire transistor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Clément, N., E-mail: nicolas.clement@iemn.univ-lille1.fr, E-mail: guilhem.larrieu@laas.fr; Han, X. L. [Institute of Electronics, Microelectronics and Nanotechnology, CNRS, Avenue Poincaré, 59652 Villeneuve d' Ascq (France); Larrieu, G., E-mail: nicolas.clement@iemn.univ-lille1.fr, E-mail: guilhem.larrieu@laas.fr [Laboratory for Analysis and Architecture of Systems (LAAS), CNRS, Universite de Toulouse, 7 Avenue Colonel Roche, 31077 Toulouse (France)

    2013-12-23

    Low-frequency noise is used to study the electronic transport in arrays of 14 nm gate length vertical silicon nanowire devices. We demonstrate that, even at such scaling, the electrostatic control of the gate-all-around is sufficient in the sub-threshold voltage region to confine charges in the heart of the wire, and the extremely low noise level is comparable to that of high quality epitaxial layers. Although contact noise can already be a source of poor transistor operation above threshold voltage for few nanowires, nanowire parallelization drastically reduces its impact.

  4. Synthesis of ZnO-TiO{sub 2} core-shell long nanowire arrays and their application on dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Feng Yamin [Department of Physics, Institute of Nanoscience and Nanotechnology, Central China Normal University, Wuhan 430079 (China); Ji Xiaoxu [School of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473003 (China); Duan Jinxia; Zhu Jianhui; Jiang Jian; Ding Hao; Meng Gaoxiang; Ding Ruimin; Liu Jinping [Department of Physics, Institute of Nanoscience and Nanotechnology, Central China Normal University, Wuhan 430079 (China); Hu Anzheng [School of Physics and Electronic Engineering, College of Xiangfan, Xiangfan 441813 (China); Huang Xintang, E-mail: xthuang@phy.ccnu.edu.cn [Department of Physics, Institute of Nanoscience and Nanotechnology, Central China Normal University, Wuhan 430079 (China)

    2012-06-15

    Long ZnO nanowire arrays (NAs) grown on fluorine-doped tin oxide (FTO) glasses have been synthesized via a facile hydrothermal method without refreshing the reaction solution and applied as the precursor. By adjusting growth conditions, ZnO NAs with tunable lengths can be achieved. A nanocomposite made of ZnO nanowire core and TiO{sub 2} shell was further realized by a novel 'fast-dip-coating' method conducted in a Ti(OC{sub 4}H{sub 9}){sub 4}-dissolved ethanol solution. The formed ZnO-TiO{sub 2} core-shell NAs on FTO substrates were applied as electrodes for dye sensitized solar cells (DSSCs). It is found that both the TiO{sub 2} coating and NAs length play important roles in the enhancement of photoelectric conversion efficiency (PCE) of DSSCs. When the length of ZnO-TiO{sub 2} NAs reaches up to 14 {mu}m, the electrode can exhibit a maximum PCE as high as 3.80%, which is 2.6 times higher than that of pure ZnO NAs. - Graphical abstract: ZnO nanowire arrays in the length of 14 {mu}m have been successfully synthesized on the FTO substrate and coated with a thin shell of TiO{sub 2}; the ZnO-TiO{sub 2} electrodes applied in DSSCs exhibit great photoelectric conversion efficiency as high as 3.80%. Highlights: Black-Right-Pointing-Pointer Long ZnO nanowire arrays have been synthesized by using hydrothermal method. Black-Right-Pointing-Pointer A TiO{sub 2} shell outside of ZnO nanowire is introduced by a fast dip-coating method. Black-Right-Pointing-Pointer ZnO and ZnO-TiO{sub 2} core-shell nanowires are applied as the electrodes for DSSCs. Black-Right-Pointing-Pointer The maximum conversion efficiency of ZnO-TiO{sub 2} electrode reaches to 3.80%.

  5. Synthesis of core/shell ZnO/ZnSe nanowires using novel low cost two-steps electrochemical deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Ghoul, M., E-mail: ghoulmed2009@yahoo.fr [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l' Energie Technopole BorjCedria, Bp 95, Hammammlif 2050 (Tunisia); Braiek, Z. [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l' Energie Technopole BorjCedria, Bp 95, Hammammlif 2050 (Tunisia); Brayek, A. [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l' Energie Technopole BorjCedria, Bp 95, Hammammlif 2050 (Tunisia); ITODYS, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR – 7086, 75205 Paris (France); Ben Assaker, I.; Khalifa, N.; Ben Naceur, J.; Souissi, A.; Lamouchi, A. [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l' Energie Technopole BorjCedria, Bp 95, Hammammlif 2050 (Tunisia); Ammar, S. [ITODYS, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR – 7086, 75205 Paris (France); Chtourou, R. [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l' Energie Technopole BorjCedria, Bp 95, Hammammlif 2050 (Tunisia)

