WorldWideScience

Sample records for zn-pb-ag deposit northern

  1. Geochemistry of the Patricia Zn-Pb-Ag Deposit (paguanta, NE Chile)

    Science.gov (United States)

    Chinchilla Benavides, D.; Merinero Palomares, R.; Piña García, R.; Ortega Menor, L.; Lunar Hernández, R.

    2013-12-01

    The Patricia Zn-Pb-Ag ore deposit is located within the Paguanta mining project, situated at the northern end of the Andean Oligocene Porphyry Copper Belt of Chile. The sulfide mineralization occurs as W-E oriented veins hosted in volcanic rocks, mainly andesite (pyroclastic, ash and lavas), of Upper Cretaceous to Middle Tertiary age. The ore mineralogy (obtained by EMPA analyses) comprises in order of abundance, pyrite, sphalerite (5.5 - 10.89 wt % Fe, 9.8-19 % molar FeS and 0.52 wt % Cd), galena, arsenopyrite, chalcopyrite and Ag-bearing sulfosalts. The veins show a zoned and banded internal structure with pyrite at the edges and sphalerite in the center. The Ag occurs mostly as Ag-Cu-Sb sulfosalts, in order of abundance: series freibergite - argentotennantite -polybasite and stephanite. Other minor Ag phases such as argentite, pyrargirite and diaphorite were also identified. These Ag phases are typically associated with the base-metal sulfides. Freibergite occurs filling voids within sphalerite, chalcopyrite and at the contact between sphalerite and galena. Polybasite, stephanite, pyrargirite and argentite are mostly in close association with freibergite. In the case of diaphorite, it commonly occurs filling voids between galena crystals or as inclusions within galena. Some minor Ag-bearing sulfosalts are also identified between pyrite crystals. The alteration minerals are dominated by chlorite, illite and kaolinite. The gangue minerals consist of quartz and carbonates identified by XRD as kutnahorite. We obtained linear correlation statistically significant only for Ag, As Au, Cd, Cu, Pb, Sb and Zn and therefore we generated an enhanced scatter plot matrix of these elements. Bulk rock analyses (ICP/MS and XRF) of drill cores show that Ag is strongly and positively correlated with Pb and As, moderately with Cd, Sb, Au and Zn and weakly with Cu, while Au is moderately and positively correlated with Ag, As, Cd, Sb and Zn and weakly with Cu and Pb. These results

  2. Origin and tectonic implications of the Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya: evidence from structures, Re-Os-Pb-S isotopes, and fluid inclusions

    Science.gov (United States)

    Zhou, Qing; Li, Wenchang; Qing, Chengshi; Lai, Yang; Li, Yingxu; Liao, Zhenwen; Wu, Jianyang; Wang, Shengwei; Dong, Lei; Tian, Enyuan

    2018-04-01

    The Zhaxikang Pb-Zn-Sb-Ag-(Au) deposits, located in the eastern part of northern Himalaya, totally contain more than 1.146 million tonnes (Mt) of Pb, 1.407 Mt of Zn, 0.345 Mt of Sb, and 3 kilotonnes (kt) of Ag. Our field observations suggest that these deposits are controlled by N-S trending and west- and steep-dipping normal faults, suggesting a hydrothermal rather than a syngenetic sedimentary origin. The Pb-Zn-Sb-Ag-(Cu-Au) mineralization formed in the Eocene as indicated by a Re-Os isochron age of 43.1 ± 2.5 Ma. Sulfide minerals have varying initial Pb isotopic compositions, with (206Pb/204Pb)i of 19.04-19.68, (207Pb/204Pb)i of 15.75-15.88, and (208Pb/204Pb)i of 39.66-40.31. Sulfur isotopic values display a narrow δ34S interval of +7.8-+12.2‰. These Pb-S isotopic data suggest that the Zhaxikang sources of Pb and S should be mainly from the coeval felsic magmas and partly from the surrounding Mesozoic strata including metasedimentary rocks and layered felsic volcanic rocks. Fluid inclusion studies indicate that the hydrothermal fluids have medium temperatures (200-336 °C) but varying salinities (1.40-18.25 wt.% NaCl equiv.) with densities of 0.75-0.95 g/cm3, possibly suggesting an evolution mixing between a high salinity fluid, perhaps of magmatic origin, with meteoric water.

  3. Metallogeny of the Paramillos de Uspallata Pb-Zn-Ag vein deposit in the Cuyo Rift Basin, Argentina

    Science.gov (United States)

    Rubinstein, Nora A.; Carrasquero, Silvia I.; Gómez, Anabel L. R.; Ricchetti, Ana P. Orellano; D'Annunzio, María C.

    2018-05-01

    The Paramillos de Uspallata deposit, previously considered as genetically linked to a Miocene porphyry deposit, is located in the Mesozoic Cuyo Basin, which was formed during the beginning of the break-up of Gondwana. In the present study, both previous information and new geological, mineralogical, and isotopic data allowed outlining a new descriptive model for this deposit. Stratigraphic and structural controls allowed considering this deposit as contemporaneous with the Mesozoic rifting, with the mineralization resulting from a Pb-Zn stage followed by an Ag-Cu-Pb stage. The hydrothermal fluids were found to have low temperature and low to moderate salinity, and to result from the mixing between metamorphic and meteoric fluids, with the lead sourced by the igneous Paleozoic basement and the sulfur partly derived from a magmatic source. These characteristics allow describing Paramillos de Uspallata as Pb-Zn-Ag veins hosted in clastic sedimentary sequences genetically linked to a rift basin and redefining it as detachment-related mineralization.

  4. Geology, S-Pb isotopes, and 40Ar/39Ar geochronology of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet: implications for multiple mineralization events at Zhaxikang

    Science.gov (United States)

    Sun, Xiang; Zheng, Youye; Pirajno, Franco; McCuaig, T. Campbell; Yu, Miao; Xia, Shenlan; Song, Qingjie; Chang, Huifang

    2018-03-01

    Several Au, Sb, Sb-Au, Pb-Zn, and Sb-Pb-Zn-Ag deposits are present throughout the North Himalaya in southern Tibet, China. The largest Sb-Pb-Zn-Ag deposit is Zhaxikang (18 Mt at 0.6 wt% Sb, 2.0 wt% Pb, 3.5 wt% Zn, and 78 g/t Ag). Zhaxikang veins are hosted within N-S trending faults, which crosscut the Early-Middle Jurassic Ridang Formation consisting of shale interbedded with sandstone and limestone deposited on a passive continental margin. Ore paragenesis indicates that Zhaxikang mineralization occurred in two main phases composed of six total stages. The initial phase was characterized by assemblages of fine-grained Mn-Fe carbonate + arsenopyrite + pyrite + sphalerite (stage 1), followed by relatively coarse-grained Mn-Fe carbonate + Fe-rich sphalerite + galena + pyrite (stage 2). The second phase was marked by assemblages of quartz + pyrite + Fe-poor sphalerite and Ag-rich galena + tetrahedrite + sericite (stage 3), quartz + Sb-Pb sulfosalt minerals mainly composed of boulangerite and jamesonite (stage 4), quartz + stibnite ± cinnabar (stage 5), and quartz ± calcite (stage 6). Sulfides of stage 2 have δ34SV-CDT of 8.4-12.0‰, 206Pb/204Pb ratios of 19.648 to 19.659, 207Pb/204Pb ratios of 15.788 to 15.812, and 208Pb/204Pb ratios of 40.035 to 40.153. Sulfides of stage 3 have similar δ34SV-CDT of 6.1-11.2‰ and relatively more radiogenic lead isotopes (206Pb/204Pb = 19.683-19.792). Stage 4 Sb-Pb sulfosalt minerals have δ34SV-CDT of 5.0-7.2‰ and even more radiogenic lead (206Pb/204Pb = 19.811-19.981). By contrast, stibnite of stage 5 has δ34SV-CDT of 4.5-7.8‰ and less radiogenic lead (206Pb/204Pb = 18.880-18.974). Taken together with the geological observations that the Pb-Zn-bearing Mn-Fe carbonate veins were crosscut by various types of quartz veins, sphalerite and galena of stage 2 underwent dissolution and remobilization, and that Sb-Pb(-Fe) sulfosalts formed at the expense of Pb from stage 2 galena and of Fe from stage 2 sphalerite, we argue that

  5. Geology and Characteristics of Pb-Zn-Cu-Ag Skarn Deposit at Ruwai, Lamandau Regency, Central Kalimantan

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i4.126This study is dealing with geology and characteristics of mineralogy, geochemistry, and physicochemical conditions of hydrothermal fluid responsible for the formation of skarn Pb-Zn-Cu-Ag deposit at Ruwai, Lamandau Regency, Central Kalimantan. The formation of Ruwai skarn is genetically associated with calcareous rocks consisting of limestone and siltstone (derived from marl? controlled by NNE-SSW-trending strike slip faults. It is localized along N 70° E-trending thrust fault, which also acts as the contact zone between sedimentary and volcanic rocks in the area. The Ruwai skarn is mineralogically characterized by prograde alteration comprising garnet (andradite and clino-pyroxene (wollastonite, and retrograde alteration composed of epidote, chlorite, calcite, and sericite. Ore mineralization is typified by sphalerite, galena, and chalcopyrite, formed at early retrograde stage. Galena is typically enriched in silver up to 0.45 wt % and bismuth of about 1 wt %. No Ag-sulphides are identified within the ore body. Geochemically, SiO is enriched and CaO is depleted in limestone, consistent with silicic alteration (quartz and calc-silicate and decarbonatization of the wallrock. The measured resources of the deposit are 2,297,185 tonnes at average grades of 14.98 % Zn, 6.44% Pb, 2.49 % Cu, and 370.87 g/t Ag. Ruwai skarn orebody was originated at moderate temperatures of 250 - 266 °C and low salinity of 0.3 - 0.5 wt.% NaCl eq. The late retrograde stage was formed at low temperature of 190 - 220 °C and low salinity of ~0.35 wt.% NaCl eq., which was influenced by meteoric water incursion at the late stage of the Ruwai Pb-Zn-Cu-Ag skarn formation.

  6. A review of Pb-Sb(As-S, Cu(Ag-Fe(Zn-Sb(As-S, Ag(Pb-Bi(Sb-S and Pb-Bi-S(Te sulfosalt systems from the Boranja orefield, West Serbia

    Directory of Open Access Journals (Sweden)

    Radosavljević Slobodan A.

    2016-01-01

    Full Text Available Recent mineralogical, chemical, physical, and crystallographic investigations of the Boranja orefield showed very complex mineral associations and assemblages where sulfosalts have significant role. The sulfosalts of the Boranja orefield can be divided in four main groups: (i Pb-Sb(As-S system with ±Fe and ±Cu; (ii Cu(Ag-Fe(Zn-Sb(As-S system; (iii Ag(Pb-Bi(Sb-S; (iv and Pb-Bi-S(Te system. Spatially, these sulfosalts are widely spread, however, they are the most abundant in the following polymetallic deposits and ore zones: Cu(Bi-FeS Kram-Mlakva; Pb(Ag-Zn-FeS2 Veliki Majdan (Kolarica-Centralni revir-Kojići; Sb-Zn-Pb-As Rujevac; and Pb-Zn-FeS2-BaSO4 Bobija. The multi stage formation of minerals, from skarnhydrothermal to complex hydrothermal with various stages and sub-stages has been determined. All hydrothermal stages and sub-stages of various polymetallic deposits and ore zones within the Boranja orefield are followed by a variety of sulfosalts. [Projekat Ministarstva nauke Republike Srbije, br. OI-176016: Magmatism and geodynamics of the Balkan Peninsula from Mesozoic to present day: Significance for the formation of metallic and non-metallic mineral deposits

  7. Genesis of Pb-Zn-Cu-Ag Deposits within Permian Carboniferous-Carbonate Rocks in Madina Regency, North Sumatra

    Directory of Open Access Journals (Sweden)

    Bhakti Hamonangan Harahap

    2015-09-01

    Full Text Available DOI:10.17014/ijog.2.3.167-184Strong mineralized carbonate rock-bearing Pb-Zn-Cu-Ag-(Au ores are well exposed on the Latong River area, Madina Regency, North Sumatra Province. The ore deposit is hosted within the carbonate rocks of the Permian to Carboniferous Tapanuli Group. It is mainly accumulated in hollows replacing limestone in the forms of lensoidal, colloform, veins, veinlets, cavity filling, breccia, and dissemination. The ores dominantly consist of galena (126 000 ppm Pb and sphalerite (2347 ppm Zn. The other minerals are silver, azurite, covellite, pyrite, marcasite, and chalcopyrite. This deposit was formed by at least three phases of mineralization, i.e. pyrite and then galena replaced pyrite, sphalerite replaced galena, and pyrite. The last phase is the deposition of chalcopyrite that replaced sphalerite. The Latong sulfide ore deposits posses Pb isotope ratio of 206Pb/204Pb = 19.16 - 20.72, 207Pb/204Pb = 16.16 - 17.29, and 208Pb/204Pb = 42.92 - 40.78. The characteristic feature of the deposit indicates that it is formed by a sedimentary process rather than an igneous activity in origin. This leads to an interpretation that the Latong deposit belongs to the Sedimentary Hosted Massive Sulfide (SHMS of Mississippi Valley-Type (MVT. The presence of SHMS in the island arc such as Sumatra has become controversial. For a long time, ore deposits in the Indonesian Island Arc are always identical with the porphyry and hydrothermal processes related to arc magmatism. This paper is dealing with the geology of Latong and its base metal deposits. This work is also to interpret their genesis as well as general relationship to the regional geology and tectonic setting of Sumatra.

  8. Multistage hydrothermal silicification and Fe-Tl-As-Sb-Ge-REE enrichment in the Red Dog Zn-Pb-Ag district, northern Alaska: Geochemistry, origin, and exploration applications

    Science.gov (United States)

    Slack, J.F.; Kelley, K.D.; Anderson, V.M.; Clark, J.L.; Ayuso, R.A.

    2004-01-01

    Geochemical analyses of major, trace, and rare earth elements (REE) in more than 200 samples of variably silicified and altered wall rocks, massive and banded sulfide, silica rock, and sulfide-rich and unmineralized barite were obtained from the Main, Aqqaluk, and Anarraaq deposits in the Red Dog Zn-Pb-Ag district of northern Alaska. Detailed lithogeochemical profiles for two drill cores at Aqqaluk display an antithetic relationship between SiO2/Al2O3 and TiO2/Zr which, together with textural information, suggest preferential silicification of carbonate-bearing sediments. Data for both drill cores also show generally high Tl, Sb, As, and Ge and uniformly positive Eu anomalies (Eu/Eu* > 1.0). Similar high Tl, Sb, As, Ge, and Eu/Eu* values are present in the footwall and shallow hanging wall of Zn-Pb-Ag sulfide intervals at Anarraaq but are not as widely dispersed. Net chemical changes for altered wall rocks in the district, on the basis of average Al-normalized data relative to unaltered black shales of the host Kuna Formation, include large enrichments (>50%) of Fe, Ba, Eu, V, S, Co, Zn, Pb, Tl, As, Sb, and Ge at both Red Dog and Anarraaq, Si at Red Dog, and Sr, U, and Se at Anarraaq. Large depletions (>50%) are evident for Ca at both Red Dog and Anarraaq, for Mg, P, and Y at Red Dog, and for Na at Anarraaq. At both Red Dog and Anarraaq, wall-rock alteration removed calcite and minor dolomite during hydrothermal decarbonation reactions and introduced Si, Eu, and Ge during silicification. Sulfidation reactions deposited Fe, S, Co, Zn, Pb, Tl, As, and Sb; barite mineralization introduced Ba, S, and Sr. Light REE and U were mobilized locally. This alteration and mineralization occurred during Mississippi an hydrothermal events that predated the Middle Jurassic-Cretaceous Brookian orogeny. Early hydrothermal silicification at Red Dog took place prior to or during massive sulfide mineralization, on the basis of the dominantly planar nature of Zn-Pb veins, which suggests

  9. Metal dispersion and mobility in soils from the Lik Zn-Pb-Ag massive sulphide deposit, NW Alaska: Environmental and exploration implications

    Science.gov (United States)

    Kelley, K.D.; Kelley, D.L.

    2003-01-01

    The Lik deposit in northern Alaska is a largely unexposed shale-hosted Zn-Pb-Ag massive sulphide deposit that is underlain by continuous permafrost. Residual soils overlying the mineralized zone have element enrichments that are two to six times greater than baseline values. The most prominent elements are Ag, Mo, P, Se, Sr, V by total 4-acid digestion and Tl by a weak partial digestion (Enzyme Leach or EL) because they show multi-point anomalies that extend across the entire mineralized zone, concentration ranges are 0.5-2.6 ppm Ag, 4-26 ppm Mo, 0.1-0.3% P, 3-22 ppm Se, 90-230 ppm Sr, 170-406 ppm V, and 1.6-30 ppb Tl. Lead, Sb, and Hg are also anomalous (up to 178 ppm, 30 ppm, and 1.9 ppm, respectively), but all are characterized by single point anomalies directly over the mineralized zone, with only slightly elevated concentrations over the lower mineralized section. Zinc (total) has a consistent baseline response of 200 ppm, but it is not elevated in soils overlying the mineralized zone. However, Zn by EL shows a distinct single-point anomaly over the ore zone that suggests it was highly mobile and partly adsorbed on oxides or other secondary phases during weathering. In situ analyses (by laser ablation ICP-MS) of pyrite and sphalerite from drill core suggest that sphalerite is the primary residence for Ag, Cd, and Hg in addition to Zn, and pyrite contains As, Fe, Sb, and Tl. The level and degree of oxidation, and the proportion of reacting pyrite and carbonate minerals are two factors that affected the mobility and transport of metals. In oxidizing conditions, Zn is highly mobile relative to Hg and Ag, perhaps explaining the decoupling of Zn from the other sphalerite-hosted elements in the soils. Soils are acidic (to 3.9 pH) directly over the deposit due to the presence of acid-producing pyrite, but acid-neutralizing carbonate away from the mineralized zone yield soils that are near neutral. The soils therefore formed in a complex system involving oxidation and

  10. Silver-bearing minerals in the Xinhua hydrothermal vein-type Pb-Zn deposit, South China

    Science.gov (United States)

    Wang, Minfang; Zhang, Xubo; Guo, Xiaonan; Pi, Daohui; Yang, Meijun

    2018-02-01

    Electron probe microanalysis (EPMA) results are reported for newly identified silver-bearing minerals from the Xinhua deposit, Yunkaidashan area, South China. The Xinhua deposit is a hydrothermal vein-type Pb-Zn deposit and is hosted in the Pubei Complex, which consists of a cordierite-biotite granite with a U-Pb zircon age of 244.3 ± 1.8-251.9 ± 2.2 Ma. The mineralization process is subdivided into four mineralization stages, characterized by the following mineral associations: mineralization stage I with quartz, pyrite, and sphalerite; mineralization stage II with siderite, galena, and tetrahedrite; mineralization stage III with quartz and galena; and mineralization stage IV with quartz, calcite, and baryte. Tetrahedrite series minerals, such as freibergite, argentotetrahedrite, and tennantite are the main Ag-bearing minerals in the Xinhua deposit. The greatest concentration of silver occurs in phases from mineralization stage II. Microscopic observations reveal close relationship between galena and tetrahedrite series minerals that mostly occur as irregular inclusions within galena. The negative correlation between Cu and Ag in the lattices of tetrahedrite series minerals suggests that Cu sites are occupied by Ag atoms. Zn substitution for Fe in argentotetrahedrite and Cd substitution for Pb in tetrahedrite are also observed. Micro-thermometric data reveal that both homogenization temperatures and calculated salinities of hydrothermal fluids decrease progressively from the early to the later mineralization stages. The metal ions, such as Ag+, Cu+, Pb2+, and Zn2+, are transported as chlorine complex ions in the early mineralization stage and as bisulfide complex ions in the late mineralization stage, caused by changes in oxygen fugacity, temperature, and pH of the hydrothermal fluids. Because of the varying solubility of different metal ions, Pb2+, Zn2+, and Cu2+ ions are initially precipitated as galena, sphalerite, and chalcopyrite, respectively. With

  11. Genesis of the Bangbule Pb-Zn-Cu polymetallic deposit in Tibet, western China: Evidence from zircon U-Pb geochronology and S-Pb isotopes

    Science.gov (United States)

    Kan, Tian; Zheng, Youye; Gao, Shunbao

    2016-04-01

    The Banbule Pb-Zn-Cu skarn deposit is located in the Longger-Gongbujiangda volcanic magma arc in the Gangdese-Nyainqentanglha Plate. It is the only lead-zinc polymetallic deposit discovered in the westernmost Nyainqentanglha metallogenic belt. The measured and indicated resources include 0.9 Mt of Pb+Zn (4.77% Pb and 4.74% Zn, respectively), 6499 t of Cu, and 178 t of Ag (18.75g/t Ag). The orebodies mainly occur as lenses, veins and irregular shapes in the contact zone between the quartz-porphyry and limestone of the Upper Permian Xiala Formation, or in the boundaries between limestone and sandstone. Pb-Zn-Cu mineralization in the Banbule deposit is closely associated with skarns. The ore minerals are dominated by galena, sphalerite, chalcopyrite, bornite, and magnetite, with subordinate pyrite, malachite, and azurite. The gangue minerals are mainly garnet, actinolite, diopside, quartz, and calcite. The ore-related quartz-porphyry displays LA-ICP-MS zircon U-Pb age of 77.31±0.74 Ma. The δ34S values of sulfides define a narrow range of -0.8 to 4.7‰ indicating a magmatic source for the ore-forming materials. Lead isotopic systematics yield 206Pb/204Pb of 18.698 to 18.752, 207Pb/204Pb of 15.696 to 15.760, and 208Pb/204Pb of 39.097 to 39.320. The data points are constrained around the growth curves of upper crust and orogenic belt according to the tectonic discrimination diagrams. The calculated Δβ - Δγ values plot within the magmatic field according to the discrimination diagram of Zhu et al. (1995). The S-Pb isotopic data suggest that Bangbule is a typical skarn deposit, and the Pb-Zn-Cu mineralization is genetically related to the quartz-porphyry in the mining district. The discovery of the Bangbule deposit indicates that there is metallogenic potential in the westernmost Nyainqentanglha belt, which is of great importance for the exploration work in this area.

  12. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China

    Science.gov (United States)

    Zhai, Degao; Liu, Jiajun; Cook, Nigel J.; Wang, Xilong; Yang, Yongqiang; Zhang, Anli; Jiao, Yingchun

    2018-04-01

    The Bianjiadayuan Ag-Pb-Zn deposit (4.81 Mt. @157.4 g/t Ag and 3.94% Pb + Zn) is located in the Great Hinggan Range Pb-Zn-Ag-Cu-Mo-Sn-Fe polymetallic metallogenic belt, NE China. Vein type Pb-Zn-Ag ore bodies are primarily hosted by slate, adjacent to a Sn ± Cu ± Mo mineralized porphyry intrusion. The deposit is characterized by silver-rich ores with Ag grades up to 3000 g/t. Four primary paragenetic sequences are recognized: (I) arsenopyrite + pyrite + quartz, (II) main sulfide + quartz, (III) silver-bearing sulfosalt + quartz, and (IV) boulangerite + calcite. A subsequent supergene oxidation stage has also been identified. Hydrothermal alteration consists of an early episode of silicification, two intermediate episodes (propylitic and phyllic), and a late argillic episode. Silver mineralization primarily belongs to the late paragenetic sequence III. Freibergite is the dominant and most important Ag-mineral in the deposit. Detailed ore mineralogy of Bianjiadayuan freibergite reveals evidence of chemical heterogeneity down to the microscale. Silver-rich sulfosalts in the late paragenetic sequence III are largely derived from a series of retrograde and solid-state reactions that redistribute Ag via decomposition and exsolution during cooling, illustrating that documentation of post-mineralization processes is essential for understanding silver ore formation. Sulfur and lead isotope compositions of sulfides, and comparison with those of local various geological units, indicate that the ore-forming fluids, lead, and other metals have a magmatic origin, suggesting a close genetic association between the studied Ag-Pb-Zn veins and the local granitic intrusion. Fluid cooling coupled with decreases in fO2 and fS2 are the factors inferred to have led to a decrease of silver solubility in the hydrothermal fluid, and successively promoted extensive Ag deposition.

  13. Mineralogy and REE geochemistry at Gomish-Tappeh Zn-Pb-Cu (Ag deposit, southwest of Zanjan

    Directory of Open Access Journals (Sweden)

    Tooba Salehi

    2010-11-01

    Full Text Available Gomish-Tappeh Zn-Pb-Cu (Ag deposit is located 90 km southwest of Zanjan, in northwestern part of Urumieh-Dokhtar volcano-plutonic zone. Exposed rocks at the area include Oligo-Miocene volcano-sedimentary and sedimentary sequences as well as Pliocene volcano-plutonic sequence (andesite porphyry dykes, dacitic subvolcanic dome and rhyodacitic volcanics. Alteration in the deposit developed as silicic, silicic-sulfidic, sericitic, carbonate, argillic and propylitic. Main mineralization at the Gomish-Tappeh deposit is observed as veins occurring in a steeply-deeping normal fault defined by an NE-SW trend in host rocks such as dacitic crystal litic tuff, dacitic subvolcanic dome, specifically the rhyolitic tuff. Paragenetic minerals in the ore veins consist of pyrite, arsenopyrite, chalcopyrite, bornite, low-Fe sphalerite, galena, tetrahedrite and specularite. Gangue minerals accompanying the ores include quartz, calcite, chlorite, sericite and clay minerals. Based on geochemical data, average grades for samples from the ore veins at the Gomish-Tappeh deposit are: 4% Pb, 6% Zn, 2% Cu and 88 ppm Ag. Moreover, REE distribution patterns for altered samples of the dacitic subvolcanic dome and acidic tuff when compared with fresh samples, show enrichment in LREE, while HREE demonstrate various bahaviours. The negative Eu anomaly in chondrite-normalized REE patterns for these rocks is related to the increase in fluid/rock ratio and destruction of those grains of plagioclase enriched in Eu. REE distribution patterns for the silty tuff (footwall to the ore compared with acidic tuff represent enrichment in all REE as well as positive Eu anomalies. However, the ore samples indicate more enrichment in LREE/HREE ratios and higher Eu contents when compared with wallrock of the ore veins (silty tuff. This is due to the influence of chloric magmatic-hydrothermal fluids that caused alteration along the ore zone, releasing LREE and Eu from the host rocks and finally

  14. Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria.

    Science.gov (United States)

    Wang, Jia; Huang, Qifei; Li, Ting; Xin, Baoping; Chen, Shi; Guo, Xingming; Liu, Changhao; Li, Yuping

    2015-08-15

    A few studies have focused on release of valuable/toxic metals from Pb/Zn smelting slag by heterotrophic bioleaching using expensive yeast extract as an energy source. The high leaching cost greatly limits the practical potential of the method. In this work, autotrophic bioleaching using cheap sulfur or/and pyrite as energy matter was firstly applied to tackle the smelting slag and the bioleaching mechanisms were explained. The results indicated autotrophic bioleaching can solubilize valuable/toxic metals from slag, yielding maximum extraction efficiencies of 90% for Zn, 86% for Cd and 71% for In, although the extraction efficiencies of Pb, As and Ag were poor. The bioleaching performance of Zn, Cd and Pb was independent of leaching system, and leaching mechanism was acid dissolution. A maximum efficiency of 25% for As was achieved by acid dissolution in sulfursulfur oxidizing bacteria (S-SOB), but the formation of FeAsO4 reduced extraction efficiency in mixed energy source - mixed culture (MS-MC). Combined works of acid dissolution and Fe(3+) oxidation in MS-MC was responsible for the highest extraction efficiency of 71% for In. Ag was present in the slag as refractory AgPb4(AsO4)3 and AgFe2S3, so extraction did not occur. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany

    Science.gov (United States)

    Pfaff, Katharina; Hildebrandt, Ludwig H.; Leach, David L.; Jacob, Dorrit E.; Markl, Gregor

    2010-01-01

    The Mississippi Valley-type (MVT) Zn-Pb-Ag deposit in the Wiesloch area, Southwest Germany, is controlled by graben-related faults of the Upper Rhinegraben. Mineralization occurs as vein fillings and irregular replacement ore bodies consisting of sphalerite, banded sphalerite, galena, pyrite, sulfosalts (jordanite and geocronite), barite, and calcite in the Middle Triassic carbonate host rock. Combining paragenetic information, fluid inclusion investigations, stable isotope and mineral chemistry with thermodynamic modeling, we have derived a model for the formation of the Wiesloch deposit. This model involves fluid mixing between ascending hot brines (originating in the crystalline basement) with sedimentary formation waters. The ascending brines originally had a near-neutral pH (around 6) and intermediate oxidation state, reflecting equilibrium with granites and gneisses in the basement. During fluid ascent and cooling, the pH of the brine shifted towards more acidic (around 4) and the oxidation state increased to conditions above the hematite-magnetite buffer. These chemical characteristics contrast strongly with those of the pore and fracture fluid residing in the limestone aquifer, which had a pH between 8 and 9 in equilibrium with calcite and was rather reduced due to the presence of organic matter in the limestone. Mixing between these two fluids resulted in a strong decrease in the solubility of silver-bearing sphalerite and galena, and calcite. Besides Wiesloch, several Pb-Zn deposits are known along the Upper Rhinegraben, including hydrothermal vein-type deposits like Badenweiler and the Michael mine near Lahr. They all share the same fluid origin and formation process and only differ in details of their host rock and fluid cooling paths. The mechanism of fluid mixing also seems to be responsible for the formation of other MVT deposits in Europe (e.g., Reocin, Northern Spain; Treves, Southern France; and Cracow-Silesia, Poland), which show notable

  16. Thermal analysis and prediction of phase equilibria in ternary Pb-Zn-Ag system

    Directory of Open Access Journals (Sweden)

    Živković D.

    2011-01-01

    Full Text Available Ternary Pb-Zn-Ag system is typical for some physicochemical processes going on in refining phase in the extractive metallurgy of lead. Therefore, investigation of mentioned system is important from both theoretical and practical research of the phenomena occurring during the lead desilverizing process. The results of experimental investigation using differential thermal analysis (DTA and thermodynamic calculation of phase equilibria in Pb-Zn-Ag system according to CALPHAD method, in the sections with Zn:Ag mass ratio equal to 90:10, 70:30 and 50:50, are presented in this paper.

  17. Characterization of Zn-bearing chlorite by Moessbauer and infrared spectroscopy - occurrence associated to the Pb-Zn-Ag deposits of Canoas, PR, Brazil; Caracterizacao de clorita portadora de Zn por espectroscopia Moessbauer e espectroscopia infravermelho - uma ocorrencia associada ao deposito de Pb-Zn-Ag de Canoas, PR, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Imbernon, Rosely Aparecida Liguori [Universidade de Sao Paulo (EACH/USP), SP (Brazil). Escola de Artes, Ciencias e Humanidades; Blot, Alain [Institut de Recherche pour le Developpement (IRD), Paris (France); Pereira, Vitor Paulo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Geociencias; Franco, Daniel Ribeiro, E-mail: imbernon@usp.br, E-mail: brotalain@free.fr, E-mail: vitor.pereira@ufrgs.br, E-mail: drfranco@on.br [Observatorio Nacional do Brasil (COGE/ON), Rio de Janeiro, RJ (Brazil). Coordenacao de Geofisica

    2011-06-15

    In order to provide new insights on mineralogical aspects of geochemical mapping/natural processes related to the chlorite formation (e.g. crystallochemistry and mechanisms of formation of these materials, which has been applied in different studies of environmental profiles), we investigated chlorite samples associated to the Pb-Zn-Ag sulfide ore from Canoas 1 deposit (Vale do Ribeira, state of Parana, Brazil). By means of Moessbauer (MS) and infrared (IV) spectroscopy, we addressed some issues as those related to the chloritization processes, as well as how Zn would be incorporated into its crystalline structure. Results carried out by ME and IV spectroscopy clearly pointed out for a chlorite occurrence, which in fact incorporates Zn into its structure and also alters the structural patterns for this mineral. Moreover, ME data sets indicated the presence of Fe which is located only in octahedral sites, in trans-configuration, and the Zn emplacement by the chloritization process also occurs in the brucite layer. (author)

  18. Geology and mineralogy of the Au-As (Ag-Pb-Zn-Cu-Sb polymetallic deposit of Valiña-Azúmara (Lugo, NW Spain

    Directory of Open Access Journals (Sweden)

    Martínez-Abad, I.

