WorldWideScience

Sample records for zno transparent conducting

  1. ZnO based transparent conductive oxide films with controlled type of conduction

    Energy Technology Data Exchange (ETDEWEB)

    Zaharescu, M., E-mail: mzaharescu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Mihaiu, S., E-mail: smihaiu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Toader, A. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Atkinson, I., E-mail: irinaatkinson@yahoo.com [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Calderon-Moreno, J.; Anastasescu, M.; Nicolescu, M.; Duta, M.; Gartner, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Vojisavljevic, K.; Malic, B. [Institute Jožef Stefan, Ljubljana (Slovenia); Ivanov, V.A.; Zaretskaya, E.P. [State Scientific and Production Association “Scientific-Practical Materials Research Center of the National Academy of Science Belarus, P. Brovska str.19, 220072, Minsk (Belarus)

    2014-11-28

    The transparent conductive oxide films with controlled type of conduction are of great importance and their preparation is intensively studied. In our work, the preparation of such films based on doped ZnO was realized in order to achieve controlled type of conduction and high concentration of the charge carriers. Sol–gel method was used for films preparation and several dopants were tested (Sn, Li, Ni). Multilayer deposition was performed on several substrates: SiO{sub 2}/Si wafers, silica-soda-lime and/or silica glasses. The structural and morphological characterization of the obtained films were done by scanning electron microscopy, X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy and atomic force microscopy respectively, while spectroscopic ellipsometry and transmittance measurements were done for determination of optical properties. The selected samples with the best structural, morphological and optical properties were subjected to electrical measurement (Hall and Seebeck effect). In all studied cases, samples with good adherence and homogeneous morphology as well as monophasic wurtzite type structure were obtained. The optical constants (refractive index and extinction coefficient) were calculated from spectroscopic ellipsometry data using Cauchy model. Films with n- or p-type conduction were obtained depending on the composition, number of deposition and thermal treatment temperature. - Highlights: • Transparent conductive ZnO based thin films were prepared by the sol–gel method. • Controlled type of conduction is obtained in (Sn, Li) doped and Li-Ni co-doped ZnO films. • Hall and Seebeck measurements proved the p-type conductivity for Li-Ni co-doped ZnO films. • The p-type conductivity was maintained even after 4-months of storage. • Influence of dopant- and substrate-type on the ZnO films properties was established.

  2. A carbon nanotube-based transparent conductive substrate for flexible ZnO dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Du, Juan; Bittner, Florian [Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3a, 30167 Hannover (Germany); Hecht, David S.; Ladous, Corinne [Unidym, 1244 Reamwood Avenue, Sunnyvale, CA (United States); Ellinger, Jan [Tesa SE, Quickbornstr. 24, 20253 Hamburg (Germany); Oekermann, Torsten, E-mail: torstensan@t-online.de [Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3a, 30167 Hannover (Germany); Wark, Michael, E-mail: michael.wark@techem.ruhr-uni-bochum.de [Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3a, 30167 Hannover (Germany); Laboratory of Industrial Chemistry, Ruhr University Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)

    2013-03-01

    A transparent carbon nanotube (CNT)-coated polyethylenterephthalat film was used as conducting substrate for the photoanode of a flexible ZnO-based dye-sensitized solar cell (DSSC). The porous ZnO films were fabricated by an electrochemical deposition method at low temperature. Electrochemical impedance spectroscopy revealed that the CNT/ZnO interface adds to the overall impedance of the cell, leading to a higher series resistance compared to DSSCs based on substrates employing a transparent conducting oxide. Nevertheless, an overall conversion efficiency of 2.5% was obtained with porous ZnO films electrodeposited on the CNT substrate for 60 min. Thicker films led to an increased loss by recombination, which could not be compensated by faster electron transport due to the decrease of the light intensity inside the ZnO film with increasing distance from the back contact. - Highlights: ► ZnO was electrochemically deposited on carbon nanotube (CNT) coated polymer. ► Highly porous ZnO was obtained at temperatures not exceeding 70 °C. ► The porous ZnO was tested as photoanode in dye-sensitized solar cells. ► Conversion efficiency of 2.5% was found on the high resistance CNT substrates. ► Barriers formed at the CNT–ZnO interface are determined by impedance spectroscopy.

  3. A carbon nanotube-based transparent conductive substrate for flexible ZnO dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Du, Juan; Bittner, Florian; Hecht, David S.; Ladous, Corinne; Ellinger, Jan; Oekermann, Torsten; Wark, Michael

    2013-01-01

    A transparent carbon nanotube (CNT)-coated polyethylenterephthalat film was used as conducting substrate for the photoanode of a flexible ZnO-based dye-sensitized solar cell (DSSC). The porous ZnO films were fabricated by an electrochemical deposition method at low temperature. Electrochemical impedance spectroscopy revealed that the CNT/ZnO interface adds to the overall impedance of the cell, leading to a higher series resistance compared to DSSCs based on substrates employing a transparent conducting oxide. Nevertheless, an overall conversion efficiency of 2.5% was obtained with porous ZnO films electrodeposited on the CNT substrate for 60 min. Thicker films led to an increased loss by recombination, which could not be compensated by faster electron transport due to the decrease of the light intensity inside the ZnO film with increasing distance from the back contact. - Highlights: ► ZnO was electrochemically deposited on carbon nanotube (CNT) coated polymer. ► Highly porous ZnO was obtained at temperatures not exceeding 70 °C. ► The porous ZnO was tested as photoanode in dye-sensitized solar cells. ► Conversion efficiency of 2.5% was found on the high resistance CNT substrates. ► Barriers formed at the CNT–ZnO interface are determined by impedance spectroscopy

  4. Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daeho; Pan, Heng; Kim, Eunpa; Grigoropoulos, Costas P. [University of California, Department of Mechanical Engineering, Berkeley, CA (United States); Ko, Seung Hwan [Korea Advanced Institute of Science and Technology (KAIST), Department of Mechanical Engineering, Daejeon (Korea, Republic of); Park, Hee K. [AppliFlex LLC, Sunnyvale, CA (United States)

    2012-04-15

    A solution-processable, high-concentration transparent ZnO nanoparticle (NP) solution was successfully synthesized in a new process. A highly transparent ZnO thin film was fabricated by spin coating without vacuum deposition. Subsequent ultra-short-pulsed laser annealing at room temperature was performed to change the film properties without using a blanket high temperature heating process. Although the as-deposited NP thin film was not electrically conductive, laser annealing imparted a large conductivity increase and furthermore enabled selective annealing to write conductive patterns directly on the NP thin film without a photolithographic process. Conductivity enhancement could be obtained by altering the laser annealing parameters. Parametric studies including the sheet resistance and optical transmittance of the annealed ZnO NP thin film were conducted for various laser powers, scanning speeds and background gas conditions. The lowest resistivity from laser-annealed ZnO thin film was about 4.75 x 10{sup -2} {omega} cm, exhibiting a factor of 10{sup 5} higher conductivity than the previously reported furnace-annealed ZnO NP film and is even comparable to that of vacuum-deposited, impurity-doped ZnO films within a factor of 10. The process developed in this work was applied to the fabrication of a thin film transistor (TFT) device that showed enhanced performance compared with furnace-annealed devices. A ZnO TFT performance test revealed that by just changing the laser parameters, the solution-deposited ZnO thin film can also perform as a semiconductor, demonstrating that laser annealing offers tunability of ZnO thin film properties for both transparent conductors and semiconductors. (orig.)

  5. Transparent conductive Ga-doped ZnO films fabricated by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Behrends, Arne; Wagner, Alexander; Al-Suleiman, Mohamed Aid Mansur; Waag, Andreas; Bakin, Andrey [Institute of Semiconductor Technology, University of Technology Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany); Lugauer, Hans-Juergen; Strassburg, Martin; Walter, Robert; Weimar, Andreas [OSRAM Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany)

    2012-04-15

    Transparent conductive oxides (TCOs) are used for a variety of different applications, e.g., in solar cells and light emitting diodes (LEDs). Mostly, sputtering is used, which often results in a degradation of the underlying semiconductor material. In this work we report on a ''soft'' method for the fabrication of ZnO films as TCO layers by using metal organic chemical vapor deposition (MOCVD) at particularly low temperatures. The MOCVD approach has been studied focusing on the TCO key issues: fabrication temperature, morphology, optical, and electrical properties. Very smooth ZnO films with rms values down to 0.8 nm were fabricated at a substrate temperature of only 300 C. Ga-doping is well controllable even for high carrier concentrations up to 2 x 10{sup 20} cm{sup -3}, which is above the Mott-density leading to metallic-like behavior of the films. Furthermore all films show excellent optical transparency in the visible spectral range. As a consequence, our MOCVD approach is well suited for the soft fabrication of ZnO-based TCO layers. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Superhydrophobic and anti-reflective ZnO nanorod-coated FTO transparent conductive thin films prepared by a three-step method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: li_bjia@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, 212013 (China); Huang, Li-jing; Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Kong, Xia; Cai, Yun-long; Zhang, Jie-lu [Jiangsu Tailong Reduction Box Co. Ltd., Taixing, 225400 (China)

    2016-07-25

    A ZnO nanorod-coated FTO film was prepared by sputtering an AZO layer on FTO glass, thermal annealing of the AZO/FTO film, and hydrothermal growth of ZnO nanorods at 70 °C on the annealed AZO/FTO film using zinc foils as zinc source. Two other ZnO nanorod-coated FTO films were also prepared by hydrothermal growths of ZnO nanorods on the FTO glass and the unannealed AZO/FTO film respectively for comparison purpose. The results were observed in detail using X-ray diffraction, scanning electron microscopy, water contact/sliding angle measurement, spectrophotometry and four-point probe measurement. The ZnO nanorods on the annealed AZO/FTO film were found to exhibit denser distribution and better orientation than those on the FTO glass and the unannealed AZO/FTO film. As a result, the ZnO nanorod-coated annealed AZO/FTO film demonstrated superhydrophobicity, high transparency and low reflectance in the visible range. Also this film had the lowest sheet resistance of 4.0 Ω/sq, implying its good electrical conductivity. This investigation provides a valuable reference for developing multifunctional transparent conductive films. - Highlights: • ZnO nanorod-coated annealed AZO/FTO film was obtained by a three-step method. • FTO and unannealed AZO/FTO films were also used as substrates for comparison. • ZnO nanorods on the annealed AZO/FTO film were denser and more vertically-oriented. • The ZnO nanorod-coated annealed AZO/FTO film (Z/TA-FTO) had superhydrophobicity. • The Z/TA-FTO exhibited high transparency, low reflectance and good conductivity.

  7. Fabricating ZnO single microwire light-emitting diode with transparent conductive ITO film

    International Nuclear Information System (INIS)

    Xu, Yingtian; Dai, Jun; Shi, Zhifeng; Long, Beihong; Wu, Bin; Cai, Xupu; Chu, Xianwei; Du, Guotong; Zhang, Baolin; Yin, Jingzhi

    2014-01-01

    In this paper, n-ZnO single microwire/p + -Si heterojunction LEDs are fabricated using the transparent conductive ITO film as an electrode. A distinct UV emission resulting from free exciton recombination in a ZnO single microwire is observed in the electroluminescence. Size difference of ZnO single microwire shows significant influence on emission efficiency. The EL spectra of n-ZnO single microwire/p-Si heterostructure exhibited relatively stronger UV emission which was compared with the EL spectra of n-ZnO single nanowire/p-Si heterostructure and n-ZnO film/p-Si heterostructure, respectively. - Highlights: • The ZnO microwires were synthesized with a vapor phase transport method. • ZnO single microwire/Si LEDs were fabricated using the ITO film as an electrode. • The EL spectra had been compared with n-ZnO film/p-Si heterostructure. • The EL spectra had been compared with n-ZnO single nanowire/p-Si heterostructure

  8. Al-Doped ZnO Monolayer as a Promising Transparent Electrode Material: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Mingyang Wu

    2017-03-01

    Full Text Available Al-doped ZnO has attracted much attention as a transparent electrode. The graphene-like ZnO monolayer as a two-dimensional nanostructure material shows exceptional properties compared to bulk ZnO. Here, through first-principle calculations, we found that the transparency in the visible light region of Al-doped ZnO monolayer is significantly enhanced compared to the bulk counterpart. In particular, the 12.5 at% Al-doped ZnO monolayer exhibits the highest visible transmittance of above 99%. Further, the electrical conductivity of the ZnO monolayer is enhanced as a result of Al doping, which also occurred in the bulk system. Our results suggest that Al-doped ZnO monolayer is a promising transparent conducting electrode for nanoscale optoelectronic device applications.

  9. Roughness-based monitoring of transparency and conductivity in boron-doped ZnO thin films prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Gaikwad, Rajendra S.; Bhande, Sambhaji S.; Mane, Rajaram S.; Pawar, Bhagwat N.; Gaikwad, Sanjay L.; Han, Sung-Hwan; Joo, Oh-Shim

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► We report surface roughness dependent transparency and conductivity in ZnO films. ► The surface roughness with respected to boron doping concentrations is studied. ► Boron doped and pristine Zinc oxide thin films have showed ≥95% transmittance. ► Increased carrier concentration of 9.21 × 10 21 cm −3 revealed from Hall measurement. -- Abstract: Sprayed polycrystalline ZnO and boron-doped ZnO thin films composed of spherical grains of 25–32 nm in diameters are used in roughness measurement and further correlated with the transparency and the conductivity characteristics. The surface roughness is increased up to Zn 0.98 B 0.02 O and then declined at higher boron concentrations. The sprayed ZnO films revealed ≥95% transmittance in the visible wavelength range, 1.956 × 10 −4 Ω cm electrical resistivity, 46 cm 2 /V s Hall mobility and 9.21 × 10 21 cm −3 charge carrier concentration. The X-ray photoelectron spectroscopy study has confirmed 0.15 eV binding energy change for Zn 2p 3/2 when 2 at% boron content is mixed without altering electro-optical properties substantially. Finally, using soft modeling importance of these textured ZnO over non-textured films for enhancing the solar cells performance is explored.

  10. ZnO transparent conductive oxide for thin film silicon solar cells

    Science.gov (United States)

    Söderström, T.; Dominé, D.; Feltrin, A.; Despeisse, M.; Meillaud, F.; Bugnon, G.; Boccard, M.; Cuony, P.; Haug, F.-J.; Faÿ, S.; Nicolay, S.; Ballif, C.

    2010-03-01

    There is general agreement that the future production of electric energy has to be renewable and sustainable in the long term. Photovoltaic (PV) is booming with more than 7GW produced in 2008 and will therefore play an important role in the future electricity supply mix. Currently, crystalline silicon (c-Si) dominates the market with a share of about 90%. Reducing the cost per watt peak and energy pay back time of PV was the major concern of the last decade and remains the main challenge today. For that, thin film silicon solar cells has a strong potential because it allies the strength of c-Si (i.e. durability, abundancy, non toxicity) together with reduced material usage, lower temperature processes and monolithic interconnection. One of the technological key points is the transparent conductive oxide (TCO) used for front contact, barrier layer or intermediate reflector. In this paper, we report on the versatility of ZnO grown by low pressure chemical vapor deposition (ZnO LP-CVD) and its application in thin film silicon solar cells. In particular, we focus on the transparency, the morphology of the textured surface and its effects on the light in-coupling for micromorph tandem cells in both the substrate (n-i-p) and superstrate (p-i-n) configurations. The stabilized efficiencies achieved in Neuchâtel are 11.2% and 9.8% for p-i-n (without ARC) and n-i-p (plastic substrate), respectively.

  11. On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study

    Energy Technology Data Exchange (ETDEWEB)

    Slassi, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Naji, S. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Department of Physics, Faculty of Science, Ibb University, Ibb (Yemen); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); El Kenz, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-08-25

    Highlights: • The incorporation of Al in ZnO increases the optical band edge absorption. • Incorporated Al creates shallow donor states of Al-3s around Fermi level. • Transmittance decreases in the visible and IR regions, while it increases in the UV region. • Electrical conductivity increases and reaches almost the saturation for high concentration of Al. - Abstract: We report, in this work, a theoretical study on the electronic, optical and electrical properties of pure and Al doped ZnO with different concentrations. In fact, we investigate these properties using both First Principles calculations within TB-mBJ approximation and Boltzmann equations under the constant relaxation time approximation for charge carriers. It is found out that, the calculated lattice parameters and the optical band gap of pure ZnO are close to the experimental values and in a good agreement with the other theoretical studies. It is also observed that, the incorporations of Al in ZnO increase the optical band edge absorption which leads to a blue shift and no deep impurities levels are induced in the band gap as well. More precisely, these incorporations create shallow donor states around Fermi level in the conduction band minimum from mainly Al-3s orbital. Beside this, it is found that, the transmittance is decreased in the visible and IR regions, while it is significantly improved in UV region. Finally, our calculations show that the electrical conductivity is enhanced as a result of Al doping and it reaches almost the saturation for high concentration of Al. These features make Al doped ZnO a transparent conducting electrode for optoelectronic device applications.

  12. Nitrogen grain-boundary passivation of In-doped ZnO transparent conducting oxide

    Science.gov (United States)

    Ali, D.; Butt, M. Z.; Coughlan, C.; Caffrey, D.; Shvets, I. V.; Fleischer, K.

    2018-04-01

    We have investigated the properties and conduction limitations of spray pyrolysis grown, low-cost transparent conducting oxide ZnO thin films doped with indium. We analyze the optical, electrical, and crystallographic properties as functions of In content with a specific focus on postgrowth heat treatment of these thin films at 320 ∘C in an inert, nitrogen atmosphere, which improves the films electrical properties considerably. The effect was found to be dominated by nitrogen-induced grain-boundary passivation, identified by a combined study using i n situ resistance measurement upon annealing, x-ray photoelectron spectroscopy, photoluminescence, and x-ray diffraction studies. We also highlight the chemical mechanism of morphologic and crystallographic changes found in films with high indium content. By optimizing growth conditions according to these findings, ZnO:In with a resistivity as low as 2 ×10 -3Ω cm , high optical quality (T ≈90 % ), and sheet resistance of 32 Ω /□ has been obtained without any need for postgrowth treatments.

  13. ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing

    International Nuclear Information System (INIS)

    Liu, Y.; Li, Y.; Zeng, H.

    2013-01-01

    ZnO-based transparent conductive thin films have attracted much attention as a promising substitute material to the currently used indium-tin-oxide thin films in transparent electrode applications. However, the detailed function of the dopants, acting on the electrical and optical properties of ZnO-based transparent conductive thin films, is not clear yet, which has limited the development and practical applications of ZnO transparent conductive thin films. Growth conditions such as substrate type, growth temperature, and ambient atmosphere all play important roles in structural, electrical, and optical properties of films. This paper takes a panoramic view on properties of ZnO thin films and reviews the very recent works on new, efficient, low-temperature, and high-speed deposition technologies. In addition, we highlighted the methods of producing ZnO-based transparent conductive film on flexible substrate, one of the most promising and rapidly emerging research areas. As optimum-processing-parameter conditions are being obtained and their influencing mechanism is becoming clear, we can see that there will be a promising future for ZnO-based transparent conductive films.

  14. Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dosmailov, M. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Leonat, L.N. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Patek, J. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Roth, D.; Bauer, P. [Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Scharber, M.C.; Sariciftci, N.S. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-09-30

    Aluminum doped ZnO (AZO) and pure ZnO thin films are grown on polymer substrates by pulsed-laser deposition and the optical, electrical, and structural film properties are investigated. Laser fluence, substrate temperature, and oxygen pressure are varied to obtain transparent, conductive, and stoichiometric AZO layers on polyethylene terephthalate (PET) that are free of cracks. At low fluence (1 J/cm{sup 2}) and low pressure (10{sup −3} mbar), AZO/PET samples of high optical transmission in the visible range, low electrical sheet resistance, and high figure of merit (FOM) are produced. AZO films on fluorinated ethylene propylene have low FOM. The AZO films on PET substrates are used as electron transport layer in inverted organic solar cell devices employing P3HT:PCBM as photovoltaic polymer-fullerene bulk heterojunction. - Highlights: • Aluminum doped and pure ZnO thin films are grown on polyethylene terephthalate. • Growth parameters laser fluence, temperature, and gas pressure are optimized. • AZO films on PET have high optical transmission and electrical conductance (FOM). • Organic solar cells on PET using AZO as electron transport layer are made. • Power conversion efficiency of these OSC devices is measured.

  15. Development of transparent conductive indium and fluorine co-doped ZnO thin films: Effect of F concentration and post-annealing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hadri, A. [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco); Taibi, M. [University of Mohammed V, LPCMIN, Ecole Normale Superieure, Rabat (Morocco); Loghmarti, M.; Nassiri, C.; Slimani Tlemçani, T. [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco); Mzerd, A., E-mail: mzerd@yahoo.fr [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco)

    2016-02-29

    In the present work ZnO, In doped ZnO and In-F co-doped ZnO (IFZO) films were synthesized on heated glass substrates (350 °C) by the chemical spray technique. The effect of fluorine concentration on the structural, morphological, optical and electrical properties was studied. It was observed from X-ray diffraction (XRD) that the films have a polycrystalline structure and the intensity of the peaks depend on the doping and co-doping concentration. No diffraction peak related to dopants in XRD patterns along with shift in peaks angles to ZnO proved that In and F ions were doped into ZnO thin films. The Raman spectra confirm the hexagonal structure of the as-deposited films, and demonstrated an enhancement of the surface phonon mode of doped and co-doped films as compared to undoped films. The as-deposited films showed an average transmittance above 70%, in the wavelength range of 400–800 nm. A minimum electrical resistivity, in the order of 5.2 × 10{sup −} {sup 2} Ω cm was obtained for the IFZO thin film with 5 at.% F doping. Moreover, the electrical properties of doped and co-doped films were enhanced after post-deposition annealing. It was found that post-annealed thin films at 350 °C showed a decrease of one order of magnitude of the resistivity values. Such a transparent and conducting thin film can be suitable for optical and electrical applications owing to their low resistivity combined with high transmittance in the visible range. - Highlights: • Conductive transparent ZnO, IZO, IFZO thin films were deposited by spray pyrolysis. • Doping and co-doping affect morphology and optoelectrical properties. • As deposited film with high fluorine content exhibited high carrier mobility (55 cm{sup 2} V{sup −} {sup 1} s{sup −} {sup 1}). • Correlation between intrinsic defects and carrier mobility was observed. • Post-annealing in Ar atmosphere improves conductivity.

  16. Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs

    International Nuclear Information System (INIS)

    He Ying; Wang Junan; Pei Changlong; Song Jizhong; Zhu Di; Chen Jie

    2010-01-01

    A novel high transparent thermolytic epoxy-silicone for high-brightness light-emitting diode (HB-LED) is introduced, which was synthesized by polymerization using silicone matrix via diglycidyl ether bisphenol-A epoxy resin (DGEBA) as reinforcing agent, and filling ZnO nanowires to modify thermal conductivity and control refractive index of the hybrid material. The interactions of ZnO nanowires with polymers are mediated by the ligands attached to the nanoparticles. Thus, the ligands markedly influence the properties of ZnO nanowires/epoxy-silicone composites. The refractive indices of the prepared hybrid adhesives can be tuned by the ZnO nanowires from 1.4711 to 1.5605. Light transmittance can be increased by 20% from 80 to 95%. The thermal conductivity of the transparent packaging adhesives is 0.89-0.90 W/mK.

  17. ZnO as dielectric for optically transparent non-volatile memory

    International Nuclear Information System (INIS)

    Salim, N. Tjitra; Aw, K.C.; Gao, W.; Wright, Bryon E.

    2009-01-01

    This paper discusses the application of a DC sputtered ZnO thin film as a dielectric in an optically transparent non-volatile memory. The main motivation for using ZnO as a dielectric is due to its optical transparency and mechanical flexibility. We have established the relationship between the electrical resistivity (ρ) and the activation energy (E a ) of the electron transport in the conduction band of the ZnO film. The ρ of 2 x 10 4 -5 x 10 7 Ω-cm corresponds to E a of 0.36-0.76 eV, respectively. The k-value and optical band-gap for films sputtered with Ar:O 2 ratio of 4:1 are 53 ± 3.6 and 3.23 eV, respectively. In this paper, the basic charge storage element for a non-volatile memory is a triple layer dielectric structure in which a 50 nm thick ZnO film is sandwiched between two layers of methyl silsesquioxane sol-gel dielectric of varying thickness. A pronounced clockwise capacitance-voltage (C-V) hysteresis was observed with a memory window of 6 V. The integration with a solution-processable pentacene, 13,6-N-Sulfinylacetamodipentacene resulted in an optically transparent organic field effect transistor non-volatile memory (OFET-NVM). We have demonstrated that this OFET-NVM can be electrically programmed and erased at low voltage (± 10 V) with a threshold voltage shift of 4.0 V.

  18. Transparent conductive zinc oxide basics and applications in thin film solar cells

    CERN Document Server

    Klein, Andreas; Rech, Bernd

    2008-01-01

    Zinc oxide (ZnO) belongs to the class of transparent conducting oxides which can be used as transparent electrodes in electronic devices or heated windows. In this book the material properties of, the deposition technologies for, and applications of zinc oxide in thin film solar cells are described in a comprehensive manner. Structural, morphological, optical and electronic properties of ZnO are treated in this review. The editors and authors of this book are specialists in deposition, analysis and fabrication of thin-film solar cells and especially of ZnO. This book is intended as an overview and a data collection for students, engineers and scientist.

  19. Transparent conducting materials: Overview and recent results

    NARCIS (Netherlands)

    Deelen, J. van; Illiberi, A.; Hovestad, A.; Barbu, I.; Klerk, L.; Buskens, P.

    2012-01-01

    An overview of different transparent conductors is given. In addition, atmospheric pressure CVD of ZnO resulted in conductivities below 1 mΩ cm for a temperature of 480°C, whereas at a process temperature of 200°C a value of 2 mΩ cm was obtained. Also atmospheric pressure spatial ALD was used to

  20. Morphology-controllable of Sn doped ZnO nanorods prepared by spray pyrolysis for transparent electrode application

    Science.gov (United States)

    Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.

    2018-05-01

    Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.

  1. Optimizing electrical conductivity and optical transparency of IZO thin film deposited by radio frequency (RF) magnetron sputtering

    Science.gov (United States)

    Zhang, Lei

    Transparent conducting oxide (TCO) thin films of In2O3, SnO2, ZnO, and their mixtures have been extensively used in optoelectronic applications such as transparent electrodes in solar photovoltaic devices. In this project I deposited amorphous indium-zinc oxide (IZO) thin films by radio frequency (RF) magnetron sputtering from a In2O3-10 wt.% ZnO sintered ceramic target to optimize the RF power, argon gas flowing rate, and the thickness of film to reach the maximum conductivity and transparency in visible spectrum. The results indicated optimized conductivity and transparency of IZO thin film is closer to ITO's conductivity and transparency, and is even better when the film was deposited with one specific tilted angle. National Science Foundation (NSF) MRSEC program at University of Nebraska Lincoln, and was hosted by Professor Jeff Shields lab.

  2. Efficient solution route to transparent ZnO semiconductor films using colloidal nanocrystals

    Directory of Open Access Journals (Sweden)

    Satoshi Suehiro

    2016-09-01

    Full Text Available ZnO nanocrystals (NCs were synthesized by heating Zn (II acetylacetonate in oleic acid/oleylamine in the presence of 1,2-hexadecanediol at 220 °C. Transmission electron microscopy (TEM and dynamic light scattering (DLS measurements revealed the formation of monodispersed ZnO NCs of ca. 7 nm. ZnO NC assembled films were fabricated on a glass substrate by deposition with the colloidal ZnO NCs dispersed in toluene. The film composed of the NCs showed good optical transparency in the visible to near-infrared region. A device coupling the ZnO NC film with a p-type Cu2ZnSnS4 (CZTS NC film exhibited an obvious diode-like current–voltage behavior. The results suggest that the transparent ZnO film has a potentiality to be used for an n-type window layer in some optoelectronic applications.

  3. Indium-free Cu/fluorine doped ZnO composite transparent conductive electrodes with stretchable and flexible performance on poly(ethylene terephthalate) substrate

    Science.gov (United States)

    Han, Jun; Gong, Haibo; Yang, Xiaopeng; Qiu, Zhiwen; Zi, Min; Qiu, Xiaofeng; Wang, Hongqiang; Cao, Bingqiang

    2015-03-01

    Material-abundant ZnO and metal thin film have been proposed as potential alternatives for the most widely commercial indium tin oxide (ITO) transparent and conductive electrode. Yet the deterioration of optical transparency and conductivity for these materials makes them difficult to compete with ITO. In this work, a double-layer structured film-composed of FZO and Cu film is presented at room temperature, which combines the high transparency of FZO and high conductivity of Cu film. We first studied the effect of oxygen pressure on the transparency and conductivity of free-standing FZO layer deposited on poly(ethylene terephthalate) (PET) by PLD method. Also the structural, electrical, and optical properties of bilayers electrode dependence on the Cu layer thickness were optimized in detail. As the Cu layer thickness increases, the resistivity decreases. The lowest resistivity of 6.6 × 10-5 Ω cm with a carrier concentration of 1.11 × 1022 cm-3 and mobility of 8.52 cm2 V-1 s-1 was obtained at the optimum Cu (12 nm) layer thickness. We find that FZO layer have anti-reflection effect for Cu/FZO (250 nm) bilayer in the wavelength range of 650-1000 nm compared with single Cu layer. And we firstly study the stretchable performance for Cu film-based composite electrodes with stretching ratio changing from 0 to 5%. Furthermore, we study excellent mechanical flexibility and stability of composite electrodes by bending test.

  4. Characterization of a new transparent-conducting material of ZnO doped ITO thin films

    Science.gov (United States)

    Ali, H. M.

    2005-11-01

    Thin films of indium tin oxide (ITO) doped with zinc oxide have the remarkable properties of being conductive yet still highly transparent in the visible and near-IR spectral ranges. The Electron beam deposi- tion technique is one of the simplest and least expensive ways of preparing. High-quality ITO thin films have been deposited on glass substrates by Electron beam evaporation technique. The effect of doping and substrate deposition temperature was found to have a significant effect on the structure, electrical and optical properties of ZnO doped ITO films. The average optical transmittance has been increased with in- creasing the substrate temperature. The maximum value of transmittance is greater than 84% in the visible region and 85% in the NIR region obtained for film with Zn/ITO = 0.13 at substrate temperature 200 °C. The dielectric constant, average excitation energy for electronic transitions (E o), the dispersion energy (E d), the long wavelength refractive index (n ), average oscillator wave length ( o) and oscillator strength S o for the thin films were determined and presented in this work.

  5. P -type transparent conducting oxides

    International Nuclear Information System (INIS)

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-01-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n -type, such as Sn doped In 2 O 3 , Al doped ZnO, and F doped SnO 2 . However, the development of efficient p -type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2 p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2 p orbitals with close-shell Cu 3 d 10 orbitals. This work has sparked tremendous interest in designing p -TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p -TCOs, including Cu + -based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr 3+ -based oxides (3 d 3 ) and post-transition metal oxides with lone pair state (ns 2 ). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p -type conductivity and optical properties. Device applications based on p -TCOs for transparent p – n junctions will also be briefly discussed. (topical review)

  6. Growth and characterization of nonpolar (10-10) ZnO transparent conductive oxide on semipolar (11–22) GaN-based light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Wook; Choi, Nak-Jung [Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung, Gyeonggi-do, 429-839 (Korea, Republic of); Kim, Kyoung-Bo [Department of Metallurgical and Materials Engineering, Inha Technical College, Incheon, 402-752 (Korea, Republic of); Kim, Moojin [Department of Renewable Energy, Jungwon University, 85, Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-805 (Korea, Republic of); Lee, Sung-Nam, E-mail: snlee@kpu.ac.kr [Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung, Gyeonggi-do, 429-839 (Korea, Republic of)

    2016-05-05

    We have grown thin films of nonpolar m-plane (10-10) ZnO on a semipolar (11–22) GaN template by atomic layer deposition (ALD) at low growth temperatures (<200 °C). The surface morphology of the ZnO film is found to be an arrowhead-like structure, which is a typical surface structure of the semipolar (11–22) GaN films. On increasing the growth temperature of the ZnO films, the concentration and mobility of the charge carriers in the ZnO film are increased. However, the optical transmittance decreases with an increase in the growth temperature. Based on these results, we have fabricated semipolar (11–22) GaN-based light-emitting diodes (LEDs) with nonpolar m-plane ZnO film as a transparent conductive oxide (TCO) to improve the light extraction efficiency. In spite of a decrease in the optical transmittance, the operation voltage of semipolar (11–22) GaN-based LEDs is found to decrease with an increase in the growth temperature, which might be due to the improvements in the electrical properties and current spreading effect, resulting in an increase in the optical output power. - Highlights: • Polarity control of ZnO film grown in m-/c-sapphire and semipolar GaN template. • Achievement of high quality nonpolar m-plane ZnO flims on semipolar (11–22) GaN template. • The simultaneous improvements of carrier concentration and mobility in the nonpolar ZnO TCO flims. • Nonpolar ZnO TCO increases current spreading length and light output power of semipolar GaN-LED.

  7. Transparent conducting zinc oxide thin film prepared by off-axis rf ...

    Indian Academy of Sciences (India)

    Highly conducting and transparent ZnO : Al thin films were grown by off-axis rf magnetron sputtering on amorphous silica substrates without any post-deposition annealing. The electrical and optical properties of the films deposited at various substrate temperatures and target to substrate distances were investigated in detail ...

  8. Growth of ZnO layers for transparent and flexible electronics

    International Nuclear Information System (INIS)

    Mofor, A.C.; Bakin, A.S.; Postels, B.; Suleiman, M.; Elshaer, A.; Waag, A.

    2008-01-01

    We have deposited and characterised ZnO on flexible and transparent plastic polymer. We employed a specially designed vapour phase growth system with elemental sources for zinc and oxygen and deposited thin ZnO films at temperatures below 400 deg. C. Basic photoluminescence characterisation confirms ZnO. Ohmic contacts were fabricated on these layers and the layers exhibit significantly high electron concentration with carrier mobility μ of up to 10.78 cm 2 V -1 s -1 . Furthermore, we show how these layers can be processed with conventional device processing techniques

  9. Growth of ZnO layers for transparent and flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mofor, A.C.; Bakin, A.S.; Postels, B.; Suleiman, M.; Elshaer, A.; Waag, A. [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig (Germany)

    2008-02-15

    We have deposited and characterised ZnO on flexible and transparent plastic polymer. We employed a specially designed vapour phase growth system with elemental sources for zinc and oxygen and deposited thin ZnO films at temperatures below 400 deg. C. Basic photoluminescence characterisation confirms ZnO. Ohmic contacts were fabricated on these layers and the layers exhibit significantly high electron concentration with carrier mobility {mu} of up to 10.78 cm{sup 2} V{sup -1} s{sup -1}. Furthermore, we show how these layers can be processed with conventional device processing techniques.

  10. Preparation and characterization of ZnO transparent semiconductor thin films by sol-gel method

    International Nuclear Information System (INIS)

    Tsay, Chien-Yie; Fan, Kai-Shiung; Chen, Sih-Han; Tsai, Chia-Hao

    2010-01-01

    Transparent semiconductor thin films of zinc oxide (ZnO) were deposited onto alkali-free glass substrates by the sol-gel method and spin-coating technique. In this study, authors investigate the influence of the heating rate of the preheating process (4 or 10 o C/min) on the crystallization, surface morphology, and optical properties of sol-gel derived ZnO thin films. The ZnO sol was synthesized by dissolving zinc acetate dehydrate in ethanol, and then adding monoethanolamine. The as-coated films were preheated at 300 o C for 10 min and annealed at 500 o C for 1 h in air ambiance. Experimental results indicate that the heating rate of the preheating process strongly affected the surface morphology and transparency of ZnO thin film. Specifically, a heating rate of 10 o C/min for the preheating process produces a preferred orientation along the (0 0 2) plane and a high transmittance of 92% at a wavelength of 550 nm. Furthermore, this study reports the fabrication of thin-film transistors (TFTs) with a transparent ZnO active channel layer and evaluates their electrical performance.

  11. Cu mesh for flexible transparent conductive electrodes.

    Science.gov (United States)

    Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young

    2015-06-03

    Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells.

  12. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing

    International Nuclear Information System (INIS)

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-01-01

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10 −2 Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate. (papers)

  13. Vacuum-annealing induced enhancements in the transparent conducting properties of Mo  +  F doped ZnO thin films

    Science.gov (United States)

    Dineshbabu, N.; Ravichandran, K.

    2017-09-01

    The decisive aim of the present study is to enhance the transparent conducting properties of Mo  +  F co-doped ZnO films through annealing. In this work, Mo  +  F co-doped ZnO (MFZO) films were deposited on glass substrates at a deposition temperature of 350 °C using a home-made nebulizer spray pyrolysis technique and the prepared samples were annealed under air and vacuum atmosphere at 400 °C for 2 h. The structural, electrical, optical, surface morphological and elemental properties of as-deposited, air-annealed and vacuum-annealed samples were compared using various analytical techniques. The vacuum-annealed sample shows lowest resistivity of 1.364  ×  10-3 Ω cm and high transmittance of 90% in the visible region with high ohmic conducting nature. The optical bandgap of the sample was found to be increased to 3.36 eV after vacuum annealing treatment. The XRD patterns of the films confirmed the polycrystalline nature. The PL measurements show the defect levels of the deposited films. The FESEM and AFM studies show an increase in the grain size and roughness of the films, respectively, after vacuum-annealing treatment. The presence of the elements before and after annealing treatment was confirmed using XPS analysis.

  14. Micrometer-sized isolated patterns of conductive ZnO derived by micromoulding

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Ole F.; Elshof, Johan E. ten; Blank, Dave A.H. [Inorganic Materials Science, Institute for Nanotechnology, University of Twente, Enschede (Netherlands)

    2009-07-01

    We succeeded in the fabrication of large-area patterns with micrometer-sized, isolated features of a simple oxide by a technically simple patterning method. By micromoulding a polymeric precursor solution for ZnO with an elastomeric (PDMS) mould, and a subsequent heat treatment, patterned ZnO films could be obtained. The features of the various patterns, including parallel or crossed lines and arrangements of dots, were several micrometers in diameter, and so were the spaces between them. The features were nearly isolated from each other, as the micromoulding process left behind a thin residual layer of ZnO of only about 15 nm thickness. By applying a tempering step, the transparent films could be rendered conductive. The process was applied successfully also to other oxide materials such as Bi2212 or CoFe2O4.

  15. Impacts of Co doping on ZnO transparent switching memory device characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Simanjuntak, Firman Mangasa; Wei, Kung-Hwa [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Prasad, Om Kumar [Department of Electrical Engineering and Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Panda, Debashis [Department of Electronics Engineering, National Institute of Science and Technology, Berhampur, Odisha 761008 (India); Lin, Chun-An; Tsai, Tsung-Ling; Tseng, Tseung-Yuen, E-mail: tseng@cc.nctu.edu.tw [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2016-05-02

    The resistive switching characteristics of indium tin oxide (ITO)/Zn{sub 1−x}Co{sub x}O/ITO transparent resistive memory devices were investigated. An appropriate amount of cobalt dopant in ZnO resistive layer demonstrated sufficient memory window and switching stability. In contrast, pure ZnO devices demonstrated a poor memory window, and using an excessive dopant concentration led to switching instability. To achieve suitable memory performance, relying only on controlling defect concentrations is insufficient; the grain growth orientation of the resistive layer must also be considered. Stable endurance with an ON/OFF ratio of more than one order of magnitude during 5000 cycles confirmed that the Co-doped ZnO device is a suitable candidate for resistive random access memory application. Additionally, fully transparent devices with a high transmittance of up to 90% at wavelength of 550 nm have been fabricated.

  16. UV-screening, transparency and water barrier properties of semi refined iota carrageenan packaging film incorporated with ZnO nanoparticles

    Science.gov (United States)

    Khoirunnisa, Assifa Rahma; Joni, I. Made; Panatarani, Camellia; Rochima, Emma; Praseptiangga, Danar

    2018-02-01

    This study aims to develop film for food packaging application with high UV-screening, transparency and water barrier properties. Semi refined iota carrageenan (SRiC) nanocomposite films prepared by addition of zinc oxide (ZnO) nanoparticles as nanofiller using solution casting method. The effect of nanofiller with different concentration (0%, 0.5%, 1.0%, 1.5% w/w carrageenan) on UV-screening, transparency and water barrier properties of films were tested. The water barrier properties of the films were studied by measuring water vapor permeability (WVP) and the optical properties of the films were studied by using UV-Vis spectrophotometer at 280 nm for UV-screening test and at 660 nm for transparency test. WVP value of carrageenan films with addition of ZnO is low compared to a control carrageenan film and the lowest WVP value was found for the film with addition of 1.5% of ZnO. These result indicate that the addition of ZnO had a positive effect on the water barrier properties of the carrageenan matrix. Increase in the concentration of nanofiller leads to an increase in the UV-screening properties. Among all the films, carrageenan film with 1.5% ZnO has the highest UV-screening. The result showed that adding 0.5% and 1.0% of ZnO was insignificantly affect transparency of the films, however the transparency decreased sligthly when 1.5% ZnO was added. In conclusion, incorporating no more than 1.0% of ZnO to the films can obtain films with high UV-screening, transparency and water barrier properties and suitable for food packaging application.

  17. PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays.

    Science.gov (United States)

    Ko, Yeong Hwan; Nagaraju, Goli; Lee, Soo Hyun; Yu, Jae Su

    2014-05-14

    Vertically-grown ZnO nanorod arrays (NRAs) on indium tin oxide (ITO)-coated polyethylene terephthalate (PET), as a top electrode of nanogenerators, were investigated for the antireflective property as well as an efficient contact surface in bare polydimethysiloxane (PDMS)-based triboelectric nanogenerators. Compared to conventional ITO-coated PET (i.e., ITO/PET), the ZnO NRAs considerably suppressed the reflectance from 20 to 9.7% at wavelengths of 300-1100 nm, creating a highly transparent top electrode, as demonstrated by theoretical analysis. Also, the interval time between the peaks of generated output voltage under external pushing forces was significantly decreased from 1.84 to 0.19 s because the reduced contact area of the PDMS by discrete surfaces of the ZnO NRAs on ITO/PET causes a rapid sequence for triboelectric charge generation process including rubbing and separating. Therefore, the use of this top electrode enabled to operate the transparent PDMS-based triboelectric nanogenerator at high frequency of external pushing force. Under different external forces of 0.3-10 kgf, the output voltage and current were also characterized.

  18. High Transparent Conductive Aluminum-Doped Zinc Oxide Thin Films by Reactive Co-Sputtering (Postprint)

    Science.gov (United States)

    2016-03-30

    30 Mar 2016. This document contains color . Journal article published in Optical Interference Coatings, 19 Jun 2016. © 2016 Optical Society of...Ahn, Mi-So Lee, Moon-Ho Ham , Woong Lee, Jae-Min Myoung, “Effects of oxygen concentration on the properties of Al-doped ZnO transparent conductive

  19. Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films

    International Nuclear Information System (INIS)

    Lee, Min-Jung; Lim, Jinhyong; Bang, Jungsik; Lee, Woong; Myoung, Jae-Min

    2008-01-01

    Combined effects of the thickness and hydrogen post-annealing treatment on the structural, electrical, and optical properties of Ga-doped ZnO (GZO) films were investigated as a potential substitute for indium tin oxide transparent conductive oxide. In the as-deposited films, microstructural evolution initially improved the crystallinity up to the thickness of 160 nm accompanying enhanced electrical and optical properties, but further thickness increase resulted in the deterioration of these properties attributable to the development of ZnGa 2 O 4 and Ga 2 O 3 phases originating from the excessive amount of the Ga dopant. Post-annealing treatment of the GZO films in a hydrogen atmosphere improved the electrical and optical properties substantially through possible reduction of the oxide phases and passivation of the surfaces and grain boundaries. In this case, electrical and optical properties remained almost similar for the thickness above 160 nm indicating that there exists a certain optimal film thickness.

  20. Enhanced light extraction of GaN-based light-emitting diodes with periodic textured SiO2 on Al-doped ZnO transparent conductive layer

    Science.gov (United States)

    Yu, Zhao; Bingfeng, Fan; Yiting, Chen; Yi, Zhuo; Zhoujun, Pang; Zhen, Liu; Gang, Wang

    2016-07-01

    We report an effective enhancement in light extraction of GaN-based light-emitting diodes (LEDs) with an Al-doped ZnO (AZO) transparent conductive layer by incorporating a top regular textured SiO2 layer. The 2 inch transparent through-pore anodic aluminum oxide (AAO) membrane was fabricated and used as the etching mask. The periodic pore with a pitch of about 410 nm was successfully transferred to the surface of the SiO2 layer without any etching damages to the AZO layer and the electrodes. The light output power was enhanced by 19% at 20 mA and 56% at 100 mA compared to that of the planar LEDs without a patterned surface. This approach offers a technique to fabricate a low-cost and large-area regular pattern on the LED chip for achieving enhanced light extraction without an obvious increase of the forward voltage. ).

  1. Enhanced light extraction of GaN-based light-emitting diodes with periodic textured SiO2 on Al-doped ZnO transparent conductive layer

    International Nuclear Information System (INIS)

    Zhao Yu; Fan Bingfeng; Chen Yiting; Zhuo Yi; Wang Gang; Pang Zhoujun; Liu Zhen

    2016-01-01

    We report an effective enhancement in light extraction of GaN-based light-emitting diodes (LEDs) with an Al-doped ZnO (AZO) transparent conductive layer by incorporating a top regular textured SiO 2 layer. The 2 inch transparent through-pore anodic aluminum oxide (AAO) membrane was fabricated and used as the etching mask. The periodic pore with a pitch of about 410 nm was successfully transferred to the surface of the SiO 2 layer without any etching damages to the AZO layer and the electrodes. The light output power was enhanced by 19% at 20 mA and 56% at 100 mA compared to that of the planar LEDs without a patterned surface. This approach offers a technique to fabricate a low-cost and large-area regular pattern on the LED chip for achieving enhanced light extraction without an obvious increase of the forward voltage. (paper)

  2. Preparation of transparent conducting zinc oxide films by rf reactive sputtering

    International Nuclear Information System (INIS)

    Vasanelli, L.; Valentini, A.; Losacco, A.

    1986-01-01

    Transparent conducting zinc oxide films have been prepared by reactive sputtering in a Ar/H/sub 2/ mixture. The optical and electrical properties of the films are presented and discussed. The effects of some post-deposition thermal treatment have been also investigated. ZnO/CdTe heterojunctions have been prepared by sputtering ZnO films on CdTe single crystals. The photovoltaic conversion efficiencies of the obtained solar cells was 6.8%

  3. Fabrication of graphene and ZnO nanocones hybrid structure for transparent field emission device

    Energy Technology Data Exchange (ETDEWEB)

    Zulkifli, Zurita [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Faculty of Electrical Engineering, Universiti Teknologi Mara (Malaysia); Shinde, Sachin M.; Suguira, Takatoshi [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Tanemura, Masaki [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan)

    2015-11-30

    Graphical abstract: Fabrication of a transparent field emission device with chemical vapor deposited graphene and zinc oxide nanocones showing low turn-on field due to locally enhance electric field. - Highlights: • Demonstrated transparent field emission device with CVD graphene and ZnO nanocones. • Graphene film was coated on carbon doped ZnO nanocone prepared by ion irradiation. • Low turn-on field for the graphene/C:ZnO nanocones hybrid structure is achieved. • Graphene/C:ZnO heterostructure is promising for transparent field emission devices. - Abstract: Fabrication of a transparent and high performance electron emission device is the key challenge for suitable display applications. Here, we demonstrate fabrication of a transparent and efficient field emission device integrating large-area chemical vapor deposited graphene and carbon doped zinc oxide (C:ZnO) nanocones. The ZnO nanocones were obtained with ion irradiation process at room temperature, over which the graphene film was transferred without destroying nanocone tips. Significant enhancement in field emission properties were observed with the transferred graphene film on C:ZnO nanocones. The threshold field for hybrid and pristine C:ZnO nanocones film at current density of 1 μA/cm{sup 2} was obtained as 4.3 V/μm and 6.5 V/μm, respectively. The enhanced field emission properties with low turn-on field for the graphene/C:ZnO nanocones can be attributed to locally enhance electric field. Our finding shows that a graphene/C:ZnO hybridized structure is very promising to fabricate field emission devices without compromising with high transparency.

  4. Al and Fe co-doped transparent conducting ZnO thin film for mediator-less biosensing application

    Directory of Open Access Journals (Sweden)

    Shibu Saha

    2011-12-01

    Full Text Available Highly c-axis oriented Al and Fe co-doped ZnO (ZAF thin film is prepared by pulsed laser deposition. Fe introduces redox centre along with shallow donor level while Al doping enhances conductivity of ZnO, thus removing the requirement of both mediator and bottom conducting layer in bioelectrode. Model enzyme (glucose oxidase, was immobilized on surface of ZAF matrix. Cyclic voltammetry and photometric assay show that prepared bio-electrode is sensitive to glucose concentration with enhanced response of 0.18 μAmM-1cm-2 and low Km ∼ 2.01 mM. The results illustrate that ZAF is an attractive matrix for realization of miniaturized mediator-less solid state biosensor.

  5. Double transparent conducting layers for Si photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ju-Hyung [Department of Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Kim, Joondong, E-mail: joonkim@incheon.ac.kr [Department of Electrical Engineering, Incheon National University, Incheon, 406772 (Korea, Republic of); Park, Yun Chang [Measurement and Analysis Division, National Nanofab Center (NNFC), Daejeon 305806 (Korea, Republic of); Moon, Sang-Jin [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of); Anderson, Wayne A. [Department of Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States)

    2013-11-29

    Double transparent conductive oxide (TCO) film-embedded Si heterojunction solar cells were fabricated. An intentional doping was not applied for heterojunction solar cells due to the spontaneous Schottky junction formation between TCO films and an n-type Si substrate. Three different TCO coatings were formed by sputtering method for an Al-doped ZnO (AZO) film, an indium-tin-oxide (ITO) film and double stacks of ITO/AZO films. An improved crystalline ITO film was grown on an AZO template upon hetero-epitaxial growth. This double TCO films-embedded Si (ITO/AZO/Si) heterojunction solar cell provided significantly enhanced efficiency of 9.23 % as compared to the single TCO/Si (ITO/Si or AZO/Si) devices due to the optical and the electrical benefits. The effective arrangement of TCO films (ITO/AZO) provides benefits of a lower front contact resistance and a smaller band offset to Si leading enhanced photovoltaic performances. This demonstrates a potential scheme for an effective TCO film-embedded heterojunction Si solar cell. - Highlights: • Double transparent conducting oxide films form a heterojunction to Si. • A quality indium-tin-oxide film was grown above an Al-doped zinc oxide template. • Heterojunction Si solar cell was made without an intentional doping process.

  6. Double transparent conducting layers for Si photovoltaics

    International Nuclear Information System (INIS)

    Yun, Ju-Hyung; Kim, Joondong; Park, Yun Chang; Moon, Sang-Jin; Anderson, Wayne A.

    2013-01-01

    Double transparent conductive oxide (TCO) film-embedded Si heterojunction solar cells were fabricated. An intentional doping was not applied for heterojunction solar cells due to the spontaneous Schottky junction formation between TCO films and an n-type Si substrate. Three different TCO coatings were formed by sputtering method for an Al-doped ZnO (AZO) film, an indium-tin-oxide (ITO) film and double stacks of ITO/AZO films. An improved crystalline ITO film was grown on an AZO template upon hetero-epitaxial growth. This double TCO films-embedded Si (ITO/AZO/Si) heterojunction solar cell provided significantly enhanced efficiency of 9.23 % as compared to the single TCO/Si (ITO/Si or AZO/Si) devices due to the optical and the electrical benefits. The effective arrangement of TCO films (ITO/AZO) provides benefits of a lower front contact resistance and a smaller band offset to Si leading enhanced photovoltaic performances. This demonstrates a potential scheme for an effective TCO film-embedded heterojunction Si solar cell. - Highlights: • Double transparent conducting oxide films form a heterojunction to Si. • A quality indium-tin-oxide film was grown above an Al-doped zinc oxide template. • Heterojunction Si solar cell was made without an intentional doping process

  7. Enhanced electrical conductivity in Xe ion irradiated CNT based transparent conducting electrode on PET substrate

    Science.gov (United States)

    Surbhi; Sharma, Vikas; Singh, Satyavir; Garg, Priyanka; Asokan, K.; Sachdev, Kanupriya

    2018-02-01

    An investigation of MWCNT-based hybrid electrode films with improved electrical conductivity after Xe ion irradiation is reported. A multilayer hybrid structure of Ag-MWCNT layer embedded in between two ZnO layers was fabricated and evaluated, pre and post 100 keV Xe ion irradiation, for their performance as Transparent Conducting Electrode in terms of their optical and electrical properties. X-ray diffraction pattern exhibits highly c-axis oriented ZnO films with a small variation in lattice parameters with an increase in ion fluence. There is no significant change in the surface roughness of these films. Raman spectra were used to confirm the presence of CNT. The pristine multilayer films exhibit an average transmittance of ˜70% in the entire visible region and the transmittance increases with Xe ion fluence. A significant enhancement in electrical conductivity post-Xe ion irradiation viz from 1.14 × 10-7 Ω-1 cm-1 (pristine) to 7.04 × 103 Ω-1 cm-1 is seen which is due to the high connectivity in the top layer with Ag-CNT hybrid layer facilitating the smooth transfer of electrons.

  8. Nanostructured Transparent Conducting Oxides for Device Applications

    Science.gov (United States)

    Dutta, Titas

    2011-12-01

    Research on transparent conducting oxides (TCOs) alternative to indium tin oxide (ITO) has attracted a lot of attention due to the serious concern related to cost and chemical stability of indium tin oxide. The primary aim of this research is to develop low cost alternative transparent conducting oxides with an eye towards (1) increasing the organic solar cell efficiency and (2) fabricating transparent electronic devices utilizing p-type TCOs. To investigate the fundamental properties, the novel TCO films have been grown on sapphire and economical glass substrates using pulsed laser deposition (PLD) technique. The films were also grown under different deposition conditions in order to understand the effect of processing parameters on the film properties. The characteristics of the thin films have been investigated in detail using (X-ray diffraction, TEM, X-ray photoelectron spectroscopy (XPS), UV- photoelectron spectroscopy (UPS), four probe resistivity and UV-Vis transmittance measurements) in order to establish processing-structure-property correlation. ZnO doped with group III elements is a promising candidate because of its superior stability in hydrogen environment, benign nature and relatively inexpensive supply. However, ZnO based TCO films suffer from low work function (4.4 eV, compared to that of 4.8 eV for ITO), which increases the energy barrier and affects the carrier transport across ZnGa0.05O/organic layer interface. To overcome this issue of ZnO based TCOs, the growth of bilayered structure consisting of very thin MoOx (2.0 target composition. These optimized bilayer films exhibited good optical transmittance (≥ 80%) and low resistivity of ˜ 10-4 O-cm. The optimized NiO1+x / GZO and MoOx / GZO bilayers showed significant increase in work function values (˜5.3 eV). The work function of the bilayer films was tuned by varying the processing conditions and doping of over layers. Preliminary test device results of the organic photovoltaic cells (OPVs

  9. Effect of doping concentration on the conductivity and optical properties of p-type ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Trilok Kumar [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Kumar, Vinod, E-mail: vinod.phy@gmail.com [Department of Physics, University of the Free State, Bloemfontein (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, Bloemfontein (South Africa); Purohit, L.P., E-mail: proflppurohitphys@gmail.com [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India)

    2016-01-01

    Nitrogen doped ZnO (NZO) thin films were synthesized on glass substrates by the sol–gel and spin coating method. Zinc acetate dihydrates and ammonium acetate were used as precursors for zinc and nitrogen, respectively. X-ray diffraction study showed that the thin films have a hexagonal wurtzite structure corresponding (002) peak for undoped and doped ZnO thin films. The transmittance of the films was above 80% and the band gap of the film varies from 3.21±0.03 eV for undoped and doped ZnO. The minimum resistivity of NZO thin films was obtained as 0.473 Ω cm for the 4 at% of nitrogen (N) doping with a mobility of 1.995 cm{sup 2}/V s. The NZO thin films showed p-type conductivity at 2 and 3 at% of N doping. The AC conductivity measurements that were carried out in the frequency range 10 kHz to 0.1 MHz showed localized conduction in the NZO thin films. These highly transparent ZnO films can be used as a possible window layer in solar cells.

  10. Homogeneous vertical ZnO nanorod arrays with high conductivity on an in situ Gd nanolayer

    KAUST Repository

    Flemban, Tahani H.

    2015-10-30

    We demonstrate a novel, one-step, catalyst-free method for the production of size-controlled vertical highly conductive ZnO nanorod (NR) arrays with highly desirable characteristics by pulsed laser deposition using a Gd-doped ZnO target. Our study shows that an in situ transparent and conductive Gd nanolayer (with a uniform thickness of ∼1 nm) at the interface between a lattice-matched (11-20) a-sapphire substrate and ZnO is formed during the deposition. This nanolayer significantly induces a relaxation mechanism that controls the dislocation distribution along the growth direction; which consequently improves the formation of homogeneous vertically aligned ZnO NRs. We demonstrate that both the lattice orientation of the substrate and the Gd characteristics are important in enhancing the NR synthesis, and we report precise control of the NR density by changing the oxygen partial pressure. We show that these NRs possess high optical and electrical quality, with a mobility of 177 cm2 (V s)-1, which is comparable to the best-reported mobility of ZnO NRs. Therefore, this new and simple method has significant potential for improving the performance of materials used in a wide range of electronic and optoelectronic applications.

  11. Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides

    Science.gov (United States)

    Buckeridge, J.; Catlow, C. R. A.; Farrow, M. R.; Logsdail, A. J.; Scanlon, D. O.; Keal, T. W.; Sherwood, P.; Woodley, S. M.; Sokol, A. A.; Walsh, A.

    2018-05-01

    The source of n -type conductivity in undoped transparent conducting oxides has been a topic of debate for several decades. The point defect of most interest in this respect is the oxygen vacancy, but there are many conflicting reports on the shallow versus deep nature of its related electronic states. Here, using a hybrid quantum mechanical/molecular mechanical embedded cluster approach, we have computed formation and ionization energies of oxygen vacancies in three representative transparent conducting oxides: In2O3 ,SnO2, and ZnO. We find that, in all three systems, oxygen vacancies form well-localized, compact donors. We demonstrate, however, that such compactness does not preclude the possibility of these states being shallow in nature, by considering the energetic balance between the vacancy binding electrons that are in localized orbitals or in effective-mass-like diffuse orbitals. Our results show that, thermodynamically, oxygen vacancies in bulk In2O3 introduce states above the conduction band minimum that contribute significantly to the observed conductivity properties of undoped samples. For ZnO and SnO2, the states are deep, and our calculated ionization energies agree well with thermochemical and optical experiments. Our computed equilibrium defect and carrier concentrations, however, demonstrate that these deep states may nevertheless lead to significant intrinsic n -type conductivity under reducing conditions at elevated temperatures. Our study indicates the importance of oxygen vacancies in relation to intrinsic carrier concentrations not only in In2O3 , but also in SnO2 and ZnO.

  12. ZnO nanorods for simultaneous light trapping and transparent electrode application in solar cells

    KAUST Repository

    Khan, Yasser

    2011-10-01

    Efficacy of using vertically grown ZnO nanorod array in enhancing electromagnetic field intensity and serving as the top contact layer (transparent electrodes) for solar cells was investigated. © 2011 IEEE.

  13. Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methods

    International Nuclear Information System (INIS)

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu

    2011-01-01

    B-doped ZnO (BZO) thin films were prepared with various thicknesses up to about 500 nm on glass substrates at 200 deg. C by dc or rf magnetron sputtering deposition, pulsed laser deposition (PLD), and vacuum arc plasma evaporation (VAPE) methods. Resistivities of 4-6 x 10 -4 Ω cm were obtained in BZO thin films prepared with a B content [B/(B + Zn) atomic ratio] around 1 at. % by PLD and VAPE methods: Hall mobilities above 40 cm 2 /Vs and carrier concentrations on the order of 10 20 cm -3 . All 500-nm-thick-BZO thin films prepared with a resistivity on the order of 10 -3 -10 -4 Ω cm exhibited an averaged transmittance above 80% in the wavelength range of 400-1100 nm. The resistivity in BZO thin films prepared with a thickness below about 500 nm was found to increase over time with exposure to various high humidity environments. In heat-resistance tests, the resistivity stability of BZO thin films was found to be nearly equal to that of Ga-doped ZnO thin films, so these films were judged suitable for use as a transparent electrode for thin-film solar cells.

  14. Properties of Nb-doped ZnO transparent conductive thin films ...

    Indian Academy of Sciences (India)

    Administrator

    by rf magnetron sputtering using a high quality ceramic target ... Guangxi Key Laboratory of Information Materials, Guilin University of Electronic ... films are highly textured along the c axis and perpendicular to the surface of the substrate. ... ZnO films; Nb-doped; magnetron sputtering; optical and electrical properties. 1.

  15. Electrical and optical properties of Zn–In–Sn–O transparent conducting thin films

    International Nuclear Information System (INIS)

    Carreras, Paz; Antony, Aldrin; Rojas, Fredy; Bertomeu, Joan

    2011-01-01

    Indium tin oxide (ITO) is one of the widely used transparent conductive oxides (TCO) for application as transparent electrode in thin film silicon solar cells or thin film transistors owing to its low resistivity and high transparency. Nevertheless, indium is a scarce and expensive element and ITO films require high deposition temperature to achieve good electrical and optical properties. On the other hand, although not competing as ITO, doped Zinc Oxide (ZnO) is a promising and cheaper alternative. Therefore, our strategy has been to deposit ITO and ZnO multicomponent thin films at room temperature by radiofrequency (RF) magnetron co-sputtering in order to achieve TCOs with reduced indium content. Thin films of the quaternary system Zn–In–Sn–O (ZITO) with improved electrical and optical properties have been achieved. The samples were deposited by applying different RF powers to ZnO target while keeping a constant RF power to ITO target. This led to ZITO films with zinc content ratio varying between 0 and 67%. The optical, electrical and morphological properties have been thoroughly studied. The film composition was analysed by X-ray Photoelectron Spectroscopy. The films with 17% zinc content ratio showed the lowest resistivity (6.6 × 10 −4 Ω cm) and the highest transmittance (above 80% in the visible range). Though X-ray Diffraction studies showed amorphous nature for the films, using High Resolution Transmission Electron Microscopy we found that the microstructure of the films consisted of nanometric crystals embedded in a compact amorphous matrix. The effect of post deposition annealing on the films in both reducing and oxidizing atmospheres were studied. The changes were found to strongly depend on the zinc content ratio in the films.

  16. Synthesis of ZnO tetrapods for flexible and transparent UV sensors

    International Nuclear Information System (INIS)

    Rackauskas, Simas; Mustonen, Kimmo; Järvinen, Terhi; Jiang, Hua; Kauppinen, Esko I; Nasibulin, Albert G; Mattila, Marco; Lipsanen, Harri; Klimova, Olga; Tolochko, Oleg

    2012-01-01

    ZnO tetrapods (ZnO-Ts) were synthesized in a vertical flow reactor by gas phase oxidation of Zn vapor in an air atmosphere. The morphology of the product was varied from nearly spherical nanoparticles to ZnO-Ts, together with the partial pressure of Zn and reaction temperature. MgO introduced during synthesis, increased the band gap, the optical transparency in the visible range, and also changed the ZnO-T structure. Fabricated flexible transparent UV sensors showed a 45-fold current increase under UV irradiation with an intensity of 30 μW cm −2 at a wavelength of 365 nm and response time of 0.9 s. (paper)

  17. Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers

    Energy Technology Data Exchange (ETDEWEB)

    Szabó, Zoltán; Baji, Zsófia [MTA EK Institute of Technical Physics and Materials Science, Konkoly Thege M. út 29-33, 1121 Budapest (Hungary); Basa, Péter [Semilab Semiconductor Physics Laboratory Co. Ltd., Prielle K. u. 2, H-1117 Budapest (Hungary); Czigány, Zsolt; Bársony, István [MTA EK Institute of Technical Physics and Materials Science, Konkoly Thege M. út 29-33, 1121 Budapest (Hungary); Wang, Hsin-Ying [Epistar corporation No 5, Li-hsin 5th Rd., Hsinchu Science Park, Hsinchu 300, Taiwan (China); Volk, János, E-mail: volk@mfa.kfki.hu [MTA EK Institute of Technical Physics and Materials Science, Konkoly Thege M. út 29-33, 1121 Budapest (Hungary)

    2016-08-30

    Highlights: • Highly conductive, transparent GZO layers were deposited by ALD. • The ALD layers show superior thickness and sheet resistance homogeneity for 4” wafers. • A two-step ALD deposition technique was proposed and demonstrated to improve the quality of GZO/p-GaN interface. - Abstract: Highly conductive and uniform Ga doped ZnO (GZO) films were prepared by atomic layer deposition (ALD) as transparent conductive layers for InGaN/GaN LEDs. The optimal Ga doping concentration was found to be 3 at%. Even for 4” wafers, the TCO layer shows excellent homogeneity of film resistivity (0.8 %) according to Eddy current and spectroscopic ellipsometry mapping. This makes ALD a favourable technique over concurrent methods like MBE and PLD where the up-scaling is problematic. In agreement with previous studies, it was found that by an annealing treatment the quality of the GZO/p-GaN interface can be improved, although it causes the degradation of TCO conductivity. Therefore, a two-step ALD deposition technique was proposed and demonstrated: a “buffer layer” deposited and annealed first was followed by a second deposition step to maintain the high conductivity of the top layer.