    2015-10-25

    This work highlights the original use of a two-step electrochemical deposition protocol to grow ZnO/ZnSe core/shell nanowires on a Sn-doped In{sub 2}O{sub 3} (ITO)/glass substrate. The good alignment of the nanowires is verified by the scanning electron microscopy characterization technique in addition to the surface roughness after the ZnSe electrodeposition on the ZnO nanowires lateral facets. The X-ray diffraction patterns and Raman spectra allow estimating that ZnO has grown along the wurtzite (W) structure c-axis. The presence of the type-II interfacial transition between the valence band of ZnSe and the conduction band of ZnO was confirmed by UV–visible spectroscopy. It was proved that the absorbed energy of the developed nanostructures is extended to the near infrared which is well recommended for the photovoltaic applications. - Graphical abstract: Fabrication of the ZnO–ZnSe core–shell nanowires through a solution based all-electrochemical approach, and their application as photoanodes in photoelectrochemical water splitting cells. - Highlights: • Deposition of ZnO/ZnSe nanowires by two steps electrodeposition method. • The morphology studies show the formation of ZnO/ZnSe core/Shell nanowires. • XRD and Raman spectroscopy confirm the presence of the wurtzite ZnO and blende ZnSe junction. • Optical properties demonstrate the evidence type-II interfacial transition between the two semiconductors.

  6. On-chip surface modified nanostructured ZnO as functional pH sensors

    International Nuclear Information System (INIS)

    Zhang, Qing; Liu, Wenpeng; Sun, Chongling; Zhang, Hao; Pang, Wei; Zhang, Daihua; Duan, Xuexin

    2015-01-01

    Zinc oxide (ZnO) nanostructures are promising candidates as electronic components for biological and chemical applications. In this study, ZnO ultra-fine nanowire (NW) and nanoflake (NF) hybrid structures have been prepared by Au-assisted chemical vapor deposition (CVD) under ambient pressure. Their surface morphology, lattice structures, and crystal orientation were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Two types of ZnO nanostructures were successfully integrated as gate electrodes in extended-gate field-effect transistors (EGFETs). Due to the amphoteric properties of ZnO, such devices function as pH sensors. We found that the ultra-fine NWs, which were more than 50 μm in length and less than 100 nm in diameter, performed better in the pH sensing process than NW–NF hybrid structures because of their higher surface-to-volume ratio, considering the Nernst equation and the Gouy–Chapman–Stern model. Furthermore, the surface coating of (3-Aminopropyl)triethoxysilane (APTES) protects ZnO nanostructures in both acidic and alkaline environments, thus enhancing the device stability and extending its pH sensing dynamic range. (paper)

  7. Shape-dependent plasma-catalytic activity of ZnO nanomaterials coated on porous ceramic membrane for oxidation of butane.

    Science.gov (United States)

    Sanjeeva Gandhi, M; Mok, Young Sun

    2014-12-01

    In order to explore the effects of the shape of ZnO nanomaterials on the plasma-catalytic decomposition of butane and the distribution of byproducts, three types of ZnO nanomaterials (nanoparticles (NPs), nanorods (NRs) and nanowires (NWs)) were prepared and coated on multi-channel porous alumina ceramic membrane. The structures and morphologies of the nanomaterials were confirmed by X-ray diffraction method and scanning electron microscopy. The observed catalytic activity of ZnO in the oxidative decomposition of butane was strongly shape-dependent. It was found that the ZnO NWs exhibited higher catalytic activity than the other nanomaterials and could completely oxidize butane into carbon oxides (COx). When using the bare or ZnO NPs-coated ceramic membrane, several unwanted partial oxidation and decomposition products like acetaldehyde, acetylene, methane and propane were identified during the decomposition of butane. When the ZnO NWs- or ZnO NRs-coated membrane was used, however, the formation of such unwanted byproducts except methane was completely avoided, and full conversion into COx was achieved. Better carbon balance and COx selectivity were obtained with the ZnO NWs and NRs than with the NPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effects of Cr-doping on the photoluminescence and ferromagnetism at room temperature in ZnO nanomaterials prepared by soft chemistry route

    International Nuclear Information System (INIS)

    Wang Baiqi; Iqbal, Javed; Shan Xudong; Huang Guowei; Fu Honggang; Yu Ronghai; Yu Dapeng