    2015-12-01

    Full Text Available Valiña-Azúmara is a polymetallic Au-As (Ag-Pb-Zn-Cu-Sb deposit, located in the province of Lugo (NW Spain, that was mined for arsenic at the beginning of the 20th century. The mineralization is hosted in a Variscan thrust fault with a dip direction of N247-261ºE, and N-S and NE-SW Late-Variscan faults. These structures are hosted in black slates, Cambrian in age. To a lesser extent, the mineralization also occurs disseminated within narrow, weakly silicified and sericited selvages. Mineralization is divided into two hypogene stages. The first consists of quartz, calcite, rutile, sericite, arsenopyrite and pyrite. Two types of pyrite (Py-I and Py-II are defined according to their chemical and textural characteristics. Py-II occurs as overgrowth of previous Py-I crystals. Py-II is As-rich (≤1.7 wt.% and often contains traces of Te, Zn, Cu, Bi, Sb and Au. The mineralized drill core sections show a significant correlation between Au and As. This is due to Au occurring as invisible Au within the Py-II grains, with contents of up to 176 ppm. The Au/As ratios of Py-II indicate that Au was deposited as Au1+, as solid solution within the pyrite structure. The second stage of mineralization is enriched in Ag-Pb-Zn-Cu-Sb, replacing the first stage, and consists of quartz, calcite, chlorite, sphalerite, jamesonite, Ag-rich tetrahedrite, freibergite, chalcopyrite, pyrrhotite and galena. Although jamesonite shows traces of Ag, the Cu-Ag sulfosalts are the main carriers of the Ag mineralization in the deposit, with contents that vary from 13.7 to 23.9 wt.% of Ag. In the most superficial levels of the area, secondary Fe oxide and hydroxide, scorodite and anglesite developed due to the oxidation of the ore.Valiña-Azúmara es un yacimiento filoniano de Au-As (Ag-Pb-Zn-Cu-Sb situado en la provincia de Lugo (NO España, que fue explotado por arsénico a principios del siglo XX. La mineralización se encuentra encajada en un cabalgamiento Varisco de direcci

  19. Mineralogy, fluid inclusion petrography, and stable isotope geochemistry of Pb-Zn-Ag veins at the Shizhuyuan deposit, Hunan Province, southeastern China

    Science.gov (United States)

    Wu, Shenghua; Mao, Jingwen; Yuan, Shunda; Dai, Pan; Wang, Xudong

    2018-01-01

    The Shizhuyuan polymetallic deposit is located in the central part of the Nanling region, southeastern China, and consists of proximal W-Sn-Mo-Bi skarns and greisens and distal Pb-Zn-Ag veins. The sulfides and sulfosalts in the distal veins formed in three distinct stages: (1) an early stage of pyrite and arsenopyrite, (2) a middle stage of sphalerite and chalcopyrite, and (3) a late stage of galena, Ag-, Sn-, and Bi-bearing sulfides and sulfosalts, and pyrrhotite. Combined sulfide and sulfosalt geothermometry and fluid inclusion analyses indicate that the early stage of mineralization occurred at a temperature of 400 °C and involved boiling under hydrostatic pressure ( 200 bar), with the temperature of the system dropping during the late stage to 200 °C. Laser Raman analysis indicates that the fluid inclusions within the studied minerals are dominated by H2O, although some contain carbonate solids and CH4 gas. Vein-hosted sulfides have δ34S values of 3.8-6.3‰ that are interpreted as indicative of a magmatic source of sulfur. The mineralization process can be summarized as follows: an aqueous fluid exsolved on final crystallization of the Qianlishan pluton, ascended along fracture zones, cooled to <400 °C, and boiled under hydrostatic conditions, and with decreasing temperature and sulfur fugacity, sulfide and sulfosalt minerals precipitated successively from the Ag-Cu-Zn-Fe-Pb-Sb-As-S-bearing fluid system.

  20. Depositional conditions for the Kuna Formation, Red Dog Zn-PB-Ag-Barite District, Alaska, inferred from isotopic and chemical proxies

    Science.gov (United States)

    Johnson, Craig A.; Dumoulin, Julie A.; Burruss, Robert A.; Slack, John F.

    2015-01-01

    Water column redox conditions, degree of restriction of the depositional basin, and other paleoenvironmental parameters have been determined for the Mississippian Kuna Formation of northwestern Alaska from stratigraphic profiles of Mo, Fe/Al, and S isotopes in pyrite, C isotopes in organic matter, and N isotopes in bulk rock. This unit is important because it hosts the Red Dog and Anarraaq Zn-Pb-Ag ± barite deposits, which together constitute one of the largest zinc resources in the world. The isotopic and chemical proxies record a deep basin environment that became isolated from the open ocean, became increasingly reducing, and ultimately became euxinic. The basin was ventilated briefly and then became isolated again just prior to its demise as a discrete depocenter with the transition to the overlying Siksikpuk Formation. Ventilation corresponded approximately to the initiation of bedded barite deposition in the district, whereas the demise of the basin corresponded approximately to the formation of the massive sulfide deposits. The changes in basin circulation during deposition of the upper Kuna Formation may have had multiple immediate causes, but the underlying driver was probably extensional tectonic activity that also facilitated fluid flow beneath the basin floor. Although the formation of sediment-hosted sulfide deposits is generally favored by highly reducing conditions, the Zn-Pb deposits of the Red Dog district are not found in the major euxinic facies of the Kuna basin, nor did they form during the main period of euxinia. Rather, the deposits occur where strata were permeable to migrating fluids and where excess H2S was available beyond what was produced in situ by decomposition of local sedimentary organic matter. The known deposits formed mainly by replacement of calcareous strata that gained H2S from nearby highly carbonaceous beds (Anarraaq deposit) or by fracturing and vein formation in strata that produced excess H2S by reductive dissolution of

  1. Chemical bath deposited PbS thin films on ZnO nanowires for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Gertman, Ronen [Dept of Chemistry, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Osherov, Anna; Golan, Yuval [Dept of Materials Engineering, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Visoly-Fisher, Iris, E-mail: irisvf@bgu.ac.il [Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus 84990 (Israel)

    2014-01-01

    Photovoltaic devices usually exploit mid-range band-gap semiconductors which absorb in the visible range of the solar spectrum. However, much energy is lost in the IR and near-IR range. We combined the advantages of small band-gap, bulk-like PbS deposited by facile, cheap and direct chemical bath deposition (CBD), with the good electronic properties of ZnO and the large surface area of nanowires, towards low cost photovoltaic devices utilizing IR and near-IR light. Surprisingly, CBD of PbS on ZnO, and particularly on ZnO nanowires, was not studied hitherto. Therefore, the mechanism of PbS growth by chemical bath deposition on ZnO nanowires was studied in details. A visible proof is shown for a growth mechanism starting from amorphous Pb(OH){sub 2} layer, that evolved into the ‘ion-by-ion’ growth mechanism. The growth mechanism and the resulting morphology at low temperatures were controlled by the thiourea concentration. The grain size affected the magnitude of the band-gap and was controlled by the deposition temperatures. Deposition above 40 °C resulted in bulk-like PbS with an optical band-gap of 0.4 eV. Methods were demonstrated for achieving complete PbS coverage of the complex ZnO NW architecture, a crucial requirement in optoelectronic devices to prevent shorts. Measurements of photocurrents under white and near-IR (784 nm) illumination showed that despite a 200 meV barrier for electron transfer at the PbS/ZnO interface, extraction of photo-electrons from PbS to the ZnO was feasible. The ability to harvest electrons from a narrow band-gap semiconductor deposited on a large surface-area electrode can advance the field towards high efficiency, low cost IR and near-IR sensors and third generation solar cells. - Highlights: • PbS was deposited on ZnO nanowires using chemical bath deposition. • At 50 °C the growth mechanism starts from an amorphous Pb(OH){sub 2} layer. • At 5 °C the growth mechanism of PbS can be controlled by thiourea concentrations

  2. Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England)

    International Nuclear Information System (INIS)

    Tipping, E.; Rothwell, J.J.; Shotbolt, L.; Lawlor, A.J.

    2010-01-01

    Simulation modelling with CHUM-AM was carried out to investigate the accumulation and release of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in six moorland catchments, five with organic-rich soils, one with calcareous brown earths, in the Pennine chain of northern England. The model considers two soil layers and a third layer of weathering mineral matter, and operates on a yearly timestep, driven by deposition scenarios covering the period 1400-2010. The principal processes controlling heavy metals are competitive solid-solution partitioning of solutes, chemical interactions in solution, and chemical weathering. Agreement between observed and simulated soil metal pools and surface water concentrations for recent years was generally satisfactory, the results confirming that most contemporary soil metal is from atmospheric pollution. Metals in catchments with organic-rich soils show some mobility, especially under more acid conditions, but the calcareous mineral soils have retained nearly all anthropogenic metal inputs. Complexation by dissolved organic matter and co-transport accounts for up to 80% of the Cu in surface waters. - CHUM-AM is applied to six differing moorland catchments to account for the accumulation and leaching of atmospherically-deposited trace metals over the past several centuries.

  3. Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England)

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E., E-mail: et@ceh.ac.u [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Rothwell, J.J. [Upland Environments Research Unit, School of Environment and Development, University of Manchester, Manchester M13 9PL (United Kingdom); Shotbolt, L. [Geography Department, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Lawlor, A.J. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2010-05-15

    Simulation modelling with CHUM-AM was carried out to investigate the accumulation and release of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in six moorland catchments, five with organic-rich soils, one with calcareous brown earths, in the Pennine chain of northern England. The model considers two soil layers and a third layer of weathering mineral matter, and operates on a yearly timestep, driven by deposition scenarios covering the period 1400-2010. The principal processes controlling heavy metals are competitive solid-solution partitioning of solutes, chemical interactions in solution, and chemical weathering. Agreement between observed and simulated soil metal pools and surface water concentrations for recent years was generally satisfactory, the results confirming that most contemporary soil metal is from atmospheric pollution. Metals in catchments with organic-rich soils show some mobility, especially under more acid conditions, but the calcareous mineral soils have retained nearly all anthropogenic metal inputs. Complexation by dissolved organic matter and co-transport accounts for up to 80% of the Cu in surface waters. - CHUM-AM is applied to six differing moorland catchments to account for the accumulation and leaching of atmospherically-deposited trace metals over the past several centuries.

  4. 40Ar/39Ar Dating of Zn-Pb-Ag Mineralization in the Northern Brooks Range, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Layer, Paul W.; Newberry, Rainer J.

    2004-01-01

    The 40Ar/39Ar laser step-heating method potentially can be used to provide absolute ages for a number of formerly undatable, low-temperature ore deposits. This study demonstrates the use of this method by determining absolute ages for Zn-Pb-Ag sediment-hosted massive sulfide deposits and vein-breccia occurrences found throughout a 300-km-long, east-west-trending belt in the northern Brooks Range, Alaska. Massive sulfide deposits are hosted by Mississippian to Pennsylvanian(?) black carbonaceous shale, siliceous mudstone, and lesser chert and carbonate turbidites of the Kuna Formation (e.g., Red Dog, Anarraaq, Lik (Su), and Drenchwater). The vein-breccia occurrences (e.g., Husky, Story Creek, West Kivliktort Mountain, Vidlee, and Kady) are hosted by a deformed but only weakly metamorphosed package of Upper Devonian to Lower Mississippian mixed continental and marine clastic rocks (the Endicott Group) that stratigraphically underlie the Kuna Formation. The vein-breccias are mineralogically similar to, but not spatially associated with, known massive sulfide deposits. The region's largest shale-hosted massive sulfide deposit is Red Dog; it has reserves of 148 Mt grading 16.6 percent zinc, 4.5 percent lead, and 77 g of silver per tonne. Hydrothermally produced white mica in a whole-rock sample from a sulfide-bearing igneous sill within the Red Dog deposit yielded a plateau age of 314.5 Ma. The plateau age of this whole-rock sample records the time at which temperatures cooled below the argon closure temperature of the white mica and is interpreted to represent the minimum age limit for massive sulfide-related hydrothermal activity in the Red Dog deposit. Sulfide-bearing quartz veins at Drenchwater crosscut a hypabyssal intrusion with a maximum biotite age of 337.0 Ma. Despite relatively low sulfide deposition temperatures in the vein-breccia occurrences (162°-251°C), detrital white mica in sandstone immediately adjacent to large vein-breccia zones was partially to

  5. Géochimie et métallogénie des veines à Ag-Pb-Zn du bassin de Purcell, Colombie-Britannique

    OpenAIRE

    Paiement, Jean-Philippe

    2010-01-01

    Le bassin du Belt-Purcell est connu pour le gîte de type SEDEX de Sullivan et ses veines à Ag-Pb-Zn. Les veines du bassin de Purcell sont classées en trois types : 1) riches en Pb-Zn composées de sphalérite, galène, pyrrhotite, freibergite et pyrite; 2) riches en Pb-Ag-Cu-Au et composées de galène, pyrite, freibergite et d’or et; 3) veines et remplacements riches en Ag-Pb-Zn et composées de sphalérite, galène, pyrite et freibergite. La datation Ar/Ar de séricite hydrothermale du gîte de Type ...

  6. Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits

    Science.gov (United States)

    Kucha, H.; Raith, J.

    2009-04-01

    *Kucha H **Raith J *University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Mickiewicza 30, PL-30-059 Krakow, Poland. ** University of Leoben, Department of Applied Geosciences and Geophysics, A-8700 Leoben, Peter Tunner Str. 5, Austria Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits To date evaluation of bacterial processes in the formation of carbonate-hosted Zn-Pb deposits is largely based on sulphur isotope evidence. However, during a past few years, textural criteria, have been established, which support the bacterial origin of many of these deposits. This has received a strong support from micro-, and nano-textures of naturally growing bacterial films in a flooded tunnel within carbonates that host the Piquette Zn-Pb deposit (Druschel et al., 2002). Bacterial textures, micro- and nano textures found in carbonate-hosted Zn-Pb deposits are: i)wavy bacterial films up to a few mm thick to up to a few cm long composed of peloids, ii)semimassive agglomeration of peloids in the carbonate matrix, and iii)solitary peloids dispersed in the carbonate matrix. Peloids are usually composed of a distinct 50-90um core most often made up of Zn-bearing calcite surrounded by 30-60um thick dentate rim composed of ZnS. Etching of Zn-carbonate cores reveals 1 - 2um ZnS filaments, and numerous 15 to 90nm large ZnS nano-spheres (Kucha et al., 2005). In massive ore composite Zn-calcite - sphalerite peloids are entirely replaced by zinc sulphide, and form peloids ghosts within banded sulphide layers. Bacterially derived micro- and nano-textures have been observed in the following carbonate-hosted Zn-Pb deposits: 1)Irish-type Zn-Pb deposits. In the Navan deposit the basic sulphur is isotopically light bacteriogenic S (Fallick at al., 2001). This is corroborated by semimassive agglomerations of composite peloids (Zn-calcite-ZnS corona or ZnS core-melnikovite corona). Etching of Zn-calcite core reveals globular

  7. Anomalous metal concentrations in soil and till at the Ballinalack Zn-Pb deposit, Ireland

    Science.gov (United States)

    Kalveram, Ann-Kristin; McClenaghan, Seán H.; Kamber, Balz S.

    2017-04-01

    Metals such as zinc, iron, arsenic and lead are commonly found in low concentrations within soils. These signatures may occur as a result of natural dispersion from metal-bearing geological formations and (or) from anthropogenic sources. Prior to investigating any high or anomalous concentrations of metals in the surficial environment, it is important to reconcile potential sources of metals and verify whether element anomalies are in response to buried mineralization. Here we show how to distinguish true elevated concentrations from naturally occurring variations within a soil system. The research area is situated above the limestone-hosted Ballinalack Zn-Pb deposit in the central Irish Midlands. To investigate the pedogenesis and its related geochemical signature, top of the till and the BC soil horizon were sampled. Although the area can be described as pasture land, it does not preclude previous anthropogenic influences from former agricultural use and local small scale peat harvesting. For the soil BC horizon as well as in the top of the till, aqua regia-digestible element concentrations vary significantly and locally reach anomalous levels: Zn (median: 104 ppm; range: 27 - 13150 ppm), Pb (median: 16 ppm; range: 2 - 6430 ppm), As (median: 7.7 ppm; range: 1.4 - 362 ppm), Ag (median: 0.12 ppm; range: 0.04 - 19.9 ppm), Ba (median: 40 ppm; range: 10 - 1230 ppm), Cd (median: 1.5 ppm; range: 0.2 - 68 ppm), Co (median: 7.3 ppm; range: 0.5 - 22 ppm), Ni (median: 37 ppm; range: 3 - 134 ppm), Fe (median: 17900 ppm; range: 5000 - 52300 ppm), Ga (median: 2.4 ppm; range: 0.3 - 7.6 ppm), Sb (median: 1.2 ppm; range: 0.1 - 197 ppm) and Tl (median: 0.3 ppm; range: 0.02 - 8.6 ppm). Comparison with background levels from the area and grouped according to underlying geology, enrichment factor calculations (against Nb and Zr) indicate an elemental response to metalliferous-bearing bedrock. These results confirm that soil anomalies of Zn, Pb, As, Ag, Ba, Cd, Ni, Sb and Tl, are

  8. Thermal analysis and prediction of phase equilibria in ternary Pb-Zn-Ag System

    Czech Academy of Sciences Publication Activity Database

    Živković, D.; Minić, D.; Manasijević, D.; Šesták, Jaroslav; Živković, Ž.

    2011-01-01

    Roč. 47, č. 1 (2011), 23-30 ISSN 1450-5339 Institutional research plan: CEZ:AV0Z10100521 Keywords : Pb-Zn-Ag system * thermal analysis * phase equilibrium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.317, year: 2011

  9. Investigation of the potential for concealed base-metal mineralization at the Drenchwater Creek Zn-Pb-Ag occurrence, northern Alaska, using geology, reconnaissance geochemistry, and airborne electromagnetic geophysics

    Science.gov (United States)

    Graham, Garth E.; Deszcz-Pan, Maria; Abraham, Jared E.; Kelley, Karen D.

    2011-01-01

    In 2005, the U.S. Geological Survey, Bureau of Land Management, and State of Alaska cooperated on an investigation of the mineral potential of a southern part of the National Petroleum Reserve in Alaska, Howard Pass quadrangle, to provide background information for future land-use decisions. The investigation incorporated an airborne electromagnetic (EM) survey covering 1,500 mi2 (~3,900 km2), including flight lines directly over the Drenchwater Creek sediment-hosted Zn-Pb-Ag occurrence, the largest known base-metal occurrence in the survey area. Samples from the mineralized outcrop and rubblecrop contain metal concentrations that can exceed 11 percent Zn+Pb, with appreciable amounts of Ag. Soil samples with anomalous Pb concentrations are distributed near the sulfide-bearing outcrops and along a >2.5 km zone comprising mudstone, shale, and volcanic rocks of the Kuna Formation.

  10. U-Pb, Re-Os and Ar-Ar dating of the Linghou polymetallic deposit, Southeastern China: Implications for metallogenesis of the Qingzhou-Hangzhou metallogenic belt

    Science.gov (United States)

    Tang, Yanwen; Xie, Yuling; Liu, Liang; Lan, Tingguan; Yang, Jianling; Sebastien, Meffre; Yin, Rongchao; Liang, Songsong; Zhou, Limin

    2017-04-01

    The Qingzhou-Hangzhou metallogenic belt (QHMB) in Southeastern China has gained increasingly attention in recent years. However, due to the lack of reliable ages on intrusions and associated deposits in this belt, the tectonic setting and metallogenesis of the QHMB have not been well understood. The Linghou polymetallic deposit in northwestern Zhejiang Province is one of the typical deposits of the QHMB. According to the field relationships, this deposit consists of the early Cu-Au-Ag and the late Pb-Zn-Cu mineralization stages. Molybdenite samples with a mineral assemblage of molybdenite-chalcopyrite-pyrite ± quartz are collected from the copper mining tunnel near the Cu-Au-Ag ore bodies. Six molybdenite samples give the Re-Os model ages varying from 160.3 to 164.1 Ma and yield a mean age of 162.2 ± 1.4 Ma for the Cu-Au-Ag mineralization. Hydrothermal muscovite gives a well-defined Ar-Ar isochron age of 160.2 ± 1.1 Ma for the Pb-Zn-Cu mineralization. Three phases of granodioritic porphyry have been distinguished in this deposit, and LA-ICP-MS zircon U-Pb dating shows that they have formed at 158.8 ± 2.4 Ma, 158.3 ± 1.9 Ma and 160.6 ± 2.1 Ma, comparable to the obtained ages of the Cu-Au-Ag and Pb-Zn-Cu mineralization. Therefore, these intrusive rocks have a close temporal and spatial relationship with the Cu-Au-Ag and Pb-Zn-Cu ore bodies. The presences of skarn minerals (e.g., garnet) and vein-type ores, together with the previous fluid inclusion and H-O-C-S-Pb isotopic data, clearly indicate that the Cu-Au-Ag and Pb-Zn-Cu mineralization are genetically related to these granodiorite porphyries. This conclusion excludes the possibility that this deposit is of ;SEDEX; type and formed in a sag basin of continental rifts setting as previously proposed. Instead, it is proposed that the Linghou polymetallic and other similar deposits in the QHMB, such as the 150-160 Ma Yongping porphyry-skarn Cu-Mo, Dongxiang porphyry? Cu, Shuikoushan/Kangjiawang skarn Pb-Zn

  11. The behaviour of the elements Ni, Co, Cu, Pb, Zn, Au, Ag, Mo, Sn, W and U in the magmatic, hydrothermal, sedimentary and weathering environments

    International Nuclear Information System (INIS)

    Anderson, J.R.

    1978-01-01

    In the last two decades much has been published on the behaviour of certain elements in the magmatic, hydrothermal, sedimentary and weathering environments, but the information is scattered throughout the literature. This situation prompted the present study on the elements Ni, Co, Cu, Pb, Zn, Au, Ag, Mo, Sn, W and U. The behaviour of the elements Ni, Cu, Pb, Zn, Au, Sn, W and U has been studied experimentally in some depth. Ag has been moderately studied, but there is very little information about Co and Mo. Studies on the complexes formed by the elements within the hydrothermal and aqueous environment are often inconclusive and controversial, but conclusions are drawn as to the more likely complexes formed. A genetic classification of ore deposits is used as a framework for the discussion. The source of the elements is regarded as being the mantle, and therefore discussion on other possible sources is beyond the scope of this dissertation. The crystal chemistry and geochemistry of the elements are presented and the essay concludes with a discussion on the elements within their depositional environments

  12. Discovery of Wolitu Pb-Zn deposit through geochemical prospecting under loess cover in Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2017-09-01

    Full Text Available We report the finding of the Wolitu Pb-Zn deposit in Inner Mongolia, China, through a series of geochemical surveys. The Wolitu area, located in the loess-cover area in the Hure Banner, Tongliao City, Inner Mongolia, and neighboring the Horqin Sandy Land to the north, had no previous history of Pb-Zn mining or record of Pb-Zn mineralization. Our study identified a large Pb-Zn anomaly with potential zones of mineralization by stream sediment survey. Random rock sampling reveals limonitization at sporadic outcrops in the gullies. The high concentrations of Pb in the residual debris provided guidelines to fix the position for exploratory trench. Oxidized concealed orebodies were identified by trenching. Blind orebodies in veins hosted within the structural zone between slates and marbles of the upper Carboniferous Shizuizi Formation and the Permian granite were discovered by drilling. It is computed that the ore reserve may reach up to 540,000 tones with Pb grade of 1.27% and Zn of 1.9%. This case study is an excellent example for identifying potential polymetallic deposits in loess covered terrains using geochemical exploration.

  13. Genesis of the Assif El Mal Zn-Pb (Cu, Ag) vein deposit. An extension-related Mesozoic vein system in the High Atlas of Morocco. Structural, mineralogical, and geochemical evidence

    Science.gov (United States)

    Bouabdellah, M.; Beaudoin, G.; Leach, D.L.; Grandia, F.; Cardellach, E.

    2009-01-01

    The Assif El Mal Zn-Pb (Cu-Ag) vein system, located in the northern flank of the High Atlas of Marrakech (Morocco), is hosted in a Cambro-Ordovician volcaniclastic and metasedimentary sequence composed of graywacke, siltstone, pelite, and shale interlayered with minor tuff and mudstone. Intrusion of synorogenic to postorogenic Late Hercynian peraluminous granitoids has contact metamorphosed the host rocks giving rise to a metamorphic assemblage of quartz, plagioclase, biotite, muscovite, chlorite, amphibole, chloritoid, and garnet. The Assif El Mal Zn-Pb (Cu-Ag) mineralization forms subvertical veins with ribbon, fault breccia, cockade, comb, and crack and seal textures. Two-phase liquid-vapor fluid inclusions that were trapped during several stages occur in quartz and sphalerite. Primary inclusion fluids exhibit Th mean values ranging from 104??C to 198??C. Final ice-melting temperatures range from -8.1??C to -12.8??C, corresponding to salinities of ???15 wt.% NaCl equiv. Halogen data suggest that the salinity of the ore fluids was largely due to evaporation of seawater. Late secondary fluid inclusions have either Ca-rich, saline (26 wt.% NaCl equiv.), or very dilute (3.5 wt.% NaCl equiv.) compositions and homogenization temperatures ranging from 75??C to 150??C. The ??18O and ??D fluid values suggest an isotopically heterogeneous fluid source involving mixing between connate seawater and black-shale-derived organic waters. Low ??13CVPDB values ranging from -7.5??? to -7.7??? indicate a homogeneous carbon source, possibly organic matter disseminated in black shale hosting the Zn-Pb (Cu-Ag) veins. The calculated ??34SH2S values for reduced sulfur (22.5??? to 24.3???) are most likely from reduction of SO42- in trapped seawater sulfate or evaporite in the host rocks. Reduction of sulfate probably occurred through thermochemical sulfate reduction in which organic matter was oxidized to produce CO2 which ultimately led to precipitation of saddle dolomite with

  14. Atmospheric Deposition of Pb, Zn, Cu, and Cd in Amman, Jordan

    International Nuclear Information System (INIS)

    Momani, K.A.; Jiries, A.G.; Jaradat, Q.M.

    1999-01-01

    Atmospheric samples were collected by high-volume air sampler and dust fall containers during the summer of 1995 at different sites in Amman City, Jordan. Heavy metal contents in settle able (dust fall) as well as in air particulates (suspended) were analyzed by graphite furnace atomic absorption spectrophotometry. The atmospheric concentrations of Zn, Cu, Pb, and Cd were 344, 170, 291, and 3.8 ng/m 3 , respectively. On the other hand, the levels of these elements in dust fall deposition were 505, 94, 74, and 3.1 μg/g, respectively. The fluxes and dry deposition velocities of these heavy metals were determined and compared with the findings of other investigators worldwide. Significant enrichment coefficients of heavy metals in dust fall were observed. The enrichment coefficients were 12.1, 6.1, 11.7, and 1.1 for Zn, Cu, Pb, and Cd, respectively

  15. Specific composition of native silver from the Rogovik Au-Ag deposit, Northeastern Russia

    Science.gov (United States)

    Kravtsova, R. G.; Tauson, V. L.; Palyanova, G. A.; Makshakov, A. S.; Pavlova, L. A.

    2017-09-01

    The first data on native silver from the Rogovik Au-Ag deposit in northeastern Russia are presented. The deposit is situated in central part of the Okhotsk-Chukchi Volcanic Belt (OCVB) in the territory of the Omsukchan Trough, unique in its silver resources. Native silver in the studied ore makes up finely dispersed inclusions no larger than 50 μm in size, which are hosted in quartz; fills microfractures and interstices in association with küstelite, electrum, acanthite, silver sulfosalts and selenides, argyrodite, and pyrite. It has been shown that the chemical composition of native silver, along with its typomorphic features, is a stable indication of the various stages of deposit formation and types of mineralization: gold-silver (Au-Ag), silver-base metal (Ag-Pb), and gold-silver-base metal (Au-Ag-Pb). The specificity of native silver is expressed in the amount of trace elements and their concentrations. In Au-Ag ore, the following trace elements have been established in native silver (wt %): up to 2.72 S, up to 1.86 Au, up to 1.70 Hg, up to 1.75 Sb, and up to 1.01 Se. Native silver in Ag-Pb ore is characterized by the absence of Au, high Hg concentrations (up to 12.62 wt %), and an increase in Sb, Se, and S contents; the appearance of Te, Cu, Zn, and Fe is notable. All previously established trace elements—Hg, Au, Sb, Se, Te, Cu, Zn, Fe, and S—are contained in native silver of Au-Ag-Pb ore. In addition, Pb appears, and silver and gold amalgams are widespread, as well as up to 24.61 wt % Hg and 11.02 wt % Au. Comparison of trace element concentrations in native silver at the Rogovik deposit with the literature data, based on their solubility in solid silver, shows that the content of chalcogenides (S, Se, Te) exceeds saturated concentrations. Possible mechanisms by which elevated concentrations of these elements are achieved in native silver are discussed. It is suggested that the appearance of silver amalgams, which is unusual for Au-Ag mineralization

  16. Highly flexible transparent and conductive ZnS/Ag/ZnS multilayer films prepared by ion beam assisted deposition

    Science.gov (United States)

    Yu, Zhinong; Leng, Jian; Xue, Wei; Zhang, Ting; Jiang, Yurong; Zhang, Jie; Zhang, Dongpu

    2012-01-01

    ZnS/Ag/ZnS (ZAZ) multilayer films were prepared on polyethene terephthalate (PET) by ion beam assisted deposition at room temperature. The structural, optical and electrical characteristics of ZAZ multilayers dependent on the thickness of silver layer were investigated. The ZAZ multilayers exhibit a low sheet resistance of about 10 Ω/sq., a high transmittance of 92.1%, and the improved resistance stabilities when subjected to bending. When the inserted Ag thickness is over 12 nm, the ZAZ multilayers show good resistance stabilities due to the existence of a ductile Ag metal layer. The results suggest that ZAZ film has better optoelectrical and anti-deflection characteristics than conventional indium tin oxide (ITO) single layer.

  17. Zn-Pb Ores of Mississippi Valley Type in the Lycksele-Storuman District, Northern Sweden: A Possible Rift-Related Cambrian Mineralisation Event

    Directory of Open Access Journals (Sweden)

    Kjell Billström

    2012-06-01

    Full Text Available The epigenetic Zn-Pb deposits in the Lycksele-Storuman ore district, northern Sweden, are hosted by Paleoproterozoic basement near the margin of the Caledonian mountains. A paleogeographic reconstruction suggests that platform sediments, including Cambrian shales, overlaid the mineralised basement. The mineralisation type, containing sphalerite, galena, calcite and fluorite, is confined to veins and breccias and interpreted to be of Mississippi Valley Type (MVT style. There is no appreciable wall rock alteration. Fluid inclusion work reveals coexisting aqueous and hydrocarbon fluids. Ore deposition is interpreted to have occurred during mixing of two fluids; a cool (

  18. Liquidus Projection and Thermodynamic Modeling of a Sn-Ag-Zn System

    Science.gov (United States)

    Chen, Sinn-wen; Chiu, Wan-ting; Gierlotka, Wojciech; Chang, Jui-shen; Wang, Chao-hong

    2017-12-01

    Sn-Ag-Zn alloys are promising Pb-free solders. In this study, the Sn-Ag-Zn liquidus projection was determined, and the Sn-Ag-Zn thermodynamic modeling was developed. Various Sn-Ag-Zn alloys were prepared. Their as-cast microstructures and primary solidification phases were examined. The invariant reaction temperatures of the ternary Sn-Ag-Zn system were determined. The liquidus projection of the Sn-Ag-Zn ternary system was constructed. It was found that the Sn-Ag-Zn ternary system has eight primary solidification phases: ɛ2-AgZn3, γ-Ag5Zn8, β-AgZn, ζ-Ag4Sn, (Ag), ɛ1-Ag3Sn, β-(Sn) and (Zn) phases. There are eight ternary invariant reactions, and the liquid + (Ag) = β-AgZn + ζ-Ag4Sn reaction is of the highest temperature at 935.5 K. Thermodynamic modeling of the ternary Sn-Ag-Zn system was also carried out in this study based on the thermodynamic models of the three constituent binary systems and the experimentally determined liquidus projection. The liquidus projection and the isothermal sections are calculated. The calculated and experimentally determined liquidus projections are in good agreement.

  19. Tuning of Ag doped core−shell ZnO NWs/Cu2O grown by electrochemical deposition

    International Nuclear Information System (INIS)

    Makhlouf, Houssin; Messaoudi, Olfa; Souissi, Ahmed; Ben Assaker, Ibtissem; Oueslati, Mihrez; Bechelany, Mikhael; Chtourou, Radhouane

    2015-01-01

    ZnO nanowires (NWs)/Cu 2 O–Ag core–shell nanostructures (NSs) have been synthesized by electrochemical deposition method on ITO-coated glass substrates in order to improve the efficiency of the type-II transition of core–shell ZnO NWs/Cu 2 O–Ag NSs. The morphologies of the obtained NSs were studied by scanning electron microscopy confirming the presence of core–shell NSs. The crystalline proprieties were analyzed by x-ray diffraction and micro-Raman measurement: wurtzite ZnO and cuprit Cu 2 O phase were founded. The presence of Ag content in core–shell NS was detected by EDX. Optical measurement reveals an additional contribution δE at about 1.72 eV attributed to the type-II interfacial transition between the valance band of cuprit−Cu 2 O and the conduction band of W−ZnO. The effect of the Ag doping into the type-II transition was investigated. A red shift of the type-II transition was detected according to the Ag concentration. These materials could have potential applications in photocatalytic and photovoltaic fields. (paper)

  20. The giant Upper Yangtze Pb-Zn province in SW China: Reviews, new advances and a new genetic model

    Science.gov (United States)

    Zhou, Jia-Xi; Xiang, Zhen-Zhong; Zhou, Mei-Fu; Feng, Yue-Xing; Luo, Kai; Huang, Zhi-Long; Wu, Tao

    2018-04-01

    western Yangtze Block. The change of tectonic regimes from extension to compression after eruption of basalts of the ELIP, and then to extension during Early Mesozoic, facilitated extraction, migration, and excretion of ore-forming metals and associated fluids. Mixing of fluids and reduction geochemical barrier activated TSR, causing cyclical carbonate dissolution, CO2 degassing and recrystallization (namely carbonate buffer). All these processes triggered continuous precipitation of huge amounts of hydrothermal minerals. Underplating and eruption of ELIP basalts provided heat flow, fluids and volatiles, whereas the basalts acted as an impermeable and protective layer, and even as ore-hosting rocks. These Pb-Zn deposits have spatial and genetic association with igneous activities of the ELIP, and are characterized by high ore grades (>10 wt% Pb + Zn), high concentrations of associated metals (e.g. Cu, Ag, Ge, and Cd), and medium-low temperatures (usually Yangtze metallogenic province representing to a new type of Pb-Zn deposits that are hosted in platform carbonate sequences and formed within compressional zones of passive margin tectonic settings.