  18. Transparent Cu4O3/ZnO heterojunction photoelectric devices

    Science.gov (United States)

    Kim, Hong-Sik; Yadav, Pankaj; Patel, Malkeshkumar; Kim, Joondong; Pandey, Kavita; Lim, Donggun; Jeong, Chaehwan

    2017-12-01

    The present article reports the development of flexible, self-biased, broadband, high speed and transparent heterojunction photodiode, which is essentially important for the next generation electronic devices. We grow semitransparent p-type Cu4O3 using the reactive sputtering method at room temperature. The structural and optical properties of the Cu4O3 film were investigated by using the X-ray diffraction and UV-visible spectroscopy, respectively. The p-Cu4O3/n-ZnO heterojunction diode under dark condition yields rectification behavior with an extremely low saturation current value of 1.8 × 10-10 A and a zero bias photocurrent under illumination condition. The transparent p-Cu4O3/n-ZnO heterojunction photodetector can be operated without an external bias, due to the light-induced voltage production. The metal oxide heterojunction based on Cu4O3/ZnO would provide a route for the transparent and flexible photoelectric devices, including photodetectors and photovoltaics.

  19. ZnO-Nanorod Dye-Sensitized Solar Cells: New Structure without a Transparent Conducting Oxide Layer

    Directory of Open Access Journals (Sweden)

    Ming-Hong Lai

    2010-01-01

    Full Text Available Conventional nanorod-based dye-sensitized solar cells (DSSCs are fabricated by growing nanorods on top of a transparent conducting oxide (TCO, typically fluorine-doped tin oxide—FTO. The heterogeneous interface between the nanorod and TCO forms a source for carrier scattering. This work reports on a new DSSC architecture without a TCO layer. The TCO-less structure consists of ZnO nanorods grown on top of a ZnO film. The ZnO film replaced FTO as the TCO layer and the ZnO nanorods served as the photoanode. The ZnO nanorod/film structure was grown by two methods: (1 one-step chemical vapor deposition (CVD (2 two-step chemical bath deposition (CBD. The thicknesses of the nanorods/film grown by CVD is more uniform than that by CBD. We demonstrate that the TCO-less DSSC structure can operate properly as solar cells. The new DSSCs yield the best short-current density of 3.96 mA/cm2 and a power conversion efficiency of 0.73% under 85 mW/cm2 of simulated solar illumination. The open-circuit voltage of 0.80 V is markedly higher than that from conventional ZnO DSSCs.

  20. Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan)

    2011-07-15

    B-doped ZnO (BZO) thin films were prepared with various thicknesses up to about 500 nm on glass substrates at 200 deg. C by dc or rf magnetron sputtering deposition, pulsed laser deposition (PLD), and vacuum arc plasma evaporation (VAPE) methods. Resistivities of 4-6 x 10{sup -4}{Omega} cm were obtained in BZO thin films prepared with a B content [B/(B + Zn) atomic ratio] around 1 at. % by PLD and VAPE methods: Hall mobilities above 40 cm{sup 2}/Vs and carrier concentrations on the order of 10{sup 20} cm{sup -3}. All 500-nm-thick-BZO thin films prepared with a resistivity on the order of 10{sup -3}-10{sup -4}{Omega} cm exhibited an averaged transmittance above 80% in the wavelength range of 400-1100 nm. The resistivity in BZO thin films prepared with a thickness below about 500 nm was found to increase over time with exposure to various high humidity environments. In heat-resistance tests, the resistivity stability of BZO thin films was found to be nearly equal to that of Ga-doped ZnO thin films, so these films were judged suitable for use as a transparent electrode for thin-film solar cells.

  1. Ultraviolet laser crystallized ZnO:Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency

    International Nuclear Information System (INIS)

    Nian, Qiong; Zhang, Martin Y.; Schwartz, Bradley D.; Cheng, Gary J.

    2014-01-01

    One of the most challenging issues in transparent conductive oxides (TCOs) is to improve their conductivity without compromising transparency. High conductivity in TCO films often comes from a high carrier concentration, which is detrimental to transparency due to free carrier absorption. Here we show that UV laser crystallization (UVLC) of aluminum-doped ZnO (AZO) films prepared by pulsed laser deposition on sapphire results in much higher Hall mobility, allowing relaxation of the constraints of the conductivity/transparency trade-off. X-ray diffraction patterns and morphological characterizations show grain growth and crystallinity enhancement during UVLC, resulting in less film internal imperfections. Optoelectronic measurements show that UVLC dramatically improves the electron mobility, while the carrier concentration decreases which in turn simultaneously increases conductivity and transparency. AZO films under optimized UVLC achieve the highest electron mobility of 79 cm 2 /V s at a low carrier concentration of 7.9 × 10 +19  cm −3 . This is realized by a laser crystallization induced decrease of both grain boundary density and electron trap density at grain boundaries. The infrared (IR) to mid-IR range transmittance spectrum shows UVLC significantly enhances the AZO film transparency without compromising conductivity.

  2. Effect of high-energy electron beam irradiation on the transmittance of ZnO thin films on transparent substrates

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Han, Young-Hwan; Kim, Min-Wan; Lee, Byung Cheol

    2010-01-01

    We investigated in this study the effects of high-energy electron beam irradiation (HEEBI) on the optical transmittance of undoped ZnO films grown on transparent substrates, such as corning glass and polyethersulfone (PES) plastic substrates, with a radio frequency (rf) magnetron sputtering technique. The ZnO thin films were treated with HEEBI in air at RT with an electron beam energy of 1 MeV and doses of 4.7 x 10 14 - 4.7 x 10 16 electrons/cm 2 . The optical transmittance of the ZnO films was measured using an ultraviolet visible near-infrared spectrophotometer. The detailed estimation process for separating the transmittance of HEEBI-treated ZnO films from the total transmittance of ZnO films on transparent substrates treated with HEEBI is given in this paper. We concluded that HEEBI causes a slight suppression in the optical transmittance of ZnO thin films. We also concluded that HEEBI treatment with a high dose shifted the optical band gap (E g ) toward the lower energy region from 3.29 to 3.28 eV whereas that with a low dose unchanged E g at 3.25 eV. This shift suggested that HEEBI at RT at a high dose acts like an annealing treatment at high temperature.

  3. Low temperature fabrication of ZnO compact layer for high performance plastic dye-sensitized ZnO solar cells

    International Nuclear Information System (INIS)

    Hu Fangyi; Xia Yujing; Guan Zisheng; Yin Xiong; He Tao

    2012-01-01

    Highlights: ► ZnO compact layer is prepared via simple electrochemical method at low temperature. ► Compact layer can effectively block electron transfer from TCO to electrolyte. ► DSC PCE is improved by 17% when ZnO compact layer is introduced. ► Plastic DSCs with ZnO compact layer show a PCE of 3.29% under AM1.5 100 mW cm −2 . ► The above efficiency is comparable to that with high temperature sintering step. - Abstract: ZnO compact layer has been fabricated on transparent conducting oxide glass and plastic polymer substrates at low temperature via electrodeposition. The results of dark current and cyclic voltammetric measurements demonstrate that the compact layer can effectively reduce the short circuit from transparent conducting oxide to electrolyte in dye-sensitized ZnO solar cells, leading to an increase of open-circuit photovoltage and fill factor of the devices and, thereby, the power conversion efficiency. The resultant plastic dye-sensitized ZnO solar cell presents an efficiency of 3.29% under illumination of 100 mW cm −2 , AM 1.5G. This indicates that electrodeposition is a viable method to fabricate ZnO compact layer for high performance flexible devices.

  4. Study of the thermal conductivity of ZnO nanowires/PMMA composites

    International Nuclear Information System (INIS)

    Igamberdiev, Kh. T.; Yuldashev, Sh. U.; Cho, H. D.; Kang, T. W.; Rakhimova, Sh. M.; Akhmedov, T. Kh.

    2012-01-01

    From thermal conductivity measurements on ZnO nanowires (NWs)/poly(methyl methacrylate) PMMA composites, the thermal conductivities of the ZnO nanowires were determined. The thermal conductivity of a ZnO NW decreases considerably with decreasing nanowire diameter, and for a ZnO nanowire with a diameter of 250 nm, the thermal conductivity at room temperature is approximately two times lower than that of bulk ZnO at the same temperature. The results of this study show that the thermal conductivity of a ZnO NW is mainly determined by increased phonon-surface boundary scattering. These results could be useful for the design of ZnO-nanowire-based devices.

  5. Highly transparent and UV-resistant superhydrophobic SiO2-coated ZnO nanorod arrays

    KAUST Repository

    Gao, Yangqin; Gereige, Issam; El Labban, Abdulrahman; Cha, Dong Kyu; Isimjan, Tayirjan T.; Beaujuge, Pierre

    2014-01-01

    Highly transparent and UV-resistant superhydrophobic arrays of SiO 2-coated ZnO nanorods are prepared in a sequence of low-temperature (<150 C) steps on both glass and thin sheets of PET (2 × 2 in. 2), and the superhydrophobic nanocomposite

  6. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes

    Science.gov (United States)

    van Ngoc, Huynh; Kang, Dae Joon

    2016-02-01

    Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices.Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible

  7. Silver nanowires network encapsulated by low temperature sol-gel ZnO for transparent flexible electrodes with ambient stability

    Science.gov (United States)

    Shin, Wonjung; Cho, Wonki; Baik, Seung Jae

    2018-01-01

    As a geometrically engineered realization of transparent electrode, Ag nanowires network is promising for its superior characteristics both on electrical conductivity and optical transmittance. However, for a potential commercialization of Ag nanowires network, further investigations on encapsulation materials are necessary to prevent degradation caused by ambient aging. In addition, the temperature range of the coating process for the encapsulation material needs to be low enough to prevent degradation of polymer substrates during the film coating processes, when considering emerging flexible device application of transparent electrodes. We present experimental results showing that low temperature sol-gel ZnO processed under 130 °C is an effective encapsulation material preventing ambient oxidation of Ag nanowires network without degrading electrical, optical, and mechanical properties.

  8. Co-sputtered ZnO:Si thin films as transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Faure, C. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France); Clatot, J. [LRCS, 33 Rue St Leu, F-80039 Amiens (France); Teule-Gay, L.; Campet, G. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France); Labrugere, C. [CeCaMA, Universite de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac, F-33608 (France); Nistor, M. [National Institute for Lasers, Plasmas and Radiation Physics, L22, PO Box MG-36, 77125 Bucharest-Magurele (Romania); Rougier, A., E-mail: rougier@icmcb-bordeaux.cnrs.fr [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France)

    2012-12-01

    Silicon doped Zinc Oxide thin films, so-called SZO, were deposited at room temperature on glass and plastic substrates by co-sputtering of ZnO and SiO{sub 2} targets. The influence of the SiO{sub 2} target power supply (from 30 to 75 W) on the SZO thin film composition and crystallinity is discussed. Si/Zn atomic ratio, determined by X-ray microprobe, increases from 1.2 to 8.2 at.%. For Si/Zn ratio equal and lower than 3.9%, SZO (S{sub 3.9}ZO) thin films exhibit the Wurzite structure with the (0 0 2) preferred orientation. Larger Si content leads to a decrease in crystallinity. With Si addition, the resistivity decreases down to 3.5 Multiplication-Sign 10{sup -3} Ohm-Sign {center_dot}cm for SZO thin film containing 3.9 at.% of Si prior to an increase. The mean transmittance of S{sub 3.9}ZO thin film on glass substrate approaches 80% (it is about 90% for the film itself) in the visible range (from 400 to 750 nm). Co-sputtered SZO thin films are suitable candidates for large area transparent conductive oxides. - Highlights: Black-Right-Pointing-Pointer Si doped ZnO thin films by co-sputtering of ZnO and SiO{sub 2} targets. Black-Right-Pointing-Pointer Minimum of resistivity for Si doped ZnO thin films containing 3.9% of Si. Black-Right-Pointing-Pointer Si and O environments by X-ray Photoelectron Spectroscopy.

  9. Preparation of Zinc Oxide (ZnO) Thin Film as Transparent Conductive Oxide (TCO) from Zinc Complex Compound on Thin Film Solar Cells: A Study of O2 Effect on Annealing Process

    Science.gov (United States)

    Muslih, E. Y.; Kim, K. H.

    2017-07-01

    Zinc oxide (ZnO) thin film as a transparent conductive oxide (TCO) for thin film solar cell application was successfully prepared through two step preparations which consisted of deposition by spin coating at 2000 rpm for 10 second and followed by annealing at 500 °C for 2 hours under O2 and ambient atmosphere. Zinc acetate dehydrate was used as a precursor which dissolved in ethanol and acetone (1:1 mol) mixture in order to make a zinc complex compound. In this work, we reported the O2 effect, reaction mechanism, structure, morphology, optical and electrical properties. ZnO thin film in this work shows a single phase of wurtzite, with n-type semiconductor and has band gap, carrier concentration, mobility, and resistivity as 3.18 eV, 1.21 × 10-19cm3, 11 cm2/Vs, 2.35 × 10-3 Ωcm respectively which is suitable for TCO at thin film solar cell.

  10. Transparent conducting thin films by co-sputtering of ZnO-ITO targets

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Paz; Antony, Aldrin; Roldan, Ruben; Nos, Oriol; Frigeri, Paolo Antonio; Asensi, Jose Miguel; Bertomeu, Joan [Grup d' Energia Solar, Universitat de Barcelona (Spain)

    2010-04-15

    Transparent and conductive Zn-In-Sn-O (ZITO) amorphous thin films have been deposited at room temperature by the rf magnetron co-sputtering of ITO and ZnO targets. Co-sputtering gives the possibility to deposit multicomponent oxide thin films with different compositions by varying the power to one of the targets. In order to make ZITO films with different Zn content, a constant rf power of 50 W was used for the ITO target, where as the rf power to ZnO target was varied from 25 W to 150 W. The as deposited films showed an increase in Zn content ratio from 17 to 67% as the power to ZnO target was increased from 25 to 150 W. The structural, electrical and optical properties of the as deposited films are reported. The films showed an average transmittance over 80% in the visible wavelength range. The electrical resistivity and optical band gap of the ZITO films were found to depend on the Zn content in the film. The ZITO films deposited at room temperature with lower Zn content ratios showed better optical transmission and electrical properties compared to ITO film. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Atomic layer deposition of B-doped ZnO using triisopropyl borate as the boron precursor and comparison with Al-doped ZnO

    NARCIS (Netherlands)

    Garcia - Alonso, D.; Potts, S.E.; Helvoirt, van C.A.A.; Verheijen, M.A.; Kessels, W.M.M.

    2015-01-01

    Doped ZnO films are an important class of transparent conductive oxides, with many applications demanding increased growth control and low deposition temperatures. Therefore, the preparation of B-doped ZnO films by atomic layer deposition (ALD) at 150 °C was studied. The B source was triisopropyl

  12. Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency

    International Nuclear Information System (INIS)

    Ilyas, Usman; Rawat, R.S.; Roshan, G.; Tan, T.L.; Lee, P.; Springham, S.V.; Zhang, Sam; Fengji Li; Chen, R.; Sun, H.D.

    2011-01-01

    The structural and photoluminescence analyses were performed on un-doped and Mn doped ZnO thin films grown on Si (1 0 0) substrate by pulsed laser deposition (PLD) and annealed at different post-deposition temperatures (500-800 deg. C). X-ray diffraction (XRD), employed to study the structural properties, showed an improved crystallinity at elevated temperatures with a consistent decrease in the lattice parameter 'c'. The peak broadening in XRD spectra and the presence of Mn 2p3/2 peak at ∼640 eV in X-ray Photoelectron Spectroscopic (XPS) spectra of the doped thin films confirmed the successful incorporation of Mn in ZnO host matrix. Extended near band edge emission (NBE) spectra indicated the reduction in the concentration of the intrinsic surface traps in comparison to the doped ones resulting in improved optical transparency. Reduced deep level emission (DLE) spectra in doped thin films with declined PL ratio validated the quenching of the intrinsic surface traps thereby improving the optical transparency and the band gap, essential for optoelectronic and spintronic applications. Furthermore, the formation and uniform distribution of nano-sized grains with improved surface features of Mn-doped ZnO thin films were observed in Field Emission Scanning Electron Microscopy (FESEM) images.

  13. Tuning the optical bandgap in multi-cation compound transparent conducting-oxides: The examples of In2ZnO4 and In4Sn3O12

    Science.gov (United States)

    Sabino, Fernando P.; Oliveira, Luiz N.; Wei, Su-Huai; Da Silva, Juarez L. F.

    2018-02-01

    Transparent conducting oxides such as the bixbyite In2O3 and rutile SnO2 systems have large disparities between the optical and fundamental bandgaps, ΔEgO F , because selection rules forbid dipolar transitions from the top of the valence band to the conduction-band minimum; however, the optical gaps of multi-cation compounds with the same chemical species often coincide with their fundamental gaps. To explain this conundrum, we have employed density-functional theory to compute the optical properties of multi-cation compounds, In2ZnO4 and In4Sn3O12, in several crystal structures. We show that a recently proposed mechanism to explain the disparity between the optical and fundamental gaps of M2O3 (M = Al, Ga, and In) applies also to other binary systems and to multi-compounds. Namely, a gap disparity will arise if the following three conditions are satisfied: (i) the crystal structure has inversion symmetry; (ii) the conduction-band minimum is formed by the cation and O s-orbitals; and (iii) there is strong p-d coupling and weak p-p in the vicinity of the valence-band maximum. The third property depends critically on the cationic chemical species. In the structures with inversion symmetry, Zn (Sn) strengthens (weakens) the p-d coupling in In2ZnO4 (In4Sn3O12), enhancing (reducing) the gap disparity. Furthermore, we have also identified a In4Sn3O12 structure that is 31.80 meV per formula unit more stable than a recently proposed alternative model.

  14. The structural and electro-optical characteristics of AZO/Cr:Cu/AZO transparent conductive film

    International Nuclear Information System (INIS)

    Lin, Tien-Chai; Huang, Wen-Chang; Tsai, Fu-Chun

    2015-01-01

    A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO (ACCA), was presented in the paper. The structural and electro-optical properties of the ACCA film were discussed. The thickness of the middle metal layer was constant and those of the AZO layers were varied. The ACCA film shows an obvious ZnO (002) c-axis preferential growth. No diffraction peaks related to Cr and Cu were observed through x-ray diffraction analysis. The middle Cr:Cu layer showed a thickness of 8.16 nm with a continuous and amorphous structure by the observation of a high-resolution transmission electron microscopy (HR-TEM). For the electro-optical characteristic, a best figure of merit (FOM) value of 3.54 × 10 −3 Ω −1 with a corresponding transmittance of 85% was obtained at the thickness of 116 nm of ACCA film. The high FOM value of the film is due to the improvement of conductivity and small sacrifices of transparency. - Highlights: • A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO is developed. • Chromium is added to copper to reduce the oxidation–reduction reaction. • The film has a FOM of 3.54 × 10 −3 Ω −1 with a corresponding transmittance of 85%. • The Cr:Cu layer shows a continuous and amorphous structure

  15. The structural and electro-optical characteristics of AZO/Cr:Cu/AZO transparent conductive film

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tien-Chai [Department of Electrical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China); Huang, Wen-Chang, E-mail: wchuang@mail.ksu.edu.tw [Department of Electro-Optical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China); Tsai, Fu-Chun [Department of Electro-Optical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China)

    2015-08-31

    A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO (ACCA), was presented in the paper. The structural and electro-optical properties of the ACCA film were discussed. The thickness of the middle metal layer was constant and those of the AZO layers were varied. The ACCA film shows an obvious ZnO (002) c-axis preferential growth. No diffraction peaks related to Cr and Cu were observed through x-ray diffraction analysis. The middle Cr:Cu layer showed a thickness of 8.16 nm with a continuous and amorphous structure by the observation of a high-resolution transmission electron microscopy (HR-TEM). For the electro-optical characteristic, a best figure of merit (FOM) value of 3.54 × 10{sup −3} Ω{sup −1} with a corresponding transmittance of 85% was obtained at the thickness of 116 nm of ACCA film. The high FOM value of the film is due to the improvement of conductivity and small sacrifices of transparency. - Highlights: • A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO is developed. • Chromium is added to copper to reduce the oxidation–reduction reaction. • The film has a FOM of 3.54 × 10{sup −3} Ω{sup −1} with a corresponding transmittance of 85%. • The Cr:Cu layer shows a continuous and amorphous structure.

  16. Young's Modulus and Coefficient of Linear Thermal Expansion of ZnO Conductive and Transparent Ultra-Thin Films

    Directory of Open Access Journals (Sweden)

    Naoki Yamamoto

    2011-01-01

    Full Text Available A new technique for measuring Young's modulus of an ultra-thin film, with a thickness in the range of about 10 nm, was developed by combining an optical lever technique for measuring the residual stress and X-ray diffraction for measuring the strain in the film. The new technique was applied to analyze the mechanical properties of Ga-doped ZnO (GZO films, that have become the focus of significant attention as a substitute material for indium-tin-oxide transparent electrodes. Young's modulus of the as-deposited GZO films decreased with thickness; the values for 30 nm and 500 nm thick films were 205 GPa and 117 GPa, respectively. The coefficient of linear thermal expansion of the GZO films was measured using the new technique in combination with in-situ residual stress measurement during heat-cycle testing. GZO films with 30–100 nm thickness had a coefficient of linear thermal expansion in the range of 4.3 × 10−6 – 5.6 × 10−6 °C−1.

  17. Activation of visible up-conversion luminescence in transparent and conducting ZnO:Er:Yb films by laser annealing

    International Nuclear Information System (INIS)

    Lluscà, M.; López-Vidrier, J.; Lauzurica, S.; Sánchez-Aniorte, M.I.; Antony, A.; Molpeceres, C.; Hernández, S.; Garrido, B.; Bertomeu, J.

    2015-01-01

    Transparent and conducting ZnO:Er:Yb thin films with visible up-conversion (660-nm emission under 980-nm excitation) were fabricated by RF magnetron sputtering. The as-deposited films were found to be transparent and conducting and the activation of the Er ions in these films to produce up-conversion luminescence was achieved by different post-deposition annealing treatments in air, vacuum or by laser annealing using a Nd:YVO 4 laser. The structural, electrical and optical properties and the up-conversion efficiency of these films were found to be strongly influenced by the annealing method, and a detailed study is reported in this paper. It has been demonstrated that, although the air annealing was the most efficient in terms of up-conversion, laser annealing was the only method capable of activating Er ions while preserving the electrical conductivity of the doped films. It has been shown that a minimum energy was needed in laser annealing to optically activate the rare earth ions in the ZnO host material to produce up-conversion. Up-converting and transparent conducting ZnO:Er:Yb films with an electrical resistivity of 5×10 −2 Ω cm and transparency ~80% in the visible wavelength range has been achieved by laser annealing. - Highlights: • Transparent and conducting ZnO:Er:Yb films were grown via magnetron sputtering. • Post-annealing ZnO:Er:Yb is needed to optically activate Er ions. • Visible up-conversion emission at 660 nm is observed under 980 nm excitation. • A transparent and conducting up-converter is achieved by laser annealing

  18. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices.

    Science.gov (United States)

    Zheng, Z Q; Yao, J D; Wang, B; Yang, G W

    2015-06-16

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparent, and working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90(o). Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices.

  19. Transparent conducting oxide nanotubes

    Science.gov (United States)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Nagpal, Prashant

    2014-09-01

    Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current-voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10-4 Ωcm at T = 300 K (compared to 6.5 × 10-1 Ωcm for nominally undoped nanotubes) to 2.2 × 10-4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm-1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples.

  20. Controlled Al3+ Incorporation in the ZnO Lattice at 188 °C by Soft Reactive Co-Sputtering for Transparent Conductive Oxides

    Directory of Open Access Journals (Sweden)

    Salvatore Sanzaro

    2016-06-01

    Full Text Available Transparent conductive oxide (TCO layers, to be implemented in photo-anodes for dye-sensitized solar cells (DSCs, were prepared by co-deposition of ZnO and Al using pulsed-direct current (DC-magnetron reactive sputtering processes. The films were deposited at low deposition temperatures (RT-188 °C and at fixed working pressure (1.4 Pa using soft power loading conditions to avoid intrinsic extra-heating. To compensate the layer stoichiometry, O2 was selectively injected close to the sample in a small percentage (Ar:O2 = 69 sccm:2 sccm. We expressly applied the deposition temperature as a controlling parameter to tune the incorporation of the Al3+ species in the targeted position inside the ZnO lattice. With this method, Aluminum-doped Zinc Oxide films (ZnO:Al were grown following the typical wurtzite structure, as demonstrated by X-ray Diffraction analyses. A combination of micro-Raman, X-ray photoelectron spectroscopy (XPS and spectroscopic ellipsometry (SE analyses has shown that the incorporated host-atoms are Al3+ species in Zn2+ substitutional position; their amount increases following a direct monotonic trend with the deposition temperature. Correspondently, the c-axis strain into the layer decreases due to the progressive ordering of the lattice structure and reducing clustering phenomena. The maximum average Al content inside the film was ~2%, as measured by energy dispersive X-ray (EDX spectroscopy, with a uniform distribution of the dopant species along the layer thickness traced by depth-profile XPS analyses. The optimised ZnO:Al layer, deposited at a rate of ~7 nm/min, exhibits high transmittance in the visible range (~85% and low resistivity values (~13 mΩ × cm. The material therefore fulfils all the requirements to be candidate as TCO for low-cost DSCs on flexible substrates for large area technologies.

  1. Al-doped ZnO/Ag grid hybrid transparent conductive electrodes fabricated using a low-temperature process

    Energy Technology Data Exchange (ETDEWEB)

    An, Ha-Rim; Oh, Sung-Tag [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Kim, Chang Yeoul [Future Convergence Ceramic Division, Korea Institute Ceramic Engineering and Technology (KICET), Seoul 233-5 (Korea, Republic of); Baek, Seong-Ho [Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Park, Il-Kyu, E-mail: ikpark@ynu.ac.kr [Department of Electronic Engineering, Yeungnam University, Gyeongbuk 712-749 (Korea, Republic of); Ahn, Hyo-Jin, E-mail: hjahn@seoultech.ac.kr [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of)

    2014-12-05

    Highlights: • Al-doped ZnO/Ag transparent conductive electrode is fabricated at low temperature. • Performance of the hybrid transparent conductive electrode affected by the structure. • The performance enhancement mechanism is suggested. - Abstract: Al-doped ZnO (AZO)/Ag grid hybrid transparent conductive electrode (TCE) structures were fabricated at a low temperature by using electrohydrodynamic jet printing for the Ag grids and atomic layer deposition for the AZO layers. The structural investigations showed that the AZO/Ag grid hybrid structures consisted of Ag grid lines formed by Ag particles and the AZO layer covering the inter-spacing between the Ag grid lines. The Ag particles comprising the Ag grid lines were also capped by thin AZO layers, and the coverage of the AZO layers was increased with increasing the thickness of the AZO layer. Using the optimum thickness of AZO layer of 70 nm, the hybrid TCE structure showed an electrical resistivity of 5.45 × 10{sup −5} Ω cm, an optical transmittance of 80.80%, and a figure of merit value of 1.41 × 10{sup −2} Ω{sup −1}. The performance enhancement was suggested based on the microstructural investigations on the AZO/Ag grid hybrid structures.

  2. Spectroscopy and control of near-surface defects in conductive thin film ZnO

    KAUST Repository

    Kelly, Leah L; Racke, David A; Schulz, Philip; Li, Hong; Winget, Paul; Kim, Hyungchul; Ndione, Paul; Sigdel, Ajaya K; Bredas, Jean-Luc; Berry, Joseph J; Graham, Samuel; Monti, Oliver L A

    2016-01-01

    The electronic structure of inorganic semiconductor interfaces functionalized with extended π-conjugated organic molecules can be strongly influenced by localized gap states or point defects, often present at low concentrations and hard to identify spectroscopically. At the same time, in transparent conductive oxides such as ZnO, the presence of these gap states conveys the desirable high conductivity necessary for function as electron-selective interlayer or electron collection electrode in organic optoelectronic devices. Here, we report on the direct spectroscopic detection of a donor state within the band gap of highly conductive zinc oxide by two-photon photoemission spectroscopy. We show that adsorption of the prototypical organic acceptor C60 quenches this state by ground-state charge transfer, with immediate consequences on the interfacial energy level alignment. Comparison with computational results suggests the identity of the gap state as a near-surface-confined oxygen vacancy.

  3. Spectroscopy and control of near-surface defects in conductive thin film ZnO

    KAUST Repository

    Kelly, Leah L

    2016-02-12

    The electronic structure of inorganic semiconductor interfaces functionalized with extended π-conjugated organic molecules can be strongly influenced by localized gap states or point defects, often present at low concentrations and hard to identify spectroscopically. At the same time, in transparent conductive oxides such as ZnO, the presence of these gap states conveys the desirable high conductivity necessary for function as electron-selective interlayer or electron collection electrode in organic optoelectronic devices. Here, we report on the direct spectroscopic detection of a donor state within the band gap of highly conductive zinc oxide by two-photon photoemission spectroscopy. We show that adsorption of the prototypical organic acceptor C60 quenches this state by ground-state charge transfer, with immediate consequences on the interfacial energy level alignment. Comparison with computational results suggests the identity of the gap state as a near-surface-confined oxygen vacancy.

  4. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Ohtani, Yuusuke; Miyata, Toshihiro; Kuboi, Takeshi

    2007-01-01

    A newly developed Al-doped ZnO (AZO) thin-film magnetron-sputtering deposition technique that decreases resistivity, improves resistivity distribution, and produces high-rate depositions has been demonstrated by dc magnetron-sputtering depositions that incorporate rf power (dc+rf-MS), either with or without the introduction of H 2 gas into the deposition chamber. The dc+rf-MS preparations were carried out in a pure Ar or an Ar+H 2 (0%-2%) gas atmosphere at a pressure of 0.4 Pa by adding a rf component (13.56 MHz) to a constant dc power of 80 W. The deposition rate in a dc+rf-MS deposition incorporating a rf power of 150 W was approximately 62 nm/min, an increase from the approximately 35 nm/min observed in dc magnetron sputtering with a dc power of 80 W. A resistivity as low as 3x10 -4 Ω cm and an improved resistivity distribution could be obtained in AZO thin films deposited on substrates at a low temperature of 150 deg. C by dc+rf-MS with the introduction of hydrogen gas with a content of 1.5%. This article describes the effects of adding a rf power component (i.e., dc+rf-MS deposition) as well as introducing H 2 gas into dc magnetron-sputtering preparations of transparent conducting AZO thin films

  5. EDITORIAL: On display with transparent conducting films On display with transparent conducting films

    Science.gov (United States)

    Demming, Anna

    2012-03-01

    Transparent conducting films were already featuring in scientific literature over one hundred years ago. In 1894 Aryton and Mather described a conducting varnish for coating the screens of electric apparatus so they would not charge when accidentally brushed by a coat sleeve or other material [1]. Their method began with a similar approach to that used to make savoury jellies; by dissolving gelatine in vinegar, after which less palatable ingredients were incorporated including sulphuric acid and an antisulphuric enamel. While the search for transparent conducting films continued to attract other researchers, the same problem remained: the transparency would be compromised if the film was too thick, and the conductivity would be compromised if the film was too thin. In the early 1950s Gillham and Preston reported that thin gold films sputtered on bismuth oxide and heated resulted in a material that successfully combined the previously mutually exclusive properties of transparency and conductivity [2]. Other oxide films were also found to favourably combine these properties, including tin oxide, as reported by Ishiguro and colleagues in Japan in 1958 [3]. Today tin oxide doped with indium (ITO) has become the industry standard for transparent conducting films in a range of applications including photovoltaic technology and displays. It is perhaps the mounting ubiquity of electronic displays as a result of the increasingly digitised and computerised environment of the modern day world that has begun to underline the main drawback of ITO: expense. In this issue, a collaboration of researchers in Korea present an overview of graphene as a transparent conducting material with the potential to replace ITO in a range of electronic and optoelectronic applications [4]. One of the first innovations in optical microscopy was the use of dyes. This principle first came into practice with the use of ultraviolet light to reveal previously indistinguishable features. As explained

  6. Transparent conductive zinc-oxide-based films grown at low temperature by mist chemical vapor deposition

    International Nuclear Information System (INIS)

    Shirahata, Takahiro; Kawaharamura, Toshiyuki; Fujita, Shizuo; Orita, Hiroyuki

    2015-01-01

    Atmospheric pressure mist chemical vapor deposition (Mist–CVD) systems have been developed to grow zinc-oxide-based (ZnO-based) transparent conductive oxide (TCO) films. Low-resistive aluminum-doped ZnO (AZO) TCOs, showing resistivity of the order on 10"−"4 Ωcm, previously were grown using a safe source material zinc acetate [Zn(ac)_2], at a growth temperature as high as 500 °C. To grow superior TCOs at lower temperatures, we proposed the addition of NH_3 to accelerate the reaction of acetylacetonate compounds. As the result, we could grow gallium-doped ZnO (GZO) TCOs with a resistivity of 2.7 × 10"−"3 Ω cm and transmittance higher than 90% at 300 °C by using zinc acetylacetonate [Zn(acac)_2] as the Zn source. To grow boron-doped ZnO (BZO) TCOs at a lower growth temperature of 200 °C, we used boron doping along with a toluene solution of diethylzinc (DEZ), that maintained high reactivity without being flammable. These BZO TCOs showed a resistivity of 1.5 × 10"−"3 Ω cm and transmittance higher than 90%, despite the use of a non-vacuum-based open-air technology. - Highlights: • Introduction of Mist–CVD as a non-vacuum-based, safe, and cost-effective growth technology • Process evolution of the growth technology to lower the growth temperature. • Achievement of low resistive ZnO films at 200oC.

  7. Transparent conductive zinc-oxide-based films grown at low temperature by mist chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shirahata, Takahiro [New Energy and Environmental Business Division, Toshiba Mitsubishi-Electric Industrial Systems Corporation, Kobe International Business Center (KIBC) 509, 5-5-2 Minatojima-Minami, Chuo-Ku, Kobe 650-0047 (Japan); Kawaharamura, Toshiyuki [Research Institute, Kochi University of Technology, Kami, Kochi 780-8502 (Japan); School of Systems Engineering, Kochi University of Technology, Kami, Kochi 780-8502 (Japan); Fujita, Shizuo, E-mail: fujitasz@kuee.kyoto-u.ac.jp [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520 (Japan); Orita, Hiroyuki [New Energy and Environmental Business Division, Toshiba Mitsubishi-Electric Industrial Systems Corporation, Kobe International Business Center (KIBC) 509, 5-5-2 Minatojima-Minami, Chuo-Ku, Kobe 650-0047 (Japan)

    2015-12-31

    Atmospheric pressure mist chemical vapor deposition (Mist–CVD) systems have been developed to grow zinc-oxide-based (ZnO-based) transparent conductive oxide (TCO) films. Low-resistive aluminum-doped ZnO (AZO) TCOs, showing resistivity of the order on 10{sup −4} Ωcm, previously were grown using a safe source material zinc acetate [Zn(ac){sub 2}], at a growth temperature as high as 500 °C. To grow superior TCOs at lower temperatures, we proposed the addition of NH{sub 3} to accelerate the reaction of acetylacetonate compounds. As the result, we could grow gallium-doped ZnO (GZO) TCOs with a resistivity of 2.7 × 10{sup −3} Ω cm and transmittance higher than 90% at 300 °C by using zinc acetylacetonate [Zn(acac){sub 2}] as the Zn source. To grow boron-doped ZnO (BZO) TCOs at a lower growth temperature of 200 °C, we used boron doping along with a toluene solution of diethylzinc (DEZ), that maintained high reactivity without being flammable. These BZO TCOs showed a resistivity of 1.5 × 10{sup −3} Ω cm and transmittance higher than 90%, despite the use of a non-vacuum-based open-air technology. - Highlights: • Introduction of Mist–CVD as a non-vacuum-based, safe, and cost-effective growth technology • Process evolution of the growth technology to lower the growth temperature. • Achievement of low resistive ZnO films at 200oC.

  8. Transparent conducting oxides and production thereof

    Science.gov (United States)

    Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

    2014-06-10

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  9. Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications

    International Nuclear Information System (INIS)

    Gieraltowska, S.; Wachnicki, L.; Witkowski, B.S.; Godlewski, M.; Guziewicz, E.

    2012-01-01

    In this paper, we report on transparent transistor obtained using laminar structure of two high-k dielectric oxides (hafnium dioxide, HfO 2 and aluminum oxide, Al 2 O 3 ) and zinc oxide (ZnO) layer grown at low temperature (60 °C–100 °C) using Atomic Layer Deposition (ALD) technology. Our research was focused on the optimization of technological parameters for composite layers Al 2 O 3 /HfO 2 /Al 2 O 3 for thin film transistor structures with ZnO as a channel and a gate layer. We elaborate on the ALD growth of these oxides, finding that the 100 nm thick layers of HfO 2 and Al 2 O 3 exhibit fine surface flatness and required amorphous microstructure. Growth parameters are optimized for the monolayer growth mode and maximum smoothness required for gating.

  10. Printable Transparent Conductive Films for Flexible Electronics.

    Science.gov (United States)

    Li, Dongdong; Lai, Wen-Yong; Zhang, Yi-Zhou; Huang, Wei

    2018-03-01

    Printed electronics are an important enabling technology for the development of low-cost, large-area, and flexible optoelectronic devices. Transparent conductive films (TCFs) made from solution-processable transparent conductive materials, such as metal nanoparticles/nanowires, carbon nanotubes, graphene, and conductive polymers, can simultaneously exhibit high mechanical flexibility, low cost, and better photoelectric properties compared to the commonly used sputtered indium-tin-oxide-based TCFs, and are thus receiving great attention. This Review summarizes recent advances of large-area flexible TCFs enabled by several roll-to-roll-compatible printed techniques including inkjet printing, screen printing, offset printing, and gravure printing using the emerging transparent conductive materials. The preparation of TCFs including ink formulation, substrate treatment, patterning, and postprocessing, and their potential applications in solar cells, organic light-emitting diodes, and touch panels are discussed in detail. The rational combination of a variety of printed techniques with emerging transparent conductive materials is believed to extend the opportunities for the development of printed electronics within the realm of flexible electronics and beyond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Oxygen vacancies: The origin of n -type conductivity in ZnO

    Science.gov (United States)

    Liu, Lishu; Mei, Zengxia; Tang, Aihua; Azarov, Alexander; Kuznetsov, Andrej; Xue, Qi-Kun; Du, Xiaolong

    2016-06-01

    Oxygen vacancy (VO) is a common native point defect that plays crucial roles in determining the physical and chemical properties of metal oxides such as ZnO. However, fundamental understanding of VO is still very sparse. Specifically, whether VO is mainly responsible for the n -type conductivity in ZnO has been still unsettled in the past 50 years. Here, we report on a study of oxygen self-diffusion by conceiving and growing oxygen-isotope ZnO heterostructures with delicately controlled chemical potential and Fermi level. The diffusion process is found to be predominantly mediated by VO. We further demonstrate that, in contrast to the general belief of their neutral attribute, the oxygen vacancies in ZnO are actually +2 charged and thus responsible for the unintentional n -type conductivity as well as the nonstoichiometry of ZnO. The methodology can be extended to study oxygen-related point defects and their energetics in other technologically important oxide materials.

  12. A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials

    Directory of Open Access Journals (Sweden)

    Daniela Lehr

    2015-11-01

    Full Text Available Numerous applications in optoelectronics require electrically conducting materials with high optical transparency over the entire visible light range. A solid solution of indium oxide and substantial amounts of tin oxide for electronic doping (ITO is currently the most prominent example for the class of so-called TCOs (transparent conducting oxides. Due to the limited, natural occurrence of indium and its steadily increasing price, it is highly desired to identify materials alternatives containing highly abundant chemical elements. The doping of other metal oxides (e.g., zinc oxide, ZnO is a promising approach, but two problems can be identified. Phase separation might occur at the required high concentration of the doping element, and for successful electronic modification it is mandatory that the introduced heteroelement occupies a defined position in the lattice of the host material. In the case of ZnO, most attention has been attributed so far to n-doping via substitution of Zn2+ by other metals (e.g., Al3+. Here, we present first steps towards n-doped ZnO-based TCO materials via substitution in the anion lattice (O2− versus halogenides. A special approach is presented, using novel single-source precursors containing a potential excerpt of the target lattice 'HalZn·Zn3O3' preorganized on the molecular scale (Hal = I, Br, Cl. We report about the synthesis of the precursors, their transformation into halogene-containing ZnO materials, and finally structural, optical and electronic properties are investigated using a combination of techniques including FT-Raman, low-T photoluminescence, impedance and THz spectroscopies.

  13. Electrical anisotropy properties of ZnO nanorods analyzed by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Wu Yunfeng; Yu Naisen; Liu Dongping; He Yangyang; Liu Yuanda; Liang Hongwei; Du Guotong

    2013-01-01

    Highlights: ► The electrical properties of one individual lying ZnO nanorod were performed by C-AFM measurement. ► Inhomogeneous spatial current distribution was detected. ► Current was detected along the side facets while no current was detected in the top plane for ZnO nanorod. ► The side facets were more conductive than the top facets of ZnO nanorods. - Abstract: In this study, we have prepared ZnO nanorods on cracked GaN substrates using aqueous solution method. Unique electrical characterization of one individual lying ZnO nanorod is analyzed by conductive atomic force microscopy (C-AFM). Effect of anisotropy properties on the conductivity of a single nanorod has been investigated. The current maps of ZnO nanorods have been simultaneously recorded with the topography which is gained by AFM-contact mode. The C-AFM measurement present local current–voltage (I–V) characteristics of the side facets of one individual lying nanorod, however, no current is detected on the top facets of ZnO nanorods. Measurement results indicate that the side facets are more electrically active than the top facets of ZnO nanorods due to lower Schottky barrier height of the side facets.

  14. Conductivity in transparent oxide semiconductors.

    Science.gov (United States)

    King, P D C; Veal, T D

    2011-08-24

    Despite an extensive research effort for over 60 years, an understanding of the origins of conductivity in wide band gap transparent conducting oxide (TCO) semiconductors remains elusive. While TCOs have already found widespread use in device applications requiring a transparent contact, there are currently enormous efforts to (i) increase the conductivity of existing materials, (ii) identify suitable alternatives, and (iii) attempt to gain semiconductor-engineering levels of control over their carrier density, essential for the incorporation of TCOs into a new generation of multifunctional transparent electronic devices. These efforts, however, are dependent on a microscopic identification of the defects and impurities leading to the high unintentional carrier densities present in these materials. Here, we review recent developments towards such an understanding. While oxygen vacancies are commonly assumed to be the source of the conductivity, there is increasing evidence that this is not a sufficient mechanism to explain the total measured carrier concentrations. In fact, many studies suggest that oxygen vacancies are deep, rather than shallow, donors, and their abundance in as-grown material is also debated. We discuss other potential contributions to the conductivity in TCOs, including other native defects, their complexes, and in particular hydrogen impurities. Convincing theoretical and experimental evidence is presented for the donor nature of hydrogen across a range of TCO materials, and while its stability and the role of interstitial versus substitutional species are still somewhat open questions, it is one of the leading contenders for yielding unintentional conductivity in TCOs. We also review recent work indicating that the surfaces of TCOs can support very high carrier densities, opposite to the case for conventional semiconductors. In thin-film materials/devices and, in particular, nanostructures, the surface can have a large impact on the total

  15. ZnO Coatings with Controlled Pore Size, Crystallinity and Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Roman SCHMACK

    2016-05-01

    Full Text Available Zinc oxide is a wide bandgap semiconductor with unique optical, electrical and catalytic properties. Many of its practical applications rely on the materials pore structure, crystallinity and electrical conductivity. We report a synthesis method for ZnO films with ordered mesopore structure and tuneable crystallinity and electrical conductivity. The synthesis relies on dip-coating of solutions containing micelles of an amphiphilic block copolymer and complexes of Zn2+ ions with aliphatic ligands. A subsequent calcination at 400°C removes the template and induces crystallization of the pore walls. The pore structure is controlled by the template polymer, whereas the aliphatic ligands control the crystallinity of the pore walls. Complexes with a higher thermal stability result in ZnO films with a higher content of residual carbon, smaller ZnO crystals and therefore lower electrical conductivity. The paper discusses the ability of different types of ligands to assist in the synthesis of mesoporous ZnO and relates the structure and thermal stability of the precursor complexes to the crystallinity and electrical conductivity of the zinc oxide.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.8634

  16. Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays

    Science.gov (United States)

    Li, Mary; Sultana, Mahmooda; Hess, Larry

    2012-01-01

    Graphene is a single atomic layer of graphite. It is optically transparent and has high electron mobility, and thus has great potential to make transparent conductive electrodes. This invention contributes towards the development of graphene transparent conductive electrodes for next-generation microshutter arrays. The original design for the electrodes of the next generation of microshutters uses indium-tin-oxide (ITO) as the electrode material. ITO is widely used in NASA flight missions. The optical transparency of ITO is limited, and the material is brittle. Also, ITO has been getting more expensive in recent years. The objective of the invention is to develop a graphene transparent conductive electrode that will replace ITO. An exfoliation procedure was developed to make graphene out of graphite crystals. In addition, large areas of single-layer graphene were produced using low-pressure chemical vapor deposition (LPCVD) with high optical transparency. A special graphene transport procedure was developed for transferring graphene from copper substrates to arbitrary substrates. The concept is to grow large-size graphene sheets using the LPCVD system through chemical reaction, transfer the graphene film to a substrate, dope graphene to reduce the sheet resistance, and pattern the film to the dimension of the electrodes in the microshutter array. Graphene transparent conductive electrodes are expected to have a transparency of 97.7%. This covers the electromagnetic spectrum from UV to IR. In comparison, ITO electrodes currently used in microshutter arrays have 85% transparency in mid-IR, and suffer from dramatic transparency drop at a wavelength of near-IR or shorter. Thus, graphene also has potential application as transparent conductive electrodes for Schottky photodiodes in the UV region.

  17. Highly transparent and UV-resistant superhydrophobic SiO2-coated ZnO nanorod arrays

    KAUST Repository

    Gao, Yangqin

    2014-02-26

    Highly transparent and UV-resistant superhydrophobic arrays of SiO 2-coated ZnO nanorods are prepared in a sequence of low-temperature (<150 C) steps on both glass and thin sheets of PET (2 × 2 in. 2), and the superhydrophobic nanocomposite is shown to have minimal impact on solar cell device performance under AM1.5G illumination. Flexible plastics can serve as front cell and backing materials in the manufacture of flexible displays and solar cells. © 2014 American Chemical Society.

  18. Highly doped ZnO films deposited by spray-pyrolysis. Design parameters for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Garcés, F.A., E-mail: felipe.garces@santafe-conicet.gov.ar [Instituto de Física del Litoral (UNL-CONICET), Güemes 3450, Santa Fe S3000GLN (Argentina); Budini, N. [Instituto de Física del Litoral (UNL-CONICET), Güemes 3450, Santa Fe S3000GLN (Argentina); Schmidt, J.A.; Arce, R.D. [Instituto de Física del Litoral (UNL-CONICET), Güemes 3450, Santa Fe S3000GLN (Argentina); Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe S3000AOM (Argentina)

    2016-04-30

    Synthesis and preparation of ZnO films are relevant subjects for obtaining transparent and conducting layers with interesting applications in optoelectronics and photovoltaics. Optimization of parameters such as dopant type and concentration, deposition time and substrate temperature is important for obtaining ZnO layers with optimal properties. In this work we present a study about the induced effects of deposition time on optical and electrical properties of ZnO thin films. These films were deposited by spray pyrolysis of a suitable Zn precursor, obtained through the sol–gel method. The deposition time has direct incidence on internal stress in the crystal structure, generating defects that may affect transparency and electrical transport into the layers. We performed mosaicity measurements, through X-ray diffraction, and used it as a tool to get an insight on structural characteristics and homogeneity of ZnO layers. Also, through this technique, we analyzed thickness and doping effects on crystallinity and carrier transport properties. - Highlights: • Al-doped ZnO films with high conductivity and moderate Hall mobility were obtained. • Mosaicity between crystalline domains increased with film thickness. • Lattice parameters a and c diminished linearly as a function of Al concentration. • First steps for developing porous silicon/doped ZnO heterojunctions were presented.

  19. Highly doped ZnO films deposited by spray-pyrolysis. Design parameters for optoelectronic applications

    International Nuclear Information System (INIS)

    Garcés, F.A.; Budini, N.; Schmidt, J.A.; Arce, R.D.

    2016-01-01

    Synthesis and preparation of ZnO films are relevant subjects for obtaining transparent and conducting layers with interesting applications in optoelectronics and photovoltaics. Optimization of parameters such as dopant type and concentration, deposition time and substrate temperature is important for obtaining ZnO layers with optimal properties. In this work we present a study about the induced effects of deposition time on optical and electrical properties of ZnO thin films. These films were deposited by spray pyrolysis of a suitable Zn precursor, obtained through the sol–gel method. The deposition time has direct incidence on internal stress in the crystal structure, generating defects that may affect transparency and electrical transport into the layers. We performed mosaicity measurements, through X-ray diffraction, and used it as a tool to get an insight on structural characteristics and homogeneity of ZnO layers. Also, through this technique, we analyzed thickness and doping effects on crystallinity and carrier transport properties. - Highlights: • Al-doped ZnO films with high conductivity and moderate Hall mobility were obtained. • Mosaicity between crystalline domains increased with film thickness. • Lattice parameters a and c diminished linearly as a function of Al concentration. • First steps for developing porous silicon/doped ZnO heterojunctions were presented.

  20. Determination of chemical state of Al doping element in ZnO layer

    International Nuclear Information System (INIS)

    Csik, A.; Toth, J.; Lovics, R.; Takats, V.; Hakl, J.; Vad, K.

    2011-01-01

    Complete text of publication follows. Transparent and conducting oxides (TCO) thin films are very important from the scientific and technological point of view. The coexistence of electrical conductivity and optical transparency in these materials makes it possible to use them in modern technologies: transparent electrodes for flat panel displays and photovoltaic cells, low emissivity windows, transparent thin films transistors, light emitting diodes. One of the important TCO semiconductors is the impurity-doped zinc-oxide (ZnO) layer, for example aluminium doped zinc-oxide layer (AZO), due to its unique physical and chemical properties. It has wide band gap (3.44 eV) and large exciton binding energy (60 meV). ZnO thin layers have a great interest for potential applications in optical and optoelectronic devices. Furthermore, high quality single crystal ZnO wafers has already been available as a result of new developments in ZnO growth technologies with the capability to scale up wafer size, which is an important factor for increasing efficiency of solar cells. Nonetheless, in order to enable the use of ZnO layers with enhanced electrical properties, higher conductivities can be obtained by doping with donor elements such as aluminium, gallium, indium, boron or fluorine. Investigation of p-type doping possibilities, diffusion processes and thermal stability of these layers are in the focus of interest in the interpretation of their optical and electrical properties, and the prediction of their lifetime. In our SNMS/SIMS-XPS laboratory, experiments on TCO layered structures were carried on. Depth profile and chemical state analyses of ZnO/AlO/ZnO layered structures were performed by Secondary Neutral Mass Spectrometry (SNMS) and X-ray photoelectron spectroscopy (XPS). The samples were produced by atomic layer deposition technique with the following layered structure: between a few hundred atomic layers of ZnO was an AlO atomic layer. The SNMS was used for depth

  1. New transparent conductive metal based on polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz Hedayati, Mehdi; Jamali, Mohammad [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Strunkus, Thomas; Zaporochentko, Vladimir; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Currently great efforts are made to develop new kind of transparent conductors (TCs) to replace ITO. In this regard different materials and composites have been proposed and studied including conductive polymers, carbon nanotubes (CNTs), metal grids, and random networks of metallic nanowires. But so far none of them could be used as a replacing material, since either they are either fragile and brittle or their electrical conductivity is below the typical ITO. Thin metallic films due to their high electrical conductivity could be one of the best replacing materials for ITO, however their poor transparency makes their application as TCs limited. Here we design and fabricate a new polymeric composite coating which enhances the transparency of the thin metal film up to 100% relative to the initial value while having a high electrical conductivity of typical metals. Therefore our proposed device has a great potential to be used as new transparent conductor.

  2. Thermal process induced change of conductivity in As-doped ZnO

    Science.gov (United States)

    Su, S. C.; Fan, J. C.; Ling, C. C.

    2012-02-01

    Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method with different substrate temperature TS. Growing with the low substrate temperature of TS=200°C yielded n-type semi-insulating sample. Increasing the substrate temperature would yield p-type ZnO film and reproducible p-type film could be produced at TS~450°C. Post-growth annealing of the n-type As-doped ZnO sample grown at the low substrate temperature (TS=200°C) in air at 500°C also converted the film to p-type conductivity. Further increasing the post-growth annealing temperature would convert the p-type sample back to n-type. With the results obtained from the studies of positron annihilation spectroscopy (PAS), photoluminescence (PL), cathodoluminescence (CL), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and nuclear reaction analysis (NRA), we have proposed mechanisms to explain for the thermal process induced conduction type conversion as observed in the As-doped ZnO films.

  3. Surface microstructure evolution of highly transparent and conductive Al-doped ZnO thin films and its application in CIGS solar cells

    Science.gov (United States)

    Cheng, Ke; Liu, Jingjing; Jin, Ranran; Liu, Jingling; Liu, Xinsheng; Lu, Zhangbo; Liu, Ya; Liu, Xiaolan; Du, Zuliang

    2017-07-01

    Aluminum-doped zinc oxide (AZO) has attained intensive attention as being a very good transparent conducting oxide for photovoltaic applications. In this work, AZO films have been deposited on glass substrate by radio frequency (RF) magnetron sputtering. The influences of substrate temperatures on morphological, structural, optical and electrical properties of AZO films were systematically investigated. The results indicate that all AZO films have the hexagonal structure with c-axis preferred orientation. Morphological and electrical measurements have revealed that the substrate temperatures have strong influence on the microstructure, optical and electrical properties of AZO films. The AZO film is highly transparent from ultraviolet up to near infrared range with highest average transparency exceeding 83%. The minimum resistivity is as low as 6.1 × 10-4 Ω cm. The carrier concentration and mobility are as high as 3.357 × 1020 cm-3 and 30.48 cm2/Vs, respectively. Finally, the performances of the AZO film are evaluated by its practical application in Cu(In1-xGax)Se2 (CIGS) photovoltaic device as a transparent electrode. Benefited from its highly transparent and conductive feature, the most efficient device reveals an efficiency of 7.8% with a short-circuit current density of 28.99 mA/cm2, an open-circuit voltage of 430 mV, and a fill factor of 62.44 under standard conditions.

  4. Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol–gel method

    International Nuclear Information System (INIS)

    Pan, Zhanchang; Luo, Junming; Tian, Xinlong; Wu, Shoukun; Chen, Chun; Deng, Jianfeng; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2014-01-01

    Highlights: • F/Sn and Al co-doped ZnO thin films were synthesized by sol–gel method. • The co-doped nanocrystals exhibit good crystal quality. • The origin of the photoluminescence emissions was discussed. • The films showed high transmittance and low resistivity. -- Abstract: Al doped ZnO, Al–Sn co-doped ZnO and Al–F co-doped ZnO nanocrystals were successfully synthesized onto glass substrates by the sol–gel method. The structure and morphology of the films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The results indicated that all the films were polycrystalline with a hexagonal wurtzite structure and exhibited a c-axis preferred orientation. The electrical and optical properties were also investigated by 4-point probe device and Uv–vis spectroscopy, room temperature photoluminescence (PL) and Raman spectrum (Raman), respectively. The PL and Raman results suggested that the co-doped films with a very low defect concentration and exhibit a better crystallinity than AZO thin films. The XPS study confirmed the incorporation of Al, Sn and F ions in the ZnO lattice

  5. Effect of morphology on the non-ohmic conduction in ZnO nanostructures

    Science.gov (United States)

    Praveen, E.; Jayakumar, K.

    2016-05-01

    Nanostructures of ZnO is synthesized with nanoflower like morphology by simple wet chemical method. The structural, morphological and electrical characterization have been carried out. The temperature dependent electrical characterization of ZnO pellets of thickness 1150 µm is made by the application of 925MPa pressure. The morphological dependence of non-ohmic conduction beyond some arbitrary tunneling potential and grain boundary barrier thickness is compared with the commercially available bulk ZnO. Our results show the suitability of nano-flower like ZnO for the devices like sensors, rectifiers etc.

  6. Effect of annealing on electrical properties of plasmatron deposited ZnO films

    International Nuclear Information System (INIS)

    Joa, Sang Beom; Penkov, Oteksiy V.; Plaksin, Vadim Yu; Mansur, Rakib; Kim, Ji Hun; Lee, Heon Ju

    2009-01-01

    Transparent conductive zinc oxide (ZnO) has been extensively studied in recent several years because they have very interesting properties. Besides this, zinc oxide is non-poisonous, abundant and cheap material. ZnO films are employed in different applications like transparent conductive layers in solar cells, protective coatings and so on. Wide industrial application of the ZnO films requires of development of cheap, effective and scalable technology. Typically used technology like RF sputtering, pyrolysis and metal-organic CVD don't completely satisfy the industrial requirements. In our previous publications the new perspective ZnO deposition technology based DC Arc Plasmatron was described. This technology has several advantages (low cost, high deposition rate, low substrate temperature). Currently, films deposited using this technology has can be used only as protective or insulation coatings because of very high resistance. Applying of plasmatron technology in the microelectronics or solar cell production requires the improvement of electrical properties of the films. This can be achieved by optimization of deposition parameters, using of doping, or by post-deposition treatment such as annealing, or by combination of mentioned. It was shown that proposed technology can be used for the deposition of pure ZnO film with good electrical and optical properties. Proposed technology has several disadvantages which can be overcome in the near-term outlook

  7. Lattice Transparency of Graphene.

    Science.gov (United States)

    Chae, Sieun; Jang, Seunghun; Choi, Won Jin; Kim, Youn Sang; Chang, Hyunju; Lee, Tae Il; Lee, Jeong-O

    2017-03-08

    Here, we demonstrated the transparency of graphene to the atomic arrangement of a substrate surface, i.e., the "lattice transparency" of graphene, by using hydrothermally grown ZnO nanorods as a model system. The growth behaviors of ZnO nanocrystals on graphene-coated and uncoated substrates with various crystal structures were investigated. The atomic arrangements of the nucleating ZnO nanocrystals exhibited a close match with those of the respective substrates despite the substrates being bound to the other side of the graphene. By using first-principles calculations based on density functional theory, we confirmed the energetic favorability of the nucleating phase following the atomic arrangement of the substrate even with the graphene layer present in between. In addition to transmitting information about the atomic lattice of the substrate, graphene also protected its surface. This dual role enabled the hydrothermal growth of ZnO nanorods on a Cu substrate, which otherwise dissolved in the reaction conditions when graphene was absent.

  8. Properties of transparent and conductive Al:ZnO/Au/Al:ZnO multilayers on flexible PET substrates

    International Nuclear Information System (INIS)

    Dimopoulos, T.; Bauch, M.; Wibowo, R.A.; Bansal, N.; Hamid, R.; Auer, M.; Jäger, M.; List-Kratochvil, E.J.W.

    2015-01-01

    Highlights: • Transparent, low resistive AZO/Au/AZO layers were sputtered on PET substrates. • AZO/Au/AZO has higher figure of merit than ITO for specific Au thicknesses. • The resistance of AZO/Au/AZO is stable against repetitive substrate bending. • AZO/Au/AZO electrode performance is comparable to ITO in light emitting diodes. - Abstract: We investigate the structural, electrical and optical properties of transparent electrodes, consisting of Al-doped ZnO (AZO) and ultrathin Au layers, sputtered on polyethylene terephthalate (PET). These electrodes are relevant for optoelectronic devices and thin film photovoltaics. When deposited on AZO, Au films as thin as 3 nm form electrically conductive, meandering structures, whereas uniform Au films are obtained from a thickness of 5 nm. The sheet resistance decreases with Au thickness, reaching 7 Ω for 11 nm-thick Au. AZO/Au/AZO trilayers combine lowest resistance with highest transparency, while their resistance stability against bending fatigue is superior to the Sn-doped In 2 O 3 (ITO) electrode. The figure of merit of AZO/Au/AZO is larger than of ITO for Au thickness equal to or larger than 9 nm. To demonstrate the applicability of the AZO/Au/AZO transparent electrode, simple organic light emitting diodes were fabricated and tested in comparison to PET/ITO standard substrates

  9. Properties of transparent and conductive Al:ZnO/Au/Al:ZnO multilayers on flexible PET substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, T., E-mail: theodoros.dimopoulos@ait.ac.at [AIT-Austrian Institute of Technology, Energy Department, Photovoltaic Systems, Giefinggasse 2, 1210, Vienna (Austria); Bauch, M.; Wibowo, R.A.; Bansal, N. [AIT-Austrian Institute of Technology, Energy Department, Photovoltaic Systems, Giefinggasse 2, 1210, Vienna (Austria); Hamid, R. [AIT-Austrian Institute of Technology, Mobility Department, Electric Drive Technologies, Giefinggasse 2, 1210, Vienna (Austria); Auer, M.; Jäger, M. [NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler Straße 32, A-8160 Weiz (Austria); List-Kratochvil, E.J.W. [NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler Straße 32, A-8160 Weiz (Austria); Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2015-10-15

    Highlights: • Transparent, low resistive AZO/Au/AZO layers were sputtered on PET substrates. • AZO/Au/AZO has higher figure of merit than ITO for specific Au thicknesses. • The resistance of AZO/Au/AZO is stable against repetitive substrate bending. • AZO/Au/AZO electrode performance is comparable to ITO in light emitting diodes. - Abstract: We investigate the structural, electrical and optical properties of transparent electrodes, consisting of Al-doped ZnO (AZO) and ultrathin Au layers, sputtered on polyethylene terephthalate (PET). These electrodes are relevant for optoelectronic devices and thin film photovoltaics. When deposited on AZO, Au films as thin as 3 nm form electrically conductive, meandering structures, whereas uniform Au films are obtained from a thickness of 5 nm. The sheet resistance decreases with Au thickness, reaching 7 Ω for 11 nm-thick Au. AZO/Au/AZO trilayers combine lowest resistance with highest transparency, while their resistance stability against bending fatigue is superior to the Sn-doped In{sub 2}O{sub 3} (ITO) electrode. The figure of merit of AZO/Au/AZO is larger than of ITO for Au thickness equal to or larger than 9 nm. To demonstrate the applicability of the AZO/Au/AZO transparent electrode, simple organic light emitting diodes were fabricated and tested in comparison to PET/ITO standard substrates.

  10. Limits of transparency of transparent conducting oxides

    Science.gov (United States)

    Peelaers, Hartwin

    A fundamental understanding of the factors that limit transparency in transparent conducting oxides (TCOs) is essential for further progress in materials and applications. These materials have a sufficiently large band gap, so that direct optical transitions do not lead to absorption of light within the visible spectrum. Since the presence of free carriers is essential for conductivity and thus for device applications, this introduces the possibility of additional absorption processes. In particular, indirect processes are possible, and these will constitute a fundamental limit of the material. The Drude theory is widely used to describe free-carrier absorption, but it is phenomenological in nature and tends to work poorly at shorter wavelengths, where band-structure effects are important. We will present calculations of phonon- and defect-assisted free-carrier absorption in a TCO completely from first principles. We will focus in detail on SnO2, but the methodology is general and we will also compare the results obtained for other TCO materials such as In2O3. These calculations provide not just quantitative results but also deeper insights in the mechanisms that govern absorption processes, which is essential for engineering improved materials to be used in more efficient devices. This work was performed in collaboration with E. Kioupakis and C.G. Van de Walle and was supported by ARO and NSF.

  11. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  12. Improved transparent-conducting properties in N2- and H2- annealed GaZnO thin films grown on glass substrates

    International Nuclear Information System (INIS)

    Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon

    2012-01-01

    The effects of N 2 - and H 2 - annealing on the transparent-conducting properties of Ga-doped ZnO (GaZnO) were examined. The as-grown GaZnO thin film, which was deposited on a soda-lime glass substrate by r.f. magnetron sputtering, exhibited moderate transparent-conducting properties: a resistivity of ∼10 0 Ω·cm and an optical transmittance of ∼86%. After annealing in N 2 or H 2 , the GaZnO samples showed great improvements in both the electrical and the optical properties. Particularly, in the H 2 -annealed sample, a dramatic decrease in the resistivity (7 x 10 -4 Ω·cm) with a considerable increase in the carrier concentration (4.22 x 10 21 cm -3 ) was observed. This is attributed to both an increase in the number of Ga-O bonds and a reduction in the number of chemisorbed oxygen atoms though H 2 annealing. The sample revealed an enhanced optical transmittance (∼91%), which comes from the Burstein-Moss effect. Namely, a blue-shift of the optical absorption edge, which results from the increased carrier concentration, was observed in the H 2 -annealed sample. The results suggest that hydrogen annealing can help improve the transparent conducting properties of GaZnO via a modification of the electrochemical bonding structures.

  13. UV shielding with visible transparency based properties of poly (styrene-co-acrylonitrile)/Ag doped ZnO nanocomposite

    Science.gov (United States)

    Singh, Rajender; Verma, Karan; Singh, Tejbir; Barman, P. B.; Sharma, Dheeraj

    2018-02-01

    Development of ultraviolet (UV) shielding with visible transparency based thermoplastic polymer nanocomposite (PNs) presents an important requisite in terms of their efficiency and cost. Present study contributed for the same approach by dispersion of Ag doped ZnO nanoparticles upto 10 wt% in poly (styrene-co-acrylonitrile) matrix by insitu emulsion polymerization method. The crystal and chemical structure of PNs has been analyzed by x-ray diffraction (XRD) and fourier infrared spectrometer (FTIR) techniques. The morphological and elemental information of synthesized nanomaterial has been studied by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) technique. The optical properties of PNs has been studied by UV-visible spectroscopy technique. The incorporation of nanoparticles in polymer matrix absorb the complete UV light with visible transparency. The present reported polymer nanocomposite (PNs) have tuned refractive index with UV blocking and visible transparency based properties which can serve as a viable alternative as compared to related conventional materials.