    2009-01-01

    The pure and Cr-doped ZnO nanomaterials were prepared by soft chemistry route. The crystallinity and morphology of as-prepared ZnO nanomaterials were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), which show that Cr-doping could influence crystal and improve the oriented growth of ZnO nanomaterials. The amount of contents and valence state of Cr ions were investigated by energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), which demonstrate that the Cr ions are uniformly doped about 2 atm% in each nanowire and are in +3 valence state in doped ZnO nanomaterials. The effect of Cr-doping on the photoluminescence (PL) and magnetic properties of as-prepared ZnO nanomaterials were principally investigated at room temperature. The Cr-doping can adjust the energy level of ZnO nanocrystal and increase the amount of defects and oxygen vacancies, which lead to shift in the emission peak position in ultraviolet (UV) region and enhance the PL performance in visible light (VL) region of ZnO nanomaterials. In addition, the presence of Cr dopant in ZnO structures establishes the room-temperature ferromagnetism, which is possibly related to the existence of defects and oxygen vacancies as well as due to exchange interaction between Cr 3d and O 2p spin moments

  9. Solvothermal Synthesis of One-Dimensional Transition Metal Doped ZnO Nanocrystals and Their Applications in Smart Window Devices

    OpenAIRE

    Šutka, A; Timusk, M; Kisand, V; Saal, K; Joost, U; Lõhmus, R

    2015-01-01

    Oxide semiconductor nanowire (NW) suspension based devices have been attracted growing interest in smart window applications due to their great controllability of light transmittance, simplicity and long term stability. Recently, we demonstrated smart window device using the suspension of electrospun TiO2 or solvothermally synthesized ZnO NWs in viscous polydimethylsiloxane (PDMS) matrix. The operating principle of the oxide semiconductor NW and PDMS device is based on the alterable orientati...

  10. Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kasanaboina, Pavan Kumar [Department of Electrical and Computer Engineering, North Carolina A& T State University, Greensboro, North Carolina 27411 (United States); Ahmad, Estiak [Nanoengineering, Joint School of Nanoscience and Nanoengineering, NCA& T State University, Greensboro, North Carolina 27401 (United States); Li, Jia; Iyer, Shanthi [Department of Electrical and Computer Engineering, North Carolina A& T State University, Greensboro, North Carolina 27411 (United States); Nanoengineering, Joint School of Nanoscience and Nanoengineering, NCA& T State University, Greensboro, North Carolina 27401 (United States); Reynolds, C. Lewis; Liu, Yang [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-07

    Bandgap tuning up to 1.3 μm in GaAsSb based nanowires by incorporation of dilute amount of N is reported. Highly vertical GaAs/GaAsSbN/GaAs core-shell configured nanowires were grown for different N contents on Si (111) substrates using plasma assisted molecular beam epitaxy. X-ray diffraction analysis revealed close lattice matching of GaAsSbN with GaAs. Micro-photoluminescence (μ-PL) revealed red shift as well as broadening of the spectra attesting to N incorporation in the nanowires. Replication of the 4K PL spectra for several different single nanowires compared to the corresponding nanowire array suggests good compositional homogeneity amongst the nanowires. A large red shift of the Raman spectrum and associated symmetric line shape in these nanowires have been attributed to phonon localization at point defects. Transmission electron microscopy reveals the dominance of stacking faults and twins in these nanowires. The lower strain present in these dilute nitride nanowires, as opposed to GaAsSb nanowires having the same PL emission wavelength, and the observation of room temperature PL demonstrate the advantage of the dilute nitride system offers in the nanowire configuration, providing a pathway for realizing nanoscale optoelectronic devices in the telecommunication wavelength region.

  11. A Comparative Study on Structural and Optical Properties of ZnO Micro-Nanorod Arrays Grown on Seed Layers Using Chemical Bath Deposition and Spin Coating Methods

    Directory of Open Access Journals (Sweden)

    Sibel MORKOÇ KARADENİZ

    2016-11-01

    Full Text Available In this study, Zinc Oxide (ZnO seed layers were prepared on Indium Tin Oxide (ITO substrates by using Chemical Bath Deposition (CBD method and Sol-gel Spin Coating (SC method. ZnO micro-nanorod arrays were grown on ZnO seed layers by using Hydrothermal Synthesis method. Seed layer effects of structural and optical properties of ZnO arrays were characterized. X-ray diffractometer (XRD, Scanning Electron Microscopy (SEM and Ultraviolet Visible (UV-Vis Spectrometer were used for analyses. ZnO micro-nanorod arrays consisted of a single crystalline wurtzite ZnO structure for each seed layer. Besides, ZnO rod arrays were grown smoothly and vertically on SC seed layer, while ZnO rod arrays were grown randomly and flower like structures on CBD seed layer. The optical absorbance peaks found at 422 nm wavelength in the visible region for both ZnO arrays. Optical bandgap values were determined by using UV-Vis measurements at 3.12 and 3.15 eV for ZnO micro-nanorod arrays on CBD seed layer and for ZnO micro-nanorod arrays on SC-seed layer respectively.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13443