  1. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaohong, E-mail: yxhong1981_2004@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Xu, Wenzheng, E-mail: xwz8199@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Huang, Fenglin, E-mail: windhuang325@163.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Chen, Dongsheng, E-mail: mjuchen@126.com [Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China)

    2016-12-30

    Highlights: • Ag/ZnO composite film was successfully deposited on polyester fabric by magnetron sputtering technique. • Ag film was easily oxidized into Ag{sub 2}O film in high vacuum oxygen environment. • The zinc film coated on the surface of Ag film before RF reactive sputtering could protect the silver film from oxidation. • Polyester fabric coated with Ag/ZnO composite film can obtained structural color. • The anti-ultraviolet and antistatic properties of polyester fabric coated with Ag/ZnO composite film all were good. - Abstract: Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag{sub 2}O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  2. Ag-ZnO nanostructure for ANTA explosive molecule detection

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Ummar Pasha [Advanced Center of Research in High Energy Materials, University of Hyderabad, Hyderabad 500046 (India); Sangani, L. D. Varma [Centre for Advanced Studies in Electronics Science and Technology, School of Physics, University of Hyderabad (India); Gaur, Anshu [Department of Industrial Engineering, University of Trento, Via Sommarive9, Trento (Italy); Mohiddon, Md. Ahamad, E-mail: ahamed.vza@gmail.com [National Institute of Technology Andhra Pradesh, Tadepalliguem 534101, AP, India Phone : (+) 91-40-23134382, FAX: (+) 91-40-23010227 (India); Krishna, M. Ghanashyam [Advanced Center of Research in High Energy Materials, University of Hyderabad, Hyderabad 500046 (India); Centre for Advanced Studies in Electronics Science and Technology, School of Physics, University of Hyderabad (India); National Institute of Technology Andhra Pradesh, Tadepalliguem 534101, AP, India Phone : (+) 91-40-23134382, FAX: (+) 91-40-23010227 (India)

    2016-05-23

    Ag/ZnO nanostructure for surface enhanced Raman scattering application in the detection of ANTA explosive molecule is demonstrated. A highly rough ZnO microstructure was achieved by rapid thermal annealing of metallic Zn film. Different thickness Ag nanostructures are decorated over these ZnO microstructures by ion beam sputtering technique. Surface enhanced Raman spectroscopic studies carried out over Ag/ZnO substrates have shown three orders higher enhancement compared to bare Ag nanostructure deposited on the same substrate. The reasons behind such huge enhancement are discussed based on the morphology of the sample.

  3. The Lavrion Pb-Zn-Fe-Cu-Ag detachment-related district (Attica, Greece): Structural control on hydrothermal flow and element transfer-deposition

    Science.gov (United States)

    Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier; Voudouris, Panagiotis; Rigaudier, Thomas; Photiades, Adonis; Morin, Denis; Alloucherie, Alison

    2017-10-01

    The impact of lithological heterogeneities on deformation, fluid flow and ore deposition is discussed based on the example of the Lavrion low-angle detachment partly accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula is characterised by a multiphase Pb-Zn-Fe-Cu-Ag ore system with a probable pre-concentration before subduction followed by progressive remobilisation and deposition coeval with the development of a low-angle ductile to brittle shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, carbonaceous material). Ductile mylonitic deformation is more pervasive in the less competent impure blue marble. We propose that localised deformation in the impure marble is associated with fluid circulation and dolomitisation, which in turn causes an increase in competence of these layers. Mineralised cataclastic zones, crosscutting the mylonitic fabric, are preferentially localised in the more competent dolomitic layers. Oxygen and carbon isotopic signatures of marble invaded by carbonate replacement deposits during ductile to ductile-brittle deformation are consistent with decarbonation coeval with the invasion of magmatic fluids. Mineralised cataclastic zones reflecting brittle deformation evolve from low 13C to low 18O signatures, interpreted as local interaction with carbonaceous material that trends toward the contribution of a surface-derived fluid. These features indicate that the Lavrion area records a complex deposition history influenced by the evolution of fluid reservoirs induced by the thermal and mechanical evolution of the marble nappe stack. Ore remobilisation and deposition associated with the activity of the low-angle detachment is (i) firstly related to the intrusion of the Plaka granodiorite leading to porphyry-type and carbonate replacement mineralisation during ductile

  4. Photoluminescence and photocatalytic activities of Ag/ZnO metal-semiconductor heterostructure

    International Nuclear Information System (INIS)

    Sarma, Bikash; Deb, Sujit Kumar; Sarma, Bimal K.

    2016-01-01

    Present article focuses on the photocatalytic activities of ZnO nanorods and Ag/ZnO heterostructure deposited on polyethylene terephthalate (PET) substrate. ZnO nanorods are synthesized by thermal decomposition technique and Ag nanoparticles deposition is done by photo-deposition technique using UV light. X-ray diffraction studies reveal that the ZnO nanorods are of hexagonal wurtzite structure. Further, as-prepared samples are characterized by Scanning Electron Microscopy (SEM), Photoluminescence (PL) spectroscopy and UV-Vis spectroscopy. The surface plasmon resonance response of Ag/ZnO is found at 420 nm. The photocatalytic activities of the samples are evaluated by photocatalytic decolorization of methyl orange (MO) dye with UV irradiation. The degradation rate of MO increases with increase in irradiation time. The degradation of MO follows the first order kinetics. The photocatalytic activity of Ag/ZnO heterostructure is found to be more than that of ZnO nanorods. The PL intensity of ZnO nanorods is stronger than that of the Ag/ZnO heterostructure. The strong PL intensity indicates high recombination rate of photoinduced charge carriers which lowers the photocatalytic activity of ZnO nanorods. The charge carrier recombination is effectively suppressed by introducing Ag nanoparticles on the surface of the ZnO nanorods. This study demonstrates a strong relationship between PL intensity and photocatalytic activity. (paper)

  5. Luminescence properties of Ag-, Ga-doped ZnO and ZnO-ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kushnirenko, V.I.; Khomchenko, V.S.; Zavyalova, L.V. [V. Lashkarev Institute of Semiconductor Physics, NAS of Ukraine, Pr. Nauki 45, 03028 Kiev (Ukraine); Zashivailo, T.V. [National Technical University of Ukraine ' ' KPI' ' , Pr. Pobedy 37, 03056 Kiev (Ukraine)

    2012-08-15

    Thin films of ZnS were grown by metal-organic chemical vapor deposition (MOCVD) method under atmospheric pressure onto glass substrates. ZnO-ZnS:[Ag, Ga] and ZnO:[Ag, Ga] thin films were prepared by oxidation and Ag, Ga doping of ZnS films at temperatures of 700-775 C for 0.5-1 h. Crystalline quality and luminescent properties were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence. It is found that the doped films have a polycrystalline structure without preferred orientation and consist of small grains gathered into conglomerates. The shape of photoluminescence (PL) spectra of the films depends strongly on the preparation conditions. The ZnO-ZnS:[Ag, Ga] films exhibited the blue and green emission connected with the presence of silver and oxygen, respectively. The ZnO:[Ag, Ga] films revealed the white emission originated from different defect-related transitions. The possible origin of radiative centers is discussed (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. CHEMICAL DETERMINATION OF HEAVY METALS IN PB AND ZN CONCENTRATES OF TREPÇA (KOSOVO AND CORRELATIONS COEFFI CIENTS STUDY BETWEEN CHEMICAL DATA

    Directory of Open Access Journals (Sweden)

    Fatbardh Gashi

    2017-03-01

    Full Text Available Kosovo ore deposits are located in the Trepça belt which extends for over 80 km. The concentrate produced by the flotation process of the Trepça metallurgical corporation contains a considerable quantity of valuable metals, such as Pb, Zn, Fe and minor accompanying metals such as Cd, Cu, As, Sb, Bi, Ag, Au, etc. The subject of this work was to assess the concentration of major and minor metals in lead and zinc concentrates of Trepça and to study the correlation coefficients between metals. Chemical determination of concentrates was performed by using atomic absorption spectroscopy (AAS. In the content on lead concentrate samples, the following were found: Pb>Fe>Zn> Ag> As>Sb>Cd. In the content of zinc concentrate, the following were found: Zn>Fe>Pb>Ag>As>Cd. The program “Statistica ver. 6.0” has been used for calculations of basic statistical parameters, relationships between data and cluster analysis of R-mode. R-mode cluster analysis on lead concentrate samples showed that Pb has the closest linkages with Fe and they form one branch of the dendogram. On the zinc concentrate samples, Zn has the closest linkages with Fe and they form one branch of the dendogram.

  7. Plasmonics effect of Ag nanoislands covered n-Al:ZnO/p-Si heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Venugopal, N., E-mail: venu369@gmail.com; Kaur, Gurpreet, E-mail: gkaurdnt@iitr.ernet.in; Mitra, Anirban, E-mail: mitrafph@iitr.ernet.in

    2014-11-30

    Highlights: • Effect of Ag plasmonic nanoislands on n-aluminum doped zinc oxide (Al:ZnO)/p-silicon (p-Si) heterostructure device. • Morphology of Ag nanoisland in consequence with the optical (absorbance and photoluminescence) and electrical properties of the device. • Ag nanoisland/Al:ZnO heterostructure shows remarkable improvement of absorbance in both visible and UV region compare to the bare silicon. • Near band edge emission in photoluminescence has been enhanced with the deposition of Ag nanoisland. • Dark and illumination current density also increases with the deposition of Ag nanoisland. - Abstract: A plasmonic heterostructure of Ag (nanoisland)/n-Al:ZnO/p-Si is fabricated using pulsed laser deposition and thermal evaporation method. In this structure Al:ZnO plays an important role of transparent conductive oxide (spacer layer) as well as the rectifying junction with silicon. By introducing the silver nanoislands on Al:ZnO, light harvesting has been enhanced because of plasmonic and light scattering effect. Morphology of Ag nanoparticles in consequence with the optical and electrical properties of the device has been studied. Optical reflection measurement of the device with Ag nanoisland shows remarkable improvement in both visible and UV regions compared to the bare n-Al:ZnO/p-Si heterostructure. Near band edge emission in photoluminescence has been enhanced with the deposition of Ag nanoislands. Dark and illumination current density has also been increased with the deposition of Ag nanoisland. Our experimental results suggest that integration of Ag nanoislands may help to improve the efficiency of hybrid silicon based photonic devices.

  8. Structure and photoluminescence properties of Ag-coated ZnO nano-needles

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaozhu, E-mail: Lixiaozhu1019@21cn.com [Department of Physics, Shaoguan University, Shaoguan, Guangdong 512005 (China) and Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan, Hubei 430072 (China); Wang Yongqian [Engineering Research Center of Nano-Geomaterials of Ministry of Education (China University of Geosciences), Wuhan, Hubei 430074 (China)

    2011-05-12

    Highlights: > ZnO nano-needles were synthesized by thermal oxidation. > Their surfaces were coated with Ag by pulse electro-deposition technique. > The uncoated and coated ZnO nano-needles were characterized. > The results showed that the prepared ZnO nano-needles have been coated with Ag successfully. > The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the Ag-coated ZnO nano-needles can increase the absorption of UV light. - Abstract: A large number of zinc oxide (ZnO) nano-needles were synthesized by thermal oxidation of pure zinc. The surfaces of ZnO nano-needles were coated with a layer of Ag by pulse electro-deposition technique. The uncoated and coated ZnO nano-needles were characterized by using the X-ray diffraction and the scanning electron microscope (SEM). The results showed that the uncoated samples were close-packed hexagonal structure, which showed needle-like morphology. Their average diameter is about 40 nm, lengths up to 5 {mu}m. At the same time we observed that the prepared ZnO nano-needles have been coated with Ag successfully. The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the uncoated ZnO nano-needles have two fluorescence peaks at 388 nm and 470.8 nm, respectively, the relative intensity of 143.4 and 93.61; and the Ag-coated ZnO nano-needles showed a pair of strong peaks at 387.4 nm and 405.2 nm, the relative intensity of 1366 and 1305, respectively, indicating that the Ag-coated ZnO nano-needles can increase the absorption of UV light.

  9. Two mineralization events in the Baiyinnuoer Zn-Pb deposit in Inner Mongolia, China: Evidence from field observations, S-Pb isotopic compositions and U-Pb zircon ages

    Science.gov (United States)

    Jiang, Si-Hong; Chen, Chun-Liang; Bagas, Leon; Liu, Yuan; Han, Ning; Kang, Huan; Wang, Ze-Hai

    2017-08-01

    The Xing-Mong Orogenic Belt (XMOB) is located in the eastern part of the Central Asian Orogenic Belt (CAOB) and has experienced multiple tectonic events. The Baiyinnuoer Pb-Zn deposit may be a rare case that documents two periods of mineralization in the tectonically complex XMOB. There are two types of Pb-Zn mineralization in the deposit: (1) skarn-type ore, hosted by the skarn in the contact zone between marble and granodiorite and within the marble and (2) vein-type ore, hosted by crystal tuff and feldspar porphyry. This study revealed that the host rocks, mineral assemblages, mineralization occurrences, S-Pb isotopes, and ages between the two types of ore are notably different. Zircon U-Pb dating indicates that the granodiorite was emplaced in the Early Triassic (244 ± 1 to 242 ± 1 Ma), the crystal tuff was deposited in the Early Cretaceous (140 ± 1 to 136 ± 1 Ma), and the feldspar porphyry was intruded in the Early Cretaceous (138 ± 2 to 136 ± 2 Ma). The first skarn mineralization occurred at ∼240 Ma and the second vein-type Pb-Zn mineralization took place between 136 and 129 Ma. Thus the Triassic orebodies were overprinted by Early Cretaceous mineralization. The sphalerite and galena from the skarn mineralization have higher δ34S values (-4.7 to +0.3‰) than the sphalerite, galena and aresenopyrite from the vein-type mineralization (-7.5 to -4.2‰), indicating different sulfur sources or ore-forming processes for the two types of mineralization. The Pb isotopic compositions of the two types of ore are very similar, suggesting similar lead sources. Geochemistry and Nd-Pb-Hf isotopic systematics of the igneous rocks in the region show that the Triassic granodiorite was generated from hybridization of mafic and felsic magmas due to strong crust-mantle interaction under the collisional setting that resulted following the closure of the Paleo-Asian Ocean and the collision of North China and Siberian cratons at the end of the Permian; while the

  10. Influence of Ag thickness of aluminum-doped ZnO/Ag/aluminum-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hung-Wei, E-mail: hwwu@mail.ksu.edu.tw [Department of Computer and Communication, Kun Shan University, No. 949, Dawan Rd., Yongkang Dist., Tainan City 710, Taiwan (China); Yang, Ru-Yuan [Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, 1, Shuefu Rd., Neipu, Pingtung City 912, Taiwan (China); Hsiung, Chin-Min; Chu, Chien-Hsun [Department of Mechanical Engineering, National Pingtung University of Science and Technology, 1, Shuefu Rd., Neipu, Pingtung City 912, Taiwan (China)

    2012-10-01

    Highly conducting aluminum-doped ZnO (30 nm)/Ag (5-15 nm)/aluminum-doped ZnO (30 nm) multilayer thin films were deposited on glass substrate by rf magnetron sputtering (for top/bottom aluminum-doped ZnO films) and e-beam evaporation (for Ag film). The transmittance is more than 70% for wavelengths above 400 nm with the Ag layer thickness of 10 nm. The resistivity is 3.71 Multiplication-Sign 10{sup -4} {Omega}-cm, which can be decreased to 3.8 Multiplication-Sign 10{sup -5} {Omega}-cm with the increase of the Ag layer thickness to 15 nm. The Haacke figure of merit has been calculated for the films with the best value being 8 Multiplication-Sign 10{sup -3} {Omega}{sup -1}. It was shown that the multilayer thin films have potential for applications in optoelectronics. - Highlights: Black-Right-Pointing-Pointer High-quality Al-doped ZnO (AZO)/Ag/AZO Transparent Conducting Oxide films. Black-Right-Pointing-Pointer AZO films (30 nm) made by RF sputtering; E-beam evaporation for Ag film (5-15 nm). Black-Right-Pointing-Pointer Influence of Ag thickness on optical and electrical properties were analyzed. Black-Right-Pointing-Pointer High quality multilayer film with optimal intermediate Ag layer thickness of 10 nm. Black-Right-Pointing-Pointer 3.71 Multiplication-Sign 10{sup -4} {Omega}-cm resistivity, 91.89% transmittance at 470 nm obtained and reproducible.

  11. Structure and photoluminescence properties of Ag-coated ZnO nano-needles

    International Nuclear Information System (INIS)

    Li Xiaozhu; Wang Yongqian

    2011-01-01

    Highlights: → ZnO nano-needles were synthesized by thermal oxidation. → Their surfaces were coated with Ag by pulse electro-deposition technique. → The uncoated and coated ZnO nano-needles were characterized. → The results showed that the prepared ZnO nano-needles have been coated with Ag successfully. → The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the Ag-coated ZnO nano-needles can increase the absorption of UV light. - Abstract: A large number of zinc oxide (ZnO) nano-needles were synthesized by thermal oxidation of pure zinc. The surfaces of ZnO nano-needles were coated with a layer of Ag by pulse electro-deposition technique. The uncoated and coated ZnO nano-needles were characterized by using the X-ray diffraction and the scanning electron microscope (SEM). The results showed that the uncoated samples were close-packed hexagonal structure, which showed needle-like morphology. Their average diameter is about 40 nm, lengths up to 5 μm. At the same time we observed that the prepared ZnO nano-needles have been coated with Ag successfully. The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the uncoated ZnO nano-needles have two fluorescence peaks at 388 nm and 470.8 nm, respectively, the relative intensity of 143.4 and 93.61; and the Ag-coated ZnO nano-needles showed a pair of strong peaks at 387.4 nm and 405.2 nm, the relative intensity of 1366 and 1305, respectively, indicating that the Ag-coated ZnO nano-needles can increase the absorption of UV light.

  12. U-Pb age for some base-metal sulfide deposits in Ireland: genetic implications for Mississippi Valley-type mineralization

    International Nuclear Information System (INIS)

    Duane, M.J.; Welke, H.J.; Allsopp, H.L.

    1986-01-01

    Evidence is presented that links the timing of vein-type (Cu-Ag(U)) to stratiform Mississippi Valley-type (MVT, Pb-Zn) ore events in Ireland. The rare occurrence of pitchblende, coffinite(?), and brannerite mineralization, which is regarded as a precursor component to the sulfide mineralization in the Gortdrum deposit (Ireland), provides the first direct radiometric dating tool for these carbonate-hosted deposits. The U-Pb (340 +25/-20 Ma) and Pb-Pb (359 +/- 26 Ma) whole-rock ages constrain the uranium and base-metal mineralizing events to the Early Carboniferous. The data support a model according to which MVT and earlier uranium mineralization stages of some major ore bodies resulted from fracturing coincident with large basin-dewatering events. The Pb-Pb and concordia data are consistent with an Early Carboniferous age for the mineralization at Gortdrum and agree closely with a previously published Rb-Sr age of 359 +/- 22 Ma, obtained for Missouri glauconites. Furthermore, other comparative geologic data from Ireland and from North American MVT mineral provinces support a model of Pb-Zn-Cu(U) mobilization on a regional scale that implicates the later closing stages of the proto-Atlantic. 40 references, 3 figures, 1 table

  13. Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Wang, Yuxin, E-mail: wyx790914@aliyun.com [Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou Zhejiang 318000 (China); Hou, Fulin; Li, Hongxin; Yang, Yang [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Zhang, Xinxin [Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou Zhejiang 318000 (China); Yang, Yiqiong; Wang, Yin [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2017-01-01

    Highlights: • Unique flower-like Ag/ZnO spheres were synthesized by simple hydrothermal method. • Depositing with moderate Ag improved visible light response and activity. • Photoexcited electrons transfer from Ag to ZnO due to surface plasmon resonance. • Ag/ZnO was stable even after recycling many times. - Abstract: Flower-like Ag/ZnO samples were successfully fabricated via a simple and cost efficient method without surfactants. The morphologies, structural and optical properties of Ag/ZnO samples with various Ag content were investigated. The samples were systematically characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N{sub 2} adsorption-desorption isotherm, diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy (PL). It was found that ZnO was wurtzite phase and metallic Ag particles were wrapped by ZnO nanosheets. Compared with pure metallic Ag, the binding energy of Ag 3d for the Ag/ZnO samples distinctly shifted to the lower binding energy, which was attributed to the interaction between ZnO and Ag. With the increase of Ag content, surface plasmon absorption band of Ag/ZnO samples was obviously widened; meanwhile, PL intensity was decreased. The photocatalytic performance of Ag/ZnO samples were carried out by the degradation of methylene blue (MB) solution under visible light irradiation. The deposition of a certain amount of Ag was beneficial to the improvement of photocatalytic activity. The degradation rate of the Ag/ZnO sample with Ag/Zn ratio 1/20 was greater than fourfold times faster than that of ZnO. It was suggested that photoexcited electrons transferred from Ag to ZnO due to surface plasmon resonance (SPR), which could effectively reduce the recombination of electron–hole pairs and prolong lifetime of the electron–holes pairs, promoting the degradation efficiency. The deposition of a large amount of Ag

  14. On the problems of Ba, Pb, Zn Ple{e ore deposit (Slovenia

    Directory of Open Access Journals (Sweden)

    Ivan Mlakar

    2003-12-01

    Full Text Available In this paper we present the years ago collected unpublished data on the Ple{e ore deposit which we completed also with some recent ones. They all speak against the offered interpretation of the geologic structure (Dozet, 1999, and especially against the Skythianage of this Ba, Pb and Zn deposit.We showed that the two large concordant barite bodies of syngenegtic origin are associated with an exactly determined horizon within the Carboniferous beds, that they were formed almost certainly in relation with the Asturian orogenic phase, and that theyoccur by chance in the hanging wall contact with the Skythian dolomite along a thrust plane. During Tertiary the epigenetic remobilization brought the ore substance from Paleozoic rocks into the mentioned dolomite. In one of the carefully investigated geochemictraverses the remobilization distance for Pb and Hg is 70 meters, and for Ba greater than 100 meters.For the existence of the PleŠe barite-bearing formation as conceived by Dozet (1999 there are no infallible proofs.

  15. One-step synthesis of PbSe-ZnSe composite thin film

    Directory of Open Access Journals (Sweden)

    Abe Seishi

    2011-01-01

    Full Text Available Abstract This study investigates the preparation of PbSe-ZnSe composite thin films by simultaneous hot-wall deposition (HWD from multiple resources. The XRD result reveals that the solubility limit of Pb in ZnSe is quite narrow, less than 1 mol%, with obvious phase-separation in the composite thin films. A nanoscale elemental mapping of the film containing 5 mol% PbSe indicates that isolated PbSe nanocrystals are dispersed in the ZnSe matrix. The optical absorption edge of the composite thin films shifts toward the low-photon-energy region as the PbSe content increases. The use of a phase-separating PbSe-ZnSe system and HWD techniques enables simple production of the composite package.

  16. Zn isotope study of atmospheric emissions and dry depositions within a 5 km radius of a Pb-Zn refinery

    Science.gov (United States)

    Mattielli, Nadine; Petit, Jérôme C. J.; Deboudt, Karine; Flament, Pascal; Perdrix, Esperanza; Taillez, Aurélien; Rimetz-Planchon, Juliette; Weis, Dominique

    The present paper examines the use of zinc isotopes as tracers of atmospheric sources and focuses on the potential fractionation of Zn isotopes through anthropogenic processes. In order to do so, Zn isotopic ratios are measured in enriched ores and airborne particles associated with pyrometallurgical activities of one of the major Pb-Zn refineries in France. Supporting the isotopic investigation, this paper also compares morphological and chemical characteristics of Zn particles collected on dry deposition plates ("environmental samples") placed within a 5 km radius of the smelter, with those of Zn particles collected inside the plant ("process samples"), i.e. dust collected from the main exhaust system of the plant. To ensure a constant isotopic "supply", the refinery processed a specific set of ores during the sampling campaigns, as agreed with the executive staff of the plant. Enriched ores and dust produced by the successive Zn extraction steps show strong isotope fractionation (from -0.66 to +0.22‰) mainly related to evaporation processes within the blast furnaces. Dust from the main chimney displays a δ 66Zn value of -0.67‰. Application of the Rayleigh equation to evaluate the fractionation factor associated with the Zn vapor produced after a free evaporation gives a range of αore/vapor from 1.0004 to 1.0008. The dry deposits, collected on plates downwind of the refinery, display δ 66Zn variations of up to +0.7‰. However, it is to be noted that between 190 and 1250 m from the main chimney of the refinery, the dry deposits show a high level of large (>10 μm) Zn, S, Fe and O bearing aggregates characterized by positive δ 66Zn values (+0.02 to +0.19‰). These airborne particles probably derive from the re-suspension of slag heaps and local emissions from the working-units. In contrast, from 1720 to 4560 m, the dry deposits are comprised of small (PM10) particles, including spherical Zn-bearing aggregates, showing negative δ 66Zn values (-0.52 to -0

  17. Fabrication and Characteristics of ZnO/OAD-InN/PbPc Hybrid Solar Cells Prepared by Oblique-Angle Deposition

    Directory of Open Access Journals (Sweden)

    Lung-Chien Chen

    2012-08-01

    Full Text Available In this work, lead phthalocyanine (PbPc and ZnO/InN inorganic semiconductor films prepared by oblique-angle deposition (OAD were layered to form heterojunction organic/inorganic hybrid photovoltaic solar cells. Among the available organic materials, phthalocyanines, particularly the non-planar ones such as PbPc, are notable for their absorption in the visible and near infrared regions. The organic/inorganic hybrid solar cells fabricated on ZnO/OAD-InN/PbPc showed short-circuit current density (JSC, open-circuit voltage (VOC, and power conversion efficiencies (η of 1.2 mA/cm2, 0.6 V and 0.144%, respectively.

  18. Laser soldering of Sn-Ag-Cu and Sn-Zn-Bi lead-free solder pastes

    Science.gov (United States)

    Takahashi, Junichi; Nakahara, Sumio; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2004-10-01

    It has reported that a waste of an electronics substrate including lead and its compound such as 63Sn-37Pb has polluted the environment with acid rain. For that environment problem the development of lead-free solder alloys has been promoted in order to find out the substitute for Sn-Pb solders in the United States, Europe, and Japan. In a present electronics industry, typical alloys have narrowed down to Sn-Ag-Cu and Sn-Zn lead-free solder. In this study, solderability of Pb-free solder that are Sn-Ag-Cu and Sn-Zn-Bi alloy was studied on soldering using YAG (yttrium aluminum garnet) laser and diode laser. Experiments were peformed in order to determine the range of soldering parameters for obtaining an appropriate wettability based on a visual inspection. Joining strength of surface mounting chip components soldered on PCB (printed circuit board) was tested on application thickness of solder paste (0.2, 0.3, and 0.4 mm). In addition, joining strength characteristics of eutectic Sn-Pb alloy and under different power density were examined. As a result, solderability of Sn-Ag-Cu (Pb-free) solder paste are equivalent to that of coventional Sn-Pb solder paste, and are superior to that of Sn-Zn-Bi solder paste in the laser soldering method.

  19. Probing the distribution and contamination levels of 10 trace metal/metalloids in soils near a Pb/Zn smelter in Middle China.

    Science.gov (United States)

    Li, Zhonggen; Feng, Xinbin; Bi, Xiangyang; Li, Guanghui; Lin, Yan; Sun, Guangyi

    2014-03-01

    The horizontal and vertical distribution patterns and contamination status of ten trace metal/metalloids (Ag, Bi, Co, Cr, Ge, In, Ni, Sb, Sn, Tl) in soils around one of the largest Chinese Pb-Zn smelter in Zhuzhou City, Central China, were revealed. Different soil samples were collected from 11 areas, including ten agricultural areas and one city park area, with a total of 83 surface soil samples and six soil cores obtained. Trace metal/metalloids were determined by inductively coupled plasma-mass spectrometry after digestion by an acid mixture of HF and HNO3. The results showed that Ag, Bi, In, Sb, Sn, and Tl contents decreased both with the distance to the Pb-Zn smelter as well as the soil depth, hinting that these elements were mainly originated from the Pb-Zn smelting operations and were introduced into soils through atmospheric deposition. Soil Ge was influenced by the smelter at a less extent, while the distributions of Co, Cr, and Ni were roughly even among most sampling sites and soil depths, suggesting that they were primarily derived from natural sources. The contamination status, as revealed by the geo-accumulation index (I geo), indicated that In and Ag were the most enriched elements, followed by Sb, Bi, and Sn. In general, Cr, Tl, Co, Ni, and Ge were of an uncontaminated status.

  20. A salt diapir-related Mississippi Valley-type deposit: the Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: fluid inclusion and isotope study

    Science.gov (United States)

    Bouhlel, Salah; Leach, David L.; Johnson, Craig A.; Marsh, Erin; Salmi-Laouar, Sihem; Banks, David A.

    2016-08-01

    The Bou Jaber Ba-F-Pb-Zn deposit is located at the edge of the Bou Jaber Triassic salt diapir in the Tunisia Salt Diapir Province. The ores are unconformity and fault-controlled and occur as subvertical column-shaped bodies developed in dissolution-collapse breccias and in cavities within the Late Aptian platform carbonate rocks, which are covered unconformably by impermeable shales and marls of the Fahdene Formation (Late Albian-Cenomanian age). The host rock is hydrothermally altered to ankerite proximal to and within the ore bodies. Quartz, as fine-grained bipyramidal crystals, formed during hydrothermal alteration of the host rocks. The ore mineral assemblage is composed of barite, fluorite, sphalerite, and galena in decreasing abundance. The ore zones outline distinct depositional events: sphalerite-galena, barite-ankerite, and fluorite. Fluid inclusions, commonly oil-rich, have distinct fluid salinities and homogenization temperatures for each of these events: sphalerite-galena (17 to 24 wt% NaCl eq., and Th from 112 to 136 °C); ankerite-barite (11 to 17 wt% NaCl eq., and Th from 100 to 130 °C); fluorite (19 to 21 wt% NaCl eq., Th from 140 to 165 °C). The mean temperature of the ore fluids decreased from sphalerite (125 °C) to barite (115 °C) and increased during fluorite deposition (152 °C); then decreased to ˜110 °C during late calcite precipitation. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of fluid inclusions in fluorite are metal rich (hundreds to thousands ppm Pb, Zn, Cu, Fe) but the inclusions in barite are deficient in Pb, Zn, Cu, Fe. Inclusions in fluorite have Cl/Br and Na/Br ratios of several thousand, consistent with dissolution of halite while the inclusions analysed in barite have values lower than seawater which are indicative of a Br-enriched brine derived from evaporation plus a component of halite dissolution. The salinity of the barite-hosted fluid inclusions is less than obtained simply by the

  1. A simple photolytic reactor employing Ag-doped ZnO nanowires for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Udom, Innocent; Zhang, Yangyang [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Ram, Manoj K., E-mail: mkram@usf.edu [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Stefanakos, Elias K. [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Hepp, Aloysius F. [Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Fl 33620 (United States); Elzein, Radwan; Schlaf, Rudy [Department of Electrical Engineering, University of South Florida, Tampa, Fl 33620 (United States); Goswami, D. Yogi [NASA Glenn Research Center, Research and Technology Directorate, MS 302-1, 21000 Brookpark Road, Cleveland, OH 44135 (United States)

    2014-08-01

    Well-aligned native zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) films were deposited on borosilicate glass via a simple, low-cost, low-temperature, scalable hydrothermal process. The as-synthesized ZnO and Ag-ZnO films were characterized by X-ray diffraction; scanning electron microscopy, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. A simple photolytic reactor was fabricated and later used to find the optimum experimental conditions for photocatalytic performance. The photodegradation of methyl orange in water was investigated using as-prepared ZnO and Ag-ZnO nanowires, and was compared to P25 (a commercial photocatalyst) in both visible and UV radiations. The P25 and Ag-ZnO showed a similar photodegradation performance under UV light, but Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. The optimized doping of Ag in Ag-ZnO enhanced photocatalytic activity in a simple reactor design and indicated potential applicability of Ag-ZnO for large-scale purification of water under solar irradiation. - Highlights: • Well-aligned zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) nanowires were developed. • Simple and effective photolytic reactor was fabricated for water purification. • Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. • Amount of Ag atoms in Ag-ZnO nanowires is a key to increase photocatalytic activity.

  2. A simple photolytic reactor employing Ag-doped ZnO nanowires for water purification

    International Nuclear Information System (INIS)

    Udom, Innocent; Zhang, Yangyang; Ram, Manoj K.; Stefanakos, Elias K.; Hepp, Aloysius F.; Elzein, Radwan; Schlaf, Rudy; Goswami, D. Yogi

    2014-01-01

    Well-aligned native zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) films were deposited on borosilicate glass via a simple, low-cost, low-temperature, scalable hydrothermal process. The as-synthesized ZnO and Ag-ZnO films were characterized by X-ray diffraction; scanning electron microscopy, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. A simple photolytic reactor was fabricated and later used to find the optimum experimental conditions for photocatalytic performance. The photodegradation of methyl orange in water was investigated using as-prepared ZnO and Ag-ZnO nanowires, and was compared to P25 (a commercial photocatalyst) in both visible and UV radiations. The P25 and Ag-ZnO showed a similar photodegradation performance under UV light, but Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. The optimized doping of Ag in Ag-ZnO enhanced photocatalytic activity in a simple reactor design and indicated potential applicability of Ag-ZnO for large-scale purification of water under solar irradiation. - Highlights: • Well-aligned zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) nanowires were developed. • Simple and effective photolytic reactor was fabricated for water purification. • Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. • Amount of Ag atoms in Ag-ZnO nanowires is a key to increase photocatalytic activity

  3. Sulfur isotopes of host strata for Howards Pass (Yukon–Northwest Territories) Zn-Pb deposits implicate anaerobic oxidation of methane, not basin stagnation

    Science.gov (United States)

    Johnson, Craig A.; Slack, John F.; Dumoulin, Julie A.; Kelley, Karen Duttweiler; Falck, Hendrik

    2018-01-01

    A new sulfur isotope stratigraphic profile has been developed for Ordovician-Silurian mudstones that host the Howards Pass Zn-Pb deposits (Canada) in an attempt to reconcile the traditional model of a stagnant euxinic basin setting with new contradictory findings. Our analyses of pyrite confirm the up-section 34S enrichment reported previously, but additional observations show parallel depletion of carbonate 13C, an increase in organic carbon weight percent, and a change in pyrite morphology. Taken together, the data suggest that the 34S enrichment reflects a transition in the mechanism of pyrite formation during diagenesis, not isotopic evolution of a stagnant water mass. Low in the stratigraphic section, pyrite formed mainly in the sulfate reduction zone in association with organic matter–driven bacterial sulfate reduction. In contrast, starting just below the Zn-Pb mineralized horizon, pyrite formed increasingly within the sulfate-methane transition zone in association with anaerobic oxidation of methane. Our new insights on diagenesis have implications for (1) the setting of Zn-Pb ore formation, (2) the reliability of redox proxies involving metals, and (3) the source of ore sulfur for Howards Pass, and potentially for other stratiform Zn-Pb deposits contained in carbonaceous strata.