  14. Improved electrical conduction properties in unintentionally-doped ZnO thin films treated by rapid thermal annealing

    International Nuclear Information System (INIS)

    Lee, Youngmin; Lee, Choeun; Shim, Eunhee; Jung, Eiwhan; Lee, Jinyong; Kim, Deukyoung; Lee, Sejoon; Fu, Dejun; Yoon, Hyungdo

    2011-01-01

    The effects of thermal treatments on the electrical conduction properties for the unintentionally doped ZnO thin films were investigated. Despite the decreased carrier density in the annealed ZnO thin films, the conductivity was increased because the contribution of the effective carrier mobility to the conductivity of the unintentionally-doped ZnO thin films is greater than that of the carrier density. The resistivity exponentially decreased with increasing RTA temperature, and this result was confirmed to come from the enhanced effective carrier-mobility, which originated from the increased crystallite size in the annealed ZnO thin films.

  15. Improved electrical conduction properties in unintentionally-doped ZnO thin films treated by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin; Lee, Choeun; Shim, Eunhee; Jung, Eiwhan; Lee, Jinyong; Kim, Deukyoung; Lee, Sejoon [Dongguk University-Seoul, Seoul (Korea, Republic of); Fu, Dejun [Wuhan University, Wuhan (China); Yoon, Hyungdo [Korea Electronics Technology Institute, Seongnam (Korea, Republic of)

    2011-10-15

    The effects of thermal treatments on the electrical conduction properties for the unintentionally doped ZnO thin films were investigated. Despite the decreased carrier density in the annealed ZnO thin films, the conductivity was increased because the contribution of the effective carrier mobility to the conductivity of the unintentionally-doped ZnO thin films is greater than that of the carrier density. The resistivity exponentially decreased with increasing RTA temperature, and this result was confirmed to come from the enhanced effective carrier-mobility, which originated from the increased crystallite size in the annealed ZnO thin films.

  16. Hydrothermal temperature effect on crystal structures, optical properties and electrical conductivity of ZnO nanostructures

    Science.gov (United States)

    Dhafina, Wan Almaz; Salleh, Hasiah; Daud, Mohd Zalani; Ghazali, Mohd Sabri Mohd; Ghazali, Salmah Mohd

    2017-09-01

    ZnO is an wide direct band gap semiconductor and possess rich family of nanostructures which turned to be a key role in the nanotechnology field of applications. Hydrothermal method was proven to be simple, robust and low cost among the reported methods to synthesize ZnO nanostructures. In this work, the properties of ZnO nanostructures were altered by varying temperatures of hydrothermal process. The changes in term of morphological, crystal structures, optical properties and electrical conductivity were investigated. A drastic change of ZnO nanostructures morphology and decreases of 002 diffraction peak were observed as the hydrothermal temperature increased. The band gap of samples decreased as the size of ZnO nanostructure increased, whereas the electrical conductivity had no influence on the band gap value but more on the morphology of ZnO nanostructures instead.

  17. Nanocrystalline transparent SnO{sub 2}-ZnO films fabricated at lower substrate temperature using a low-cost and simplified spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K.; Sakthivel, B.; Philominathan, P. [P. G. and Research Department of Physics, AVVM. Sri Pushpam College, Poondi, Thanjavur, Tamilnadu 613503 (India)

    2010-03-15

    Nanocrystalline and transparent conducting SnO{sub 2}- ZnO films were fabricated by employing an inexpensive, simplified spray technique using a perfume atomizer at relatively low substrate temperature (360{+-}5 C) compared with conventional spray method. The structural studies reveal that the SnO{sub 2}-ZnO films are polycrystalline in nature with preferential orientation along the (101) plane. The dislocation density is very low (1.48 x 10{sup 15}lines/m{sup 2}), indicating the good crystallinity of the films. The crystallite size of the films was found to be in the range of 26-34 nm. The optical transmittance in the visible range and the optical band gap are 85% and 3.6 eV respectively. The sheet resistance increases from 8.74 k{omega}/{open_square} to 32.4 k{omega}/{open_square} as the zinc concentration increases from 0 to 40 at.%. The films were found to have desirable figure of merit (1.63 x 10{sup -2} ({omega}/{open_square}){sup -1}), low temperature coefficient of resistance (-1.191/K) and good thermal stability. This simplified spray technique may be considered as a promising alternative to conventional spray for the massive production of economic SnO{sub 2} - ZnO films for solar cells, sensors and opto-electronic applications. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Transparent conducting film: Effect of mechanical stretching

    Indian Academy of Sciences (India)

    We describe in this paper a transparent conducting film (TCF). ... conducting carbon nanotube film which is crack-resistant for solar cell applications. ... CA 90095, USA; Nanocomp Technologies, Inc, 162 Pembroke Road, Concord, NH 03301 ...

  19. Nanostructures and thin films of transparent conductive oxides studied by perturbed angular correlations

    CERN Document Server

    Barbosa, M B; Redondo-Cubero, A; Miranda, S M C; Simon, R; Kessler, P; Brandt, M; Henneberger, F; Nogales, E; Méndez, B; Johnston, K; Alves, E; Vianden, R; Araújo, J P; Lorenz, K; Correia, J G

    2013-01-01

    The versatility of perturbed angular correlations (PAC) in the study of nanostructures and thin films is demonstrated, namely for the specific cases of ZnO/Cd$_x$Zn$_{1-x}$O thin films and Ga$_2$O$_3$ powder pellets and nanowires, examples of transparent conductive oxides. PAC measurements as a function of annealing temperature were performed after implantation of $^{111m}$Cd$/^{111}$Cd (T$_{1/2}$=48$\\,$min.) and later compared to density functional theory simulations. For ZnO, the substitution of Cd probes at Zn sites was observed, as well as the formation of a probe-defect complex. The ternary Cd$_x$Zn$_{1-x}$O (x=0.16) showed good macroscopic crystal quality but revealed some clustering of local defects around the probe Cd atoms, which could not be annealed. In the Ga$_2$O$_3$ samples, the substitution of the Cd probes in the octahedral Ga-site was observed, demonstrating the potential of ion-implantation for the doping of nanowires.

  20. Indium oxide-based transparent conductive films deposited by reactive sputtering using alloy targets

    Science.gov (United States)

    Miyazaki, Yusuke; Maruyama, Eri; Jia, Junjun; Machinaga, Hironobu; Shigesato, Yuzo

    2017-04-01

    High-quality transparent conductive oxide (TCO) films, Sn-doped In2O3 (ITO) and In2O3-ZnO (IZO), were successfully deposited on either synthetic silica or polyethylene terephthalate (PET) substrates in the “transition region” by reactive dc magnetron sputtering using In-Zn and In-Sn alloy targets, respectively, with a specially designed plasma emission feedback system. The composition, crystallinity, surface morphology, and electrical and optical properties of the films were analyzed. All of the IZO films were amorphous, whereas the ITO films were polycrystalline over a wide range of deposition conditions. The minimum resistivities of the IZO and ITO films deposited on the heated PET substrates at 150 °C were 3.3 × 10-4 and 5.4 × 10-4 Ω·cm, respectively. By applying rf bias to unheated PET substrates, ITO films with a resistivity of 4.4 × 10-4 Ω·cm were deposited at a dc self-bias voltage of -60 V.

  1. Crystallinity improvement of ZnO nanorods by optimization of low-cost electrodeposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Özdal, Teoman, E-mail: teomanozdal@hotmail.com; Taktakoğlu, Renna; Özdamar, Havva; Esen, Mehmet; Takçı, Deniz Kadir; Kavak, Hamide

    2015-10-01

    Extremely low-cost electrodeposition technique was developed to deposit ZnO nanorods. The growth process was performed using standard DC power supply, milliammeter and two-electrode electrochemical cell. The deposition was carried out on indium tin oxide (ITO) coated glass substrates by changing deposition parameters such as cathodic deposition current and time, solution molarity and temperature. The parameters varied to obtain optimum transparent semiconductor material for optoelectronic applications. Structural characterizations by X-ray diffraction (XRD) indicate the formation of polycrystalline phase ZnO with strong c-axis orientation and were sensitive to deposition temperatures and molarity as well. Average optical transmittance for the best two ZnO nanorod series was around 60% and 42%, respectively. The optical energy band gap of the ZnO nanorods decreased from 3.24 eV to 3.21 eV as the deposition time increased. All the nanorods were n-type with a high carrier concentration of 1 × 10{sup 20} cm{sup −3} and low 1–2 × 10{sup −3} Ωcm resistivity. - Highlights: • n-Type ZnO nanorods were electrochemically deposited employing standard DC power supply and milliammeter. • ZnO nanorods show very good polycrystalline and electrical properties consistent with the literature. • ZnO nanorod structures are hexagonal wurtzite and highly oriented along the c-axis perpendicular to the substrates. • Produced ZnO nanorod structures show good transparent conductive oxide properties.

  2. Room-temperature deposition of crystalline patterned ZnO films by confined dewetting lithography

    International Nuclear Information System (INIS)

    Sepulveda-Guzman, S.; Reeja-Jayan, B.; De la Rosa, E.; Ortiz-Mendez, U.; Reyes-Betanzo, C.; Cruz-Silva, R.; Jose-Yacaman, M.

    2010-01-01

    In this work patterned ZnO films were prepared at room-temperature by deposition of ∼5 nm size ZnO nanoparticles using confined dewetting lithography, a process which induces their assembly, by drying a drop of ZnO colloidal dispersion between a floating template and the substrate. Crystalline ZnO nanoparticles exhibit a strong visible (525 nm) light emission upon UV excitation (λ = 350 nm). The resulting films were characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). The method described herein presents a simple and low cost method to prepare crystalline ZnO films with geometric patterns without additional annealing. Such transparent conducting films are attractive for applications like light emitting diodes (LEDs). As the process is carried out at room temperature, the patterned crystalline ZnO films can even be deposited on flexible substrates.

  3. Room-temperature deposition of crystalline patterned ZnO films by confined dewetting lithography

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda-Guzman, S., E-mail: selene.sepulvedagz@uanl.edu.mx [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia. UANL, PIIT Monterrey, CP 66629, Apodaca NL (Mexico); Reeja-Jayan, B. [Texas Materials Institute, University of Texas at Austin, Austin, TX 78712 (United States); De la Rosa, E. [Centro de Investigacion en Optica, Loma del Bosque 115 Col. Lomas del Campestre C.P. 37150 Leon, Gto. Mexico (Mexico); Ortiz-Mendez, U. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia. UANL, PIIT Monterrey, CP 66629, Apodaca NL (Mexico); Reyes-Betanzo, C. [Instituto Nacional de Astrofisica Optica y Electronica, Calle Luis Enrique Erro No. 1, Santa Maria Tonanzintla, Puebla. Apdo. Postal 51 y 216, C.P. 72000 Puebla (Mexico); Cruz-Silva, R. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM. Av. Universidad 1001, Col. Chamilpa, CP 62210 Cuernavaca, Mor. (Mexico); Jose-Yacaman, M. [Physics and Astronomy Department University of Texas at San Antonio 1604 campus San Antonio, TX 78249 (United States)

    2010-03-15

    In this work patterned ZnO films were prepared at room-temperature by deposition of {approx}5 nm size ZnO nanoparticles using confined dewetting lithography, a process which induces their assembly, by drying a drop of ZnO colloidal dispersion between a floating template and the substrate. Crystalline ZnO nanoparticles exhibit a strong visible (525 nm) light emission upon UV excitation ({lambda} = 350 nm). The resulting films were characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). The method described herein presents a simple and low cost method to prepare crystalline ZnO films with geometric patterns without additional annealing. Such transparent conducting films are attractive for applications like light emitting diodes (LEDs). As the process is carried out at room temperature, the patterned crystalline ZnO films can even be deposited on flexible substrates.

  4. Electrodeposition of nanoporous ZnO on Al-doped ZnO leading to a highly organized structure for integration in Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Renou G.

    2010-10-01

    Full Text Available In the present study, we propose an improvement of the anode configuration in Zinc Oxide based Dye Sensitized Solar Cells (DSSC. Instead of the classical configuration, which is composed by two different metal oxides: one transparent conducting oxide (TCO for the substrate and one nanostructured metal oxide for supporting the dye, the new approach is to use ZnO as unique material. Thus, nanoporous zinc oxide films have been electrodeposited on a sputtered Al doped ZnO layers with varying thicknesses up to 6 μm. The evolution of the porosity of the structure has been studied by scanning electron microscope (SEM and electrochemical impedance spectroscopy and compared with standard nanoporous ZnO grown on fluorine doped tin oxide (SnO2:F noted FTO. This results firstly in the modification of the nanoporous structure morphology and secondly a better adhesion between the nanoporous layer and the substrate. Organization in the nanoporous material is enhanced with regular pores arrays and perpendicular to the substrate. Dye sensitized solar cells based on this simplified architecture present efficiencies up to 4.2% and 4.5% with N719 and D149 respectively as sensitizers. Higher fill factor and Voc are found in comparison with the one obtained for deposition on the classical transparent conducting oxide (FTO, which denote improved electrical transfer properties.

  5. Influence Al doped ZnO nanostructure on structural and optical properties

    International Nuclear Information System (INIS)

    Ramelan, Ari Handono; Wahyuningsih, Sayekti; Chasanah, Uswatul; Munawaroh, Hanik

    2016-01-01

    The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO cause of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.

  6. Efficient Inverted ITO-Free Organic Solar Cells Based on Transparent Silver Electrode with Aqueous Solution-Processed ZnO Interlayer

    Directory of Open Access Journals (Sweden)

    Zhizhe Wang

    2017-01-01

    Full Text Available Efficient inverted organic solar cells (OSCs with the MoO3 (2 nm/Ag (12 nm transparent cathode and an aqueous solution ZnO electron extraction layer processed at low temperature are investigated in this work. The blend of low bandgap poly[[4,8-bis[(2-ethylhexyloxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexylcarbonyl]thieno[3,4-b]thiophenediyl

  7. Direct Heteroepitaxial Growth of ZnO over GaN Crystal in Aqueous Solution

    Science.gov (United States)

    Hamada, Takahiro; Ito, Akihiro; Nagao, Nobuaki; Suzuki, Nobuyasu; Fujii, Eiji; Tsujimura, Ayumu

    2013-04-01

    We report on the structural and electrical properties of ZnO films grown on surface-treated GaN/Al2O3 substrates by chemical bath deposition. X-ray diffraction analysis indicated that the ZnO films had a single-crystalline wurtzite structure with c-axis orientation. The ZnO film exhibited n-type conduction with a carrier concentration of 6.9 ×1018 cm-3, an electron mobility of 41 cm2/(V.s), and a resistivity of 2.2 ×10-2 Ω.cm. A low specific contact resistivity of 4.3 ×10-3 Ω.cm2 was obtained at the ZnO/n-GaN interface. Additionally, the ZnO film exhibited high transparency in the visible and infrared region.

  8. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Ida, Satoshi; Miyata, Toshihiro

    2002-01-01

    Transparent conducting oxide (TCO) thin films have been deposited at a high rate above 370 nm/min by vacuum arc plasma evaporation (VAPE) using sintered oxide fragments as the source material. It was found that the deposition rate of TCO films was strongly dependent on the deposition pressure, whereas the obtained electrical properties were relatively independent of the pressure. Resistivities of 5.6x10 -4 and 2.3x10 -4 Ω·cm and an average transmittance above 80% (with substrate included) in the visible range were obtained in Ga-doped ZnO (GZO) thin films deposited at 100 and 350 deg. C, respectively. In addition, a resistivity as low as 1.4x10 -4 Ω·cm and an average transmittance above 80% were also obtained in indium-tin-oxide (ITO) films deposited at 300 deg. C. The deposited TCO films exhibited uniform distributions of resistivity and thickness on large area substrates

  9. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Tadatsugu; Ida, Satoshi; Miyata, Toshihiro

    2002-09-02

    Transparent conducting oxide (TCO) thin films have been deposited at a high rate above 370 nm/min by vacuum arc plasma evaporation (VAPE) using sintered oxide fragments as the source material. It was found that the deposition rate of TCO films was strongly dependent on the deposition pressure, whereas the obtained electrical properties were relatively independent of the pressure. Resistivities of 5.6x10{sup -4} and 2.3x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% (with substrate included) in the visible range were obtained in Ga-doped ZnO (GZO) thin films deposited at 100 and 350 deg. C, respectively. In addition, a resistivity as low as 1.4x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% were also obtained in indium-tin-oxide (ITO) films deposited at 300 deg. C. The deposited TCO films exhibited uniform distributions of resistivity and thickness on large area substrates.

  10. Pulsed laser deposition of aluminum-doped ZnO films at 355 nm

    DEFF Research Database (Denmark)

    Holmelund, E.; Schou, Jørgen; Thestrup Nielsen, Birgitte

    2004-01-01

    Conducting, transparent films of aluminium-doped ZnO (AZO) have been produced at the laser wavelength 355 nm. The most critical property, the electric resistivity, is up to a factor of 8 above that for films produced at shorter wavelengths. In contrast, the transmission of visible light through...

  11. Performance enhancement of metal nanowire-based transparent electrodes by electrically driven nanoscale nucleation of metal oxides

    Science.gov (United States)

    Shiau, Yu-Jeng; Chiang, Kai-Ming; Lin, Hao-Wu

    2015-07-01

    Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (PET and PEN, feasible. The optimized AgNW transparent conductive electrodes (TCE) fabricated using this promising linking method exhibited a low sheet resistance (13 Ω sq-1), a high transmission (92% at 550 nm), a high figure of merit (FOM; up to σDC/σOp = 340) and can be applied to wide range of next-generation flexible optoelectronic devices.Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (PET and PEN, feasible. The optimized AgNW transparent conductive electrodes (TCE) fabricated using this promising linking method exhibited a low sheet resistance (13 Ω sq

  12. Novel Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next Generation Phosphor-Converted LED-based Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Bockstaller, Michael [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-02-06

    The low thermal conductivity of state-of-the-art polymer encapsulants (k ~ 0.15 Wm-1K-1) limits the efficiency and power density of current phosphor conversion light emitting diodes (pc-LEDs). The technical objective of this project was to demonstrate synthesis and processing schemes for the fabrication of polymer hybrid encapsulants with a thermal conductivity exceeding k = 0.4 Wm-1K-1 for LED applications. The ‘hybrid polymer’ approach encompasses the dispersion of high thermal conductivity particle fillers (zinc oxide, ZnO as well as the alpha-polymorph of alumina, Al2O3) within a polysiloxane matrix (poly(dimethylsiloxane), PDMS as well as poly(phenyl methyl siloxane), PPMS) to increase the thermal conductivity while maintaining optical transparency and photothermal stability at levels consistent with LED applications. To accomplish this goal, a novel synthesis method for the fabrication of nanosized ZnO particles was developed and a novel surface chemistry was established to modify the surface of zinc oxide particle fillers and thus to enable their dispersion in poly(dimethyl siloxane) (PDMS) matrix polymers. Molecular dynamics and Mie simulations were used to optimize ligand structure and to enable the concurrent mixing of particles in PDMS/PPMS embedding media while also minimizing the thermal boundary resistance as well as optical scattering of particle fillers. Using this approach the synthesis of PDMS/ZnO hybrid encapsulants exhibiting a thermal conductivity of 0.64 Wm-1K-1 and optical transparency > 0.7 mm-1 was demonstrated. A forming process based on micromolding was developed to demonstrate the forming of particle filled PDMS into film and lens shapes. Photothermal stability testing revealed stability of the materials for approximately 4000 min when exposed to blue light LED (450 nm, 30 W/cm2). One postgraduate and seven graduate students were supported by the project. The research performed within this project led to fifteen publications in peer

  13. Exploring excitonic signal in optical conductivity of ZnO through first-order electron-hole vertex correction

    Science.gov (United States)

    Khoirunnisa, Humaira; Aziz Majidi, Muhammad

    2018-04-01

    The emergence of exitonic signal in the optical response of a wide band-gap semiconductor has been a common knowledge in physics. There have been numerous experimental studies exploring the important role of excitons on influencing both the transport and optical properties of the materials. Despite the existence of much information on excitonic effects, there has not been much literature that explores detailed theoretical explanation on how the exitonic signal appears and how it evolves with temperature. Here, we propose a theoretical study on the optical conductivity of ZnO, a well-known wide band-gap semiconductor that we choose as a case study. ZnO has been known to exhibit excitonic states in its optical spectra in the energy range of ∼3.13-3.41 eV, with a high exciton binding energy of ∼60 meV. An experimental study on ZnO in 2014 revealed such a signal in its optical conductivity spectrum. We present a theoretical investigation on the appearance of excitonic signal in optical conductivity of ZnO. We model the wurtzite ZnO within an 8-band k.p approximation. We calculate the optical conductivity by incorporating the first-order vertex correction derived from the Feynman diagrams. Our calculation up to the first-order correction spectrum qualitatively confirms the existence of excitons in wurtzite ZnO.

  14. Characterization of n and p-type ZnO thin films grown by pulsed filtered cathodic vacuum arc system

    International Nuclear Information System (INIS)

    Kavak, H.; Erdogan, E.N.; Ozsahin, I.; Esen, R.

    2010-01-01

    Full text : Semiconductor ZnO thin films with wide band gap attract much interest due to their properties such as chemical stability in hydrogen plasma, high optical transparency in the visible and nearinfrared region. Due to these properties ZnO oxide is a promising materials for electronic or optoelectronic applications such as solar cell (as an antireflecting coating and a transparent conducting material), gas sensors, surface acoustic wave devices. The purpose of this research is to improve the properties of n and p-type ZnO thin films for device applications. Polycrystalline ZnO is naturally n-type and very difficult to dope to make p-type. Therefore nowadays hardly produced p-type ZnO attracts a lot of attention. Nitrogen considered as the best dopant for p-type ZnO thin films.The transparent, conductive and very precise thickness controlled n and p-type semiconducting nanocrystalline ZnO thin films were prepared by pulsed filtered cathodic vacuum arc deposition (PFCVAD) method. Structural, optical and electrical properties of these films were investigated. And also photoluminescence properties of these films were investigated. Transparent p-type ZnO thin films were produced by oxidation of PFCVAD deposited zinc nitride. Zinc nitride thin films were deposited with various thicknesses and under different oxygen pressures on glass substrates. Zinc nitride thin films, which were deposited at room temperatures, were amorphous and the optical transmission was below 70%. For oxidation zinc nitride, the sample was annealed in air starting from 350 degrees Celsium up to 550 degrees Celsium for one hour duration. These XRD patterns imply that zinc nitride thin films converted to zinc oxide thin films with the same hexagonal crystalline structures of ZnO. The optical measurements were made for each annealing temperature and the optical transmissions of ZnO thin films were found better than 90 percent in visible range after annealing over 350 degrees Celsium. By

  15. Highly transparent and conducting boron doped zinc oxide films for window of Dye Sensitized Solar Cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod, E-mail: vinod.phy@gmail.com [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Department of Physics, Gurukula Kangri University, Haridwar 249404 (India); Singh, R.G. [Department of Electronic Science, Maharaja Agrasen College University of Delhi, New Delhi 110096 (India); Singh, Fouran [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Purohit, L.P. [Department of Physics, Gurukula Kangri University, Haridwar 249404 (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Synthesis of Boron doped ZnO (ZnO:B) films. Black-Right-Pointing-Pointer Minimum of resistivity is observed to be 7.9 Multiplication-Sign 10{sup -4} {Omega} cm. Black-Right-Pointing-Pointer Maximum transmittance {approx}91% for 450 Degree-Sign C annealed films. Black-Right-Pointing-Pointer Applicable for window materials in Dye Sensitized Solar Cell. - Abstract: Highly transparent and conducting boron doped zinc oxide (ZnO:B) films grown by sol-gel method are reported. The annealing temperature is varied from 350 to 550 Degree-Sign C and doping concentration of boron is kept fixed for 0.6 at.% for all the films. At low temperature the stress in the films is compressive, which becomes tensile for the films annealed at higher temperature. A minimum resistivity of 7.9 Multiplication-Sign 10{sup -4} {Omega} cm and maximum transmittance of {approx}91% are observed for the film annealed at 450 Degree-Sign C. This could be attributed to minimum stress of films, which is further evident by the evolution of A{sub 1} and defect related Raman modes without any shifting in its position. Such kind of highly transparent and conducting ZnO:B thin film could be used as window material in Dye Sensitized Solar Cell (DSSC).

  16. AlGaN/GaN high-electron-mobility transistors with transparent gates by Al-doped ZnO

    International Nuclear Information System (INIS)

    Wang Chong; He Yun-Long; Zheng Xue-Feng; Ma Xiao-Hua; Zhang Jin-Cheng; Hao Yue

    2013-01-01

    AlGaN/GaN high-electron-mobility transistors (HEMTs) with Al-doped ZnO (AZO) transparent gate electrodes are fabricated, and Ni/Au/Ni-gated HEMTs are produced in comparison. The AZO-gated HEMTs show good DC characteristics and Schottky rectifying characteristics, and the gate electrodes achieve excellent transparencies. Compared with Ni/Au/Ni-gated HEMTs, AZO-gated HEMTs show a low saturation current, high threshold voltage, high Schottky barrier height, and low gate reverse leakage current. Due to the higher gate resistivity, AZO-gated HEMTs exhibit a current—gain cutoff frequency (f T ) of 10 GHz and a power gain cutoff frequency (f max ) of 5 GHz, and lower maximum oscillation frequency than Ni/Au/Ni-gated HEMTs. Moreover, the C—V characteristics are measured and the gate interface characteristics of the AZO-gated devices are investigated by a C—V dual sweep

  17. Transparent Conductive Adhesives for Tandem Solar Cells Using Polymer-Particle Composites

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Talysa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lee, Benjamin G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schnabel, Manuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Warren, Emily L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stradins, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-14

    Transparent conductive adhesives (TCAs) can enable conductivity between two substrates, which is useful for a wide range of electronic devices. Here, we have developed a TCA composed of a polymer-particle blend with ethylene-vinyl acetate as the transparent adhesive and metal-coated flexible poly(methyl methacrylate) microspheres as the conductive particles that can provide conductivity and adhesion regardless of the surface texture. This TCA layer was designed to be nearly transparent, conductive in only the out-of-plane direction, and of practical adhesive strength to hold the substrates together. The series resistance was measured at 0.3 and 0.8 O cm2 for 8 and 0.2% particle coverage, respectively, while remaining over 92% was transparent in both cases. For applications in photovoltaic devices, such as mechanically stacked multijunction III-V/Si cells, a TCA with 1% particle coverage will have less than 0.5% power loss due to the resistance and less than 1% shading loss to the bottom cell.

  18. Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis

    International Nuclear Information System (INIS)

    Chen, Da; Wang, Dongfang; Ge, Qisheng; Ping, Guangxing; Fan, Meiqiang; Qin, Laishun; Bai, Liqun; Lv, Chunju; Shu, Kangying

    2015-01-01

    In this work, graphene-wrapped ZnO nanospheres (ZnO–graphene nanocomposites) were prepared by a simple facile lyophilization method, followed by thermal treatment process. ZnO nanospheres with the size of about 100–400 nm, composed of numerous nanocrystals with hexagonal wurtzite structure, were well separated from each other and wrapped with transparent graphene sheets. Compared to ZnO nanospheres, the ZnO–graphene nanocomposites showed a significant enhancement in the photodegradation of methylene blue. This enhanced photocatalytic activity could be attributed to their favorable dye-adsorption affinity and increased optical absorption as well as the efficient charge transfer of the photogenerated electrons in the conduction band of ZnO to graphene. Thus, this work could provide a facile and low-cost method for the development of graphene-based nanocomposites with promising applications in photocatalysis, solar energy conversion, sensing, and so on. - Highlights: • Graphene-wrapped ZnO nanospheres were prepared by a facile lyophilization method. • ZnO nanospheres were separated from each other and wrapped with 2D graphene sheets. • Graphene-wrapped ZnO nanospheres exhibited superior photocatalytic activities. • The photocatalytic mechanisms of graphene-wrapped ZnO nanospheres were discussed

  19. Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Da, E-mail: dchen_80@hotmail.com [College of Materials Science & Engineering, China Jiliang University, Hangzhou 310018 (China); Wang, Dongfang; Ge, Qisheng; Ping, Guangxing [College of Materials Science & Engineering, China Jiliang University, Hangzhou 310018 (China); Fan, Meiqiang, E-mail: fanmeiqiang@126.com [College of Materials Science & Engineering, China Jiliang University, Hangzhou 310018 (China); Qin, Laishun [College of Materials Science & Engineering, China Jiliang University, Hangzhou 310018 (China); Bai, Liqun [School of Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300 (China); Lv, Chunju; Shu, Kangying [College of Materials Science & Engineering, China Jiliang University, Hangzhou 310018 (China)

    2015-01-01

    In this work, graphene-wrapped ZnO nanospheres (ZnO–graphene nanocomposites) were prepared by a simple facile lyophilization method, followed by thermal treatment process. ZnO nanospheres with the size of about 100–400 nm, composed of numerous nanocrystals with hexagonal wurtzite structure, were well separated from each other and wrapped with transparent graphene sheets. Compared to ZnO nanospheres, the ZnO–graphene nanocomposites showed a significant enhancement in the photodegradation of methylene blue. This enhanced photocatalytic activity could be attributed to their favorable dye-adsorption affinity and increased optical absorption as well as the efficient charge transfer of the photogenerated electrons in the conduction band of ZnO to graphene. Thus, this work could provide a facile and low-cost method for the development of graphene-based nanocomposites with promising applications in photocatalysis, solar energy conversion, sensing, and so on. - Highlights: • Graphene-wrapped ZnO nanospheres were prepared by a facile lyophilization method. • ZnO nanospheres were separated from each other and wrapped with 2D graphene sheets. • Graphene-wrapped ZnO nanospheres exhibited superior photocatalytic activities. • The photocatalytic mechanisms of graphene-wrapped ZnO nanospheres were discussed.

  20. Large-Area Chemical Vapor Deposited MoS2 with Transparent Conducting Oxide Contacts toward Fully Transparent 2D Electronics

    KAUST Repository

    Dai, Zhenyu

    2017-09-08

    2D semiconductors are poised to revolutionize the future of electronics and photonics, much like transparent oxide conductors and semiconductors have revolutionized the display industry. Herein, these two types of materials are combined to realize fully transparent 2D electronic devices and circuits. Specifically, a large-area chemical vapor deposition process is developed to grow monolayer MoS2 continuous films, which are, for the first time, combined with transparent conducting oxide (TCO) contacts. Transparent conducting aluminum doped zinc oxide contacts are deposited by atomic layer deposition, with composition tuning to achieve optimal conductivity and band-offsets with MoS2. The optimized process gives fully transparent TCO/MoS2 2D electronics with average visible-range transmittance of 85%. The transistors show high mobility (4.2 cm2 V−1 s−1), fast switching speed (0.114 V dec−1), very low threshold voltage (0.69 V), and large switching ratio (4 × 108). To our knowledge, these are the lowest threshold voltage and subthreshold swing values reported for monolayer chemical vapor deposition MoS2 transistors. The transparent inverters show fast switching properties with a gain of 155 at a supply voltage of 10 V. The results demonstrate that transparent conducting oxides can be used as contact materials for 2D semiconductors, which opens new possibilities in 2D electronic and photonic applications.

  1. Ultrathin and stable Nickel films as transparent conductive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Grilli, M.L., E-mail: marialuisa.grilli@enea.it [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy); Di Sarcina, I. [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy); Bossi, S. [ENEA, Robotics Laboratory, Via Anguillarese 301, 00123 Rome (Italy); The Biorobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa (Italy); Rinaldi, A.; Pilloni, L.; Piegari, A. [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy)

    2015-11-02

    Ultrathin stable transparent conductive nickel films were deposited on quartz substrates by radio frequency sputtering at room temperature. Such films showed visible transmittance up to 80% and conductivity up to 1.8 × 10{sup 4} S/cm, further increased to 2,3 × 10{sup 5} S/cm by incorporation of a micrometric silver grid. Atomic force microscopy and scanning electron microscopy revealed quite compact, smooth and low surface roughness films. Excellent film stability, ease, fast and low cost process fabrication make these films highly competitive compared to indium tin oxide alternative transparent conductors. Films were characterized regarding their morphological, optical and electrical properties. - Highlights: • Indium-free transparent conductors are proposed. • Ultrathin Ni films are fabricated with a very fast process at room temperature. • Films have conductivity values up to 1.8 × 10{sup 4} S/cm. • Ni ultrathin films are good candidates for UV and NIR optoelectronic applications.

  2. Homogeneous vertical ZnO nanorod arrays with high conductivity on an in situ Gd nanolayer

    KAUST Repository

    Flemban, Tahani H.; Singaravelu, Venkatesh; Devi, Assa Aravindh Sasikala; Roqan, Iman S.

    2015-01-01

    We demonstrate a novel, one-step, catalyst-free method for the production of size-controlled vertical highly conductive ZnO nanorod (NR) arrays with highly desirable characteristics by pulsed laser deposition using a Gd-doped ZnO target. Our study

  3. Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires

    Directory of Open Access Journals (Sweden)

    Minggang Xia

    2014-05-01

    Full Text Available The electrical and thermal conductivities are measured for individual zinc oxide (ZnO nanowires with and without gallium ion (Ga+ implantation at room temperature. Our results show that Ga+ implantation enhances electrical conductivity by one order of magnitude from 1.01 × 103 Ω−1m−1 to 1.46 × 104 Ω−1m−1 and reduces its thermal conductivity by one order of magnitude from 12.7 Wm−1K−1 to 1.22 Wm−1K−1 for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga+ implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga+ point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga+-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

  4. Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film

    International Nuclear Information System (INIS)

    Mohd Ali, N I; Misran, N; Mansor, M F; Jamlos, M F

    2017-01-01

    This paper presents the analysis of 28GHz solar patch antenna using the variations of transparent conductive oxides (TCO) thin film as the radiating patch. Solar antenna is basically combining the function of antenna and solar cell into one device and helps to maximize the usage of surface area. The main problem of the existing solar antenna is the radiating patch which made of nontransparent material, such as copper, shadowing the solar cell and degrades the total solar efficiency. Hence, by using the transparent conductive oxides (TCO) thin film as the radiating patch, this problem can be tackled. The TCO thin film used is varied to ITO, FTO, AgHT-4, and AgHT-8 along with glass as substrate. The simulation of the antenna executed by using Computer Simulation Technology (CST) Microwave Studio software demonstrated at 28 GHz operating frequency for 5G band applications. The performance of the transparent antennas is compared with each other and also with the nontransparent patch antenna that using Rogers RT5880 as substrate, operating at the same resonance frequency and then, the material that gives the best performance is identified. (paper)

  5. Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film

    Science.gov (United States)

    Ali, N. I. Mohd; Misran, N.; Mansor, M. F.; Jamlos, M. F.

    2017-05-01

    This paper presents the analysis of 28GHz solar patch antenna using the variations of transparent conductive oxides (TCO) thin film as the radiating patch. Solar antenna is basically combining the function of antenna and solar cell into one device and helps to maximize the usage of surface area. The main problem of the existing solar antenna is the radiating patch which made of nontransparent material, such as copper, shadowing the solar cell and degrades the total solar efficiency. Hence, by using the transparent conductive oxides (TCO) thin film as the radiating patch, this problem can be tackled. The TCO thin film used is varied to ITO, FTO, AgHT-4, and AgHT-8 along with glass as substrate. The simulation of the antenna executed by using Computer Simulation Technology (CST) Microwave Studio software demonstrated at 28 GHz operating frequency for 5G band applications. The performance of the transparent antennas is compared with each other and also with the nontransparent patch antenna that using Rogers RT5880 as substrate, operating at the same resonance frequency and then, the material that gives the best performance is identified.

  6. Effect of High Temperature Annealing on Conduction-Type ZnO Films Prepared by Direct-Current Magnetron Sputtering

    International Nuclear Information System (INIS)

    Sun Li-Jie; He Dong-Kai; Xu Xiao-Qiu; Zhong Ze; Wu Xiao-Peng; Lin Bi-Xia; Fu Zhu-Xi

    2010-01-01

    We experimentally find that the ZnO thin films deposited by dc-magnetron sputtering have different conduction types after annealing at high temperature in different ambient. Hall measurements show that ZnO films annealed at 1100°C in N 2 and in O 2 ambient become n-type and p-type, respectively. This is due to the generation of different intrinsic defects by annealing in different ambient. X-ray photoelectron spectroscopy and photolumi-nescence measurements indicate that zinc interstitial becomes a main defects after annealing at 1100°C in N 2 ambient, and these defects play an important role for n-type conductivity of ZnO. While the ZnO films annealed at 1100°C in O 2 ambient, the oxygen antisite contributes ZnO films to p-type. (condensed matter: structure, mechanical and thermal properties)

  7. An optically transparent, flexible, patterned and conductive silk biopolymer film (Conference Presentation)

    Science.gov (United States)

    Umar, Muhammad; Min, Kyungtaek; Kim, Sunghwan

    2017-02-01

    Transparent, flexible, and conducting films are of great interest for wearable electronics. For better biotic/abiotic interface, the films to integrate the electronics components requires the patterned surface conductors with optical transparency, smoothness, good electrical conductivity, along with the biofriendly traits of films. We focus on silk fibroin, a natural biopolymer extracted from the Bombyx mori cocoons, for this bioelectronics applications. Here we report an optically transparent, flexible, and patterned surface conductor on a silk film by burying a silver nanowires (AgNW) network below the surface of the silk film. The conducting silk film reveals high optical transparency of 80% and the excellent electronic conductivity of 15 Ω/sq, along with smooth surface. The integration of light emitting diode (LED) chip on the patterned electrodes confirms that the current can flow through the transparent and patterned electrodes on the silk film, and this result shows an application for integration of functional electronic/opto-electronic devices. Additionally, we fabricate a transparent and flexible radio frequency (RF) antenna and resistor on a silk film and apply these as a food sensor by monitoring the increasing resistance by the flow of gases from the spoiled food.

  8. Effect of reactant concentration on the structural properties of hydrothermally-grown ZnO rods on seed-layer ZnO / polyethylene terephthalate substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. I.; Shin, C. M.; Heo, J. H.; Ryu, H. [Inje University, Gimhae (Korea, Republic of); Lee, W. J. [Dong-Eui University, Busan (Korea, Republic of); Son, C. S. [Silla University, Busan (Korea, Republic of); Choi, H. [Pukyong National University, Busan (Korea, Republic of)

    2011-09-15

    The morphology and the structural properties were studied for zinc-oxide (ZnO) rods hydrothermally grown on seed-layer ZnO/polyethylene terephthalate (PET) substrates at various reactant concentrations. Dissolved solutions with de-ionized water, zinc nitrate hexahydrate (Zn(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O, ZNH) and hexamethylenetetramine (C{sub 6}H{sub 12}N{sub 4}, HMT) were employed as reactants for hydrothermal growth of ZnO. The transparency of the mixtures (ZNH+HMT) with increasing reactant concentration from 0.025 to 0.25 M changed from transparent to translucent to opaque (white colors) due to Zn(OH){sub 2} precipitates. When the concentration was increased, the density of the ZnO rods increased, and the morphology of the ZnO rods changed from a hexagonal flat-end shape to a sharp-end or flake-like structure. The sharp-end rods with increasing concentration from 0.1 to 0.15 M resulted from the etching process at a lower pH condition (less than pH 6) after the ZnO rod growth, and the flake-like structure was due to a high growth rate. The ZnO seed layer might have improved the alignment of ZnO rods and made a high density of ZnO rods. In addition, the structural properties were improved at lower concentrations by inserting a seed layer.

  9. Research Update: Doping ZnO and TiO2 for solar cells

    Directory of Open Access Journals (Sweden)

    Robert L. Z. Hoye

    2013-12-01

    Full Text Available ZnO and TiO2 are two of the most commonly used n-type metal oxide semiconductors in new generation solar cells due to their abundance, low-cost, and stability. ZnO and TiO2 can be used as active layers, photoanodes, buffer layers, transparent conducting oxides, hole-blocking layers, and intermediate layers. Doping is essential to tailor the materials properties for each application. The dopants used and their impact in solar cells are reviewed. In addition, the advantages, disadvantages, and commercial potential of the various fabrication methods of these oxides are presented.

  10. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    Science.gov (United States)

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (electronics are expected.

  11. Zinc Vacancy Formation and its Effect on the Conductivity of ZnO

    Science.gov (United States)

    Khan, Enamul; Weber, Marc; Langford, Steve; Dickinson, Tom

    2010-03-01

    Exposing single crystal ZnO to 193-nm ArF excimer laser radiation can produce metallic zinc nanoparticles along the surface. The particle production mechanism appears to involve interstitial-vacancy pair formation in the near-surface bulk. Conductivity measurements made with one probe inside the laser spot and the other outside show evidence for rectifying behavior. Positron annihilation spectroscopy confirms the presence of Zn vacancies. We suggest that Zn vacancies are a possible source of p-type behavior in irradiated ZnO. Quadrupole mass spectroscopy shows that both oxygen and zinc are emitted during irradiation. Electron-hole pair production has previously been invoked to account for particle desorption from ZnO during UV illumination. Our results suggest that preexisting and laser-generated defects play a critical role in particle desorption and Zn vacancy formation.

  12. The properties of transparent conducting molybdenum-doped ZnO films grown by radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Xiu Xian-Wu; Zhao Wen-Jing

    2012-01-01

    Transparent conducting molybdenum-doped zinc oxide films are prepared by radio frequency (RF) magnetron sputtering at ambient temperature. The MoO 3 content in the target varies from 0 to 5 wt%, and each film is polycrystalline with a hexagonal structure and a preferred orientation along the c axis. The resistivity first decreases and then increases with the increase in MoO 3 content. The lowest resistivity achieved is 9.2×10 −4 Ω·cm, with a high Hall mobility of 30 cm 2 ·V −1 ·s 1 and a carrier concentration of 2.3×10 20 cm −3 at an MoO 3 content of 2 wt%. The average transmittance in the visible range is reduced from 91% to 80% with the increase in the MoO 3 content in the target. (condensed matter: structural, mechanical, and thermal properties)

  13. A study of tensile and thermal properties of 3D printed conductive ABS - ZnO composite

    Science.gov (United States)

    Aw, Y. Y.; Yeoh, C. K.; Idris, M. A.; Amali, H. K.; Aqzna, S. S.; Teh, P. L.

    2017-04-01

    Research into 3D printed composites are interesting because the properties of 3D printed components are usually insufficient for robust engineering applications. In this paper, conductive ABS - ZnO composites were successfully fabricated using a 3D printer. Tensile strength increases when filler loading increases up to 11wt%. Dynamic storage modulus of the conductive ABS-ZnO composite increases with the addition of ZnO filler, indicating stiffness enhancement of the composites. Higher loss modulus is also observed on samples with ZnO filler. Thermal conductivity increases from 0.2204 W/mK to 0.3508 W/mK when the filler concentration increases to 14wt% due to the formation of conductive network among fillers within the polymer matrix. With these promising tensile and thermal properties, the 3D printed composites are suitable to be used as automobile parts.

  14. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei, E-mail: ymgong@dlpu.edu.cn; Guo, Jing, E-mail: guojing8161@163.com

    2016-12-01

    Highlights: • Polymeric PET fibers were conductive modified by ITO and the subsequent Ag coating. The conductive PET-ITO-Ag fiber has the surface resistivity as low as 0.23 mΩ cm. The PET-ITO-Ag fiber was used as a basal material to plant vertical ZnO nanorods. - Abstract: We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol–gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl{sub 2}, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  15. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    International Nuclear Information System (INIS)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing

    2016-01-01

    Highlights: • Polymeric PET fibers were conductive modified by ITO and the subsequent Ag coating. The conductive PET-ITO-Ag fiber has the surface resistivity as low as 0.23 mΩ cm. The PET-ITO-Ag fiber was used as a basal material to plant vertical ZnO nanorods. - Abstract: We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol–gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl 2 , a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  16. Transparent Conducting Oxides—An Up-To-Date Overview

    Directory of Open Access Journals (Sweden)

    Andreas Stadler

    2012-04-01

    Full Text Available Transparent conducting oxides (TCOs are electrical conductive materials with comparably low absorption of electromagnetic waves within the visible region of the spectrum. They are usually prepared with thin film technologies and used in opto-electrical apparatus such as solar cells, displays, opto-electrical interfaces and circuitries. Here, based on a modern database-system, aspects of up-to-date material selections and applications for transparent conducting oxides are sketched, and references for detailed information are given. As n-type TCOs are of special importance for thin film solar cell production, indium-tin oxide (ITO and the reasonably priced aluminum-doped zinc oxide (ZnO:Al, are discussed with view on preparation, characterization and special occurrences. For completion, the recently frequently mentioned typical p-type delafossite TCOs are described as well, providing a variety of references, as a detailed discussion is not reasonable within an overview publication.

  17. Physical meaning of conductivity spectra for ZnO ceramics

    Institute of Scientific and Technical Information of China (English)

    Cheng Peng-Fei; Li Sheng-Tao; Li Jian-Ying; Ding Can; Yang Yan

    2012-01-01

    With the help of broadband dielectric spectroscopy in a wide temperature and frequency range,the conductivity spectra of ZnO polycrystalline ceramics are measured and the direct-current-like (DC-like) conductivity and relaxation polarization conductivity are observed successively along the frequency axis.According to the classical Debye theory and Cole-Cole equation,the physical meanings of the two conductivities are discussed.It is found that the DC-like conductivity corresponds to electron transportation over the Schottky barrier at the grainboundary.The relaxation polarization conductivity corresponds to electronic trap relaxation of intrinsic point defects (zinc interstitial and oxygen vacancy).When in the high frequency region,the relaxation conductivity obeys the universal law with the index n equal to the index α in the Cole-Cole equation as an indictor of disorder degree.

  18. Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique

    International Nuclear Information System (INIS)

    Banerjee, A.N.; Ghosh, C.K.; Chattopadhyay, K.K.; Minoura, Hideki; Sarkar, Ajay K.; Akiba, Atsuya; Kamiya, Atsushi; Endo, Tamio

    2006-01-01

    The structural, optical and electrical properties of ZnO thin films (260 - 490 nm thick) deposited by direct-current sputtering technique, at a relatively low-substrate temperature (363 K), onto polyethylene terephthalate and glass substrates have been investigated. X-ray diffraction patterns confirm the proper phase formation of the material. Optical transmittance data show high transparency (80% to more than 98%) of the films in the visible portion of solar radiation. Slight variation in the transparency of the films is observed with a variation in the deposition time. Electrical characterizations show the room-temperature conductivity of the films deposited onto polyethylene terephthalate substrates for 4 and 5 h around 0.05 and 0.25 S cm -1 , respectively. On the other hand, for the films deposited on glass substrates, these values are 8.5 and 9.6 S cm -1 for similar variation in the deposition time. Room-temperature conductivity of the ZnO films deposited on glass substrates is at least two orders of magnitude higher than that of ZnO films deposited onto polyethylene terephthalate substrates under identical conditions. Hall-measurements show the maximum carrier concentration of the films on PET and glass substrate around 2.8 x 10 16 and 3.1 x 10 2 cm -3 , respectively. This report will provide newer applications of ZnO thin films in flexible display technology

  19. Electrical conduction and NO{sub 2} gas sensing properties of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Yasin [Council of Forensic Medicine, Bahçelievler, 34196 Istanbul (Turkey); Öztürk, Sadullah, E-mail: sadullahozturk@gyte.edu.tr [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Kılınç, Necmettin [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Koc University, Department of Electrical and Electronics Engineering, Sariyer, 34450 Istanbul (Turkey); Kösemen, Arif [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Mus Alparslan University, Department of Physics, 49100 Mus (Turkey); Erkovan, Mustafa [SAKARYA University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus, 54187 Sakarya (Turkey); Öztürk, Zafer Ziya [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); TÜBİTAK-Marmara Research Center, Materials Institute, 41470 Gebze, Kocaeli (Turkey)

    2014-06-01

    Thermally stimulated current (TSC), photoresponse and gas sensing properties of zinc oxide (ZnO) nanorods were investigated depending on heating rates, illumination and dark aging times with using sandwich type electrode system. Vertically aligned ZnO nanorods were grown on indium tin oxide (ITO) coated glass substrate by hydrothermal process. TSC measurements were performed at different heating rates under constant potential. Photoresponse and gas sensing properties were investigated in dry air ambient at 200 °C. For gas sensing measurements, ZnO nanorods were exposed to NO{sub 2} (100 ppb to 1 ppm) in dark and illuminated conditions and the resulting resistance transient was recorded. It was found from dark electrical measurements that the dependence of the dc conductivity on temperature followed Mott's variable range hopping (VRH) model. In addition, response time and recovery times of ZnO nanorods to NO{sub 2} gas decreased by exposing to white light.

  20. A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures

    Science.gov (United States)

    Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Muhammad, Safdar; Huang, Ying; He, Jun

    2012-03-01

    A low-cost, compatible with flexible electronics, high performance UV sensor has been achieved from a reduced graphene oxide (RGO) decorated hydrangea-like ZnO film on a PDMS substrate. The hydrangea-like ZnO UV sensor has the best UV sensing performance among devices made of three kinds of ZnO nanostructures synthesized by a hydrothermal method, and demonstrated a dramatic enhancement in on/off ratio and photoresponse current by introducing an appropriate weight ratio of RGO. The on/off ratio of the 0.05% RGO/ZnO sensor increases almost one order of magnitude compared to that of a pristine hydrangea-like ZnO UV sensor. While for the 5% RGO decorated ZnO sensor, the photoresponse current reaches as high as ~1 μA and exceeds 700 times that of a ZnO UV sensor. These results indicate that RGO is an appropriate material to enhance the performance of ZnO nanostructure UV sensors based on its unique features, especially the high optical transparency and excellent electronic conductivity. Our findings will make RGO/ZnO nanohybrids extraordinarily promising in optoelectronics, flexible electronics and sensor applications.

  1. Improved transparent-conducting properties in N{sub 2{sup -}} and H{sub 2{sup -}} annealed GaZnO thin films grown on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon [Dongguk University, Seoul (Korea, Republic of)

    2012-01-15

    The effects of N{sub 2{sup -}} and H{sub 2{sup -}} annealing on the transparent-conducting properties of Ga-doped ZnO (GaZnO) were examined. The as-grown GaZnO thin film, which was deposited on a soda-lime glass substrate by r.f. magnetron sputtering, exhibited moderate transparent-conducting properties: a resistivity of {approx}10{sup 0} {Omega}{center_dot}cm and an optical transmittance of {approx}86%. After annealing in N{sub 2} or H{sub 2}, the GaZnO samples showed great improvements in both the electrical and the optical properties. Particularly, in the H{sub 2}-annealed sample, a dramatic decrease in the resistivity (7 x 10{sup -4} {Omega}{center_dot}cm) with a considerable increase in the carrier concentration (4.22 x 10{sup 21} cm{sup -3}) was observed. This is attributed to both an increase in the number of Ga-O bonds and a reduction in the number of chemisorbed oxygen atoms though H{sub 2} annealing. The sample revealed an enhanced optical transmittance ({approx}91%), which comes from the Burstein-Moss effect. Namely, a blue-shift of the optical absorption edge, which results from the increased carrier concentration, was observed in the H{sub 2}-annealed sample. The results suggest that hydrogen annealing can help improve the transparent conducting properties of GaZnO via a modification of the electrochemical bonding structures.

  2. Effect of substrate temperature on the structure, electrical and optical properties of Mo doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guifeng; Zhao, Xiaoli; Zhang, Hui; Wang, He; Liu, Feifei; Zhang, Xiaoqiang [Key Lab. for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Gao, Jianbo [China Institute of Atomic Energy, Beijing 102413 (China); Zhao, Yanmin; Zhang, Chao [No. 18TH Research Institute, China Electronics Technology Group Corporation, Tianjin 300384 (China); Tao, Junguang, E-mail: taojunguang@163.com [Key Lab. for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-09-15

    Highlights: • MZO thin films were prepared by RF magnetron sputtering from ZnO target and DC magnetron sputtering from Mo target. • All films are polycrystalline with preferential c-axis growth. • The various properties of films fabricated at varied substrate temperature have been studied. • The valence of the Mo ions in the ZnO matrix is mixture of +5 and +6. - Abstract: Mo-doped ZnO (MZO) transparent conductive thin films were prepared on glass substrate under various substrate temperature from 50 °C to 200 °C. The microstructural, electrical and optical properties of the MZO films were investigated by X-ray diffraction (XRD), Hall effect and UV–vis spectrophotometer. Based on XRD measurements, all films are polycrystalline with preferential c-axis growth. The lowest resistivity was obtained to be 2.8 × 10{sup −3} Ω·cm. According to X-ray photoelectron spectroscopy (XPS) measurement, the valence of the Mo ions in the ZnO matrix is a mixture of +5 and +6. In addition, the transmittance of the film is ∼80% throughout the visible light region. Our results indicate that the MZO films are suitable for potential transparent optoelectronic applications.

  3. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper.

    Science.gov (United States)

    Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Li, Jia; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun

    2013-08-14

    The cellulose nanofibers (CNFs) paper exhibit high visible light transmittance, high mechanical strength, and excellent flexibility. Therefore, CNFs paper may be an excellent substrate material for flexible transparent electronic devices. In this paper, we endeavor to prepare CNFs-based flexible transparent conductive paper by layer-by-layer (LbL) assembly using divalent copper ions (Cu(2+)) as the crosslinking agent. The thickness of the reduced graphene oxide (RGO) active layer in the CNFs paper can be controlled by the cycle times of the LbL assembly. CNFs/[RGO]20 paper has the sheet resistances of ∼2.5 kΩ/□, and the transmittance of about 76% at a wavelength of 550 nm. Furthermore, CNFs/[RGO]20 paper inherits the excellent mechanical properties of CNFs paper, and the ultimate strength is about 136 MPa. CNFs-based flexible transparent conductive paper also exhibits excellent electrical stability and flexibility. Copyright © 2013. Published by Elsevier Ltd.

  4. Improvement in Performance of ZnO based DSC Prepared by Spraying Method

    Directory of Open Access Journals (Sweden)

    Rangga Winantyo

    2013-09-01

    Full Text Available This paper reports the effect of TiCl4 on the performance of ZnO based DSC. ZnO was used due to its stability against photo-corrosion  and  photochemical  properties  similar  to  TiO2.  Thin  films  of  nanocrystalline  ZnO  were  deposited  on transparent conducting oxide glass using spray  method. The ZnO  films  were treated using TiCl4. The cell’s efficiency was found to be 2.5% with TiCl4 post-treatment and 1.9% without TiCl4 post-treatment.

  5. Highly Transparent and Conductive Metallized Nanofibers by Electrospinning and Electroplating

    Science.gov (United States)

    Yoon, Sam S.; Yarin, Alexander L.

    2017-11-01

    Transparent conducting films (TCFs) and transparent heaters (THs) are of interest for a wide variety of applications, from displays to window defrosters. Here, we demonstrate production of highly flexible, conducting, and transparent copper (Cu), nickel (Ni), platinum (Pt), and silver (Ag) nanofibers suitable for use not only in TCFs and THs but also in some other engineering applications. The merging of fibers at their intersections (i.e. self-junctioning) minimizes contact resistance in these films. These metallized nanofibers exhibited a remarkably low sheet resistance at a high optical transmittance. This low sheet resistance allows them to serve as low-voltage heaters, achieving a high heating temperature at a relatively low applied voltage. These nanofibers are free-standing, flexible, stretchable, and their mechanical reliability was confirmed through various mechanical endurance tests.

  6. Bilayered Oxide thin films for transparent electrode application

    Science.gov (United States)

    Dutta, Titas; Narayan, Jagdish

    2008-10-01

    Ga doped ZnO films with electrical and optical properties comparable to indium tin oxide (ITO) is a promising candidate for transparent conducting oxides (TCOs) because of its superior stability in hydrogen environment, benign nature and relatively inexpensive supply. However, ZnO based TCO films suffer from low work function, which is a critical parameter for device applications. We report here the growth of a novel bilayered structure consisting of very thin (few monolayers) ITO, MoOx layer on Zn0.95Ga0.05O film for transparent electrode applications by using pulsed laser deposition technique at different temperatures and oxygen partial pressure. The characteristics of the ITO film and the heterostructure have been investigated in detail using XRD, TEM, XPS, and electrical and optical property measurements. It is envisaged that the overall transmittance and the resistivity are dictated by the thicker layer of ZnGa0.05O beneath the ITO layer. Hence, this study is aimed to improve the surface characteristics without affecting the overall transmittance and sheet resistance. This will enhance the transport of the carriers across the heterojunction in the device, thus, resulting in the increase in device efficiency.

  7. Boron doped nanostructure ZnO films deposited by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Karakaya, Seniye, E-mail: seniyek@ogu.edu.tr; Ozbas, Omer

    2015-02-15

    Highlights: • Nanostructure undoped and boron doped ZnO films were deposited by USP technique. • Influences of doping on the surface and optical properties of the ZnO films were investigated. • XRD spectra of the films exhibited a variation in crystalline quality depending on the B content. - Abstract: ZnO is an II–VI compound semiconductor with a wide direct band gap of 3.3 eV at room temperature. Doped with group III elements (B, Al or Ga), it becomes an attractive candidate to replace tin oxide (SnO{sub 2}) or indium tin oxide (ITO) as transparent conducting electrodes in solar cell devices and flat panel display due to competitive electrical and optical properties. In this work, ZnO and boron doped ZnO (ZnO:B) films have been deposited onto glass substrates at 350 ± 5 °C by a cost-efficient ultrasonic spray pyrolysis technique. The optical, structural, morphological and electrical properties of nanostructure undoped and ZnO:B films have been investigated. Electrical resistivity of films has been analyzed by four-probe technique. Optical properties and thicknesses of the films have been examined in the wavelength range 1200–1600 nm by using spectroscopic ellipsometry (SE) measurements. The optical constants (refractive index (n) and extinction coefficient (k)) and the thicknesses of the films have been fitted according to Cauchy model. The optical method has been used to determine the band gap value of the films. Transmission spectra have been taken by UV spectrophotometer. It is found that both ZnO and ZnO:B films have high average optical transmission (≥80%). X-ray diffraction (XRD) patterns indicate that the obtained ZnO has a hexagonal wurtzite type structure. The morphological properties of the films were studied by atomic force microscopy (AFM). The surface morphology of the nanostructure films is found to depend on the concentration of B. As a result, ZnO:B films are promising contender for their potential use as transparent window layer and

  8. Transparent and conductive paper from nanocellulose fibers

    KAUST Repository

    Hu, Liangbing

    2013-01-01

    Here we report on a novel substrate, nanopaper, made of cellulose nanofibrils, an earth abundant material. Compared with regular paper substrates, nanopaper shows superior optical properties. We have carried out the first study on the optical properties of nanopaper substrates. Since the size of the nanofibrils is much less than the wavelength of visible light, nanopaper is highly transparent with large light scattering in the forward direction. Successful depositions of transparent and conductive materials including tin-doped indium oxide, carbon nanotubes and silver nanowires have been achieved on nanopaper substrates, opening up a wide range of applications in optoelectronics such as displays, touch screens and interactive paper. We have also successfully demonstrated an organic solar cell on the novel substrate. © The Royal Society of Chemistry 2013.

  9. Pulsed laser deposited Al-doped ZnO thin films for optical applications

    Directory of Open Access Journals (Sweden)

    Gurpreet Kaur

    2015-02-01

    Full Text Available Highly transparent and conducting Al-doped ZnO (Al:ZnO thin films were grown on glass substrates using pulsed laser deposition technique. The profound effect of film thickness on the structural, optical and electrical properties of Al:ZnO thin films was observed. The X-ray diffraction depicts c-axis, plane (002 oriented thin films with hexagonal wurtzite crystal structure. Al-doping in ZnO introduces a compressive stress in the films which increase with the film thickness. AFM images reveal the columnar grain formation with low surface roughness. The versatile optical properties of Al:ZnO thin films are important for applications such as transparent electromagnetic interference (EMI shielding materials and solar cells. The obtained optical band gap (3.2–3.08 eV was found to be less than pure ZnO (3.37 eV films. The lowering in the band gap in Al:ZnO thin films could be attributed to band edge bending phenomena. The photoluminescence spectra gives sharp visible emission peaks, enables Al:ZnO thin films for light emitting devices (LEDs applications. The current–voltage (I–V measurements show the ohmic behavior of the films with resistivity (ρ~10−3 Ω cm.

  10. Transient behaviors of ZnO thin films on a transparent, flexible polyethylene terephthalate substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jun [Department of Nano-Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701 (Korea, Republic of); Lee, Ho Seok [Department of Materials Science and Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Noh, Jin-Seo, E-mail: jinseonoh@gachon.ac.kr [Department of Nano-Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701 (Korea, Republic of)

    2016-03-31

    Thickness-dependent electrical, structural, and optical properties of zinc oxide (ZnO) thin films on polyethylene terephthalate (PET) substrates have been investigated in the very thin thickness range of 20 to 120 nm. In this thickness range, the electrical resistance of ZnO film increased with an increase in film thickness. This unusual transition behavior was explained in terms of structural evolution from Zn-phase-incorporating non-crystalline ZnO to hexagonal-structured ZnO. A critical thickness for the full development of hexagonal ZnO crystal was estimated at approximately 80 nm in this study. ZnO thin films on PET substrates exhibit a high optical transmittance of > 70% and good endurance to bending cycles over the measured thickness range. The results of this study indicate that a trade-off should be sought between structural, electrical, optical, and mechanical properties for practical applications of very thin ZnO films on organic substrates. - Highlights: • Very thin ZnO films were sputter-deposited on the PET substrate. • The ZnO film resistance increases with an increase in film thickness until saturation. • Hexagonal crystal structures gradually develop with increasing film thickness. • A Zn phase appears in a 20-nm-thick ZnO film. • ZnO films show high optical transmittance of > 80% and good endurance to bending.

  11. Transient behaviors of ZnO thin films on a transparent, flexible polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Kim, Yong Jun; Lee, Ho Seok; Noh, Jin-Seo

    2016-01-01

    Thickness-dependent electrical, structural, and optical properties of zinc oxide (ZnO) thin films on polyethylene terephthalate (PET) substrates have been investigated in the very thin thickness range of 20 to 120 nm. In this thickness range, the electrical resistance of ZnO film increased with an increase in film thickness. This unusual transition behavior was explained in terms of structural evolution from Zn-phase-incorporating non-crystalline ZnO to hexagonal-structured ZnO. A critical thickness for the full development of hexagonal ZnO crystal was estimated at approximately 80 nm in this study. ZnO thin films on PET substrates exhibit a high optical transmittance of > 70% and good endurance to bending cycles over the measured thickness range. The results of this study indicate that a trade-off should be sought between structural, electrical, optical, and mechanical properties for practical applications of very thin ZnO films on organic substrates. - Highlights: • Very thin ZnO films were sputter-deposited on the PET substrate. • The ZnO film resistance increases with an increase in film thickness until saturation. • Hexagonal crystal structures gradually develop with increasing film thickness. • A Zn phase appears in a 20-nm-thick ZnO film. • ZnO films show high optical transmittance of > 80% and good endurance to bending.

  12. Defect engineering of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M.H. [Center for Materials Research and Department of Physics and Astronomy, Washington State University, Pullman, WA 99164-2711 (United States)], E-mail: m_weber@wsu.edu; Selim, F.A.; Solodovnikov, D.; Lynn, K.G. [Center for Materials Research and Department of Physics and Astronomy, Washington State University, Pullman, WA 99164-2711 (United States)

    2008-10-31

    The defect responsible for the transparent to red color change of nominally undoped ZnO bulk single crystals is investigated. Upon annealing in the presence of metallic Zn as reported by Halliburton et al. and also Ti and Zr a native defect forms with an energy level about 0.7 eV below the conduction band. This change is reversible upon annealing in oxygen. Optical transmission data along with positron depth profiles and annealing studies are combined to identify the defect as oxygen vacancies. Vacancy clustering occurs at about 500 deg. C if isolated zinc and oxygen vacancies. In the absence of zinc vacancies, clusters form at about 800 deg. C.

  13. Defect engineering of ZnO

    International Nuclear Information System (INIS)

    Weber, M.H.; Selim, F.A.; Solodovnikov, D.; Lynn, K.G.

    2008-01-01

    The defect responsible for the transparent to red color change of nominally undoped ZnO bulk single crystals is investigated. Upon annealing in the presence of metallic Zn as reported by Halliburton et al. and also Ti and Zr a native defect forms with an energy level about 0.7 eV below the conduction band. This change is reversible upon annealing in oxygen. Optical transmission data along with positron depth profiles and annealing studies are combined to identify the defect as oxygen vacancies. Vacancy clustering occurs at about 500 deg. C if isolated zinc and oxygen vacancies. In the absence of zinc vacancies, clusters form at about 800 deg. C

  14. Transparent Conductive Ink for Additive Manufacturing

    Science.gov (United States)

    Patlan, X. J.; Rolin, T. D.

    2017-01-01

    NASA analyzes, tests, packages, and fabricates electrical, electronic, and electromechanical (EEE) parts. Nanotechnology is listed in NASA's Technology Roadmap as a key area to invest for further development.1 This research project focused on using nanotechnology to improve electroluminescent lighting in terms of additive manufacturing and to increase energy efficiency. Specifically, this project's goal was to produce a conductive but transparent printable ink that can be sprayed on any surface for use as one of the electrodes in electroluminescent device design. This innovative work is known as thick film dielectric electroluminescent (TDEL) technology. TDEL devices are used for "backlighting, illumination, and identification due to their tunable color output, scalability, and efficiency" (I.K. Small, T.D. Rolin, and A.D. Shields, "3D Printed Electroluminescent Light Panels," NASA Fiscal Year 2017 Center Innovation Fund Proposal, unpublished data, 2017). These devices use a 'front-to-back' printing method, where the substrate is the transparent layer, and the dielectric and phosphor are layered on top. This project is a first step in the process of creating a 3D printable 'back-to-front' electroluminescent device. Back-to-front 3D-printed devices are beneficial because they can be printed onto different substrates and embedded in different surfaces, and the substrate is not required to be transparent, all because the light is emitted from the top surface through the transparent conductor. Advances in this area will help further development of printing TDEL devices on an array of different surfaces. Figure 1 demonstrates the layering of the two electrodes that are aligned in a parallel plate capacitor structure (I.K. Small, T.D. Rolin, and A.D. Shields, "3D Printed Electroluminescent Light Panels," NASA Fiscal Year 2017 Center Innovation Fund Proposal, unpublished data, 2017). Voltage is applied across the device, and the subsequent electron excitation results in

  15. Fabrication of a Combustion-Reacted High-Performance ZnO Electron Transport Layer with Silver Nanowire Electrodes for Organic Solar Cells.