  12. Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor

    KAUST Repository

    Wei, Te-Yu

    2009-12-09

    A new single nanowire based nanosensor is demonstrated for illustrating its ultrahigh sensitivity for gas sensing. The device is composed of a single ZnO nanowire mounted on Pt electrodes with one end in Ohmic contact and the other end in Schottky contact. The Schottky contact functions as a "gate" that controls the current flowing through the entire system. By tuning the Schottky barrier height through the responsive variation of the surface chemisorbed gases and the amplification role played by the nanowire to Schottky barrier effect, an ultrahigh sensitivity of 32 000% was achieved using the Schottky contacted device operated in reverse bias mode at 275 °C for detection of 400 ppm CO, which is 4 orders of magnitude higher than that obtained using an Ohmic contact device under the same conditions. In addition, the response time and reset time have been shortened by a factor of 7. The methodology and principle illustrated in the paper present a new sensing mechanism that can be readily and extensively applied to other gas sensing systems. © 2009 American Chemical Society.

  13. Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor

    KAUST Repository

    Wei, Te-Yu; Yeh, Ping-Hung; Lu, Shih-Yuan; Wang, Zhong Lin

    2009-01-01

    A new single nanowire based nanosensor is demonstrated for illustrating its ultrahigh sensitivity for gas sensing. The device is composed of a single ZnO nanowire mounted on Pt electrodes with one end in Ohmic contact and the other end in Schottky contact. The Schottky contact functions as a "gate" that controls the current flowing through the entire system. By tuning the Schottky barrier height through the responsive variation of the surface chemisorbed gases and the amplification role played by the nanowire to Schottky barrier effect, an ultrahigh sensitivity of 32 000% was achieved using the Schottky contacted device operated in reverse bias mode at 275 °C for detection of 400 ppm CO, which is 4 orders of magnitude higher than that obtained using an Ohmic contact device under the same conditions. In addition, the response time and reset time have been shortened by a factor of 7. The methodology and principle illustrated in the paper present a new sensing mechanism that can be readily and extensively applied to other gas sensing systems. © 2009 American Chemical Society.

  14. Vertical integration

    International Nuclear Information System (INIS)

    Antill, N.

    1999-01-01

    This paper focuses on the trend in international energy companies towards vertical integration in the gas chain from wellhead to power generation, horizontal integration in refining and marketing businesses, and the search for larger projects with lower upstream costs. The shape of the petroleum industry in the next millennium, the creation of super-major oil companies, and the relationship between size and risk are discussed. The dynamics of vertical integration, present events and future developments are considered. (UK)

  15. Interactions of Cells with Magnetic Nanowires and Micro Needles

    KAUST Repository

    Perez, Jose E.

    2017-12-01

    The use of nanowires, nano and micro needles in biomedical applications has markedly increased in the past years, mainly due to attractive properties such as biocompatibility and simple fabrication. Specifically, these structures have shown promise in applications including cell separation, tumor cell capture, intracellular delivery, cell therapy, cancer treatment and as cell growth scaffolds. The work proposed here aims to study two platforms for different applications: a vertical magnetic nanowire array for mesenchymal stem cell differentiation and a micro needle platform for intracellular delivery. First, a thorough evaluation of the cytotoxicity of nanowires was done in order to understand how a biological system interacts with high aspect ratio structures. Nanowires were fabricated through pulsed electrodeposition and characterized by electron microscopy, vibrating sample magnetometry and energy dispersive X-ray spectroscopy. Studies of biocompatibility, cell death, cell membrane integrity, nanowire internalization and intracellular dissolution were all performed in order to characterize the cell response. Results showed a variable biocompatibility depending on nanowire concentration and incubation time, with cell death resulting from an apoptotic pathway arising after internalization. A vertical array of nanowires was then used as a scaffold for the differentiation of human mesenchymal stem cells. Using fluorescence and electron microscopy, the interactions between the dense array of nanowires and the cells were analyzed, as well as the biocompatibility of the array and its effects on cell differentiation. A magnetic field was additionally applied on the substrate to observe a possible differentiation. Stem cells grown on this scaffold showed a cytoskeleton and focal adhesion reorganization, and later expressed the osteogenic marker osteopontin. The application of a magnetic field counteracted this outcome. Lastly, a micro needle platform was fabricated