  4. Manipulation of surface morphology of flower-like Ag/ZnO nanorods to enhance photocatalytic performance

    Science.gov (United States)

    U-thaipan, Kasira; Tedsree, Karaked

    2018-06-01

    The surface morphology of flower-like Ag/ZnO nanorod can be manipulated by adopting different synthetic routes and also loading different levels of Ag in order to alter their surface structures to achieve the maximum photocatalytic efficiency. In a single-step preparation method Ag/ZnO was prepared by heating directly a mixture of Zn2+ and Ag+ precursors in an aqueous NaOH-ethylene glycol solution, while in the two-step preparation method an intermediate of flower-shaped ZnO nanorod was obtained by a hydrothermal process before depositing Ag particles on the ZnO surfaces by chemical reduction. The structure, morphology and optical properties of the synthesized samples were characterized using TEM, SEM, XRD, DRS and PL techniques. The sample prepared by single-step method are characterized with agglomeration of Ag atoms as clusters on the surface of ZnO, whereas in the sample prepared by two-step method Ag atoms are found uniformly dispersed and deposited as discrete Ag nanoparticles on the surface of ZnO. A significant enhancement in the adsorption of visible light was evident for Ag/ZnO samples prepared by two-step method especially with low Ag content (0.5 mol%). The flower-like Ag/ZnO nanorod prepared with 0.5 mol% Ag by two-step process was found to be the most efficient photocatalyst for the degradation of phenol, which can decompose 90% of phenol within 120 min.

  5. The Optical and Electrical Properties of ZnO/Ag/ZnO Films on Flexible Substrate

    Science.gov (United States)

    Yu, Xiaojing; Zhang, Dongyan; Wang, Pangpang; Murakami, Ri-Ichi; Ding, Bingjun; Song, Xiaoping

    The deposition of ZnO/Ag/ZnO film on polyethylene terephthalate (PET) substrate was fabricated by DC magnetron sputtering method. The thicknesses of ZnO layers were 30 nm and Ag films' thicknesses were changed from 1 nm to 6 nm by controlled the sputtering time. This kind of film can be used as transparent conductive oxide (TCO) materials. The electrical and optical properties of composite layers were determined by Ag films. The optimum sputtering time of Ag thin films was found to be 20 s for the high optical transmittance with good electrical conductivity. The ZnO/Ag(20 s)/ZnO layer, which has high optical transmittance of 73% at 550 nm, shows sheet resistance as low as 6.7 ohm/sq. These multilayer transparent films had low electrical resistance as the widely used transparent conductive oxide electrodes. SEM, XRD, the UV-Vis-NIR and Hall Effect measurement system were used to characterize properties of fabricated films. The reasons for the change of transmittance and resistance will also be interpreted.

  6. Thermal-induced SPR tuning of Ag-ZnO nanocomposite thin film for plasmonic applications

    Science.gov (United States)

    Singh, S. K.; Singhal, R.

    2018-05-01

    The formation of silver (Ag) nanoparticles in a ZnO matrix were successfully synthesized by RF-magnetron sputtering at room temperature. As prepared Ag-ZnO nanocomposite (NCs) thin films were annealed in vacuum at three different temperatures of 300 °C, 400 °C and 500 °C, respectively. The structural modifications for as-deposited and annealed films were estimated by X-ray diffraction and TEM techniques. The crystalline behavior preferably along the c-axis of the hexagonal wurtzite structure was observed in as-deposited Ag-ZnO film and improved significantly with increasing the annealing temperature. The crystallite size of as-deposited film was measured to be 13.6 nm, and increases up to 28.5 nm at higher temperatures. The chemical composition and surface structure of the as-deposited films were estimated by X-ray photoelectron spectroscopy. The presence of Ag nanoparticles with average size of 8.2 ± 0.2 nm, was confirmed by transmission electron microscopy. The strong surface plasmon resonance (SPR) band was observed at the wavelength of ∼565 nm for as-deposited film and a remarkable red shift of ∼22 nm was recorded after the annealing treatment as confirmed by UV-visible spectroscopy. Atomic force microscopy confirmed the grain growth from 60.38 nm to 79.42 nm for as-deposited and higher temperature annealed film respectively, with no significant change in the surface roughness. Thermal induced modifications such as disordering and lattice defects in Ag-ZnO NCs thin films were carried out by Raman spectroscopy. High quality Ag-ZnO NCs thin films with minimum strain and tunable optical properties could be useful in various plasmonic applications.

  7. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    Science.gov (United States)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho

  8. Fabrication of Ag/ZnO heterostructure and the role of surface coverage of ZnO microrods by Ag nanoparticles on the photophysical and photocatalytic properties of the metal-semiconductor system

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Bikash; Sarma, Bimal K., E-mail: sarmabimal@gmail.com

    2017-07-15

    Highlights: • Fabrication of Ag/ZnO heterostructure by facile chemical processes. • Decoration of plasmonic Ag nanoparticles on ZnO microrods through direct attachment. • Quenching of photoluminescence is observed in Ag/ZnO heterostructure. • Extent of surface coverage governs photophysical and photochemical properties. - Abstract: This report presents findings on microstructural, photophysical, and photocatalytic properties of Ag/ZnO heterostructure grown on flexible and silicon substrates. ZnO microrods are prepared by thermal decomposition method for different solute concentrations and Ag/ZnO heterostructure are fabricated by photo-deposition of Ag nanoparticles on ZnO microrods. X-ray diffraction and electron microscopy studies confirm that ZnO microrods belong to the hexagonal wurtzite structure and grown along [001] direction with random alignment showing that majority microrods are aligned with (100) face parallel to the sample surface. Plasmonic Ag nanoparticles are attached to different faces of ZnO. In the optical reflection spectra of Ag/ZnO heterostructure, the surface plasmon resonance peak due to Ag nanoparticles appears at 445 nm. Due to the oxygen vacancies the band gaps of ZnO microrods turn out to be narrower compared to that of bulk ZnO. The presence of Ag nanoparticles decreases the photoluminescence intensity which might be attributed to the non-radiative energy and direct electron transfer in the plasmon–exciton system. The quenching of photoluminescence in Ag/ZnO heterostructure at different growth conditions depend on the extent of surface coverage of ZnO by plasmonic Ag nanoparticles. Photocatalytic degradation efficiency of Ag/ZnO heterostructure is higher than that of ZnO microrods. The extent of surface coverage of ZnO microrods by Ag nanoparticles is crucial for the observed changes in photophysical and photochemical properties.

  9. Stable and metastable phases in reciprocal systems PbSe + Ag2I2 Ag2Se + PbI2 and PbSe + CdI2 = CdSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Safronov, E.V.

    2005-01-01

    Mutual system PbSe + Ag 2 I 2 = Ag 2 Se + PbI 2 is investigated. It is shown that diagonal Ag 2 Se-PbI 2 is stable. Liquidus surface and isothermal section at 633 K of phase diagram of PbSe-Ag 2 Se-PbI 2 system are built. Transformations directing to crystallization metastable ternary compound forming in PbSe-PbI 2 system and metastable polytype modifications of lead iodide in PbSe-Ag 2 Se-PbI 2 system at 620-685 K are studied. By hardening from molten state (1150-1220 K) new interstitial metastable phases crystallizing in CdCl 2 structural type are obtained in PbSe-Ag 2 Se-PbI 2 and PbSe + CdI 2 = CdSe + PbI 2 systems [ru

  10. Mobilisation of heavy metals and arsenic by acid mine drainage in polluted sites of the Ag-Pb-Zn deposit near Wiesloch; Mobilisierbarkeit von Schwermetallen und Arsen durch saure Grubenabwaesser in Bergbaualtlasten der Ag-Pb-Zn-Lagerstaette in Wiesloch

    Energy Technology Data Exchange (ETDEWEB)

    Kappes, B.A.

    2000-07-01

    2000 years of small scale Ag-Pb-Zn mining has created a legacy of potentially hazardous waste material in Wiesloch. The objective of our study is to investigate the processes to identify the that might lead to a mobilisation of heavy metals and arsenic and their fate at this specific site. The objective of this study is: a) to examine in more detail the chemical and mineralogical composition of ore, dressing and slag material and b) to compare the heavy metal release potential to toxic elements of primary ore versus processing material if subjected to weathering. Three depth profiles due to drilling-operations retrieved mineralogical, chemical and physical data. The three most important pollutants are primary ore, dressing residue and slag. Apart from a chemical characterisation of these materials in order to establish the heavy metal and arsenic content field and laboratory experiments simulated worst case weathering conditions. Elution experiments demonstrated that heavy metal release is very much pH-dependent. The highest release potential was observed in flotation material from the dressing residue whereas primary ore and slag material released 10 times fewer heavy metals and arsenic. (orig.)

  11. Fractal structures in two-metal electrodeposition systems I: Pb and Zn

    International Nuclear Information System (INIS)

    Nakouzi, Elias; Sultan, Rabih

    2011-01-01

    Pattern formation in two-metal electrochemical deposition has been scarcely explored in the chemical literature. In this paper, we report new experiments on zinc-lead fractal co-deposition. Electrodeposits are grown in special cells at a fixed large value of the zinc ion concentration, while that of the lead ion is increased gradually. A very wide diversity of morphologies are obtained and classified. Most of the deposited domains are almost exclusively Pb or Zn. But certain regions originating at the base cathode, ranging from a short grass alley to dense, grown-up bushes or shrubs, manifest a combined Pb-Zn composition. Composition is determined using scanning electron microscopy/energy dispersive x ray measurements as well atomic absorption spectroscopy. Pb domains are characterized by shiny leaf-like and dense deposits as well as flowers with round, balloon-like corollas. The Zn zones display a greater variety of morphologies such as thick trunks and thin and fine branching, in addition to minute ''cigar flower'' structures. The various morphologies are analyzed and classified from the viewpoint of fractal nature, characterized by the box-count fractal dimension. Finally, macroscopic spatial alternation between two different characteristic morphologies is observed under certain conditions.

  12. Effect of mesh patterning with UV pulsed-laser on optical and electrical properties of ZnO/Ag-Ti thin films

    International Nuclear Information System (INIS)

    Kao, K.S.; Cheng, D.L.; Chang, S.H.; Hsieh, P.T.; Chin, H.S.; Lin, H.K.

    2010-01-01

    In this study, the ZnO/Ag-Ti structure for transparence conducting oxide (TCO) is investigated by optimizing the thickness of the Ag-Ti alloy and ZnO layers. The Ag-Ti thin film is deposited by DC magnetron sputtering and its thicknesses is well controlled. The ZnO thin film is prepared by sol-gel method using zinc acetate as cation source, 2-methoxiethanol as solvent and monoethanolamine as solution stabilizer. The ZnO film deposition is performed by spin-coating technique and dried at 150 deg. C on Corning 1737 glass. Due to the conductivity of ZnO/Ag-Ti is dominated by Ag-Ti, the sheet resistance of ZnO/Ag-Ti decrease dramatically as the thickness of Ag-Ti layer increases. However, the transmittances of ZnO/Ag-Ti become unacceptable for TCO application after the thickness of Ag-Ti layer beyond 6 nm. The as-deposited ZnO/Ag-Ti structure has the optical transmittance of 83% - 500 nm and the low resistivity of 1.2 x 10 -5 Ω-cm. Furthermore, for improving the optical and electrical properties of ZnO/Ag-Ti, the thermal treatment using laser is adopted. Experimental results indicate that the transmittance of ZnO/Ag-Ti is improved from 83% to 89% - 500 nm with resistivity of 1.02 x 10 -5 Ω-cm after laser drilling. The optical spectrum, the resistance, and the morphology of the ZnO/Ag-Ti will be reported in the study.

  13. ZnO nanorods arrays with Ag nanoparticles on the (002) plane derived by liquid epitaxy growth and electrodeposition process

    International Nuclear Information System (INIS)

    Yin Xingtian; Que Wenxiu; Shen Fengyu

    2011-01-01

    Well-aligned ZnO nanorods (NRs) arrays with Ag nanoparticles (NPs) on the (002) plane are obtained by combining a liquid epitaxy technique with an electrodeposition process. Cyclic voltammetry study is employed to understand the electrochemical behaviors of the electrodeposition system, and potentiostatic method is employed to deposit silver NPs on the ZnO NRs in the electrolyte with an Ag + concentration of 1 mM. X-ray diffraction analysis is used to study the crystalline properties of the as-prepared samples, and energy dispersive X-ray is adopted to confirm the composition at the surface of the deposited samples. Results indicate only a small quantity of silver can be deposited on the surface of the samples. Effect of the deposition potential and time on the morphological properties of the resultant Ag NPs/ZnO NRs are investigated in detail. Scanning electron microscopy images and transmission electron microscopy images indicate that the Ag NPs deposited on the (002) plane of the ZnO NRs with a large dispersion in diameter can be obtained by a single potentiostatic deposition process, while dense Ag NPs with a much smaller diameter dispersion on the top of the ZnO NRs, most of which locate on the conical tip of the ZnO NRs, can be obtained by a two-potentiostatic deposition process, The mechanism of this deposition process is also suggested.

  14. pplication of Fractal Technique for Analysis of Geophysical - Geochemical Databases in Tekieh Pb-Zn Ore Deposit (SE of Arak

    Directory of Open Access Journals (Sweden)

    Seyed Reza Mehrnia

    2017-02-01

    Full Text Available Introduction Tekieh Lead-Zinc ore deposit that is located in the Sanandaj-Sirjan structural zone has been recognized as one of the most important mineralized regions in Malayer-Isfahan metallogenic sub-state, south east of Arak (Momenzadeh and Ziseman, 1981. Carbonate host units have been developed along (or across the Vishan-Tekieh anticline as the main structure extended in NW-SE trends (Annells et al, 1985. According to geochemical investigations (Salehi, 2004, the element content of the mineralized regions has originated from Alpine post-volcanisms and subsequently it has migrated toward early Cretaceous formations (dolomitic limestones among several hypogenic stages (Torkashvand et a.2009. Also echelon type structures consisting of folded systems and inversed faulting of structures are the most common features in western and eastern parts of ore deposit regions (Annells et al, 1985. Syngenetic enrichments beside limited (rarely developed epigenetic mineralization have been known as two main phases which are closely relevant to ore forming processes in the massive lenses and vein type occurrences, respectively (Momenzadeh and Ziseman, 1981. Material and Methods In this research, two statistical techniques that consist of classical and fractal equations (Mandelbrot, 2005 were applied in geochemical (Torkashvand et al., 2009 and geophysical (Jafari, 2007 databases for obtaining the linear and nonlinear distributions of geochemical elements (Tekieh Pb-Zn content in association with resistivity variations and induction polarization measurements (Calagari, 2010. According to linear statistical techniques (Torkashvand et al., 2009, the main central parameters such as mean, median and mode in addition to variances and standard deviations as distribution tendencies could be used for obtaining the regression coefficients of the databases. However, in fractal statistics, a reliable regression between geoelectrical - geochemical anomalies should be

  15. Study on the electrical and optical properties of Ag/Al-doped ZnO coatings deposited by electron beam evaporation

    International Nuclear Information System (INIS)

    Sahu, D.R.; Lin, S.-Y.; Huang, J.-L.

    2007-01-01

    A layer of silver was deposited onto the surface of glass substrates, coated with AZO (Al-doped ZnO), to form Ag/AZO film structures, using e-beam evaporation techniques. The electrical and optical properties of AZO, Ag and Ag/AZO film structures were studied. The deposition of Ag layer on the surface of AZO films resulted in lowering the effective electrical resistivity with a slight reduction of their optical transmittance. Ag (11 nm)/AZO (25 nm) film structure, with an accuracy of ±0.5 nm for the thickness shows a sheet resistance as low as 5.6 ± 0.5 Ω/sq and a transmittance of about 66 ± 2%. A coating consisting of AZO (25 nm)/Ag (11 nm)/AZO (25 nm) trilayer structure, exhibits a resistance of 7.7 ± 0.5 Ω/sq and a high transmittance of 85 ± 2%. The coatings have satisfactory properties of low resistance, high transmittance and highest figure of merit for application in optoelectronics devices including flat displays, thin films transistors and solar cells as transparent conductive electrodes

  16. Impact of shallowly deposited ore-bearing dolomites on local soil pollution aureoles of As, Cd, Pb, and Zn in an old mining area

    Energy Technology Data Exchange (ETDEWEB)

    Fabijanczyk, Piotr; Zawadzki, Jaroslaw [Warsaw Univ. of Technology (Poland). Environmental Engineering Faculty

    2012-10-15

    The study area, located in Upper Silesian Industrial Region, was rich in significant amounts of ores that were classified of Mississippi Valley type. Being these ores especially rich in Pb and Zn, an intense development of mining and ore extraction industry was verified in this area. The goal of this study was to investigate how local pollution aureoles of As, Cd, Pb, and Zn were influenced by the presence of shallowly deposited ore-bearing dolomites. Very extensive sampling campaign was carried out, and over 1,000 samples were collected in the area of about 150 km{sup 2}. Local aureoles of investigated metals were calculated for two soil layers. The first one covered the part of soil core from the soil surface to the depth of 20 cm and the second one from the depth of 40 cm to the depth of 60 cm. All spatial distributions of particular metals in soil were calculated by means of ordinary kriging using free softwares QGIS and SAGA. Maximum concentrations of Pb and Zn in soil in study area were very high, reaching over 24,000 and 77,000 mg/kg, respectively. Maximum concentrations of As and Cd were also very high, reaching about 1,000 mg/kg. Those maximum values were observed in the direct vicinity of the Boles?aw mine and its mine dumps. Almost all local aureoles were located within the range of ore-bearing dolomites. It was especially visible for Pb and Zn, minerals very common in ore deposits. Otherwise, local aureoles of As and Cd were more related with the vicinity of mines and other pollution sources, being more associated to the anthropogenic pollution than to the presence of ore-bearing dolomites. The aureoles of Pb and Zn, and in moderate degree of As, were associated with a mineral composition of ores. Differently, the location, the shape, and spatial pattern of Cd aureoles suggest that they were mostly influenced by anthropogenic pollution. Anthropogenic factors were dominating over the lithogenic ones and masking the influence of the shallowly deposited

  17. [Stabilization Treatment of Pb and Zn in Contaminated Soils and Mechanism Studies].

    Science.gov (United States)

    Xie, Wei-qiang; Li, Xiao-mingi; Chen, Can; Chen, Xun-feng; Zhong, Yu; Zhong, Zhen-yu; Wan, Yong; Wang, Yan

    2015-12-01

    In the present work, the combined application of potassium dihydrogen phosphate, quick lime and potassium chloride was used to immobilize the Pb and Zn in contaminated soils. The efficiency of the process was evaluated through leaching tests and Tessier sequential extraction procedure. The mechanism of stabilization was analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to reveal the mechanism of stabilization. The results showed that the stabilizing efficiency of Pb contaminated soils was above 80% and the leaching concentrations of Pb, Zn were far below the threshold when the ratio of exogenous P and soil (mol · mol⁻¹) was 2:1-4: 1, the dosing ratio of CaO was 0.1%-0.5% ( mass fraction) and the dosage of potassium chloride was 0.02-0. 04 mol. Meanwhile, Pb and Zn in soil were transformed from the exchangeable fraction into residual fraction, which implied that the migration of Pb, Zn in soil could be confined by the stabilization treatment. XRD and SEM analysis revealed that Ca-P-Pb precipitation, lead orthophosphate [PbHP0₄, Pb₃ (PO₄)₂], pyromorphite (Pb-PO₄-Cl/OH) and mixed heavy metal deposits (Fe-PO₄- Ca-Pb-Zn-OH) could be formed after solidification/stabilization in which Pb and Zn could be wrapped up to form a solidified composition and to prevent leaching.

  18. Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles

    International Nuclear Information System (INIS)

    Whang, Thou-Jen; Hsieh, Mu-Tao; Chen, Huang-Han

    2012-01-01

    The preparation of Ag doped ZnO nanoparticles conducted through the method of laser-induction is presented in this work. The Ag/ZnO nanoparticles attained from various weight percentages of added AgNO 3 relative to ZnO were applied under visible-light irradiation for evaluating the heterogeneous photocatalytic degradations of methylene blue (MB) solutions. It was shown that the catalytic behavior of Ag/ZnO nanoparticles in the visible-light range is notably improved through the Ag deposition onto ZnO nanoparticles by the method of laser-induction with a maximum effectiveness of 92% degradation. The properties of the nanoparticles were characterized by the employments of UV-vis spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and selected-area electron diffraction (SAED).

  19. Source contribution to the bulk atmospheric deposition of minor and trace elements in a Northern Spanish coastal urban area

    Science.gov (United States)

    Fernández-Olmo, Ignacio; Puente, Mariano; Montecalvo, Lucia; Irabien, Angel

    2014-08-01

    The bulk atmospheric deposition of the minor and trace elements As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Ti, V and Zn was investigated in Santander, a Northern Spanish coastal city. Bulk deposition samples were collected monthly for three years using a bottle/funnel device. Taking into account that heavy metals are bioavailable only in their soluble forms, water-soluble and water-insoluble fractions were evaluated separately for element concentration. The fluxes of the studied elements in the bulk deposition exhibited the following order: Zn > Mn ≫ Cu > Cr > Pb > V > Ni ≫ As > Mo > Cd. The fluxes of Zn and Mn were more than 10 times higher than those of the other elements, with maximum values of 554.5 and 334.1 μg m- 2 day- 1, respectively. Low solubilities (below 22%) were found for Cr, Ti and Pb, whereas the highest solubility was found for Zn (78%). With the exception of Cu, all of the studied metals in the water-soluble fraction of the atmospheric deposition showed seasonal dependence, due to the seasonal variability of precipitation. The enrichment factors (EFs) of Cu, Cd and Zn were higher than 100, indicating a clear anthropogenic origin. The EF of Mn (50) was below 100, but an exclusively industrial origin is suggested. Positive Matrix Factorisation (PMF) was used for the source apportionment of the studied minor and trace elements in the soluble fraction. Four factors were identified from PMF, and their chemical profiles were compared with those calculated from known sources that were previously identified in Santander Bay: two industrial sources, the first of which was characterised by Zn and Mn, which contributes 62.5% of the total deposition flux of the studied elements; a traffic source; and a maritime source. Zinc and Mn are considered to be the most characteristic pollutants of the studied area.

  20. Mineralogy, alteration patterns, geochemistry, and fluid properties of the Ag-Au epithermal deposit Nová Baňa, Slovakia

    Science.gov (United States)

    Majzlan, Juraj; Berkh, Khulan; Kiefer, Stefan; Koděra, Peter; Fallick, Anthony E.; Chovan, Martin; Bakos, František; Biroň, Adrián; Ferenc, Štefan; Lexa, Jaroslav

    2018-02-01

    In this contribution, we report new data on mineralogy, alteration patterns, geochemistry, fluid properties and source of fluids for the deposit Nová Baňa, one of the smaller epithermal deposits in the Middle Miocene Štiavnica andesite stratovolcano (Western Carpathians, Slovakia). Ore veins and the associated rocks were studied in samples from outcrops and old mines, grab samples, and bore holes from the central part of the deposit (ore structures Althandel, Jozef, Jakub, Vavrinec), northern part (Freischurf), SE part (Gupňa) and SW part (Šibeničný vrch). Pervasive hydrothermal alteration transformed the rock-forming minerals into a mixture of adularia and fine-grained quartz, with lesser amount of pyrite, Ti oxides and Fe oxides. This assemblage was further altered to omnipresent interstratified illite/smectite that was used in this study as a geothermometer, corroborating the results from the fluid inclusion work. Ore minerals comprise predominantly pyrite, sphalerite, galena but all sulfides are relatively sparse in the samples studied. Minerals of precious metals are electrum, Ag-tetrahedrite, acanthite, members of the polybasite-pearceite and pyrargyrite-proustite solid solution, and rare miargyrite, Hg-Ag tetrahedrite, and diaphorite. In the central part, we have found also some stibnite. In the SE part of the deposit, acanthite, uytenbogaardtite, and petrovskaite occur and seem to be related to supergene enrichment of the ores. In bulk ore samples, Zn usually dominates over Pb and Cu. The average Ag:Au ratio for the entire deposit is 64:1. The concentrations of precious metals in the grab samples reach maxima of 50 ppm Au and 570 ppm Ag in the SE part and 116 ppm Au and 1110 ppm Ag in the central part of the deposit. Fluid inclusions show signs of trapping of a heterogeneous fluid. In the central, northern and SE parts of the deposit, homogenization temperatures of 190-260 °C and consistently low salinities of minerals is recalculated to fluid

  1. Metals in bulk deposition and surface waters at two upland locations in northern England

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, A.J.; Tipping, E

    2003-02-01

    Surface water concentrations of potentially-toxic metals depend upon atmospheric deposition and catchment biogeochemical processes. - Concentrations of aluminium and minor metals (Mn, Ni, Cu, Zn, Sr, Cd, Ba, Pb) were measured in precipitation and surface water at two upland locations (Upper Duddon Valley, UDV; Great Dun Fell, GDF) in northern England for 1 year commencing April 1998. At both locations, the loads in bulk precipitation were at the lower ends of ranges reported for other rural and remote sites, for the period 1985-1995. The deposited metals were mostly in the dissolved form, and their concentrations tended to be greatest when rainfall volumes were low. The concentrations of Cu, Zn and Pb in deposition were correlated (r{sup 2}{>=}0.40) with concentrations of non-marine sulphate. Three streams, ranging in mean pH from 5.07 to 7.07, and with mean concentrations of dissolved organic carbon (DOC) <1 mg l{sup -1}, were monitored at UDV, and two pools (mean pH 4.89 and 6.83, mean DOC 22 and 15 mg l{sup -1}) at GDF. Aluminium and the minor metals were mainly in the dissolved form, and in the following ranges (means of 49-51 samples, {mu}g l{sup -1}): Al 36-530, Mn 4.4-36, Ni 0.26-2.8, Cu 0.25-1.7, Zn 2.1-30, Cd 0.03-0.16, Ba 1.9-140, Pb 0.10-4.5. Concentrations were generally higher at GDF. Differences in metal concentrations between the two locations and between waters at each location, and temporal variations in individual waters, can be explained qualitatively in terms of sorption to solid-phase soil organic matter and mineral surfaces, complexation and transport by DOC, and chemical weathering. The UDV catchments are sinks for Pb and sources of Al, Mn, Sr, Cd and Ba. The GDF catchments are sources of Al, Mn, Ni, Zn, Sr, Cd and Ba. Other metals measured at the two locations are approximately in balance. Comparison of metal:silicon ratios in the surface waters with values for silicate rocks indicates enrichment of Ni and Cu, and substantial enrichment of

  2. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties

    Science.gov (United States)

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-03-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.

  3. A salt diapir-related Mississippi Valley-type deposit: The Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: Fluid inclusion and isotope study

    Science.gov (United States)

    Bouhlel, Salah; Leach, David; Johnson, Craig A.; Marsh, Erin; Salmi-Laouar, Sihem; Banks, David A.

    2016-01-01

    The Bou Jaber Ba-F-Pb-Zn deposit is located at the edge of the Bou Jaber Triassic salt diapir in the Tunisia Salt Diapir Province. The ores are unconformity and fault-controlled and occur as subvertical column-shaped bodies developed in dissolution-collapse breccias and in cavities within the Late Aptian platform carbonate rocks, which are covered unconformably by impermeable shales and marls of the Fahdene Formation (Late Albian–Cenomanian age). The host rock is hydrothermally altered to ankerite proximal to and within the ore bodies. Quartz, as fine-grained bipyramidal crystals, formed during hydrothermal alteration of the host rocks. The ore mineral assemblage is composed of barite, fluorite, sphalerite, and galena in decreasing abundance. The ore zones outline distinct depositional events: sphalerite-galena, barite-ankerite, and fluorite. Fluid inclusions, commonly oil-rich, have distinct fluid salinities and homogenization temperatures for each of these events: sphalerite-galena (17 to 24 wt% NaCl eq., and Th from 112 to 136 °C); ankerite-barite (11 to 17 wt% NaCl eq., and Th from 100 to 130 °C); fluorite (19 to 21 wt% NaCl eq., Th from 140 to 165 °C). The mean temperature of the ore fluids decreased from sphalerite (125 °C) to barite (115 °C) and increased during fluorite deposition (152 °C); then decreased to ∼110 °C during late calcite precipitation. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of fluid inclusions in fluorite are metal rich (hundreds to thousands ppm Pb, Zn, Cu, Fe) but the inclusions in barite are deficient in Pb, Zn, Cu, Fe. Inclusions in fluorite have Cl/Br and Na/Br ratios of several thousand, consistent with dissolution of halite while the inclusions analysed in barite have values lower than seawater which are indicative of a Br-enriched brine derived from evaporation plus a component of halite dissolution. The salinity of the barite-hosted fluid inclusions is less than obtained

  4. Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag+ on stainless steel substrates

    International Nuclear Information System (INIS)

    Bir, F.; Khireddine, H.; Touati, A.; Sidane, D.; Yala, S.; Oudadesse, H.

    2012-01-01

    Fluoridated hydroxyapatite (FHA, Ca 10 (PO 4 ) 6 (OH) 2-x F x where 0 2+ , Cu 2+ , Ag + ) substituted fluoridated hydroxyapatite coatings (M-FHA) were deposited on the surface of medical grade 316L stainless steel samples by electrochemical deposition technique. The FHA coatings were co-substituted with antibacterial ions (Zn 2+ , Cu 2+ or Ag + ) by co-precipitation and ion-exchange methods. Characterization studies of coatings from X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDX) showed that the obtained layers are monophase crystals FHA and did not contain any discernible crystalline impurity. The particles of all samples are of nano size that gives thin layers. The surface morphology, microstructure and Ca/P atomic ratio of the FHA coatings can be regulated by varying electrolyte temperature. This later affects the porosity of the coating surface and the chemical compositions of the deposits. Quantitative elemental analysis indicates that the copper, zinc and silver ions are incorporated into the Fluorohydroxyapatite. The antimicrobial effects of doped fluorohydroxyapatite coatings against pathogen bacterial strains Staphylococcus aureus were tested in liquid media. The results are promising and demonstrated that all doped FHA samples exhibit excellent antimicrobial activity “in vitro” against the microorganism, so the antimicrobial properties of the coatings developed are improved.

  5. Nature and origin of the nonsulfide zinc deposits in the Sierra Mojada District, Coahuila, Mexico: constraints from regional geology, petrography, and isotope analyses

    Science.gov (United States)

    Kyle, J. Richard; Ahn, Hyein; Gilg, H. Albert

    2018-02-01

    The Sierra Mojada District comprises multiple types of near-surface mineral concentrations ranging from polymetallic sulfide zones, "nonsulfide Zn" (NSZ) deposits, and a silver-rich Pb carbonate deposit hosted by lower Cretaceous carbonate strata. Hypogene concentrations of Fe-Zn-Pb-Cu-Ag sulfides and sulfosalts are locally preserved and are associated with hydrothermal dolomite and silica. Alteration mineralogy and sulfur isotope data suggest primary Zn-Pb-Ag mineralization from circa 200 °C hydrothermal fluids. The NSZ deposits dominantly consist of smithsonite and hemimorphite associated with local Mn-Fe oxides. The Red Zinc Zone consists of strata-bound zones dominantly of hemimorphite that fills pores in residual and resedimented Fe oxides. The White Zinc Zone shows local dissolution features, including internal sediments interbanded with and cemented by smithsonite. Similar Pb isotopic compositions of smithsonite, hemimorphite, and cerussite to Sierra Mojada galena document that the NSZ deposits originated from polymetallic carbonate-replacement sulfide deposits, with flow of metal-bearing groundwater being controlled by local topography and structural features in this extensional terrane. Oxygen isotope values for Sierra Mojada smithsonite are relatively constant (δ18OVSMOW = 20.9 to 23.3‰) but are unusually low compared to other supergene smithsonites. Using δ18OVSMOW (- 8‰) of modern groundwater at nearby Cuatrociénegas, smithsonite formational temperatures are calculated to have been between 26 to 35 °C. Smithsonite precipitation was favored by near-neutral conditions typical of carbonate terranes, whereas hemimorphite precipitated by reaction with wallrock silica and locally, or episodically, more acidic conditions resulting from sulfide oxidation. Transition to, and stabilization of, the modern desert climate over the past 9000 years from the Late Pleistocene wetter, cooler climate of northern Mexico resulted in episodic drawdown of the water

  6. Ag/ZnO hybrid systems studied with scanning tunnelling microscopy-based luminescence spectroscopy

    International Nuclear Information System (INIS)

    Pascua, Leandro; Freund, Hans-Joachim; Stavale, Fernando; Nilius, Niklas

    2016-01-01

    Coupled metal/oxide systems are prepared by depositing and embedding Ag nanoparticles into crystalline ZnO films grown on Au(111) supports. The morphology and optical properties of the compounds are investigated by topographic imaging and luminescence spectroscopy performed in a scanning tunnelling microscope (STM). The luminescence of bare ZnO is governed by the band-recombination and a Zn-vacancy related peak. After Ag deposition, two additional maxima are detected that are assigned to the in-plane and out-of-plane plasmon in Ag nanoparticles and have energies below and slightly above the oxide band-gap, respectively. Upon coating the particles with additional ZnO, the out-of-plane plasmon redshifts and loses intensity, indicating strong coupling to the oxide electronic system, while the in-plane mode broadens but remains detectable. The original situation can be restored by gently heating the sample, which drives the silver back to the surface. However, the optical response of pristine ZnO is not recovered even after silver evaporation at high temperature. Small discrepancies are explained with changes in the ZnO defect landscape, e.g., due to silver incorporation. Our experiments demonstrate how energy-transfer processes can be investigated in well-defined metal/oxide systems by means of STM-based spectroscopic techniques.