    Science.gov (United States)

    Park, Minkyu; Lee, Sang-Hoon; Kim, Donghyuk; Kang, Juhoon; Lee, Jung-Yong; Han, Seung Min

    2018-02-28

    Herein, a new methodology for solution-processed ZnO fabrication on Ag nanowire network electrode via combustion reaction is reported, where the amount of heat emitted during combustion was minimized by controlling the reaction temperature to avoid damaging the underlying Ag nanowires. The degree of participation of acetylacetones, which are volatile fuels in the combustion reaction, was found to vary with the reaction temperature, as revealed by thermogravimetric and compositional analyses. An optimized processing temperature of 180 °C was chosen to successfully fabricate a combustion-reacted ZnO and Ag nanowire hybrid electrode with a sheet resistance of 30 Ω/sq and transmittance of 87%. A combustion-reacted ZnO on Ag nanowire hybrid structure was demonstrated as an efficient transparent electrode and electron transport layer for the PTB7-Th-based polymer solar cells. The superior electrical conductivity of combustion-reacted ZnO, compared to that of conventional sol-gel ZnO, increased the external quantum efficiency over the entire absorption range, whereas a unique light scattering effect due to the presence of nanopores in the combustion-derived ZnO further enhanced the external quantum efficiency in the 450-550 nm wavelength range. A power conversion efficiency of 8.48% was demonstrated for the PTB7-Th-based polymer solar cell with the use of a combustion-reacted ZnO/Ag NW hybrid transparent electrode.

  16. Structural and interfacial defects in c-axis oriented LiNbO3 thin films grown by pulsed laser deposition on Si using Al : ZnO conducting layer

    Science.gov (United States)

    Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay

    2009-05-01

    Highly c-axis oriented LiNbO3 films are deposited using pulsed laser deposition on a silicon substrate using a transparent conducting Al doped ZnO layer. X-ray diffraction and Raman spectroscopic analysis show the fabrication of single phase and oriented LiNbO3 films under the optimized deposition condition. An extra peak at 905 cm-1 was observed in the Raman spectra of LiNbO3 film deposited at higher substrate temperature and higher oxygen pressure, and attributed to the presence of niobium antisite defects in the lattice. Dielectric constant and ac conductivity of oriented LiNbO3 films deposited under the static and rotating substrate modes have been studied. Films deposited under the rotating substrate mode exhibit dielectric properties close to the LiNbO3 single crystal. The cause of deviation in the dielectric properties of the film deposited under the static substrate mode, in comparison with the bulk, are discussed in the light of the possible formation of an interdiffusion layer at the interface of the LiNbO3 film and the Al : ZnO layer.

  17. Structural and interfacial defects in c-axis oriented LiNbO3 thin films grown by pulsed laser deposition on Si using Al : ZnO conducting layer

    International Nuclear Information System (INIS)

    Shandilya, Swati; Sreenivas, K; Gupta, Vinay; Tomar, Monika

    2009-01-01

    Highly c-axis oriented LiNbO 3 films are deposited using pulsed laser deposition on a silicon substrate using a transparent conducting Al doped ZnO layer. X-ray diffraction and Raman spectroscopic analysis show the fabrication of single phase and oriented LiNbO 3 films under the optimized deposition condition. An extra peak at 905 cm -1 was observed in the Raman spectra of LiNbO 3 film deposited at higher substrate temperature and higher oxygen pressure, and attributed to the presence of niobium antisite defects in the lattice. Dielectric constant and ac conductivity of oriented LiNbO 3 films deposited under the static and rotating substrate modes have been studied. Films deposited under the rotating substrate mode exhibit dielectric properties close to the LiNbO 3 single crystal. The cause of deviation in the dielectric properties of the film deposited under the static substrate mode, in comparison with the bulk, are discussed in the light of the possible formation of an interdiffusion layer at the interface of the LiNbO 3 film and the Al : ZnO layer.

  18. Applying RF Magnetron sputtering to prepare ZnO thin films and their characterization

    International Nuclear Information System (INIS)

    Saad, M.; Kassis, A.

    2009-05-01

    ZnO thin films were prepared using Rf magnetron sputtering under several preparation conditions (different values of deposition pressure, Rf power, substrate temperature). The optical properties of these films were investigated by measuring their transmission in the spectral range (300-1000 nm), and the electrical properties were investigated by measuring their electrical resistance. Results have been discussed in terms of the modified Thornton model for sputtered thin metal oxide films. Preparation conditions for depositing the highly resistive transparent i-ZnO buffer layer and the highly conducting transparent n-ZnO window layer for solar cells were proposed. (author)

  19. Formation of transparent ZnO layers by MePIIID

    International Nuclear Information System (INIS)

    Maendl, S.; Rauschenbach, B.

    2006-01-01

    ZnO thin films were deposited using metal plasma immersion ion implantation and deposition (MePIIID) with high voltage pulses from 0 to 10 kV at a duty cycle of 9%. All films exhibit a (0 0 2) fibre texture of the hexagonal ZnO phase. With increasing bias voltage, an increased sub-band gap absorption was observed with spectroscopic ellipsometry, together with preferential sputtering of oxygen from the film. Only a partial reversal of this effect was obtained with an increased oxygen/zinc ratio on the supply side showing that additional radiation induced defects are present in the film at high pulse voltages

  20. Nanostructured transparent conducting oxide electrochromic device

    Science.gov (United States)

    Milliron, Delia; Tangirala, Ravisubhash; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2016-05-17

    The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.

  1. Solution-Grown ZnO Films toward Transparent and Smart Dual-Color Light-Emitting Diode.

    Science.gov (United States)

    Huang, Xiaohu; Zhang, Li; Wang, Shijie; Chi, Dongzhi; Chua, Soo Jin

    2016-06-22

    An individual light-emitting diode (LED) capable of emitting different colors of light under different bias conditions not only allows for compact device integration but also extends the functionality of the LED beyond traditional illumination and display. Herein, we report a color-switchable LED based on solution-grown n-type ZnO on p-GaN/n-GaN heterojunction. The LED emits red light with a peak centered at ∼692 nm and a full width at half-maximum of ∼90 nm under forward bias, while it emits green light under reverse bias. These two lighting colors can be switched repeatedly by reversing the bias polarity. The bias-polarity-switched dual-color LED enables independent control over the lighting color and brightness of each emission with two-terminal operation. The results offer a promising strategy toward transparent, miniaturized, and smart LEDs, which hold great potential in optoelectronics and optical communication.

  2. Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Thankappan, Aparna, E-mail: aparna.subhash@gmail.com [International School of Photonics (ISP), Cochin University of Science and Technology, Kochi (India); Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kochi (India); Divya, S.; Augustine, Anju K.; Girijavallaban, C.P.; Radhakrishnan, P.; Thomas, Sheenu; Nampoori, V.P.N. [International School of Photonics (ISP), Cochin University of Science and Technology, Kochi (India)

    2015-05-29

    Performance of dye sensitized solar cells based on betanin natural dye from red beets with various nanostructured photoanodes on transparent conducting glass has been investigated. In four different electrolyte systems cell efficiency of 2.99% and overall photon to current conversion efficiency of 20% were achieved using ZnO nanosheet electrode with iodide based electrolyte in acetonitrile solution. To enhance solar harvesting in organic solar cells, uniform sized metal nanoparticles (gold (Au) of ~ 8 nm) synthesized via microwave irradiation method were incorporated into the device consisting of ZnO. Enhanced power conversion efficiency of 1.71% was achieved with ZnO/Au nanocomposite compared to the 0.868% efficiency of the bare ZnO nanosheet cell with ferrocene based electrolyte. - Highlights: • The influence of electrolytes has been studied. • Cell efficiency of 2.99% was achieved by ZnO. • Enhancement of efficiency with incorporation of Au nano.

  3. Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes.

    Science.gov (United States)

    Kim, Byung-Jae; Mastro, Michael A; Hite, Jennifer; Eddy, Charles R; Kim, Jihyun

    2010-10-25

    We report a graphene-based transparent conductive electrode for use in ultraviolet (UV) GaN light emitting diodes (LEDs). A few-layer graphene (FLG) layer was mechanically deposited. UV light at a peak wavelength of 368 nm was successfully emitted by the FLG layer as transparent contact to p-GaN. The emission of UV light through the thin graphene layer was brighter than through the thick graphene layer. The thickness of the graphene layer was characterized by micro-Raman spectroscopy. Our results indicate that this novel graphene-based transparent conductive electrode holds great promise for use in UV optoelectronics for which conventional ITO is less transparent than graphene.

  4. Transparent conducting oxide top contacts for organic electronics

    KAUST Repository

    Franklin, Joseph B.

    2014-01-01

    A versatile method for the deposition of transparent conducting oxide (TCO) layers directly onto conjugated polymer thin film substrates is presented. Using pulsed laser deposition (PLD) we identify a narrow window of growth conditions that permit the deposition of highly transparent, low sheet resistance aluminium-doped zinc oxide (AZO) without degradation of the polymer film. Deposition on conjugated polymers mandates the use of low growth temperatures (<200°C), here we deposit AZO onto poly-3-hexylthiophene (P3HT) thin films at 150°C, and investigate the microstructural and electrical properties of the AZO as the oxygen pressure in the PLD chamber is varied (5-75 mTorr). The low oxygen pressure conditions previously optimized for AZO deposition on rigid substrates are shown to be unsuitable, resulting in catastrophic damage of the polymer films. By increasing the oxygen pressure, thus reducing the energy of the ablated species, we identify conditions that allow direct deposition of continuous, transparent AZO films without P3HT degradation. We find that uptake of oxygen into the AZO films reduces the intrinsic charge carriers and AZO films with a measured sheet resistance of approximately 500 Ω □-1 can be prepared. To significantly reduce this value we identify a novel process in which AZO is deposited over a range of oxygen pressures-enabling the deposition of highly transparent AZO with sheet resistances below 50 Ω □-1 directly onto P3HT. We propose these low resistivity films are widely applicable as transparent top-contacts in a range of optoelectronic devices and highlight this by demonstrating the operation of a semi-transparent photovoltaic device. © 2014 The Royal Society of Chemistry. 2014.

  5. Fabrication of nanostructured ZnO film as a hole-conducting layer of organic photovoltaic cell

    Science.gov (United States)

    Kim, Hyomin; Kwon, Yiseul; Choe, Youngson

    2013-05-01

    We have investigated the effect of fibrous nanostructured ZnO film as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the concentration of zinc acetate dihydrate, the changes of performance characteristics were evaluated. Fibrous nanostructured ZnO film was prepared by sol-gel process and annealed on a hot plate. As the concentration of zinc acetate dihydrate increased, ZnO fibrous nanostructure grew from 300 to 600 nm. The obtained ZnO nanostructured fibrous films have taken the shape of a maze-like structure and were characterized by UV-visible absorption, scanning electron microscopy, and X-ray diffraction techniques. The intensity of absorption bands in the ultraviolet region was increased with increasing precursor concentration. The X-ray diffraction studies show that the ZnO fibrous nanostructures became strongly (002)-oriented with increasing concentration of precursor. The bulk heterojunction photovoltaic cells were fabricated using poly(3-hexylthiophene-2,5-diyl) and indene-C60 bisadduct as active layer, and their electrical properties were investigated. The external quantum efficiency of the fabricated device increased with increasing precursor concentration.

  6. Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique

    Directory of Open Access Journals (Sweden)

    M.I. Khan

    Full Text Available In this work, zinc oxide (ZnO multilayer thin films are deposited on glass substrate using sol-gel spin coating technique and the effect of these multilayer films on optical, electrical and structural properties are investigated. It is observed that these multilayer films have great impact on the properties of ZnO. X-ray Diffraction (XRD confirms that ZnO has hexagonal wurtzite structure. Scanning Electron Microscopy (SEM showed the crack-free films which have uniformly distributed grains structures. Both micro and nano particles of ZnO are present on thin films. Four point probe measured the electrical properties showed the decreasing trend between the average resistivity and the number of layers. The optical absorption spectra measured using UV–Vis. showed the average transmittance in the visible region of all films is 80% which is good for solar spectra. The performance of the multilayer as transparent conducting material is better than the single layer of ZnO. This work provides a low cost, environment friendly and well abandoned material for solar cells applications. Keywords: Multilayer films, Semiconductor, ZnO, XRD, SEM, Optoelectronic properties

  7. Optical and Electrical Performance of ZnO Films Textured by Chemical Etching

    Directory of Open Access Journals (Sweden)

    Shiuh-Chuan HER

    2015-11-01

    Full Text Available Zinc oxide (ZnO films were prepared by radio frequency (RF magnetron sputtering on the glass substrate as transparent conductive oxide films. For silicon solar cells, a proper surface texture is essential to introduce light scattering and subsequent light trapping to enhance the current generation. In this study, the magnetron-sputtered ZnO films were textured by wet-chemical etching in diluted hydrochloric acid (HCl for better light scattering. The diffuse transmittance of the surface textured ZnO films was measured to evaluate the light scattering. The influence of hydrochloric acid concentration on the morphology, optical and electrical properties of the surface-textured ZnO film was investigated. The ZnO film etched in 0.05M HCl solution for 30 s exhibited average diffuse transmittance in the visible wavelength range of 9.52 % and good resistivity of 1.10 x 10-3 W×cm while the as-deposited ZnO film had average diffuse transmittance of 0.51 % and relatively high resistivity of 5.84 x 10-2 W×cm. Experimental results illustrated that the optical and electrical performance of ZnO films can be significantly improved by introducing the surface texture through the wet-chemical etching process.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9624

  8. Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell

    International Nuclear Information System (INIS)

    Dong, Juan; Shi, Jiangjian; Li, Dongmei; Luo, Yanhong; Meng, Qingbo

    2015-01-01

    The mechanism of charge recombination at the interface of n-type electron transport layer (n-ETL) and perovskite absorber on the carrier properties in the perovskite solar cell is theoretically studied. By solving the one dimensional diffusion equation with different boundary conditions, it reveals that the interface charge recombination in the perovskite solar cell can be suppressed by adjusting the conduction band offset (ΔE C ) at ZnO ETL/perovskite absorber interface, thus leading to improvements in cell performance. Furthermore, Mg doped ZnO nanorods ETL has been designed to control the energy band levels. By optimizing the doping amount of Mg, the conduction band minimum of the Mg doped ZnO ETL has been raised up by 0.29 eV and a positive ΔE C of about 0.1 eV is obtained. The photovoltage of the cell is thus significantly increased due to the relatively low charge recombination

  9. Influence of transparent conductive oxides on passivation of a-Si:H/c-Si heterojunctions as studied by atomic layer deposited Al-doped ZnO

    NARCIS (Netherlands)

    Macco, B.; Deligiannis, D.; Smit, S.; Swaaij, van R.A.C.M.M.; Zeman, M.; Kessels, W.M.M.

    2014-01-01

    In silicon heterojunction solar cells, the main opportunities for efficiency gain lie in improvements of the front-contact layers. Therefore, the effect of transparent conductive oxides (TCOs) on the a-Si:H passivation performance has been investigated for Al-doped zinc oxide (ZnO:Al) layers made by

  10. Structural and interfacial defects in c-axis oriented LiNbO{sub 3} thin films grown by pulsed laser deposition on Si using Al : ZnO conducting layer

    Energy Technology Data Exchange (ETDEWEB)

    Shandilya, Swati; Sreenivas, K; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Miranda House, University of Delhi, Delhi 110007 (India)

    2009-05-07

    Highly c-axis oriented LiNbO{sub 3} films are deposited using pulsed laser deposition on a silicon substrate using a transparent conducting Al doped ZnO layer. X-ray diffraction and Raman spectroscopic analysis show the fabrication of single phase and oriented LiNbO{sub 3} films under the optimized deposition condition. An extra peak at 905 cm{sup -1} was observed in the Raman spectra of LiNbO{sub 3} film deposited at higher substrate temperature and higher oxygen pressure, and attributed to the presence of niobium antisite defects in the lattice. Dielectric constant and ac conductivity of oriented LiNbO{sub 3} films deposited under the static and rotating substrate modes have been studied. Films deposited under the rotating substrate mode exhibit dielectric properties close to the LiNbO{sub 3} single crystal. The cause of deviation in the dielectric properties of the film deposited under the static substrate mode, in comparison with the bulk, are discussed in the light of the possible formation of an interdiffusion layer at the interface of the LiNbO{sub 3} film and the Al : ZnO layer.

  11. Identification of conduction and hot electron property in ZnS, ZnO and SiO2

    International Nuclear Information System (INIS)

    Huang Jinzhao; Xu Zheng; Zhao Suling; Li Yuan; Yuan Guangcai; Wang Yongsheng; Xu Xurong

    2007-01-01

    The impact excitation and ionization is the most important process in layered optimization scheme and solid state cathodoluminescence. The conduction property (semiconductor property) of SiO 2 , ZnS and ZnO is studied based on organic/inorganic electroluminescence. The hot electron property (acceleration and multiplication property) of SiO 2 and ZnS is investigated based on the solid state cathodoluminescence. The results show that the SiO 2 has the fine hot electron property and the conduction property is not as good as ZnO and ZnS

  12. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    Metalorganic chemical vapor deposition (MOCVD) was used in the present work. Un-doped and Al-doped ZnO films were developed using two reactors: Halogen Lamp Reactor (HLR) (a type of Cold Wall Reactor) and Hot Wall Reactor (HWR), and a comparison was made between them in terms of the film properties. Zinc acetylacetonate was used as precursor for ZnO films while aluminum acetylacetonate was used for doping. The amount of Al doping can be controlled by varying the gas flow rate. Well ordered films with aluminum content between 0 and 8 % were grown on borosilicate glass and silicon. The films obtained are 0.3 to 0.5 {mu}m thick, highly transparent and reproducible. The growth rate of ZnO films deposited using HLR is less than HWR. In HLR, the ZnO films are well oriented along c-axis ((002) plane). ZnO films are commonly oriented along the c-axis due to its low surface free energy. On the other hand, the HWR films are polycrystalline and with Al doping these films aligned along the a-axis ((100) plane) which is less commonly observed. The best films were obtained with the HLR method showing a minimum electrical resistivity of 2.4 m{omega}cm and transmittance of about 80 % in the visible range. The results obtained for Al-doped films using HLR are promising to be used as TCOs. The second material investigated in this work was un-doped and doped titanium dioxide (TiO{sub 2}) films- its preparation and characterization. It is well known that thermographic phosphors can be used as an optical method for the surface temperature measurement. For this application, the temperature-dependent luminescence properties of europium (III)-doped TiO{sub 2} thin films were studied. It was observed that only europium doped anatase films show the phosphorescence. Rutile phase do not show phosphorescence. The films were prepared by the sol-gel method using the dip coating technique. The structures of the films were determined by X-ray diffraction (XRD). The excitation and the emission

  13. Conductive Oxides Trench Structures as Hyperbolic Metamaterials in Mid-infrared Range

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    ,2]. Moreover plasmonics for mid-infrared offer unique applications such as bio-sensing, thermal imaging and quest for novel materials and structures has been continuing [3]. In this report we show that vertical trench structures made of, for example, aluminum-doped ZnO (AZO) or other transparent conductive...

  14. Co-contribution of hydrogen impurities and native defects might be the answer for the n-type conductivity in ZnO

    International Nuclear Information System (INIS)

    Feng, Wu-Wei; Cho, Sunglae; Wang, Ming-Song; Dung, Dang Duc

    2016-01-01

    Highlights: • Native defects cannot explain large increase of resistance of the sample after 200 °C-annealing. • Native defects cannot explain changes of carrier concentration being in range of few orders lower than for stoichiometry. • Above two important phenomena can be explained by H-related defects. • n-type conductivity in ZnO cannot be solely ascribed to H-defects or native defects, both could be contributor. • The contribution of CH_x to the majority of n-type conductivity was ruled out. - Abstract: We reinvestigated the origin of n-type conductivity in the unintentionally-doped ZnO. 1000 °C-annealed sample was free of H- and C-related impurities and still demonstrated strong conductivity revealing the significant contribution of native defects to the n-type conductivity of ZnO. However, it is hydrogen impurities, rather than native defects, that can only explain the increase of sample resistivity after annealing in Ar at 200 °C and the small difference in the variation of carrier density upon considerable changes of the stoichiometry of sample. In this regard, we proposed that co-contribution of hydrogen impurities and native defects might be the answer for the n-type conductivity in ZnO in general, and the hydrogen impurities probably are the preferential origin responsible for the strong conductivity in ZnO if they exist substantially in the sample.

  15. Co-contribution of hydrogen impurities and native defects might be the answer for the n-type conductivity in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Wu-Wei, E-mail: wfeng@cugb.edu.cn [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Cho, Sunglae, E-mail: slcho@ulsan.ac.kr [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Wang, Ming-Song [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Dung, Dang Duc [Department of General Physics, School of Engineering Physics, Ha Noi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi (Viet Nam)

    2016-01-28

    Highlights: • Native defects cannot explain large increase of resistance of the sample after 200 °C-annealing. • Native defects cannot explain changes of carrier concentration being in range of few orders lower than for stoichiometry. • Above two important phenomena can be explained by H-related defects. • n-type conductivity in ZnO cannot be solely ascribed to H-defects or native defects, both could be contributor. • The contribution of CH{sub x} to the majority of n-type conductivity was ruled out. - Abstract: We reinvestigated the origin of n-type conductivity in the unintentionally-doped ZnO. 1000 °C-annealed sample was free of H- and C-related impurities and still demonstrated strong conductivity revealing the significant contribution of native defects to the n-type conductivity of ZnO. However, it is hydrogen impurities, rather than native defects, that can only explain the increase of sample resistivity after annealing in Ar at 200 °C and the small difference in the variation of carrier density upon considerable changes of the stoichiometry of sample. In this regard, we proposed that co-contribution of hydrogen impurities and native defects might be the answer for the n-type conductivity in ZnO in general, and the hydrogen impurities probably are the preferential origin responsible for the strong conductivity in ZnO if they exist substantially in the sample.

  16. Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Teresa M.; Reese, Matthew O.; Bergeson, Jeremy D.; Larsen, Brian A.; Blackburn, Jeffrey L.; Beard, Matthew C.; Bult, Justin; Van de Lagemaat, Jao [NREL, 1617 Cole Blvd., Golden, CO 80401 (United States)

    2012-03-15

    Networks made of single-walled carbon nanotubes (SWNTs) and metallic nanowire networks, graphene, and ultra-thin metal films have all been proposed as replacements for transparent conducting oxides (TCOs) in photovoltaic and other applications. However, only limited comparisons of nanostructured networks and TCOs are available. Several common figures of merit that are often used to compare the electrical and optical performance of the transparent contacts are evaluated here, and the merits of each method of comparison are discussed. Calculating the current loss due to absorption in the TCO is the most useful metric for evaluating new materials for use in solar cells with well-defined sheet resistance requirements and known quantum efficiencies. The 'Haacke' figure of merit, {phi}{sub H}, correlates fairly well with current loss and is a good metric for evaluating electro-optical performance for more general applications. The analyses presented here demonstrate that silver nanowire networks are much closer to achieving optimal electrical and optical properties than carbon-based networks. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Spatial Atomic Layer Deposition of transparent conductive oxides

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Poodt, P.; Roozeboom, F.

    2013-01-01

    Undoped and indium doped ZnO films have been grown by Spatial Atomic Layer Deposition at atmospheric pressure. The electrical properties of ZnO films are controlled by varying the indium content in the range from 0 to 15 %. A minimum resistivity value of 3 mΩ•cm is measured in 180 nm thick films for

  18. Review of flexible and transparent thin-film transistors based on zinc oxide and related materials

    International Nuclear Information System (INIS)

    Zhang Yong-Hui; Mei Zeng-Xia; Liang Hui-Li; Du Xiao-Long

    2017-01-01

    Flexible and transparent electronics enters into a new era of electronic technologies. Ubiquitous applications involve wearable electronics, biosensors, flexible transparent displays, radio-frequency identifications (RFIDs), etc. Zinc oxide (ZnO) and relevant materials are the most commonly used inorganic semiconductors in flexible and transparent devices, owing to their high electrical performances, together with low processing temperatures and good optical transparencies. In this paper, we review recent advances in flexible and transparent thin-film transistors (TFTs) based on ZnO and relevant materials. After a brief introduction, the main progress of the preparation of each component (substrate, electrodes, channel and dielectrics) is summarized and discussed. Then, the effect of mechanical bending on electrical performance is highlighted. Finally, we suggest the challenges and opportunities in future investigations. (paper)

  19. Influence of the ``second gap'' on the optical absorption of transparent conducting oxides

    Science.gov (United States)

    Ha, Viet-Anh; Waroquiers, David; Rignanese, Gian-Marco; Hautier, Geoffroy

    Transparent conducting oxides (TCOs) are critical to many technologies (e.g., thin-film solar cells, flat-panel displays or organic light-emitting diodes). TCOs are heavily doped (n or p-type) oxides that satisfy many design criteria such as high transparency to visible light (i.e., a band gap > 3 eV), high concentration and mobility of carriers (leading to high conductivity), ... In such (highly doped) systems, optical transitions from the conduction band minimum to higher energy bands in n-type or from lower energy bands to the valence band maximum in p-type are possible and can degrade transparency. In fact, it has been claimed that a high energy (> 3eV) for any of these transitions made possible by doping, commonly referred as a high ``second gap'', is a necessary design criterion for high performance TCOs. Here, we study the influence of this second gap on the transparency of doped TCOs by using ab initio calculations within the random phase approximation (RPA) for several well-known p-type and n-type TCOs. Our work highlights how the second gap affects the transparency of doped TCOs, shining light on more accurate design criteria for high performance TCOs.

  20. Formation of electrically conducting, transparent films using silver nanoparticles connected by carbon nanotubes

    International Nuclear Information System (INIS)

    Hwang, Sunna; Noh, Sun Young; Kim, Heesuk; Park, Min; Lee, Hyunjung

    2014-01-01

    To achieve both optical transparency and electrical conductivity simultaneously, we fabricated a single-walled carbon nanotube (SWNT)/silver fiber-based transparent conductive film using silver fibers produced by the electrospinning method. Electrospun silver fibers provided a segregated structure with the silver nanoparticles within the fibrous microstructures as a framework. Additional deposition of SWNT/poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) layers resulted in a remarkable decrease in the surface resistance from very high value (> 3000 kΩ/sq) for the films of electrospun silver fibers, without affecting the optical transmittance at 550 nm. The surface resistance of the SWNT/silver film after the deposition of three layers decreased to 17 Ω/sq with 80% transmittance. Successive depositions of SWNT/PEDOT:PSS layers reduced the surface resistance to 2 Ω/sq without severe loss in optical transmittance (ca. 65%). The transparent conductive films exhibited a performance comparable to that of commercial indium tin oxide films. The individual silver nanoparticles within the electrospun fibers on the substrate were interconnected with SWNTs, which resulted in the efficient activation of a conductive network by bridging the gaps among separate silver nanoparticles. Such a construction of microscopically conductive networks with the minimum use of electrically conductive nanomaterials produced superior electrical conductivity, while maintaining the optical transparency. - Highlights: • Silver fibrous structures were produced by electrospinning method. • SWNTs/PEDOT:PSS was deposited on silver fibrous structures. • These films exhibited a low sheet resistance (∼ 17 Ω/sq) at ∼ 80% optical transparency. • Successive depositions of SWNT/PEDOT:PSS layers reduced the surface resistance to 2 Ω/sq

  1. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    Science.gov (United States)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  2. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    International Nuclear Information System (INIS)

    Li Na; Chen Fei; Shen Qiang; Wang Chuanbin; Zhang Lianmeng

    2013-01-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  3. Angle-specific transparent conducting electrodes with metallic gratings

    Energy Technology Data Exchange (ETDEWEB)

    Rivolta, N. X. A., E-mail: nicolas.rivolta@umons.ac.be; Maes, B. [Micro- and Nanophotonic Materials Group, Faculty of Science, University of Mons, Avenue Maistriau 19, B-7000 Mons (Belgium)

    2014-08-07

    Transparent conducting electrodes, which are not made from indium tin oxide, and which display a strong angular dependence are useful for various technologies. Here, we introduce a tilted silver grating that combines a large conductance with a strong and angle-specific transmittance. When the light incidence angle matches the tilt angle of the grating, transmittance is close to the maximum along a very broadband range. We explain the behavior through simulations that show in detail the plasmonic and interference effects at play.

  4. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film

    International Nuclear Information System (INIS)

    Fan Tian-Ju; Yuan Chun-Qiu; Tang Wei; Tong Song-Zhao; Huang Wei; Min Yong-Gang; Liu Yi-Dong; Epstein, Arthur J.

    2015-01-01

    We fabricate flexible conductive and transparent graphene films on position-emission-tomography substrates and prepare large area graphene films by graphite oxide sheets with the new technical process. The multi-layer graphene oxide sheets can be chemically reduced by HNO 3 and HI to form a highly conductive graphene film on a substrate at lower temperature. The reduced graphene oxide sheets show a high conductivity sheet with resistance of 476 Ω/sq and transmittance of 76% at 550 nm (6 layers). The technique used to produce the transparent conductive graphene thin film is facile, inexpensive, and can be tunable for a large area production applied for electronics or touch screens. (paper)

  5. Silver Nanowire Transparent Conductive Films with High Uniformity Fabricated via a Dynamic Heating Method.

    Science.gov (United States)

    Jia, Yonggao; Chen, Chao; Jia, Dan; Li, Shuxin; Ji, Shulin; Ye, Changhui

    2016-04-20

    The uniformity of the sheet resistance of transparent conductive films is one of the most important quality factors for touch panel applications. However, the uniformity of silver nanowire transparent conductive films is far inferior to that of indium-doped tin oxide (ITO). Herein, we report a dynamic heating method using infrared light to achieve silver nanowire transparent conductive films with high uniformity. This method can overcome the coffee ring effect during the drying process and suppress the aggregation of silver nanowires in the film. A nonuniformity factor of the sheet resistance of the as-prepared silver nanowire transparent conductive films could be as low as 6.7% at an average sheet resistance of 35 Ω/sq and a light transmittance of 95% (at 550 nm), comparable to that of high-quality ITO film in the market. In addition, a mechanical study shows that the sheet resistance of the films has little change after 5000 bending cycles, and the film could be used in touch panels for human-machine interactive input. The highly uniform and mechanically stable silver nanowire transparent conductive films meet the requirement for many significant applications and could play a key role in the display market in a near future.

  6. Effects of pulsed sputtering frequency on the uniformity of Al:ZnO's transparent conductive oxide properties for solar cell applications

    International Nuclear Information System (INIS)

    Yang, Wonkyun; Joo, Junghoon

    2009-01-01

    Bipolar pulsed magnetron sputtering is used to deposit Al doped ZnO (AZO) on a glass substrate for a transparent conducting oxide in a solar cell structure. A 5x25 in. 2 AZO target was sputtered by 50-250 kHz bipolar pulsed dc power supply to deposit a 400x400 mm 2 area by swinging back and forth. Sheet resistance, surface morphology, and optical transmittance were measured at different positions on 16 witness samples (small glass slides) to evaluate uniformity. In the thickness of 800 nm, the average value of sheet resistance was 30 Ω/□ and the average resistivity was 2.1x10 -3 Ω cm. Transmittance was 50%-80% over the visible range. The nonuniformities of thickness, transmittance, and resistivity in the 400x400 mm 2 area were 5.8%, 0.8%, and within 9.5%, respectively.

  7. Sputter deposited gallium doped ZnO for TCO applications

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Marc; Kronenberger, Achim; Polity, Angelika; Meyer, Bruno [I. Physikalisches Institut, Justus Liebig Universitaet Giessen (Germany); Blaesing, Juergen; Krost, Alois [FNW/IEP/AHE, Otto-von-Guericke Universitaet Magdeburg (Germany)

    2010-07-01

    Transparent conducting oxides to be used for flat panel or display applications should exhibit low electrical resistivity in line with a high optical transmission in the visible spectral range. Today indium-tin-oxide is the material which meets these requirements best. However, the limited availability of indium makes it useful to search for alternatives and ZnO doped with group III elements are promising candidates. While the Al doping in high concentrations causes problems due to the formation of insulating Al-oxides, Gallium related oxides are typically n-type conducting wide band gap semiconductors. Therefore we deposited Gallium doped ZnO thin films on quartz and sapphire substrates by radio frequency magnetron sputtering with a ZnO/Ga{sub 2}O{sub 3}(3at%) composite target. The substrate temperature and the oxygen flow during the sputtering process were varied to optimise the layer properties. Introducing oxygen to the sputtering gas allowed to vary the resistivity of the films by three orders of magnitude from about 1 {omega}cm down to less than 1 m{omega}cm.

  8. Pressurized polyol synthesis of Al-doped ZnO nanoclusters with high electrical conductivity and low near-infrared transmittance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho-Nyun; Shin, Chi-Ho [Surface Technology R& BD Group, Korea Institute of Industrial Technology (KITECH), Incheon 406-840 (Korea, Republic of); Hwang, Duck Kun [Department of Corporate Diagnosis, Small and Medium Business Corporation, Seoul 150-718 (Korea, Republic of); Kim, Haekyoung [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Oh, Kyeongseok [Department of Chemical and Environmental Technology, Inha Technical College, Incheon 402-752 (Korea, Republic of); Kim, Hyun-Jong, E-mail: hjkim23@kitech.re.kr [Surface Technology R& BD Group, Korea Institute of Industrial Technology (KITECH), Incheon 406-840 (Korea, Republic of)

    2015-09-25

    Highlights: • Low-temperature pressurized polyol method synthesized Al-doped ZnO nanoclusters. • Reaction time affected the doping efficiency, resistivity, and NIR transmittance. • The near-IR blocking efficiency of Al-doped ZnO (AZO) nanoclusters reached 85%. • AZO nanocluster coatings could be used for heat reflectors or artificial glasses. - Abstract: In this study, a novel pressurized polyol method is proposed to synthesize aluminum-doped ZnO (AZO) nanoclusters without utilizing additional thermal treatment to avoid the merging of nanoclusters. The size of the AZO nanoclusters range from 100 to 150 nm with a resistivity of 204 Ω cm. The AZO nanoclusters primarily consist of approximately 10-nm nanocrystals that form a spherically clustered morphology. A two-stage growth model has been proposed based on the results of scanning electron microscopy and transmission electron microscopy images, nanocluster sizes, and X-ray diffraction patterns. The primary AZO nanocrystals first nucleate under pressurized conditions and then spontaneously aggregate into larger nanoclusters. Optically, the AZO nanoclusters exhibit a significant decrease in the near-infrared (NIR) transmittance compared to pure ZnO nanoparticles. The NIR blocking efficiency of AZO nanoclusters reached 85%. Moreover, the doping efficiency, resistivity, and NIR transmittance of AZO nanoclusters are influenced by the reaction time in the pressurized polyol solution. On the other hand, the reaction time has no effect on the particle size and crystallinity. An optically transparent coating for the AZO nanoclusters, which consisted of iso-propanol solvent and ultraviolet-curable acrylic binder, was also demonstrated.

  9. Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rathmall, Aaron [Duke University; Nguyen, Minh [Duke University; Wiley, Benjamin J [Duke University

    2012-01-01

    Nanowires of copper can be coated from liquids to create flexible, transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these nanowire films is that copper is prone to oxidation. It was hypothesized that the resistance to oxidation could be improved by coating copper nanowires with nickel. This work demonstrates a method for synthesizing copper nanowires with nickel shells as well as the properties of cupronickel nanowires in transparent conducting films. Time- and temperature-dependent sheet resistance measurements indicate that the sheet resistance of copper and silver nanowire films will double after 3 and 36 months at room temperature, respectively. In contrast, the sheet resistance of cupronickel nanowires containing 20 mol % nickel will double in about 400 years. Coating copper nanowires to a ratio of 2:1 Cu:Ni gave them a neutral gray color, making them more suitable for use in displays and electrochromic windows. These properties, and the fact that copper and nickel are 1000 times more abundant than indium or silver, make cupronickel nanowires a promising alternative for the sustainable, efficient production of transparent conductors.

  10. In and Ga Codoped ZnO Film as a Front Electrode for Thin Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Duy Phong Pham

    2014-01-01

    Full Text Available Doped ZnO thin films have attracted much attention in the research community as front-contact transparent conducting electrodes in thin film silicon solar cells. The prerequisite in both low resistivity and high transmittance in visible and near-infrared region for hydrogenated microcrystalline or amorphous/microcrystalline tandem thin film silicon solar cells has promoted further improvements of this material. In this work, we propose the combination of major Ga and minor In impurities codoped in ZnO film (IGZO to improve the film optoelectronic properties. A wide range of Ga and In contents in sputtering targets was explored to find optimum optical and electrical properties of deposited films. The results show that an appropriate combination of In and Ga atoms in ZnO material, followed by in-air thermal annealing process, can enhance the crystallization, conductivity, and transmittance of IGZO thin films, which can be well used as front-contact electrodes in thin film silicon solar cells.

  11. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    Science.gov (United States)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing

    2016-12-01

    We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  12. New route of phase transition for enhanced TCO property of ZnO: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Santosh; Tripathi, Madhvendra Nath, E-mail: ommadhav27@gmail.com [Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur, Chhattisgarh, India 495009 (India)

    2016-05-23

    The ZnO is one of the best transparent conducting oxide (TCO) materials for optoelectronic properties. Primarilly three phases of ZnO namely wurtzite, rocksalt and zincblend along with other prominent phases under different pressure and with different phase transformation routes are reported. The route of phase transformation may differ and depends on the external parameters such as pressure. The conventional route for the phase transformation of wurtzite (B4) phase into CsCl type (B2) phase via rocksalt phase (B1) is estimated at the relatively high pressure value of the 256 GPa. In present paper, we propose a new route of transformation of B4 to B2 phase of ZnO via β-BeO type phase at relatively low pressure value of 43 GPa. In present study, the phase transformation analysis and the electronic structure analysis for different phases are carried out by using density functional theory (DFT). It is also observed that B2 phase have high dispersive nature of bottom of conduction band and consequently high mobility of charge carriers. It indicates the possibility of B2 phase may have better TCO properties among other phases of ZnO.

  13. Improving the conductance of ZnO thin film doping with Ti by using a cathodic vacuum arc deposition process

    International Nuclear Information System (INIS)

    Wu, Chun-Sen; Lin, Bor-Tsuen; Jean, Ming-Der

    2011-01-01

    The Ti-doped ZnO films compared to un-doped ZnO films were deposited onto Corning XG glass substrates by using a cathodic vacuum arc deposition process in a mixture of oxygen and argon gases. The structural, electrical and optical properties of un-doped and Ti-doped ZnO films have been investigated. When the Ti target power is about 750 W, the incorporation of titanium atoms into zinc oxide films is obviously effective. Additionally, the resistivity of un-doped ZnO films is high and reduces to a value of 3.48 x 10 -3 Ω-cm when Ti is incorporated. The Ti doped in the ZnO films gave rise to the improvement of the conductivity of the films obviously. The Ti-doped ZnO films have > 85% transmittance in a range of 400-700 nm.

  14. III-V/Si wafer bonding using transparent, conductive oxide interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Tamboli, Adele C., E-mail: Adele.Tamboli@nrel.gov; Hest, Maikel F. A. M. van; Steiner, Myles A.; Essig, Stephanie; Norman, Andrew G.; Bosco, Nick; Stradins, Paul [National Center for Photovoltaics, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401 (United States); Perl, Emmett E. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106-9560 (United States)

    2015-06-29

    We present a method for low temperature plasma-activated direct wafer bonding of III-V materials to Si using a transparent, conductive indium zinc oxide interlayer. The transparent, conductive oxide (TCO) layer provides excellent optical transmission as well as electrical conduction, suggesting suitability for Si/III-V hybrid devices including Si-based tandem solar cells. For bonding temperatures ranging from 100 °C to 350 °C, Ohmic behavior is observed in the sample stacks, with specific contact resistivity below 1 Ω cm{sup 2} for samples bonded at 200 °C. Optical absorption measurements show minimal parasitic light absorption, which is limited by the III-V interlayers necessary for Ohmic contact formation to TCOs. These results are promising for Ga{sub 0.5}In{sub 0.5}P/Si tandem solar cells operating at 1 sun or low concentration conditions.

  15. Transparency about past, present and future conduct : Experimental evidence on the impact of competitiveness

    NARCIS (Netherlands)

    Potters, J.J.M.; Hinloopen, J.; Normann, H-T

    2009-01-01

    Transparency relates to communication and information about the conduct of firms. Transparency can relate to the past, the present and the future and it can vary in format, content and reliability. In this chapter I review experimental evidence which relates to the impact of transparency on the

  16. Improved damp heat stability of Ga-Doped ZnO thin film by pretreatment of the polyethylene terephthalate substrate

    Science.gov (United States)

    Kim, B. B.; Seo, S. G.; Lim, Y. S.; Choi, H.-S.; Seo, W.-S.; Park, H.-H.

    2013-09-01

    A study on the damp heat stability of transparent conducting ZnO thin film grown on a polyethylene terephthalate substrate (PET) is reported. By thermal annealing of the PET substrate at 100°C with Ar flow in a vacuum chamber prior to the sputtering growth of Ga-doped ZnO (GZO) thin film, significantly enhanced damp heat stability was achieved at 60°C with a 90% relative humidity. Electrical and structural characterizations of the GZO thin films were carried out and the effects of the pretreatment on the improved damp heat stability are discussed.

  17. Highly conducting and transparent sprayed indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rami, M.; Benamar, E.; Messaoudi, C.; Sayah, D.; Ennaoui, A. (Faculte des Sciences, Rabat (Morocco). Lab. de Physique des Materiaux)

    1998-03-01

    Indium tin oxide (ITO) has a wide range of applications in solar cells (e.g. by controlling the resistivity, we can use low conductivity ITO as buffer layer and highly conducting ITO as front contact in thin films CuInS[sub 2] and CuInSe[sub 2] based solar cells) due to its wide band gap (sufficient to be transparent) in both visible and near infrared range, and high carrier concentrations with metallic conduction. A variety of deposition techniques such as reactive electron beam evaporation, DC magnetron sputtering, evaporation, reactive thermal deposition, and spray pyrolysis have been used for the preparation of undoped and tin doped indium oxide. This latter process which makes possible the preparation of large area coatings has attracted considerable attention due to its simplicity and large scale with low cost fabrication. It has been used here to deposit highly transparent and conducting films of tin doped indium oxide onto glass substrates. The electrical, optical and structural properties have been investigated as a function of various deposition parameters namely dopant concentrations, temperature and nature of substrates. X-ray diffraction patterns have shown that deposited films are polycrystalline without second phases and have preferred orientation [400]. INdium tin oxide layers with small resistivity value around 7.10[sup -5] [omega].cm and transmission coefficient in the visible and near IR range of about 85-90% have been easily obtained. (authors) 13 refs.

  18. Doping properties of ZnO thin films for photovoltaic devices grown by URT-IP (ion plating) method

    International Nuclear Information System (INIS)

    Iwata, K.; Sakemi, T.; Yamada, A.; Fons, P.; Awai, K.; Yamamoto, T.; Matsubara, M.; Tampo, H.; Sakurai, K.; Ishizuka, S.; Niki, S.

    2004-01-01

    The Uramoto-gun with Tanaka magnetic field (URT)-ion plating (IP) method is a novel ion plating technique for thin film deposition. This method offers the advantage of low-ion damage, low deposition temperatures, large area deposition and high growth rates. Ga-doped ZnO thin films were grown using the URT-IP method, and the doping properties were evaluated. The opposing goals of low Ga composition and low resistivity are required for industrial applications of transparent conductive oxide (TCO). We have carried out a comparison between the carrier concentration and Ga atomic concentration in Ga-doped ZnO thin films and found the trade-off point for optimal TCO performance. The optimum growth conditions were obtained using a 3% Ga 2 O 3 content ZnO target

  19. Experiment and prediction on thermal conductivity of Al2O3/ZnO ...

    Indian Academy of Sciences (India)

    Administrator

    Experiment and prediction on thermal conductivity of Al2O3/ZnO nano thin film interface structure. PING YANG*, LIQIANG ZHANG, HAIYING YANG†, DONGJING LIU and XIALONG LI. Laboratory of Advanced Manufacturing and Reliability for MEMS/NEMS/OEDS,. School of Mechanical Engineering, Jiangsu University, ...

  20. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs

    Science.gov (United States)

    Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui

    2015-08-01

    Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The

  1. Effects of introduction of argon on structural and transparent conducting properties of ZnO-In2O3 thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Moriga, Toshihiro; Mikawa, Michio; Sakakibara, Yuji; Misaki, Yukinori; Murai, Kei-ichiro; Nakabayashi, Ichiro; Tominaga, Kikuo; Metson, James B.

    2005-01-01

    Indium-zinc oxide thin films were deposited on a glass substrate from a ZnO and In 2 O 3 mixed target by a pulsed laser deposition technique. The effects on surface texture, structure and transparent conducting properties of the introduction of argon into the chamber during the depositions of amorphous and homologous ZnO-In 2 O 3 thin films were examined. The compositional range where amorphous films formed was widened by the introduction of argon. Resistivity in the region where the amorphous phase appeared increased slightly, with an increase of zinc content, due to the counteractions of decreased Hall mobility and increased carrier concentration. Introduction of argon improved surface roughness of the films and reduced and regulated particle and/or crystallite sizes of the films

  2. VOx effectively doping CVD-graphene for transparent conductive films

    Science.gov (United States)

    Ji, Qinghua; Shi, Liangjing; Zhang, Qinghong; Wang, Weiqi; Zheng, Huifeng; Zhang, Yuzhi; Liu, Yangqiao; Sun, Jing

    2016-11-01

    Chemical vapor deposition(CVD)-synthesized graphene is potentially an alternative for tin-doped indium oxide (ITO) transparent conductive films (TCFs), however its sheet resistance is still too high to meet many demands. Vanadium oxide has been widely applied as smart window materials, however, no study has been reported to use it as dopant to improve the conductivity of graphene TCFs. In this study, we firstly reported that VOx doping can effectively lower the sheet resistance of CVD-graphene films while keeping its good optical properties, whose transmittance is as high as 86-90%. The optimized VOx-doped graphene exhibits a sheet resistance as low as 176 Ω/□, which decreases by 56% compared to the undoped graphene films. The doping process is convenient, stable, economical and easy to operate. What is more, VOx can effectively increase the work function(WF) of the film, making it more appropriate for use in solar cells. The evolution of the VOx species annealed at different temperatures below 400 °C has been detailed studied for the first time, based on which the doping mechanism is proposed. The prepared VOx doped graphene is expected to be a promising candidate for transparent conductive film purposes.

  3. High efficiency of transmittance and electrical conductivity of V doped ZnO used in solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Boujnah, M., E-mail: boujnah.mourad@gmail.com [Laboratory of Magnetism and Physics of High Energies, Department of Physics, B.P. 1014, Faculty of Sciences, Mohammed V University, Rabat (Morocco); Boumdyan, M. [Laboratory of Magnetism and Physics of High Energies, Department of Physics, B.P. 1014, Faculty of Sciences, Mohammed V University, Rabat (Morocco); Naji, S. [Department of Physics, Faculty of Sciences, Ibb University, Ibb (Yemen); Benyoussef, A.; El Kenz, A.; Loulidi, M. [Laboratory of Magnetism and Physics of High Energies, Department of Physics, B.P. 1014, Faculty of Sciences, Mohammed V University, Rabat (Morocco)

    2016-06-25

    The full-potential linearized augmented plane wave method (FP-LAPW) based on the density functional theory (DFT) and Boltzmann's Transport theory, are employed to investigate theoretically the electronic structure, optical and electrical properties of vanadium -doped wurtzite ZnO with different concentrations (3.125%, 6.25%, 12.5%, 25%). The FP-LAPW based on the new potential approximation known as the Tran-Blaha modified Becke–Johnson exchange potential approximation (mBJ) was also applied with the primary goal of improving the electronic structure description specially the band gap energy. The calculated band structure and density of states (DOS) exhibit a band gap of pure ZnO (3.3 eV) closer to the experimental one. As well, our results indicate that the average transmittance in the 400–1000 nm wavelength region was 93%. We found that Zn{sub 96.875}V{sub 3.125}O is the optimized composition of the V doped ZnO, which has the highest conductivity (3.2 × 10{sup 3} (Ωcm){sup −1}) and transmittance. The high transmittance and electrical conductivity indicate that hexagonal V:ZnO system is a potential as material for solar energy applications. - Highlights: • We investigate theoretically the physical properties of V-doped wurtzite ZnO. • We used density functional calculations (DFT) and Boltzmann's Transport theory. • We examined the optical and electrical properties of different percentage of V doped ZnO.

  4. Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes

    Directory of Open Access Journals (Sweden)

    Andrew J Stapleton, Rakesh A Afre, Amanda V Ellis, Joe G Shapter, Gunther G Andersson, Jamie S Quinton and David A Lewis

    2013-01-01

    Full Text Available Electrodes fabricated using commercially available silver nanowires (AgNWs and single walled carbon nanotubes (SWCNTs produced sheet resistances in the range 4–24 Ω squ−1 with specular transparencies up to 82 %. Increasing the aqueous dispersibility of SWCNTs decreased the bundle size present in the film resulting in improved SWCNT surface dispersion in the films without compromising transparency or sheet resistance. In addition to providing conduction pathways between the AgNW network, the SWCNTs also provide structural support, creating stable self-supporting films. Entanglement of the AgNWs and SWCNTs was demonstrated to occur in solution prior to deposition by monitoring the transverse plasmon resonance mode of the AgNWs during processing. The interwoven AgNW/SWCNT structures show potential for use in optoelectronic applications as transparent electrodes and as an ITO replacement.

  5. Transparent conductive-polymer strain sensors for touch input sheets of flexible displays

    International Nuclear Information System (INIS)

    Takamatsu, Seiichi; Takahata, Tomoyuki; Muraki, Masato; Iwase, Eiji; Matsumoto, Kiyoshi; Shimoyama, Isao

    2010-01-01

    A transparent conductive polymer-based strain-sensor array, designed especially for touch input sheets of flexible displays, was developed. A transparent conductive polymer, namely poly(3, 4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), was utilized owing to its strength under repeated mechanical bending. PEDOT:PSS strain sensors with a thickness of 130 nm exhibited light transmittance of 92%, which is the same as the transmittance of ITO electrodes widely used in flat panel displays. We demonstrated that the sensor array on a flexible sheet was able to sustain mechanical bending 300 times at a bending radius of 5 mm. The strain sensor shows a gauge factor of 5.2. The touch point on a flexible sheet could be detected from histograms of the outputs of the strain sensors when the sheet was pushed with an input force of 5 N. The touch input could be detected on the flexible sheet with a curved surface (radius of curvature of 20 mm). These results show that the developed transparent conductive polymer-based strain-sensor array is applicable to touch input sheets of mechanically bendable displays.

  6. Formation of ultralong copper nanowires by hydrothermal growth for transparent conducting applications

    Science.gov (United States)

    Balela, Mary Donnabelle L.; Tan, Michael

    2017-07-01

    Transparent conducting electrodes are key components of optoelectronic devices, such as touch screens, organic light emitting diodes (OLEDs) and solar cells. Recent market surveys have shown that the demands for these devices are rapidly growing at a tremendous rate. Semiconducting oxides, in particular indium tin oxide (ITO) are the material of choice for transparent conducting electrodes. However, these conventional oxides are typically brittle, which limits their applicability in flexible electronics. Metal nanowires, e.g. copper (Cu) nanowires, are considered as the best candidate as substitute for ITO due to their excellent mechanical and electrical properties. In this paper, ultralong copper (Cu) nanowires with were successfully prepared by hydrothermal growth at 50-80°C for 1 h. Ethylenediamine was employed as the structure-directing agents, while hydrazine was used as the reductant. In situ mixed potential measurement was also carried out to monitor Cu deposition. Higher temperature shifted the mixed potential negatively, leading to thicker Cu nanowires. Transparent conducting electrode, with a sheet resistance of 197 Ω sq-1 at an optical transmittance of around 61 %, was fabricated with the Cu nanowire ink.

  7. Influence of a ZnO Buffer Layer on the Structural, Optical, and Electrical Properties of ITO/ZnO Bi-Layered Films

    International Nuclear Information System (INIS)

    Heo, Sung-Bo; Moon, Hyun-Joo; Kim, Daeil; Kim, Jun-Ho

    2016-01-01

    Sn-doped indium oxide (ITO) films and ITO/ZnO bi-layered films were prepared on polycarbonate substrates by RF magnetron sputtering without intentional substrate heating. In order to consider the influence of the ZnO thickness on the structural, optical, and electrical properties of ITO/ZnO films, the thickness of the ZnO buffer layer was varied from 5 to 20 nm. As-deposited ITO films show an average optical transmittance of 79.2% in the visible range and an electrical resistivity of 3.0×10"-"4 Ωcm, while films with a 5-nm thick ZnO buffer layer film show an electrical resistivity of 2.6×10"-"4 Ωcm and films with a 20-nm thick ZnO buffer layer show an optical transmittance of 82.0%. Based on the figure of merit, it is concluded that the ZnO buffer layer enhances the optical and electrical performance of ITO films used as transparent conducting oxides in flexible display applications.

  8. Effect of precursor concentration on the structural and optical properties of ZnO nanorods prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Lestari, Amie; Iwan, S.; Djuhana, Dede; Imawan, Cuk; Harmoko, Adhi; Fauzia, Vivi

    2016-01-01

    Zinc oxide (ZnO) nanorods has attractive properties for nanoscale optoelectronic applications, such as optical sensors, ultraviolet laser diodes, and photodetectors. ZnO nanorods, can be fabricated by simple and low cost chemical approach, such as hydrothermal method. In this method, the morphology, microstructure, optical and electrical properties of ZnO nanorods are highly determined by process parameters such as solvent, deposition time, deposition temperature as well as annealing condition. In this paper we report the fabrication of ZnO nanorods that were grown on transparent conducting indium tin oxide coated glass substrates. Initially, ZnO seed layers were deposited on heated substrates with temperature of 450 °C using ultrasonic spray pyrolysis method with frequency of 1.7 MHz and then grown by hydrothermal method with three different precursor concentrations, namely 0.02 M, 0.06 M, and 0.1 M. The surface morphology and structure were investigated by field emission scanning electron microscope (FESEM) and x-ray diffraction (XRD), while the optical properties were observed by photoluminescence (PL) and and UV VIS reflectance spectroscopy.

  9. Infrared transparency and electrical conductivity of non-stoichiometric InxOy films

    International Nuclear Information System (INIS)

    Joseph, Shay; Berger, Shlomo

    2010-01-01

    In an effort to achieve both high infrared transparency and electrical conductivity, In x O y films having different oxygen atomic fractions, ranging from 0.27 to 0.6 were prepared. From AC electrical measurements it was determined that conductivity of In x O y films, having oxygen atomic fraction near 0.6, is governed by the hopping conduction mechanism via energy states located in the band gap. Conductivity of In x O y films having non-stoichiometric compositions was found to be governed by the free band conduction mechanism. The conduction activation energy was decreased from about 0.47 eV to about 0.02 eV as the deviation of the oxygen atomic fraction from the stoichiometric value of 0.6 was increased. The dielectric function of the films was determined by applying the Drude-Lorentz model to ellipsometric measurements in the infrared and visible wavelengths. In the visible range, the major source for optical transmission loss is interband absorption, which was modeled by the Lorentz model. In the infrared range, optical absorption was measured and attributed to the presence of free charge carriers according to the Drude model. Fitting the model to the optical measurements required a correction factor, which was correlated with the films polarizability. In order to determine the optimal tradeoff between optical transparency in the infrared and electrical conductivity, which were found to be affected mainly by the oxygen concentration in the films, a figure of merit parameter was established. It was found that by introducing non-stoichiometry in the form of oxygen deficiency, the electrical conductivity was improved by as much as two orders of magnitude while the infrared transparency was decreased by no more than 30% with respect to stoichiometric In 2 O 3 films.

  10. Optical transparency and electrical conductivity of nonstoichiometric ultrathin InxOy films

    International Nuclear Information System (INIS)

    Joseph, Shay; Berger, Shlomo

    2011-01-01

    The effect of thickness and composition on the electrical conductivity and optical transparency, mainly in the infrared, of ultrathin In x O y films was studied. In x O y films 35-470 A thick with oxygen atomic fractions of ∼0.3 and ∼0.5 were prepared via dc magnetron sputtering. All films were polycrystalline, consisting of only the cubic bixbiyte phase of In 2 O 3 . The average grain size of the films increased from 30 to 95 nm as the film thickness increased. The weak dependence of the electrical conductivity on the frequency and the low activation energies for conduction, a few hundredths of an eV, provided an indication that free band conduction was the primary electrical conduction mechanism in the case of all ultrathin In x O y films. It was found that introducing a high degree of nonstoichiometry in the form of oxygen deficiency did not help improve the electrical conductivity, since not all vacancies contributed two free electrons for conduction and due to impurity scattering. The optical nature of these films, studied mainly by ellipsometry, was found to be dependent on the film's composition and thickness. In the infrared, the dielectric function of all In x O y films was consistent with the Drude model, inferring that the transparency loss in this region was a result of free charge carriers. In the visible however, In x O y films under 170 A, which had an oxygen atomic fraction of ∼0.5, were modeled by extending the Drude model to the shorter wavelengths. Films over 170 A, with the same composition, were modeled using the Cauchy dispersion model, meaning that no absorption was measured. These results indicate that, optically, under specific compositions, ultrathin In x O y films undergo a transition from metalliclike behavior to dielectric behavior with increasing film thickness. Using a figure of merit approach, it was determined that a nonstoichiometric 230 A thick In x O y film, with an oxygen atomic fraction of ∼0.3, had the best combination

  11. The Preparation and Property of Graphene /Tin Oxide Transparent Conductive Film

    Directory of Open Access Journals (Sweden)

    SUN Tao

    2017-02-01

    Full Text Available Graphene doped tin oxide composites were prepared with SnCIZ·2HZ 0 and graphene oxide as raw materials with sol-gel method and then spincoated on the quartz glass to manufacture a new transparent conductive film. The composite film was characterized with X-ray diffraction(XRDand scanning electron microscopy(SEM analysis. XRD results show that the graphene oxide was successfully prepared with Hummers method. The graphene layers and particulate SnOZ can be clearly observed in SEM photos. The transmittance and conductivity of the thin films were tested with ultraviolet visible spectrophotometer and Hall effect measurement. The results show that the transmittivity of composite film in visible region is more than 90% and surface square resistance is 41 S2/口.The graphene/ SnOZ film exhibits a higher performance in transparence and conductivity than commercial FTO glass.

  12. Characterization of ZnO film grown on polycarbonate by atomic layer deposition at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyeong Beom; Han, Gwon Deok; Shim, Joon Hyung; Choi, Byoung-Ho, E-mail: bhchoi@korea.ac.kr [School of Mechanical Engineering, Korea University, Seoul 136-707 (Korea, Republic of)

    2015-01-15

    ZnO is an attractive material for use in various technological products such as phosphors, gas sensors, and transparent conductors. Recently, aluminum-doped zinc oxide has received attention as a potential replacement for indium tin oxide, which is one of the transparent conductive oxides used in flat panel displays, organic light-emitting diodes, and organic solar cells. In this study, the characteristics of ZnO films deposited on polycarbonate (PC) substrates by atomic layer deposition (ALD) are investigated for various process temperatures. The growth mechanism of these films was investigated at low process temperatures using x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS). XRD and XPS were used to determine the preferred orientation and chemical composition of the films, respectively. Furthermore, the difference of the deposition mechanisms on an amorphous organic material, i.e., PC substrate and an inorganic material such as silicon was discussed from the viewpoint of the diffusion and deposition of precursors. The structure of the films was also investigated by chemical analysis in order to determine the effect of growth temperature on the films deposited by ALD.

  13. Title: Using Alignment and 2D Network Simulations to Study Charge Transport Through Doped ZnO Nanowire Thin Film Electrodes

    KAUST Repository

    Phadke, Sujay

    2011-09-30

    Factors affecting charge transport through ZnO nanowire mat films were studied by aligning ZnO nanowires on substrates and coupling experimental measurements with 2D nanowire network simulations. Gallium doped ZnO nanowires were aligned on thermally oxidized silicon wafer by shearing a nanowire dispersion in ethanol. Sheet resistances of nanowire thin films that had current flowing parallel to nanowire alignment direction were compared to thin films that had current flowing perpendicular to nanowire alignment direction. Perpendicular devices showed ∼5 fold greater sheet resistance than parallel devices supporting the hypothesis that aligning nanowires would increase conductivity of ZnO nanowire electrodes. 2-D nanowire network simulations of thin films showed that the device sheet resistance was dominated by inter-wire contact resistance. For a given resistivity of ZnO nanowires, the thin film electrodes would have the lowest possible sheet resistance if the inter-wire contact resistance was one order of magnitude lower than the single nanowire resistance. Simulations suggest that the conductivity of such thin film devices could be further enhanced by using longer nanowires. Solution processed Gallium doped ZnO nanowires are aligned on substrates using an innovative shear coating technique. Nanowire alignment has shown improvement in ZnO nanowire transparent electrode conductivity. 2D network simulations in conjunction with electrical measurements have revealed different regimes of operation of nanowire thin films and provided a guideline for improving electrical performance of nanowire electrodes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Direct current magnetron sputter-deposited ZnO thin films

    International Nuclear Information System (INIS)

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong; Knipp, Dietmar

    2011-01-01

    Zinc oxide (ZnO) is a very promising electronic material for emerging transparent large-area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 150 nm to 750 nm were deposited on glass substrates. The deposition pressure and the substrate temperature were varied from 12 mTorr to 25 mTorr, and from room temperature to 450 deg. C, respectively. The influence of the film thickness, deposition pressure and the substrate temperature on structural and optical properties of the ZnO films was investigated using atomic force microscopy (AFM) and ultraviolet-visible (UV-Vis) spectrometer. The experimental results reveal that the film thickness, deposition pressure and the substrate temperature play significant role in the structural formation and the optical properties of the deposited ZnO thin films.

  15. Structural and physical properties of transparent conducting, amorphous Zn-doped SnO2 films

    Science.gov (United States)

    Zhu, Q.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2014-01-01

    The structural and physical properties of conducting amorphous Zn-doped SnO2 (a-ZTO) films, prepared by pulsed laser deposition, were investigated as functions of oxygen deposition pressure (pO2), composition, and thermal annealing. X-ray scattering and X-ray absorption spectroscopy measurements reveal that at higher pO2, the a-ZTO films are highly transparent and have a structural framework similar to that found in crystalline (c-), rutile SnO2 in which the Sn4+ ion is octahedrally coordinated by 6 O2- ions. The Sn4+ ion in these films however has a coordination number (CN) smaller by 2%-3% than that in c-SnO2, indicating the presence of oxygen vacancies, which are the likely source of charge carriers. At lower pO2, the a-ZTO films show a brownish tint and contain some 4-fold coordinated Sn2+ ions. Under no circumstances is the CN around the Zn2+ ion larger than 4, and the Zn-O bond is shorter than the Sn-O bond by 0.07 Å. The addition of Zn has no impact on the electroneutrality but improves significantly the thermal stability of the films. Structural changes due to pO2, composition, and thermal annealing account well for the changes in the physical properties of a-ZTO films.

  16. The phonon-assisted tunneling mechanism of conduction in ZnO nanowires and films

    International Nuclear Information System (INIS)

    Pipinys, Povilas; Ohlckers, Per

    2010-01-01

    The phonon-assisted tunneling (PhAT) model is applied for an explanation of the conductivity dependence on temperature and temperature-dependent I-V characteristics measured by other investigators for zinc oxide (ZnO) nanowires and films. Our proposed model describes well not only conductivity dependence on temperature measured in a wide temperature range, but also temperature-dependent I-V data using the same set of parameters characterizing the material under investigation. The values of active phonons energy are estimated from a fit of the conductivity dependence to temperature data with the PhAT theory.

  17. Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers

    Science.gov (United States)

    Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian

    2015-09-01

    The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated.

  18. High mobility transparent conducting oxides for thin film solar cells

    International Nuclear Information System (INIS)

    Calnan, S.; Tiwari, A.N.

    2010-01-01

    A special class of transparent conducting oxides (TCO) with high mobility of > 65 cm 2 V -1 s -1 allows film resistivity in the low 10 -4 Ω cm range and a high transparency of > 80% over a wide spectrum, from 300 nm to beyond 1500 nm. This exceptional coincidence of desirable optical and electrical properties provides opportunities to improve the performance of opto-electronic devices and opens possibilities for new applications. Strategies to attain high mobility (HM) TCO materials as well as the current status of such materials based on indium and cadmium containing oxides are presented. Various concepts used to understand the underlying mechanisms for high mobility in HMTCO films are discussed. Examples of HMTCO layers used as transparent electrodes in thin film solar cells are used to illustrate possible improvements in solar cell performance. Finally, challenges and prospects for further development of HMTCO materials are discussed.