  16. Nanoparticle Stability in Axial InAs-InP Nanowire Heterostructures with Atomically Sharp Interfaces.

    Science.gov (United States)

    Zannier, Valentina; Rossi, Francesca; Dubrovskii, Vladimir G; Ercolani, Daniele; Battiato, Sergio; Sorba, Lucia

    2018-01-10

    The possibility to expand the range of material combinations in defect-free heterostructures is one of the main motivations for the great interest in semiconductor nanowires. However, most axial nanowire heterostructures suffer from interface compositional gradients and kink formation, as a consequence of nanoparticle-nanowire interactions during the metal-assisted growth. Understanding such interactions and how they affect the growth mode is fundamental to achieve a full control over the morphology and the properties of nanowire heterostructures for device applications. Here we demonstrate that the sole parameter affecting the growth mode (straight or kinked) of InP segments on InAs nanowire stems by the Au-assisted method is the nanoparticle composition. Indeed, straight InAs-InP nanowire heterostructures are obtained only when the In/Au ratio in the nanoparticles is low, typically smaller than 1.5. For higher In content, the InP segments tend to kink. Tailoring the In/Au ratio by the precursor fluxes at a fixed growth temperature enables us to obtain straight and radius-uniform InAs-InP nanowire heterostructures (single and double) with atomically sharp interfaces. We present a model that is capable of describing all the experimentally observed phenomena: straight growth versus kinking, the stationary nanoparticle compositions in pure InAs and InAs-InP nanowires, the crystal phase trends, and the interfacial abruptness. By taking into account different nanowire/nanoparticle interfacial configurations (forming wetting or nonwetting monolayers in vertical or tapered geometry), our generalized model provides the conditions of nanoparticle stability and abrupt heterointerfaces for a rich variety of growth scenarios. Therefore, our results provide a powerful tool for obtaining high quality InAs-InP nanowire heterostructures with well-controlled properties and can be extended to other material combinations based on the group V interchange.

  17. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno; Accardo, Angelo; Falqui, Andrea; Marini, Monica; Giugni, Andrea; Leoncini, Marco; De Angelis, Francesco De; Krahne, Roman; Di Fabrizio, Enzo M.

    2014-01-01

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  18. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno

    2014-08-08

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  19. A vacuum pressure sensor based on ZnO nanobelt film

    International Nuclear Information System (INIS)

    Zheng, X J; Cao, X C; Sun, J; Yuan, B; Zhu, Z; Zhang, Y; Li, Q H

    2011-01-01

    A vacuum pressure sensor was fabricated by assembling ZnO nanobelt film on the interdigital electrodes, and the current-voltage characteristics were measured with an Agilent semiconductor parameter tester. Under different pressures of 1.0 x 10 3 , 6.7 x 10 -3 , 8.2 x 10 -4 and 9.5 x 10 -5 mbar, the currents are 8.71, 28.1, 46.1 and 89.6 nA, and the pressure sensitive resistances are 1150, 356, 217 and 112 MΩ, respectively. In the range of 10 -5 -10 3 mbar the smaller the pressure is, the higher the current is. The pressure sensitive resistance of the vacuum pressure sensor increases linearly with the logarithmic pressure, and the measurement range is at least one order of magnitude wider than that of the previous sensors. Under the final pressure, the vacuum pressure sensor has maximum sensitivity (9.29) and power consumption of 0.9 μW. The sensitivity is larger than that of the previous sensor based on a ZnO single nanowire at that pressure, and the power consumption is much lower than that for the sensor based on a ZnO nanowire array. The pressure sensitive mechanism is reasonably explained by using oxygen chemisorption and energy band theory.

  20. Electrochemical fabrication of Sn nanowires on titania nanotube guide layers

    International Nuclear Information System (INIS)

    Djenizian, Thierry; Hanzu, Ilie; Premchand, Yesudas D; Vacandio, Florence; Knauth, Philippe

    2008-01-01

    We describe a novel approach for the fabrication of tailored nanowires using a two-step electrochemical process. It is demonstrated that self-organized TiO 2 nanotubes can be used to activate and guide the electrochemical growth of Sn crystallites, leading to the formation of vertical features with a high aspect ratio. We show that the dimensions and the density of Sn crystallites depend on the electrodeposition parameters