  7. Ag/ZnO hybrid systems studied with scanning tunnelling microscopy-based luminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pascua, Leandro; Freund, Hans-Joachim [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Stavale, Fernando [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Centro Brasileiro de Pesquisas Físicas - CBPF/MCTI, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Nilius, Niklas, E-mail: niklas.nilius@uni-oldenburg.de [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany)

    2016-03-07

    Coupled metal/oxide systems are prepared by depositing and embedding Ag nanoparticles into crystalline ZnO films grown on Au(111) supports. The morphology and optical properties of the compounds are investigated by topographic imaging and luminescence spectroscopy performed in a scanning tunnelling microscope (STM). The luminescence of bare ZnO is governed by the band-recombination and a Zn-vacancy related peak. After Ag deposition, two additional maxima are detected that are assigned to the in-plane and out-of-plane plasmon in Ag nanoparticles and have energies below and slightly above the oxide band-gap, respectively. Upon coating the particles with additional ZnO, the out-of-plane plasmon redshifts and loses intensity, indicating strong coupling to the oxide electronic system, while the in-plane mode broadens but remains detectable. The original situation can be restored by gently heating the sample, which drives the silver back to the surface. However, the optical response of pristine ZnO is not recovered even after silver evaporation at high temperature. Small discrepancies are explained with changes in the ZnO defect landscape, e.g., due to silver incorporation. Our experiments demonstrate how energy-transfer processes can be investigated in well-defined metal/oxide systems by means of STM-based spectroscopic techniques.

  8. The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Sohrabnezhad, Sh.; Seifi, A.

    2016-01-01

    Highlights: • Ag/ZnO was loaded in MMT support by green synthesis method. • MMT support increased absorption of dye and separation of electron-hole in ZnO. • Ag nanoparticles improved photocatalytic properties of ZnO-MMT. • The particles size of Ag in ZnO-MMT was 2–4 nm. • In contrast ZnO-MMT, Ag/ZnO-MMT was a visible light driven photocatalyst. - Abstract: The Ag/ZnO-MMT nanocomposite was prepared using urtica dioica leaf extract. To improve the photocatalytic properties of ZnO-MMT nanocomposite, silver metal nanoparticles was deposited over nanocomposite. Zn(CH 3 COO) 2 , AgNO 3 and Urtica dioica leaf extract were used as a zinc, silver precursor and reducing agent, respectively. The nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed that Ag/ZnO nanoparticles located on the surface MMT layers. The diffuse reflectance spectra of nanocomposite indicated a strong surface plasmon resonance (SPR) absorption band in the visible region, resulting from metallic Ag nanoparticles. TEM image demonstrated the presence of silver nanoparticles with an average size of 2–4 nm over both MMT and flower-shape ZnO. The photocatalytic activity of nanocomposite was studied for destructive reaction methylene blue dye under visible light. In addition, the effects of different parameters such as amount of nanocomposite, concentration of the dye and pH of the solution were studied. The results showed that modiffication of ZnO-MMT nanocomposite with silver nanoparticles increased the percentage of discoloration methylene blue (MB) from 38.95 to 91.95. MMT matrix showed an important role in the reduction of recombination of electron-hole in nanocomposite.

  9. The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabnezhad, Sh., E-mail: sohrabnezhad@guilan.ac.ir; Seifi, A.

    2016-11-15

    Highlights: • Ag/ZnO was loaded in MMT support by green synthesis method. • MMT support increased absorption of dye and separation of electron-hole in ZnO. • Ag nanoparticles improved photocatalytic properties of ZnO-MMT. • The particles size of Ag in ZnO-MMT was 2–4 nm. • In contrast ZnO-MMT, Ag/ZnO-MMT was a visible light driven photocatalyst. - Abstract: The Ag/ZnO-MMT nanocomposite was prepared using urtica dioica leaf extract. To improve the photocatalytic properties of ZnO-MMT nanocomposite, silver metal nanoparticles was deposited over nanocomposite. Zn(CH{sub 3}COO){sub 2}, AgNO{sub 3} and Urtica dioica leaf extract were used as a zinc, silver precursor and reducing agent, respectively. The nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed that Ag/ZnO nanoparticles located on the surface MMT layers. The diffuse reflectance spectra of nanocomposite indicated a strong surface plasmon resonance (SPR) absorption band in the visible region, resulting from metallic Ag nanoparticles. TEM image demonstrated the presence of silver nanoparticles with an average size of 2–4 nm over both MMT and flower-shape ZnO. The photocatalytic activity of nanocomposite was studied for destructive reaction methylene blue dye under visible light. In addition, the effects of different parameters such as amount of nanocomposite, concentration of the dye and pH of the solution were studied. The results showed that modiffication of ZnO-MMT nanocomposite with silver nanoparticles increased the percentage of discoloration methylene blue (MB) from 38.95 to 91.95. MMT matrix showed an important role in the reduction of recombination of electron-hole in nanocomposite.

  10. Structural, optical and electrical characterization of Ag doped lead chalcogenide (PbSe) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, A.A., E-mail: aghamdi90@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al-Heniti, S. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Khan, Shamshad A. [Department of Physics, St. Andrew' s College, Gorakhpur, UP (India)

    2013-03-15

    Research and development efforts are currently underway to fabricate a variety of solid state devices. A good deal of information regarding the synthesis, structural, optical and electrical properties of Ag doped lead chalcogenides have been revealed. The bulk polycrystalline (PbSe){sub 100-x}Ag{sub x} ternary chalcogenides are prepared by diffusion technique. The XRD patterns recorded for the (PbSe){sub 100-x}Ag{sub x} thin films prepared by vacuum deposition technique, show that these films are polycrystalline in nature. The optical measurements reveal that the (PbSe){sub 100-x}Ag{sub x} thin films possess direct band gap and the band gap energy decreases with an increase of Ag concentration. The extinction coefficient (k) and refractive index (n) are found to be changing by increasing Ag concentration in PbSe. These results are interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. The dc conductivities of (PbSe){sub 100-x}Ag{sub x} thin films are measured in temperature range 303-403 K. It is observed that the dc conductivity increases at all the temperatures with an increase of Ag content in PbSe system. The experimental data suggests that the conduction is due to thermally assisted tunneling of the charge carriers in the localized states near the band edges. The activation energy and optical band gap are found to decrease with increasing Ag concentration in lead chalcogenide and there are good agreements between these two values. - Highlights: Black-Right-Pointing-Pointer (PbSe){sub 100-x}Ag{sub x} thin films has been investigated. Black-Right-Pointing-Pointer Polycrystalline nature has been verified by X-ray diffraction. Black-Right-Pointing-Pointer Optical absorption data showed the rules of direct transitions predominate. Black-Right-Pointing-Pointer Dc conductivity increases with an increase of Ag content in PbSe system. Black-Right-Pointing-Pointer Increase of Ag concentration causes a decrease in E{sub g

  11. Facile synthesis of the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaohua [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China); School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Su, Shuai; Wu, Guangli; Li, Caizhu [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Qin, Zhe [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China); Lou, Xiangdong [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Zhou, Jianguo, E-mail: zhoujgwj@163.com [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China)

    2017-06-01

    Highlights: • Flower-like Ag/ZnO encapsulating carbon spheres (Ag/ZnO@C) was synthesized. • A green facile synthesis method was used. • Ag/ZnO@C exhibited better photocatalytic performance than Ag/ZnO, ZnO@C, and ZnO. • Dye and metronidazole both can be decomposed by Ag/ZnO@C. - Abstract: To utilize sunlight more effectively in photocatalytic reactions, the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres (Ag/ZnO@C) was successfully synthesized by a green and facile one-pot hydrothermal method. The carbon spheres (CSs) were wrapped by ZnO nanosheets, forming flower-like microstructures, and Ag nanoparticles (Ag NPs) were deposited on the surface of the ZnO nanosheets. The Ag/ZnO@C ternary heterostructure exhibited enhanced photocatalytic activity compared to those of Ag/ZnO, ZnO@C and pure ZnO for the degradation of Reactive Black GR and metronidazole under sunlight and visible light irradiation. This was attributed to the enhanced visible light absorption and effective charge separation based on the synergistic effect of ZnO, Ag NPs, and CSs. Due to the surface plasmon resonance effect of Ag NPs and surface photosensitizing effect of CSs, Ag/ZnO@C exhibited enhanced visible light absorption. Meanwhile, Ag NPs and CSs can both act as rapid electron transfer units to improve the separation of photogenerated charge carriers in Ag/ZnO@C. The primary active species were determined, and the photocatalytic mechanism was proposed. This work demonstrates an effective way to improve the photocatalytic performance of ZnO and provides information for the facile synthesis of noble metal/ZnO@C ternary heterostructure.

  12. Annealing impact on the structural and photoluminescence properties of ZnO thin films on Ag substrates

    International Nuclear Information System (INIS)

    Xu, Linhua; Zheng, Gaige; Lai, Min; Pei, Shixin

    2014-01-01

    Graphical abstract: The Gaussian fitting indicates that the PL spectra of the ZnO thin films include four emission peaks which are centered at 380, 520, 570 and 610 nm, respectively. The ZnO thin film deposited on an Ag substrate shows a stronger green emission and a weaker UV emission than the ZnO thin film directly deposited on a Si substrate annealed at 400 °C. With the rise of annealing temperature, the visible emission intensity and wavelength are largely changed. Highlights: • ZnO thin films have been prepared on Ag substrates by sol–gel method. • The Ag substrates have a great effect on the photoluminescence of ZnO thin films. • All the films exhibit three visible emission bands including green, yellow and red. • Annealing causes a large change of the visible emission intensity and wavelength. -- Abstract: In this work, ZnO thin films were prepared by sol–gel method on Ag substrates. The structural and optical properties of the films annealed at different temperatures were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence, respectively. The results of XRD showed that all the ZnO thin films had a wurtzite phase and were preferentially oriented along the c-axis direction. The sample annealed at 400 °C exhibited better crystalline quality than the ZnO thin film directly deposited on a Si substrate annealed at the same temperature. The photoluminescence spectra showed that ZnO thin films had an ultraviolet emission band and three visible emission bands including green, yellow and red band. The sample annealed at 400 °C exhibited a stronger green emission and a weaker ultraviolet emission compared with the ZnO thin film deposited on a Si substrate annealed at the same temperature. The difference of the luminescence properties was thought to be originated from different substrates. As for the ZnO films on Ag substrates, the increase of annealing temperature led to different changes of visible emissions

  13. Photoluminescence study of ZnS and ZnS:Pb nanoparticles

    International Nuclear Information System (INIS)

    Virpal,; Hastir, Anita; Kaur, Jasmeet; Singh, Gurpreet; Singh, Ravi Chand

    2015-01-01

    Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered at 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states

  14. Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region

    International Nuclear Information System (INIS)

    Ren, Shoutian; Wang, Yingying; Wang, Benyang; Wang, Qiang; Zhao, Guoliang

    2015-01-01

    Sandwiched ZnO@Ag@Cu 2 O nanorod films were synthesized by successive electrodeposition, magnetron sputtering and the second electrodeposition. The as-synthesized composites were characterized by x-ray diffraction patterns, field emission scanning electron microscopy, low- and high-resolution transmission electron microscopy and a UV–vis spectrophotometer. Their photocatalytic performance was estimated by the degradation of a methyl orange solution under UV or visible-light irradiation, respectively. In the visible region, due to localized surface plasmon resonance absorption of Ag NPs, ZnO@Ag@Cu 2 O showed a significantly enhanced photocatalytic performance. The enhancement factor of Ag NPs on the catalytic performance of ZnO@Ag@Cu 2 O was estimated as a function of the Cu 2 O deposition time, and the corresponding enhancement mechanism was also evaluated by the monochromatic photocatalytic experiment and discrete dipole approximation simulation. In the UV region, due to the formation of a Schottky junction (e.g. Ag/ZnO, Ag/Cu 2 O), a limited enhanced photocatalytic performance was also realized for ZnO@Ag@Cu 2 O photocatalysts. (paper)

  15. Soil-plant abstract of heavy metals in Pb-Zn mining sites from Alcudia Valley (South Spain)

    Science.gov (United States)

    López-Berdonces, Miguel; Higueras, Pablo; Esbrí, Jose Maria; González-Corrochano, Beatríz; García-Noguero, Eva Mª; Martínez-Coronado, Alba; Fernandez-Calderón, Sergio; García-Noguero, Carolina

    2013-04-01

    Soil-plant transfer of heavy metals in Pb-Zn mining sites from Alcudia Valley (South Spain). Authors: Miguel A. López-Berdonces¹; Pablo Higueras¹; Jose María Esbrí¹; Beatriz González-Corrochano¹; Eva Mª García- Noguero¹; Alba Martínez Coronado¹; Sergio Fernández-Calderón¹; Carolina García-Noguero¹ ¹Instituto de Geología Aplicada, Universidad Castilla la Mancha, Pza. Manuel Meca, 1. 13400 Almadén, Spain. Alcudia Valley is a vast territory recently declared Natural Park, located in South of Spain. It is an area rich in mineral deposits of Zn and Pb and mining exists since the first millennium BC., having its highest ore production between mid-nineteenth century and the middle of the twentieth. This area has been selected because has more than 120 abandoned mines without remediation actions, with dumps and tailings with high contents of zinc and lead sulfides, and Cu, Ag, Cd, As, Sb in minor concentrations. In this study we determinate the transfer rate of these metals from soils to plants represented by oak leaves (Quercus ilex), because this specie is common within the selected area. To evaluate the soil-plant transfer were studied the correlation of contents, total and extractable, in soil-leaves. Extractable fraction was done by for different methods in water, EPA 1312 sulfuric acid: nitric acid 60:40 v., Ammonium Acetate and EDTA. To establish the correlation between heavy metals from soils to plants is necessary to know the contents of these and bioavailable content in soil. Three areas (S. Quintín, Romanilla, Bombita) were selected, taking 24 samples of soils and leaves. Analyzed leaves by XRF showed that Mn, Pb, Zn and Mo in S.Quintin and Romanilla, Mn, Pb in Bombita, exceeded the toxicity threshold. The same samples analyzed by ICP show us the toxicity threshold is exceeded Pb, Zn and Hg in S.Quintin, and Pb in Romanilla. The heavy metal content in leaves compared between two techniques analytical gives an acceptable correlation Zn - Pb

  16. Geology, mineralization, mineral chemistry, and ore-fluid conditions of Irankuh Pb-Zn mining district, south of Isfahan

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Karimpour

    2017-11-01

    within carbonate host rocks, whereas Fe-rich sphalerite, galena, pyrite, minor chalcopyrite, low Fe-dolomite, quartz, bituminous, ± barite ± calcite are important primary minerals at clastic host rocks. There is positive correlation between Ag and Sb values within galena mineral. Sb/Bi ratio in galena is up to 20, which is an indicator of low temperature deposits (Malakhov, 1968. The Irankuh homogenization temperature (170 to 260 ºC is higher than that of US Mississippi-type deposits (80 to 120 ºC. Based on comparison of Th and Fe and Cd contents in sphalerite from Irankuh and US deposits (Viets et al., 1992, homogenization temperature of deposit has a positive relation with Fe values and a negative relation with Cd contents in sphalerite. Fe content in Irankuh sphalerite has reached up to 5% and Cd value is lower than 2000 ppm. In addition, carbonate hosted rock hydrothermal dolomites that are Fe-rich and ankrite have formed at some places. The evidence shows that Irankuh ore-fluid is Fe-rich. However, clastic hosted rock hydrothermal dolomites are low-Fe due to reaction of Fe and S resulting in pyrite formation. Based on O isotope (16–19 ‰ value from hydrothermal dolomites (Ghazban et al., 1994, ore-fluid has been derived from continental crust. Results Fe-rich sphalerite and dolomite and ankrite are the most important characteristics of Irankuh mining district. Temperature and Fe-rich nature of ore-fluid and mineralogy signatures of Irankuh area can be used for exploration of this type of mineralization in Iran and the world. The Irankuh mining district is MVT type mineralization. Acknowledgements The Research Division of the Ferdowsi University of Mashhad, Iran, supported this study (Project No. 40221.3. Thanks to Bama Co. (especially Mr. Eslami for the collaborations. References Ayati, F., Dehghani, H., Mokhtari, A.R. and Mojtahedzadeh, H., 2013. Geochemistry and mineralogy studies of Gushfil Pb-Zn deposit, Irankuh, Isfahan. Analytical and Numerical Methods

  17. Zircon U-Pb geochronology and Sr-Nd-Pb-Hf isotopic constraints on the timing and origin of Mesozoic granitoids hosting the Mo deposits in northern Xilamulun district, NE China

    Science.gov (United States)

    Shu, Qihai; Lai, Yong; Zhou, Yitao; Xu, Jiajia; Wu, Huaying

    2015-12-01

    Located in the east section of the Central Asian orogen in northeastern China, the Xilamulun district comprises several newly discovered molybdenum deposits, primarily of porphyry type and Mesozoic ages. This district is divided by the Xilamulun fault into the southern and the northern parts. In this paper, we present new zircon U-Pb dating, trace elements and Hf isotope, and/or whole rock Sr-Nd-Pb isotopic results for the host granitoids from three Mo deposits (Yangchang, Haisugou and Shabutai) in northern Xilamulun. Our aim is to constrain the age and petrogenesis of these intrusions and their implications for Mo mineralization. Zircon U-Pb LA-ICP-MS dating shows that the monzogranites from the Shabutai and Yangchang deposits formed at 138.4 ± 1.5 and 137.4 ± 2.1 Ma, respectively, which is identical to the molybdenite Re-Os ages and coeval well with the other Mo deposits in this region, thereby indicating an Early Cretaceous magmatism and Mo mineralization event. Zircon Ce/Nd ratios from the mineralized intrusions are significantly higher than the barren granites, implying that the mineralization-related magmas are characterized by higher oxygen fugacity. These mineralized intrusions share similar zircon in-situ Hf and whole rock Sr-Nd isotopic compositions, with slightly negative to positive εHf(t) ranging from - 0.8 to + 10.0, restricted εNd(t) values from - 3.7 to + 1.6 but a little variable (87Sr/86Sr)i ratios between 0.7021 and 0.7074, indicative of formation from primary magmas generated from a dominantly juvenile lower crust source derived from depleted mantle, despite diverse consequent processes (e.g., magma mixing, fractional crystallization and crustal contamination) during their evolution. The Pb isotopes (whole rock) also show a narrow range of initial compositions, with (206Pb/204Pb)i = 18.03-18.88, (207Pb/204Pb)i = 15.48-15.58 and (208Pb/204Pb)i = 37.72-38.28, in agreement with Sr-Nd-Hf isotopes reflecting the dominance of a mantle component

  18. Discrimination between mineralized and unmineralized alteration zones using primary geochemical haloes in the Darreh-Zar porphyry copper deposit in Kerman, southeastern Iran

    Science.gov (United States)

    Parsapoor, A.; Khalili, M.; Maghami, M.

    2017-08-01

    Primary geochemical haloes were studied at the Darreh-Zar porphyry Cu-deposit, southern Iran. In terms of geochemical signatures, high K2O/Na2O enrichment, HREEs and HFSE's depletion in the potassic alteration, high (La/Sm)cn, (La/Yb)cn and (Gd/Yb)cn ratios in mineralized sericitic and potassic zones and notable depletion in the REEs content in argillic alteration is recognized. Further, Mg, Li, Sc, P enrichment and W depletion can serve to separate potassic alteration from the other altered zones, while (Eu/Eu*)cn and (Ce/Ce*)cn don't show pronounced changes in different alteration zones. The coupled positive Tl, Se, S, Rb, Co, Cs, Mo, K and negative Te, Ta, Ti, Sr, Rb, As, Bi, Ga, Hf, In, Mn, Zn and Zr anomalies can be adequately used in discriminating between the mineralized zones (potassic, chlorite-sericite and sericite alterations) and the barren (propylitic zone). The behavior of the trace elements on isocon diagrams reveal that HFSEs are depleted in mineralized altered zones and display variations in the amounts in the barren facies. Zonality index in the axial direction from drill holes 146 to 124 estimates the zonality sequence as Pb-Zn-Ag-Cu-Pb-Zn in the surface horizons. The calculated zonality in five drill holes and six levels indicates that the level of 550 m at the DH 117 in the central part of the area has the highest value (0.76) for Cu. The zonality sequence from the surface to the depth is variable and can be demonstrated as follow: DH 146: Pb-Zn-Cu-Mo-Ag; DH 137: Zn-Cu-Mo-Pb-Ag; DH 117: Ag-Zn-Pb-Mo-Cu; DH: 121: Cu-Mo-Zn-Ag-Pb; DH 136: Pb-Ag-Zn-Cu-Mo; DH 124: Zn-Mo-Cu-Pb-Ag. Available data of the enrichment factors shows different enrichment for copper and molybdenum (i.e. EF > 10), selenium and silver (i.e. EF > 5), tin and LREEs (i.e. 1 < EF < 5).

  19. Structural and optical properties of DC magnetron sputtered ZnO films on glass substrate and their modification by Ag ions implantation

    Science.gov (United States)

    Ahmad, R.; Afzal, Naveed; Amjad, U.; Jabbar, S.; Hussain, T.; Hussnain, A.

    2017-07-01

    This work is focused on investigating the effects of deposition time and Ag ions implantation on structural and optical properties of ZnO film. The ZnO film was prepared on glass substrate by pulsed DC magnetron sputtering of pure Zn target in reactive oxygen environment for 2 h, 3 h, 4 h and 5 h respectively. X-ray diffraction results revealed polycrystalline ZnO film whose crystallinity was improved with increase of the deposition time. The morphological features indicated agglomeration of smaller grains into larger ones by increasing the deposition time. The UV-vis spectroscopy analysis depicted a small decrease in the band gap of ZnO from 3.36 eV to 3.27 eV with increase of deposition time. The Ag ions implantation in ZnO films deposited for 5 h on glass was carried out by using Pelletron Accelerator at different ions fluences ranging from 1  ×  1011 ions cm-2 to 2  ×  1012 ions cm-2. XRD patterns of Ag ions implanted ZnO did not show significant change in crystallite size by increasing ions fluence from 1  ×  1011 ions cm-2 to 5  ×  1011 ions cm-2. However, with further increase of the ions fluence, the crystallite size was decreased. The band gap of Ag ions implanted ZnO indicated anomalous variations with increase of the ions fluence.

  20. Anthropogenic impacts in North Poland over the last 1300 years - A record of Pb, Zn, Cu, Ni and S in an ombrotrophic peat bog

    International Nuclear Information System (INIS)

    De Vleeschouwer, Francois; Fagel, Nathalie; Cheburkin, Andriy; Pazdur, Anna; Sikorski, Jaroslaw; Mattielli, Nadine; Renson, Virginie; Fialkiewicz, Barbara; Piotrowska, Natalia; Le Roux, Gael

    2009-01-01

    Lead pollution history over Northern Poland was reconstructed for the last ca. 1300 years using the elemental and Pb isotope geochemistry of a dated Polish peat bog. The data show that Polish Pb-Zn ores and coal were the main sources of Pb, other heavy metals and S over Northern Poland up until the industrial revolution. After review of the potential mobility of each element, most of the historical interpretation was based on Pb and Pb isotopes, the other chemical elements (Zn, Cu, Ni, S) being considered secondary indicators of pollution. During the last century, leaded gasoline also contributed to anthropogenic Pb pollution over Poland. Coal and Pb-Zn ores, however, remained important sources of pollution in Eastern European countries during the last 50 years, as demonstrated by a high 206 Pb/ 207 Pb ratio (1.153) relative to that of Western Europe (ca. 1.10). The Pb data for the last century were also in good agreement with modelled Pb inventories over Poland and the Baltic region.

  1. Positron annihilation studies of vacancies in Ag-Zn alloys

    International Nuclear Information System (INIS)

    Chabik, S.

    1982-01-01

    The temperature dependence of annihilation rate, F(T), at the peak of angular correlation curve has been measured for Ag-29.2%at Zn and Ag-50%at Zn alloys. By applying the trapping model the vacancy formation energy for Ag-29.2%at Zn alloy has been found to be equal to 0.94+-0.06 eV. It has been found that the course of the F(T) curve for Ag-50%at Zn depends on the phase composition and thermal history of the investigated sample. For alloys containing not more than 50%at Zn, the concentration dependence of the vacancy formation energy for Ag-Zn alloys is very similar to that for Cu-Zn alloys. (Auth.)

  2. Thallium transformation and partitioning during Pb-Zn smelting and environmental implications.

    Science.gov (United States)

    Liu, Juan; Wang, Jin; Chen, Yongheng; Xie, Xiaofan; Qi, Jianying; Lippold, Holger; Luo, Dinggui; Wang, Chunlin; Su, Longxiao; He, Lucheng; Wu, Qiwei

    2016-05-01

    Thallium (Tl) is a toxic and non-essential heavy metal. Raw Pb-Zn ores and solid smelting wastes from a large Pb-Zn smelting plant - a typical thallium (Tl) pollution source in South China, were investigated in terms of Tl distribution and fractionation. A modified IRMM (Institute for Reference Materials and Measurement, Europe) sequential extraction scheme was applied on the samples, in order to uncover the geochemical behavior and transformation of Tl during Pb-Zn smelting and to assess the potential environmental risk of Tl arising from this plant. Results showed that the Pb-Zn ore materials were relatively enriched with Tl (15.1-87.7 mg kg(-1)), while even higher accumulation existed in the electrostatic dust (3280-4050 mg kg(-1)) and acidic waste (13,300 mg kg(-1)). A comparison of Tl concentration and fraction distribution in different samples clearly demonstrated the significant role of the ore roasting in Tl transformation and mobilization, probably as a result of alteration/decomposition of related minerals followed by Tl release and subsequent deposition/co-precipitation on fine surface particles of the electrostatic dust and acidic waste. While only 10-30% of total Tl amounts was associated with the exchangeable/acid-extractable fraction of the Pb-Zn ore materials, up to 90% of total Tl was found in this fraction of the electrostatic dust and acidic waste. Taking into account the mobility and bioavailability of this fraction, these waste forms may pose significant environmental risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures

    Science.gov (United States)

    Ievtushenko, A.; Karpyna, V.; Eriksson, J.; Tsiaoussis, I.; Shtepliuk, I.; Lashkarev, G.; Yakimova, R.; Khranovskyy, V.

    2018-05-01

    ZnO films and nanostructures were deposited on Si substrates by MOCVD using single source solid state zinc acetylacetonate (Zn(AA)) precursor. Doping by silver was realized in-situ via adding 1 and 10 wt. % of Ag acetylacetonate (Ag(AA)) to zinc precursor. Influence of Ag on the microstructure, electrical and optical properties of ZnO at temperature range 220-550 °C was studied by scanning, transmission electron and Kelvin probe force microscopy, photoluminescence and four-point probe electrical measurements. Ag doping affects the ZnO microstructure via changing the nucleation mode into heterogeneous and thus transforming the polycrystalline films into a matrix of highly c-axis textured hexagonally faceted nanorods. Increase of the work function value from 4.45 to 4.75 eV was observed with Ag content increase, which is attributed to Ag behaviour as a donor impurity. It was observed, that near-band edge emission of ZnO NS was enhanced with Ag doping as a result of quenching deep-level emission. Upon high doping of ZnO by Ag it tends to promote the formation of basal plane stacking faults defect, as it was observed by HR TEM and PL study in the case of 10 wt.% of Ag. Based on the results obtained, it is suggested that NS deposition at lower temperatures (220-300 °C) is more favorable for p-type doping of ZnO.

  4. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  5. Synthesis and characterization of ZnO/ZnSe NWs/PbS QDs solar cell

    Science.gov (United States)

    Kamruzzaman, M.; Zapien, J. A.

    2017-04-01

    The capture of solar energy has gained the attention for the next generation solar cell. ZnO/ZnSe NW arrays were synthesized on an FTO glass substrate using a simple and facile hydrothermal and ion-exchange approaches. The lead sulfide (PbS) QDs was infiltrated into ZnO/ZnSe NWs via SILAR method for making inorganic quantum dot sensitized ZnO/ZnSe/PbS QDs solar cell. The surface morphology, structural, optical, and J-V characteristics have been investigated. The ZnO/ZnSe NW is a core-shell like structure, and the absorption edge shifted from the UV region (ZnO NWs) to the near infrared region for ZnO/ZnSe NWs/PbS QDs. For PbS QDs-sensitized solar cell, the obtained value of η = 1.1%, J sc = 20.60 mA/cm2, V oc = 155 mV, and FF = 34.7%, respectively. The photovoltaic performance of the device in this study is still inferior. However, it is the first report regarding to ZnO/ZnZe NWs/PbS QDs solar cell. The achieving high absorption and large short circuit current density may interest in further improvement of the device performance by suppressing surface defects, optimizing the quality of ZnO/ZnSe NWs and PbS QDs.

  6. Synthesis and characterization of ZnO/ZnSe NWs/PbS QDs solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Kamruzzaman, M, E-mail: kzaman.phy11@gmail.com; Zapien, J A, E-mail: apjazs@cityu.edu.hk [City University of Hong Kong, Department of Physics and Materials Science and Center Of Super-Diamond and Advanced Films (COSDAF) (China)

    2017-04-15

    The capture of solar energy has gained the attention for the next generation solar cell. ZnO/ZnSe NW arrays were synthesized on an FTO glass substrate using a simple and facile hydrothermal and ion-exchange approaches. The lead sulfide (PbS) QDs was infiltrated into ZnO/ZnSe NWs via SILAR method for making inorganic quantum dot sensitized ZnO/ZnSe/PbS QDs solar cell. The surface morphology, structural, optical, and J-V characteristics have been investigated. The ZnO/ZnSe NW is a core–shell like structure, and the absorption edge shifted from the UV region (ZnO NWs) to the near infrared region for ZnO/ZnSe NWs/PbS QDs. For PbS QDs-sensitized solar cell, the obtained value of η = 1.1%, J{sub sc} = 20.60 mA/cm{sup 2}, V{sub oc} = 155 mV, and FF = 34.7%, respectively. The photovoltaic performance of the device in this study is still inferior. However, it is the first report regarding to ZnO/ZnZe NWs/PbS QDs solar cell. The achieving high absorption and large short circuit current density may interest in further improvement of the device performance by suppressing surface defects, optimizing the quality of ZnO/ZnSe NWs and PbS QDs.

  7. Star-shaped ZnO/Ag hybrid nanostructures for enhanced photocatalysis and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, George R.S., E-mail: grsandrade@hotmail.com [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Nascimento, Cristiane C. [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Federal Institute of Education, Science and Technology of Sergipe, Glória Campus, Nossa Senhora da Glória, SE (Brazil); Lima, Zenon M. [Postgraduate Program in Industrial Biochemistry, Tiradentes University, Aracaju, SE (Brazil); Teixeira-Neto, Erico [LNNano − Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP (Brazil); Costa, Luiz P. [Postgraduate Program in Industrial Biochemistry, Tiradentes University, Aracaju, SE (Brazil); ITPS − Technological and Research Institute of Sergipe, Aracaju, SE (Brazil); Gimenez, Iara F. [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE (Brazil)

    2017-03-31

    Highlights: • A new and simple one-pot method for preparing star-shaped ZnO particles was reported. • ZnO particles were decorated with Ag nanoparticles (SNPs) by a photodeposition method. • The presence of SNC{sup −} ions on ZnO surface prevented uncontrollable growth of SNPs. • ZnO/Ag particles showed plasmon-enhanced photocatalytic activity toward an AZO dye. • SNP improved 16 times the antibacterial activity of ZnO toward 4 bacterial strains. - Abstract: Zinc oxide (ZnO) particles with a star-shaped morphology have been synthesized by a novel and simple room-temperature method and decorated with silver nanoparticles (SNPs) for enhanced photocatalysis and bactericide applications. The presence of thiourea during the precipitation of ZnO in alkaline conditions allowed the control of morphological features (e.g. average size and shape) and the surface functionalization with thiocyanate ions (SCN{sup −}). SNPs were deposited into the ZnO surface by a photoreduction method and their sizes could be easily controlled by changing the ZnO/AgNO{sub 3} ratio. The presence of SCN{sup −} on the semiconductor surface prevents uncontrollable growth of Ag nanoparticles into different morphologies and high degrees of polydispersity. XRD, SEM, TEM, FTIR, UV-vis-NIR and PL were employed for characterizing the structure, morphology and optical properties of the as-obtained pure and hybrid nanostructures. Finally, the hybrid ZnO/Ag particles have shown plasmon-enhanced performance for applications in photocatalysis and antibacterial activity compared to the pure ZnO counterpart. In this work, evaluation of the photodegradation of an aqueous methylene blue solution under UV-A irradiation and the antibacterial activity toward 4 bacterial strains, including Gram-positive bacteria Staphylococcus aureus (ATCC 43300, ATCC 25923 and ATCC 33591) and Gram-negative bacteria Pseudomonas aeruginosa (ATCC 27853).

  8. Distribution of As, Cd, Pb, and Zn in redox features of mine-waste impacted wetland soils

    Energy Technology Data Exchange (ETDEWEB)

    Strawn, Daniel G.; Hickey, Patrick J.; McDaniel, Paul A.; Baker, Leslie L. [Idaho Univ., Moscow (United States). Soil and Land Resources Div.