  19. Characteristics of hydrogen co-doped ZnO : Al thin films

    International Nuclear Information System (INIS)

    Lee, S H; Lee, T S; Lee, K S; Cheong, B; Kim, W M; Kim, Y D

    2008-01-01

    ZnO films co-doped with H and Al (HAZO) were prepared by sputtering ZnO targets containing 1 wt% Al 2 O 3 on Corning glass at a substrate temperature of 150 deg. C with Ar and H 2 /Ar gas mixtures. The effects of hydrogen addition to Al-doped ZnO (AZO) films with low Al content on the electrical, the optical and the structural properties of the as-grown films as well as the vacuum- and air-annealed films were examined. Secondary ion mass spectroscopy analysis showed that the hydrogen concentration increased with increasing H 2 in sputter gas. For the as-deposited films, the free carrier number increased with increasing H 2 . The Hall mobility increased at low hydrogen content, reaching a maximum before decreasing with a further increase of H 2 content in sputter gas. Annealing at 300 deg. C resulted in the removal of hydrogen, causing a decrease in the carrier concentration. It was shown that hydrogen might exist as single isolated interstitial hydrogen bound with oxygen, thereby acting like an anionic dopant. Also, it was shown that the addition of hydrogen to ZnO films doped with low metallic dopant concentration could yield transparent conducting films with very low absorption loss as well as with proper electrical properties, which is suitable for thin film solar cell applications

  20. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  1. Bromination of Graphene: A New Route to Making High Performance Transparent Conducting Electrodes with Low Optical Losses

    KAUST Repository

    Mansour, Ahmed

    2015-07-22

    The unique optical and electrical properties of graphene have triggered great interest in its application as a transparent conducting electrode material and significant effort has been invested in achieving high conductivity while maintaining transparency. Doping of graphene has been a popular route for reducing its sheet resistance, but this has typically come at a significant cost in optical transmission. We demonstrate doping of few layers graphene with bromine as a means of enhancing the conductivity via intercalation without major optical losses. Our results demonstrate the encapsulation of bromine leads to air-stable transparent conducting electrodes with five-fold improvement of sheet resistance reaching at the cost of only 2-3% loss of optical transmission. The remarkably low tradeoff in optical transparency leads to the highest enhancements in the figure of merit reported thus far for FLG. Furthermore, we tune the workfunction by up to 0.3 eV by tuning the bromine content. These results should help pave the way for further development of graphene as a potential substitute to transparent conducting polymers and metal oxides used in optoelectronics, photovoltaics and beyond.

  2. Properties of TiO{sub 2}-based transparent conducting oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hitosugi, Taro [Kanagawa Academy of Science and Technology (KAST), 213-0012 Kawasaki (Japan); Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 980-8577 Sendai (Japan); Yamada, Naoomi; Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), 213-0012 Kawasaki (Japan); Hirose, Yasushi; Hasegawa, Tetsuya [Kanagawa Academy of Science and Technology (KAST), 213-0012 Kawasaki (Japan); Department of Chemistry, University of Tokyo, 113-0033 Tokyo (Japan)

    2010-07-15

    The development and properties of titanium dioxide (TiO{sub 2})-based transparent conducting oxides (TCO), which exhibit properties comparable to those of In{sub 2-x}Sn{sub x}O{sub 3} (ITO), are reviewed in this article. An epitaxial thin film of anatase Ti{sub 0.94}Nb{sub 0.06}O{sub 2} exhibited a resistivity ({rho}) of 2.3 x 10{sup -4}{omega} cm and internal transmittance of {proportional_to}95% in the visible light region. Furthermore, we prepared polycrystalline films with {rho} of 6.4 x 10{sup -4}{omega} cm at room temperature on glass substrates by using sputtering. We focus on characteristics unique to TiO{sub 2}-based TCO, such as a high refractive index, high transmittance in infrared, and high stability in reducing atmospheres. Possible applications of TiO{sub 2}-based TCOs, as well as the mechanism of the transparent conducting properties found in this d-electron-based TCO, are discussed in this review. Photograph showing TiO{sub 2}-based TCO on a transparent plastic film. Note that the film appears greenish due to interference in the film originating from its high refractive index. This high refractive index is one of the unique characteristics of TiO{sub 2}-based TCO. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Local piezoelectric response of ZnO nanoparticles embedded in a photosensitive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Prashanthi, K.; Zhang, H.; Thundat, T. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta (Canada); Ramgopal Rao, V. [Department of Electrical Engineering, Indian Institute of Technology, Bombay, Mumbai (India)

    2012-02-15

    Local piezoelectric properties of ZnO nanoparticles (NPs) embedded in a photo-epoxy polymer are investigated by piezoresponse force microscopy (PFM). Integrating ZnO NPs into a photosensitive SU-8 polymer matrix not only retains the highly desired piezoelectric properties of the ZnO, but also preserves photosensitivity and optical transparency of the SU-8 polymer. These results have strong implications for simple photolithography based low-cost fabrication of piezoelectric microelectromechanicalsystems (MEMS) and nanoelectromechanicalsystems (NEMS) in both sensing and energy harvesting applications. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Bendable transparent conductive meshes based on multi-layer inkjet-printed silver patterns

    International Nuclear Information System (INIS)

    Yu, Po-Chin; Hong, Chien-Chong; Liou, Tong-Miin

    2016-01-01

    Many consumer electronics manufacturers have used transparent conductive films in solar cells, LED devices, and touch panels as a medium for simultaneous electric charge transportation and light transmission. The conductivity and transmittance of transparent conductive films greatly affect the efficiency of these optoelectronic devices. This study presents a transparent and conductive mesh based on inkjet-printed silver and conductive polymer. Also, we propose a mathematical model for calculating the optimized mesh pattern. The proposed model precisely calculates an optimized line-width-to-line-spacing ratio. Furthermore, the results of our experiment verify the relationship between the line-width-to-line-spacing ratio and figure of merit. Compared with the equations of past studies, the equation proposed in this study is valid for a broader range of line-width-to-line-spacing ratios. In addition, the theoretical results of our study correlate more strongly with the experimental data of this study than with that of previous studies. To achieve the highest figure of merit, the values of the filling factor and the line-width-to-line-spacing ratio should be 0.05 and 19, respectively. Finally, we reduced the sheet resistance of the inkjet-printed mesh by 97.9% by applying multilayer printing. However, we were able to reduce only the optical transmittance of the mesh by 3.0%. The developed inkjet-printed silver meshes can survive more than 3500 bending tests simultaneous with application of 300 mA current. (paper)

  5. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    OpenAIRE

    Md. Poostforush; H. Azizi

    2014-01-01

    The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO). Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina) but their transparency was preserved (Tλ550 nm ~ 72%). Integrated annealed alumina phase, low ...

  6. Improvement of inverted organic solar cells using acetic acid as an additive for ZnO layer processing

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-02-01

    Full Text Available In this work, we used acetic acid as an additive for the preparation of ZnO layers and improved the performance of poly{4,8-bis[(2-ethylhexyl-oxy]benzo[1,2-b:4,5-b’] dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexylcarbonyl]thieno[3,4-b]thiophene- 4,6-diyl} (PTB7-based inverted organic solar cells. The addition of acetic acid to the ZnO precursor solution improved the transparency and conductivity of the sol-gel-synthesized ZnO film, by increasing the grain size of the film. Accordingly, the power conversion efficiency (PCE of the organic solar cells was improved from 6.42% to 7.55%, which was mainly caused by the enhanced current density and fill factor. The best sample demonstrated a high PCE of 7.85% with negligible hysteresis and good stability. Our results indicate that using acetic acid as an additive for the preparation of ZnO is a simple and effective way of fabricating high-performance inverted organic solar cells.

  7. Improvement of inverted organic solar cells using acetic acid as an additive for ZnO layer processing

    Science.gov (United States)

    Li, Yang; Liu, Yawen; Liu, Zhihai; Xie, Xiaoyin; Lee, Eun-Cheol

    2018-02-01

    In this work, we used acetic acid as an additive for the preparation of ZnO layers and improved the performance of poly{4,8-bis[(2-ethylhexyl)-oxy]benzo[1,2-b:4,5-b'] dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene- 4,6-diyl} (PTB7)-based inverted organic solar cells. The addition of acetic acid to the ZnO precursor solution improved the transparency and conductivity of the sol-gel-synthesized ZnO film, by increasing the grain size of the film. Accordingly, the power conversion efficiency (PCE) of the organic solar cells was improved from 6.42% to 7.55%, which was mainly caused by the enhanced current density and fill factor. The best sample demonstrated a high PCE of 7.85% with negligible hysteresis and good stability. Our results indicate that using acetic acid as an additive for the preparation of ZnO is a simple and effective way of fabricating high-performance inverted organic solar cells.

  8. Induced conductivity in sol-gel ZnO films by passivation or elimination of Zn vacancies

    Directory of Open Access Journals (Sweden)

    D. J. Winarski

    2016-09-01

    Full Text Available Undoped and Ga- and Al- doped ZnO films were synthesized using sol-gel and spin coating methods and characterized by X-ray diffraction, high-resolution scanning electron microscopy (SEM, optical spectroscopy and Hall-effect measurements. SEM measurements reveal an average grain size of 20 nm and distinct individual layer structure. Measurable conductivity was not detected in the unprocessed films; however, annealing in hydrogen or zinc environment induced significant conductivity (∼10−2 Ω.cm in most films. Positron annihilation spectroscopy measurements provided strong evidence that the significant enhancement in conductivity was due to hydrogen passivation of Zn vacancy related defects or elimination of Zn vacancies by Zn interstitials which suppress their role as deep acceptors. Hydrogen passivation of cation vacancies is shown to play an important role in tuning the electrical conductivity of ZnO, similar to its role in passivation of defects at the Si/SiO2 interface that has been essential for the successful development of complementary metal–oxide–semiconductor (CMOS devices. By comparison with hydrogen effect on other oxides, we suggest that hydrogen may play a universal role in oxides passivating cation vacancies and modifying their electronic properties.

  9. Induced conductivity in sol-gel ZnO films by passivation or elimination of Zn vacancies

    Science.gov (United States)

    Winarski, D. J.; Anwand, W.; Wagner, A.; Saadatkia, P.; Selim, F. A.; Allen, M.; Wenner, B.; Leedy, K.; Allen, J.; Tetlak, S.; Look, D. C.

    2016-09-01

    Undoped and Ga- and Al- doped ZnO films were synthesized using sol-gel and spin coating methods and characterized by X-ray diffraction, high-resolution scanning electron microscopy (SEM), optical spectroscopy and Hall-effect measurements. SEM measurements reveal an average grain size of 20 nm and distinct individual layer structure. Measurable conductivity was not detected in the unprocessed films; however, annealing in hydrogen or zinc environment induced significant conductivity (˜10-2 Ω .cm) in most films. Positron annihilation spectroscopy measurements provided strong evidence that the significant enhancement in conductivity was due to hydrogen passivation of Zn vacancy related defects or elimination of Zn vacancies by Zn interstitials which suppress their role as deep acceptors. Hydrogen passivation of cation vacancies is shown to play an important role in tuning the electrical conductivity of ZnO, similar to its role in passivation of defects at the Si/SiO2 interface that has been essential for the successful development of complementary metal-oxide-semiconductor (CMOS) devices. By comparison with hydrogen effect on other oxides, we suggest that hydrogen may play a universal role in oxides passivating cation vacancies and modifying their electronic properties.

  10. Emerging Transparent Conducting Electrodes for Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tze-Bin Song

    2014-03-01

    Full Text Available Organic light emitting diodes (OLEDs have attracted much attention in recent years as next generation lighting and displays, due to their many advantages, including superb performance, mechanical flexibility, ease of fabrication, chemical versatility, etc. In order to fully realize the highly flexible features, reduce the cost and further improve the performance of OLED devices, replacing the conventional indium tin oxide with better alternative transparent conducting electrodes (TCEs is a crucial step. In this review, we focus on the emerging alternative TCE materials for OLED applications, including carbon nanotubes (CNTs, metallic nanowires, conductive polymers and graphene. These materials are selected, because they have been applied as transparent electrodes for OLED devices and achieved reasonably good performance or even higher device performance than that of indium tin oxide (ITO glass. Various electrode modification techniques and their effects on the device performance are presented. The effects of new TCEs on light extraction, device performance and reliability are discussed. Highly flexible, stretchable and efficient OLED devices are achieved based on these alternative TCEs. These results are summarized for each material. The advantages and current challenges of these TCE materials are also identified.

  11. Preparation of flexible and heat-resisting conductive transparent film by the pyrosol process

    International Nuclear Information System (INIS)

    Usami, Hisanao; Nakasa, Akihiko; Adachi, Mami; Suzuki, Eiji; Fujimatsu, Hitoshi; Ohashi, Tatsuya; Yamada, Shigeo; Tsugita, Kouhei; Taniguchi, Yoshio

    2006-01-01

    A pyrosol process was successfully applied for the preparation of a flexible, conductive, and transparent inorganic film, a tin-doped indium oxide (ITO) film lined with a thin mica layer. This flexible heat-resistant ITO-mica film exhibited high conductivity and transparency, comparable to ITO deposited on glass substrate. The minimum radius of bending for the film, without any recognizable change in the conductivity and appearance, was 8 mm. The ITO deposited on mica showed a large (222) diffraction peak with a smaller (400) peak, in contrast to ITO deposited with (400) orientation on an ordinary glass substrate. Using the ITO-mica film, a prototype model of a flexible organic light emitting diode was fabricated

  12. Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tabib, Asma; Sdiri, Nasr [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, University Tunis El Manar, Tunis 2092 (Tunisia); Férid, Mokhtar [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia)

    2015-02-15

    Highlights: • ZnO nanoparticles doped with Na were prepared from sol-gel method. • Electric conductivity and dielectric properties were investigated. • The ZnO conductivity is estimated to be of p-type for critical Na doping of 1.5% at. - Abstract: Na doped ZnO nanoparticles (NPs) were elaborated by sol gel technique. The X-ray diffraction patterns show that the peaks are indexed to the hexagonal structure without any trace of an extra phase. Electric and dielectric properties were investigated using complex impedance spectroscopy. The impedance spectra were analyzed in terms of equivalent circuits involving resistors, capacitors and constant phase elements (CPE). The contribution of grain boundary resistance to the total resistance of the system is remarkable. The AC conductivity increases with temperature following the Arrhenius law, with single apparent activation energy for conduction process. The frequency dependence of the electric conductivity follows a simple power law behavior, in according to relation σ{sub AC}(ω) = σ(0) + A ω{sup s}, where s is smaller than 1. The analysis of dc conductivity indicates that the conduction is ionic in nature. The study of its variation, at fixed temperature, with Na content shows sharp decrease which is explained by the formation of Na{sub Zn} acceptor. It was found that the dc conductivity reaches its minimum value for critical Na concentration of 1.5% at which the conductivity is estimated to be of p-type. Impedance and modulus study reveals the temperature dependent non-Debye type relaxation phenomenon. Dielectric studies revealed a promising dielectric properties (relatively high ε′ at low frequencies and low loss at high frequencies). In the low-frequency region, the values of M′ tends to zero suggesting negligible or absent electrode polarization phenomenon. The frequency dependent maxima in the imaginary modulus are found to obey to Arrhenius law.

  13. Microwave-assisted silica coating and photocatalytic activities of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Siddiquey, Iqbal Ahmed; Furusawa, Takeshi; Sato, Masahide; Suzuki, Noboru

    2008-01-01

    A new and rapid method for silica coating of ZnO nanoparticles by the simple microwave irradiation technique is reported. Silica-coated ZnO nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), CHN elemental analysis and zeta potential measurements. The FT-IR spectra and XPS clearly confirmed the silica coating on ZnO nanoparticles. The results of XPS analysis showed that the elements in the coating at the surface of the ZnO nanoparticles were Zn, O and Si. HR-TEM micrographs revealed a continuous and uniform dense silica coating layer of about 3 nm in thickness on the surface of ZnO nanoparticles. In addition, the silica coating on the ZnO nanoparticles was confirmed by the agreement in the zeta potential of the silica-coated ZnO nanoparticles with that of SiO 2 . The results of the photocatalytic degradation of methylene blue (MB) in aqueous solution showed that silica coating effectively reduced the photocatalytic activity of ZnO nanoparticles. Silica-coated ZnO nanoparticles showed excellent UV shielding ability and visible light transparency

  14. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  15. Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application

    Directory of Open Access Journals (Sweden)

    Yu Han-Young

    2010-01-01

    Full Text Available Abstract We demonstrate the synthesis of monolayer graphene using thermal chemical vapor deposition and successive transfer onto arbitrary substrates toward transparent flexible conductive film application. We used electron-beam-deposited Ni thin film as a synthetic catalyst and introduced a gas mixture consisting of methane and hydrogen. To optimize the synthesis condition, we investigated the effects of synthetic temperature and cooling rate in the ranges of 850–1,000°C and 2–8°C/min, respectively. It was found that a cooling rate of 4°C/min after 1,000°C synthesis is the most effective condition for monolayer graphene production. We also successfully transferred as-synthesized graphene films to arbitrary substrates such as silicon-dioxide-coated wafers, glass, and polyethylene terephthalate sheets to develop transparent, flexible, and conductive film application.

  16. Sensitization of nano-porous ZnO photo-anode by a conjugated conducting polymer

    Energy Technology Data Exchange (ETDEWEB)

    Sirimanne, P.M. [Nano-Science Laboratory, Institute of Fundamental Studies, Hantana Road, Kandy (Sri Lanka); Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Premalal, E.V.A. [Nano-Science Laboratory, Institute of Fundamental Studies, Hantana Road, Kandy (Sri Lanka); Minoura, H. [Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan)

    2011-01-15

    Hybrid ZnO films are prepared via one-step electrochemical process. Extraction of organic component from hybrid films results tiny wires like ZnO columns perpendicular to the substrate. Visible light sensitive-conjugated polymer poly(2-methoxy-5-[2 ethylhexyloxy]-1-4-phenylenevinylene, MEH-PPV) was embedded in highly porous ZnO ceramic by a solvent vaporization technique. An attempt was made to fabricate polymer sensitized photovoltaic cell by coupling polymer embedded ZnO electrodes with an electrolyte. Maximum photovoltage of 490 mV is observed for the cell with the configuration of ZnO vertical stroke MEH-PPV vertical stroke I{sup -}/I{sub 3}{sup -} cell. (author)

  17. Use of carbon dots to enhance UV-blocking of transparent nanocellulose films.

    Science.gov (United States)

    Feng, Xin; Zhao, Yafei; Jiang, Yaoquan; Miao, Miao; Cao, Shaomei; Fang, Jianhui

    2017-04-01

    High-efficient transparent UV-blocking nanocellulose (NC) films were successfully assembled by pressured-extrusion of the composites of carbon dots (CDs), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radical mediated oxidized nanocellulose (ONC) and ZnO nanostructures. ONC nanofibrils were firstly extracted from bamboo fibers and subsequently prepared by applying TEMPO oxidation. The as-obtained CDs-ONC-ZnO films exhibited high visible light transparency, excellent thermal stability and enhanced UV-blocking properties. Compared to the previously designed NC-ZnO films, CDs-ONC-ZnO films presented significant increase of UV-blocking ratio (UVR) with the same amounts of ZnO. Moreover, the UVR of CDs-ONC-s-ZnO film with 4wt% sheet-like ZnO (s-ZnO) at 300nm and 225nm is 92.74% and 98.99%, better than the same condition of CDs-ONC-b-ZnO film added with belt-like ZnO (b-ZnO) and CDs-ONC-p-ZnO film added with commercial particulate ZnO (p-ZnO). An interesting discovery is that when adding 4wt% p-ZnO, the UVR of CDs-ONC-p-ZnO film is very close to the value of NC-s-ZnO film with the same amount of s-ZnO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Calculation of DSSC parameters based on ZnO nanorod/TiO2 mesoporous photoanode

    Science.gov (United States)

    Safriani, L.; Nurrida, A.; Mulyana, C.; Susilawati, T.; Bahtiar, A.; Aprilia, A.

    2017-07-01

    Photoanode of dye sensitized solar cell (DSSC) plays an important role as electron transport media to accept photogenerated electron from excited state of dye. There are several physical properties that are required from photoanode of DSSC. It should be highly transparent, have large surface area, has a conduction band lower than LUMO of dye molecule, has high charge carrier mobility and finally has a good stability in redox electrolyte process. In this work, DSSC with structure FTO/ZnO nanorod/TiO2 mesoporous/Ru-dye/gel electrolyte/ Pt/FTO has been fabricated. In order to modified the structures of photoanode, ZnO nanorod was grown on aluminium doped ZnO seed layer by variation concentration of Al (0 wt%, 0.5 wt% and 1.0 wt%). Zinc nitrate hexahydrate and hexamethylenetetramine used as raw materials for ZnO nanorod growth solution and deposited by self-assembly methods on FTO/Al doped ZnO seed layer. It is then followed by deposition of titania (TiO2) paste by screen printing methods. DSSC parameters i.e. ideally factor (n), series resistance (RS ), and shunt resistance (RSH ) was derived from current density-voltage (I-V) curve using the simplify equation of ideal diode model. The influences of ZnO photoanode structures to the solar cell performance will be completely discussed.

  19. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2

    International Nuclear Information System (INIS)

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-01-01

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In 2 O 3 and SnO 2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies. (paper)

  20. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2

    Science.gov (United States)

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-01

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  1. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    International Nuclear Information System (INIS)

    Mtangi, W.; Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M.; Nyamhere, C.

    2012-01-01

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8±0.3) meV that has been suggested as Zn i related and possibly H-complex related and (54.5±0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X Zn . The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60×10 17 cm −3 at 200 °C to 4.37×10 18 cm -3 at 800 °C.

  2. Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties

    KAUST Repository

    Mehra, Saahil

    2013-01-01

    Metal nanowire transparent networks are promising replacements to indium tin oxide (ITO) transparent electrodes for optoelectronic devices. While the transparency and sheet resistance are key metrics for transparent electrode performance, independent control of the film light scattering properties is important to developing multifunctional electrodes for improved photovoltaic absorption. Here we show that controlled incorporation of ZnO nanopyramids into a metal nanowire network film affords independent, highly tunable control of the scattering properties (haze) with minimal effects on the transparency and sheet resistance. Varying the zinc oxide/silver nanostructure ratios prior to spray deposition results in sheet resistances, transmission (600 nm), and haze (600 nm) of 6-30 Ω □-1, 68-86%, and 34-66%, respectively. Incorporation of zinc oxide nanopyramid scattering agents into the conducting nanowire mesh has a negligible effect on mesh connectivity, providing a straightforward method of controlling electrode scattering properties. The decoupling of the film scattering power and electrical characteristics makes these films promising candidates for highly scattering transparent electrodes in optoelectronic devices and can be generalized to other metal nanowire films as well as carbon nanotube transparent electrodes. © 2013 The Royal Society of Chemistry.

  3. Antireflective conducting nanostructures with an atomic layer deposited an AlZnO layer on a transparent substrate

    International Nuclear Information System (INIS)

    Park, Hyun-Woo; Ji, Seungmuk; Herdini, Diptya Suci; Lim, Hyuneui; Park, Jin-Seong; Chung, Kwun-Bum

    2015-01-01

    Graphical abstract: - Highlights: • We investigated the antireflective conducting nanostructures on a transparent substrate using atomic layer deposited AlZnO films. • The conformal AlZnO layer on a transparent nanostructured substrate exhibited 5.52 × 10 −4 Ω cm in resistivity and 88% in average visible transmittance. • The improvement of transparency was explained by the gradual changes of the refractive index in the film depth direction. • The decrease in electrical resistivity is strongly correlated to the increased surface area with the nanostructure and the change of chemical bonding states. - Abstract: The antireflective conducting nanostructures on a transparent substrate were shown to have enhanced optical and electrical properties via colloidal lithography and atomic layer deposition. The conformal AlZnO layer on a transparent nanostructured substrate exhibited 5.52 × 10 −4 Ω cm in resistivity and 88% in average visible transmittance, both of which were superior to those of a flat transparent conducting substrate. The improvement of transparency was explained by the gradual changes of the refractive index in the film depth direction. The decrease in electrical resistivity is strongly correlated to the increased surface area with the nanostructure and the change of chemical bonding states.

  4. Applications of Silver Nanowires on Transparent Conducting Film and Electrode of Electrochemical Capacitor

    Directory of Open Access Journals (Sweden)

    Yuan-Jun Song

    2014-01-01

    Full Text Available Silver nanowire has potential applications on transparent conducting film and electrode of electrochemical capacitor due to its excellent conductivity. Transparent conducting film (G-film was prepared by coating silver nanowires on glass substrate using Meyer rod method, which exhibited better performance than carbon nanotube and graphene. The conductivity of G-film can be improved by increasing sintering temperature. Electrode of electrochemical capacitor (I-film was fabricated through the same method with G-film on indium tin oxide (ITO. CV curves of I-film under different scanning rates had obvious redox peaks, which indicated that I-film exhibited excellent electrochemical pseudocapacitance performance and good reversibility during charge/discharge process. In addition, the specific capacitance of I-film was measured by galvanostatic charge/discharge experiments, indicating that I-film exhibits high special capacitance and excellent electrochemical stability.

  5. A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels

    Science.gov (United States)

    Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo

    2016-02-01

    We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07657a

  6. Structural study of TiO2-based transparent conducting films

    International Nuclear Information System (INIS)

    Hitosugi, T.; Yamada, N.; Nakao, S.; Hatabayashi, K.; Shimada, T.; Hasegawa, T.

    2008-01-01

    We have investigated microscopic structures of sputter and pulsed laser deposited (PLD) anatase Nb-doped TiO 2 transparent conducting films, and discuss what causes the degradation of resistivity in sputter-deposited films. Cross-sectional transmission electron microscope and polarized optical microscope images show inhomogeneous intragrain structures and small grains of ∼10 μm in sputter-deposited films. From comparison with PLD films, these results suggest that homogeneous film growth is the important factor to obtain highly conducting sputter-deposited film

  7. Reversible p-type conductivity in H passivated nitrogen and phosphorous codoped ZnO thin films using rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mannam, Ramanjaneyulu, E-mail: ramu.nov9@gmail.com [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600036 (India); Kumar, E. Senthil [SRM Research Institute, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603203, Tamil Nadu (India); DasGupta, Nandita [Microelectronics and MEMS Laboratory, Electrical Engineering Department, Indian Institute of Technology Madras, Chennai 600036 (India); Ramachandra Rao, M.S., E-mail: msrrao@iitm.ac.in [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600036 (India)

    2017-04-01

    Highlights: • Electrical transport measurements revel that the (P, N) codoped ZnO thin films exhibited change in conductivity from p-type to n-type over a span of 120 days. • Hydrogen and carbon are found to be the main unintentional impurities in n-type (P, N) codoped ZnO thin films. • Rapid thermal annealing has been used to remove both H and C from the films. • Carbon can be removed at an annealing temperature of 600 °C, whereas, the dissociation of N−H complex takes place only at 800 °C. • The n-type (P, N) codoped ZnO thin film exhibited change in conductivity to p-type at an annealing temperature of 800 °C. - Abstract: We demonstrate reversible p-type nature of pulsed laser deposited (P, N) codoped ZnO thin films using rapid thermal annealing process. As grown thin films exhibited change in conductivity from p to n-type over a span of 120 days. Non-annealed n-type thin films contain unintentional donor impurities such as hydrogen and carbon. X-ray photoelectron spectroscopy and Raman measurements conclusively show that hydrogen passivates nitrogen acceptors by forming N−H complex. Carbon can be annealed out at 600 °C, whereas, the dissociation of N−H complex takes place at 800 °C. The films revert its p-type nature at an annealing temperature of 800 °C.

  8. Non-classical logic inverter coupling a ZnO nanowire-based Schottky barrier transistor and adjacent Schottky diode.

    Science.gov (United States)

    Hosseini Shokouh, Seyed Hossein; Raza, Syed Raza Ali; Lee, Hee Sung; Im, Seongil

    2014-08-21

    On a single ZnO nanowire (NW), we fabricated an inverter-type device comprising a Schottky diode (SD) and field-effect transistor (FET), aiming at 1-dimensional (1D) electronic circuits with low power consumption. The SD and adjacent FET worked respectively as the load and driver, so that voltage signals could be easily extracted as the output. In addition, NW FET with a transparent conducting oxide as top gate turned out to be very photosensitive, although ZnO NW SD was blind to visible light. Based on this, we could achieve an array of photo-inverter cells on one NW. Our non-classical inverter is regarded as quite practical for both logic and photo-sensing due to its performance as well as simple device configuration.

  9. Micrometer-sized Isolated Patterns of Conductive ZnO derived by Micromoulding

    NARCIS (Netherlands)

    Göbel, Ole F.; ten Elshof, Johan E.; Blank, David A.H.

    2009-01-01

    We succeeded in the fabrication of large-area patterns with micrometer-sized, isolated features of a simple oxide by a technically simple patterning method. By micromoulding a polymeric precursor solution for ZnO with an elastomeric (PDMS) mould, and a subsequent heat treatment, patterned ZnO films

  10. DFT calculations on electronic properties of ZnO thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro, J.M.; Reynoso, V.C.; Azevedo, D.H.M. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2016-07-01

    Full text: Introduction - Thin films of Zinc oxide (ZnO) has a wide range of technological applications, as transparent conducting electrodes in solar cells, flat panel displays, and sensors, for example. More recently applications in optoelectronics, like light emitter diodes and laser diodes, due to its large band gap, are been explored. Studies of ZnO thin films are important for these applications. Methodology - In this study thin films of ZnO have been deposited by spray pyrolysis on glass substrate. The films were characterized by XRD and UV-VIS techniques and the electronic properties as a function of the film thickness have been investigated by DFT calculations with B3LYP hybrid potential implemented in the CRYSTAL09 code. Results - The diffractograms obtained for the ZnO thin films as a function of the thickness are shown. The films exhibit a hexagonal wurtzite structure with preferred c-axis orientation in (002) direction of ZnO crystal. A quantum mechanical approach based on the periodic Density Functional Theory (DFT), with B3LYP hybrid potential was used to investigate the electronic structure of the films as a function of the thickness. The CRYSTAL09 code has been used for the calculations on the wurtzite hexagonal structure of ZnO - spatial group P63mc. For optimizing the geometry of the pure ZnO crystal, the experimental lattice parameters were got as follows: a= 0.325 nm, b= 0.325 nm, c= 0.5207 nm with c/a= 1.602. Considering to the calculations of the band structure, it is suggested that the semiconducting properties of ZnO arises from the overlapping of the 4s orbital of the conducting band of Zn and the 2p orbital of the top of valence band of O. Conclusions - The structure of ZnO thin film deposited on glass substrate present preferential orientation in (002) direction. Variation in the optical properties as a function of the film thickness was observed. The band gap energy was determined from optical analysis to be ∼ 3.27 eV. The refractive

  11. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.; Fan, Shanhui

    2010-01-01

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from

  12. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    International Nuclear Information System (INIS)

    Li Chensha; Loutfy, Rafik O; Li Yuning; Wu Yiliang; Ong, Beng S

    2008-01-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process

  13. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Li Chensha; Loutfy, Rafik O [Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Li Yuning; Wu Yiliang; Ong, Beng S [Materials Design and Integration Laboratory, Xerox Research Centre of Canada, 2660 Speakman Drive, Mississauga, Ontario L5K 2L1 (Canada)], E-mail: lichnsa@163.com

    2008-06-21

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  14. Ultrabroadband terahertz conductivity of highly doped ZnO and ITO

    DEFF Research Database (Denmark)

    Wang, Tianwu; Zalkovskij, Maksim; Iwaszczuk, Krzysztof

    2015-01-01

    The broadband complex conductivities of transparent conducting oxides (TCO), namely aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO) and tin-doped indium oxide (ITO), were investigated by terahertz time domain spectroscopy (THz-TDS) in the frequency range from 0.5 to 18 THz using air...... to be more thickness dependent than GZO and ITO, indicating high importance of the surface states for electron dynamics in AZO. Finally, we measure the transmittance of the TCO films from 10 to 200 THz with Fourier transform infrared spectroscopy (FTIR) measurements, thus closing the gap between THz...

  15. Characterization of Al-Doped ZnO Transparent Conducting Thin Film Prepared by Off-Axis Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Sin-Liang Ou

    2016-01-01

    Full Text Available The off-axis sputtering technique was used to deposit Al-doped ZnO (AZO films on glass substrates at room temperature. For the illustration of the sample position in the sputtering chamber, the value of R/r is introduced. Here, r is the radius of AZO target and R is the distance between the sample and the center of substrate holder. A systematic study for the effect of deposition parameters on structural, optical, and electrical properties of AZO films has been investigated in detail. As the sample position of R/r is fixed at 1.8, it is found that the as-deposited AZO film has relatively low resistivity of 2.67 × 10−3 Ω-cm and high transmittance above 80% in the visible region. Additionally, after rapid thermal annealing (RTA at 600°C with N2 atmosphere, the resistivity of this AZO film can be further reduced to 1.19 × 10−3 Ω-cm. This indicates the AZO films prepared by off-axis magnetron sputtering and treated via the appropriate RTA process have great potential in optoelectronic applications.

  16. Tungsten trioxide as high-{kappa} gate dielectric for highly transparent and temperature-stable zinc-oxide-based thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Michael; Wenckstern, Holger von; Grundmann, Marius [Universitaet Leipzig, Fakultaet fuer Physik und Geowissenschaften, Institut fuer Experimentelle Physik II, Linnestr. 5, 04103 Leipzig (Germany)

    2012-07-01

    We demonstrate metal-insulator-semiconductor field-effect transistors with high-{kappa}, room-temperature deposited, highly transparent tungsten trioxide (WO{sub 3}) as gate dielectric. The channel material consists of a zinc oxide (ZnO) thin-film. The transmittance and resistivity of WO{sub 3} films was tuned in order to obtain a highly transparent and insulating WO{sub 3} dielectric. The devices were processed by standard photolithography using lift-off technique. On top of the WO{sub 3} dielectric a highly transparent and conductive oxide consisting of ZnO: Al 3% wt. was deposited. The gate structure of the devices exhibits an average transmittance in the visible spectral range of 86%. The on/off-current ratio is larger than 10{sup 8} with off- and gate leakage-currents below 3 x 10{sup -8} A/cm{sup 2}. Due to the high relative permittivity of {epsilon}{sub r} {approx} 70, a gate voltage sweep of only 2 V is necessary to turn the transistor on and off with a minimum subthreshold swing of 80 mV/decade. The channel mobility of the transistors equals the Hall-effect mobility with a value of 5 cm{sup 2}/Vs. It is furthermore shown, that the devices are stable up to operating temperatures of at least 150 C.

  17. High conductivity and transparent aluminum-based multi-layer source/drain electrodes for thin film transistors

    Science.gov (United States)

    Yao, Rihui; Zhang, Hongke; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Li, Xiaoqing; Zhang, Xiaochen; Cai, Wei; Lu, Xubing; Peng, Junbiao

    2018-02-01

    In this study, high conductivity and transparent multi-layer (AZO/Al/AZO-/Al/AZO) source/drain (S/D) electrodes for thin film transistors were fabricated via conventional physical vapor deposition approaches, without toxic elements or further thermal annealing process. The 68 nm-thick multi-layer films with excellent optical properties (transparency: 82.64%), good electrical properties (resistivity: 6.64  ×  10-5 Ω m, work function: 3.95 eV), and superior surface roughness (R q   =  0.757 nm with scanning area of 5  ×  5 µm2) were fabricated as the S/D electrodes. Significantly, comprehensive performances of AZO films are enhanced by the insertion of ultra-thin Al layers. The optimal transparent TFT with this multi-layer S/D electrodes exhibited a decent electrical performance with a saturation mobility (µ sat) of 3.2 cm2 V-1 s-1, an I on/I off ratio of 1.59  ×  106, a subthreshold swing of 1.05 V/decade. The contact resistance of AZO/Al/AZO/Al/AZO multi-layer electrodes is as low as 0.29 MΩ. Moreover, the average visible light transmittance of the unpatterned multi-layers constituting a whole transparent TFT could reach 72.5%. The high conductivity and transparent multi-layer S/D electrodes for transparent TFTs possessed great potential for the applications of the green and transparent displays industry.

  18. Photovoltaic properties of undoped ZnO thin films prepared by the spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Ikhmayies, S.J. [Applied Science Private Univ., Amman (Jordan). Dept. of Physics; Abu El-Haija, N.M.; Ahmad-Bitar, R.N. [Jordan Univ., Amman (Jordan). Dept. of Physics

    2009-07-01

    Zinc oxide (ZnO) can be used as a window material, transparent electrode and active layer in different types of solar cells, UV emitters, and UV sensors. In addition to being low cost, ZnO is more abundant than indium tin oxide. ZnO is non toxic and has a high chemical stability in reduction environments. When ZnO films are made without any intentional doping, they exhibit n-type conductivity. ZnO thin films can be prepared by reactive sputtering, laser ablation, chemical-vapour deposition, laser molecular-beam epitaxy, thermal evaporation, sol-gel, atomic layer deposition and spray pyrolysis, with the latter being simple, inexpensive and adaptable to large area depositions. In this work ZnCl{sub 2} was used as a source of Zn where it was dissolved in distilled water. The structural, electrical and optical properties of the films were investigated due to their important characteristic for solar cell applications. Polycrystalline ZnO thin films were deposited on glass substrate by spray pyrolysis using a home-made spraying system at substrate temperature of 450 degrees C. The films were characterized by recording and analyzing their I-V plots, their transmittance, X-ray diffraction and SEM micrographs. There resistivity was found to be about 200 ohms per cm and their bandgap energy about 3.27 eV. X-ray diffraction patterns revealed that the films have a hexagonal wurtzite structure and are highly ordered with a preferential orientation (002). SEM images revealed that the substrates are continuously covered and the surface of the film is uniform. 16 refs., 4 figs.

  19. The role of the VZn-NO-H complex in the p-type conductivity in ZnO.

    Science.gov (United States)

    Amini, M N; Saniz, R; Lamoen, D; Partoens, B

    2015-02-21

    Past research efforts aiming at obtaining stable p-type ZnO have been based on complexes involving nitrogen doping. A recent experiment by (J. G. Reynolds et al., Appl. Phys. Lett., 2013, 102, 152114) demonstrated a significant (∼10(18) cm(-3)) p-type behavior in N-doped ZnO films after appropriate annealing. The p-type conductivity was attributed to a VZn-NO-H shallow acceptor complex, formed by a Zn vacancy (VZn), N substituting O (NO), and H interstitial (Hi). We present here a first-principles hybrid functional study of this complex compared to the one without hydrogen. Our results confirm that the VZn-NO-H complex acts as an acceptor in ZnO. We find that H plays an important role, because it lowers the formation energy of the complex with respect to VZn-NO, a complex known to exhibit (unstable) p-type behavior. However, this additional H atom also occupies the hole level at the origin of the shallow behavior of VZn-NO, leaving only two states empty higher in the band gap and making the VZn-NO-H complex a deep acceptor. Therefore, we conclude that the cause of the observed p-type conductivity in experiment is not the presence of the VZn-NO-H complex, but probably the formation of the VZn-NO complex during the annealing process.

  20. High performance non-volatile ferroelectric copolymer memory based on a ZnO nanowire transistor fabricated on a transparent substrate

    International Nuclear Information System (INIS)

    Nedic, Stanko; Welland, Mark; Tea Chun, Young; Chu, Daping; Hong, Woong-Ki

    2014-01-01

    A high performance ferroelectric non-volatile memory device based on a top-gate ZnO nanowire (NW) transistor fabricated on a glass substrate is demonstrated. The ZnO NW channel was spin-coated with a poly (vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer acting as a top-gate dielectric without buffer layer. Electrical conductance modulation and memory hysteresis are achieved by a gate electric field induced reversible electrical polarization switching of the P(VDF-TrFE) thin film. Furthermore, the fabricated device exhibits a memory window of ∼16.5 V, a high drain current on/off ratio of ∼10 5 , a gate leakage current below ∼300 pA, and excellent retention characteristics for over 10 4 s

  1. Bromination of graphene: a new route to making high performance transparent conducting electrodes with low optical losses

    KAUST Repository

    Mansour, Ahmed

    2015-09-03

    The high optical transmittance, electrical conductivity, flexibility and chemical stability of graphene have triggered great interest in its application as a transparent conducting electrode material and as a potential replacement for indium doped tin oxide. However, currently available large scale production methods such as chemical vapor deposition produce polycrystalline graphene, and require additional transfer process which further introduces defects and impurities resulting in a significant increase in its sheet resistance. Doping of graphene with foreign atoms has been a popular route for reducing its sheet resistance which typically comes at a significant loss in optical transmission. Herein, we report the successful bromine doping of graphene resulting in air-stable transparent conducting electrodes with up to 80% reduction of sheet resistance reaching ~180 Ω/ at the cost of 2-3% loss of optical transmission in case of few layer graphene and 0.8% in case of single layer graphene. The remarkably low tradeoff in optical transparency leads to the highest enhancements in figure of merit reported thus far. Furthermore, our results show a controlled increase in the workfunction up to 0.3 eV with the bromine content. These results should help pave the way for further development of graphene as potentially a highly transparent substitute to other transparent conducting electrodes in optoelectronic devices.

  2. Structure-Property Relationships in Amorphous Transparent Conducting Oxides

    Science.gov (United States)

    Moffitt, Stephanie Lucille

    Over the last 20 years a new field of amorphous transparent conducting oxides (a-TCOs) has developed. The amorphous nature of these films makes them well suited for large area applications. In addition, a-TCOs can be made at low temperatures and through solution processing methods. These assets provide promising opportunities to improve applications such as solar cells and back-lit displays where traditional crystalline TCOs are used. In addition, it opens the door for new technological applications including the possibility for transparent, flexible electronics. Despite the recent growth in this field, fundamental understanding of the true nature of conductivity and the amorphous structure in this materials system is still progressing. To develop a greater understanding of a-TCOs, structure-property relationships were developed in the a-IGO and a-IZO systems. From the combination of element-specific local structure studies and liquid quench molecular dynamics simulations it is clear that a degree of structure remains in a-TCOs. By understanding this structure, the effect of gallium on thermal stability, carrier concentration and carrier mobility is understood. The source of charge carriers in a-IZO is identified as oxygen vacancies through the application of in situ Brouwer analysis. The continued development of the Brouwer analysis technique for use in amorphous oxides adds to the available methods for studying defects in amorphous systems. Finally, the foundational knowledge gained from the in-depth study of a-IGO was extended to understand the role of combustion processing and pulsed laser deposition as growth methods for transistors based on a-IGO.

  3. The electrical, elemental, optical, and surface properties of Si-doped ZnO thin films prepared by thermionic vacuum arc

    Science.gov (United States)

    Mohammadigharehbagh, Reza; Özen, Soner; Yudar, Hafizittin Hakan; Pat, Suat; Korkmaz, Şadan

    2017-09-01

    The purpose of this work is to study the properties of Si-doped ZnO (SZO) thin films, which were prepared using the non-reactive thermionic vacuum arc technique. The analysis of the elemental, optical, and surface properties of ZnO:Si thin films was carried out using energy dispersive x-ray spectroscopy, UV-VIS spectrophotometry, atomic force microscopy, and scanning electron microscopy, respectively. The current-voltage measurement was employed in order to study the electrical properties of the films. The effect of Si doping on the physical properties of ZnO films was investigated. The film thicknesses were measured as 55 and 35 nm for glass and PET substrates, respectively. It was clearly observed from the x-ray diffraction results that the Si and ZnO peaks were present in the coated SZO films for all samples. The morphological studies showed that the deposited surfaces are homogenous, dense, and have a uniform surface, with the existence of some cracks only on the glass substrate. The elemental composition has confirmed the existence of Zn, Si, and O elements within the prepared films. Using a UV-VIS spectrophotometer, the optical parameters such as transmittance, absorbance, refractive index, and reflectance were calculated. It should be noted that the transparency and refractive indices obtained from the measurements decrease with increasing Si concentration. The obtained optical bandgap values using transmittance spectra were determined to be 3.74 and 3.84 eV for the glass and PET substrates, respectively. An increase in the bandgap results demonstrates that the Si doping concentration is comparable to the pure ZnO thin films. The current versus voltage curves revealed the ohmic nature of the films. Subsequently, the development and fabrication of excellent transparent conducting electrodes enabled the appropriate use of Si-doped ZnO thin films.

  4. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M. [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nyamhere, C. [Nelson Mandela Metropolitan University, Physics Department, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8{+-}0.3) meV that has been suggested as Zn{sub i} related and possibly H-complex related and (54.5{+-}0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X{sub Zn}. The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60 Multiplication-Sign 10{sup 17} cm{sup -3} at 200 Degree-Sign C to 4.37 Multiplication-Sign 10{sup 18} cm{sup -3} at 800 Degree-Sign C.

  5. Amorphous and crystalline In_2O_3-based transparent conducting films for photovoltaics

    International Nuclear Information System (INIS)

    Koida, Takashi

    2017-01-01

    We reported solar cells with reduced electrical and optical losses using hydrogen-doped In_2O_3 (In_2O_3:H) transparent conducting layers with low sheet resistance and high transparence characteristics. The transparent conducting oxide (TCO) films were prepared by solid-phase crystallization of amorphous (a-) In_2O_3:H films grown by magnetron sputtering. The polycrystalline (poly-) In_2O_3:H films exhibited electron mobilities (over 100 cm"2V"-"1 s"-"1) 2 and 3 times greater than those of conventional TCO films. This paper describes (i) the current status of the electrical properties of In_2O_3-based TCO; (ii) the structural and optoelectrical properties of the a-In_2O_3:H and poly-In_2O_3:H films, focusing on the inhomogeneity and stability characteristics of the films; and (iii) the electrical properties of bilayer TCO. The potential of these high mobility TCO films for solar cells was also described. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Controlling growth rate anisotropy for formation of continuous ZnO thin films from seeded substrates

    International Nuclear Information System (INIS)

    Zhang, R H; Slamovich, E B; Handwerker, C A

    2013-01-01

    Solution-processed zinc oxide (ZnO) thin films are promising candidates for low-temperature-processable active layers in transparent thin film electronics. In this study, control of growth rate anisotropy using ZnO nanoparticle seeds, capping ions, and pH adjustment leads to a low-temperature (90 ° C) hydrothermal process for transparent and high-density ZnO thin films. The common 1D ZnO nanorod array was grown into a 2D continuous polycrystalline film using a short-time pure solution method. Growth rate anisotropy of ZnO crystals and the film morphology were tuned by varying the chloride (Cl − ) ion concentration and the initial pH of solutions of zinc nitrate and hexamethylenetetramine (HMTA), and the competitive adsorption effects of Cl − ions and HMTA ligands on the anisotropic growth behavior of ZnO crystals were proposed. The lateral growth of nanorods constituting the film was promoted by lowering the solution pH to accelerate the hydrolysis of HMTA, thereby allowing the adsorption effects from Cl − to dominate. By optimizing the growth conditions, a dense ∼100 nm thickness film was fabricated in 15 min from a solution of [Cl − ]/[Zn 2+ ] = 1.5 and pH= 4.8 ± 0.1. This film shows >80% optical transmittance and a field-effect mobility of 2.730 cm 2 V −1 s −1 at zero back-gate bias. (paper)

  7. Influence of Ag thickness of aluminum-doped ZnO/Ag/aluminum-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hung-Wei, E-mail: hwwu@mail.ksu.edu.tw [Department of Computer and Communication, Kun Shan University, No. 949, Dawan Rd., Yongkang Dist., Tainan City 710, Taiwan (China); Yang, Ru-Yuan [Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, 1, Shuefu Rd., Neipu, Pingtung City 912, Taiwan (China); Hsiung, Chin-Min; Chu, Chien-Hsun [Department of Mechanical Engineering, National Pingtung University of Science and Technology, 1, Shuefu Rd., Neipu, Pingtung City 912, Taiwan (China)

    2012-10-01

    Highly conducting aluminum-doped ZnO (30 nm)/Ag (5-15 nm)/aluminum-doped ZnO (30 nm) multilayer thin films were deposited on glass substrate by rf magnetron sputtering (for top/bottom aluminum-doped ZnO films) and e-beam evaporation (for Ag film). The transmittance is more than 70% for wavelengths above 400 nm with the Ag layer thickness of 10 nm. The resistivity is 3.71 Multiplication-Sign 10{sup -4} {Omega}-cm, which can be decreased to 3.8 Multiplication-Sign 10{sup -5} {Omega}-cm with the increase of the Ag layer thickness to 15 nm. The Haacke figure of merit has been calculated for the films with the best value being 8 Multiplication-Sign 10{sup -3} {Omega}{sup -1}. It was shown that the multilayer thin films have potential for applications in optoelectronics. - Highlights: Black-Right-Pointing-Pointer High-quality Al-doped ZnO (AZO)/Ag/AZO Transparent Conducting Oxide films. Black-Right-Pointing-Pointer AZO films (30 nm) made by RF sputtering; E-beam evaporation for Ag film (5-15 nm). Black-Right-Pointing-Pointer Influence of Ag thickness on optical and electrical properties were analyzed. Black-Right-Pointing-Pointer High quality multilayer film with optimal intermediate Ag layer thickness of 10 nm. Black-Right-Pointing-Pointer 3.71 Multiplication-Sign 10{sup -4} {Omega}-cm resistivity, 91.89% transmittance at 470 nm obtained and reproducible.

  8. A simplified approach to the band gap correction of defect formation energies: Al, Ga, and In-doped ZnO

    Science.gov (United States)

    Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M. N.; Dixit, H.; Lamoen, D.; Partoens, B.

    2013-01-01

    The calculation of defect levels in semiconductors within a density functional theory approach suffers greatly from the band gap problem. We propose a band gap correction scheme that is based on the separation of energy differences in electron addition and relaxation energies. We show that it can predict defect levels with a reasonable accuracy, particularly in the case of defects with conduction band character, and yet is simple and computationally economical. We apply this method to ZnO doped with group III elements (Al, Ga, In). As expected from experiment, the results indicate that Zn substitutional doping is preferred over interstitial doping in Al, Ga, and In-doped ZnO, under both zinc-rich and oxygen-rich conditions. Further, all three dopants act as shallow donors, with the +1 charge state having the most advantageous formation energy. Also, doping effects on the electronic structure of ZnO are sufficiently mild so as to affect little the fundamental band gap and lowest conduction bands dispersion, which secures their n-type transparent conducting behavior. A comparison with the extrapolation method based on LDA+U calculations and with the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) shows the reliability of the proposed scheme in predicting the thermodynamic transition levels in shallow donor systems.

  9. Electrodeposition of ZnO window layer for an all-atmospheric fabrication process of chalcogenide solar cell

    Science.gov (United States)

    Tsin, Fabien; Venerosy, Amélie; Vidal, Julien; Collin, Stéphane; Clatot, Johnny; Lombez, Laurent; Paire, Myriam; Borensztajn, Stephan; Broussillou, Cédric; Grand, Pierre Philippe; Jaime, Salvador; Lincot, Daniel; Rousset, Jean

    2015-01-01

    This paper presents the low cost electrodeposition of a transparent and conductive chlorine doped ZnO layer with performances comparable to that produced by standard vacuum processes. First, an in-depth study of the defect physics by ab-initio calculation shows that chlorine is one of the best candidates to dope the ZnO. This result is experimentally confirmed by a complete optical analysis of the ZnO layer deposited in a chloride rich solution. We demonstrate that high doping levels (>1020 cm−3) and mobilities (up to 20 cm2 V−1 s−1) can be reached by insertion of chlorine in the lattice. The process developed in this study has been applied on a CdS/Cu(In,Ga)(Se,S)2 p-n junction produced in a pilot line by a non vacuum process, to be tested as solar cell front contact deposition method. As a result efficiency of 14.3% has been reached opening the way of atmospheric production of Cu(In,Ga)(Se,S)2 solar cell. PMID:25753657

  10. Synthesis, microstructural characterization and optical properties of undoped, V and Sc doped ZnO thin films

    International Nuclear Information System (INIS)

    Amezaga-Madrid, P.; Antunez-Flores, W.; Ledezma-Sillas, J.E.; Murillo-Ramirez, J.G.; Solis-Canto, O.; Vega-Becerra, O.E.; Martinez-Sanchez, R.; Miki-Yoshida, M.

    2011-01-01

    Research highlights: → Undoped, V and Sc doped ZnO thin films by Aerosol Assisted Chemical Vapour Deposition. → Optimum substrate temperatures of 673 K and 623 K for Sc and V doped films. → Around one third of the dopants in solution were deposited into the films. → Crystallite and grain size decreased with the increase of dopant concentration. → Optical band gap increased from 3.29 to 3.32 eV for undoped to 7 Sc/Zn at. %. - Abstract: Many semiconductor oxides (ZnO, TiO 2 , SnO 2 ) when doped with a low percentage of non-magnetic (V, Sc) or magnetic 3d (Co, Mn, Ni, Fe) cation behave ferromagnetically. They have attracted a great deal of interest due to the integration of semiconducting and magnetic properties in a material. ZnO is one of the most promising materials to carry out these tasks in view of the fact that it is optically transparent and has n or p type conductivity. Here, we report the synthesis, microstructural characterization and optical properties of undoped, V and Sc doped zinc oxide thin films. ZnO based thin films with additions of V and Sc were deposited by the Aerosol Assisted Chemical Vapour Deposition method. V and Sc were incorporated separately in the precursor solution. The films were uniform, transparent and non-light scattering. The microstructure of the films was characterized by Grazing Incidence X-ray Diffraction, Scanning Electron Microscopy, and Scanning Probe Microscopy. Average grain size and surface rms roughness were estimated by the measurement of Atomic Force Microscopy. The microstructure of doped ZnO thin films depended on the type and amount of dopant material incorporated. The optical properties were determined from specular reflectance and transmittance spectra. Results were analyzed to determine the optical constant and band gap of the films. An increase in the optical band gap with the content of Sc dopant was obtained.

  11. Copper Nanowires and Their Applications for Flexible, Transparent Conducting Films: A Review

    Directory of Open Access Journals (Sweden)

    Vu Binh Nam

    2016-03-01

    Full Text Available Cu nanowires (NWs are attracting considerable attention as alternatives to Ag NWs for next-generation transparent conductors, replacing indium tin oxide (ITO and micro metal grids. Cu NWs hold great promise for low-cost fabrication via a solution-processed route and show preponderant optical, electrical, and mechanical properties. In this study, we report a summary of recent advances in research on Cu NWs, covering the optoelectronic properties, synthesis routes, deposition methods to fabricate flexible transparent conducting films, and their potential applications. This review also examines the approaches on protecting Cu NWs from oxidation in air environments.

  12. Synthesis of highly conductive thin-walled Al-doped ZnO single-crystal microtubes by a solid state method

    Science.gov (United States)

    Hu, Shuopeng; Wang, Yue; Wang, Qiang; Xing, Cheng; Yan, Yinzhou; Jiang, Yijian

    2018-06-01

    ZnO has attracted considerable attention in fundamental studies and practical applications for the past decade due to its outstanding performance in gas sensing, photocatalytic degradation, light harvesting, UV-light emitting/lasing, etc. The large-sized thin-walled ZnO (TW-ZnO) microtube with stable and rich VZn-related acceptors grown by optical vapor supersaturated precipitation (OVSP) is a novel multifunctional optoelectronic material. Unfortunately, the OVSP cannot achieve doping due to the vapor growth process. To obtain doped TW-ZnO microtubes, a solid state method is introduced in this work to achieve thin-walled Al-doping ZnO (TW-ZnO:Al) microtubes with high electrical conductivity. The morphology and microstructures of ZnO:Al microtubes are similar to undoped ones. The Al3+ ions are confirmed to substitute Zn2+ sites and Zn(0/-1) vacancies in the lattice of ZnO by EDS, XRD, Raman and temperature-dependent photoluminescence analyses. The Al dopant acting as a donor level offers massive free electrons to increase the carrier concentrations. The resistivity of the ZnO:Al microtube is reduced down to ∼10-3 Ω·cm, which is one order of magnitude lower than that of the undoped microtube. The present work provides a simple way to achieve doped ZnO tubular components for potential device applications in optoelectronics.

  13. Highly Conductive, Transparent Flexible Films Based on Metal Nanoparticle-Carbon Nanotube Composites

    Directory of Open Access Journals (Sweden)

    Wen-Yin Ko

    2013-01-01

    Full Text Available Metallic nanoparticles decorated on MWCNTs based transparent conducting thin films (TCFs show a cheap and efficient option for the applications in touch screens and the replacement of the ITO film because of their interesting properties of electrical conductivity, mechanical property, chemical inertness, and other unique properties, which may not be accessible by their individual components. However, a great challenge that always remains is to develop effective ways to prepare junctions between metallic nanoparticles and MWCNTs for the improvement of high-energy barriers, high contact resistances, and weak interactions which could lead to the formation of poor conducting pathways and result in the CNT-based devices with low mechanical flexibility. Herein, we not only discuss recent progress in the preparation of MNP-CNT flexible TCFs but also describe our research studies in the relevant areas. Our result demonstrated that the MNP-CNT flexible TCFs we prepared could achieve a highly electrical conductivity with the sheet resistance of ~100 ohm/sq with ~80% transmittance at 550 nm even after being bent 500 times. This electrical conductivity is much superior to the performances of other MWCNT-based transparent flexible films, making it favorable for next-generation flexible touch screens and optoelectronic devices.

  14. Influence of seed layer treatment on ZnO growth morphology and their device performance in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R. Saravana [PG and Research, Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029 (India); Sudhagar, P. [Energy Materials Laboratary, WCU Program Department of Energy Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Matheswaran, P. [PG and Research, Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029 (India); Sathyamoorthy, R., E-mail: rsathya59@gmail.com [PG and Research, Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029 (India); Kang, Yong Soo, E-mail: kangys@hanyang.ac.kr [Energy Materials Laboratary, WCU Program Department of Energy Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-09-15

    The surface modification of the ZnO seed layer by ultrasonic mediated rinsing (UMR) was realized as an efficient tool for growing highly branched hierarchical ZnO nanorods through multistage approach. The hierarchical ZnO nanostructure achieved through UMR approach was performed as the photoanodes in dye-sensitized solar cells (DSSCs). The DSSC based on the novel branched network resulted in energy conversion efficiency ({eta}) of 1.1% (J{sub sc} = 4.7 mA cm{sup -2}). The improved device performance was ascribed to the (a) high internal surface area for efficient dye adsorption, (b) rapid electron pathway for charge transport from ZnO to transparent conducting oxide (TCO) substrate and (c) producing random multiple scattering of the light within the hierarchical network leading to photon localization, thereby increasing the probability of the interaction between the photons and the dye molecules of the branched network. The beneficial effect of the UMR approach was distinguished by fabricating DSSCs based on randomly oriented ZnO nanorods prepared by conventional rinsing (CR), which offered lower conversion efficiency {eta} = 0.7% (J{sub sc} = 3.8 mA cm{sup -2}). The exploration of novel hierarchical ZnO nanorods grown in the present work by the low temperature solution growth techniques may pave way to bring out photoanode material on flexible substrates for the fast growing DSSCs devices.

  15. Development and applications of transparent conductive nanocellulose paper

    Science.gov (United States)

    Li, Shaohui; Lee, Pooi See

    2017-12-01

    Increasing attention has been paid to the next generation of 'green' electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential.

  16. Development and applications of transparent conductive nanocellulose paper.

    Science.gov (United States)

    Li, Shaohui; Lee, Pooi See

    2017-01-01

    Increasing attention has been paid to the next generation of 'green' electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential.

  17. Comparative study about Al-doped zinc oxide thin films deposited by Pulsed Electron Deposition and Radio Frequency Magnetron Sputtering as Transparent Conductive Oxide for Cu(In,Ga)Se{sub 2}-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pattini, F., E-mail: pattini@imem.cnr.it [IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Annoni, F.; Bissoli, F.; Bronzoni, M. [IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Garcia, J.P. [Delft University of Technology, Faculty of Applied Sciences, Delft Product and Process Design Institute, Julianalaan 67, 2628 BC Delft (Netherlands); Gilioli, E.; Rampino, S. [IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124 Parma (Italy)

    2015-05-01

    In this study, a comparison between Al-doped ZnO (AZO) as Transparent Conductive Oxide for Cu(In,Ga)Se{sub 2}-based solar cells grown by Pulsed Electron Deposition (PED) and Radio Frequency Magnetron Sputtering (RFMS) was performed. PED yielded polycrystalline [002] mono-oriented thin films with low electrical resistivity and high optical transparency with heater temperatures ranging from room temperature (RT) to 250 °C. The electrical resistivity of these films can be tuned by varying the heater temperature, reaching a minimum value of 3.5 × 10{sup −4} Ωcm at 150 °C and an average transmittance over 90% in the visible range. An AZO film grown at RT was deposited by PED on an actual Cu(In,Ga)Se{sub 2}-based solar cell, resulting to an efficiency value of 15.2% on the best device. This result clearly shows that PED is a suitable technique for growing ZnO-based thin films for devices/applications where low deposition temperature is required. On the other hand, an optimized AZO thin film front contact for thin film solar cells was studied and fabricated via RFMS. The parameters of this technique were tweaked to obtain highly conductive and transparent AZO thin films. The lowest resistivity value of 3.7 × 10{sup −4} Ωcm and an average transmittance of 86% in the 400-1100 nm wavelength range was obtained with a heater temperature of 250 °C. A thick sputtered AZO film was deposited at RT onto an identical cell used for PED-grown AZO, reaching the highest conversion efficiency value of 14.7%. In both cases, neither antireflection coatings nor pure ZnO layer was used. - Highlights: • Pulsed Electron Deposition (PED) lets high quality films grow at low temperature. • Al:ZnO (AZO) thin films grown by PED present high optical and electrical quality. • AZO electrical resistivity can be tuned from 10{sup −4} to 10{sup −2} Ωcm in proper condition. • Cu(In,Ga)Se{sub 2}-based simplified solar cells achieved efficiency of 15.2% for PED-grown AZO.

  18. Hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer

    International Nuclear Information System (INIS)

    Kim, Taehee; Choi, Jin Young; Jeon, Jun Hong; Kim, Youn-Su; Kim, Bong-Soo; Lee, Doh-Kwon; Kim, Honggon; Han, Seunghee; Kim, Kyungkon

    2012-01-01

    Highlights: ► This work enhanced power conversion efficiency of the hybrid tandem solar cell from 1.0% to 2.6%. ► The interfacial series resistance of the tandem solar cell was eliminated by inserting ITO layer. ► This work shows the feasibility of the highly efficient hybrid tandem solar cells. -- Abstract: We demonstrate hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer. The series-connected hybrid tandem photovoltaic devices were developed by combining hydrogenated amorphous silicon (a-Si:H) and polymer-based organic photovoltaics (OPVs). In order to enhance the interfacial connection between the subcells, we employed highly transparent and conductive indium tin oxide (ITO) thin layer. By using the ITO interconnecting layer, the power conversion efficiency of the hybrid tandem solar cell was enhanced from 1.0% (V OC = 1.041 V, J SC = 2.97 mA/cm 2 , FF = 32.3%) to 2.6% (V OC = 1.336 V, J SC = 4.65 mA/cm 2 , FF = 41.98%) due to the eliminated interfacial series resistance.

  19. Conducting properties of nearly depleted ZnO nanowire UV sensors fabricated by dielectrophoresis

    International Nuclear Information System (INIS)

    García Núñez, C; García Marín, A; Piqueras, J; Pau, J L; Nanterne, P; Kung, P

    2013-01-01

    ZnO nanowires (NWs) with different radii (r NW ) have been aligned between pre-patterned electrodes using dielectrophoresis (DEP) for the fabrication of high gain UV sensors. The DEP conditions (voltage amplitude and frequency) and electrode material, geometry and size were optimized to enhance the efficiency during the DEP process. To understand the alignment mechanism of the ZnO NWs, the dielectrophoretic force (F DEP ) was analyzed as a function of the DEP conditions and NW dimensions. These studies showed that the DEP alignment process tends to trap NWs with a smaller radius. The effects of NW size on device performance were analyzed by means of I–V measurements in darkness and under illumination (200 nm NW decreases due to the reduction of the conduction volume, until saturation is reached for r NW 8 A W −1 (measured at 5 V and λ NW , presenting a clear blue-shift for NWs with a lower radius (r NW 2 reduces the dynamic range of the photoresponse due to a strong increase of the dark current. (paper)

  20. First-principles study on the effect of high In doping on the conductivity of ZnO

    International Nuclear Information System (INIS)

    Hou Qing-Yu; Li Ji-Jun; Ying Chun; Zhao Chun-Wang; Zhao Er-Jun; Zhang Yue

    2013-01-01

    Based on the density functional theory (DFT), using first-principles plane-wave ultrasoft pseudopotential method, the models of the unit cell of pure ZnO and two highly In-doped supercells of Zn 0.9375 In 0.0625 O and Zn 0.875 In 0.125 O are constructed, and the geometry optimizations of the three models are carried out. The total density of states (DOS) and the band structures (BS) are also calculated. The calculation results show that in the range of high doping concentration, when the doping concentration is hihger than a specific value, the conductivity decreases with the increase of the doping concentration of In in ZnO, which is in consistence with the change trend of the experimental results

  1. Highly conductive, transparent flexible films based on open rings of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Ko, Wen-Yin; Su, Jun-Wei; Guo, Chian-Hua; Fu, Shu-Juan; Hsu, Chuen-Yuan; Lin, Kuan-Jiuh

    2011-01-01

    Open rings of multi-walled carbon nanotubes were stacked to form porous networks on a poly(ethylene terephthalate) substrate to form a flexible conducting film (MWCNT-PET) with good electrical conductivity and transparency by a combination of ultrasonic atomization and spin-coating technique. To enhance the electric flexibility, we spin-coated a cast film of poly(vinyl alcohol) onto the MWCNT-PET substrate, which then underwent a thermo-compression process. Field-emission scanning electron microscopy of the cross-sectional morphology illustrates that the film has a robust network with a thickness of ∼ 175 nm, and it remarkably exhibits a sheet resistance of approximately 370 Ω/sq with ∼ 77% transmittance at 550 nm even after 500 bending cycles. This electrical conductivity is much superior to that of other MWCNT-based transparent flexible films.

  2. Novel transparent conducting oxide technology for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, P.T.; Sutton, P.A.; Gardener, M.; Wakefield, G.

    2005-07-01

    This report outlines the development of both n- and p-type transparent Conducting Oxide (TCO) materials and the demonstrated feasibility of economic production of TCO films by deposition techniques. Descriptions are given of the four main tasks of the project with Task A concentrating on material design and synthesis covering the new precursor to zinc oxide thin films and selection of polymers for formulation; Task B dealing with film formation involving film deposition by spin coating, screen printing, inkjet printing, dip coating and chemical vapour deposition; Task C concerning performance evaluation; and Task D examining manufacturing process development. The prospects for commercialisation are explored and recommendation for future work are considered.

  3. Development and applications of transparent conductive nanocellulose paper

    Science.gov (United States)

    Li, Shaohui; Lee, Pooi See

    2017-01-01

    Abstract Increasing attention has been paid to the next generation of ‘green’ electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential. PMID:28970870

  4. Demonstration of a 100-kWth high-temperature solar thermochemical reactor pilot plant for ZnO dissociation

    Science.gov (United States)

    Koepf, E.; Villasmil, W.; Meier, A.

    2016-05-01

    Solar thermochemical H2O and CO2 splitting is a viable pathway towards sustainable and large-scale production of synthetic fuels. A reactor pilot plant for the solar-driven thermal dissociation of ZnO into metallic Zn has been successfully developed at the Paul Scherrer Institute (PSI). Promising experimental results from the 100-kWth ZnO pilot plant were obtained in 2014 during two prolonged experimental campaigns in a high flux solar simulator at PSI and a 1-MW solar furnace in Odeillo, France. Between March and June the pilot plant was mounted in the solar simulator and in-situ flow-visualization experiments were conducted in order to prevent particle-laden fluid flows near the window from attenuating transparency by blocking incoming radiation. Window flow patterns were successfully characterized, and it was demonstrated that particle transport could be controlled and suppressed completely. These results enabled the successful operation of the reactor between August and October when on-sun experiments were conducted in the solar furnace in order to demonstrate the pilot plant technology and characterize its performance. The reactor was operated for over 97 hours at temperatures as high as 2064 K; over 28 kg of ZnO was dissociated at reaction rates as high as 28 g/min.

  5. Development of transparent thin film transistors on PES polymer substrates

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Ko, Kyung-Nam; Song, Young-Wook; Nam, Hyoung; Cho, Nam-Ihn

    2010-01-01

    In this study, we demonstrate ZnO-based transparent thin film transistors (TTFT's) implemented on polyethersulfone (PES) polymer substrates. For the developed TTFT's, radio-frequency magnetron sputter techniques were used to deposit Al-doped ZnO (AZO) at zero oxygen partial pressures for the source, the drain, and the gate-contact electrodes, undoped ZnO at low oxygen partial pressures for the active p-type layer, and SiO 2 for the gate dielectric. The TTFT's were processed at room temperature (RT), except for a 100 .deg. C sputtering step to deposit the AZO source, drain, and gate-contact electrodes. The devices have bottom-gate structures with top contacts, are optically transparent, and operate in an enhancement mode with a threshold voltage of +13 V, a mobility of 0.1 cm 2 /Vs, an on-off ratio of about 0.5 x 10 3 and, a sub-threshold slope of 4.1 V/decade.

  6. Structural and optical properties of ZnO rods hydrothermally formed on polyethersulfone substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Mi; Jang, Jin Tak; Kim, Chang Yong; Ryu, Hyuk Hyun [Inje University, Gimhae (Korea, Republic of); Lee, Won Jae [Dong-Eui University, Busan (Korea, Republic of); Chang, Ji Ho [Korea Maritime University, Busan (Korea, Republic of); Son, Chang Sik [Silla University, Busan (Korea, Republic of); Choi, Hee Lack [Pukyong National University, Busan (Korea, Republic of)

    2012-06-15

    Various unique ZnO morphologies, such as cigar-like and belt-like structures and microrod and nanorod structures, were formed on flexible polyethersulfone (PES) substrates by using a low temperature hydrothermal route. The structural properties of ZnO depended highly on the precursor concentration. The effect of a thin ZnO seed layer deposited the on PES substrate by using atomic layer deposition on the structural and the optical properties of ZnO hydrothermally grown on the ZnO seed layer/PES substrates was studied. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements were employed to analyze the characteristics of hydrothermally-grown ZnO. The diameter of the ZnO nanorods grown on the ZnO seed layer/PES substrates increased with increasing precursor concentration from 0.025 to 0.125 M due to the Ostwald ripening process. ZnO hydrothermally-grown on the ZnO seed layer/PES substrates at a low precursor concentration showed better structural properties than ZnO formed without a seed layer. Well-formed ZnO nanorods deposited on the ZnO seed layer/PES substrates showed two PL peaks, one in the ultraviolet and the other in the visible region, whereas horizontally positioned ZnO formed on the PES substrate in the absence of a seed layer emitted only one broad PL peak in the violet region. The ZnO grown on PES substrates in this work can be used as high-quality transparent electrodes for solar cells fabricated on flexible substrates.

  7. Structural and optical properties of ZnO rods hydrothermally formed on polyethersulfone substrates

    International Nuclear Information System (INIS)

    Shin, Chang Mi; Jang, Jin Tak; Kim, Chang Yong; Ryu, Hyuk Hyun; Lee, Won Jae; Chang, Ji Ho; Son, Chang Sik; Choi, Hee Lack

    2012-01-01

    Various unique ZnO morphologies, such as cigar-like and belt-like structures and microrod and nanorod structures, were formed on flexible polyethersulfone (PES) substrates by using a low temperature hydrothermal route. The structural properties of ZnO depended highly on the precursor concentration. The effect of a thin ZnO seed layer deposited the on PES substrate by using atomic layer deposition on the structural and the optical properties of ZnO hydrothermally grown on the ZnO seed layer/PES substrates was studied. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements were employed to analyze the characteristics of hydrothermally-grown ZnO. The diameter of the ZnO nanorods grown on the ZnO seed layer/PES substrates increased with increasing precursor concentration from 0.025 to 0.125 M due to the Ostwald ripening process. ZnO hydrothermally-grown on the ZnO seed layer/PES substrates at a low precursor concentration showed better structural properties than ZnO formed without a seed layer. Well-formed ZnO nanorods deposited on the ZnO seed layer/PES substrates showed two PL peaks, one in the ultraviolet and the other in the visible region, whereas horizontally positioned ZnO formed on the PES substrate in the absence of a seed layer emitted only one broad PL peak in the violet region. The ZnO grown on PES substrates in this work can be used as high-quality transparent electrodes for solar cells fabricated on flexible substrates.

  8. Improvement of ZnO TCO film growth for photovoltaic devices by reactive plasma deposition (RPD)

    International Nuclear Information System (INIS)

    Iwata, K.; Sakemi, T.; Yamada, A.; Fons, P.; Awai, K.; Yamamoto, T.; Shirakata, S.; Matsubara, K.; Tampo, H.; Sakurai, K.; Ishizuka, S.; Niki, S.

    2005-01-01

    Reactive plasma deposition (RPD) is a technique for depositing a thin film on a substrate using a pressure-slope type plasma ion gun. This method offers the advantage of low-ion damage, low deposition temperature, large area deposition and high growth rates. Ga-doped zinc oxide (ZnO) thin film was grown on a moving glass substrate by RPD. Evaporation of very small quantity of tungsten from anode electrode by plasma collision lets the resistivity of grown ZnO transparent conductive oxide (TCO) film to increase. However, no reduction of carrier concentration was observed but only reduction of carrier mobility. It indicates that reduction of evaporation of tungsten from anode electrode induces increase of carrier mobility without any increase of carrier concentration. After installation of an anode cooling system in order to avoid the tungsten evaporation, increase of the mobility (37 cm 2 /Vsec) was observed and the lowest resistivity (2.0x10 -4 no. OMEGAno. cm) film was obtained from large size grown ZnO TCO of 200x200 mm at low growth temperature of 200 deg. C with high growth rate of 24 no. muno. m/h

  9. Synthesis of cadmium oxide doped ZnO nanostructures using electrochemical deposition

    International Nuclear Information System (INIS)

    Singh, Trilok; Pandya, D.K.; Singh, R.

    2011-01-01

    Research highlights: → Ternary ZnCdO alloy semiconductor nanostructures were grown using electrochemical deposition. → X-ray diffraction measurements showed that the nanostructures were of wurtzite structure and possessed a compressive stress along the c-axis direction. → The cut-off wavelength shifted from blue to red on account of the Cd incorporation in the ZnO and the average transmittance decreased by ∼31%. → The bandgap tuning for 4-16 at% Cd in the initial solution was achieved in the range of 3.08-3.32 eV (up to 0.24 eV). - Abstract: Ternary ZnCdO alloy semiconductor nanostructures were grown using electrochemical deposition. Crystalline nanostructures/nanorods with cadmium concentration ranging from 4 to 16 at% in the initial solution were electrodeposited on tin doped indium oxide (ITO) conducting glass substrates at a constant cathodic potential -0.9 V and subsequently annealed in air at 300 deg. C. X-ray diffraction measurements showed that the nanostructures were of wurtzite structure and possessed a compressive stress along the c-axis direction. The elemental composition of nanostructures was confirmed by energy dispersive spectroscopy (EDS). ZnO nanostructures were found to be highly transparent and had an average transmittance of 85% in the visible range of the spectrum. After the incorporation of Cd content into ZnO the average transmittance decreased and the bandgap tuning was also achieved.

  10. Effect of thickness on structural and electrical properties of Al-doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Garcés, F.A., E-mail: felipe.garces@santafe-conicet.gov.ar [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Budini, N. [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Arce, R.D.; Schmidt, J.A. [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe S3000AOM (Argentina)

    2015-01-01

    In this work, we have investigated the influence of thickness on structural and electrical properties of Al-doped ZnO films. Transparent conducting oxide films were grown by the spray pyrolysis technique from precursors prepared via the sol–gel method. We determined the structural properties of the films by performing X-ray diffraction and mosaicity measurements, which evidenced an increase of disorder and inhomogeneity between crystalline domains as the films thickened. This behavior was contrasted with results obtained from electrical measurements and was attributed to plastic deformation of the films as their thickness increased. As a result, the carrier mobility, the optical gap and the activation energy are affected due to emerging grain boundaries and a higher degree of disorder. - Highlights: • Al-doped ZnO thin films on glass with different thicknesses • Film thickness affects the morphological and electrical properties. • Increasing time deposition allows modification of resistivity and Hall mobility. • Mosaicity between crystalline domains increases with film thickness.

  11. Effect of thickness on structural and electrical properties of Al-doped ZnO films

    International Nuclear Information System (INIS)

    Garcés, F.A.; Budini, N.; Arce, R.D.; Schmidt, J.A.

    2015-01-01

    In this work, we have investigated the influence of thickness on structural and electrical properties of Al-doped ZnO films. Transparent conducting oxide films were grown by the spray pyrolysis technique from precursors prepared via the sol–gel method. We determined the structural properties of the films by performing X-ray diffraction and mosaicity measurements, which evidenced an increase of disorder and inhomogeneity between crystalline domains as the films thickened. This behavior was contrasted with results obtained from electrical measurements and was attributed to plastic deformation of the films as their thickness increased. As a result, the carrier mobility, the optical gap and the activation energy are affected due to emerging grain boundaries and a higher degree of disorder. - Highlights: • Al-doped ZnO thin films on glass with different thicknesses • Film thickness affects the morphological and electrical properties. • Increasing time deposition allows modification of resistivity and Hall mobility. • Mosaicity between crystalline domains increases with film thickness

  12. The Effects of Zr Doping on the Optical, Electrical and Microstructural Properties of Thin ZnO Films Deposited by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Stephania Herodotou

    2015-10-01

    Full Text Available Transparent conducting oxides (TCOs, with high optical transparency (≥85% and low electrical resistivity (10−4 Ω·cm are used in a wide variety of commercial devices. There is growing interest in replacing conventional TCOs such as indium tin oxide with lower cost, earth abundant materials. In the current study, we dope Zr into thin ZnO films grown by atomic layer deposition (ALD to target properties of an efficient TCO. The effects of doping (0–10 at.% Zr were investigated for ~100 nm thick films and the effect of thickness on the properties was investigated for 50–250 nm thick films. The addition of Zr4+ ions acting as electron donors showed reduced resistivity (1.44 × 10−3 Ω·cm, increased carrier density (3.81 × 1020 cm−3, and increased optical gap (3.5 eV with 4.8 at.% doping. The increase of film thickness to 250 nm reduced the electron carrier/photon scattering leading to a further reduction of resistivity to 7.5 × 10−4 Ω·cm and an average optical transparency in the visible/near infrared (IR range up to 91%. The improved n-type properties of ZnO: Zr films are promising for TCO applications after reaching the targets for high carrier density (>1020 cm−3, low resistivity in the order of 10−4 Ω·cm and high optical transparency (≥85%.

  13. Comparative effects of indium/ytterbium doping on, mechanical and gas-sensitivity-related morphological, properties of sprayed ZnO compounds

    International Nuclear Information System (INIS)

    Boukhachem, A.; Fridjine, S.; Amlouk, A.; Boubaker, K.; Bouhafs, M.; Amlouk, M.

    2010-01-01

    In this study, conducting and transparent indium-doped zinc oxide (ZnO) thin films have been deposited on glass substrates by the micro-spray technique. First, zinc oxide layers were obtained by spaying a solution of propanol and zinc acetate in acidified medium. Alternatively, some of the obtained films were doped with indium (In) at the molar rates of: 1%, 2% and 3%. In addition to the classical structural investigated using XRD, AFM and SEM techniques, microhardness Vickers (Hv) measurements have been carried out along with comparative morphological prospecting. The specific gases sensitivity-related surface morphology of the doped ZnO compounds was favorably different from that of the non-doped ones, and showed a thin overlay structure. Results were compared to those recorded for similar ytterbium-doped material.

  14. Separation and recombinatiuon of charge carriers in solar cells with a nanostructured ZnO electrode; Trennung und Rekombination von Ladungstraegern in Solarzellen mit nanostrukturierter ZnO-Elektrode

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, Julian

    2010-03-02

    The publication investigates electrodes consisting of ZnO nanorods deposited hydrothermally on conductive glass substrate (conductive glass). The electrodes are transparent to visible light and are sensitized for solar cell applications by a light-absorbing layer which in this case consists either of organometallic dye molecules (N3) or of an indium sulfide layer with a thickness of only a few nanometers. Electric contacts for the sensitized electrode are either made of a liquid electrolyte or of a perforated solid electrolyte. Methods of analysis were impedance spectroscopy, time-resolved photocurrent measurements, and time-resolved microwave photoconductivity. A high concentration of up to 10{sup 20} was found in the ZnO nanorods. The dye-sensitized solar cell showed exessively fast recombination with the oxydized dye molecules (sub-{mu}s) but a slow recombination rate with the oxydized redox ions of the electrolyte (ms). In the indium sulfide solar cells, the charges are separated at the contact with the ZnO nanorods while contact with the perforated CuSCN conductor is not charge-separating. Recombination takes place in indium sulfide, directly between the perforated conductor and ZnO, and also via the charge-separating contact with decreasing rates.

  15. Making highly conductive ZnO: creating donors and destroying acceptors

    Science.gov (United States)

    Look, D. C.; Leedy, K. D.

    2012-02-01

    We obtain room-temperature resistivities as low as ρ =1.4 x 10-4 Ω-cm in transparent Ga-doped ZnO grown on Al2O3 by pulsed laser deposition (PLD) at 200 °C in 10 mTorr of pure Ar and then annealed in a Zn enfivironment. Donor ND and acceptor NA concentrations are calculated from a recently developed scattering theory that is valid for any degenerate semiconductor material and requires only two input parameters, mobility μ and carrier concentration n measured at any temperature in the range 5 - 300 K. By comparison with SIMS and positron annihilation measurements, it has been shown that the donors in these samples are mostly GaZn, as expected, but that the acceptors are point defects, Zn vacancies VZn. PLD growth in Ar at 200 °C produces a high concentration of donors [GaZn] = 1.4 x 1021 cm-3, but VZn acceptors are produced at the same time, due to self-compensation. Fortunately, a large fraction of the VZn can be eliminated by annealing in a Zn environment. The theory gives ND and NA, and thus [GaZn] and [VZn], at each step of the growth and annealing process. For convenience, the theory is presented graphically, as plots of μ vs n at various values of compensation ratio K = NA/ND. From the value of K corresponding to the experimental values of μ and n, it is possible to calculate ND = n/(1 - K) and NA = nK/(1 - K).

  16. Laser Processing of Carbon Nanotube Transparent Conducting Films

    Science.gov (United States)

    Mann, Andrew

    Transparent conducting films, or TCFs, are 2D electrical conductors with the ability to transmit light. Because of this, they are used in many popular electronics including smart phones, tablets, solar panels, and televisions. The most common material used as a TCF is indium tin oxide, or ITO. Although ITO has great electrical and optical characteristics, it is expensive, brittle, and difficult to pattern. These limitations have led researchers toward other materials for the next generation of displays and touch panels. The most promising material for next generation TCFs is carbon nanotubes, or CNTs. CNTs are cylindrical tubes of carbon no more than a few atoms thick. They have different electrical and optical properties depending on their atomic structure, and are extremely strong. As an electrode, they conduct electricity through an array of randomly dispersed tubes. The array is highly transparent because of gaps between the tubes, and size and optical properties of the CNTs. Many research groups have tried making CNT TCFs with opto-electric properties similar to ITO but have difficultly achieving high conductivity. This is partly attributed to impurities from fabrication and a mix of different tube types, but is mainly caused by low junction conductivity. In functionalized nanotubes, junction conductivity is impaired by covalently bonded molecules added to the sidewalls of the tubes. The addition of this molecule, known as functionalization, is designed to facilitate CNT dispersion in a solvent by adding properties of the molecule to the CNTs. While necessary for a good solution, functionalization decreases the conductivity in the CNT array by creating defects in the tube's structures and preventing direct inter-carbon bonding. This research investigates removing the functional coating (after tube deposition) by laser processing. Laser light is able to preferentially heat the CNTs because of their optical and electrical properties. Through local conduction

  17. Hybrid nanostructure heterojunction solar cells fabricated using vertically aligned ZnO nanotubes grown on reduced graphene oxide.

    Science.gov (United States)

    Yang, Kaikun; Xu, Congkang; Huang, Liwei; Zou, Lianfeng; Wang, Howard

    2011-10-07

    Using reduced graphene oxide (rGO) films as the transparent conductive coating, inorganic/organic hybrid nanostructure heterojunction photovoltaic devices have been fabricated through hydrothermal synthesis of vertically aligned ZnO nanorods (ZnO-NRs) and nanotubes (ZnO-NTs) on rGO films followed by the spin casting of a poly(3-hexylthiophene) (P3HT) film. The data show that larger interfacial area in ZnO-NT/P3HT composites improves the exciton dissociation and the higher electrode conductance of rGO films helps the power output. This study offers an alternative to manufacturing nanostructure heterojunction solar cells at low temperatures using potentially low cost materials.

  18. An investigation on the In doping of ZnO thin films by spray pyrolysis

    Science.gov (United States)

    Mahesh, Devika; Kumar, M. C. Santhosh

    2018-04-01

    Indium doped zinc oxide (IGZO)thin films are gaining much interest owing to its commercial application as transparent conductive oxide thin films. In the current study thin films indium doped ZnO thin films have been deposited on glass substrates by chemical spray pyrolysis technique with an indium concentration of 1, 2.5 and 4% in Zinc source. The films show a peak shift in the X-Ray Diffraction patterns with varying indium doping concentration. The (101) peak was enhanced for the 2.5 % indium doped films and variation in grain size with the different doping levels was studied. The as-deposited films are uniform and shown high transparency (>90%) in the visible region. Average thicknesses of films are found to be 800nm, calculated using the envelope method. The film with 2.5 % of indium content was found to be highly conducting than the rest, since for the lower and higher concentrations the conductivity was possibly halted by the limit in carrier concentration and indium segregation in the grain boundaries respectively. The enhancement of mobility and carrier concentration was clearly seen in the optimum films.

  19. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    Directory of Open Access Journals (Sweden)

    Md. Poostforush

    2014-04-01

    Full Text Available The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO. Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina but their transparency was preserved (Tλ550 nm ~ 72%. Integrated annealed alumina phase, low refractive index mismatch between resin and alumina and formation of nano-optical fibers through the membrane resulted in such marvel combination. This report shows a great potential of these types of nanocomposites in ‘heat management’ of lightening devices.

  20. Study of the effect of ZnO film on some properties of clear and color window glass

    Science.gov (United States)

    Hamead, Alaa A. Abdul; Ahmed, Sura S.; Khdheer, Mena F.

    2018-05-01

    In the current research, a samples of transparent color and colorless window glass were prepared, (includes metal transition oxides) for construction applications. A nano-film layer of zinc oxide ZnO was deposited by spray pyrolysis technique for use in sustainability applications prepared. Structural properties (x-ray diffraction XRD, scanning electron microscopy SEM and atomic force microscopy AFM), and thermal properties, as well as optical properties and the effect of weathering conditions on applied film on clear and colored glass were examined. The results showed that the deposition film had a thickness of less than 90nm and that it was crystallized with high optical transparently, that was not significantly affected after deposited the ZnO nano film. While thermal insulation decreased significantly after deposition, and the effect of the weather conditions was very low as the ZnO coating was not affected, as the thermal insulation did not change after exposure to accelerated air conditions. Make it suitable in glass applications for buildings in vertical construction.

  1. Transparent Conducting Films with Multilayered Structures Formed by Carbon Nanotubes and Reduced Graphene Oxides

    International Nuclear Information System (INIS)

    Kang, Jie Hun; Jang, Hyun Chul; Choi, Jung Mi; Hyeon, Jae Young; Sok, Jung Hyun

    2014-01-01

    The replacement for indium tin oxide (ITO) in electronic displays should have comparable optical transmittance and electrical conductivity while being easy to source and manufacture. However, novel materials such as single walled carbon nanotubes (SWCNTs) and reduced graphene oxides (RGOs) are incapable of addressing these challenges. We demonstrate a simple method to fabricate good transparent conductive films (TCFs) by combining and leveraging the superior optical transparency of RGOs and the excellent electrical conductivity of SWCNTs. This method affords thin multilayers of SWCNTs and RGOs with excellent optical and electrical properties because these properties are correlated with spraying time and the amount of SWCNTs or RGOs. In general, transmittance is advantageous to RGO as conductance is to CNTs. With a view to finding good TCFs with reduced sheet resistance, but with little sacrifice of transmittance, it is natural to explore the combination of CNT and RGO. The sandwiched multilayer of SWCNTs and RGOs exhibited a low sheet resistance of 214.2 Ω/sq, which was comparable to that of SWCNTs, and a transmittance of 60% at a wavelength of 550 nm. To further reduce the sheet resistance and improve the transparency of the multilayer TCFs, Au doping was carried out. The doping, in combination with controlled spraying of the amount of SWCNTs and RGOs, led to multilayers with resistance/transmittance combinations of 141.3 Ω/sq and 70% and 371.5 Ω/sq and 83%. These properties meet the requisite criteria for an ITO replacement.

  2. Transparent conductive oxides and alternative transparent electrodes for organic photovoltaics and OLEDs; Transparente leitfaehige Elektroden. Oxide und alternative Materialien fuer die organische Photovoltaik und OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Meskamp, Lars; Sachse, Christoph; Kim, Yong Hyun; Furno, Mauro [Technische Univ. Dresden (DE). Inst. fuer Angewandte Photophysik (IAPP); May, Christian [Fraunhofer Institut fuer Photonische Mikrosysteme (IPMS), Dresden (Germany); Leo, Karl [Technische Univ. Dresden (DE). Inst. fuer Angewandte Photophysik (IAPP); Fraunhofer Institut fuer Photonische Mikrosysteme (IPMS), Dresden (Germany)

    2012-08-15

    Organic, photoactive devices, such as OLEDs or organic solar cells, currently use indium tin oxide (ITO) as transparent electrode. Whereas ITO is industry-proven for many years and shows very good electrical and optical properties, its application for low-cost and flexible devices might not be optimal. For such applications innovative technologies such as network-based metal nanowire or carbon nanotube electrodes, graphene, conductive polymers, metal thin-films and alternative transparent conductive oxides emerge. Although some of these technologies are rather experimental and far from application, some of them have the potential to replace ITO in selected applications. (orig.)

  3. Plasmonic transparent conductors

    Science.gov (United States)

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-09-01

    Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.

  4. Stable iodide doping induced by photonic curing for carbon nanotube transparent conductive films

    Science.gov (United States)

    Wachi, Atsushi; Nishikawa, Hiroyuki; Zhou, Ying; Azumi, Reiko

    2018-06-01

    Doping has become crucial for achieving stable and high-performance conductive transparent carbon nanotube (CNT) films. In this study, we systematically investigate the doping effects of a few materials including alkali metal iodides, nonmetal iodide, and metals. We demonstrate that photonic curing can enhance the doping effects, and correspondingly improve the conductivity of CNT films, and that such iodides have better doping effects than metals. In particular, doping with a nonmetal compound (NH4I) shows the largest potential to improve the conductivity of CNT films. Typically, doping with metal iodides reduces the sheet resistance (R S) of CNT films with 70–80% optical transmittances at λ = 550 nm from 600–2400 to 250–440 Ω/square, whereas doping with NH4I reduces R S to 57 and 84 Ω/square at 74 and 84% optical transmittances, respectively. Interestingly, such a doped CNT film exhibits only a slight increase in sheet resistance under an extreme environment of high temperature (85 °C) and high relative humidity (85%) for 350 h. The results suggest that photonic-curing-induced iodide doping is a promising approach to producing high-performance conductive transparent CNT films.

  5. Uniformly embedded silver nanomesh as highly bendable transparent conducting electrode

    International Nuclear Information System (INIS)

    Choi, Hak-Jong; Choo, Soyoung; Jung, Pil-Hoon; Shin, Ju-Hyeon; Kim, Yang-Doo; Lee, Heon

    2015-01-01

    Ag-nanomesh-based highly bendable conducting electrodes are developed using a combination of metal nanotransfer printing and embossing for the 6-inch wafer scale. Two Ag nanomeshes, including pitch sizes of 7.5 and 10 μm, are used to obtain highly transparent (approximately 85% transmittance at a wavelength of 550 nm) and electrically conducting properties (below 10 Ω sq −1 ). The Ag nanomeshes are also distinguished according to the fabrication process, which is called transferred or embedded Ag nanomesh on polyethylene terephthalate (PET) substrate, in order to compare their stability against bending stress. Then the enhancement of bending stability when the Ag nanomesh is embedded in the PET substrate is confirmed. (paper)

  6. Uniformly embedded silver nanomesh as highly bendable transparent conducting electrode

    Science.gov (United States)

    Choi, Hak-Jong; Choo, Soyoung; Jung, Pil-Hoon; Shin, Ju-Hyeon; Kim, Yang-Doo; Lee, Heon

    2015-02-01

    Ag-nanomesh-based highly bendable conducting electrodes are developed using a combination of metal nanotransfer printing and embossing for the 6-inch wafer scale. Two Ag nanomeshes, including pitch sizes of 7.5 and 10 μm, are used to obtain highly transparent (approximately 85% transmittance at a wavelength of 550 nm) and electrically conducting properties (below 10 Ω sq-1). The Ag nanomeshes are also distinguished according to the fabrication process, which is called transferred or embedded Ag nanomesh on polyethylene terephthalate (PET) substrate, in order to compare their stability against bending stress. Then the enhancement of bending stability when the Ag nanomesh is embedded in the PET substrate is confirmed.

  7. Enhanced Raman scattering and nonlinear conductivity in Ag-doped hollow ZnO microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Joseph W.; Levie, Harold W.; McCall, Scott K.; Teslich, Nick E.; Wall, Mark A.; Orme, Christine A.; Matthews, Manyalibo J. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-10-15

    Hollow spherical ZnO particles doped with Ag were synthesized with a two-step oxidation and sublimation furnace annealing process. Ag nanoparticle precipitates, as observed by transmission electron microscopy, were present in the polycrystalline ZnO matrix at Ag concentrations below 0.02 mol%, significantly below the 0.8 mol% solubility limit for Ag in ZnO. Enhanced Raman scattering of ZnO phonon modes is observed, increasing with Ag nanoparticle concentration. A further enhancement in Raman scattering due to resonance effects was observed for LO phonons excited by 2.33-eV photons as compared with Raman scattering under 1.96-eV excitation. Room-temperature photoluminescence spectra showed both a near-band-edge emission due to free exciton transitions and a mid-gap transition due to the presence of singly ionized oxygen vacancies. ZnO:Ag particles were measured electrically in a packed column and in monolithic form, and in both cases displayed nonlinear current-voltage characteristics similar to those previously observed in sintered ZnO:Ag monoliths where Ag-enhanced disorder at grain boundaries is thought to control current transport. We demonstrate therefore that Ag simultaneously modifies the electrical and optical properties of ZnO particles through the introduction of vacancies and other defects. (orig.)

  8. Enhancement of UV photodetector properties of ZnO nanorods/PEDOT:PSS Schottky junction by NGQD sensitization along with conductivity improvement of PEDOT:PSS by DMSO additive

    Science.gov (United States)

    Dhar, Saurab; Majumder, Tanmoy; Chakraborty, Pinak; Mondal, Suvra Prakash

    2018-04-01

    Schottky junction ultraviolet (UV) photodetector was fabricated by spin coating a hole conducting polymer, poly 3,4-ethylenedioxythiophene: polystyrene sulfonate (PEDOT:PSS) on hydrothermally grown zinc oxide (ZnO) nanorod arrays. The UV detector performance was significantly improved two step process. Firstly, ZnO nanorods were modified by sensitizing N doped grapheme quantum dots (NGQDs) for better photoresponce behavior. Afterwards, the junction properties as well as photoresponse was enhanced by modifying electrical conductivity of PEDOT:PSS layer with organic solvent (DMSO). Our NGQD decorated ZnO NRs/DMSO-PEDOT:PSS Schottky junction device demonstrated superior external quantum efficiency (EQE ˜ 90063 %) and responsivity (Rλ˜247 A/W) at 340 nm wavelength and -1V external bias. The response and recovery times of the final photodetector device was very fast compared to GQD as well as NGQD modified and pristine ZnO nanorod based detectors.

  9. Current-voltage characterization of Au contact on sol-gel ZnO films with and without conducting polymer

    International Nuclear Information System (INIS)

    Lin, Yow-Jon; Jheng, Mei-Jyuan; Zeng, Jian-Jhou

    2010-01-01

    This study investigates the current density-voltage (J-V) characteristics of Au/n-type ZnO and Au/polyaniline (PANI)/n-type ZnO devices. ZnO films were prepared by the sol-gel method. For Au/n-type ZnO devices, native defects and impurities resident within the ZnO depletion region contribute to barrier thinning of, carrier hopping across, and tunneling through the Schottky barrier. This leads to the formation of nonalloyed ohmic contacts. However, rectifying junctions were formed on n-type ZnO by employing the simple technique of spin-coating PANI to act as the electron-blocking layer. Our present results suggest that the ZnO depletion region at the PANI/n-type ZnO interface is not the origin of the rectifying behavior of Au/PANI/n-type ZnO contact. In addition, the presence of the built-in potential of Au/PANI/n-type ZnO devices could result in the shift of the J-V curve toward negative voltage. Excellent agreement between simulated and measured data was obtained when the built-in potential was taken into account in the J-V relationship.

  10. A simple and flexible route to large-area conductive transparent graphene thin-films

    NARCIS (Netherlands)

    Arapov, K.; Goryachev, A.; With, de G.; Friedrich, H.

    2015-01-01

    Solution-processed conductive, flexible and transparent graphene thin films continue drawing attention from science and technology due to their potential for many electrical applications. Here, an up-scalable method for the solution processing of graphite to graphene and further to self-assembled

  11. Analysis of optical band-gap shift in impurity doped ZnO thin films by using nonparabolic conduction band parameters

    International Nuclear Information System (INIS)

    Kim, Won Mok; Kim, Jin Soo; Jeong, Jeung-hyun; Park, Jong-Keuk; Baik, Young-Jun; Seong, Tae-Yeon

    2013-01-01

    Polycrystalline ZnO thin films both undoped and doped with various types of impurities, which covered the wide carrier concentration range of 10 16 –10 21 cm −3 , were prepared by magnetron sputtering, and their optical-band gaps were investigated. The experimentally measured optical band-gap shifts were analyzed by taking into account the carrier density dependent effective mass determined by the first-order nonparabolicity approximation. It was shown that the measured shifts in optical band-gaps in ZnO films doped with cationic dopants, which mainly perturb the conduction band, could be well represented by theoretical estimation in which the band-gap widening due to the band-filling effect and the band-gap renormalization due to the many-body effect derived for a weakly interacting electron-gas model were combined and the carrier density dependent effective mass was incorporated. - Highlights: ► Optical band-gaps of polycrystalline ZnO thin films were analyzed. ► Experimental carrier concentration range covered from 10 16 to 10 21 cm −3 . ► Nonparabolic conduction band parameters were used in theoretical analysis. ► The band-filling and the band-gap renormalization effects were considered. ► The measured optical band-gap shifts corresponded well with the calculated ones

  12. Facile Preparation of Carbon-Nanotube-based 3-Dimensional Transparent Conducting Networks for Flexible Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2016-01-01

    Here, we report the controllable fabrication of transparent conductive films (TCFs) for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks of single-walled carbon nanotube (SWCNT)/poly(3

  13. Room temperature transparent conducting magnetic oxide (TCMO properties in heavy ion doped oxide semiconductor

    Directory of Open Access Journals (Sweden)

    Juwon Lee

    2017-08-01

    Full Text Available Bismuth doped ZnO (ZnBi0.03O0.97 thin films are grown using pulsed laser deposition. The existence of positively charged Bi, absence of metallic zinc and the Zn-O bond formation in Bi doped ZnO are confirmed using X-ray Photoelectron Spectroscopy (XPS. Temperature dependent resistivity and UV-visible absorption spectra show lowest resistivity with 8.44 × 10-4 Ω cm at 300 K and average transmittance of 93 % in the visible region respectively. The robust ferromagnetic signature is observed at 350 K (7.156 × 10-4 emu/g. This study suggests that Bi doped ZnO films should be a potential candidate for spin based optoelectronic applications.

  14. Electrodeposition of ZnO nano-wires lattices with a controlled morphology; Electrodepot de reseaux de nanofils de ZnO a morphologie controlee

    Energy Technology Data Exchange (ETDEWEB)

    Elias, J.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C. [Centre National de la Recherche Scientifique (CNRS), Lab. de Chimie Metallurgique des Terres Rares, UPR 209, 94 - Thiais (France)

    2006-07-01

    In this work, it is shown that the electrodeposition is a changeable low cost method which allows, according to the synthesis conditions, to obtain not only plane thin layers of ZnO but different nano-structures too. In a first part, are presented the formation conditions of a compact thin layer of nanocrystalline ZnO electrodeposited on a conducing glass substrate. This layer plays a buffer layer role for the deposition of a lattice of ZnO nano-wires. The step of nano-wires nucleation is not only determined by the electrochemical parameters but by the properties of the buffer layer too as the grain sizes and its thickness. In this context, the use of an electrodeposition method in two steps allows to control the nano-wires length and diameter and their density. The morphology and the structural and optical properties of these nano-structures have been analyzed by different techniques as the scanning and transmission electron microscopy, the X-ray diffraction and the optical spectroscopy. These studies show that ZnO nano-structures are formed of monocrystalline ZnO nano-wires, presenting a great developed surface and a great optical transparency in the visible. These properties make ZnO a good material for the development of nano-structured photovoltaic cells as the extremely thin absorber cells (PV ETA) or those with dye (DSSC) which are generally prepared with porous polycrystalline TiO{sub 2}. Its replacement by a lattice of monocrystalline ZnO nano-wires allows to reduce considerably the number of grain boundaries and in consequence to improve the transport of the electrons. The results are then promising for the PV ETA cells with ZnO nano-wires. (O.M.)

  15. Roll-offset printed transparent conducting electrode for organic solar cells

    International Nuclear Information System (INIS)

    Kim, Inyoung; Kwak, Sun-Woo; Ju, Yeonkyeong; Park, Gun-Young; Lee, Taik-Min; Jang, Yunseok; Choi, Young-Man; Kang, Dongwoo

    2015-01-01

    Transparent conducting electrodes (TCEs) were developed through the roll-offset printing of Ag grid mesh patterns for the application of all-solution processed organic solar cells (OSCs). Due to the remarkable printability of roll-offset printing, the printed TCEs did not show the step coverage problem of subsequent thin layers, which was a chronic problem in other printing techniques. The control of ink cohesion was verified as a critical factor for the high printing quality, which was optimized by adding a polyurethane diol of 2 wt.%. The tensile strength of optimized Ag ink was 322 mN, which led to the clear patterning of Ag nanoparticles. The printed TCEs with different mesh densities of the Ag grid were designed to have a similar property of indium tin oxide (ITO). The measured sheet resistance was 13 Ω/□, and optical transmittance was 86%, including the glass substrate, which was found to be independent of wavelength in the visible spectrum, in contrast with the optical transmittance of ITO. To evaluate the TCE performance as bottom electrodes, all-solution processed OSCs were fabricated on top of the TCEs. The power conversion efficiency (PCE) of the OSCs increased with the increments of the mesh density due to the distinctive increase of the short circuit current density (J sc ), notwithstanding the similar transmittance and sheet resistance of the TCEs. In comparison with ITO, a higher PCE of OSCs was obtained because the printed TCEs with a high mesh density were able to facilitate effective current collection, leading to a significant increase of J sc . - Highlights: • Roll-offset printing provided a remarkable printability of Ag nano-ink. • Control of ink cohesion played a critical role on the patterning of Ag nano-ink. • Printed Ag mesh was used as a transparent conducting electrode. • Transparency and sheet resistance of printed Ag mesh can be designed simply. • Printed Ag mesh was effective for the current collection of organic solar

  16. Roll-offset printed transparent conducting electrode for organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inyoung, E-mail: ikim@kimm.re.kr; Kwak, Sun-Woo; Ju, Yeonkyeong; Park, Gun-Young; Lee, Taik-Min; Jang, Yunseok; Choi, Young-Man; Kang, Dongwoo

    2015-04-01

    Transparent conducting electrodes (TCEs) were developed through the roll-offset printing of Ag grid mesh patterns for the application of all-solution processed organic solar cells (OSCs). Due to the remarkable printability of roll-offset printing, the printed TCEs did not show the step coverage problem of subsequent thin layers, which was a chronic problem in other printing techniques. The control of ink cohesion was verified as a critical factor for the high printing quality, which was optimized by adding a polyurethane diol of 2 wt.%. The tensile strength of optimized Ag ink was 322 mN, which led to the clear patterning of Ag nanoparticles. The printed TCEs with different mesh densities of the Ag grid were designed to have a similar property of indium tin oxide (ITO). The measured sheet resistance was 13 Ω/□, and optical transmittance was 86%, including the glass substrate, which was found to be independent of wavelength in the visible spectrum, in contrast with the optical transmittance of ITO. To evaluate the TCE performance as bottom electrodes, all-solution processed OSCs were fabricated on top of the TCEs. The power conversion efficiency (PCE) of the OSCs increased with the increments of the mesh density due to the distinctive increase of the short circuit current density (J{sub sc}), notwithstanding the similar transmittance and sheet resistance of the TCEs. In comparison with ITO, a higher PCE of OSCs was obtained because the printed TCEs with a high mesh density were able to facilitate effective current collection, leading to a significant increase of J{sub sc}. - Highlights: • Roll-offset printing provided a remarkable printability of Ag nano-ink. • Control of ink cohesion played a critical role on the patterning of Ag nano-ink. • Printed Ag mesh was used as a transparent conducting electrode. • Transparency and sheet resistance of printed Ag mesh can be designed simply. • Printed Ag mesh was effective for the current collection of organic

  17. The Effect of Post-Baking Temperature and Thickness of ZnO Electron Transport Layers for Efficient Planar Heterojunction Organometal-Trihalide Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Kun-Mu Lee

    2017-11-01

    Full Text Available Solution-processed zinc oxide (ZnO-based planar heterojunction perovskite photovoltaic device is reported in this study. The photovoltaic device benefits from the ZnO film as a high-conductivity and high-transparent electron transport layer. The optimal electron transport layer thickness and post-baking temperature for ZnO are systematically studied by scanning electron microscopy, photoluminescence and time-resolved photoluminescence spectroscopy, and X-ray diffraction. Optimized perovskite solar cells (PSCs show an open-circuit voltage, a short-circuit current density, and a fill factor of 1.04 V, 18.71 mA/cm2, and 70.2%, respectively. The highest power conversion efficiency of 13.66% was obtained when the device was prepared with a ZnO electron transport layer with a thickness of ~20 nm and when post-baking at 180 °C for 30 min. Finally, the stability of the highest performance ZnO-based PSCs without encapsulation was investigated in detail.

  18. A ZnO nanowire-based photo-inverter with pulse-induced fast recovery.

    Science.gov (United States)

    Raza, Syed Raza Ali; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil

    2013-11-21

    We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.

  19. VO{sub x} effectively doping CVD-graphene for transparent conductive films

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qinghua; Shi, Liangjing [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Zhang, Qinghong [State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Wang, Weiqi; Zheng, Huifeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Zhang, Yuzhi [The Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050 (China); Liu, Yangqiao, E-mail: yqliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Sun, Jing, E-mail: jingsun@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2016-11-30

    Highlights: • Doping process operated easily. • Sheet resistance decreased efficiently after doping. • Sheet resistance of doped graphene is stable after exposed in the air. • Mechanism of doping process is studied. - Abstract: Chemical vapor deposition(CVD)-synthesized graphene is potentially an alternative for tin-doped indium oxide (ITO) transparent conductive films (TCFs), however its sheet resistance is still too high to meet many demands. Vanadium oxide has been widely applied as smart window materials, however, no study has been reported to use it as dopant to improve the conductivity of graphene TCFs. In this study, we firstly reported that VO{sub x} doping can effectively lower the sheet resistance of CVD-graphene films while keeping its good optical properties, whose transmittance is as high as 86–90%. The optimized VO{sub x}-doped graphene exhibits a sheet resistance as low as 176 Ω/□, which decreases by 56% compared to the undoped graphene films. The doping process is convenient, stable, economical and easy to operate. What is more, VO{sub x} can effectively increase the work function(WF) of the film, making it more appropriate for use in solar cells. The evolution of the VO{sub x} species annealed at different temperatures below 400 °C has been detailed studied for the first time, based on which the doping mechanism is proposed. The prepared VO{sub x} doped graphene is expected to be a promising candidate for transparent conductive film purposes.

  20. Characterization and device applications of ZnO films deposited by high power impulse magnetron sputtering (HiPIMS)

    Science.gov (United States)

    Partridge, J. G.; Mayes, E. L. H.; McDougall, N. L.; Bilek, M. M. M.; McCulloch, D. G.

    2013-04-01

    ZnO films have been reactively deposited on sapphire substrates at 300 °C using a high impulse power magnetron sputtering deposition system and characterized structurally, optically and electronically. The unintentionally doped n-type ZnO films exhibit high transparency, moderate carrier concentration (˜5 × 1018 cm-3) and a Hall mobility of 8.0 cm2 V-1 s-1, making them suitable for electronic device applications. Pt/ZnO Schottky diodes formed on the HiPIMS deposited ZnO exhibited rectification ratios up to 104 at ±2 V and sensitivity to UV light.

  1. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    Science.gov (United States)

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.

  2. Microstructure and characterization of Al-doped ZnO films prepared by RF power sputtering on Al and ZnO targets

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Chun-An [Department of Mechanical Engineering, National Central University, Taiwan (China); Lin, Jing-Chie, E-mail: jclincom@cc.ncu.edu.tw [Department of Mechanical Engineering, National Central University, Taiwan (China); Institute of Material Science and Engineering, National Central University, Taiwan (China); Chang, Yu-Fong [Department of Mechanical Engineering, National Central University, Taiwan (China); Chyou, San-Der [Power Research Institute, Taiwan Power Company, Taiwan (China); Peng, Kun-Cheng [Department of Materials Science and Engineering, Mingchi University of Technology, Taiwan (China)

    2012-06-01

    Al-doped zinc oxide (AZO) transparent conductive films were prepared on a glass substrate using a magnetron sputtering system with a pure zinc oxide (ZnO) target and a pure Al target sputtered using radio frequency (RF) power. The RF power was set at 100 W for the ZnO target and varied from 20 to 150 W for the Al target. The morphology of the thin films was examined by field-emission scanning electron microscope (FE-SEM), and their composition was analyzed by the equipped energy-dispersive X-ray spectroscopy (EDS). The cross section of the films determined through FE-SEM indicated that their thickness was around 650 nm. EDS analysis revealed that the Al-dopant concentration of the AZO films increased in the following order: 0.85 at.% (20 W) < 1.60 at.% (40 W) < 3.52 at.% (100 W) < 4.34 at.% (150 W). Analysis of the films using X-ray diffractometer (XRD) indicated that all films had a wurtzite structure with a texture of (0 0 2). High-resolution transmission electron microscopy (HRTEM) revealed a number of defects in the films, such as stacking faults and dislocations. Ultraviolet photoelectron spectroscopy (UPS) was used to estimate the optical energy gap (E{sub g}) for the AZO thin films. The energy gap increases from 3.39 to 3.58 eV as the RF power applied to the Al target increase. The electrical resistivity of the films decreased from 3.43 Multiplication-Sign 10{sup -2} {Omega} cm to 3.29 Multiplication-Sign 10{sup -3} {Omega} cm as the RF power increased from 20 to 150 W when a four-point probe was used to investigate. Atomic force microscope (AFM) revealed that the surface roughness of the films increased with increasing RF power. The average optical transmittance of the films was determined by UV-visible spectrometer. The films are suitable for use as transparent conductive oxide films in the optoelectronic industry. A decrease in the electrical resistivity of the film with increasing Al-dopant concentration was ascribed to an increase in the carrier

  3. Fully patterned and low temperature transparent ZnO-based inverters

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Heredia, G. [Centro de Investigación en Materiales Avanzados, Unidad Monterrey, México (Mexico); Department of Materials Science and Engineering, University of Texas at Dallas (United States); Mejia, I.; Rivas-Aguilar, M.E.; Hernandez-Como, N. [Department of Materials Science and Engineering, University of Texas at Dallas (United States); Martinez-Landeros, V.H. [Centro de Investigación en Materiales Avanzados, Unidad Monterrey, México (Mexico); Department of Materials Science and Engineering, University of Texas at Dallas (United States); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Unidad Monterrey, México (Mexico); Quevedo-Lopez, M.A., E-mail: mquevedo@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas (United States)

    2013-10-31

    The fabrication and characterization of transparent logic inverters based on zinc oxide (ZnO) thin film transistors (TFTs) is reported. The inverters are fabricated using standard photolithographic techniques on glass substrates, and the entire fabrication process temperature is maintained < 100 °C, which render the devices suitable for flexible and transparent electronics applications. Pulsed laser deposition is used to deposit aluminum-doped zinc oxide and ZnO as electrode and active semiconductor materials, respectively. Electrical characterization for individual TFTs demonstrate mobilities of ∼ 10 cm{sup 2}/V-s, threshold voltages of 6 V, sub-threshold slopes of 630 mV/decade and I{sub ON}/I{sub OFF} ratios of 5 × 10{sup 6}. Films characterized by UV-Vis showed optical transmission > 80% in the visible spectrum. The inverters are analyzed with AC input signals at frequencies of 100 and 500 Hz. The AC response shows an average rise and fall time transitions of 0.65 and 0.44 ms, respectively. Measured inverters delay is in the order of 0.21 ms. - Highlights: • Logic inverters based on zinc oxide thin film transistors. • Inverters fabricated using temperatures below 100 °C and standard photolithography. • Transparent aluminum-doped zinc oxide as gate, drain and source electrodes. • Devices with total transmittance in the visible range above 80%. • AC inverter response up to 500 Hz.

  4. Fully patterned and low temperature transparent ZnO-based inverters

    International Nuclear Information System (INIS)

    Gutierrez-Heredia, G.; Mejia, I.; Rivas-Aguilar, M.E.; Hernandez-Como, N.; Martinez-Landeros, V.H.; Aguirre-Tostado, F.S.; Quevedo-Lopez, M.A.

    2013-01-01

    The fabrication and characterization of transparent logic inverters based on zinc oxide (ZnO) thin film transistors (TFTs) is reported. The inverters are fabricated using standard photolithographic techniques on glass substrates, and the entire fabrication process temperature is maintained < 100 °C, which render the devices suitable for flexible and transparent electronics applications. Pulsed laser deposition is used to deposit aluminum-doped zinc oxide and ZnO as electrode and active semiconductor materials, respectively. Electrical characterization for individual TFTs demonstrate mobilities of ∼ 10 cm 2 /V-s, threshold voltages of 6 V, sub-threshold slopes of 630 mV/decade and I ON /I OFF ratios of 5 × 10 6 . Films characterized by UV-Vis showed optical transmission > 80% in the visible spectrum. The inverters are analyzed with AC input signals at frequencies of 100 and 500 Hz. The AC response shows an average rise and fall time transitions of 0.65 and 0.44 ms, respectively. Measured inverters delay is in the order of 0.21 ms. - Highlights: • Logic inverters based on zinc oxide thin film transistors. • Inverters fabricated using temperatures below 100 °C and standard photolithography. • Transparent aluminum-doped zinc oxide as gate, drain and source electrodes. • Devices with total transmittance in the visible range above 80%. • AC inverter response up to 500 Hz

  5. A Facile Method for Preparing Transparent, Conductive, and Paper-Like Silver Nanowire Films

    Directory of Open Access Journals (Sweden)

    Yajie Wang

    2011-01-01

    Full Text Available Transparent, conductive, and flexible silver nanowire (AgNW films have been fabricated by a facile two-step method. Firstly, the well-dispersed AgNW suspension is vacuum filtered using mixed esters of cellulose (MCE membranes as filters. Then, the AgNW-MCE films are treated with acetone vapor. After the infiltration of acetone vapor, the white and porous MCE membranes change into transparent and pore-free, and AgNW-MCE films are obtained with extraordinary optical, conductive, and mechanical properties. An optimal result is obtained with transmittance of 85% at 550 nm and sheet resistance about 50 Ohm/sq. The flexibility of AgNW-MCE films is remarkable, which is comparable to that of the AgNW film on flexible polyethylene terephthalate (PET. More important, AgNW-MCE films show an excellent adhesion to the substrate, which causes a stable electrical conductivity even after scotch tape test and finger friction test. As a result of improved adhesion to the substrate, the sheet resistance of AgNW-MCE films is about 20% smaller than that of AgNW-PET films.

  6. Development and applications of transparent conductive nanocellulose paper

    OpenAIRE

    Li, Shaohui; Lee, Pooi See

    2017-01-01

    Abstract Increasing attention has been paid to the next generation of ‘green’ electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanoc...

  7. Transparent conducting polymer electrolyte by addition of lithium to the molecular complex chitosane-poly(aminopropyl siloxane)

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, S.; Retuert, P.J.; Gonzalez, Guillermo

    2003-06-30

    Transparent lithium-ion conducting films were prepared by adding lithium perchlorate to a mixture of chitosane (CHI) and poly(aminopropylsiloxane) (pAPS) in a molar ratio 0.6:1 by sol-gel methods. The morphological and molecular properties, determined by scanning electron microscopy and FT-IR, respectively, depend on the lithium salt concentration. The same techniques were also used for performing a 'titration' of the capacity of the film for incorporating lithium salt. Results show that about 0.8 mol lithium salt per mol chitosane can be added before the product losses the transparence and molecular compatibility characteristic of the pristine CHI/pAPS polymer complex. When lithium salt addition reaches the tolerance limit, anisotropically oriented patterns are observed in the hybrid films. Both transparence and ionic conductivity of the product appear to be related to the layered nature of formed nanocomposites. The properties of obtained films may be furthermore rationalized considering the chemical functionality and the Lewis donor-acceptor affinity of the components.

  8. Morphological differences in transparent conductive indium-doped zinc oxide thin films deposited by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jongthammanurak, Samerkhae; Cheawkul, Tinnaphob; Witana, Maetapa

    2014-01-01

    In-doped ZnO thin films were deposited on glass substrates by an ultrasonic spray pyrolysis technique, using indium chloride (InCl 3 ) as a dopant and zinc acetate solution as a precursor. Increasing the [at.% In]/[at.% Zn] ratio changed the crystal orientations of thin films, from the (100) preferred orientation in the undoped, to the (101) and (001) preferred orientations in the In-doped ZnO thin films with 4 at.% and 6–8 at.%, respectively. Undoped ZnO thin film shows relatively smooth surface whereas In-doped ZnO thin films with 4 at.% and 6–8 at.% show surface features of pyramidal forms and hexagonal columns, respectively. X-ray diffraction patterns of the In-doped ZnO thin films with [at.% In]/[at.% Zn] ratios of 6–8% presented an additional peak located at 2-theta of 32.95°, which possibly suggested that a metastable Zn 7 In 2 O 10 phase was present with the ZnO phase. ZnO thin films doped with 2 at.% In resulted in a sheet resistance of ∼ 645 Ω/sq, the lowest value among thin films with [at.% In]/[at.% Zn] ratio in a range of 0–8%. The precursor molarity was changed between 0.05 M and 0.20 M at an [at.% In]/[at.% Zn] ratio of 2%. Increasing the precursor molarity in a range of 0.10 M–0.20 M resulted in In-doped ZnO thin films with the (100) preferred orientation. An In-doped ZnO thin film deposited by 0.20 M precursor showed a sheet resistance of 25 Ω/sq, and an optical transmission of 75% at 550 nm wavelength. The optical band gap estimated from the transmission result was 3.292 eV. - Highlights: • Indium-doped ZnO thin films were grown on glass using ultrasonic spray pyrolysis. • Thin films' orientations depend on In doping and Zn molarity of precursor solution. • Highly c-axis or a-axis orientations were found in the In-doped ZnO thin films. • In doping of 6–8 at.% may have resulted in ZnO and a metastable Zn 7 In 2 O 10 phases. • Increasing precursor molarity reduced sheet resistance of In-doped ZnO thin films

  9. AZO-Ag-AZO transparent electrode for amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Theuring, Martin; Vehse, Martin; Maydell, Karsten von; Agert, Carsten

    2014-01-01

    Metal-based transparent electrodes can be fabricated at low temperatures, which is crucial for various substrate materials and solar cells. In this work, an oxide-metal-oxide (OMO) transparent electrode based on aluminum zinc oxide (AZO) and silver is compared to AZO layers, fabricated at different temperatures and indium tin oxides. With the OMO structure, a sheet resistance of 7.1/square and a transparency above 80% for almost the entire visible spectrum were achieved. The possible application of such electrodes on a textured solar cell was demonstrated on the example of a rough ZnO substrate. An OMO structure is benchmarked in a n-i-p amorphous silicon solar cell against an AZO front contact fabricated at 200 °C. In the experiment, the OMO electrode shows a superior performance with an efficiency gain of 30%. - Highlights: • Multilayer transparent electrode based on aluminum zinc oxide (AZO) and Ag • Comparison of AZO-Ag-AZO transparent electrode to AZO and indium tin oxide • Performance of AZO-Ag-AZO transparent electrodes on textured surfaces • Comparison of amorphous silicon solar cells with different transparent electrodes

  10. Enhanced efficiency of organic solar cells by using ZnO as an electron-transport layer

    Science.gov (United States)

    Ullah, Irfan; Shah, Said Karim; Wali, Sartaj; Hayat, Khizar; Khattak, Shaukat Ali; Khan, Aurangzeb

    2017-12-01

    This paper reports the use of ZnO, processed by sol-gel, as an efficient electron-transport layer for inverted organic photovoltaic cells. The device with incorporated ZnO interlayer, annealed at 100 °C, between transparent electrode and blend film plays an effective role in enhancing photovoltaic properties: the short-circuit current density (J sc) doubles while open-circuit voltage (V oc) and fill factor increase by 0.12 V and 10 %, respectively. Power conversion efficiency (PCE) of solar cell increases, approximately, three times. The improvement in the PCE is attributed to the presence of ZnO which, being an electron-facilitating layer, provides an energy step for charge collection at electrodes.

  11. Features of Random Metal Nanowire Networks with Application in Transparent Conducting Electrodes

    KAUST Repository

    Maloth, Thirupathi

    2017-05-01

    Among the alternatives to conventional Indium Tin Oxide (ITO) used in making transparent conducting electrodes, the random metal nanowire (NW) networks are considered to be superior offering performance at par with ITO. The performance is measured in terms of sheet resistance and optical transmittance. However, as the electrical properties of such random networks are achieved thanks to a percolation network, a minimum size of the electrodes is needed so it actually exceeds the representative volume element (RVE) of the material and the macroscopic electrical properties are achieved. There is not much information about the compatibility of this minimum RVE size with the resolution actually needed in electronic devices. Furthermore, the efficiency of NWs in terms of electrical conduction is overlooked. In this work, we address the above industrially relevant questions - 1) The minimum size of electrodes that can be made based on the dimensions of NWs and the material coverage. For this, we propose a morphology based classification in defining the RVE size and we also compare the same with that is based on macroscopic electrical properties stabilization. 2) The amount of NWs that do not participate in electrical conduction, hence of no practical use. The results presented in this thesis are a design guide to experimentalists to design transparent electrodes with more optimal usage of the material.

  12. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    Science.gov (United States)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  13. Characterization of donor states in ZnO

    International Nuclear Information System (INIS)

    Seghier, D.; Gislason, H.P.

    2007-01-01

    We performed electrical and optical measurements on as-grown ZnO which exhibits n-type conductivity. So far, neither the origin of the residual conductivity nor the electrical properties of the responsible defects is fully understood. We investigated shallow and deep donors in ZnO materials grown with pulsed laser injection using admittance spectroscopy. We identifed shallow donors with ionization energies as low as 15 meV which may be attributed to native defects. Annealing in nitrogen ambient enhances the conductivity by further lowering the ionization energy of the shallow donors. Using optically excited admittance spectroscopy we also found deep defects. They are strongly metastable and account for a significant part of the persistent photoconductivity in our ZnO materials

  14. Optical and electrical properties of Cu-based all oxide semi-transparent photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Sik; Patel, Malkeshkumar; Yadav, Pankaj; Kim, Joondong, E-mail: joonkim@inu.ac.kr, E-mail: dwkim@ewha.ac.kr [Photoelectric and Energy Device Application Lab (PEDAL) and Department of Electrical Engineering, Incheon National University, 119 Academy Rd., Yeonsu, Incheon 406772 (Korea, Republic of); Sohn, Ahrum; Kim, Dong-Wook, E-mail: joonkim@inu.ac.kr, E-mail: dwkim@ewha.ac.kr [Department of Physics, Ewha Womans University, Seoul 120750 (Korea, Republic of)

    2016-09-05

    Zero-bias operating Cu oxide-based photodetector was achieved by using large-scale available sputtering method. Cu oxide (Cu{sub 2}O or CuO) was used as p-type transparent layer to form a heterojunction by contacting n-type ZnO layer. All metal-oxide materials were employed to realize transparent device at room temperature and showed a high transparency (>75% at 600 nm) with excellent photoresponses. The structural, morphological, optical, and electrical properties of Cu oxides of CuO and Cu{sub 2}O are evaluated in depth by UV-visible spectrometer, X-ray diffraction, scanning electron microscopy, atomic force microscopy, Kelvin probe force microscopy, and Hall measurements. We may suggest a route of high-functional Cu oxide-based photoelectric devices for the applications in flexible and transparent electronics.

  15. Bromination of Graphene: A New Route to Making High Performance Transparent Conducting Electrodes with Low Optical Losses

    KAUST Repository

    Mansour, Ahmed; Dey, Sukumar; Amassian, Aram; Tanielian, Minas H.

    2015-01-01

    The unique optical and electrical properties of graphene have triggered great interest in its application as a transparent conducting electrode material and significant effort has been invested in achieving high conductivity while maintaining

  16. Bromination of graphene: a new route to making high performance transparent conducting electrodes with low optical losses

    KAUST Repository

    Mansour, Ahmed; Amassian, Aram; Tanielian, Minas H.

    2015-01-01

    The high optical transmittance, electrical conductivity, flexibility and chemical stability of graphene have triggered great interest in its application as a transparent conducting electrode material and as a potential replacement for indium doped

  17. Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films

    Science.gov (United States)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2017-05-01

    ZnO (pristine) and Al doped ZnO (AZO) films were prepared using sol-gel spin coating method. The XRD analysis showed the enhanced compressive stress in AZO film. The presence of extended states below the conduction band edge in AZO accounts for the redshift in optical bandgap. The PL spectra of AZO showed significant blue emission due to the carrier recombination from defect states. The TRPL curves showed the dominant DAP recombination in ZnO film, whereas defect related recombination in Al doped ZnO film. Color parameters viz: the dominant wavelength, color coordinates (x,y), color purity, luminous efficiency and correlated color temperature (CCT) of ZnO and AZO films are calculated using 1931 (CIE) diagram. Further, a strong blue emission with color purity more than 96% is observed in both the films. The enhanced blue emission in AZO significantly increased the luminous efficiency (22.8%) compared to ZnO film (10.8%). The prepared films may be used as blue phosphors in white light generation.

  18. Photoconductive ZnO Films Printed on Flexible Substrates by Inkjet and Aerosol Jet Techniques

    Science.gov (United States)

    Winarski, D. J.; Kreit, E.; Heckman, E. M.; Flesburg, E.; Haseman, M.; Aga, R. S.; Selim, F. A.

    2018-02-01

    Zinc oxide (ZnO) thin films have remarkable versatility in sensor applications. Here, we report simple ink synthesis and printing methods to deposit ZnO photodetectors on a variety of flexible and transparent substrates, including polyimide (Kapton), polyethylene terephthalate, cyclic olefin copolymer (TOPAS), and quartz. X-ray diffraction analysis revealed the dependence of the film orientation on the substrate type and sintering method, and ultraviolet-visible (UV-Vis) absorption measurements revealed a band edge near 380 nm. van der Pauw technique was used to measure the resistivity of undoped ZnO and indium/gallium-codoped ZnO (IGZO) films. IGZO films showed lower resistivity and larger average grain size compared with undoped ZnO films due to addition of In3+ and Ga3+, which act as donors. A 365-nm light-emitting diode was used to photoirradiate the films to study their photoconductive response as a function of light intensity at 300 K. The results revealed that ZnO films printed by aerosol jet and inkjet techniques exhibited five orders of magnitude photoconductivity, indicating that such films are viable options for use in flexible photodetectors.

  19. Transparent nanocrystalline ZnO films prepared by spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Berber, M. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany)]. E-mail: mete.berber@sustech.de; Bulto, V. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Kliss, R. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Hahn, H. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Forschungszentrum Karlsruhe, Institute for Nanotechnology, Postfach 3640, 76021 Karlsruhe (Germany); Joint Research Laboratory Nanomaterials, TU Darmstadt, Institute of Materials Science, Petersenstr. 23, 64287 Darmstadt (Germany)

    2005-09-15

    Dispersions of zinc oxide nanoparticles synthesized by the electrochemical deposition under oxidizing conditions process with organic surfactants, were spin coated on glass substrates. After sintering, the microstructure, surface morphology, and electro-optical properties of the transparent nanocrystalline zinc oxide films have been investigated for different coating thicknesses and organic solvents.

  20. Transparent nanocrystalline ZnO films prepared by spin coating

    International Nuclear Information System (INIS)

    Berber, M.; Bulto, V.; Kliss, R.; Hahn, H.

    2005-01-01

    Dispersions of zinc oxide nanoparticles synthesized by the electrochemical deposition under oxidizing conditions process with organic surfactants, were spin coated on glass substrates. After sintering, the microstructure, surface morphology, and electro-optical properties of the transparent nanocrystalline zinc oxide films have been investigated for different coating thicknesses and organic solvents

  1. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei; Song, Jinhui; Lu, Ming-Yen; Chen, Min-Teng; Gao, Yifan; Chen, Lih-Juann; Wang, Zhong Lin

    2009-01-01

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive

  2. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    International Nuclear Information System (INIS)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-01

    Graphical abstract: The GO hybrid CNTs to fabricate TCFs could dramatically enhance the conductivity, adhesion, flatness, and wettability of the films, all these improvements are advantageous for optoelectronic applications. - Highlights: • TCFs were fabricated using GO/CNT hybrid inks by a simple spray method. • Conductivity of TCFs was improved through the hybrid of GO/CNT, sheet resistance of TCFs was 146 Ω/sq at the transmittance of 86.0% when the ratio of GO/CNT got 1.5:1.0. • The flatness and wettability of TCFs were improved dramatically, which is advantageous for the solution-based processing of organic electronics for spraying and printing. • The adhesion of the TCFs increased dramatically with the raise of the ratio GO/CNT hybrid. - Abstract: Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  3. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang, E-mail: genghz@tjpu.edu.cn; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-15

    Graphical abstract: The GO hybrid CNTs to fabricate TCFs could dramatically enhance the conductivity, adhesion, flatness, and wettability of the films, all these improvements are advantageous for optoelectronic applications. - Highlights: • TCFs were fabricated using GO/CNT hybrid inks by a simple spray method. • Conductivity of TCFs was improved through the hybrid of GO/CNT, sheet resistance of TCFs was 146 Ω/sq at the transmittance of 86.0% when the ratio of GO/CNT got 1.5:1.0. • The flatness and wettability of TCFs were improved dramatically, which is advantageous for the solution-based processing of organic electronics for spraying and printing. • The adhesion of the TCFs increased dramatically with the raise of the ratio GO/CNT hybrid. - Abstract: Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  4. Amorphous and crystalline In{sub 2}O{sub 3}-based transparent conducting films for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Koida, Takashi [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2017-02-15

    We reported solar cells with reduced electrical and optical losses using hydrogen-doped In{sub 2}O{sub 3} (In{sub 2}O{sub 3}:H) transparent conducting layers with low sheet resistance and high transparence characteristics. The transparent conducting oxide (TCO) films were prepared by solid-phase crystallization of amorphous (a-) In{sub 2}O{sub 3}:H films grown by magnetron sputtering. The polycrystalline (poly-) In{sub 2}O{sub 3}:H films exhibited electron mobilities (over 100 cm{sup 2}V{sup -1} s{sup -1}) 2 and 3 times greater than those of conventional TCO films. This paper describes (i) the current status of the electrical properties of In{sub 2}O{sub 3}-based TCO; (ii) the structural and optoelectrical properties of the a-In{sub 2}O{sub 3}:H and poly-In{sub 2}O{sub 3}:H films, focusing on the inhomogeneity and stability characteristics of the films; and (iii) the electrical properties of bilayer TCO. The potential of these high mobility TCO films for solar cells was also described. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Flexible transparent conductive materials based on silver nanowire networks: a review

    International Nuclear Information System (INIS)

    Langley, Daniel; Giusti, Gaël; Bellet, Daniel; Mayousse, Céline; Celle, Caroline; Simonato, Jean-Pierre

    2013-01-01

    The class of materials combining high electrical or thermal conductivity, optical transparency and flexibility is crucial for the development of many future electronic and optoelectronic devices. Silver nanowire networks show very promising results and represent a viable alternative to the commonly used, scarce and brittle indium tin oxide. The science and technology research of such networks are reviewed to provide a better understanding of the physical and chemical properties of this nanowire-based material while opening attractive new applications. (topical review)

  6. ZnO nanorods/AZO photoanode for perovskite solar cells fabricated in ambient air

    Science.gov (United States)

    La Ferrara, Vera; De Maria, Antonella; Rametta, Gabriella; Della Noce, Marco; Vittoria Mercaldo, Lucia; Borriello, Carmela; Bruno, Annalisa; Delli Veneri, Paola

    2017-08-01

    ZnO nanorods are a good candidate for replacing standard photoanodes, such as TiO2, in perovskite solar cells and in principle superseding the high performances already obtained. This is possible because ZnO nanorods have a fast electron transport rate due to their large surface area. An array of ZnO nanorods is grown by chemical bath deposition starting from Al-doped ZnO (AZO) used both as a seed layer and as an efficient transparent anode in the visible spectral range. In particular, in this work we fabricate methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells using glass/AZO/ZnO nanorods/perovskite/Spiro-OMeTAD/Au as the architecture. The growth of ZnO nanorods has been optimized by varying the precursor concentrations, growth time and solution temperature. All the fabrication process and photovoltaic characterizations have been carried out in ambient air and the devices have not been encapsulated. Power conversion efficiency as high as 7.0% has been obtained with a good stability over 20 d. This is the highest reported value to the best of our knowledge and it is a promising result for the development of perovskite solar cells based on ZnO nanorods and AZO.