    2012-08-15

    Purpose: Wetland soils of the Coeur d'Alene (CdA) River Basin of northern Idaho, USA are contaminated with toxic elements released during mining activities. In this paper, we report results from a multi-scale investigation of total As, Cd, Pb, and Zn distributions along a transect of these contaminated soils. Materials and methods: Four sites along an 80-m transect were established at the Black Rock Slough wetland in CdA River Basin. The elevation difference between the upslope and lowland site was 1.1 m. Soils were sampled from three depths, down to 45 cm. Redoximorphic features were isolated from the soils and categorized into five types of cemented particles, and Fe-enriched and depleted soil masses. Soils and isolated soil separates were analyzed for total elemental concentration. Results and discussion: Within soil profiles, contaminants are enriched in surface horizons as compared to the original depositional profiles. Enrichment was more dramatic in the upland sites than the lowland sites. Fe-enriched masses that ranged in size from a few millimeters to several centimeters were also enriched in As, Pb, and Zn. At the smallest scale investigated, five different soil aggregate types ranging in size from 1 to 2 mm in diameter had distinct contaminant associations: Fe-cemented aggregates were elevated in As and Zn; Mn-cemented aggregates had more than five times as much Pb as the bulk soil; root channels were elevated in As; and charcoal particles were elevated in all contaminants, particularly Pb and Cd. Conclusions: Results show that in wetland soils pedogenic processes differentially distribute contaminants amongst the redoximorphic features. The distribution is affected by landscape position and water table influence. At the pedon scale, there is an enrichment of As, Cd, Pb, and Zn in surface horizons, suggesting that upward flux of contaminants is occurring. This contaminant redistribution should be considered in design of management and remediation

  9. Geological setting, isotope studies (C, O and Pb) and associated metals in the Tocantinzinho gold deposit, Tapajos domain, Tapajos-Parima Province

    International Nuclear Information System (INIS)

    Villas, Raimundo Netuno Nobre; Santiago, Erika Suellen Barbosa; Castilho, Marilia Portela

    2013-01-01

    The Tocantinzinho ore deposit is located along a NW-SE-trending lineament, southwestern of Itaituba (Para, Brazil), and is the largest known gold deposit of the Tapajos Province. The host Tocantinzinho granite is essentially isotropic and dominated by syenogranites and monzogranites that have been weakly to moderately altered by hydrothermal fluids. Microclinization (earliest), chloritization, sericitization, silicification and carbonatization (latest) are the main types of alteration. Most mineralization was contemporaneous with the sericitization/silicification and is represented by sulfide- and gold-bearing veinlets which locally occur as stockwork. Pyrite, chalcopyrite, sphalerite and galena are the most common sulfides. Among the ore metals, Cu, Pb and Zn present the highest contents, but Mo, As and Bi locally show anomalous concentrations. The relationship of Au with Cu, Pb or Zn is at random and the Au/Ag ratios range from 0.05 to 0.5. The higher the sulfide contents, the higher the Au concentrations, though it occurs mainly included in pyrite. Zircon monocrystals from the Tocantinzinho granite yielded an average Pb-Pb age of 1982 ±8Ma and may represent an earlier event of the Creporizao magmatic arc. δ 13 C PDB values for calcite from the carbonatization stage fall dominantly between -3.45 and -2.29‰, being compatible with a deep crustal source that may include carbonatite reservoirs. In turn, δ 18 O SMOW values vary from +5.97 to +14.10‰, being indicative of magmatic derivation, although the less positive values suggest contribution from surficial waters. Unpublished fluid inclusion study reveals the presence of aquo-carbonic fluids, whose CO 2 could have been dissolved in the granitic magma rather than being related to the shear zone. The available data allow the Tocantinzinho deposit to be classified as a granite-hosted, intrusion-related gold deposit. (author)

  10. The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity

    Science.gov (United States)

    Sohrabnezhad, Sh.; Seifi, A.

    2016-11-01

    The Ag/ZnO-MMT nanocomposite was prepared using urtica dioica leaf extract. To improve the photocatalytic properties of ZnO-MMT nanocomposite, silver metal nanoparticles was deposited over nanocomposite. Zn(CH3COO)2, AgNO3 and Urtica dioica leaf extract were used as a zinc, silver precursor and reducing agent, respectively. The nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed that Ag/ZnO nanoparticles located on the surface MMT layers. The diffuse reflectance spectra of nanocomposite indicated a strong surface plasmon resonance (SPR) absorption band in the visible region, resulting from metallic Ag nanoparticles. TEM image demonstrated the presence of silver nanoparticles with an average size of 2-4 nm over both MMT and flower-shape ZnO. The photocatalytic activity of nanocomposite was studied for destructive reaction methylene blue dye under visible light. In addition, the effects of different parameters such as amount of nanocomposite, concentration of the dye and pH of the solution were studied. The results showed that modiffication of ZnO-MMT nanocomposite with silver nanoparticles increased the percentage of discoloration methylene blue (MB) from 38.95 to 91.95. MMT matrix showed an important role in the reduction of recombination of electron-hole in nanocomposite.

  11. Structural and optical properties of ZnO nanostructures electrochemically synthesized on AZO/Ag/AZO-multilayer-film-coated polyethersulfone substrates

    International Nuclear Information System (INIS)

    Oh, Dohyun; Yoo, Chanho; No, Youngsoo; Kim, Suyoun; Kim, Taewhan; Cho, Woonjo; Kim, Jinyoung

    2012-01-01

    ZnO nanostructures were formed on Al-doped ZnO (AZO)/Ag/AZO-multilayer-film-coated flexible polyethersulfone (PES) substrates at low temperature by using an electrochemical deposition method. The resistivity of the AZO/Ag/AZO multilayer films decreased with increasing thickness of the Ag film. X-ray diffraction patterns for the ZnO nanostructures showed that the crystal structure of the ZnO was hexagonal wurtzite and that the orientation was along the c-axis perpendicular to the substrate. Scanning electron microscopy images showed that the ZnO nanostructures grown at current densities of - 1.0 and - 1.5 mA/cm 2 were ZnO nanorods with diameters of 150 nm and ZnO nanoflowers with a planar dimension, respectively. Photoluminescence spectra showed that the band-edge emission peak of the ZnO nanostructures dominantly appeared in the ultraviolet region. These results showed that ZnO nanorods and nanoflowers with high quality were synthesized on AZO/Ag/AZO-multilayer-film-coated PES substrates.

  12. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties

    OpenAIRE

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-01-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160?nm and an average length of 2??m. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255?nm...

  13. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei, E-mail: ymgong@dlpu.edu.cn; Guo, Jing, E-mail: guojing8161@163.com

    2016-12-01

    Highlights: • Polymeric PET fibers were conductive modified by ITO and the subsequent Ag coating. The conductive PET-ITO-Ag fiber has the surface resistivity as low as 0.23 mΩ cm. The PET-ITO-Ag fiber was used as a basal material to plant vertical ZnO nanorods. - Abstract: We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol–gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl{sub 2}, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  14. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    International Nuclear Information System (INIS)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing

    2016-01-01

    Highlights: • Polymeric PET fibers were conductive modified by ITO and the subsequent Ag coating. The conductive PET-ITO-Ag fiber has the surface resistivity as low as 0.23 mΩ cm. The PET-ITO-Ag fiber was used as a basal material to plant vertical ZnO nanorods. - Abstract: We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol–gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl 2 , a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  15. Deposition flux of Zn and Cr at the Cisadane estuary derived from 210Pb unsupported profile and 5 years flood-storm cycle

    International Nuclear Information System (INIS)

    Barokah Aliyanta and Ali Arman Lubi

    2007-01-01

    The measurement of the depth profile of 210 Pb unsupported and heavy metals within the core sediment samples were conducted at the Cisadane estuary at 2002 year. The two sediment cores were taken at the Tanjung Burung and Tiang Sampan estuary; respectively. The 210 Pb unsupported depth profile could be used for estimating the sedimentation rate, and for estimating deposition flux of Zn and Cr based on 5 years cycle of time. The sedimentation rates of dry sediment at the Tanjung Burung estuary were 4.142 g/cm 2 /yr, 2.518 g/cm 2 /yr and 1.27 g/cm 2 /yr in periods of 1997- 2002, 1992-1997 and 1987-1992; respectively. The sedimentation rates of dry sediment at the Tiang Sampan estuary were 3.626 g/cm 2 /yr, 2.8 g/cm 2 /yr and 1.41 g/cm 2 /yr in periods of 1997-2002, 1992-1997 and 1987-1992. Deposition flux of Zn : Cr at the Tanjung Burung estuary were 4.867 g/m 2 /yr : 0.9 g/m 2 /yr, 3.515 g/m 2 /yr : 0.69 g/m 2 /yr and 1.363 g/m 2 /yr : 0.2 g/m 2 /yr; in periods of 1997- 2002, 1992-1997 and 1987-1992; respectively. Deposition flux of Zn:Cr at the Tiang Sampan estuary were 3.368 g/m 2 /yr : 0.703 g/m 2 /yr, 2.814 g/m 2 /yr : 0.574 g/m 2 /yr and 1.593 g/m 2 /yr : 0.303 g/m 2 /yr; in periods of 1997- 2002, 1992-1997 and 1987-1992; respectively. (author)

  16. LED Die-Bonded on the Ag/Cu Substrate by a Sn-BiZn-Sn Bonding System

    Science.gov (United States)

    Tang, Y. K.; Hsu, Y. C.; Lin, E. J.; Hu, Y. J.; Liu, C. Y.

    2016-12-01

    In this study, light emitting diode (LED) chips were die-bonded on a Ag/Cu substrate by a Sn-BixZn-Sn bonding system. A high die-bonding strength is successfully achieved by using a Sn-BixZn-Sn ternary system. At the bonding interface, there is observed a Bi-segregation phenomenon. This Bi-segregation phenomenon solves the problems of the brittle layer-type Bi at the joint interface. Our shear test results show that the bonding interface with Bi-segregation enhances the shear strength of the LED die-bonding joints. The Bi-0.3Zn and Bi-0.5Zn die-bonding cases have the best shear strength among all die-bonding systems. In addition, we investigate the atomic depth profile of the deposited Bi-xZn layer by evaporating Bi-xZn E-gun alloy sources. The initial Zn content of the deposited Bi-Zn alloy layers are much higher than the average Zn content in the deposited Bi-Zn layers.

  17. Reconstructing temporal trends in heavy metal deposition: assessing the value of herbarium moss samples.

    Science.gov (United States)

    Shotbolt, L; Büker, P; Ashmore, M R

    2007-05-01

    The use of the herbarium moss archive for investigating past atmospheric deposition of Ni, Cu, Zn, As, Cd and Pb was evaluated. Moss samples from five UK regions collected over 150 years were analysed for 26 elements using ICP-MS. Principal components analysis identified soil as a significant source of Ni and As and atmospheric deposition as the main source of Pb and Cu. Sources of Zn and Cd concentrations were identified to be at least partly atmospheric, but require further investigation. Temporal and spatial trends in metal concentrations in herbarium mosses showed that the highest Pb and Cu levels are found in Northern England in the late 19th century. Metal concentrations in herbarium moss samples were consistently higher than those in mosses collected from the field in 2000. Herbarium moss samples are concluded to be a useful resource to contribute to reconstructing trends in Pb and Cu deposition, but not, without further analysis, for Cd, Zn, As and Ni.

  18. Corrosion behaviour of boiler tube materials during combustion of fuels containing Zn and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, D.

    2012-11-01

    Many power plants burning challenging fuels such as waste-derived fuels experience failures of the superheaters and/or increased waterwall corrosion due to aggressive fuel components already at low temperatures. To minimize corrosion problems in waste-fired boilers, the steam temperature is currently kept at a relatively low level which drastically limits power production efficiency. The elements found in deposits of waste and waste-derived fuels burning boilers that are most frequently associated with high-temperature corrosion are: Cl, S, and there are also indications of Br; alkali metals, mainly K and Na, and heavy metals such as Pb and Zn. The low steam pressure and temperature in waste-fired boilers also influence the temperature of the waterwall steel which is nowadays kept in the range of 300 deg C - 400 deg C. Alkali chloride (KCl, NaCl) induced high-temperature corrosion has not been reported to be particularly relevant at such low material temperatures, but the presence of Zn and Pb compounds in the deposits have been found to induce corrosion already in the 300 deg C - 400 deg C temperature range. Upon combustion, Zn and Pb may react with Cl and S to form chlorides and sulphates in the flue gases. These specific heavy metal compounds are of special concern due to the formation of low melting salt mixtures. These low melting, gaseous or solid compounds are entrained in the flue gases and may stick or condense on colder surfaces of furnace walls and superheaters when passing the convective parts of the boiler, thereby forming an aggressive deposit. A deposit rich in heavy metal (Zn, Pb) chlorides and sulphates increases the risk for corrosion which can be additionally enhanced by the presence of a molten phase. The objective of this study was to obtain better insight into high-temperature corrosion induced by Zn and Pb and to estimate the behaviour and resistance of some boiler superheater and waterwall materials in environments rich in those heavy metals

  19. Size distribution of atmospheric Pb and 210Pb in rural New Jersey: implications for wet and dry deposition

    International Nuclear Information System (INIS)

    Knuth, R.H.; Knutson, E.O.; Feely, H.W.; Volchok, H.L.

    1983-01-01

    High volume cascade impactor samples taken during spring, 1980, at the Chester sampling station in northern New Jersey showed a small but persistent difference in the size distributions of Pb and 210 Pb. On the average, 69% of Pb was below 0.58 μm and 12% was above 3.45 μm. For 210 Pb, the corresponding figures were 71% and 2.8%. These 210 Pb data indicate larger particles than found in Colorado, but smaller than those found over the Mediterranean Sea. The average air concentrations for the two species were 111 ng/m 3 (Pb) and 10.9 fCi/m 3 ( 210 Pb), in good agreement with other reported results for rural northeast areas. Experimental results imply a factor of three difference in dry deposition velocity between the two species, providing a qualitative explanation of a previously observed difference in wet/dry deposition of the two species. 19 references, 1 figure, 6 tables

  20. Influence of hydrology on heavy metal speciation and mobility in a Pb-Zn mine tailing

    International Nuclear Information System (INIS)

    Kovacs, Elza; Dubbin, William E.; Tamas, Janos

    2006-01-01

    Among the inorganic toxicants of greatest concern in mine tailings, Pb, Zn, Cu, Cd and As figure prominently due to their abundance and potential toxicity. Here we report on their biolability and solid-phase speciation in two sediment cores subject to variable hydrological regimes at an abandoned pyritic mine tailing. The oxic conditions of well-drained sediments induced pyrite oxidation and the subsequent liberation of H + , SO 4 2- and considerable quantities of Fe(III), which precipitated as goethite. Solubility of Pb, Zn, Cu and Cd was closely coupled to pH and goethite presence. Metal lability was particularly low in zones of neutralization, formed by the accumulation of calcite, first carried then deposited by percolating waters in both saturated and unsaturated cores. We conclude that differential hydrology induces variable heavy metal speciation and biolability in Pb-Zn mine tailings, and suggest that site-specific risk assessments must account for past and present hydrological regimes. - Variable hydrology influences heavy metal speciation and mobility, and the formation of neutralization zones, in a Pb-Zn mine tailing

  1. Reconstructing temporal trends in heavy metal deposition: Assessing the value of herbarium moss samples

    Energy Technology Data Exchange (ETDEWEB)

    Shotbolt, L. [Geography Department, Queen Mary, University of London, London, E1 4NS (United Kingdom)]. E-mail: l.shotbolt@qmul.ac.uk; Bueker, P. [Stockholm Environment Institute, University of York, Heslington, YO10 5DD (United Kingdom)]. E-mail: pb25@york.ac.uk; Ashmore, M.R. [Environment Department, University of York, Heslington, YO10 5DD (United Kingdom)]. E-mail: ma512@york.ac.uk

    2007-05-15

    The use of the herbarium moss archive for investigating past atmospheric deposition of Ni, Cu, Zn, As, Cd and Pb was evaluated. Moss samples from five UK regions collected over 150 years were analysed for 26 elements using ICP-MS. Principal components analysis identified soil as a significant source of Ni and As and atmospheric deposition as the main source of Pb and Cu. Sources of Zn and Cd concentrations were identified to be at least partly atmospheric, but require further investigation. Temporal and spatial trends in metal concentrations in herbarium mosses showed that the highest Pb and Cu levels are found in Northern England in the late 19th century. Metal concentrations in herbarium moss samples were consistently higher than those in mosses collected from the field in 2000. Herbarium moss samples are concluded to be a useful resource to contribute to reconstructing trends in Pb and Cu deposition, but not, without further analysis, for Cd, Zn, As and Ni. - Herbarium moss samples can contribute to the reconstruction of past heavy metal deposition.

  2. Reconstructing temporal trends in heavy metal deposition: Assessing the value of herbarium moss samples

    International Nuclear Information System (INIS)

    Shotbolt, L.; Bueker, P.; Ashmore, M.R.

    2007-01-01

    The use of the herbarium moss archive for investigating past atmospheric deposition of Ni, Cu, Zn, As, Cd and Pb was evaluated. Moss samples from five UK regions collected over 150 years were analysed for 26 elements using ICP-MS. Principal components analysis identified soil as a significant source of Ni and As and atmospheric deposition as the main source of Pb and Cu. Sources of Zn and Cd concentrations were identified to be at least partly atmospheric, but require further investigation. Temporal and spatial trends in metal concentrations in herbarium mosses showed that the highest Pb and Cu levels are found in Northern England in the late 19th century. Metal concentrations in herbarium moss samples were consistently higher than those in mosses collected from the field in 2000. Herbarium moss samples are concluded to be a useful resource to contribute to reconstructing trends in Pb and Cu deposition, but not, without further analysis, for Cd, Zn, As and Ni. - Herbarium moss samples can contribute to the reconstruction of past heavy metal deposition

  3. Characterization of Aerosols Containing Zn, Pb, and Cl from an Industrial Region of Mexico City

    International Nuclear Information System (INIS)

    Moffet, Ryan C.; Desyaterik, Yury; Hopkins, Rebecca J.; Tivanski, Alexei V.; Gilles, Marry K.; Wang, Yan A.; Shutthanandan, V.; Molina, Luisa T.; Abraham, Rodrigo G.; Johnson, Kirsten S.; Mugica, Violeta; Molina, Mario J.; Laskin, Alexander; Prather, Kimberly A.

    2008-01-01

    During the March, 2006 MILAGRO campaign, measurements in the Northern Mexico City Metropolitan Area revealed the frequent appearance of particles with a characteristically high content of internally mixed Zn, Pb, Cl, and P. A comprehensive study of the chemical and physical properties of these particles was performed using a complementary combination of aerosol measurement techniques. Individual particles were analyzed using Aerosol Time-of-Flight Mass Spectrometry (ATOFMS) and Computer Controlled Scanning Electron Microscopy/Energy Dispersive X-Ray spectroscopy (CCSEM/EDX). Proton Induced X-Ray Emission (PIXE) analysis of bulk aerosol samples provided time-resolved mass concentrations of individual elements. The PIXE measurements indicated that Zn is more strongly correlated with Cl than with any other element and that Zn concentrations are higher than other non-ferrous transition metals. The Zn- and Pb-containing particles have both spherical and non-spherical morphologies. Many metal rich particles had needle-like structures and were found to be composed of ZnO and/or Zn(NO3)2 6H2O as indicated by scanning transmission x-ray microscopy/near edge X-ray absorption spectroscopy (STXM/NEXAFS). The Zn and Pb rich particles were primarily in the submicron size range and internally mixed with elemental carbon. The unique chemical associations most closely match signatures acquired for garbage incineration. This unique combination of complementary analytical techniques has allowed for a comprehensive evaluation of Zn- and Pb- containing particles in a complex urban environment, highlighting unique characteristics that give powerful insight into their origin

  4. Bioaccumulation of Zn and Ag Nanoparticles in the Earthworms (Eisenia fetida)

    Science.gov (United States)

    Ha, Lee Seung; Sung-Dae, Kim; Yi, Yang Song; Byeong-Gweon, Lee

    2014-05-01

    Many studies are carried out to evaluate environmental effects of engineered nanoparticles (ENPs). Most of the previous studies primarily focused on the effects of nanoparticles into the aquatic environment and human. Model studies predict that ENPs released into environment would transferred primarily to the soil of the terrestrial environment. Despite this prediction, biogeochemical behavior of ENPs in soil environment as well as bioavailability of ENPs to soil-dwelling organisms such as earthworm, springtail, isopod and nematodes are poorly understood. The main goal of this study was to compare the bioaccumulation factor (BAFs) and subcellular partitioning of nanoparticles in the soil-dwelling earthworm (Eisenia fetida) from ENP (ZnO and Ag nanoparticles) or ionic metal (Zn2+, Ag+) contaminated soil. And the sequential extraction was also used to determine the mobility of metals in soil which could be used as to predict bioavailability and compare that with bioaccumulation factor. The radiotracer method was employed to trace the transfer of ENPs and ionic metal among different environmental media and animals. Radiolabeled 65ZnO, 110mAgNPs coated with PVP or citrate were synthesized in the laboratory and their chemical and biological behavior was compared to ionic 65Zn and 110mAg. The BAFs of Zn and Ag in the earthworms were determined after animals exposed to the contaminated soils. After the 7 days of elimination phase, subcellular partitioning of metals were also obtained. BAF for ZnO(0.06) was 31 times lower than that for Zn ion (1.86), suggesting that ZnO was less bioavailable than its ionic form from contaminated soil. On the other hands, BAFs for AgNPs coated with PVP (0.12) or with citrate (0.11) were comparable to those for Ag ion (0.17), indicating that Ag from contaminated soil was bioavailable in a similar rate regardless of chemical forms. The subcellular partitioning results showed that bioaccumulated Zn from Zn ion and ZnO contaminated soil were

  5. Hydrothermal zebra dolomite in the Great Basin, Nevada--attributes and relation to Paleozoic stratigraphy, tectonics, and ore deposits

    Science.gov (United States)

    Diehl, S.F.; Hofstra, A.H.; Koenig, A.E.; Emsbo, P.; Christiansen, W.; Johnson, Chad

    2010-01-01

    In other parts of the world, previous workers have shown that sparry dolomite in carbonate rocks may be produced by the generation and movement of hot basinal brines in response to arid paleoclimates and tectonism, and that some of these brines served as the transport medium for metals fixed in Mississippi Valley-type (MVT) and sedimentary exhalative (Sedex) deposits of Zn, Pb, Ag, Au, or barite. Numerous occurrences of hydrothermal zebra dolomite (HZD), comprised of alternating layers of dark replacement and light void-filling sparry or saddle dolomite, are present in Paleozoic platform and slope carbonate rocks on the eastern side of the Great Basin physiographic province. Locally, it is associated with mineral deposits of barite, Ag-Pb-Zn, and Au. In this paper the spatial distribution of HZD occurrences, their stratigraphic position, morphological characteristics, textures and zoning, and chemical and stable isotopic compositions were determined to improve understanding of their age, origin, and relation to dolostone, ore deposits, and the tectonic evolution of the Great Basin. In northern and central Nevada, HZD is coeval and cogenetic with Late Devonian and Early Mississippian Sedex Au, Zn, and barite deposits and may be related to Late Ordovician Sedex barite deposits. In southern Nevada and southwest California, it is cogenetic with small MVT Ag-Pb-Zn deposits in rocks as young as Early Mississippian. Over Paleozoic time, the Great Basin was at equatorial paleolatitudes with episodes of arid paleoclimates. Several occurrences of HZD are crosscut by Mesozoic or Cenozoic intrusions, and some host younger pluton-related polymetallic replacement and Carlin-type gold deposits. The distribution of HZD in space (carbonate platform, margin, and slope) and stratigraphy (Late Neoproterozoic Ediacaran-Mississippian) roughly parallels that of dolostone and both are prevalent in Devonian strata. Stratabound HZD is best developed in Ediacaran and Cambrian units, whereas

  6. Identification of Zn-Bearing Micas and Clays from the Cristal and Mina Grande Zinc Deposits (Bongará Province, Amazonas Region, Northern Peru

    Directory of Open Access Journals (Sweden)

    Giuseppe Arfè

    2017-11-01

    Full Text Available Zn-bearing phyllosilicates are common minerals in nonsulfide Zn deposits, but they seldom represent the prevailing economic species. However, even though the presence of Zn-bearing clays is considered as a disadvantage in mineral processing, their characteristics can give crucial information on the genesis of the oxidized mineralization. This research has been carried out on the Mina Grande and Cristal Zn-sulfide/nonsulfide deposits, which occur in the Bongará district (Northern Peru. In both of the deposits, Zn-bearing micas and clays occur as an accessory to the ore minerals. The XRD analyses and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS investigations revealed that the Zn-bearing micas that are occurring in both deposits mostly consist of I/S mixed layers of detrital origin, which have been partly altered or overprinted by sauconite during the supergene alteration of sulfides. Sporadic hendricksite was also identified in the Cristal nonsulfide mineral assemblage, whereas at Mina Grande, the fraipontite-zaccagnaite (3R-polytype association was detected. The identified zaccagnaite polytype suggests that both fraipontite and zaccagnaite are genetically related to weathering processes. The hendricksite detected at Cristal is a product of hydrothermal alteration, which is formed during the emplacement of sulfides. The complex nature of the identified phyllosilicates may be considered as evidence of the multiple processes (hydrothermal and supergene that occurred in the Bongará district.

  7. In situ thermal residual stress evolution in ultrathin ZnO and Ag films studied by synchrotron x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Renault, P.O., E-mail: Pierre.olivier.renault@univ-poitiers.fr [Institut P' , CNRS, Universite de Poitiers, UPR 3346, 86962 Futuroscope (France); Krauss, C.; Le Bourhis, E.; Geandier, G. [Institut P' , CNRS, Universite de Poitiers, UPR 3346, 86962 Futuroscope (France); Benedetto, A. [Saint-Gobain Recherche (SGR), 93303 Aubervilliers (France); Grachev, S.Y.; Barthel, E. [Lab. Surface du Verre et Interfaces (SVI), UMR-CNRS 125, 93303 Aubervilliers (France)

    2011-12-30

    Residual-stress evolution in sputtered encapsulated ZnO/Ag/ZnO stack has been studied in-situ by synchrotron x-ray diffraction when heat treated. The ZnO/Ag/ZnO stack encapsulated into Si{sub 3}N{sub 4} layers and deposited on (001) Si substrates was thermally heated from 25 Degree-Sign C to 600 Degree-Sign C and cooled down to 25 Degree-Sign C. X-ray diffraction 2D patterns captured continuously during the heat treatment allowed monitoring the diffraction peak shifts of both Ag (15 nm thick) and ZnO (10 nm and 50 nm thick) sublayers. Due to the mismatch between the coefficients of thermal expansion, the silicon substrate induced compressive thermal stresses in the films during heating. We first observed a linear increase of the compressive stress state in both Ag and ZnO films and then a more complex elastic-stress evolution starts to operate from about 100 Degree-Sign C for Ag and about 250 Degree-Sign C for ZnO. Thermal contraction upon cooling seems to dominate so that the initial compressive film stresses relax by about 300 and 700 MPa after thermal treatment for ZnO and Ag, respectively. The overall behavior is discussed in terms of structural changes induced by the heat treatment.

  8. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array

    International Nuclear Information System (INIS)

    Deng, S; Zhang, X; Loh, K P; Fan, H M; Sow, C H; Cheng, C-L; Foo, Y L

    2009-01-01

    An effective surface-enhanced Raman scattering (SERS) template based on a 3D hybrid Ag nanocluster (NC)-decorated ZnO nanowire array was fabricated through a simple process of depositing Ag NCs on ZnO nanowire arrays. The effects of particle size and excitation energy on the Raman scattering in these hybrid systems have been investigated using rhodamine 6G as a standard analyte. The results indicate that the hybrid nanosystem with 150 nm Ag NCs produces a larger SERS enhancement factor of 3.2 x 10 8 , which is much higher than that of 10 nm Ag NCs (6.0 x 10 6 ) under 532 nm excitation energy. The hybrid nanowire arrays were further applied to obtain SERS spectra of the two-photon absorption (TPA) chromophore T7. Finite-difference time-domain simulations reveal the presence of an enhanced field associated with inter-wire plasmon coupling of the 150 nm Ag NCs on adjacent ZnO nanowires; such a field was absent in the case of the 10 nm Ag NC-coated ZnO nanowire. Such hybrid nanosystems could be used as SERS substrates more effectively than assembled Ag NC film due to the enhanced light-scattering local field and the inter-wire plasmon-enhanced electromagnetic field.

  9. Ultraviolet photosensors fabricated with Ag nanowires coated with ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guan-Hung [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Hong, Franklin Chau-Nan, E-mail: hong@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); NCKU Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    We have developed a simple low temperature process to coat zinc oxide (ZnO) nanoparticles (NPs) on Ag nanowires (NWs) with well-controlled morphology. Triethanolamine (TEA) was employed to react with zinc acetate (Zn(CH{sub 3}COO){sub 2}) forming ZnO NPs. TEA was also found to enhance the nucleation and binding of ZnO NPs on the Ag nanowire surfaces facilitating a complete coverage of Ag nanowire surfaces with ZnO NPs. The effects of the process parameters including reaction time and reaction temperature were studied. The surfaces of 60 nm diameter Ag NWs could be completely covered with ZnO NPs with the final diameters of Ag-NWs@ZnO (core–shell NWs) turning into the range from 100 nm to 450 nm. The Ag-NWs@ZnO was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray mapping analysis, X-ray diffraction, and photoluminescence spectra. Finally, ultraviolet (UV) photosensors were fabricated using Ag-NWs@ZnO. They were found to improve photosensitivity with greatly enhanced fast response by reducing the recovery time by 2 orders, in comparison with the UV-sensors using single-crystalline ZnO NWs. - Highlights: • Solution process to coat ZnO nanoparticles on Ag nanowires has been developed. • Ultraviolet photosensing of ZnO nanoparticles coated on the Ag nanowires was found. • High defect concentration of ZnO nanoparticles enhanced the photosensing properties.

  10. Equilibrium phase diagram of the Ag-Au-Pb ternary system

    International Nuclear Information System (INIS)

    Hassam, S.; Bahari, Z.

    2005-01-01

    The phase diagram of the ternary system Ag-Au-Pb has been established using differential thermal analysis and X-ray powder diffraction analysis. Four vertical sections were studied: X Pb = 0.40, X Au /X Pb = 1/3, X Ag /X Au = 4/1 and X Ag /X Au = 1/1. Two ternary transitory peritectics and one ternary eutectic were characterized. A schematic representation of the ternary equilibria is given

  11. Rock magnetic survey of Himalaya-Karakoram ranges, northern Pakistan; Pakistan hokubu, Himalaya-Karakoram tai no ganseki jikigakuteki chosa

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, M [Geoscience Co. Ltd., Tokyo (Japan); Khadim, I; Ahmad, M [Geological Survey of Pakistan, Islamabad (Pakistan)

    1997-10-22

    This paper describes results of the rock magnetic survey mainly including measurement of magnetic susceptibility conducted in the northern Pakistan from 1992 to 1997. Magnetic characteristics in Himalaya-Karakoram ranges and prospective ore deposits are also described. Magnetic susceptibility data measured in this district were summarized as a frequency map in each geological block. Granitoids in the northern part of Kohistan batholith and granitoids of Ladakh batholith showed remarkably high magnetic susceptibility values, which suggested they are magnetite-series magmatism. It has been known that magnetite-series magmatism often accompanies sulfide-forming mineral resources, which suggests high potentiality of abundant mineral resources containing Mo, Cu, Pb, Zn, Ag and Au. From the results of the magnetic susceptibility measurements and the above-mentioned models, accordingly, it can be pointed out that the northern part of Kohistan batholith, the distribution area of Ladakh batholith, and surrounding areas are promising targets for mineral resources exploration in the Himalaya-Karakoram ranges, northern Pakistan. 5 refs., 3 figs.

  12. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    Science.gov (United States)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing

    2016-12-01

    We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  13. Defect complexes formed with Ag atoms in CDTE, ZnTe, and ZnSe

    CERN Document Server

    Wolf, H; Ostheimer, V; Hamann, J; Lany, S; Wichert, T

    2000-01-01

    Using the radioactive acceptor $^{111}\\!$Ag for perturbed $\\gamma$-$\\gamma$-angular correlation (PAC) spectroscopy for the first time, defect complexes formed with Ag are investigated in the II-VI semiconductors CdTe, ZnTe and ZnSe. The donors In, Br and the Te-vacancy were found to passivate Ag acceptors in CdTe via pair formation, which was also observed in In-doped ZnTe. In undoped or Sb-doped CdTe and in undoped ZnSe, the PAC experiments indicate the compensation of Ag acceptors by the formation of double broken bond centres, which are characterised by an electric field gradient with an asymmetry parameter close to h = 1. Additionally, a very large electric field gradient was observed in CdTe, which is possibly connected with residual impurities.

  14. Effect of ZnO and PbO/ZnO on structural and thermal properties of tellurite glasses

    International Nuclear Information System (INIS)

    Ramamoorthy, Raj Kumar; Bhatnagar, Anil K

    2015-01-01

    Highlights: • Structural units/linkages variation of TeO 2 -ZnO and TeO 2 -ZnO-PbO glasses was studied. • Structural arrangements of TeO 2 -ZnO glasses are rich in Te-O-Te network. • A mixture of Te-O-Te and Te-O-Pb networks is identified in TeO 2 -ZnO-PbO glasses. • Changes in thermal parameters T g and T o are correlated with the structural variations. • 15PbO and 20PbO samples of TeO 2 -ZnO-PbO glasses show large thermal stability. - Abstract: Two series of glasses, (100 − x)TeO 2 -xZnO (x = 20, 25, 30, 35) and 70TeO 2 -(30 − y)ZnO-yPbO (y = 5, 10, 15, 20), referred as TZ and TZP, respectively, were prepared by a melt quenching technique and characterized by X-ray diffraction (XRD), density, refractive index, Raman scattering and differential scanning calorimetry (DSC) to observe the changes in their properties as a function of ZnO and PbO/ZnO. Variations in individual structural units/linkages in these glasses are derived from the de-convoluted Raman spectra. The glass transition (T g ) and onset of crystallization (T o ) temperatures are determined from DSC isothermal scans. It is observed that the thermal stability (ΔT = T o − T g ) decreases for TZ glasses with increase in x, while it increases for TZP glasses with increase in y. Changes in thermal parameters of these glasses are correlated with the structural variation as a function of ZnO and PbO/ZnO ratio to determine the effect of substitution/addition of metal oxide, ZnO and PbO, to TeO 2 and TeO 2 -ZnO glasses

  15. Mineralogical, chemical, and crystallographic properties of supergene jarosite-group minerals from the Xitieshan Pb-Zn sulfide deposit, northern Tibetan Plateau, China

    Science.gov (United States)

    Chen, Lei; Li, Jian-Wei; Rye, Robert O.; Benzel, William H.; Lowers, H.A.; He, Ming-Zhong

    2013-01-01

    Supergene jarosite-group minerals are widespread in weathering profiles overlying Pb-Zn sulfide ores at Xitieshan, northern Tibetan Plateau, China. They consist predominantly of K-deficient natrojarosite, with lesser amounts of K-rich natrojarosite and plumbojarosite. Electron microprobe (EMP) analyses, scanning electron microcopy (SEM) investigation, and X-ray mapping reveal that the jarosite-group minerals are characterized by spectacular oscillatory zoning composed of alternating growth bands of K-deficient and K-bearing natrojarosite (K2O >1 wt.%). Plumbojarosite, whenever present, occurs as an overgrowth in the outermost bands, and its composition can be best represented by K0.29Na0.19Pb0.31Fe2.66Al0.22(SO4)1.65(PO4)0.31(AsO4)0.04(OH)7.37. The substitution of monovalent for divalent cations at the A site of plumbojarosite is charge balanced by the substitution of five-valent for six-valent anions in XO,4/sub> at the X site. Thermogravimetric analysis (TGA) of representative samples reveal mass losses of 11.46 wt.% at 446.6 °C and 21.42 wt.% at 683.4 °C due to dehydroxylation and desulfidation, respectively. TGA data also indicate that the natrojarosite structure collapses at 446.6 °C, resulting in the formation of NaFe(SO4)2 and minor hematite. The decomposition products of NaFe(SO4) are hematite and Na,2SO4. Powder X-ray diffraction (XRD) analyses show that the jarosite-group minerals have mean unit-cell parameters of a=7.315 ä and c=016.598 ä. XRD and EMP data support the view that substitutions of Na for K in the A site and full Fe occupancy in the B site can considerably decrease the unit-cell parameter c, but only slightly increase a. The results from this study suggest that the observed oscillatory zoning of jarosite-group minerals at Xitieshan resulted mainly from substitutions of K for Na at the A site and P for S at the X site.

  16. Adsorpsi Pb2+ dan Zn2+ pada Biomassa Imperata cylindrica

    Directory of Open Access Journals (Sweden)

    Noer Komari

    2017-03-01

    Full Text Available Metode alternatif untuk mengatasi pencemaran logam berat adalah biosorpsi menggunakan biomassa sebagai adsorben. Telah dilakukan penelitian kajian adsorpsi campuran Pb2+ dan Zn2+ pada biomassa Imperata cylindrica sebagai adsorben. Tujuan penelitian adalah mengetahui kemampuan biomassa mengadsorpsi Pb2+ dan Zn2+. Preparasi biomassa dilakukan dengan aktivasi menggunakan asam nitrat dan amonium hidroksida. Adsorpsi dilakukan dengan sistem batch. Parameter yang diukur adalah pH optimum, waktu kontak optimum, kapasitas adsorpsi dan recovery ion logam. Analisis kadar logam dilakukan dengan menggunakan Spektrofotometer Serapan Atom (AAS. Hasil penelitian menunjukkan pH optimum adsorpsi Pb2+ dan Zn2+ masing-masing pada pH 5 dan pH 6. Waktu kontak optimum adsorpsi Pb2+ dan Zn2+ masing masing pada 40 menit dan 30 pertama. Kapasitas adsorpsi Pb2+ dan Zn2+ pada konsentrasi awal 10 ppm masing-masing adalah 90,95% dan 43,60%. Recovery Pb2+ dan Zn2+ masing-masing 84,45% dan 57,13%.

  17. Identification of Ag-acceptors in $^{111}Ag^{111}Cd$ doped ZnTe and CdTe

    CERN Document Server

    Hamann, J; Deicher, M; Filz, T; Lany, S; Ostheimer, V; Strasser, F; Wolf, H; Wichert, T

    2000-01-01

    Nominally undoped ZnTe and CdTe crystals were implanted with radioactive /sup 111/Ag, which decays to /sup 111/Cd, and investigated by photoluminescence spectroscopy (PL). In ZnTe, the PL lines caused by an acceptor level at 121 meV are observed: the principal bound exciton (PBE) line, the donor-acceptor pair (DAP) band, and the two-hole transition lines. In CdTe, the PBE line and the DAP band that correspond to an acceptor level at 108 meV appear. Since the intensities of all these PL lines decrease in good agreement with the half-life of /sup 111/Ag of 178.8 h, both acceptor levels are concluded to be associated with defects containing a single Ag atom. Therefore, the earlier assignments to substitutional Ag on Zn- and Cd-lattice sites in the respective II-VI semiconductors are confirmed. The assignments in the literature of the S/sub 1/, S /sub 2/, and S/sub 3/ lines in ZnTe and the X/sub 1//sup Ag/, X/sub 2 //sup Ag//C/sub 1//sup Ag/, and C/sub 2//sup Ag/ lines in CdTe to Ag- related defect complexes are ...

  18. 2π absolute measurement research for α-electroplating source covering ZnS(Ag)

    International Nuclear Information System (INIS)

    Zhu Tianxia

    1999-01-01

    2π absolute measurement can be completed after the quantitative deposit (5 +- 1) mg/cm 2 with ZnS(Ag) on surface of the alpha electroplating source. The measuring efficiency is 100%. This method is suitable for both of electroplating ordinary sample and electroplating standard (of reference) source

  19. A Detailed Analysis of Aerosols Containing Zn, Pb, and Cl from an Industrial Region of Mexico City

    Science.gov (United States)

    Moffet, R. C.; Desyaterik, Y.; Hopkins, R. J.; Tivanski, A. V.; Gilles, M. K.; Shutthanandan, V.; Molina, L. T.; Gonzalez-Abraham, R.; Johnson, K. S.; Mugica, V.; Molina, M. J.; Laskin, A.; Prather, K. A.

    2008-12-01

    Measurements in the Northern Mexico City Metropolitan Area during the March, 2006 MILAGRO campaign revealed the frequent appearance of particles with a characteristically high content of internally mixed Zn, Pb, Cl, and P. A detailed analysis of the chemical and physical properties of these particles was performed using a complementary combination of aerosol measurement techniques. Single particles were analyzed using Aerosol Time-of-Flight Mass Spectrometry (ATOFMS) and Computer Controlled Scanning Electron Microscopy/Energy Dispersive X-Ray spectroscopy (CCSEM/EDX). Proton Induced X-Ray Emission (PIXE) analysis of bulk aerosol samples provided time-resolved mass concentrations of individual elements. The PIXE measurements indicated that Zn is more strongly correlated with Cl than with any other element and that Zn concentrations are higher than other non-ferrous transition metals. The Zn- and Pb - containing particles have both spherical and non-spherical morphologies. Many metal rich particles had needle-like structures and were found to be composed of ZnO and/or Zn(NO3)2-6H2O as indicated by scanning transmission x-ray microscopy/near edge X-ray absorption spectroscopy (STXM/NEXAFS). The Zn and Pb rich particles were primarily in the submicron size range and internally mixed with elemental carbon. The unique chemical associations most closely match signatures acquired for garbage incineration.

  20. Enhanced photocatalytic activity and characterization of magnetic Ag/BiOI/ZnFe2O4 composites for Hg0 removal under fluorescent light irradiation

    Science.gov (United States)

    Li, Chengwei; Zhang, Anchao; Zhang, Lixiang; Song, Jun; Su, Sheng; Sun, Zhijun; Xiang, Jun

    2018-03-01

    A series of magnetic Ag/BiOI/ZnFe2O4 hybrids synthesized via hydrothermal process, subsequent deposition-precipitation and photoreduction method were employed to remove elemental mercury (Hg0) under fluorescent light irradiation. The effects of Ag content, fluorescent light irradiation, reaction temperature, pH value, flue gas composition, anions and photocatalyst dosage on Hg0 removal were investigated in detail. The as-synthesized photocatalysts were characterized using N2 adsorption-desorption, XRD, SEM, TEM, HRTEM, XPS, VSM, DRS, ESR, PL and photocurrent response. The results showed that the ternary Ag/BiOI/ZnFe2O4 hybrids possessed enhanced visible-light-responsive photocatalytic performances for Hg0 removal. Ag/BiOI/ZnFe2O4 photocatalyst could be easily recovered from the reaction solution by an extra magnet and was stable in the process of Hg0 removal. Lower content of Ag was highly dispersed on the surface of BiOI/ZnFe2O4, while higher content of Ag would result in some aggregations and/or the blockages of micropore. In comparison to BiOI/ZnFe2O4, Ag deposited BiOI/ZnFe2O4 material showed lower recombination rate of electron-hole pairs. The superior Hg0 oxidation removal could correspond to good match of BiOI and ZnFe2O4, excellent fluidity and surface plasmon resonance effect of Ag0 nanoparticles, which led to higher separation efficiency of photogenerated electrons and holes, thereby enhancing the hybrids' photocatalytic activity.

  1. Cretaceous – Paleogene boundary Fish Clay at Højerup (Stevns Klint, Denmark: Zn, Pb and REE in kerogen

    Directory of Open Access Journals (Sweden)

    MILOS G. DJORDJEVIC

    2008-04-01

    Full Text Available Geochemical analyses of Zn, Pb and rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu in the kerogen of the black marl at the Cretaceous – Paleogene boundary Fish Clay at Højerup were performed. Substantial proportions of the Zn, Pb and rare earths were probably contained in terrestrial humic substances (the kerogen precursor arriving at the marine sedimentary site. This is in accord with a previous hypothesis that kerogen is mainly derived from humic acids of an oxic soil in of the adjacent coastal areas of eastern Denmark. It is also suggested that humics enriched in Zn, Pb and rare earth elements were transported mainly through fluvial transport into the deposition site of the Fish Clay. Local weathering/leaching of the impact–eject fallout on the land surface and local terrestrial rocks by impact-induced? acid surface waters perhaps played an important role in providing Zn, Pb and rare earths to these humic substances. Apparently, chondritic and non-chondritic Zn originated from the impact fallout; Pb and rare earth elements were most likely sourced by exposed rocks in the coastal areas of eastern Denmark.

  2. Geological setting, isotope studies (C, O and Pb) and associated metals in the Tocantinzinho gold deposit, Tapajos domain, Tapajos-Parima Province; Contexto geologico, estudos isotopicos (C, O e Pb) e associacao metalica do deposito aurifero Tocantinzinho, dominio Tapajos, Provincia Tapajos-Parima

    Energy Technology Data Exchange (ETDEWEB)

    Villas, Raimundo Netuno Nobre [Universidade Federal do Para (UFPA), Belem, PA (Brazil); Santiago, Erika Suellen Barbosa; Castilho, Marilia Portela, E-mail: netuno@ufpa.br, E-mail: esbsantiago@gmail.com, E-mail: castilho.marilia@hotmail.com [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Inst. de Geociencias. Programa de Pos-graduacao em Geologia e Geoquimica

    2013-03-15

    The Tocantinzinho ore deposit is located along a NW-SE-trending lineament, southwestern of Itaituba (Para, Brazil), and is the largest known gold deposit of the Tapajos Province. The host Tocantinzinho granite is essentially isotropic and dominated by syenogranites and monzogranites that have been weakly to moderately altered by hydrothermal fluids. Microclinization (earliest), chloritization, sericitization, silicification and carbonatization (latest) are the main types of alteration. Most mineralization was contemporaneous with the sericitization/silicification and is represented by sulfide- and gold-bearing veinlets which locally occur as stockwork. Pyrite, chalcopyrite, sphalerite and galena are the most common sulfides. Among the ore metals, Cu, Pb and Zn present the highest contents, but Mo, As and Bi locally show anomalous concentrations. The relationship of Au with Cu, Pb or Zn is at random and the Au/Ag ratios range from 0.05 to 0.5. The higher the sulfide contents, the higher the Au concentrations, though it occurs mainly included in pyrite. Zircon monocrystals from the Tocantinzinho granite yielded an average Pb-Pb age of 1982 {+-}8Ma and may represent an earlier event of the Creporizao magmatic arc. {delta}{sup 13}C{sub PDB} values for calcite from the carbonatization stage fall dominantly between -3.45 and -2.29 Per-Mille-Sign , being compatible with a deep crustal source that may include carbonatite reservoirs. In turn, {delta}{sup 18}O{sub SMOW} values vary from +5.97 to +14.10 Per-Mille-Sign , being indicative of magmatic derivation, although the less positive values suggest contribution from surficial waters. Unpublished fluid inclusion study reveals the presence of aquo-carbonic fluids, whose CO{sub 2} could have been dissolved in the granitic magma rather than being related to the shear zone. The available data allow the Tocantinzinho deposit to be classified as a granite-hosted, intrusion-related gold deposit. (author)

  3. Deposition of airborne metals around the lead-zinc mine in Maarmorilik monitored by lichens and mosses

    International Nuclear Information System (INIS)

    Pilegaard, K.

    1994-01-01

    The deposition of heavy metals around the Pb-Zn mine in Maarmorilik (Greenland) was monitored during the year 1979-1990 by analyses of concentrations in in situ lichens (Cetraria nivalis and Umbilicaria Lyngei) and higher plants (rhododendron lapponicum). Concentrations of the metals Ag, As, Cd, Cu, Hg, Pb, S b and Zn decreased with increasing distance from the mining and milling complex according to the model: y = ax b + C where y = concentrations, x = distance, c = background concentration, a and b = constants. The spread was most pronounced west of Maarmorilik. Exposed Pb-Zn mineralizations in the area were found not to influence the overall deposition pattern. The transport of pollutants to higher altitudes was little. Airborne pollution with Cd, Pb and Zn was monitored with suspended Sphagnumbags during a period with ship-loading of concentrates and compared to a period without this activity. There was a strongly increased deposition of airborne Cd, Pb and Zn during periods of ship-loading. The primary sources of pollution were the concentrate conveyor and the ship-loader. Sphagnum-bags were also used to monitor the effects of remedial actions carried out in the mining town. Analyses of the concentrations of Pb in Cetraria during the years 1979 to 1990 showed that pollution during the last years was only about half as large as during the early years. This decrease is attributed to the pollution abatement carried out at the mining complex. (au) (23 refs.)

  4. Structure and properties of nanostructured ZnO arrays and ZnO/Ag nanocomposites fabricated by pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Kopach, V. R.; Klepikova, K. S.; Klochko, N. P., E-mail: klochko-np@mail.ru; Khrypunov, G. S.; Korsun, V. E.; Lyubov, V. M.; Kirichenko, M. V.; Kopach, A. V. [National Technical University “Kharkiv Polytechnic Institute” (Ukraine)

    2017-03-15

    We investigate the structure, surface morphology, and optical properties of nanostructured ZnO arrays fabricated by pulsed electrodeposition, Ag nanoparticles precipitated from colloidal solutions, and a ZnO/Ag nanocomposite based on them. The electronic and electrical parameters of the ZnO arrays and ZnO/Ag nanocomposites are analyzed by studying the I–V and C–V characteristics. Optimal modes for fabricating the ZnO/Ag heterostructures with the high stability and sensitivity to ultraviolet radiation as promising materials for use in photodetectors, gas sensors, and photocatalysts are determined.

  5. Distribution and evolution of Zn, Cd, and Pb in Apollo 16 regolith samples and the average U-Pb ages of the parent rocks

    Science.gov (United States)

    Cirlin, E. H.; Housley, R. M.

    1982-01-01

    The concentration of surface (low temperature site) and interior (high temperature site) Cd, Zn, and Pb in 13 Apollo 16 highland fines samples, pristine rock 65325, and mare fines sample 75081 were analyzed directly from the thermal release profiles obtained by flameless atomic absorption technique (FLAA). Cd and Zn in pristine ferroan anothosite 65325, anorthositic grains of the most mature fines 65701, and basaltic rock fragments of mare fines 75081 were almost all surface Cd and Zn indicating that most volatiles were deposited on the surfaces of vugs, vesicles and microcracks during the initial cooling process. A considerable amount of interior Cd and Zn was observed in agglutinates. This result suggests that high temperature site interior volatiles originate from entrapment during the lunar maturation processes. Interior Cd found in the most mature fines sample 65701 was only about 15% of the total Cd in the sample. Interior Pb present in Apollo 16 fines samples went up to 60%. From our Cd studies we can assume that this interior Pb in highland fines samples is largely due to the radiogenic decay which occurred after the redistribution of the volatiles took place. We obtained an average age of 4.0 b.y. for the parent rocks of Apollo 16 highland regolith from our interior Pb analyses.

  6. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe2O4 nanocomposites

    International Nuclear Information System (INIS)

    Li, Xiaojuan; Tang, Duanlian; Tang, Fan; Zhu, Yunyan; He, Changfa; Liu, Minghua; Lin, Chunxiang; Liu, Yifan

    2014-01-01

    Highlights: • A plasmonic Ag/AgBr/ZnFe 2 O 4 photocatalyst has been successfully synthesized. • Ag/AgBr/ZnFe 2 O 4 nanocomposites exhibit high visible light photocatalytic activity. • Ag/AgBr/ZnFe 2 O 4 photocatalyst is stable and magnetically separable. - Abstract: A visible-light-driven plasmonic Ag/AgBr/ZnFe 2 O 4 nanocomposite has been successfully synthesized via a deposition–precipitation and photoreduction through a novel one-pot process. X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy were employed to investigate the crystal structure, chemical composition, morphology, and optical properties of the as-prepared nanocomposites. The photocatalytic activities of the nanocomposites were evaluated by photodegradation of Rhodamine B (RhB) and phenol under visible light. The results demonstrated that the obtained Ag/AgBr/ZnFe 2 O 4 nanocomposites exhibited higher photocatalytic activity as compared to pure ZnFe 2 O 4 . In addition, the sample photoreduced for 20 min and calcined at 500 °C achieved the highest photocatalytic activity. Furthermore, the Ag/AgBr/ZnFe 2 O 4 nanocomposite has high stability under visible light irradiation and could be conveniently separated by using an external magnetic field

  7. Ag-CuO-ZnO metal-semiconductor multiconcentric nanotubes for achieving superior and perdurable photodegradation.

    Science.gov (United States)

    Xu, Kaichen; Wu, Jiagen; Tan, Chuan Fu; Ho, Ghim Wei; Wei, Ang; Hong, Minghui

    2017-08-17

    Solar energy represents a robust and natural form of resource for environment remediation via photocatalytic pollutant degradation with minimum associated costs. However, due to the complexity of the photodegradation process, it has been a long-standing challenge to develop reliable photocatalytic systems with low recombination rates, excellent recyclability, and high utilization rates of solar energy, especially in the visible light range. In this work, a ternary hetero-nanostructured Ag-CuO-ZnO nanotube (NT) composite is fabricated via facile and low-temperature chemical and photochemical deposition methods. Under visible light irradiation, the as-synthesized ZnO NT based ternary composite exhibits a greater enhancement (∼300%) of photocatalytic activity than its counterpart, Ag-CuO-ZnO nanorods (NRs), in pollutant degradation. The enhanced photocatalytic capability is primarily attributed to the intensified visible light harvesting, efficient charge carrier separation and much larger surface area. Furthermore, our as-synthesised hybrid ternary Ag-CuO-ZnO NT composite demonstrates much higher photostability and retains ∼98% of degradation efficiency even after 20 usage cycles, which can be mainly ascribed to the more stable polar planes of ZnO NTs than those of ZnO NRs. These results afford a new route to construct ternary heterostructured composites with perdurable performance in sewage treatment and photocorrosion suppression.

  8. Highly enhanced photocurrent of novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films for photoelectrochemical applications

    International Nuclear Information System (INIS)

    Gohel, Jignasa V.; Jana, A.K.; Singh, Mohit

    2017-01-01

    A novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films synthesized by low-cost process. The properties of ZnO are also enhanced by doping and co-doping. It is also compared with quantum-dot co-sensitization. Optical properties, crystal structure, morphology, and photocurrent are characterized by UV-Vis spectroscopy, XRD, SEM, and solar simulator, respectively. The bandgap is interestingly reduced highly to 2.6 eV for Ag co-doped Cu:ZnO. It is unprecedentedly reduced to 2.1 eV and even 1.97 eV for CdS and PbS-Hg QD-sensitized thin films, respectively. An exceptionally enhanced photocurrent of 17.1 mA/cm"2 is achieved with PbS-Hg-co-sensitized CdS-sensitized Cu:ZnO thin film. This is an excellent achievement, which highly supports the potential of low-cost solar conversion. (orig.)

  9. Highly enhanced photocurrent of novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films for photoelectrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gohel, Jignasa V.; Jana, A.K.; Singh, Mohit [Sardar Vallabhbhai National Institute of Technology, Chemical Engineering Department, Surat, Gujarat (India)

    2017-08-15

    A novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films synthesized by low-cost process. The properties of ZnO are also enhanced by doping and co-doping. It is also compared with quantum-dot co-sensitization. Optical properties, crystal structure, morphology, and photocurrent are characterized by UV-Vis spectroscopy, XRD, SEM, and solar simulator, respectively. The bandgap is interestingly reduced highly to 2.6 eV for Ag co-doped Cu:ZnO. It is unprecedentedly reduced to 2.1 eV and even 1.97 eV for CdS and PbS-Hg QD-sensitized thin films, respectively. An exceptionally enhanced photocurrent of 17.1 mA/cm{sup 2} is achieved with PbS-Hg-co-sensitized CdS-sensitized Cu:ZnO thin film. This is an excellent achievement, which highly supports the potential of low-cost solar conversion. (orig.)

  10. Photoemission studies of zinc-noble metal alloys: Zn--Cu, Zn--Ag, and Zn--Au films on Ru(001)

    International Nuclear Information System (INIS)

    Rodriguez, J.A.; Hrbek, J.

    1993-01-01

    Zn and the noble metals alloy when coadsorbed on Ru(001). The properties of Zn--Cu, Zn--Ag, and Zn--Au alloys have been studied using core- and valence-level photoemission and temperature programmed desorption. Alloy formation induces only small shifts (-0.2 to -0.3 eV) in the position of the Zn 2p, 3s, and 3d levels. In contrast, the core and valence levels of the noble metals show large shifts toward higher binding energy. For small amounts of Cu, Ag, and Au dissolved in Zn multilayers, the shifts in the core levels of the nobel metals follow the sequence: Cu(2p 3/2 ), 0.8 eV∼Ag(3d 5/2 ), 0.8 eV 7/2 ), 1.4 eV. The magnitude of the shift increases as the Pauling electronegativity of the noble metal increases. However, the sign of the shifts for the Cu(2p 3/2 ), Ag(3d 5/2 ), or Au(4f 7/2 ) levels is not directly determined by the direction of charge transfer within the corresponding Zn-noble metal bond

  11. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    Science.gov (United States)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  12. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source.

    Science.gov (United States)

    Chrastný, Vladislav; Vaněk, Aleš; Teper, Leslaw; Cabala, Jerzy; Procházka, Jan; Pechar, Libor; Drahota, Petr; Penížek, Vít; Komárek, Michael; Novák, Martin

    2012-04-01

    The soils adjacent to an area of historical mining, ore processing and smelting activities reflects the historical background and a mixing of recent contamination sources. The main anthropogenic sources of metals can be connected with historical and recent mine wastes, direct atmospheric deposition from mining and smelting processes and dust particles originating from open tailings ponds. Contaminated agriculture and forest soil samples with mining and smelting related pollutants were collected at different distances from the source of emission in the Pb-Zn-Ag mining area near Olkusz, Upper Silesia to (a) compare the chemical speciation of metals in agriculture and forest soils situated at the same distance from the point source of pollution (paired sampling design), (b) to evaluate the relationship between the distance from the polluter and the retention of the metals in the soil, (c) to describe mineralogy transformation of anthropogenic soil particles in the soils, and (d) to assess the effect of deposited fly ash vs. dumped mining/smelting waste on the mobility and bioavailability of metals in the soil. Forest soils are much more affected with smelting processes than agriculture soils. However, agriculture soils suffer from the downward metal migration more than the forest soils. The maximum concentrations of Pb, Zn, and Cd were detected in a forest soil profile near the smelter and reached about 25 g kg(- 1), 20 g kg(- 1) and 200 mg kg(- 1) for Pb, Zn and Cd, respectively. The metal pollutants from smelting processes are less stable under slightly alkaline soil pH then acidic due to the metal carbonates precipitation. Metal mobility ranges in the studied forest soils are as follows: Pb > Zn ≈ Cd for relatively circum-neutral soil pH (near the smelter), Cd > Zn > Pb for acidic soils (further from the smelter). Under relatively comparable pH conditions, the main soil properties influencing metal migration are total organic carbon and cation exchange

  13. New insights into trace elements deposition in the snow packs at remote alpine glaciers in the northern Tibetan Plateau, China.

    Science.gov (United States)

    Dong, Zhiwen; Kang, Shichang; Qin, Xiang; Li, Xiaofei; Qin, Dahe; Ren, Jiawen

    2015-10-01

    Trace element pollution resulting from anthropogenic emissions is evident throughout most of the atmosphere and has the potential to create environmental and health risks. In this study we investigated trace element deposition in the snowpacks at two different locations in the northern Tibetan Plateau, including the Laohugou (LHG) and the Tanggula (TGL) glacier basins, and its related atmospheric pollution information in these glacier areas, mainly focusing on 18 trace elements (Li, Be, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Nb, Mo, Cd, Sb, Cs, Ba, Tl, and Pb). The results clearly demonstrate that pronounced increases of both concentrations and crustal enrichment factors (EFs) are observed in the snowpack at the TGL glacier basin compared to that of the LHG glacier basin, with the highest EFs for Sb and Zn in the TGL basin, whereas with the highest EFs for Sb and Cd in the LHG basin. Compared with other studies in the Tibetan Plateau and surrounding regions, trace element concentration showed gradually decreasing trend from Himalayan regions (southern Tibetan Plateau) to the TGL basin (central Tibetan Plateau), and to the LHG basin (northern Tibetan Plateau), which probably implied the significant influence of atmospheric trace element transport from south Asia to the central Tibetan Plateau. Moreover, EF calculations at two sites showed that most of the heavy metals (e.g., Cu, Zn, Mo, Cd, Sb, and Pb) were from anthropogenic sources and some other elements (e.g., Li, Rb, and Ba) were mainly originated from crustal sources. MODIS atmospheric optical depth (AOD) fields derived using the Deep Blue algorithm and CALIOP/CALIPSO transect showed significant influence of atmospheric pollutant transport from south Asia to the Tibetan Plateau, which probably caused the increased concentrations and EFs of trace element deposition in the snowpack on the TGL glacier basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A study of VMS ore deposits by the proton microprobe

    International Nuclear Information System (INIS)

    Huston, D.L.; Large, R.R.; Bottril, R.S.; Sie, S.H.; Ryan, C.G.

    1991-01-01

    As part of studies into the mineralogical distribution of gold in volcanogenic massive sulfide (VMS) ore deposits PIXE analysis by the proton microprobe has been used to determine the gold content of pyrite and arsenopyrite from the Rosebery, Mt. Chalmers and Mt. Lyell deposits. In addition, the concentrations of Co, Ni, Cu, Zn, As, Sr, Y, Zr, Mo, Ag, Sb, Te, Au, Tl, Pb and Bi were also determined. 4 refs., 1 tab

  15. Some physico-chemical properties of liquid Ag-Sn-Zn

    International Nuclear Information System (INIS)

    Terzieff, P.

    2010-01-01

    The mean square concentration fluctuations in the long wavelength limit, the surface tension, the segregation behavior and the viscosity of the liquid system Ag-Sn-Zn are calculated in a semi-empirical manner based on experimental thermodynamic data. The increased intensity of fluctuations in the concentration of Sn extending over an wide range of composition is the dominant feature of the system. In a likewise manner, the tendency of segregation into the surface layer is observed to be most noticeable for Sn-atoms. As a consequence, even at massive additions of Ag or Zn up to 60 at% the surface tension is expected not to exceed the value of pure Sn by more than 15%. The viscosities are indicated to increase markedly but in a non-linear manner with the content of Ag. The excess viscosity is found to be negative throughout the system being more pronounced on the Ag-Sn side than on the Ag-Zn or the Sn-Zn side of the system.

  16. Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa

    Science.gov (United States)

    Li, Junli; Sang, Hyunkyu; Guo, Huiyuan; Popko, James T.; He, Lili; White, Jason C.; Parkash Dhankher, Om; Jung, Geunhwa; Xing, Baoshan

    2017-04-01

    Fungicides have extensively been used to effectively combat fungal diseases on a range of plant species, but resistance to multiple active ingredients has developed in pathogens such as Sclerotinia homoeocarpa, the causal agent of dollar spot on cool-season turfgrasses. Recently, ZnO and Ag nanoparticles (NPs) have received increased attention due to their antimicrobial activities. In this study, the NPs’ toxicity and mechanisms of action were investigated as alternative antifungal agents against S. homoeocarpa isolates that varied in their resistance to demethylation inhibitor (DMI) fungicides. S. homoeocarpa isolates were treated with ZnO NPs and ZnCl2 (25-400 μg ml-1) and Ag NPs and AgNO3 (5-100 μg ml-1) to test antifungal activity of the NPs and ions. The mycelial growth of S. homoeocarpa isolates regardless of their DMI sensitivity was significantly inhibited on ZnO NPs (≥200 μg ml-1), Ag NPs (≥25 μg ml-1), Zn2+ ions (≥200 μg ml-1), and Ag+ ions (≥10 μg ml-1) amended media. Expression of stress response genes, glutathione S-transferase (Shgst1) and superoxide dismutase 2 (ShSOD2), was significantly induced in the isolates by exposure to the NPs and ions. In addition, a significant increase in the nucleic acid contents of fungal hyphae, which may be due to stress response, was observed upon treatment with Ag NPs using Raman spectroscopy. We further observed that a zinc transporter (Shzrt1) might play an important role in accumulating ZnO and Ag NPs into the cells of S. homoeocarpa due to overexpression of Shzrt1 significantly induced by ZnO or Ag NPs within 3 h of exposure. Yeast mutants complemented with Shzrt1 became more sensitive to ZnO and Ag NPs as well as Zn2+ and Ag+ ions than the control strain and resulted in increased Zn or Ag content after exposure. This is the first report of involvement of the zinc transporter in the accumulation of Zn and Ag from NP exposure in filamentous plant pathogenic fungi. Understanding the molecular

  17. Effects of Deposited Metallic Silver on Nano-ZnO for the ...

    African Journals Online (AJOL)

    Silver-deposited nano-ZnO samples with different Ag loadings were prepared by a one-pot solvothermal method. The structure, physico-chemical and optical properties of the products were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), diffuse ...

  18. Investigation of the growth and in situ heating transmission electron microscopy analysis of Ag2S-catalyzed ZnS nanowires

    Science.gov (United States)

    Kim, Jung Han; Kim, Jong Gu; Song, Junghyun; Bae, Tae-Sung; Kim, Kyou-Hyun; Lee, Young-Seak; Pang, Yoonsoo; Oh, Kyu Hwan; Chung, Hee-Suk

    2018-04-01

    We investigated the semiconductor-catalyzed formation of semiconductor nanowires (NWs) - silver sulfide (Ag2S)-catalyzed zinc sulfide (ZnS) NWs - based on a vapor-liquid-solid (VLS) growth mechanism through metal-organic chemical vapor deposition (MOCVD) with a Ag thin film. The Ag2S-catalyzed ZnS NWs were confirmed to have a wurtzite structure with a width and length in the range of ∼30 nm to ∼80 nm and ∼1 μm, respectively. Using extensive transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) analyses from plane and cross-sectional viewpoints, the ZnS NWs were determined to have a c-axis, [0001] growth direction. In addition, the catalyst at the top of the ZnS NWs was determined to consist of a Ag2S phase. To support the Ag2S-catalyzed growth of the ZnS NWs by a VLS reaction, an in situ heating TEM experiment was conducted from room temperature to 840 °C. During the experiment, the melting of the Ag2S catalyst in the direction of the ZnS NWs was first observed at approximately 480 °C along with the formation of a carbon (C) shell. Subsequently, the Ag2S catalyst melted completely into the ZnS NWs at approximately 825 °C. As the temperature further increased, the Ag2S and ZnS NWs continuously melted and vaporized up to 840 °C, leaving only the C shell behind. Finally, a possible growth mechanism was proposed based on the structural and chemical investigations.

  19. Improving charge transport in PbS quantum Dot to Al:ZnO layer by changing the size of Quantum dots in hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabian, Masood [Maragheh Univ. (Iran, Islamic Republic of). Faculty of Basic Science; Abdollahian, Parinaz [Maragheh Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering

    2016-07-01

    PbS Quantum dots and P3HT are promising materials for photovoltaic applications due to their absorption in the NIR and visible region, respectively. Our previous experimental work showed that doping Al to ZnO lattice (Al:ZnO) could efficiently improve the cell performance. In this article, hybrid solar cells containing of two active areas with ITO/Al:ZnO/PbS QDs/P3HT and PCBM/Ag structure were fabricated and the effect of PbS QD size on photovoltaic properties was investigated. Optimised solar cell showed maximum power conversion efficiency of 2.45 % with short-circuit current of 9.36 mA/cm{sup 2} and open-circuit voltage of 0.59 V under 1 sun illumination (AM1.5).

  20. Bactericidal impact of Ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv Mycobacterium tuberculosis phagocytized by THP-1 cell lines.