  7. Carbon Nanotube Networks Reinforced by Silver Nanowires with Improved Optical Transparency and Conductivity

    Science.gov (United States)

    Martine, Patricia; Fakhimi, Azin; Lin, Ling; Jurewicz, Izabela; Dalton, Alan; Zakhidov, Anvar A.; Baughman, Ray H.

    2015-03-01

    We have fabricated highly transparent and conductive free-standing nanocomposite thin film electrodes by adding silver nanowires (AgNWs) to dry-spun Multiwall Carbon Nanotube (MWNT) aerogels. This nanocomposite exhibits desirable properties such as high optical transmittance, excellent flexibility and enhanced electrical conductivity. The incorporation of the AgNWs to the MWNT aerogels was accomplished by using a spray coating method. The optical transparency and sheet resistance of the nanocomposite was tuned by adjusting the concentration of AgNWs, back pressure and nozzle distance of the spray gun to the MWNT aerogel during deposition. As the solvent evaporated, the aerogel MWNT bundles densified via surface tension which caused the MWNT bundles to collapse. This adjustable process was responsible in forming well defined apertures that increased the nanocomposite's transmittance up to 90 percent. Via AgNWs percolation and random interconnections between separate MWNT bundles in the aerogel matrix, the sheet resistance decreased from 1 K ohm/sq to less than 100 ohm/sq. Alan G. MacDiarmid NanoTech Institute

  8. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment

    Directory of Open Access Journals (Sweden)

    Diana E. Proffit

    2010-11-01

    Full Text Available Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides Zn0, In2O3, and SnO2 as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode materials and illustrates how these relate to the underlying defect chemistry, the dependence of surface dipoles on crystallographic orientation and/or surface termination, and Fermi level pinning.

  9. MOCVD growth of transparent conducting Cd2SnO4 thin films

    International Nuclear Information System (INIS)

    Metz, A.W.; Poeppelmeier, K.R.; Marks, T.J.; Lane, M.A.; Kannewurt, C.R.

    2004-01-01

    The first preparation of transparent conducting Cd 2 SnO 4 thin films by a simple MOCVD process is described. As-deposited films using Cd(hfa) 2 (TMEDA) (Figure), at 365 C are found to be highly crystalline with a relatively wide range of grain size of 100-300 nm. XRD indicates a cubic spinel Cd 2 SnO 4 crystal structure and the possible presence of a small amount of CdO. The films exhibit conductivities of 2170 S/cm and a bandgap of 3.3 eV, rivaling those of commercial tin-doped indium oxide. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  10. Current Spreading Layer with High Transparency and Conductivity for near-ultraviolet light emitting diodes

    DEFF Research Database (Denmark)

    Lin, Li; Jensen, Flemming; Herstrøm, Berit

    Transparent conductive aluminum-doped zinc oxide (AZO) layer was deposited on GaN-based near-ultraviolet (NUV) light emitting epitaxial wafers as current spreading layer by a sputtering process. Efforts were made to improve the electrical properties of AZO in order to produce ohmic contact....

  11. Implanted ZnO thin films: Microstructure, electrical and electronic properties

    International Nuclear Information System (INIS)

    Lee, J.; Metson, J.; Evans, P.J.; Kinsey, R.; Bhattacharyya, D.

    2007-01-01

    Magnetron sputtered polycrystalline ZnO thin films were implanted using Al, Ag, Sn, Sb and codoped with TiN in order to improve the conductivity and to attempt to achieve p-type behaviour. Structural and electrical properties of the implanted ZnO thin films were examined with X-ray diffractometry (XRD), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), atomic force microscopy (AFM) and conductivity measurements. Depth profiles of the implanted elements varied with the implant species. Implantation causes a partial amorphisation of the crystalline structure and decreases the effective grain size of the films. One of the findings is the improvement, as a consequence of implantation, in the conductivity of initially poorly conductive samples. Heavy doping may help for the conversion of conduction type of ZnO thin films. Annealing in vacuum mitigated structural damage and stress caused by implantation, and improved the conductivity of the implanted ZnO thin films

  12. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Nian, Qiong; Cheng, Gary J. [Birck Nanotechnology Center and School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Callahan, Michael; Bailey, John [Greentech Solutions, Inc., Hanson, Massachusetts 02341 (United States); Look, David [Semiconductor Research Center, Wright State University, Dayton, Ohio 45435 (United States); Efstathiadis, Harry [College of Nanoscale Science and Engineering (CNSE), University of Albany, Albany, New York 12203 (United States)

    2015-06-01

    Commercial production of transparent conducting oxide (TCO) polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC) of solution deposited aluminium-doped zinc oxide (AZO) nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm{sup 2} V{sup −1} s{sup −1} with corresponding electrical resistivity and sheet resistances as low as 1 × 10{sup −3} Ω cm and 75 Ω/sq, respectively. The high mobility also enabled a high transmittance (T) of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods.

  13. Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres

    Science.gov (United States)

    Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2018-06-01

    We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.

  14. Synergistic effects of Mo and F doping on the quality factor of ZnO thin films prepared by a fully automated home-made nebulizer spray technique

    Science.gov (United States)

    Ravichandran, K.; Dineshbabu, N.; Arun, T.; Manivasaham, A.; Sindhuja, E.

    2017-01-01

    Transparent conducting oxide films of undoped, Mo doped, Mo + F co-doped ZnO were deposited using a facile homemade nebulizer spray pyrolysis technique. The effects of Mo and F doping on the structural, optical, electrical and surface morphological properties were investigated using XRD, UV-vis-NIR spectroscopy, I-V and Hall probe techniques, FESEM and AFM, and XPS, respectively. The XRD analysis confirms that all the films are well crystallized with hexagonal wurtzite structure. All the synthesized samples exhibit high transmittance (above 85%) in the visible region. The current-voltage (I-V) characteristics show the ohmic conduction nature of the films. The Hall probe measurements show that the synergistic effects of Mo and F doping cause desirable improvements in the quality factor of the ZnO films. A minimum resistivity of 5.12 × 10-3 Ω cm with remarkably higher values of mobility and carrier concentration is achieved for Mo (2 at.%) + F (15 at.%) co-doped ZnO films. A considerable variation in the intensity of deep level emission caused by Mo and F doping is observed in the photoluminescence (PL) studies. The presence of the constituent elements in the samples is confirmed by XPS analysis.

  15. Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors.

    Science.gov (United States)

    Bai, Shouli; Sun, Chaozheng; Wan, Pengbo; Wang, Cheng; Luo, Ruixian; Li, Yaping; Liu, Junfeng; Sun, Xiaoming

    2015-01-21

    Transparent chemical gas sensors are assembled from a transparent conducting film of hierarchically nanostructured polyaniline (PANI) networks fabricated on a flexible PET substrate, by coating silver nanowires (Ag NWs) followed by the in situ polymerization of aniline near the sacrificial Ag NW template. The sensor exhibits enhanced gas sensing performance at room temperature in both sensitivity and selectivity to NH3 compared to pure PANI film. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Flexible transparent conducting films with embedded silver networks composed of bimodal-sized nanoparticles for heater application

    Science.gov (United States)

    Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin

    2018-06-01

    A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag+ ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm2) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s‑1 heat-up rate at a low input power density.

  17. Device quality ZnO grown using a Filtered Cathodic Vacuum Arc

    International Nuclear Information System (INIS)

    Elzwawi, Salim; Kim, Hyung Suk; Heinhold, Robert; Lynam, Max; Turner, Gary; Partridge, Jim G.; McCulloch, Dougal G.

    2012-01-01

    In this paper we report on the structural, electrical and optical characteristics of unintentionally doped ZnO films grown on a-plane sapphire substrates using the Filtered Cathodic Vacuum Arc (FCVA) technique. The resulting films showed considerable promise for device applications with properties including high transparency, moderate intrinsic carrier concentrations (10 17 -10 19 cm -3 ), electron mobilities up to 30 cm 2 /Vs, low surface roughness (typically <2% of film thickness) and well-structured photoluminescence. Post-annealing in oxygen at temperatures up to 800 °C produced significant improvements in the properties of these films. Silver oxide Schottky diodes fabricated on FCVA ZnO showed ideality factors as low as 1.20 and good sensitivity to ultraviolet light.

  18. Structure and Properties of Al and Ga- Doped ZnO

    Science.gov (United States)

    Temizer, Namik Kemal

    Recently there is tremendous interest in Transparent conducting oxide (TCO) research due to the unlimited and exciting application areas. Current research is mostly focused on finding alternative low cost and sustainable materials in order to replace indium tin oxide (ITO), which caused serious concern due to the increasing cost of indium and chemical stability issues of ITO. The primary aim of this research is to develop alternative TCO materials with superior properties in order to increase the efficiency in optoelectronic applications, as well as to study the properties of these materials to fully characterize them. We have grown Al and Ga-doped ZnO films with an optimized composition under different deposition conditions in order to understand the effect of processing parameters on the film properties. We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110muO-cm) values. The films grown in an ambient oxygen partial pressure (PO2 ) of 50 mTorr and at growth temperatures from room temperature to 600°C showed semiconducting behavior, whereas samples grown at a Po2 of 1 mTorr showed metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical and magnetic properties and such changes in physical properties are controlled predominantly by the defect content. To gain a better understanding of the conduction processes in doped ZnO thin films, we have studied the temperature variation of resistivity of some selected samples that showed some interesting behavior

  19. Facile Preparation of Carbon-Nanotube-based 3-Dimensional Transparent Conducting Networks for Flexible Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-04-12

    Here, we report the controllable fabrication of transparent conductive films (TCFs) for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS). How baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (> 69 %, PET = 90 %), and good stability when subjected to cyclic loading (> 1000 cycles, better than indium tin oxide film) during processing. Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5×5 sensing pixels).

  20. Self-aligned nanocrystalline ZnO hexagons by facile solid-state and co-precipitation route

    International Nuclear Information System (INIS)

    Thorat, J. H.; Kanade, K. G.; Nikam, L. K.; Chaudhari, P. D.; Panmand, R. P.; Kale, B. B.

    2012-01-01

    In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 °C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 °C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 °C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50–60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25–50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.

  1. Self-aligned nanocrystalline ZnO hexagons by facile solid-state and co-precipitation route

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, J. H. [Mahatma Phule College, Department of Chemistry (India); Kanade, K. G. [Annasaheb Awate College (India); Nikam, L. K. [B.G. College (India); Chaudhari, P. D.; Panmand, R. P.; Kale, B. B., E-mail: kbbb1@yahoo.com [Center for Materials for Electronics Technology (C-MET) (India)

    2012-02-15

    In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 Degree-Sign C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 Degree-Sign C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 Degree-Sign C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50-60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25-50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.

  2. Electrodeposition of ZnO nano-wires lattices with a controlled morphology

    International Nuclear Information System (INIS)

    Elias, J.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C.

    2006-01-01

    In this work, it is shown that the electrodeposition is a changeable low cost method which allows, according to the synthesis conditions, to obtain not only plane thin layers of ZnO but different nano-structures too. In a first part, are presented the formation conditions of a compact thin layer of nanocrystalline ZnO electrodeposited on a conducing glass substrate. This layer plays a buffer layer role for the deposition of a lattice of ZnO nano-wires. The step of nano-wires nucleation is not only determined by the electrochemical parameters but by the properties of the buffer layer too as the grain sizes and its thickness. In this context, the use of an electrodeposition method in two steps allows to control the nano-wires length and diameter and their density. The morphology and the structural and optical properties of these nano-structures have been analyzed by different techniques as the scanning and transmission electron microscopy, the X-ray diffraction and the optical spectroscopy. These studies show that ZnO nano-structures are formed of monocrystalline ZnO nano-wires, presenting a great developed surface and a great optical transparency in the visible. These properties make ZnO a good material for the development of nano-structured photovoltaic cells as the extremely thin absorber cells (PV ETA) or those with dye (DSSC) which are generally prepared with porous polycrystalline TiO 2 . Its replacement by a lattice of monocrystalline ZnO nano-wires allows to reduce considerably the number of grain boundaries and in consequence to improve the transport of the electrons. The results are then promising for the PV ETA cells with ZnO nano-wires. (O.M.)

  3. Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour deposition

    International Nuclear Information System (INIS)

    David, C; Girardeau, T; Paumier, F; Eyidi, D; Guerin, P; Marteau, M; Lacroix, B; Papathanasiou, N; Tinkham, B P

    2011-01-01

    Zinc oxide (ZnO) thin films have attracted much attention in recent years due to progress in crystal growth for a large variety of technological applications including optoelectronics and transparent electrodes in solar cells. Boron (B)-doped ZnO thin films are deposited by low pressure chemical vapour deposition (LPCVD) on Si(100). These films exhibit a strong (002) texture with a pyramidal grain structure. The ZnO films were annealed after growth; the annealing temperature and the atmosphere appear to strongly impact the layer conductivity. This work will first present the modification of the physical properties (carrier concentration, mobility) extracted from the simulation of layer reflection in the infrared range. At low annealing temperatures the mobility increases slightly before decreasing drastically above a temperature close to 250 deg. C. The chemical and structural evolution (XPS, x-ray diffraction) of the films was also studied to identify the relationship between microstructural modifications and the variations observed in the film conductivity. An in situ XRD study during annealing has been performed under air and low pressure conditions. As observed for electrical properties, the microstructural modifications shift to higher temperatures for vacuum annealing.

  4. Power-dependent photocatalytic activity of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chun, So Yeon; Han, Noh Soo; Jeong, Seong Hyun; Park, Seung Min; Song, Jae Kyu [Dept. of Chemistry, Kyung Hee University, Seoul (Korea, Republic of); Moon, Cheol Joo; Choi, Myong Yong [Dept. of Chemistry (BK21) and Research Institute of Natural Science, Gyeongsang NationalUniversity, Jinju (Korea, Republic of)

    2017-03-15

    the power-dependent photocatalytic activity of ZnO was examined for the photoreduction processes of Rh101 and AN in the presence of hole scavengers, where the fluorescence spectra were measured as a function of irradiation time and excitation intensity. The concentration of the reactants decreased, while the concentration of the products increased accordingly, which indicated the single-electron reduction process by electrons supplied from the conduction band of ZnO. Despite the single-electron process, the efficiency of the photoreaction depended nonlinearly on the excitation intensity, which was explained by the saturation of defect states in ZnO. The enhanced ratio of available electrons in ZnO led to a superlinear increase in the photoreduction efficiency, while the single-electron process linearly reflected the electrons available in ZnO.

  5. Intrinsic ZnO films fabricated by DC sputtering from oxygen-deficient targets for Cu(In,Ga)Se2 solar cell application

    Institute of Scientific and Technical Information of China (English)

    Chongyin Yang; DongyunWan; Zhou Wang; Fuqiang Huang

    2011-01-01

    Intrinsic zinc oxide films, normally deposited by radio frequency (RF) sputtering, are fabricated by direct current (DC) sputtering. The oxygen-deficient targets are prepared via a newly developed double crucible method. The 800-nm-thick film obtaines significantly higher carrier mobility compareing with that of the 800-nm-thick ZnO film. This is achieved by the widely used RF sputtering, which favors the prevention of carrier recombination at the interfaces and reduction of the series resistance of solar cells. The optimal ZnO film is used in a Cu (In, Ga) Se2 (CIGS) solar cell with a high efficiency of 11.57%. This letter demonstrates that the insulating ZnO films can be deposited by DC sputtering from oxygen-deficient ZnO targets to lower the cost of thin film solar cells.%Intrinsic zinc oxide films,normally deposited by radio frequency (RF) sputtering,are fabricated by direct current (DC) sputtering.The oxygen-deficient targets are prepared via a newly developed double crucible method.The 800-nm-thick film obtaines significantly higher carrier mobility compareing with that of the 800-nm-thick ZnO film.This is achieved by the widely used RF sputtering,which favors the prevention of carrier recombination at the interfaces and reduction of the series resistance of solar cells.The optimal ZnO film is used in a Cu (In,Ga) Se2 (C1GS) solar cell with a high efficiency of 11.57%.This letter demonstrates that the insulating ZnO films can be deposited by DC sputtering from oxygen-deficient ZnO targets to lower the cost of thin film solar cells.High resistance transparent intrinsic zinc oxide (i-ZnO)thin film has been widely nsed as the front electrode in transparent electronics and photovoltaic devices because of its low cost and nontoxicity.Owing to its unique characteristics of high transparency and adjustable resistivity in a certain range,the use of i-ZnO thin films as diffusion barrier layers of a-Si/μc-Si,CdTe,and CIGS thin-film solar cells has been advantageous

  6. Transparent conductive oxide films embedded with plasmonic nanostructure for light-emitting diode applications.

    Science.gov (United States)

    Chuang, Shih-Hao; Tsung, Cheng-Sheng; Chen, Ching-Ho; Ou, Sin-Liang; Horng, Ray-Hua; Lin, Cheng-Yi; Wuu, Dong-Sing

    2015-02-04

    In this study, a spin coating process in which the grating structure comprises an Ag nanoparticle layer coated on a p-GaN top layer of InGaN/GaN light-emitting diode (LED) was developed. Various sizes of plasmonic nanoparticles embedded in a transparent conductive layer were clearly observed after the deposition of indium tin oxide (ITO). The plasmonic nanostructure enhanced the light extraction efficiency of blue LED. Output power was 1.8 times the magnitude of that of conventional LEDs operating at 350 mA, but retained nearly the same current-voltage characteristic. Unlike in previous research on surface-plasmon-enhanced LEDs, the metallic nanoparticles were consistently deposited over the surface area. However, according to microstructural observation, ITO layer mixed with Ag-based nanoparticles was distributed at a distance of approximately 150 nm from the interface of ITO/p-GaN. Device performance can be improved substantially by using the three-dimensional distribution of Ag-based nanoparticles in the transparent conductive layer, which scatters the propagating light randomly and is coupled between the localized surface plasmon and incident light internally trapped in the LED structure through total internal reflection.

  7. Properties of Co-deposited indium tin oxide and zinc oxide films using a bipolar pulse power supply and a dual magnetron sputter source

    International Nuclear Information System (INIS)

    Hwang, Man-Soo; Seob Jeong, Heui; Kim, Won Mok; Seo, Yong Woon

    2003-01-01

    Multilayer coatings consisting of metal layers sandwiched between transparent conducting oxide layers are widely used for flat panel display electrodes and electromagnetic shield coatings for plasma displays, due to their high electrical conductivity and light transmittance. The electrical and optical properties of these multilayer films depend largely on the surface characteristics of the transparent conducting oxide thin films. A smoother surface on the transparent conducting oxide thin films makes it easier for the metal layer to form a continuous film, thus resulting in a higher conductivity and visible light transmittance. Indium tin oxide (ITO) and zinc oxide (ZnO) films were co-deposited using a dual magnetron sputter and a bipolar pulse power supply to decrease the surface roughness of the transparent conducting oxide films. The symmetric pulse mode of the power supply was used to simultaneously sputter an In 2 O 3 (90 wt %) : SnO 2 (10 wt %) target and a ZnO target. We varied the duty of the pulses to control the ratio of ITO : ZnO in the thin films. The electrical and optical properties of the films were studied, and special attention was paid to the surface roughness and the crystallinity of the films. By co-depositing ITO and ZnO at a pulse duty ratio of ITO:ZnO=45:45 using a dual magnetron sputter and a bipolar pulse power supply, we were able to obtain amorphous transparent conducting oxide films with a very smooth surface which had a Zn-rich buffer layer under a In-rich surface layer. All of the films exhibited typical electrical and optical properties of transparent conducting oxide films deposited at room temperature

  8. Three-dimensionally embedded indium tin oxide (ITO) films in photosensitive glass: a transparent and conductive platform for microdevices

    International Nuclear Information System (INIS)

    Beke, S.; Sugioka, K.; Midorikawa, K.; Koroesi, L.; Dekany, I.

    2011-01-01

    A new method for embedding transparent and conductive two- and three-dimensional microstructures in glass is presented. We show that the internal surface of hollow structures fabricated by femtosecond-laser direct writing inside the photosensitive glass can be coated by indium tin oxide (Sn-doped In 2 O 3 , ITO) using a sol-gel process. The idea of combining two transparent materials with different electrical properties, i.e., insulating and conductive, is very promising and hence it opens new prospects in manufacturing cutting edge microdevices, such as lab-on-a-chips (LOCs) and microelectromechanical systems (MEMS). (orig.)

  9. A novel technique for increase the figure of merit of indium-tin oxide transparent conducting coatings

    International Nuclear Information System (INIS)

    Keshmiri, S.H.; Roknabadi, M.R.

    1999-01-01

    Indium-Tin Oxide (ITO) films have been used as transparent electrodes in many optoelectronic devices. Although the free electron concentration in these films can be rather high, but due to low drift mobilities, the electrical conductivity of ITO films are much lower than that of metals. This is mainly due to high concentration of trapping centers created by structural defects in an ITO film. In this article, a simple technique is explained for post-deposition hydrogenation of ITO films. It was found that exposure of ITO films to atomic-hydrogen plasma produced a significant increases in the electrical conductivity of the films. At the optimum condition, an increase of about 330% in the electrical conductivity of an ITO film was observed. The hydrogenation process did not affect optical transparency of he samples adversely. But some slight improvements (in visible wavelengths) were observed. SEM studies indicated that the microstructure of the films was not noticeably changed by the hydrogenation process. (author)

  10. Electrical properties of ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Pagni, O. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Somhlahlo, N.N. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Weichsel, C. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)]. E-mail: andrew.leitch@nmmu.ac.za

    2006-04-01

    We report on the electrical characterization of ZnO films grown by MOCVD on glass and sapphire substrates. After correcting our temperature variable Hall measurements by applying the standard two-layer model, which takes into account an interfacial layer, scattering mechanisms in the ZnO films were studied as well as donor activation energies determined. ZnO films grown at different oxygen partial pressures indicated the importance of growth conditions on the defect structure by means of their conductivities and conductivity activation energies.

  11. Electrical properties of ZnO thin films grown by MOCVD

    International Nuclear Information System (INIS)

    Pagni, O.; Somhlahlo, N.N.; Weichsel, C.; Leitch, A.W.R.

    2006-01-01

    We report on the electrical characterization of ZnO films grown by MOCVD on glass and sapphire substrates. After correcting our temperature variable Hall measurements by applying the standard two-layer model, which takes into account an interfacial layer, scattering mechanisms in the ZnO films were studied as well as donor activation energies determined. ZnO films grown at different oxygen partial pressures indicated the importance of growth conditions on the defect structure by means of their conductivities and conductivity activation energies

  12. Acceptors in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Matthew D., E-mail: mattmcc@wsu.edu; Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Walter, Eric D. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Norton, M. Grant; Harrison, Kale W. [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 (United States); Ha, Su [Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164-6515 (United States)

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  13. A Fully Transparent Resistive Memory for Harsh Environments

    KAUST Repository

    Yang, Po-Kang

    2015-10-12

    A fully transparent resistive memory (TRRAM) based on Hafnium oxide (HfO2) with excellent transparency, resistive switching capability, and environmental stability is demonstrated. The retention time measured at 85 °C is over 3 × 104 sec, and no significant degradation is observed in 130 cycling test. Compared with ZnO TRRAM, HfO2 TRRAM shows reliable performance under harsh conditions, such as high oxygen partial pressure, high moisture (relative humidity = 90% at 85 °C), corrosive agent exposure, and proton irradiation. Moreover, HfO2 TRRAM fabricated in cross-bar array structures manifests the feasibility of future high density memory applications. These findings not only pave the way for future TRRAM design, but also demonstrate the promising applicability of HfO2 TRRAM for harsh environments.

  14. Effects of intermittent atomization on the properties of Al-doped ZnO thin films deposited by aerosol-assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Linjie; Wang, Lixin [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Qin, Xiujuan, E-mail: qinxj@ysu.edu.cn [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Cui, Li [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Shao, Guangjie [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2016-04-30

    Al-doped ZnO (AZO) thin films were prepared on glass substrates with different atomization interval times by aerosol-assisted chemical vapor deposition method. The structure, morphology, and optical and electrical properties were investigated by X-ray diffractometer, atomic force microscope, UV-vis double beam spectrophotometer and 4 point probe method. ZnO thin films exhibited strong growth orientation along the (002) plane and the crystalline was affected by the atomization interval time. All the films had high transmittance and the films with interval times of 2 min and 4 min had good haze values for the transparent conducting oxide silicon solar cell applications. The AZO thin film had the best optical and electrical properties when the atomization interval time was 4 min. This is very important for the optoelectronic device applications. The surface morphology of AZO films depended on the atomization interval time. - Highlights: • Intermittent atomization is proved to be an effective measure. • Atomization interval time has an important influence on the crystallinity of films. • The surface morphology of ZnO films depends on atomization interval time. • Different hazes can be obtained by changing the atomization interval time.

  15. Effects of intermittent atomization on the properties of Al-doped ZnO thin films deposited by aerosol-assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu, Linjie; Wang, Lixin; Qin, Xiujuan; Cui, Li; Shao, Guangjie

    2016-01-01

    Al-doped ZnO (AZO) thin films were prepared on glass substrates with different atomization interval times by aerosol-assisted chemical vapor deposition method. The structure, morphology, and optical and electrical properties were investigated by X-ray diffractometer, atomic force microscope, UV-vis double beam spectrophotometer and 4 point probe method. ZnO thin films exhibited strong growth orientation along the (002) plane and the crystalline was affected by the atomization interval time. All the films had high transmittance and the films with interval times of 2 min and 4 min had good haze values for the transparent conducting oxide silicon solar cell applications. The AZO thin film had the best optical and electrical properties when the atomization interval time was 4 min. This is very important for the optoelectronic device applications. The surface morphology of AZO films depended on the atomization interval time. - Highlights: • Intermittent atomization is proved to be an effective measure. • Atomization interval time has an important influence on the crystallinity of films. • The surface morphology of ZnO films depends on atomization interval time. • Different hazes can be obtained by changing the atomization interval time.

  16. Digital grayscale printing for patterned transparent conducting Ag electrodes and their applications in flexible electronics

    DEFF Research Database (Denmark)

    Gupta, Ritu; Hösel, Markus; Jensen, Jacob

    2014-01-01

    Grayscale (halftone) laser printing is developed as a low-cost and solution processable fabrication method for ITO-free, semi-transparent and conducting Ag electrodes extendable over large area on a flexible substrate. The transmittance and sheet resistance is easily tunable by varying the graysc...

  17. Preparation and characterization of conductive and transparent ruthenium dioxide sol-gel films.

    Science.gov (United States)

    Allhusen, John S; Conboy, John C

    2013-11-27

    RuO2 conductive thin films were synthesized using the sol-gel method and deposited onto transparent insulating substrates. The optical transmission, film thickness, surface morphology and composition, resistivity, and spectroelectrochemical performance have been characterized. The optical transmission values of these films ranged from 70 to 89% in the visible region and from 56 to 88% in the infrared region. Resistivity values of the RuO2 sol-gel films varied from 1.02 × 10(-3) to 1.13 Ω cm and are highly dependent on the initial solution concentration of RuO2 in the sol-gel. The RuO2 sol-gel films were used as electrodes for the electrochemical oxidation and reduction of ferrocenemethanol. The electrochemical behavior of our novel RuO2 sol-gel films was compared to that of a standard platinum disk electrode and showed no appreciable differences in the half-wave potential (E1/2). The mechanical and chemical stability of the coatings was tested by physical abrasion and exposure to highly acidic, oxidizing Piranha solution. Repeated exposure to these extreme conditions did not result in any appreciable decline in electrochemical performance. Finally, the use of the novel RuO2 sol-gel conductive and transparent films was demonstrated in a spectroelectrochemistry experiment in which the oxidation and reduction of ferrocenemethanol was monitored via UV-vis spectroscopy as the applied potential was cycled.

  18. Surface state modulation through wet chemical treatment as a route to controlling the electrical properties of ZnO nanowire arrays investigated with XPS

    International Nuclear Information System (INIS)

    Lord, Alex M.; Maffeis, Thierry G.; Allen, Martin W.; Morgan, David; Davies, Philip R.; Jones, Daniel R.; Evans, Jonathan E.; Smith, Nathan A.; Wilks, Steve P.

    2014-01-01

    Highlights: • Direct measurement of the surface band bending exhibited by ZnO nanowires using monochromatic XPS. • Modulation of the surface depletion region using wet chemical treatment (EtOH, H 2 O 2 ). • The measured surface potential barrier agrees with electrical measurements of individual nanowires. • H 2 O 2 depletes the nanowire of charge carriers while EtOH donates electrons at the surface. • EtOH has the effect of restoring the surface potential barrier of oxidised nanowires. - Abstract: ZnO is a wide bandgap semiconductor that has many potential applications including solar cell electrodes, transparent thin film transistors and gas/biological sensors. Since the surfaces of ZnO materials have no amorphous or oxidised layers, they are very environmentally sensitive, making control of their semiconductor properties challenging. In particular, the electronic properties of ZnO nanostructures are dominated by surface effects while surface conduction layers have been observed in thin films and bulk crystals. Therefore, the ability to use the ZnO materials in a controlled way depends on the development of simple techniques to modulate their surface electronic properties. Here, we use monochromatic x-ray photoelectron spectroscopy (XPS) to investigate the use of different wet chemical treatments (EtOH, H 2 O 2 ) to control the electronic properties of ZnO nanowires by modulating the surface depletion region. The valence band and core level XPS spectra are used to explore the relationship between the surface chemistry of the nanowires and the surface band bending

  19. All-solid, flexible solar textiles based on dye-sensitized solar cells with ZnO nanorod arrays on stainless steel wires

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Youngjin [Department of Clothing and Textiles, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Jung Tae; Koh, Jong Kwan [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Eunae, E-mail: eakim@yonsei.ac.kr [Department of Clothing and Textiles, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2013-10-01

    Highlights: • All-solid, flexible solar textile fabricated with DSSCs is demonstrated. • DSSCs woven into a satin structure and transparent PET film are used. • Solar textile showed a high efficiency of 2.57%. -- Abstract: An all-solid, flexible solar textile fabricated with dye-sensitized solar cells (DSSCs) woven into a satin structure and transparent poly(ethylene terephthalate) (PET) film was demonstrated. A ZnO nanorod (NR) vertically grown from fiber-type conductive stainless steel (SS) wire was utilized as a photoelectrode, and a Pt-coated SS wire was used as a counter electrode. A graft copolymer, i.e. poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a solid electrolyte. The conditions for the growth of ZnO NR and sufficient dye loading were investigated to improve cell performance. The adhesion of PET films to DSSCs resulted in physical stability improvements without cell performance loss. The solar textile with 10 × 10 wires exhibited an energy conversion efficiency of 2.57% with a short circuit current density of 20.2 mA/cm{sup 2} at 100 mW/cm{sup 2} illumination, which is the greatest account of an all-solid, ZnO-based flexible solar textile. DSSC textiles with woven structures are applicable to large-area, roll-to-roll processes.

  20. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens

    International Nuclear Information System (INIS)

    Madaria, Anuj R; Kumar, Akshay; Zhou Chongwu

    2011-01-01

    The application of silver nanowire films as transparent conductive electrodes has shown promising results recently. In this paper, we demonstrate the application of a simple spray coating technique to obtain large scale, highly uniform and conductive silver nanowire films on arbitrary substrates. We also integrated a polydimethylsiloxane (PDMS)-assisted contact transfer technique with spray coating, which allowed us to obtain large scale high quality patterned films of silver nanowires. The transparency and conductivity of the films was controlled by the volume of the dispersion used in spraying and the substrate area. We note that the optoelectrical property, σ DC /σ Op , for various films fabricated was in the range 75-350, which is extremely high for transparent thin film compared to other candidate alternatives to doped metal oxide film. Using this method, we obtain silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85% and sheet resistance of 33 Ω/sq, which is comparable to that of tin-doped indium oxide (ITO) on flexible substrates. In-depth analysis of the film shows a high performance using another commonly used figure-of-merit, Φ TE . Also, Ag nanowire film/PET shows good mechanical flexibility and the application of such a conductive silver nanowire film as an electrode in a touch panel has been demonstrated.

  1. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens.

    Science.gov (United States)

    Madaria, Anuj R; Kumar, Akshay; Zhou, Chongwu

    2011-06-17

    The application of silver nanowire films as transparent conductive electrodes has shown promising results recently. In this paper, we demonstrate the application of a simple spray coating technique to obtain large scale, highly uniform and conductive silver nanowire films on arbitrary substrates. We also integrated a polydimethylsiloxane (PDMS)-assisted contact transfer technique with spray coating, which allowed us to obtain large scale high quality patterned films of silver nanowires. The transparency and conductivity of the films was controlled by the volume of the dispersion used in spraying and the substrate area. We note that the optoelectrical property, σ(DC)/σ(Op), for various films fabricated was in the range 75-350, which is extremely high for transparent thin film compared to other candidate alternatives to doped metal oxide film. Using this method, we obtain silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85% and sheet resistance of 33 Ω/sq, which is comparable to that of tin-doped indium oxide (ITO) on flexible substrates. In-depth analysis of the film shows a high performance using another commonly used figure-of-merit, Φ(TE). Also, Ag nanowire film/PET shows good mechanical flexibility and the application of such a conductive silver nanowire film as an electrode in a touch panel has been demonstrated.

  2. Electrical characterization of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, E.; Bakin, A.; Postels, B.; Mofor, A.C.; Wehmann, H.H.; Waag, A. [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Weimann, T.; Hinze, P. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)

    2007-05-15

    Zinc oxide (ZnO) nanorods were grown by a wet chemical approach and by vapor phase transport. To explore the electrical properties of individual nanostructures current-voltage (I-V) characteristics were obtained by using an atomic force microscope (AFM) with a conductive tip or by detaching the nanorods from the growth substrate, transferring them to an isolating substrate and contacting them with evaporated Ti/Au electrodes patterned by electron-beam lithography. The AFM-approach only yields a Schottky diode behavior, while the Ti/Au forms ohmic contacts to the ZnO. For the latter method the obtained I-V curves reveal a resistivity of the nanorods in the order of 10{sup -5} {omega} cm which is unusually low for undoped ZnO. We therefore assume the existence of a highly conductive surface channel. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.; Liu, Y.; de Jong, M.M.; de Wild, J.; Schuttauf, J.A.; Brinza, M.; Schropp, R.E.I.

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  4. Patterning of nanoparticulate transparent conductive ITO films using UV light irradiation and UV laser beam writing

    International Nuclear Information System (INIS)

    Solieman, A.; Moharram, A.H.; Aegerter, M.A.

    2010-01-01

    Indium tin oxide (ITO) thin film is one of the most widely used as transparent conductive electrodes in all forms of flat panel display (FPD) and microelectronic devices. Suspension of already crystalline conductive ITO nanoparticles fully dispersed in alcohol was spun, after modifying with coupling agent, on glass substrates. The low cost, simple and versatile traditional photolithography process without complication of the photoresist layer was used for patterning ITO films. Using of UV light irradiation through mask and direct UV laser beam writing resulted in an accurate linear, sharp edge and very smooth patterns. Irradiated ITO film showed a high transparency (∼85%) in the visible region. The electrical sheet resistance decrease with increasing time of exposure to UV light and UV laser. Only 5 min UV light irradiation is enough to decrease the electrical sheet resistance down to 5 kΩ□.

  5. Highly Conductive PEDOT:PSS Films with 1,3-Dimethyl-2-Imidazolidinone as Transparent Electrodes for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Kim, Jin Hee; Joo, Chul Woong; Lee, Jonghee; Seo, Yoon Kyung; Han, Joo Won; Oh, Ji Yoon; Kim, Jong Su; Yu, Seunggun; Lee, Jae Hyun; Lee, Jeong-Ik; Yun, Changhun; Choi, Bum Ho; Kim, Yong Hyun

    2016-09-01

    Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) films as transparent electrodes for organic light-emitting diodes (OLEDs) are doped with a new solvent 1,3-dimethyl-2-imidazolidinone (DMI) and are optimized using solvent post-treatment. The DMI doped PSS films show significantly enhanced conductivities up to 812.1 S cm(-1) . The sheet resistance of the PSS films doped with DMI is further reduced by various solvent post-treatment. The effect of solvent post-treatment on DMI doped PSS films is investigated and is shown to reduce insulating PSS in the conductive films. The solvent posttreated PSS films are successfully employed as transparent electrodes in white OLEDs. It is shown that the efficiency of OLEDs with the optimized DMI doped PSS films is higher than that of reference OLEDs doped with a conventional solvent (ethylene glycol). The results present that the optimized PSS films with the new solvent of DMI can be a promising transparent electrode for low-cost, efficient ITO-free white OLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Improvement of corrosion resistance of transparent conductive multilayer coating consisting of silver layers and transparent metal oxide layers

    International Nuclear Information System (INIS)

    Koike, Katsuhiko; Yamazaki, Fumiharu; Okamura, Tomoyuki; Fukuda, Shin

    2007-01-01

    An optical filter for plasma display panel (PDP) requires an electromagnetic shield with very high ability. The authors investigated a transparent conductive multilayer coating consisting of silver (Ag) layers and transparent metal oxide layers. The durability of the multilayer sputter coating, including the silver layer, is very sensitive to the surrounding atmosphere. For example, after an exposure test they found discolored points on the multilayer sputter coatings, possibly caused by migration of silver atoms in the silver layers. In their investigation, they modified the top surface of the multilayer sputter coatings with transition metals to improve the corrosion resistance of the multilayer coating. Specifically, they deposited transition metals 0.5-2 nm thick on the top surface of the multilayer coatings by sputtering. They chose indium tin oxide (ITO) as the transparent metal oxide. They applied the multilayer sputter coatings of seven layers to a polyethylene terephthalate (PET) film substrate. A cross-sectional structure of the film with the multilayer coatings is PET film/ITO/Ag/ITO/Ag/ITO/Ag/ITO. They evaluated the corrosion resistance of the films by a salt-water immersion test. In the test, they immersed the film with multilayer coatings into salt water, and then evaluated the appearance, transmittance, and electrical resistance of the multilayer coatings. They investigated several transition metals as the modifying material, and found that titanium and tantalum drastically improved the resistance of the multilayer coatings to the salt-water exposure without a significant decline in transmittance. They also investigated the relation between elapsed time after deposition of the modifying materials and resistance to the salt water. Furthermore, they investigated the effects of a heat treatment and an oxide plasma treatment on resistance to the salt water

  7. Urea-assisted low temperature green synthesis of graphene nanosheets for transparent conducting film

    Science.gov (United States)

    Chamoli, Pankaj; Das, Malay K.; Kar, Kamal K.

    2018-02-01

    Present work demonstrates the fabrication of graphene nanosheet (GN) based transparent conducting film (TCF) using spray coating. Green synthesis of GN is carried out by reduction of graphene oxide (GO) using urea as green reducing agent. The reductive ability of urea with varied concentration is studied for GO at low temperature (i.e., 90 °C). As synthesized graphene nanosheets (GNs) are characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-visible spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscope (AFM), and X-ray Photon spectroscopy (XPS). Raman analysis confirms that the maximum reduction of oxygen species is noticed using 30 mg/ml urea concentration at 90 °C from GO, and found Raman D to G band ratio (ID/IG) of ∼1.30. XPS analysis validates the Raman signature of removal of oxygen functional groups from GO, and obtained C/O ratio of ∼5.28. Further, transparent conducting films (TCFs) are fabricated using synthesized GNs. Thermal graphitization is carried out to enhance the optical and electrical properties of TCFs. TCF shows best performance when it is annealed at 900 °C for 1 h in vacuum, and obtained sheet resistance is ∼1.89 kΩ/□ with transmittance of ∼62.53%.

  8. Comparison study of V-doped ZnO thin films on polycarbonate and quartz substrates deposited by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Tomoya, E-mail: tomoya@ecei.tohoku.ac.jp; Chiba, Hiroshi; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-04-30

    Vanadium (V) doped ZnO (VZO) thin films were deposited on flexible polymer and quartz substrates by RF magnetron sputtering, and influences of deposition parameters of V concentration, RF power and growth temperature on resistivity, transmittance and crystallinity were investigated. For the polymer substrates, both a high heat-resistant polycarbonate (PC) film and a functional-layer-coated PC film were adopted. The resistivity decreased gradually but the transmittance was worsened with increasing V concentration. Low RF power and high growth temperature improved both transparency and conductivity. By over-coating of the functional layers, c-axis orientation was deteriorated while low-resistivity and high-transmittance characteristics were achieved. Resistivity and average visible-transmittance (wavelength = 450–800 nm) of VZO films on untreated PC and over-coated PC substrates were 0.98 mΩ cm and 83.7%, and 1.2 mΩ cm and 80.3%, respectively, at V concentration of 2 at.%, RF power of 100 W and growth temperature of 175 °C. VZO films on the polymer substrates had slightly high resistivity but nearly the same optical transmittance, compared to those on quartz, under the identical deposition parameters. These results indicate that good electrical and optical properties can be achieved for the VZO films on PC substrate. - Highlights: • V-doped ZnO (VZO) was deposited on polymer substrate. • Effects of V concentration, RF power and growth temperature were investigated. • Resistivity decreased gradually with increasing V concentration. • Low RF power was suitable to obtain low resistivity and high transmittance. • High growth temperature improved both transparency and conductivity.

  9. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung; Lim, Jong-Wook; Kim, Han-Ki; Alford, T. L.; Jabbour, Ghassan E.

    2012-01-01

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive

  10. Oxygen effect of transparent conducting amorphous Indium Zinc Tin Oxide films on Polyimide substrate for flexible electrode

    International Nuclear Information System (INIS)

    Ko, Yoon Duk; Lee, Chang Hun; Moon, Doo Kyung; Kim, Young Sung

    2013-01-01

    This paper discusses the effect of oxygen on the transparent conducting properties and mechanical durability of the amorphous indium zinc tin oxide (IZTO) films. IZTO films deposited on flexible clear polyimide (PI) substrate using pulsed direct current (DC) magnetron sputtering at room temperature under various oxygen partial pressures. All IZTO films deposited at room temperature exhibit an amorphous structure. The electrical and optical properties of the IZTO films were sensitively influenced by oxygen partial pressures. At optimized deposition condition of 3.0% oxygen partial pressure, the IZTO film shows the lowest resistivity of 6.4 × 10 −4 Ωcm, high transmittance of over 80% in the visible range, and figure of merit value of 3.6 × 10 −3 Ω −1 without any heat controls. In addition, high work function and good mechanical flexibility of amorphous IZTO films are beneficial to flexible applications. It is proven that the proper oxygen partial pressure is important parameter to enhance the transparent conducting properties of IZTO films on PI substrate deposited at room temperature. - Highlights: • Indium zinc tin oxide (IZTO) films were deposited on polyimide at room temperature. • Transparent conducting properties of IZTO were influenced with oxygen partial pressure. • The smooth surface and high work function of IZTO were beneficial to anode layer. • The mechanical reliability of IZTO shows better performance to indium tin oxide film

  11. Preparation of p-type transparent conducting tin-antimony oxide thin films by DC reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhenguo [College of Electronic Information, Hangzhou Dianzi University, Hangzhou (China); State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou (China); Xi, Junhua; Huo, Lijuan; Zhao, Yi [State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou (China)

    2008-07-01

    P-type transparent conducting tin-antimony oxide (TAO) films were successfully prepared by DC reactive magnetron sputtering followed by post annealing in the air. Structural, optical and electrical properties of the TAO films were investigated. X-ray diffraction studies showed that the films are polycrystalline with orthorhombic structure of Sb{sub 2}O{sub 4}. UV-Visible absorption and transmittance spectra showed that the optical band-gap of the TAO films is about 3.90 eV, and the overall transmittance is higher than 85% in the visible region. Hall effect measurement indicated that the Sn/Sb ratio is a critical parameter to get p-type conducting TAO films. It was found that 0.19transparent conducting films. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Slightly Conductive Transparent Films for Space Applications: Manufacturability and Durability

    Science.gov (United States)

    Uppala, N.; Griffin, J.; Vemulapalli, J.; Hambourger, P. D.

    2001-01-01

    Highly transparent, slightly conductive films of co-deposited indium tin oxide (ITO) and MgF, have possible applications for environmental protection of exterior surfaces of spacecraft. Reliable preparation of films with the desired sheet resistivity (approximately 10(exp 8) ohms/square) is difficult because the electrical properties of ITO-Mg F, are highly dependent on film composition. We have investigated the use of plasma emission monitoring to improve the reproducibility of films prepared by RF magnetron sputtering. While considerable improve ment was observed, it appears that some in-situ electrical or optica l characterization will be needed for reliable production coating wit h ITO-MgF,. We have also done further evaluation of a possibly undesi rable photoconductive effect previously observed in these films.

  13. Optoelectronic Characterization of Ta-Doped ZnO Thin Films by Pulsed Laser Deposition.

    Science.gov (United States)

    Koo, Horng-Show; Peng, Jo-Chi; Chen, Mi; Chin, Hung-I; Chen, Jaw-Yeh; Wu, Maw-Kuen

    2015-11-01

    Transparent conductive oxide of Ta-doped ZnO (TZO) film with doping amount of 3.0 wt% have been deposited on glass substrates (Corning Eagle XG) at substrate temperatures of 100 to 500 degrees C by the pulsed laser deposition (PLD) technique. The effect of substrate temperature on the structural, optical and electronic characteristics of Ta-doped ZnO (TZO) films with 3.0 wt% dopant of tantalum oxide (Ta2O5) was measured and demonstrated in terms of X-ray diffraction (XRD), ultraviolet-visible spectrometer (UV-Vis), four-probe and Hall-effect measurements. X-ray diffraction pattern shows that TZO films grow in hexagonal crystal structure of wurtzite phase with a preferred orientation of the crystallites along (002) direction and exhibits better physical characteristics of optical transmittance, electrical conductivity, carrier concentration and mobility for the application of window layer in the optoelectronic devices of solar cells, OLEDs and LEDs. The lowest electrical resistivity (ρ) and the highest carrier concentration of the as-deposited film deposited at 300 degrees C are measured as 2.6 x 10(-3) Ω-cm and 3.87 x 10(-20) cm(-3), respectively. The highest optical transmittance of the as-deposited film deposited at 500 degrees C is shown to be 93%, compared with another films deposited below 300 degrees C. It is found that electrical and optical properties of the as-deposited TZO film are greatly dependent on substrate temperature during laser ablation deposition.

  14. High rate (∼7 nm/s), atmospheric pressure deposition of ZnO front electrode for Cu(In,Ga)Se2 thin-film solar cells with efficiency beyond 15%

    NARCIS (Netherlands)

    Illiberi, A.; Grob, F.; Frijters, C.; Poodt, P.; Ramachandra, R.; Winands, H.; Simor, M.; Bolt, P.J.

    2013-01-01

    Undoped zinc oxide (ZnO) films have been grown on a moving glass substrate by plasma-enhanced chemical vapor deposition at atmospheric pressure. High deposition rates of ∼7 nm/s are achieved at low temperature (200°C) for a substrate speed from 20 to 60 mm/min. ZnO films are highly transparent in

  15. Transparent Conducting Film Fabricated by Metal Mesh Method with Ag and Cu@Ag Mixture Nanoparticle Pastes

    Directory of Open Access Journals (Sweden)

    Hyun Min Nam

    2017-05-01

    Full Text Available Transparent conducting electrode film is highly desirable for application in touch screen panels (TSPs, flexible and wearable displays, sensors, and actuators. A sputtered film of indium tin oxide (ITO shows high transmittance (90% at low sheet resistance (50 Ω/cm2. However, ITO films lack mechanical flexibility, especially under bending stress, and have limitation in application to large-area TSPs (over 15 inches due to the trade-off in high transmittance and low sheet resistance properties. One promising solution is to use metal mesh-type transparent conducting film, especially for touch panel application. In this work, we investigated such inter-related issues as UV imprinting process to make a trench layer pattern, the synthesis of core-shell-type Ag and Cu@Ag composite nanoparticles and their paste formulation, the filling of Ag and Cu@Ag mixture nanoparticle paste to the trench layer, and touch panel fabrication processes.

  16. Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition.

    Science.gov (United States)

    Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng

    2011-09-01

    Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.

  17. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.

    2010-08-11

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from that of optically thick metallic films. We analyze the optical properties when performing a geometrical transformation that maintains the electrical properties. For one-dimensional patterns of metallic wires, the analysis favors tall and narrow wires. Our design principles remain valid for oblique incidence and readily carry over to two-dimensional patterns. © 2010 American Chemical Society.

  18. Cycling behaviour of sponge-like nanostructured ZnO as thin-film Li-ion battery anodes

    International Nuclear Information System (INIS)

    Garino, Nadia; Lamberti, Andrea; Gazia, Rossana; Chiodoni, Angelica; Gerbaldi, Claudio

    2014-01-01

    Highlights: • Zn is thermally oxidized in ambient air to obtain sponge-like ZnO film. • Polycrystalline, transparent, porous thin film is obtained. • Film exhibits stabile specific capacity (∼300 mAh g −1 ) after prolonged cycling. • Sponge-like ZnO film shows promising prospects as Li-ion battery anode. - Abstract: Single phase wurtzitic porous ZnO thin films are obtained by a simple two-step method, involving the sputtering deposition of a sponge-like metallic Zn layer, followed by a moderately low temperature treatment for the complete zinc oxidation. Thanks to its 3D nanostructuration, the superimposition of small branches able to grow in length almost isotropically and forming a complex topography, sponge-like ZnO can combine the fast transport properties of one dimensional material and the high surface area usually provided by nanocrystalline electrodes. When galvanostatically tested in lithium cell, after the initial decay, it can provide an almost stable specific capacity higher than 50 μAh cm −2 after prolonged cycling at estimated 0.7 C, with very high Coulombic efficiency

  19. Cycling behaviour of sponge-like nanostructured ZnO as thin-film Li-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Garino, Nadia, E-mail: nadia.garino@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Lamberti, Andrea; Gazia, Rossana; Chiodoni, Angelica [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Gerbaldi, Claudio, E-mail: claudio.gerbaldi@polito.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); GAME Lab, Department of Applied Science and Technology – DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy)

    2014-12-05

    Highlights: • Zn is thermally oxidized in ambient air to obtain sponge-like ZnO film. • Polycrystalline, transparent, porous thin film is obtained. • Film exhibits stabile specific capacity (∼300 mAh g{sup −1}) after prolonged cycling. • Sponge-like ZnO film shows promising prospects as Li-ion battery anode. - Abstract: Single phase wurtzitic porous ZnO thin films are obtained by a simple two-step method, involving the sputtering deposition of a sponge-like metallic Zn layer, followed by a moderately low temperature treatment for the complete zinc oxidation. Thanks to its 3D nanostructuration, the superimposition of small branches able to grow in length almost isotropically and forming a complex topography, sponge-like ZnO can combine the fast transport properties of one dimensional material and the high surface area usually provided by nanocrystalline electrodes. When galvanostatically tested in lithium cell, after the initial decay, it can provide an almost stable specific capacity higher than 50 μAh cm{sup −2} after prolonged cycling at estimated 0.7 C, with very high Coulombic efficiency.

  20. Treatment of transparent conductive oxides by laser processes for the development of Silicon photovoltaic cells

    International Nuclear Information System (INIS)

    Canteli Perez-Caballero, D.

    2015-01-01

    Transparent conductive oxides (TCOs) are heavily doped oxides with high transparency in the visible range of the spectrum and a very low sheet resistance, making them very attractive for applications in optoelectronic devices. TCOs are widely found in many different areas such as low emissivity windows, electric contacts in computers, televisions or portable devices, and, specially, in the photovoltaic (PV) industry. PV industry is mainly based on mono- and multicrystalline silicon, where TCOs are used as anti-reflective coatings, but the search for cheaper, alternative technologies has led to the development of thin film PV technologies, where TCOs are used as transparent contacts. With the maturation of the thin film PV industry, laser sources have become an essential tool, allowing the improvement of some industrial processes and the development of new ones. Because of the interest on a deeper understanding of the interaction processes between laser light and TCOs, the laser ablation of three of the most important TCOs has been studied in depth in the present work. (Author)

  1. Temperature-dependent photoluminescence analysis of ZnO nanowire array annealed in air

    Science.gov (United States)

    Sun, Yanan; Gu, Xiuquan; Zhao, Yulong; Wang, Linmeng; Qiang, Yinghuai

    2018-05-01

    ZnO nanowire arrays (NWAs) were prepared on transparent conducting fluorine doped tin oxide (FTO) substrates through a facile hydrothermal method, followed by a 500 °C annealing to improve their crystalline qualities and photoelectrochemical (PEC) activities. It was found that the annealing didn't change the morphology, but resulted in a significant reduction of the donor concentration. Temperature-dependent photoluminescence (PL) was carried out for a comprehensive analysis of the effect from annealing. Noteworthy, four dominant peaks were identified from the 10 K spectrum of a 500 °C annealed sample, and they were assigned to FX, D0X, (e, D0) and (e, D0) -1LO, respectively. Of them, the FX emission was only existed below 130 K, while the room-temperature (RT) PL spectrum was dominated by the D0X emission.

  2. Microstructural and optical properties of transparent conductive ZnO ...

    Indian Academy of Sciences (India)

    Administrator

    College of Materials Science and Engineering, Shaanxi University of Science and Technology, China 710021 ..... (in press). Gorla C R, Emanetoglu N W, Liang S, Mayo W E and Lu Y. 1999 J. Appl. Phys. ... Shin E W and Park C 2007 Mater.

  3. THz characterization and demonstration of visible-transparent/terahertz-functional electromagnetic structures in ultra-conductive La-doped BaSnO3 Films.

    Science.gov (United States)

    Arezoomandan, Sara; Prakash, Abhinav; Chanana, Ashish; Yue, Jin; Mao, Jieying; Blair, Steve; Nahata, Ajay; Jalan, Bharat; Sensale-Rodriguez, Berardi

    2018-02-23

    We report on terahertz characterization of La-doped BaSnO 3 (BSO) thin-films. BSO is a transparent complex oxide material, which has attracted substantial interest due to its large electrical conductivity and wide bandgap. The complex refractive index of these films is extracted in the 0.3 to 1.5 THz frequency range, which shows a metal-like response across this broad frequency window. The large optical conductivity found in these films at terahertz wavelengths makes this material an interesting platform for developing electromagnetic structures having a strong response at terahertz wavelengths, i.e. terahertz-functional, while being transparent at visible and near-IR wavelengths. As an example of such application, we demonstrate a visible-transparent terahertz polarizer.

  4. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide

    NARCIS (Netherlands)

    Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C.

    2016-01-01

    Flexible large-area organic light-emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin-doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are

  5. Transparent and conductive polyethylene oxide film by the introduction of individualized single-walled carbon nanotubes.

    Science.gov (United States)

    Jung, Yong Chae; Muramatsu, Hiroyuki; Park, Ki Chul; Shimamoto, Daisuke; Kim, Jin Hee; Hayashi, Takuya; Song, Sung Moo; Kim, Yoong Ahm; Endo, Morinobu; Dresselhaus, Mildred S

    2009-12-16

    It is demonstrated that an optically transparent and electrically conductive polyethylene oxide (PEO) film is fabricated by the introduction of individualized single-walled carbon nanotubes (SWNTs). The incorporated SWNTs in the PEO film sustain their intrinsic electronic and optical properties and, in addition, the intrinsic properties of the polymer matrix are retained. The individualized SWNTs with smaller diameter provide high transmittance as well as good electrical conductivity in PEO films. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Thickness optimization of the ZnO based TCO layer in a CZTSSe solar cell. Evolution of its performance with thickness when external temperature changes.

    Science.gov (United States)

    Chadel, Meriem; Moustafa Bouzaki, Mohammed; Chadel, Asma; Aillerie, Michel; Benyoucef, Boumediene

    2017-07-01

    The influence of the thickness of a Zinc Oxide (ZnO) transparent conductive oxide (TCO) layer on the performance of the CZTSSe solar cell is shown in detail. In a photovoltaic cell, the thickness of each layer largely influence the performance of the solar cell and optimization of each layer constitutes a complete work. Here, using the Solar Cell Capacitance Simulation (SCAPS) software, we present simulation results obtained in the analyze of the influence of the TCO layer thickness on the performance of a CZTSSe solar cell, starting from performance of a CZTSSe solar cell commercialized in 2014 with an initial efficiency equal to 12.6%. In simulation, the temperature was considered as a functioning parameter and the evolution of tthe performance of the cell for various thickness of the TCO layer when the external temperature changes is simulated and discussed. The best efficiency of the solar cell based in CZTSSe is obtained with a ZnO thickness equal to 50 nm and low temperature. Based on the considered marketed cell, we show a technological possible increase of the global efficiency achieving 13% by optimization of ZnO based TCO layer.

  7. Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride for uric acid measurements

    Directory of Open Access Journals (Sweden)

    Vanessa F Cardoso, Pedro Martins, Gabriela Botelho, Luis Rebouta, Senentxu Lanceros-Méndez and Graca Minas

    2010-01-01

    Full Text Available Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride (β-PVDF. If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

  8. Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride) for uric acid measurements

    International Nuclear Information System (INIS)

    Cardoso, Vanessa F; Minas, Graca; Martins, Pedro; Rebouta, Luis; Lanceros-Mendez, Senentxu; Botelho, Gabriela

    2010-01-01

    Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride) (β-PVDF). If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO) and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

  9. Comparative investigation on cation-cation (Al-Sn) and cation-anion (Al-F) co-doping in RF sputtered ZnO thin films: Mechanistic insight

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Arindam; Basak, Durga, E-mail: sspdb@iacs.res.in

    2017-07-15

    Highlights: • Comparative study on Al, Al-Sn and Al-F doped ZnO films has been carried out. • High transparent Al-F co-doped film shows three times enhanced carrier density. • Al-F co-doped film shows larger carrier relaxation time. • Al-Sn co-doped films shows carrier transport dominated by impurity scattering. • Al-F co-doped ZnO film can be applied as transparent electrode. - Abstract: Herein, we report a comparative mechanistic study on cation-cation (Al-Sn) and cation-anion (Al-F) co-doped nanocrystalline ZnO thin films grown on glass substrate by RF sputtering technique. Through detailed analyses of crystal structure, surface morphology, microstructure, UV-VIS-NIR transmission-reflection and electrical transport property, the inherent characteristics of the co-doped films were revealed and compared. All the nanocrystalline films retain the hexagonal wurtzite structure of ZnO and show transparency above 90% in the visible and NIR region. As opposed to expectation, Al-Sn (ATZO) co-doped film show no enhanced carrier concentration consistent with the probable formation of SnO{sub 2} clusters supported by the X-ray photoelectron spectroscopy study. Most interestingly, it has been found that Al-F (AFZO) co-doped film shows three times enhanced carrier concentration as compared to Al doped and Al-Sn co-doped films attaining a value of ∼9 × 10{sup 20} cm{sup −3} due to the respective cation and anion substitution. The carrier relaxation time increases in AFZO while it decreases significantly for ATZO film consistent with the concurrence of the impurity scattering in the latter.

  10. Praseodymium - A Competent Dopant for Luminescent Downshifting and Photocatalysis in ZnO Thin Films

    Science.gov (United States)

    Narayanan, Nripasree; Deepak, N. K.

    2018-05-01

    Highly transparent and conducting Zinc oxide (ZnO) thin films doped with Praseodymium (Pr) were deposited on glass substrates by using the spray pyrolysis method. The X-ray diffraction (XRD) analysis revealed the polycrystallinity of the deposited films with a hexagonal wurtzite structure, whereas the energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the incorporation of Pr in the films. The optical energy gap decreased by Pr doping due to the merging of the conduction band with the impurity bands formed within the forbidden gap. The room temperature photoluminescence spectra of the Pr-doped film showed enhancement of visible emission, suggesting efficient luminescent downshifting. The photocatalytic activity of the Pr-doped films is higher than that of undoped films due to the effective suppression of the rapid recombination of the photo-generated electron-hole pairs. The impurity levels formed within the forbidden gap act as efficient luminescent centers and electron traps, which lead to luminescent downshifting and enhanced photocatalytic activity.

  11. An easy, low-cost method to transfer large-scale graphene onto polyethylene terephthalate as a transparent conductive flexible substrate

    International Nuclear Information System (INIS)

    Chen, Chih-Sheng; Hsieh, Chien-Kuo

    2014-01-01

    In this study, we develop a low-cost method for transferring a large-scale graphene film onto a flexible transparent substrate. An easily accessible method for home-made chemical vapor deposition (CVD) and a commercial photograph laminator were utilized to fabricate the low-cost graphene-based transparent conductive flexible substrate. The graphene was developed based on CVD growth on nickel foil using a carbon gas source, and the graphene thin film was easily transferred onto the laminating film via a heated photograph laminator. Field emission scanning electron microscopy and atomic force microscopy were utilized to examine the morphological characteristics of the graphene surface. Raman spectroscopy and transmission electron microscopy were utilized to examine the microstructure of the graphene. The optical–electronic properties of the transferred graphene flexible thin film were measured by ultraviolet–visible spectrometry and a four-point probe. The advantage of this method is that large-scale graphene-based thin films can be easily obtained. We provide an economical method for fabricating a graphene-based transparent conductive flexible substrate. - Highlight: • We synthesized the large-scale graphene by thermal CVD method. • A low-cost commercial photograph laminator was used to transfer graphene. • A large-scale transparent and flexible graphene substrate was obtained easily

  12. An easy, low-cost method to transfer large-scale graphene onto polyethylene terephthalate as a transparent conductive flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Sheng; Hsieh, Chien-Kuo, E-mail: jack_hsieh@mail.mcut.edu.tw

    2014-11-03

    In this study, we develop a low-cost method for transferring a large-scale graphene film onto a flexible transparent substrate. An easily accessible method for home-made chemical vapor deposition (CVD) and a commercial photograph laminator were utilized to fabricate the low-cost graphene-based transparent conductive flexible substrate. The graphene was developed based on CVD growth on nickel foil using a carbon gas source, and the graphene thin film was easily transferred onto the laminating film via a heated photograph laminator. Field emission scanning electron microscopy and atomic force microscopy were utilized to examine the morphological characteristics of the graphene surface. Raman spectroscopy and transmission electron microscopy were utilized to examine the microstructure of the graphene. The optical–electronic properties of the transferred graphene flexible thin film were measured by ultraviolet–visible spectrometry and a four-point probe. The advantage of this method is that large-scale graphene-based thin films can be easily obtained. We provide an economical method for fabricating a graphene-based transparent conductive flexible substrate. - Highlight: • We synthesized the large-scale graphene by thermal CVD method. • A low-cost commercial photograph laminator was used to transfer graphene. • A large-scale transparent and flexible graphene substrate was obtained easily.

  13. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    International Nuclear Information System (INIS)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C.N.; Mihailescu, I.N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A.C.; Luculescu, C.R.; Craciun, V.

    2012-01-01

    Highlights: ► TCO thin films were grown by PLD on PET substrate at low temperature. ► We found that the quality of TCO on PET substrate depends on the target–substrate distance. ► TCO with high transparency (>95%) and reduced electrical resistivity (∼5 × 10 −4 Ω cm) were obtained. ► Optimized TCO films deposited on PET were free of any cracks. - Abstract: The influence of target–substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10 −4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  14. Properties of fluorine and tin co-doped ZnO thin films deposited by sol–gel method

    International Nuclear Information System (INIS)

    Pan, Zhanchang; Zhang, Pengwei; Tian, Xinlong; Cheng, Guo; Xie, Yinghao; Zhang, Huangchu; Zeng, Xiangfu; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2013-01-01

    Highlights: •F and Sn co-doped ZnO thin films were synthesized by sol–gel method. •The effects of different F doping concentrations were investigated. •The co-doped nanocrystals exhibit good crystal quality. •The origin of the photoluminescence emissions was discussed. •The films showed high transmittance and low resistivity. -- Abstract: Highly transparent and conducting fluorine (F) and tin (Sn) co-doped ZnO (FTZO) thin films were deposited on glass substrates by the sol–gel processing. The structure and morphology of the films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) with various F doping concentrations. SEM images showed that the hexagonal ZnO crystals were well-arranged on the glass substrates and the HRTEM images indicated that the individual nanocrystals are highly oriented and exhibited a perfect lattice structure. Owing to its high carrier concentration and mobility, as well as good crystal quality, a minimum resistivity of 1 × 10 −3 Ω cm was obtained from the FTZO thin film with 3% F doping, and the average optical transmittance in the entire visible wavelength region was higher than 90%. The X-ray photoelectron spectroscopy (XPS) study confirmed the substitution of Zn 2+ by Sn ions and Room temperature photoluminescence (PL) observed for pure and FTZO thin films suggested the films exhibit a good crystallinity with a very low defect concentration

  15. ZnO layers prepared by spray pyrolysis

    Science.gov (United States)

    Messaoudi, C.; Abd-Lefdil, S.; Sayah, D.; Cadene, M.

    1998-02-01

    Highly transparent undoped and indium doped ZnO thin films have been grown on glass substrates by using the spray pyrolysis process. Conditions of preparation have been optimized to get good quality and reproducible films with required properties. Polycrystalline films with an hexagonal Wurtzite-type structure were easily obtained under the optimum spraying conditions. Both of samples have shown high transmission coefficient in the visible and infrared wavelength range with sharp absorption edge around 380 nm which closely corresponds to the intrinsic band-gap of ZnO (3.2 eV). Orientation and crystallites size were remarkably modified by deposition temperature and indium doping. Des couches minces de ZnO, hautement transparentes, non dopées et dopées à l'indium ont été élaborées sur un substrat en verre par le procédé de pulvérisation chimique réactive spray. Les conditions de préparation ont été optimisées pour l'obtention de couches reproductibles, de bonne qualité et ayant les propriétés requises. Des films polycristallins, présentant une structure hexagonale de type Wurtzite, ont été aisément obtenus dans les conditions optimales de pulvérisation. Tous les échantillons ont présenté un coefficient de transmission élevé dans le domaine du visible et du proche infrarouge, avec une absorption brutale au voisinage de 380 nm, correspondant au gap optique du ZnO (3,2 eV). L'orientation et la taille des cristallites ont été remarquablement modifiées par la température du dépôt et par le dopage à l'indium.

  16. Transparent, high mobility InGaZnO thin films deposited by PLD

    International Nuclear Information System (INIS)

    Suresh, Arun; Gollakota, Praveen; Wellenius, Patrick; Dhawan, Anuj; Muth, John F.

    2008-01-01

    Transparent oxide semiconductor, InGaZnO, thin films were prepared by pulsed laser deposition at room temperature. The carrier concentration was found to vary by several orders of magnitude from insulating to 10 19 carriers/cm 3 depending on the oxygen partial pressure during deposition. Hall mobilities as high as 16 cm 2 /V s were observed. This is approximately an order of magnitude higher than the mobility of amorphous silicon and indicates that InGaO 3 (ZnO) x with x ≤ 5 may be suitable for transparent, thin film transistor applications. Post-deposition annealing was found to strongly influence the carrier concentration while annealing effects on the electron mobility was less influential

  17. In-plane thermal conductivity measurements of ZnO-, ZnS-, and YSZ thin-films on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, David; Gather, Florian; Kronenberger, Achim; Kuhl, Florian; Meyer, Bruno K.; Klar, Peter J. [I. Physikalisches Institut, Justus-Liebig-University, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)

    2012-07-01

    In this work we present in-plane thermal conductivity measurements of ZnO-, ZnS-, and YSZ thin-films. Borosilicate glass with a thickness of 50 microns and low thermal conductivity for improving the signal to noise ratio was used as substrate material. The above different films are deposited by rf-sputtering and have a thickness of about 1 micron. Our approach is a steady-state measurement. A wide metal wire on the film is used as a heater and two parallel lying narrow wires at distances of 100 microns and 200 microns from the heater wire, respectively, serve as the temperature sensors. The wire structure design is transfered on to the thin films by photolithography and metal evaporation. Measurements of the in-plane thermal conductivities of the above mentioned materials are presented and compared with corresponding results in the literature.

  18. Cation vacancies and electrical compensation in Sb-doped thin-film SnO2 and ZnO

    International Nuclear Information System (INIS)

    Korhonen, E; Prozheeva, V; Tuomisto, F; Bierwagen, O; Speck, J S; White, M E; Galazka, Z; Liu, H; Izyumskaya, N; Avrutin, V; Özgür, Ü; Morkoç, H

    2015-01-01

    We present positron annihilation results on Sb-doped SnO 2 and ZnO thin films. The vacancy types and the effect of vacancies on the electrical properties of these intrinsically n-type transparent semiconducting oxides are studied. We find that in both materials low and moderate Sb-doping leads to formation of vacancy clusters of variable sizes. However, at high doping levels cation vacancy defects dominate the positron annihilation signal. These defects, when at sufficient concentrations, can efficiently compensate the n-type doping produced by Sb. This is the case in ZnO, but in SnO 2 the concentrations appear too low to cause significant compensation. (invited article)

  19. Cation vacancies and electrical compensation in Sb-doped thin-film SnO2 and ZnO

    Science.gov (United States)

    Korhonen, E.; Prozheeva, V.; Tuomisto, F.; Bierwagen, O.; Speck, J. S.; White, M. E.; Galazka, Z.; Liu, H.; Izyumskaya, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-02-01

    We present positron annihilation results on Sb-doped SnO2 and ZnO thin films. The vacancy types and the effect of vacancies on the electrical properties of these intrinsically n-type transparent semiconducting oxides are studied. We find that in both materials low and moderate Sb-doping leads to formation of vacancy clusters of variable sizes. However, at high doping levels cation vacancy defects dominate the positron annihilation signal. These defects, when at sufficient concentrations, can efficiently compensate the n-type doping produced by Sb. This is the case in ZnO, but in SnO2 the concentrations appear too low to cause significant compensation.

  20. Transparent conducting properties of Ni doped zinc oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Bouaoud, A.; Rmili, A.; Ouachtari, F.; Louardi, A.; Chtouki, T. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Elidrissi, B., E-mail: e.bachir@mailcity.com [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Erguig, H. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Ecole Nationale des Sciences Appliquees de Kenitra (ENSAK) (Morocco)

    2013-01-15

    Undoped and Ni doped zinc oxide (Ni-ZnO) thin films were prepared by a facile spray pyrolysis technique using perfume atomizer from aqueous solution of anhydrous zinc acetate (Zn(CH{sub 3}COOH){sub 2} and hexahydrated nickel chloride (NiCl{sub 2}{center_dot}6H{sub 2}O) as sources of zinc and nickel, respectively. The films were deposited onto the amorphous glass substrates kept at (450 Degree-Sign C). The effect of the [Ni]/[Zn] ratio on the structural, morphological, optical and electrical properties of Ni doped ZnO thin film was studied. It was found from X-ray diffraction (XRD) analysis that both the undoped and Ni doped ZnO films were crystallized in the hexagonal structure with a preferred orientation of the crystallites along the [002] direction perpendicular to the substrate. The scanning electron microscopy (SEM) images showed a relatively dense surface structure composed of crystallites in the spherical form whose average size decreases when the [Ni]/[Zn] ratio increases. The optical study showed that all the films were highly transparent. The optical transmittance in the visible region varied between 75 and 85%, depending on the dopant concentrations. The variation of the band gap versus the [Ni]/[Zn] ratio showed that the energy gap decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02 and then increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. The films obtained with the [Ni]/[Zn] ratio = 0.02 showed minimum resistivity of 2 Multiplication-Sign 10{sup -3} {Omega} cm at room temperature. -- Highlights: Black-Right-Pointing-Pointer The optical transmittance of Ni doped ZnO varies between 75 and 85%. Black-Right-Pointing-Pointer The energy gap of these films decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02. Black-Right-Pointing-Pointer The energy gap increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. Black-Right-Pointing-Pointer The films obtained with [Ni]/[Zn] ratio = 0.02 show minimum resistivity of 2

  1. Flexible organic/inorganic hybrid solar cells based on conjugated polymer and ZnO nanorod array

    International Nuclear Information System (INIS)

    Tong, Fei; Kim, Kyusang; Martinez, Daniel; Thapa, Resham; Ahyi, Ayayi; Williams, John; Park, Minseo; Kim, Dong-Joo; Lee, Sungkoo; Lim, Eunhee; Lee, Kyeong K

    2012-01-01

    We report on the photovoltaic characteristics of organic/inorganic hybrid solar cells fabricated on ‘flexible’ transparent substrates. The solar cell device is composed of ZnO nanorod array and the bulk heterojunction structured organic layer which is the blend of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM). The ZnO nanorod array was grown on indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates via a low-temperature (85 °C) aqueous solution process. The blend solution consisting of conjugated polymer P3HT and fullerene PCBM was spin coated at a low spinning rate of 400 rpm on top of the ZnO nanorod array structure and then the photoactive layer was slow dried at room temperature in air to promote its infiltration into the nanorod network. As a top electrode, silver was sputtered on top of the photoactive layer. The flexible solar cell with the structure of PET/ITO/ZnO thin film/ZnO nanorods/P3HT:PCBM/Ag exhibited a photovoltaic performance with an open circuit voltage (V OC ) of 0.52 V, a short circuit current density (J SC ) of 9.82 mA cm −2 , a fill factor (FF) of 35% and a power conversion efficiency (η) of 1.78%. All the measurements were performed under 100 mW cm −2 of illumination with an air mass 1.5 G filter. To the best of our knowledge, this is the first presentation of investigation into the fabrication and characterization of organic/inorganic hybrid solar cells based on bulk heterojunction structured conjugated polymer/fullerene photoactive layer and ZnO nanorod array constructed on flexible transparent substrates. (paper)

  2. Physical properties and heterojunction device demonstration of aluminum-doped ZnO thin films synthesized at room ambient via sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Karaagac, Hakan, E-mail: hkaraagac@ucdavis.edu [Department of Electrical and Computer Engineering, University of California at Davis, Davis, CA 95616 (United States); Yengel, Emre; Saif Islam, M. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, CA 95616 (United States)

    2012-04-25

    Highlights: Black-Right-Pointing-Pointer Undoped and Al doped ZnO (AZO) thin films were successfully prepared using sol-gel technique. Black-Right-Pointing-Pointer Structural analysis has revealed that Al doping has a significant influence on preferential orientation. Black-Right-Pointing-Pointer It has been observed that wrinkles forms on the surface of films when annealed with a fast heat ramp up rate. Black-Right-Pointing-Pointer Optical analysis has revealed that that the band gap energy of ZnO thin film increases with increasing Al doping concentration. Black-Right-Pointing-Pointer The lowest resistivity is observed for 1% Al ZnO thin film, which is 2.2 Multiplication-Sign 10{sup -2} ({Omega} cm). - Abstract: ZnO and some of its ternary wide-bandgap alloys offer interesting opportunities for designing materials with tunable band gaps, strong piezoresistivity and controlled electrical conductance with high optical transparency. Synthesizing these materials on arbitrary substrates using low-cost and unconventional techniques can help in integrating semiconductors with different physical, electrical, and optical characteristics on a single substrate for heterogeneous integration of multifunctional devices. Here we report the successful synthesis of aluminum (Al) doped ZnO (AZO) thin films on soda-lime glass, silicon and fluorine doped tin oxide (FTO) pre-coated glass substrates by using sol-gel deposition method at ambient condition. X-ray diffraction (XRD) analysis revealed that varying degree of Al doping significantly impacts the crystal orientation, semiconductor bandgap and optical transparency of the film. Crystal structure of the film is also found to be strongly correlated to the characteristics of the substrate material. The impact of heating rate during post annealing process is studied and optimized in order to improve the surface morphology of the deposited films. Optical characterizations have revealed that bandgap energy of AZO films can be tuned

  3. Anodized ZnO nanostructures for photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Mao-Chia [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Wang, TsingHai [Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, Bin-Jui [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Lin, Jing-Chie, E-mail: jclin4046@gmail.com [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Wu, Ching-Chen [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China)

    2016-01-01

    Highlights: • ZnO nanostructures were synthesized by electrochemical anodic process. • The parameter of ZnO nanostructure was anodic potential. • The model of growth of ZnO nanostructure was investigated. - Abstract: Zinc oxide (ZnO) nanostructures were fabricated on the polished zinc foil by anodic deposition in an alkaline solution containing 1.0 M NaOH and 0.25 M Zn(NO{sub 3}){sub 2}. Potentiostatic anodization was conducted at two potentials (−0.7 V in the passive region and −1.0 V in the active region vs. SCE) which are higher than the open circuit potential (−1.03 V vs. SCE) and as-obtained ZnO nanostrcutures were investigated focusing on their structural, optical, electrical and photoelectrochemical (PEC) characteristics. All samples were confirmed ZnO by X-ray photoelectron spectroscopy and Raman spectra. Observations in the SEM images clearly showed that ZnO nanostructures prepared at −0.7 V vs. SCE were composed of nanowires at while those obtained at −1.0 V vs. SCE possessed nanosheets morphology. Result from transmission electron microscope and X-ray diffraction patterns suggested that the ZnO nanowires belonged to single crystalline with a preferred orientation of (0 0 2) whereas the ZnO nanosheets were polycrystalline. Following PEC experiments indicated that ZnO nanowires had higher photocurrent density of 0.32 mA/cm{sup 2} at 0.5 V vs. SCE under 100 mW/cm{sup 2} illumination. This value was about 1.9 times higher than that of ZnO nanosheets. Observed higher photocurrent was likely due to the single crystalline, preferred (0 0 2) orientation, higher carrier concentration and lower charge transfer resistance.

  4. Evaluating conducting network based transparent electrodes from geometrical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ankush [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560064 Bangalore (India); Kulkarni, G. U., E-mail: guk@cens.res.in [Centre for Nano and Soft Matter Sciences, 560013 Bangalore (India)

    2016-01-07

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in

  5. Evaluating conducting network based transparent electrodes from geometrical considerations

    International Nuclear Information System (INIS)

    Kumar, Ankush; Kulkarni, G. U.

    2016-01-01

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in

  6. Influence of Al concentration and annealing temperature on structural, optical, and electrical properties of Al co-doped ZnO thin films

    International Nuclear Information System (INIS)

    Gürbüz, Osman; Kurt, İsmail; Çalışkan, Serkan; Güner, Sadık

    2015-01-01

    concentration and worse crystal quality for as-grown AZO films. T% decreases until 34.5% for as-grown Al 15.62 ZnO film. T% increases by increasing annealing temperature. AZO samples annealed at 500 °C have around 80% transparencies in the visible range of spectrum. Optical energy band gap values range between 3.17 eV and 3.60 eV for as-grown and annealed samples. Band gap increments are attributed to increasing free electron concentration depending on doped Al ratio known as Burstein–Moss effect. Annealing process increases the band gap values, too. The electrical conductivity and carrier concentration of the films increased with increasing Al content. The mobility decreases due to increase in Al concentration that deteriorates the crystal nature. Annealing process especially at 400 °C enables the AZO samples to exhibit best electric conductivity due to long range crystal structured nature and increasing free electron concentration in the films. The maximum electrical conductivity value of 1.06 × 10 4 (Ωcm) −1 was measured from Al 12.30 ZnO sample annealed at 400 °C

  7. Magnetron sputtered transparent conductive zinc-oxide stabilized amorphous indium oxide thin films on polyethylene terephthalate substrates at ambient temperature

    International Nuclear Information System (INIS)

    Yan, Y.; Zhang, X.-F.; Ding, Y.-T.

    2013-01-01

    Amorphous transparent conducting zinc-oxide stabilized indium oxide thin films, named amorphous indium zinc oxide (a-IZO), were deposited by direct current magnetron sputtering at ambient temperature on flexible polyethylene terephthalate substrates. It has been demonstrated that the electrical resistivity could attain as low as ∼ 5 × 10 −4 Ω cm, which was noticeably lower than amorphous indium tin oxide films prepared at the same condition, while the visible transmittance exceeded 84% with the refractive index of 1.85–2.00. In our experiments, introduction of oxygen gas appeared to be beneficial to the improvement of the transparency and electrical conductivity. Both free carrier absorption and indirect transition were observed and Burstein–Moss effect proved a-IZO to be a degenerated amorphous semiconductor. However, the linear relation between the optical band gap and the band tail width which usually observed in covalent amorphous semiconductor such as a-Si:H was not conserved. Besides, porosity could greatly determine the resistivity and optical constants for the thickness variation at this deposition condition. Furthermore, a broad photoluminescence peak around 510 nm was identified when more than 1.5 sccm oxygen was introduced. - Highlights: ► Highly conducting amorphous zinc-oxide stabilized indium oxide thin films were prepared. ► The films were fabricated on polyethylene terephthalate at ambient temperature. ► Introduction of oxygen can improve the transparency and electrical conductivity. ► The linear relation between optical band gap and band tail width was not conserved

  8. Formation of p-type ZnO thin film through co-implantation

    Science.gov (United States)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  9. Enhanced optical band-gap of ZnO thin films by sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Raghu, P., E-mail: dpr3270@gmail.com; Naveen, C. S.; Shailaja, J.; Mahesh, H. M., E-mail: hm-mahesh@rediffmail.com [Thin Film and Solar Cell Laboratory, Department of Electronic Science, Bangalore University, Jnanabharathi, Bangalore -560056 (India)

    2016-05-06

    Transparent ZnO thin films were prepared using different molar concentration (0.1 M, 0.2 M & 0.8 M) of zinc acetate on soda lime glass substrates by the sol-gel spin coating technique. The optical properties revealed that the transmittance found to decrease with increase in molar concentration. Absorption edge showed that the higher concentration film has increasingly red shifted. An increased band gap energy of the thin films was found to be direct allowed transition of ∼3.9 eV exhibiting their relevance for photovoltaic applications. The extinction coefficient analysis revealed maximum transmittance with negligible absorption coefficient in the respective wavelengths. The results of ZnO thin film prepared by sol-gel technique reveal its suitability for optoelectronics and as a window layer in solar cell applications.

  10. Far-IR transparency and dynamic infrared signature control with novel conducting polymer systems

    Science.gov (United States)

    Chandrasekhar, Prasanna; Dooley, T. J.

    1995-09-01

    Materials which possess transparency, coupled with active controllability of this transparency in the infrared (IR), are today an increasingly important requirement, for varied applications. These applications include windows for IR sensors, IR-region flat panel displays used in camouflage as well as in communication and sight through night-vision goggles, coatings with dynamically controllable IR-emissivity, and thermal conservation coatings. Among stringent requirements for these applications are large dynamic ranges (color contrast), 'multi-color' or broad-band characteristics, extended cyclability, long memory retention, matrix addressability, small area fabricability, low power consumption, and environmental stability. Among materials possessing the requirements for variation of IR signature, conducting polymers (CPs) appear to be the only materials with dynamic, actively controllable signature and acceptable dynamic range. Conventional CPs such as poly(alkyl thiophene), poly(pyrrole) or poly(aniline) show very limited dynamic range, especially in the far-IR, while also showing poor transparency. We have developed a number of novel CP systems ('system' implying the CP, the selected dopant, the synthesis method, and the electrolyte) with very wide dynamic range (up to 90% in both important IR regions, 3 - 5 (mu) and 8 - 12 (mu) ), high cyclability (to 105 cycles with less than 10% optical degradation), nearly indefinite optical memory retention, matrix addressability of multi-pixel displays, very wide operating temperature and excellent environmental stability, low charge capacity, and processability into areas from less than 1 mm2 to more than 100 cm2. The criteria used to design and arrive at these CP systems, together with representative IR signature data, are presented in this paper.

  11. Electrical transport properties of spray deposited transparent conducting ortho-Zn2SnO4 thin films

    Science.gov (United States)

    Ramarajan, R.; Thangaraju, K.; Babu, R. Ramesh; Joseph, D. Paul

    2018-04-01

    Ortho Zinc Stannate (Zn2SnO4) exhibits excellent electrical and optical properties to serve as alternate transparent electrode in optoelectronic devices. Here we have optimized ortho-Zn2SnO4 thin film by spray pyrolysis method. Deposition was done onto a pre-heated glass substrate at a temperature of 400 °C. The XRD pattern indicated films to be polycrystalline with cubic structure. The surface of films had globular and twisted metal sheet like morphologies. Films were transparent in the visible region with band gap around 3.6 eV. Transport properties were studied by Hall measurements at 300 K. Activation energies were calculated from Arrhenius's plot from temperature dependent electrical measurements and the conduction mechanism is discussed.

  12. Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters

    Directory of Open Access Journals (Sweden)

    M. Marus

    2018-03-01

    Full Text Available The effect of the diameter of randomly arranged silver nanowires on the optical haze of silver nanowire transparent conductive films was studied. Proposed simulation model behaved similarly with the experimental results, and was used to theoretically study the optical haze of silver nanowires with diameters in the broad range from 30 nm and above. Our results show that a thickening of silver nanowires from 30 to 100 nm results in the increase of the optical haze up to 8 times, while from 100 to 500 nm the optical haze increases only up to 1.38. Moreover, silver nanowires with diameter of 500 nm possess up to 5% lower optical haze and 5% higher transmittance than 100 nm thick silver nanowires for the same 10-100 Ohm/sq sheet resistance range. Further thickening of AgNWs can match the low haze of 30 nm thick AgNWs, but at higher transmittance. The results obtained from this work allow deeper analysis of the silver nanowire transparent conductive films from the perspective of the diameter of nanowires for various optoelectronic devices.

  13. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires

    Science.gov (United States)

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-01

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  14. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    Science.gov (United States)

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  15. Fibrous flexible solid-type dye-sensitized solar cells without transparent conducting oxide

    International Nuclear Information System (INIS)

    Fan Xing; Chu Zengze; Chen Lin; Zhang Chao; Wang Fuzhi; Tang Yanwei; Sun Jianliang; Zou Dechun

    2008-01-01

    We have explored a type of all-solid fibrous flexible dye-sensitized solar cells without transparent conducting oxide based on a CuI electrolyte. The working electrode's substrate is a metal wire. Cu wire counterelectrode is twisted with the dye-sensitized and CuI-coated working electrode. The cell's apparent diameter is about 150 μm. The cell's current-voltage output depends little on the incident angle of light. A 4-cm-long fibrous cell's open-circuit voltage and short-circuit current generate 304 mV and 0.032 mA, respectively. The interfacial interaction between the two electrodes has a significant influence on the inner charge transfer of the cell

  16. Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels

    Science.gov (United States)

    Huang, B.

    2016-07-01

    We propose a surface doping model of ZnO to elucidate the p-type doping and compensations in ZnO nanomaterials. With an N-dopant, the effects of N on the ZnO surface demonstrate a relatively shallow acceptor level in the band gap. As the dimension of the ZnO materials decreases, the quantum confinement effects will increase and render the charge transfer on surface to influence the shifting of Fermi level, by evidence of transition level changes of the N-dopant. We report that this can overwhelm the intrinsic p-type conductivity and transport of the ZnO bulk system. This may provide a possible route of using surface doping to modify the electronic transport and conductivity of ZnO nanomaterials.

  17. Atom probe microscopy of zinc isotopic enrichment in ZnO nanorods

    Directory of Open Access Journals (Sweden)

    C. N. Ironside

    2017-02-01

    Full Text Available We report on atomic probe microscopy (APM of isotopically enriched ZnO nanorods that measures the spatial distribution of zinc isotopes in sections of ZnO nanorods for natural abundance natZnO and 64Zn and 66Zn enriched ZnO nanorods. The results demonstrate that APM can accurately quantify isotopic abundances within these nanoscale structures. Therefore the atom probe microscope is a useful tool for characterizing Zn isotopic heterostructures in ZnO. Isotopic heterostructures have been proposed for controlling thermal conductivity and also, combined with neutron transmutation doping, they could be key to a novel technology for producing p-n junctions in ZnO thin films and nanorods.

  18. Activities towards p-type doping of ZnO

    International Nuclear Information System (INIS)

    Brauer, G; Kuriplach, J; Ling, C C; Djurisic, A B

    2011-01-01

    Zinc oxide (ZnO) is an interesting and promising semiconductor material for many potential applications, e.g. in opto-electronics and for sensor devices. However, its p-type doping represents a challenging problem, and the physical reasons of its mostly n-type conductivity are not perfectly clear at present. Efforts to achieve p-type conductivity by ion implantation are reviewed, and ways to achieve p-type ZnO nanorods and thin films through various growth conditions are summarized. Then, issues associated with the preparation of Schottky contacts is discussed in some detail as this is a requirement of the device formation process. Finally, the possible incorporation of hydrogen and nitrogen into structural defects, which can act as trapping sites for positrons, is discussed in the context of experimental and theoretical positron results and the estimated H and N content in a variety of ZnO materials.

  19. Activities towards p-type doping of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, G [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Kuriplach, J [Department of Low Temperature Physics, Charles University, V Holetovickach 2, CZ-18000 Prague (Czech Republic); Ling, C C; Djurisic, A B, E-mail: g.brauer@fzd.de [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong)

    2011-01-10

    Zinc oxide (ZnO) is an interesting and promising semiconductor material for many potential applications, e.g. in opto-electronics and for sensor devices. However, its p-type doping represents a challenging problem, and the physical reasons of its mostly n-type conductivity are not perfectly clear at present. Efforts to achieve p-type conductivity by ion implantation are reviewed, and ways to achieve p-type ZnO nanorods and thin films through various growth conditions are summarized. Then, issues associated with the preparation of Schottky contacts is discussed in some detail as this is a requirement of the device formation process. Finally, the possible incorporation of hydrogen and nitrogen into structural defects, which can act as trapping sites for positrons, is discussed in the context of experimental and theoretical positron results and the estimated H and N content in a variety of ZnO materials.

  20. Enhanced ultraviolet photo-response in Dy doped ZnO thin film

    Science.gov (United States)

    Kumar, Pawan; Singh, Ranveer; Pandey, Praveen C.

    2018-02-01

    In the present work, a Dy doped ZnO thin film deposited by the spin coating method has been studied for its potential application in a ZnO based UV detector. The investigations on the structural property and surface morphology of the thin film ensure that the prepared samples are crystalline and exhibit a hexagonal crystal structure of ZnO. A small change in crystallite size has been observed due to Dy doping in ZnO. AFM analysis ascertains the grain growth and smooth surface of the thin films. The Dy doped ZnO thin film exhibits a significant enhancement in UV region absorption as compared to the pure ZnO thin film, which suggests that Dy doped ZnO can be used as a UV detector. Under UV irradiation of wavelength 325 nm, the photocurrent value of Dy doped ZnO is 105.54 μA at 4.5 V, which is 31 times greater than that of the un-doped ZnO thin film (3.39 μA). The calculated value of responsivity is found to increase significantly due to the incorporation of Dy in the ZnO lattice. The observed higher value of photocurrent and responsivity could be attributed to the substitution of Dy in the ZnO lattice, which enhances the conductivity, electron mobility, and defects in ZnO and benefits the UV sensing property.

  1. Excimer laser processing of ZnO thin films prepared by the sol-gel process

    International Nuclear Information System (INIS)

    Winfield, R.J.; Koh, L.H.K.; O'Brien, Shane; Crean, Gabriel M.

    2007-01-01

    ZnO thin films were prepared on soda-lime glass from a single spin-coating deposition of a sol-gel prepared with anhydrous zinc acetate [Zn(C 2 H 3 O 2 ) 2 ], monoethanolamine [H 2 NC 2 H 4 OH] and isopropanol. The deposited films were dried at 50 and 300 deg. C. X-ray analysis showed that the films were amorphous. Laser annealing was performed using an excimer laser. The laser pulse repetition rate was 25 Hz with a pulse energy of 5.9 mJ, giving a fluence of 225 mJ cm -2 on the ZnO film. Typically, five laser pulses per unit area of the film were used. After laser processing, the hexagonal wurtzite phase of zinc oxide was observed from X-ray diffraction pattern analysis. The thin films had a transparency of greater than 70% in the visible region. The optical band-gap energy was 3.454 eV. Scanning electron microscopy and profilometry analysis highlighted the change in morphology that occurred as a result of laser processing. This comparative study shows that our sol-gel processing route differs significantly from ZnO sol-gel films prepared by conventional furnace annealing which requires temperatures above 450 deg. C for the formation of crystalline ZnO

  2. Performance and stability analysis of curcumin dye as a photo sensitizer used in nanostructured ZnO based DSSC

    Science.gov (United States)

    Sinha, D.; De, D.; Ayaz, A.

    2018-03-01

    Environmental friendly natural dye curcumin extracted from low-cost Curcumina longa stem is used as a photo-sensitizer for the fabrication of ZnO-based dye-sensitized solar cells (DSSC). Nanostructured ZnO is fabricated on a transparent conducting glass (TCO), using a cost-effective chemical bath deposition technique. Scanning electron microscopic images show hexagonal patterned ZnO nano-towers decorated with several nanosteps. The average length of ZnO nano-tower is 5 μm and diameter is 1.2 μm. The UV-Vis spectroscopic study of the curcumin dye is used to understand the light absorption behavior as well as band gap energy of the extracted natural dye. The dye shows wider absorption band-groups over 350-470 nm and 500-600 nm with two peaks positioned at 425 nm and 525 nm. The optical band gap energy and energy band position of the dye is derived which supports its stability and high electron affinity that makes it suitable for light harvesting and effortless electron transfer from dye to the semiconductor or interface between them. FTIR spectrum of curcumin dye-sensitized ZnO-based DSSC shows the presence of anchoring groups and colouring constitutes. The I-V and P-V curves of the fabricated DSSC are measured under simulated light (100 mW/cm2). The highest visible light to electric conversion efficiency of 0.266% (using ITO) and 0.33% (using FTO) is achieved from the curcumin dye-sensitized cell.

  3. Effect of annealing and In content on the properties of electron beam evaporated ZnO films

    Science.gov (United States)

    Mohamed, S. H.; Ali, H. M.; Mohamed, H. A.; Salem, A. M.

    2005-08-01

    The effect of both annealing and In content on the properties of ZnO films prepared by electron beam evaporation were investigated. The evaporation was carried out at room temperature from bulk samples prepared by sintering technique. X-ray diffraction showed that the structure of ZnO-In{2}O{3} films depends on both the In content and annealing temperature. Amorphous, highly transparent and relatively low resistive films which can be suitable for the usage as transparent electrode of organic light-emitting diode were obtained upon annealing at 300 circC. Partially crystalline, highly transparent and highly resistive films which can be used in piezoelectric applications were obtained upon annealing at 500 circC. For each composition the refractive index has no monotonic variation upon increasing annealing temperature.

  4. Transparent conducting zinc oxide thin film prepared by off-axis rf ...

    Indian Academy of Sciences (India)

    Unknown

    and pestle. The powder was pressed and sintered at. 900°C for 10 h in air with a intermediate grinding. Two types of targets, one pure ZnO, and another with 2% of. Al were used for the deposition of the films. Before ... lysed using an X-ray diffractometer. Electron probe micro analysis (EPMA) was used to analyse the actual.

  5. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a

  6. Low-temperature processed ZnO and CdS photodetectors deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N; Moreno, S; Mejia, I; Quevedo-Lopez, M A

    2014-01-01

    UV-VIS photodetectors using an interdigital configuration, with zinc oxide (ZnO) and cadmium sulfide (CdS) semiconductors deposited by pulsed laser deposition, were fabricated with a maximum processing temperature of 100 °C. Without any further post-growth annealing, the photodetectors are compatible with flexible and transparent substrates. Aluminum (Al) and indium tin oxide (ITO) were investigated as contacts. Focusing on underwater communications, the impact of metal contact (ITO versus Al) was investigated to determine the maximum responsivity using a laser with a 405 nm wavelength. As expected, the responsivity increases for reduced metal finger separation. This is a consequence of reduced carrier transit time for shorter finger separation. For ITO, the highest responsivities for both films (ZnO and CdS) were ∼3 A W −1 at 5 V. On the other hand, for Al contacts, the maximum responsivities at 5 V were ∼0.1 A W −1 and 0.7 A W −1 for CdS and ZnO, respectively. (paper)

  7. Interface Study of ITO/ZnO and ITO/SnO2 Complex Transparent Conductive Layers and Their Effect on CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Tingliang Liu

    2013-01-01

    Full Text Available Transparent ITO/ZnO and ITO/SnO2 complex conductive layers were prepared by DC- and RF-magnetron sputtering. Their structure and optical and electronic performances were studied by XRD, UV/Vis Spectroscopy, and four-probe technology. The interface characteristic and band offset of the ITO/ZnO, ITO/SnO2, and ITO/CdS were investigated by Ultraviolet Photoelectron Spectroscopy (UPS and X-ray Photoelectron Spectroscopy (XPS, and the energy band diagrams have also been determined. The results show that ITO/ZnO and ITO/SnO2 films have good optical and electrical properties. The energy barrier those at the interface of ITO/ZnO and ITO/SnO2 layers are almost 0.4 and 0.44 eV, which are lower than in ITO/CdS heterojunctions (0.9 eV, which is beneficial for the transfer and collection of electrons in CdTe solar cells and reduces the minority carrier recombination at the interface, compared to CdS/ITO. The effects of their use in CdTe solar cells were studied by AMPS-1D software simulation using experiment values obtained from ZnO, ITO, and SnO2. From the simulation, we confirmed the increase of Eff, FF, Voc, and Isc by the introduction of ITO/ZnO and ITO/SnO2 layers in CdTe solar cells.

  8. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    Directory of Open Access Journals (Sweden)

    Rafal Pietruszka

    2014-02-01

    Full Text Available Selected properties of photovoltaic (PV structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100 are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.

  9. Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes

    International Nuclear Information System (INIS)

    Ali, Ahmad Hadi; Shuhaimi, Ahmad; Hassan, Zainuriah

    2014-01-01

    We report on the transparent conductive oxides (TCO) characteristics based on the indium tin oxides (ITO) and ITO/metal thin layer as an electrode for optoelectronics device applications. ITO, ITO/Ag and ITO/Ni were deposited on Si and glass substrate by thermal evaporator and radio frequency (RF) magnetron sputtering at room temperature. Post deposition annealing was performed on the samples in air at moderate temperature of 500 °C and 600 °C. The structural, optical and electrical properties of the ITO and ITO/metal were characterized using X-ray diffraction (XRD), UV–Vis spectrophotometer, Hall effect measurement system and atomic force microscope (AFM). The XRD spectrum reveals significant polycrystalline peaks of ITO (2 2 2) and Ag (1 1 1) after post annealing process. The post annealing also improves the visible light transmittance and electrical resistivity of the samples. Figure of merit (FOM) of the ITO, ITO/Ag and ITO/Ni were determined as 5.5 × 10 −3 Ω −1 , 8.4 × 10 −3 Ω −1 and 3.0 × 10 −5 Ω −1 , respectively. The results show that the post annealed ITO with Ag intermediate layer improved the efficiency of the transparent conductive electrodes (TCE) as compared to the ITO and ITO/Ni.

  10. Direct growth of transparent conducting Nb-doped anatase TiO2 polycrystalline films on glass

    International Nuclear Information System (INIS)

    Yamada, Naoomi; Kasai, Junpei; Hitosugi, Taro; Hoang, Ngoc Lam Huong; Nakao, Shoichiro; Hirose, Yasushi; Shimada, Toshihiro; Hasegawa, Tetsuya

    2009-01-01

    This paper proposes a novel sputter-based method for the direct growth of transparent conducting Ti 1-x Nb x O 2 (TNO) polycrystalline films on glass, without the need for any postdeposition treatments, by the use of an initial seed-layer. Anatase TNO epitaxial films grown on LaAlO 3 (100) substrates under a reducing atmosphere exhibited a low resistivity (ρ) of (3-6)x10 -4 Ω cm. On glass, however, highly resistive rutile phase polycrystalline films (ρ∼100 Ω cm) formed preferentially under the same conditions. These results suggest that epitaxial stabilization of the oxygen-deficient anatase phase occurs on lattice-matched substrates. To produce a similar effect on a glass surface, we deposited a seed-layer of anatase TNO with excellent crystallinity under an increased oxygen atmosphere. As a result, anatase phase TNO polycrystalline films could be grown even under heavily reducing atmospheres. An optimized film exhibited ρ=1.1x10 -3 Ω cm and optical absorption lower than 10% in the visible region. This ρ value is more than one order of magnitude lower than values reported for directly deposited TNO polycrystalline films. This indicates that the seed-layer method has considerable potential for producing transparent conducting TNO polycrystalline films on glass.

  11. Resistive Switching Characteristics in Electrochemically Synthesized ZnO Films

    Directory of Open Access Journals (Sweden)

    Shuhan Jing

    2015-04-01

    Full Text Available The semiconductor industry has long been seeking a new kind of non-volatile memory technology with high-density, high-speed, and low-power consumption. This study demonstrated the electrochemical synthesis of ZnO films without adding any soft or hard templates. The effect of deposition temperatures on crystal structure, surface morphology and resistive switching characteristics were investigated. Our findings reveal that the crystallinity, surface morphology and resistive switching characteristics of ZnO thin films can be well tuned by controlling deposition temperature. A conducting filament based model is proposed to explain the switching mechanism in ZnO thin films.

  12. A study of polaritonic transparency in couplers made from excitonic materials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R.; Racknor, Chris [Department of Physics and Astronomy, Western University, London, Ontario N6A 3K7 (Canada)

    2015-03-14

    We have studied light matter interaction in quantum dot and exciton-polaritonic coupler hybrid systems. The coupler is made by embedding two slabs of an excitonic material (CdS) into a host excitonic material (ZnO). An ensemble of non-interacting quantum dots is doped in the coupler. The bound exciton polariton states are calculated in the coupler using the transfer matrix method in the presence of the coupling between the external light (photons) and excitons. These bound exciton-polaritons interact with the excitons present in the quantum dots and the coupler is acting as a reservoir. The Schrödinger equation method has been used to calculate the absorption coefficient in quantum dots. It is found that when the distance between two slabs (CdS) is greater than decay length of evanescent waves the absorption spectrum has two peaks and one minimum. The minimum corresponds to a transparent state in the system. However, when the distance between the slabs is smaller than the decay length of evanescent waves, the absorption spectra has three peaks and two transparent states. In other words, one transparent state can be switched to two transparent states when the distance between the two layers is modified. This could be achieved by applying stress and strain fields. It is also found that transparent states can be switched on and off by applying an external control laser field.

  13. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei

    2009-03-11

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive atomic force microscope (AFM) in contact mode. The output voltage pulse is generated when the tip contacts the stretched side (positive piezoelectric potential side) of the NW. In contrast, the n-type ZnO NW produces negative output voltage when scanned by the AFM tip, and the output voltage pulse is generated when the tip contacts the compressed side (negative potential side) of the NW. In reference to theoretical simulation, these experimentally observed phenomena have been systematically explained based on the mechanism proposed for a nanogenerator. © 2009 American Chemical Society.

  14. Convenient preparation of ITO nanoparticles inks for transparent conductive thin films

    International Nuclear Information System (INIS)

    Ito, Daisuke; Masuko, Keiichiro; Weintraub, Benjamin A.; McKenzie, Lallie C.; Hutchison, James E.

    2012-01-01

    Tin-doped indium oxide (ITO) nanoparticles are useful precursors to transparent electrodes in a variety of technologically important applications. We synthesized ITO nanoparticles from indium and tin acetylacetonates in oleyl alcohol using a novel temperature ramp profile. The monodispersed ITO nanoparticles have an average diameter of 8.6 nm and form dense, flat films by simple spin coating. The thickness of the film can be controlled by varying the number of additional depositions. The resulting ITO film is transparent and has a resistivity of 7 × 10 −3 Ω cm after sintering at 300 °C. Using a suitable solvent, it is possible to coat high-aspect-ratio structures with ITO nanoparticles. This approach to ITO coatings is greener and offers a number of advantages for transparent electrodes because it is highly versatile, easily scalable, and supports low-cost manufacturing.

  15. Optical Design of Porous ZnO/TiO2 Films for Highly Transparent Glasses with Broadband Ultraviolet Protection

    Directory of Open Access Journals (Sweden)

    Han Sung Song

    2017-01-01

    Full Text Available We present a design of a bilayer porous film structure on a glass substrate for the highly efficient ultraviolet (UV protection with high visible-light transparency. To effectively block UVB (280–315 nm and UVA (315–400 nm, titanium dioxide (TiO2 and zinc oxide (ZnO are used as absorbing layers having the appropriate coverages in different UV ranges with extinction coefficients, respectively. We show the process of refractive index (RI matching by controlling porosity (Pr. Effective RIs of porous media with TiO2 and ZnO were calculated based on volume averaging theory. Transmittances of the designed films with different effective RIs were calculated using rigorous coupled-wave analysis method. Using admittance loci method, the film thickness was optimized in center wavelengths from 450 to 550 nm. The results show that the optimal design provides high UV shielding performance at both UVA and UVB with high transparency in the visible range. We also analyze electrical field distributions in each layer and angle dependency with 3D HSV color map.

  16. Transparent Conductive Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-22

    The objectives of this program between UT-Battelle, LLC (the ''Contractor'') and (Battelle Memorial Institute) (the "Participant") were directed towards achieving significant improvement: in the electrical conductivity and optical/infrared transmission of single-wall carbon nanotube (SWNT)-based composite materials. These materials will be used in coating applications that range from aircraft canopies to display applications. The goal of the project was to obtain supported mats of SWNTs with sheet conductivities approaching 10 ohms/square combined with high optical transmission (>85% transmission at 550 nm), thereby permitting their application as a replacement for indium tin oxide (ITO) in a variety of applications such as flexible displays.

  17. Application of hydrogen-doped In2O3 transparent conductive oxide to thin-film microcrystalline Si solar cells

    International Nuclear Information System (INIS)

    Koida, Takashi; Sai, Hitoshi; Kondo, Michio

    2010-01-01

    Hydrogen-doped In 2 O 3 (IO:H) films with high electron mobility and improved near-infrared (NIR) transparency have been applied as a transparent conducting oxide (TCO) electrode in substrate-type hydrogenated microcrystalline silicon (μc-Si:H) solar cells. The incorporation of IO:H, instead of conventional Sn-doped In 2 O 3 , improved the short-circuit current density (J sc ) and the resulting conversion efficiency. Optical analysis of the solar cells and TCO films revealed that the improvement in J sc is due to the improved spectral sensitivity in the visible and NIR wavelengths by reduction of absorption loss caused by free carriers in the TCO films.

  18. Spectral and optical performance of electrochromic poly(3,4-ethylenedioxythiophene) (PEDOT) deposited on transparent conducting oxide coated glass and polymer substrates

    International Nuclear Information System (INIS)

    Sindhu, S.; Narasimha Rao, K.; Ahuja, Sharath; Kumar, Anil; Gopal, E.S.R.

    2006-01-01

    Electrochromic devices utilizing conjugated polymers as electrochromic layers have gained increasing attention owing to their optical properties, fast switching times and contrast ratios. Polyethylenedioxythiophene (PEDOT) is an excellent material from its electrochromic properties, high conductivity and high stability in the doped form. Aqueous dispersions of PEDOT were either spin coated or electro-polymerized on transparent conducting oxide coated glass and polyethylene tetraphthalate (PET) film substrates. The spectro- and opto-electrochemical studies of the films on transparent conducting oxide coated glass/PET substrates were performed. These films have application in the fabrication of electrochromic windows (smart windows). Smart window devices having excellent switching characteristics over wide range of temperature are used for glazing applications. The aerospace industry is interested in the development of visors and windows that can control glare for pilots and passengers, especially if the coatings can be made on curved surfaces and electrically conducting

  19. Low Temperature Synthesis of Fluorine-Doped Tin Oxide Transparent Conducting Thin Film by Spray Pyrolysis Deposition.

    Science.gov (United States)

    Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul

    2016-02-01

    Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.

  20. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    International Nuclear Information System (INIS)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-01-01

    Tungsten oxide (WO x ) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10 −4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WO x -based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 10 6 , a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm 2 /V s was realized. Our results demonstrated that WO x -based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  1. CBE growth of high-quality ZnO epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    El-Shaer, A.; Bakin, A.; Mofor, A.C.; Kreye, M.; Waag, A. [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Blaesing, J.; Krost, A. [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany); Stoimenos, J. [Physics Department, Aristotele University, Univ. Campus, 54006 Thessaloniki (Greece); Pecz, B. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, P.O. Box 49, 1525 Budapest (Hungary); Heuken, M. [Aixtron AG, Kackertstr. 15-17, 52072 Aachen (Germany)

    2006-03-15

    Further improvements on the recently reported novel approach to zinc oxide Chemical Beam Epitaxy (CBE) are presented. Hydrogen peroxide is employed as a very efficient novel oxidant. ZnO layers with a thickness from 100 nm to 600 nm were grown on c-sapphire using a MgO buffer. PL-mapping as well as conductivity mapping shows a good uniformity across the 2 inch ZnO-on-sapphire epiwafers. The measured surface roughness for the best layers is as low as 0.26 nm. HRXRD measurements of the obtained ZnO layers show excellent quality of the single crystalline ZnO. The FWHM of the HRXRD (0002) rocking curves measured for the 2 inch ZnO-on-sapphire wafers is as low as 27 arcsec with a very high lateral homogeneity across the whole wafer. Plane view HRTEM observations reveal the very good quality of the ZnO films. The results indicate that CBE is a suitable technique to fabricate ZnO of very high structural quality, which can eventually be used as an alternative to bulk ZnO substrates. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Effect of different sol concentrations on the properties of nanocrystalline ZnO thin films grown on FTO substrates by sol-gel spin-coating

    International Nuclear Information System (INIS)

    Kim, Ikhyun; Kim, Younggyu; Nam, Giwoong; Kim, Dongwan; Park, Minju; Kim, Haeun; Lee, Wookbin; Leem, Jaeyoung; Kim, Jongsu; Kim, Jin Soo

    2014-01-01

    Nanocrystalline ZnO thin films grown on fluorine-doped tinoxide (FTO) substrates were fabricated using the spin-coating method. The structural and the optical properties of the ZnO thin films prepared using different sol concentrations were investigated by using field-emission scanning electron microscopy (FE-SEM), X-ray diffractometry (XRD), photoluminescence (PL) measurements, and ultraviolet-visible (UV-vis) spectrometry. The surface morphology of the ZnO thin films, as observed in the SEM images, exhibited a mountain-chain structure. XRD results indicated that the thin films were preferentially orientated along the direction of the c-axis and that the grain size of the ZnO thin films increased with increasing sol concentration. The PL spectra showed a strong ultraviolet emission peak at 3.22 eV and a broad orange emission peak at 2.0 eV. The intensities of deep-level emission (DLE) gradually increased with increasing sol concentration from 0.4 to 1.0 M. The transmittance spectra of the ZnO thin films showed that the ZnO thin films were transparent (∼85%) in the visible region and exhibited sharp absorption edges at 375 nm. Thus, The Urbach energy of ZnO thin films decreased with increasing sol concentration.

  3. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    International Nuclear Information System (INIS)

    Elen, Ken; Capon, Boris; De Dobbelaere, Christopher; Dewulf, Daan; Peys, Nick; Detavernier, Christophe; Hardy, An; Van Bael, Marlies K.

    2014-01-01

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum

  4. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Elen, Ken [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Strategisch Initiatief Materialen (SIM), SoPPoM Program (Belgium); Capon, Boris [Strategisch Initiatief Materialen (SIM), SoPPoM Programm (Belgium); Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); De Dobbelaere, Christopher [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Dewulf, Daan [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Peys, Nick [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw, Kapeldreef 75, B-3001 Heverlee (Belgium); Detavernier, Christophe [Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); Hardy, An [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Van Bael, Marlies K., E-mail: marlies.vanbael@uhasselt.be [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium)

    2014-03-31

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum.

  5. Nanosheet-Assembled ZnO Microflower Photocatalysts

    Directory of Open Access Journals (Sweden)

    Siwen Zhang

    2014-01-01

    Full Text Available Large scale ZnO microflowers assembled by numerous nanosheets are synthesized through a facile and effective hydrothermal route. The structure and morphology of the resultant products are characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. Photocatalytic properties of the as-synthesized products are also investigated. The results demonstrate that eosin red aqueous solution can be degraded over 97% after 110 min under UV light irradiation. In addition, methyl orange (MO and Congo red (CR aqueous solution degradation experiments also are conducted in the same condition, respectively. It showed that nanosheet-assembled ZnO microflowers represent high photocatalytic activities with a degradation efficiency of 91% for CR with 90 min of irradiation and 90% for MO with 60 min of irradiation. The reported ZnO products may be promising candidates as the photocatalysts in waste water treatment.

  6. ZnO THIN FILMS PREPARED BY SPRAY-PYROLYSIS TECHNIQUE FROM ORGANO-METALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    Martin Mikulics

    2012-07-01

    Full Text Available Presented experiments utilize methanolic solution of zinc acetyl-acetonate as a precursor and sapphire (001 as a substrate for deposition of thin films of ZnO. The X-ray diffraction analysis revealed polycrystalline character of prepared films with preferential growth orientation along c-axis. The roughness of prepared films was assessed by AFM microscopy and represented by roughness root mean square (RMS value in range of 1.8 - 433 nm. The surface morphology was mapped by scanning electron microscopy showing periodical structure with several local defects. The optical transmittance spectrum of ZnO films was measured in wavelength range of 200-1000 nm. Prepared films are transparent in visible range with sharp ultra-violet cut-off at approximately 370 nm. Raman spectroscopy confirmed wurtzite structure and the presence of compressive stress within its structure as well as the occurrence of oxygen vacancies. The four-point Van der Pauw method was used to study the transport prosperities. The resistivity of presented ZnO films was found 8 × 10–2 Ω cm with carrier density of 1.3 × 1018 cm–3 and electron mobility of 40 cm2 V–1 s–1.

  7. A phosphor-free white light-emitting diode using In2O3 : Tb transparent conductive light converter

    International Nuclear Information System (INIS)

    Chen, Lung-Chien; Tien, Ching-Ho; Liao, Wei-Chian

    2011-01-01

    Tb-doped indium oxide (In 2 O 3 : Tb) films were deposited on a GaN-based near-ultraviolet (NUV) light-emitting diode (LED) as a transparent conductive light converter to form a white LED. The transmittance of the In 2 O 3 : Tb film (Tb at 10 wt%) exceeded 80% in visible light and the resistivity was 0.325 Ω cm. The In 2 O 3 : Tb transparent conductive light converter was also employed on GaN-based LEDs. GaN-based NUV-LEDs with In 2 O 3 : Tb film (Tb at 10 wt%) produced forward biases of 3.42 V at an injection current of 20 mA. With increasing temperature, increasing Tb 3+ concentration and increasing injection current from 20 to 100 mA, the chromaticity coordinates barely changed in the white light area. Therefore, the GaN-based NUV-LED with In 2 O 3 : Tb film had a stable white light colour, when temperature and injection current changed, and is suitable for solid-state lighting.

  8. Microwave absorption properties and mechanism of cagelike ZnO /SiO2 nanocomposites

    Science.gov (United States)

    Cao, Mao-Sheng; Shi, Xiao-Ling; Fang, Xiao-Yong; Jin, Hai-Bo; Hou, Zhi-Ling; Zhou, Wei; Chen, Yu-Jin

    2007-11-01

    In this paper, cagelike ZnO /SiO2 nanocomposites were prepared and their microwave absorption properties were investigated in detail. Dielectric constants and losses of the pure cagelike ZnO nanostructures were measured in a frequency range of 8.2-12.4GHz. The measured results indicate that the cagelike ZnO nanostructures are low-loss material for microwave absorption in X band. However, the cagelike ZnO /SiO2 nanocomposites exhibit a relatively strong attenuation to microwave in X band. Such strong absorption is related to the unique geometrical morphology of the cagelike ZnO nanostructures in the composites. The microcurrent network can be produced in the cagelike ZnO nanostructures, which contributes to the conductive loss.

  9. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung, E-mail: hkkim@ynu.ac.kr

    2015-08-31

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □{sup −1} and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □{sup −1} after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐{sup −1}) and high transmittance (87.6%)

  10. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    International Nuclear Information System (INIS)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung

    2015-01-01

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □ −1 and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □ −1 after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐ −1 ) and high transmittance (87.6%)

  11. Stable and Controllable Synthesis of Silver Nanowires for Transparent Conducting Film

    Science.gov (United States)

    Liu, Bitao; Yan, Hengqing; Chen, Shanyong; Guan, Youwei; Wu, Guoguo; Jin, Rong; Li, Lu

    2017-03-01

    Silver nanowires without particles are synthesized by a solvothermal method at temperature 150 °C. Silver nanowires are prepared via a reducing agent of glycerol and a capping agent of polyvinylpyrrolidone ( M w ≈ 1,300,000). Both of them can improve the purity of the as-prepared silver nanowires. With controllable shapes and sizes, silver nanowires are grown continuously up to 10-20 μm in length with 40-50 nm in diameter. To improve the yield of silver nanowires, the different concentrations of AgNO3 synthesis silver nanowires are discussed. The characterizations of the synthesized silver nanowires are analyzed by UV-visible absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscope (AFM), and silver nanowires are pumped on the cellulose membrane and heated stress on the PET. Then, the cellulose membrane is dissolved by the steam of acetone to prepare flexible transparent conducting thin film, which is detected 89.9 of transmittance and 58 Ω/□. Additionally, there is a close loop connected by the thin film, a blue LED, a pair of batteries, and a number of wires, to determinate directly the film if conductive or not.

  12. Properties of TiO2-based transparent conducting oxide thin films on GaN(0001) surfaces

    International Nuclear Information System (INIS)

    Kasai, J.; Nakao, S.; Yamada, N.; Hitosugi, T.; Moriyama, M.; Goshonoo, K.; Hoang, N. L. H.; Hasegawa, T.

    2010-01-01

    Anatase Nb-doped TiO 2 transparent conducting oxide has been formed on GaN(0001) surfaces using a sputtering method. Amorphous films deposited at room temperature were annealed at a substrate temperature of 500 deg. C in vacuum to form single-phase anatase films. Films with a thickness of 170 nm exhibited a resistivity of 8x10 -4 Ω cm with absorptance less than 5% at a wavelength of 460 nm. Furthermore, the refractive index of the Nb-doped TiO 2 was well matched to that of GaN. These findings indicate that Nb-doped TiO 2 is a promising material for use as transparent electrodes in GaN-based light emitting diodes (LEDs), particularly since reflection at the electrode/GaN boundary can be suppressed, enhancing the external quantum efficiency of blue LEDs.

  13. Textured surface structures formed using new techniques on transparent conducting Al-doped zinc oxide films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Miyata, Toshihiro; Uozaki, Ryousuke; Sai, Hitoshi; Koida, Takashi

    2016-01-01

    Surface-textured Al-doped ZnO (AZO) films formed using two new techniques based on magnetron sputtering deposition were developed by optimizing the light scattering properties to be suitable for transparent electrode applications in thin-film silicon solar cells. Scrambled egg-like surface-textured AZO films were prepared using a new texture formation technique that post-etched pyramidal surface-textured AZO films prepared under deposition conditions suppressing c-axis orientation. In addition, double surface-textured AZO films were prepared using another new texture formation technique that completely removed, by post-etching, the pyramidal surface-textured AZO films previously prepared onto the initially deposited low resistivity AZO films; simultaneously, the surface of the low resistivity films was slightly etched. However, the obtained very high haze value in the range from the near ultraviolet to visible light in the scrambled egg-like surface-textured AZO films did not contribute significantly to the obtainable photovoltaic properties in the solar cells fabricated using the films. Significant light scattering properties as well as a low sheet resistance could be achieved in the double surface-textured AZO films. In addition, a significant improvement of external quantum efficiency in the range from the near ultraviolet to visible light was achieved in superstrate-type n-i-p μc-Si:H solar cells fabricated using a double surface-textured AZO film prepared under optimized conditions as the transparent electrode. - Highlights: • Double surface-textured AZO films prepared using a new texture formation technique • Extensive light scattering properties with low sheet resistance achieved in the double surface-textured AZO films • Improved external quantum efficiency of μc-Si:H solar cells using a double surface-textured AZO film

  14. Textured surface structures formed using new techniques on transparent conducting Al-doped zinc oxide films prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Tadatsugu [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Miyata, Toshihiro, E-mail: tmiyata@neptune.kanazawa-it.ac.jp [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Uozaki, Ryousuke [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Sai, Hitoshi; Koida, Takashi [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2016-09-01

    Surface-textured Al-doped ZnO (AZO) films formed using two new techniques based on magnetron sputtering deposition were developed by optimizing the light scattering properties to be suitable for transparent electrode applications in thin-film silicon solar cells. Scrambled egg-like surface-textured AZO films were prepared using a new texture formation technique that post-etched pyramidal surface-textured AZO films prepared under deposition conditions suppressing c-axis orientation. In addition, double surface-textured AZO films were prepared using another new texture formation technique that completely removed, by post-etching, the pyramidal surface-textured AZO films previously prepared onto the initially deposited low resistivity AZO films; simultaneously, the surface of the low resistivity films was slightly etched. However, the obtained very high haze value in the range from the near ultraviolet to visible light in the scrambled egg-like surface-textured AZO films did not contribute significantly to the obtainable photovoltaic properties in the solar cells fabricated using the films. Significant light scattering properties as well as a low sheet resistance could be achieved in the double surface-textured AZO films. In addition, a significant improvement of external quantum efficiency in the range from the near ultraviolet to visible light was achieved in superstrate-type n-i-p μc-Si:H solar cells fabricated using a double surface-textured AZO film prepared under optimized conditions as the transparent electrode. - Highlights: • Double surface-textured AZO films prepared using a new texture formation technique • Extensive light scattering properties with low sheet resistance achieved in the double surface-textured AZO films • Improved external quantum efficiency of μc-Si:H solar cells using a double surface-textured AZO film.

  15. Fabrication of a Transparent Anti-stain Thin Film Using an Atmospheric Pressure Cold Plasma Deposition System

    Directory of Open Access Journals (Sweden)

    Suzaki Y.

    2013-08-01

    Full Text Available Recently, outdoor-constructed solar panels have a problem such as power generation efficiency is reduced by the face plate dirt. On the other hand, electronic touch panels have a problem such as deterioration of visibility of the screen by finger grease stain. To solve these problems, we need to fabricate the anti-stain surfaces which have superhydrophobic and oil-repellent abilities without spoiling the transparency of the transparent substrate. In this study, we fabricated lotus leaves like surface on a glass substrate. Firstly, SiO2 particles of ca. 100 nm diameter were arranged on the glass substrates. Secondly, to obtain the fractal-like structure (ultra-micro-rough structure on the surface, ZnO thin film having a columnar structure was fabricated on the SiO2 particles by using an atmospheric pressure cold plasma deposition system. By using these processes, the ZnO columns formed radiantly on the spherical surface of the SiO2 particles. Furthermore, without spoiling the ultra-micro-rough structure, a transparent anti-stain monolayer with low surface energy was prepared by using a chemical adsorption technique onto the surface. Average value of the water droplet contact angles of the samples fabricated was 151.8 deg. Field emission scanning electron microscope (FE-SEM observation reviled that this sample has a raspberry structure in which columnar structure has grown radially on the SiO2 particles.

  16. Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hongsingthong, Aswin, E-mail: aswin.hongsingthong@nectec.or.th [Solar Energy Technology Laboratory, National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120 (Thailand); Krajangsang, Taweewat; Limmanee, Amornrat; Sriprapha, Kobsak; Sritharathikhun, Jaran [Solar Energy Technology Laboratory, National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120 (Thailand); Konagai, Makoto [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, NE-15, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2013-06-30

    Zinc oxide (ZnO) films with a very high haze ratio and low resistivity were developed on soda–lime glass substrate by using reactive ion etching (RIE) treatment with carbon tetrafluoride (CF{sub 4}) to modify the substrate surface morphology before the deposition of ZnO films. We found that the surface morphology of the ZnO films deposited by metal organic chemical vapor deposition (MOCVD) technique could be modified by varying the glass treatment conditions and the gas pressure was a key parameter. With increasing glass-etching pressure, the surface morphology of the ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like double texture, leading to significant increases in root mean square roughness and haze ratio of the films. By employing the developed high-haze ZnO films as a front transparent conductive oxide (TCO) layer in microcrystalline silicon solar cells, an enhancement in the quantum efficiency in the long-wavelength region has been achieved. Experimental results have verified that our unique and original glass etching treatment is a simple and effective technique to improve the light-scattering properties of the ZnO films while preserving their good transparency and electrical properties. Thus, the ZnO films deposited on etched soda–lime glass have a high potential for the use as a front TCO layer in thin-film Si solar cells. - Highlights: • High-haze zinc oxide (ZnO) grown on low cost soda–lime glass has been developed. • Surface of the ZnO can be modified by varying glass-substrate etching conditions. • Glass-etching pressure is a key to increase haze ratio of the ZnO films. • Higher cell efficiency has been achieved from cell using etched glass. • High-haze ZnO coated glass is a promising transparent conductive oxide coated glass.

  17. Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells

    International Nuclear Information System (INIS)

    Hongsingthong, Aswin; Krajangsang, Taweewat; Limmanee, Amornrat; Sriprapha, Kobsak; Sritharathikhun, Jaran; Konagai, Makoto

    2013-01-01

    Zinc oxide (ZnO) films with a very high haze ratio and low resistivity were developed on soda–lime glass substrate by using reactive ion etching (RIE) treatment with carbon tetrafluoride (CF 4 ) to modify the substrate surface morphology before the deposition of ZnO films. We found that the surface morphology of the ZnO films deposited by metal organic chemical vapor deposition (MOCVD) technique could be modified by varying the glass treatment conditions and the gas pressure was a key parameter. With increasing glass-etching pressure, the surface morphology of the ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like double texture, leading to significant increases in root mean square roughness and haze ratio of the films. By employing the developed high-haze ZnO films as a front transparent conductive oxide (TCO) layer in microcrystalline silicon solar cells, an enhancement in the quantum efficiency in the long-wavelength region has been achieved. Experimental results have verified that our unique and original glass etching treatment is a simple and effective technique to improve the light-scattering properties of the ZnO films while preserving their good transparency and electrical properties. Thus, the ZnO films deposited on etched soda–lime glass have a high potential for the use as a front TCO layer in thin-film Si solar cells. - Highlights: • High-haze zinc oxide (ZnO) grown on low cost soda–lime glass has been developed. • Surface of the ZnO can be modified by varying glass-substrate etching conditions. • Glass-etching pressure is a key to increase haze ratio of the ZnO films. • Higher cell efficiency has been achieved from cell using etched glass. • High-haze ZnO coated glass is a promising transparent conductive oxide coated glass

  18. Achieving high mobility ZnO : Al at very high growth rates by dc filtered cathodic arc deposition

    International Nuclear Information System (INIS)

    Mendelsberg, R J; Lim, S H N; Wallig, J; Anders, A; Zhu, Y K; Milliron, D J

    2011-01-01

    Achieving a high growth rate is paramount for making large-area transparent conducting oxide coatings at a low cost. Unfortunately, the quality of thin films grown by most techniques degrades as the growth rate increases. Filtered dc cathodic arc is a lesser known technique which produces a stream of highly ionized plasma, in stark contrast to the neutral atoms produced by standard sputter sources. Ions bring a large amount of potential energy to the growing surface which is in the form of heat, not momentum. By minimizing the distance from cathode to substrate, the high ion flux gives a very high effective growth temperature near the film surface without causing damage from bombardment. The high surface temperature is a direct consequence of the high growth rate and allows for high-quality crystal growth. Using this technique, 500-1300 nm thick and highly transparent ZnO : Al films were grown on glass at rates exceeding 250 nm min -1 while maintaining resistivity below 5 x 10 -4 Ω cm with electron mobility as high as 60 cm 2 V -1 s -1 . (fast track communication)

  19. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices

    International Nuclear Information System (INIS)

    Jiang, X.; Wong, F.L.; Fung, M.K.; Lee, S.T.

    2003-01-01

    Highly transparent conductive, aluminum-doped zinc oxide (ZnO:Al) films were deposited on glass substrates by midfrequency magnetron sputtering of metallic aluminum-doped zinc target. ZnO:Al films with surface work functions between 3.7 and 4.4 eV were obtained by varying the sputtering conditions. Organic light-emitting diodes (OLEDs) were fabricated on these ZnO:Al films. A current efficiency of higher than 3.7 cd/A, was achieved. For comparison, 3.9 cd/A was achieved by the reference OLEDs fabricated on commercial indium-tin-oxide substrates

  20. MOVPE growth and characterisation of ZnO properties for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Oleynik, N.

    2007-03-07

    In this work a new Metalorganic Vapor Phase Epitaxy (MOVPE) method was developed for the growth and doping of high-quality ZnO films. ZnO is a unique optoelectronic material for the effective light generation in the green to the UV spectral range. Optoelectronic applications of ZnO require impurity-free monocrystalline films with smooth surfaces and low concentration of the defects in the crystal lattice. At the beginning of this work only few reports on MOVPE growth of polycrystalline ZnO existed. The low quality of ZnO is attributed to the lack of an epitaxially matched substrate, and gas-phase prereactions between the Zn- and O-precursors. To achieve control over the ZnO quality, several O-precursors were tested for the growth on GaN/Si(111) or GaN/Sapphire substrates at different reactor temperatures and pressures. ZnO layers with XRD rocking curve FWHMs of the (0002) reflection of 180'' and narrow cathodoluminescence of 1.3 meV of the dominant I{sub 8} emission were synthesized using a two-step growth procedure. In this procedure, ZnO is homoepitaxially grown at high temperature using N{sub 2}O as O-precursor on a low temperature grown ZnO buffer layer using tertiary-butanol as O-precursor. p-Type doping of ZnO, which usually exhibits n-type behaviour, is very difficult. This doping asymmetry represents an issue for ZnO-based devices. Beginning from 1992, a growing number of reports have been claiming a fabrication of p-type ZnO, but, due to the missing reproducibilty, they are still questionable. Native defects, non-stoichiometry, and hydrogen are sources of n-type conductivity of ZnO. Together with a low solubility of the potential p-type dopants and deep position of impurity levels, these factors partly explain p-type doping difficulties in ZnO. However, there is no fully described mechanism of the ZnO doping asymmetry yet. In this work, NH{sub 3}, unsymmetrical dimethylhydrazine (UDMHy), diisobutylamine, and NO nitrogen precursors were studied