    Science.gov (United States)

    Jafari, Alireza; Mosavari, Nader; Movahedzadeh, Farahnaz; Nodooshan, Saeedeh Jafari; Safarkar, Roya; Moro, Rossella; Kamalzadeh, Morteza; Majidpour, Ali; Boustanshenas, Mina; Mosavi, Tahereh

    2017-09-01

    The purpose of this research project was to infection of human macrophages (THP-1) cell lines by H 37 Rv strain of Mycobacterium tuberculosis (H 37 RvMTB) and find out the ratio/dilution of mixture silver (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) whose ability to eliminate phagocytized bacteria compared to rifampicin. The colloidal Ag NPs and ZnO NPs were synthesized and their characteristics were evaluated. The THP-1 cell lines were infected with different concentration of H 37 RvMTB. Next, the infected cells were treated with different ratios/dilutions of Ag NPs, ZnO NPs and rifampicin. The THP-1 were lysed and were cultured in Lowenstein-Jensen agar medium, for eight weeks. The TEM and AFM images of NPs and H 37 RvMTB were supplied. It is observed that Ag NPs, 2 Ag :8 ZnO and 8 Ag :2 ZnO did not have any anti-tubercular effects on phagocytized H 37 RvMTB. Conversely, ZnO NPs somehow eliminated 18.7 × 10 4  CFU ml -1 of H 37 RvMTB in concentration of ∼ 0.468 ppm. To compare with 40 ppm of rifampicin, ∼ 0.663 ppm of 5 Ag :5 ZnO had the ability to kill of H 37 RvMTB, too. Based on previous research, ZnO NPs had strong anti-tubercular impact against H 37 RvMTB to in-vitro condition, but it was toxic in concentration of ∼ 0.468 ppm to both of THP-1 and normal lung (MRC-5) cell lines. It also seems that 5 Ag :5 ZnO is justified because in concentration of ∼ 0.663 ppm of 5 Ag :5 ZnO , phagocytized H 37 RvMTB into the THP-1 had died without any toxicity effects against THP-1 and also MRC-5 cell lines. It is obvious that the mixture of colloidal silver and zinc oxide NPs with ratio of 5 Ag :5 ZnO would be trustworthy options as anti-tubercular nano-drugs in future researches. Copyright © 2017. Published by Elsevier Ltd.

  1. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    Science.gov (United States)

    Shu, Zhan; Zhang, Yi; Yang, Qian; Yang, Huaming

    2017-02-01

    Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs) and silver (Ag) into zinc oxide (ZnO) nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs) and Ag nanoparticles (Ag NPs) with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  2. HYDROTALSIT Zn-Al-EDTA SEBAGAI ADSORBEN UNTUK POLUTAN ION Pb(II DI LINGKUNGAN Zn-Al-EDTA Hydrotalcite as Adsorbent for Pb(II Ion Pollutant in The Environment

    Directory of Open Access Journals (Sweden)

    Roto Roto

    2015-07-01

    Full Text Available ABSTRAK Polusi ion Pb(II di dalam lingkungan perairan cenderung naik seiring peningkatan jumlah industri smelter dan daur ulang aki bekas. Penelitian ini bertujuan untuk menguji kemampuan hidrotalsit Zn-Al-EDTA sebagai adsorben ion Pb(II dalam air secara mendalam. Hidrotalsit Zn-Al-NO3 disintesis dengan metode kopresipitasi dan hidrotermal pada temperatur 100 °C selama 15 jam. Hidrotalsit Zn-Al-EDTA diperoleh dengan penukaran ion. Keasaman larutan, kinetika dan kapasitas adsorpsi diteliti. Hidrotalsit Zn-Al-EDTA memiliki d003 sebesar 14,52 Å sementara Zn-Al-NO3 sebesar 8,90 Å. Spektra FTIR menunjukkan keberadaan serapan gugus C=O pada bilangan gelombang 1684,77 cm-1. Kondisi optimum adsorpsi ion Pb(II terjadi pada pH 4, waktu kontak 60 menit dan kapasitas adsorpsi diperoleh 2,07 mg/g pada konsentrasi awal 10 mg/L dengan berat adsorben 0,100 g. Adsorpsi ion Pb(II oleh hidrotalsit Zn-Al-EDTA mengikuti reaksi pseudo orde dua dengan tetapan laju adsorpsi sebesar 8,90 g mmol-1min-1. Adsorpsi ion Pb(II oleh Zn-Al-EDTA terjadi karena  pembentukan khelat Pb-EDTA di dalam struktur hidrotalsit. Hasil ini diharapkan mampu memberikan kontribusi yang lebih luas di dalam pengendalian konsentrasi Pb(II di lingkungan. ABSTRACT Polution by Pb(II ion in the water environment tends to increase due the increase in the number of lead smelter and lead acid battery recycling industries. This work aims at studying in details the ability of Zn-Al-EDTA hydrotalcite as adsorbent for Pb(II ion in the environment. The Zn-Al-NO3 hydrotalcite was synthesized first by coprecipitation method followed by hydrothermal treatment at 100 °C for 15 h. The Zn-Al-EDTA hydrotalcite was later obtained by ion exchange process. The solution pH, kinetics and adsorption capacity were studied. The XRD data showed that Zn-Al-EDTA and Zn-Al-NO3 hydrotalcites have d003 of 14.52 and 8.90 Å, respectively. The FTIR spectra suggested that C=O group was observed with absorption band at 1684

  3. 210 Pb fluxes in sediment layers sampled from Northern Patagonia lakes

    International Nuclear Information System (INIS)

    Ribeiro Guevara, S.; Sanchez, R.; Arribere, M.; Rizzo, A.

    2003-01-01

    Unsupported 210 Pb fluxes were determined from sediment core inventories in lakes located in Northern Patagonia, Argentina. Total 210 Pb, 226 Ra, associated with supported 210 Pb, and 137 Cs specific activity profiles were measured by gamma-ray spectrometry. Unsupported 210 Pb fluxes showed very low values when compared to other regions, with a 12 fold variation, ranging from 4 to 48 Bq m -2 x y -1 . The linear correlation observed between the 210 Pb fluxes and 137 Cs cumulative fluxes in sediment cores sampled from water bodies within a zone with similar precipitation demonstrated that both radioisotopes behave in the same manner in these systems concerning the processes occurred from fallout to sediment deposition, and that there are no appreciable local or regional sources of unsupported 210 Pb. Positive correlation of 210 Pb fluxes with organic matter contents of the uppermost sediment core layers was also observed. (author)

  4. Photoelectron spectroscopy study of thin Ag films deposited on to amorphous In–Ga–Zn–O surface

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Se Jun [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Baik, Jaeyoon; Ha, Taekyun; Park, Chong Do [Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Shin, Hyun-Joon, E-mail: shj001@postech.ac.kr [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Chung, JaeGwan; Lee, Jaecheol [A E Group, Samsung Advanced Institute of Technology, Giheung-Gu, Yongin-Si, GyeingGi-Do 449-712 (Korea, Republic of)

    2014-11-03

    Ag was thermally evaporated onto amorphous In–Ga–Zn–O (a-IGZO) thin film, and the Ag-thickness (< 0.3 nm)-dependent chemical states of the Ag-deposited a-IGZO thin-film surfaces were investigated by high-resolution X-ray photoelectron spectroscopy. As Ag layer thickness increased, Ag 3d shifted towards the lower binding energy (BE) side and In 3d developed a lower-BE component; however, O 1s, Ga 3d, and Zn 3d showed much smaller spectral feature changes than Ag 3d or In 3d. The analysis suggests that Ag atoms preferentially interact and share electrons with In atoms. The Ag 4d split feature at the valence band and the metallic states near the Fermi edge were noticeably visible when the Ag thickness was greater than 0.1 nm. - Highlights: • Ag was deposited on a-IGZO thin film using thermal evaporation method. • Chemical state changes of Ag-deposited a-IGZO were investigated by XPS. • As Ag layer thickness increased, In 3d developed a lower-BE component. • As Ag layer thickness increased, Ag 3d shifted towards the lower BE side. • Ag atoms preferentially interact and share electrons with In atoms.

  5. Transparent capacitors with hybrid ZnO:Al and Ag nanowires as electrodes

    International Nuclear Information System (INIS)

    Zhang, Guozhen; Wu, Hao; Wang, Xiao; Wang, Ti; Liu, Chang

    2016-01-01

    Transparent conducting films with a composite structure of AlZnO–Ag nanowires (AgNWs) have been prepared by atomic layer deposition. The sheet resistance was reduced from 120 to 9 Ω when the AgNW networks were involved. Transparent capacitors with Al_2O_3–TiO_2–Al_2O_3 dielectrics were fabricated on the composite electrodes and demonstrated a capacitance density of 10.1 fF μm"−"2, which was significantly higher than that of capacitors with AlZnO electrodes (8.8 fF μm"−"1). The capacitance density remained almost unchanged in a broad frequency range from 3 kHz to 1 MHz. Moreover, a low leakage current density of 2.4 × 10"−"7 A cm"−"2 at 1 V was achieved. Transparent and flexible capacitors were also fabricated using the composite electrodes, and demonstrated an improved bendability. The transparent capacitors showed an average optical transmittance over 70% in the visible range, and thus open the door to practical applications in transparent integrated circuits. (paper)

  6. Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): Speciation modeling of metal-citric acid complexes

    International Nuclear Information System (INIS)

    Kabra, Kavita; Chaudhary, Rubina; Sawhney, R.L.

    2008-01-01

    The present study is targeted on solar photocatalytic removal of metal ions from wastewater. Photoreductive deposition and dark adsorption of metal ions Cu(II), Ni(II), Pb(II) and Zn(II), using solar energy irradiated TiO 2 , has been investigated. Citric acid has been used as a hole scavenger. Modeling of metal species has been performed and speciation is used as a tool for discussing the photodeposition trends. Ninety-seven percent reductive deposition was obtained for copper. The deposition values of other metals were significantly low [nickel (36.4%), zinc (22.2%) and lead (41.4%)], indicating that the photocatalytic treatment process, using solar energy, was more suitable for wastewater containing Cu(II) ions. In absence of citric acid, the decreasing order deposition was Cu(II) > Ni(II) > Pb(II) > Zn(II), which proves the theoretical thermodynamic predictions about the metals

  7. Two different mechanisms on UV emission enhancement in Ag-doped ZnO thin films

    International Nuclear Information System (INIS)

    Xu, Linhua; Zheng, Gaige; Zhao, Lilong; Pei, Shixin

    2015-01-01

    Ag-doped ZnO thin films were prepared by a sol–gel method. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–vis and photoluminescence spectra. The results show that the Ag in the ZnO thin films annealed at 500 °C for 1 h substitutes for Zn and exists in the form of Ag + ion (Ag Zn ) while the Ag in the ZnO thin films without a post-annealing mainly exists in the form of simple substance (Ag 0 ). The incorporation of Ag indeed can improve the ultraviolet emission of ZnO thin films and suppress the visible emissions at the same time. However, the mechanisms on the ultraviolet emission enhancement in the annealed and unannealed Ag-doped ZnO thin films are very different. As for the post-annealed Ag-doped ZnO thin films, the UV emission enhancement maybe mainly results from more electron–hole pairs (excitons) due to Ag-doping while for the unannealed Ag-doped ZnO thin films; the UV emission enhancement is attributed to the resonant coupling between exciton emission in ZnO and localized surface plasmon in Ag nanoparticles. - Highlights: • Ag-doped ZnO thin films have been prepared by the sol–gel method. • Ag-doping can enhance ultraviolet emission of ZnO thin films and depress the visible emissions at the same time. • There are two different mechanisms on UV emission enhancement in Ag-doped ZnO thin films. • The UV emission enhancement from the resonant coupling between excitonic emissions and localized surface plasmon in Ag nanoparticle is very attractive

  8. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Zhan Shu

    2017-02-01

    Full Text Available Abstract Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs and silver (Ag into zinc oxide (ZnO nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs and Ag nanoparticles (Ag NPs with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  9. Investigation on synthesis of Bi-based thin films on flat sputter-deposited Ag film by melting process

    International Nuclear Information System (INIS)

    Su Yanjing; Satoh, Yoshimasa; Arisawa, Shunichi; Awane, Toru; Fukuyo, Akihiro; Takano, Yoshihiko; Ishii, Akira; Hatano, Takeshi; Togano, Kazumasa

    2003-01-01

    We report on the fabrication of ribbon-like thin films on flat sputter-deposited Ag films whose surface smoothness remained within the order of tens of nm. It was found that the addition of Pb to the starting material improves the wettability of molten phase and facilitates the growth of Bi-2212 ribbon-like thin films on a flat Ag substrate, and that the increase of Ca and Cu in starting material suppresses the intergrowth of the Bi-2201 phase in ribbon-like thin films. By using (Bi,Pb)-2246 powders, with nominal composition of Bi 1.6 Pb 0.4 Sr 1.6 Ca 3.2 Cu 4.8 O y , as the starting material, the superconducting Bi-2212 ribbon-like thin films with an onset T c at 74 K on a very flat Ag substrate were successfully synthesized. Additionally, the growth mechanism of ribbon-like thin films on flat Ag substrate was investigated by in situ high temperature microscope observation

  10. Electronic structure and optical properties of the scintillation material wurtzite ZnS(Ag)

    Institute of Scientific and Technical Information of China (English)

    Dong-Yang Jiang; Zheng Zhang; Rui-Xue Liang; Zhi-Hong Zhang; Yang Li; Qiang Zhao; Xiao-Ping Ouyang

    2017-01-01

    In order to investigate the effect of Ag doping (ZnS(Ag)) and Zn vacancy (Vzn) on the alpha particle detection performance of wurtzite (WZ) ZnS as a scintillation cell component,the electronic structure and optical properties of ZnS,ZnS(Ag),and Vzn were studied by firstprinciple calculation based on the density functional theory.The results show that the band gaps of ZnS,ZnS(Ag),and Vzn are 2.17,1.79,and 2.37 eV,respectively.Both ZnS(Ag) and Vzn enhance the absorption and reflection of the low energy photons.A specific energy,about 2.9 eV,leading to decrease of detection efficiency is observed.The results indicate that Ag doping has a complex effect on the detection performance.It is beneficial to produce more visible light photons than pure WZ ZnS when exposed to the same amount of radiation,while the increase of the absorption to visible light photons weakens the detection performance.Zn vacancy has negative effect on the detection performance.If we want to improve the detection performance of WZ ZnS,Ag doping will be a good way,but we should reduce the absorption to visible light photons and control the number of Zn vacancy rigorously.

  11. The genesis of the Hashitu porphyry molybdenum deposit, Inner Mongolia, NE China: constraints from mineralogical, fluid inclusion, and multiple isotope (H, O, S, Mo, Pb) studies

    Science.gov (United States)

    Zhai, Degao; Liu, Jiajun; Tombros, Stylianos; Williams-Jones, Anthony E.

    2018-03-01

    The Hashitu porphyry molybdenum deposit is located in the Great Hinggan Range Cu-Mo-Pb-Zn-Ag polymetallic metallogenic province of NE China, in which the Mo-bearing quartz veins are hosted in approximately coeval granites and porphyries. The deposit contains more than 100 Mt of ore with an average grade of 0.13 wt.% Mo. This well-preserved magmatic-hydrothermal system provides an excellent opportunity to determine the source of the molybdenum, the evolution of the hydrothermal fluids and the controls on molybdenite precipitation in a potentially important but poorly understood metallogenic province. Studies of fluid inclusions hosted in quartz veins demonstrate that the Hashitu hydrothermal system evolved to progressively lower pressure and temperature. Mineralogical and fluid inclusion analyses and physicochemical calculations suggest that molybdenite deposition occurred at a temperature of 285 to 325 °C, a pressure from 80 to 230 bars, a pH from 3.5 to 5.6, and a Δlog fO2 (HM) of -3.0, respectively. Results of multiple isotope (O, H, S, Mo, and Pb) analyses are consistent in indicating a genetic relationship between the ore-forming fluids, metals, and the Mesozoic granitic magmatism (i.e., δ 18OH2O from +1.9 to +9.7‰, δDH2O from -106 to -87‰, δ 34SH2S from +0.3 to +3.9‰, δ 98/95Mo from 0 to +0.37‰, 206Pb/204Pb from 18.2579 to 18.8958, 207Pb/204Pb from 15.5384 to 15.5783, and 208Pb/204Pb from 38.0984 to 42.9744). Molybdenite deposition is interpreted to have occurred from a low-density magmatic-hydrothermal fluid in response to decreases in temperature, pressure, and fO2.

  12. TEM and TED investigation of Ag/PbTe thin film bilayers.

    Science.gov (United States)

    Mandrino, Đorđe; Marinković, V.

    Morphology and phase structure of Ag/PbTe thin film bilayers were investigated. This system was of particular interest because of interfacial reaction observed previously in an analogous Ag/SnTe system. Reaction products due to the interdiffusion of Ag with the substrate were determined as well as their orientations. They were discussed in view of the reaction products' structural relations to the PbTe.

  13. Atomic structure and orientation relations of interfaces between Ag and ZnO

    NARCIS (Netherlands)

    Vellinga, W.P.; Hosson, de J.Th.M.

    1997-01-01

    This paper presents the results of investigations of Ag-ZnO interfaces, produced by internal oxidation of an Ag-Zn alloy. ZnO precipitates with the wurtzite structure were found exhibiting mainly one orientation relation with the Ag matrix. However, closely related ORs were found, rotated by small

  14. Synthesis, Antibacterial and Thermal Studies of Cellulose Nanocrystal Stabilized ZnO-Ag Heterostructure Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2013-05-01

    Full Text Available Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO3 relative to Zn precursors for evaluating the best composition with enhanced functional properties. The ZnO-Ag/CNCs samples were characterized systematically by TEM, XRD, UV, TGA and DTG. From the TEM studies we observed that ZnO-Ag heterostructure nanoparticles have spherical shapes with size diameters in a 9–35 nm range. The antibacterial activities of samples were assessed against the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The CNC-stabilized ZnO-Ag exhibited greater bactericidal activity compared to cellulose-free ZnO-Ag heterostructure nanoparticles of the same particle size. The incorporation of ZnO-Ag hetreostructure nanoparticles significantly increased the thermal stability of cellulose nanocrystals.

  15. Geometry of the neoproterozoic and paleozoic rift margin of western Laurentia: Implications for mineral deposit settings

    Science.gov (United States)

    Lund, K.

    2008-01-01

    The U.S. and Canadian Cordilleran miogeocline evolved during several phases of Cryogenian-Devonian intracontinental rifting that formed the western mangin of Laurentia. Recent field and dating studies across central Idaho and northern Nevada result in identification of two segments of the rift margin. Resulting interpretations of rift geometry in the northern U.S. Cordillera are compatible with interpretations of northwest- striking asymmetric extensional segments subdivided by northeast-striking transform and transfer segments. The new interpretation permits integration of miogeoclinal segments along the length of the western North American Cordillera. For the U.S. Cordillera, miogeoclinal segments include the St. Mary-Moyie transform, eastern Washington- eastern Idaho upper-plate margin, Snake River transfer, Nevada-Utah lower-plate margin, and Mina transfer. The rift is orthogonal to most older basement domains, but the location of the transform-transfer zones suggests control of them by basement domain boundaries. The zigzag geometry of reentrants and promontories along the rift is paralleled by salients and recesses in younger thrust belts and by segmentation of younger extensional domains. Likewise, transform transfer zones localized subsequent transcurrent structures and igneous activity. Sediment-hosted mineral deposits trace the same zigzag geometry along the margin. Sedimentary exhalative (sedex) Zn-Pb-Ag ??Au and barite mineral deposits formed in continental-slope rocks during the Late Devonian-Mississippian and to a lesser degree, during the Cambrian-Early Ordovician. Such deposits formed during episodes of renewed extension along miogeoclinal segments. Carbonate-hosted Mississippi Valley- type (MVT) Zn-Pb deposits formed in structurally reactivated continental shelf rocks during the Late Devonian-Mississippian and Mesozoic due to reactivation of preexisting structures. The distribution and abundance of sedex and MVT deposits are controlled by the

  16. Al-doped ZnO/Ag grid hybrid transparent conductive electrodes fabricated using a low-temperature process

    Energy Technology Data Exchange (ETDEWEB)

    An, Ha-Rim; Oh, Sung-Tag [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Kim, Chang Yeoul [Future Convergence Ceramic Division, Korea Institute Ceramic Engineering and Technology (KICET), Seoul 233-5 (Korea, Republic of); Baek, Seong-Ho [Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Park, Il-Kyu, E-mail: ikpark@ynu.ac.kr [Department of Electronic Engineering, Yeungnam University, Gyeongbuk 712-749 (Korea, Republic of); Ahn, Hyo-Jin, E-mail: hjahn@seoultech.ac.kr [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of)

    2014-12-05

    Highlights: • Al-doped ZnO/Ag transparent conductive electrode is fabricated at low temperature. • Performance of the hybrid transparent conductive electrode affected by the structure. • The performance enhancement mechanism is suggested. - Abstract: Al-doped ZnO (AZO)/Ag grid hybrid transparent conductive electrode (TCE) structures were fabricated at a low temperature by using electrohydrodynamic jet printing for the Ag grids and atomic layer deposition for the AZO layers. The structural investigations showed that the AZO/Ag grid hybrid structures consisted of Ag grid lines formed by Ag particles and the AZO layer covering the inter-spacing between the Ag grid lines. The Ag particles comprising the Ag grid lines were also capped by thin AZO layers, and the coverage of the AZO layers was increased with increasing the thickness of the AZO layer. Using the optimum thickness of AZO layer of 70 nm, the hybrid TCE structure showed an electrical resistivity of 5.45 × 10{sup −5} Ω cm, an optical transmittance of 80.80%, and a figure of merit value of 1.41 × 10{sup −2} Ω{sup −1}. The performance enhancement was suggested based on the microstructural investigations on the AZO/Ag grid hybrid structures.

  17. Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells

    Science.gov (United States)

    Vallejo, W.; Arredondo, C. A.; Gordillo, G.

    2010-11-01

    In this paper AgInS2 and Zn(O,OH)S thin films were synthesized and characterized. AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process, and, Zn(O,OH)S thin films were deposited from chemical bath containing thiourea, zinc acetate, sodium citrate and ammonia. X-ray diffraction measurements indicated that AgInS2 thin films grown with chalcopyrite structure, and the as-grown Zn(O,OH)S thin films were polycrystalline. It was also found that the AgInS2 films presented p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and energy band-gap Eg of about 1.95 eV, Zn(O,OH),S thin films presented Eg of about 3.89 eV. Morphological analysis showed that under this synthesis conditions Zn(O,OH),S thin films coated uniformly the absorber layer. Additionally, the Zn(O,OH)S kinetic growth on AgInS2 layer was studied also. Finally, the results suggest that these layers possibly could be used in one-junction solar cells and/or as top cell in a tandem solar cell.

  18. Controls on Mississippi Valley-Type Zn-Pb mineralization in Behabad district, Central Iran: Constraints from spatial and numerical analyses

    Science.gov (United States)

    Parsa, Mohammad; Maghsoudi, Abbas

    2018-04-01

    The Behabad district, located in the central Iranian microcontinent, contains numerous epigenetic stratabound carbonate-hosted Zn-Pb ore bodies. The mineralizations formed as fault, fracture and karst fillings in the Permian-Triassic formations, especially in Middle Triassic dolostones, and comprise mainly non-sulfides zinc ores. These are all interpreted as Mississippi Valley-type (MVT) base metal deposits. From an economic geological point of view, it is imperative to recognize the processes that have plausibly controlled the emplacement of MVT Zn-Pb mineralization in the Behabad district. To address the foregoing issue, analyses of the spatial distribution of mineral deposits comprising fry and fractal techniques and analysis of the spatial association of mineral deposits with geological features using distance distribution analysis were applied to assess the regional-scale processes that could have operated in the distribution of MVT Zn-Pb deposits in the district. The obtained results based on these analytical techniques show the main trends of the occurrences are NW-SE and NE-SW, which are parallel or subparallel to the major northwest and northeast trending faults, supporting the idea that these particular faults could have acted as the main conduits for transport of mineral-bearing fluids. The results of these analyses also suggest that Permian-Triassic brittle carbonate sedimentary rocks have served as the lithological controls on MVT mineralization in the Behabad district as they are spatially and temporally associated with mineralization.

  19. Did a whole-crustal hydrothermal system generate the Irish Zn-Pb orefield?

    Science.gov (United States)

    Daly, J. Stephen; Badenszki, Eszter; Chew, David; Kronz, Andreas; O'Rourke, Helen; Whitehouse, Martin; Menuge, Julian; van den Berg, Riana

    2016-04-01

    Current models[1] for the genesis of the giant Irish Carboniferous-hosted Zn-Pb orefield propose shallow (700°C) metamorphism and melting during the Acadian orogeny at ~390Ma and during separate episodes of extension at ~ 381-373Ma and ~362Ma. Sm-Nd garnet dating shows that the lower crust remained hot or was re-heated to ~600°C at ~341Ma during Lower Carboniferous volcanism, also associated with extension and, in part, coincident with the mineralization[1]. Isotopic data from the xenoliths correspond closely to Sr and Nd isotopic analyses of gangue calcite[8] and galena Pb[9] isotopic data from the major ore deposits. While Zn contents of the xenoliths permit them to be metal sources, their mineralogy and texture provide an enriched template and a plausible extraction mechanism. In situ analyses of modally-abundant biotite and garnet show significant enrichment in Zn (and other relevant metals) as well as order of magnitude depletion of Zn during retrograde alteration, providing a metal-release mechanism and pointing to a hydrothermal fluid system operating at least to depths of ~ 25km. References [1] Wilkinson, J.J. & Hitzman, M.W. 2015. The Irish Pb-Zn orefield: The view from 2014. In: Archibald, S.M. and Piercey, S.J. (eds) Current Perspectives on Zinc deposits. Irish Association for Economic Geology, pp. 59-72.; [2] Davidheiser-Kroll, B., Stuart, F.M. & Boyce, A.J. 2014. Mineralium Deposita, 49, 547-553; [3] Elliott, H. 2015. Unpublished PhD thesis, University of Southampton; [4] Hnatyshin, D., Creaser, R.A., Wilkinson, J.J. & Gleeson, S.A. 2015. Geology, 43, 143-146; [5] McCusker, J. & Reed, C. 2013. Mineralium Deposita, 48, 687-695; [6] Van den Berg, R., Daly, J.S. & Salisbury, M.H. 2005. Tectonophysics, 407(1-2), 81-99; [7] Hauser, F., O'Reilly, B.M., Readman, P.W., Daly, J. S. & Van den Berg, R. 2008. Geophysical Journal International 175, 1254-1272; [8] Walshaw, R.D., Menuge, J.F. & Tyrrell, S. 2006. Mineralium Deposita, 41, 803-819; [9] Everett, C

  20. Geochemistry and statistical analyses of porphyry system and epithermal veins at Hizehjan in northwestern Iran

    Directory of Open Access Journals (Sweden)

    Radmard Kaikhosrov

    2017-12-01

    Full Text Available Situated about 130 km northeast of Tabriz (northwest Iran, the Mazra’eh Shadi deposit is in the Arasbaran metallogenic belt (AAB. Intrusion of subvolcanic rocks, such as quartz monzodiorite-diorite porphyry, into Eocene volcanic and volcano-sedimentary units led to mineralisation and alteration. Mineralisation can be subdivided into a porphyry system and Au-bearing quartz veins within andesite and trachyandesite which is controlled by fault distribution. Rock samples from quartz veins show maximum values of Au (17100 ppb, Pb (21100 ppm, Ag (9.43ppm, Cu (611ppm and Zn (333 ppm. Au is strongly correlated with Ag, Zn and Pb. In the Au-bearing quartz veins, factor group 1 indicates a strong correlation between Au, Pb, Ag, Zn and W. Factor group 2 indicates a correlation between Cu, Te, Sb and Zn, while factor group 3 comprises Mo and As. Based on Spearman correlation coefficients, Sb and Te can be very good indicator minerals for Au, Ag and Pb epithermal mineralisation in the study area. The zoning pattern shows clearly that base metals, such as Cu, Pb, Zn and Mo, occur at the deepest levels, whereas Au and Ag are found at higher elevations than base metals in boreholes in northern Mazra’eh Shadi. This observation contrasts with the typical zoning pattern caused by boiling in epithermal veins. At Mazra’eh Shadi, quartz veins containing co-existing liquid-rich and vapour-rich inclusions, as strong evidence of boiling during hydrothermal evolution, have relatively high Au grades (up to 813 ppb. In the quartz veins, Au is strongly correlated with Ag, and these elements are in the same group with Fe and S. Mineralisation of Au and Ag is a result of pyrite precipitation, boiling of hydrothermal fluids and a pH decrease.

  1. Emission of ZnO:Ag nanorods obtained by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Velázquez Lozada, E., E-mail: evlozada5@yahoo.com.mx [ESIME – Instituto Politécnico Nacional, México D.F. 07738 (Mexico); Torchynska, T.V.; Casas Espinola, J.L. [ESFM – Instituto Politécnico Nacional, México D.F. 07738 (Mexico); Pérez Millan, B. [UPIITA – Instituto Politécnico Nacional, México D.F. 07738 (Mexico)

    2014-11-15

    Scanning electronic microscopy (SEM), X ray diffraction (XRD), photoluminescence (PL) and its temperature dependence have been studied in ZnO:Ag nanorods (NRs) prepared by the ultrasonic spray pyrolysis (USP) method. The time variation at the growth of ZnO:Ag films permits modifying the ZnO phase from the amorphous to crystalline, to change the size of ZnO:Ag NRs and to vary their emission spectra. PL spectra of ZnO:Ag NRs versus temperature has been investigated. This study reveals that the PL band related to the acceptor Ag{sub Zn} (LO phonon replicas of an acceptor bound exciton, ABE (2.877 eV)), and its second-order diffraction peak (1.44 eV) disappeared in the temperature range of 10–170 K with the formation of free exciton (FX). The PL intensity of defect related PL bands decreases monotonously in the range 10–300 K with the activation energy of 13 meV. The PL band (3.22 eV), related to the LO phonon replica of free exciton (FX-2LO) and its second-order diffraction peak (1.61 eV) increase monotonously in the range 10–300 K. FX related peak dominates in PL spectra at room temperature that testifies on the high quality of ZnO:Ag films prepared by the USP technology.

  2. Enhanced Raman scattering and nonlinear conductivity in Ag-doped hollow ZnO microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Joseph W.; Levie, Harold W.; McCall, Scott K.; Teslich, Nick E.; Wall, Mark A.; Orme, Christine A.; Matthews, Manyalibo J. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-10-15

    Hollow spherical ZnO particles doped with Ag were synthesized with a two-step oxidation and sublimation furnace annealing process. Ag nanoparticle precipitates, as observed by transmission electron microscopy, were present in the polycrystalline ZnO matrix at Ag concentrations below 0.02 mol%, significantly below the 0.8 mol% solubility limit for Ag in ZnO. Enhanced Raman scattering of ZnO phonon modes is observed, increasing with Ag nanoparticle concentration. A further enhancement in Raman scattering due to resonance effects was observed for LO phonons excited by 2.33-eV photons as compared with Raman scattering under 1.96-eV excitation. Room-temperature photoluminescence spectra showed both a near-band-edge emission due to free exciton transitions and a mid-gap transition due to the presence of singly ionized oxygen vacancies. ZnO:Ag particles were measured electrically in a packed column and in monolithic form, and in both cases displayed nonlinear current-voltage characteristics similar to those previously observed in sintered ZnO:Ag monoliths where Ag-enhanced disorder at grain boundaries is thought to control current transport. We demonstrate therefore that Ag simultaneously modifies the electrical and optical properties of ZnO particles through the introduction of vacancies and other defects. (orig.)

  3. The Kongsberg silver deposits, Norway: Ag-Hg-Sb mineralization and constraints for the formation of the deposits

    Science.gov (United States)

    Kotková, Jana; Kullerud, Kåre; Šrein, Vladimír; Drábek, Milan; Škoda, Radek

    2018-04-01

    The Kongsberg silver district has been investigated by microscopy and electron microprobe analysis, focusing primarily on the Ag-Hg-Sb mineralization within the context of the updated mineral paragenesis. The earliest mineralization stage is represented by sulfides, including acanthite, and sulfosalts. Native silver formed initially through breakdown of early Ag-bearing phases and later through influx of additional Ag-bearing fluids and silver remobilization. The first two generations of native silver were separated in time by the formation of Ni-Co-Fe sulfarsenides and the monoarsenide niccolite along rims of silver crystals. The presence of As-free sulfosalts and the absence of di- and tri-arsenides suggest a lower arsenic/sulfur activity ratio for the Kongsberg deposits compared to other five-element deposits. Native silver shows binary Ag-Hg and Ag-Sb solid solutions, in contrast to the ternary Ag-Hg-Sb compositions typical for other deposits of similar type. Antimonial silver together with allargentum, dyscrasite, and pyrargyrite was documented exclusively from the northern area of the district. Elsewhere, the only Sb-bearing minerals are polybasite and tetrahedrite/freibergite. Hg-rich silver (up to 21 wt% Hg) has been documented only in the central-western area. Myrmekite of freibergite and chalcopyrite reflects exsolution from an original Ag-poor tetrahedrite upon cooling, while myrmekite of pyrite and silver, forming through breakdown of low-temperature phases (argentopyrite or lenaite) upon heating, characterizes the Kongsberg silver district. Based on the stabilities of minerals and mineral assemblages, the formation of the silver mineralization can be constrained to temperatures between 180 and 250 °C.

  4. Factors affecting the partitioning of Cu, Zn and Pb in boulder coatings and stream sediments in the vicinity of a polymetallic sulfide deposit

    Science.gov (United States)

    Filipek, L.H.; Chao, T.T.; Carpenter, R.H.

    1981-01-01

    A sequential extraction scheme is utilized to determine the geochemical partitioning of Cu, Zn and Pb among hydrous Mn- and Fe-oxides, organics and residual crystalline silicates and oxides in the minus-80-mesh ( Fe-oxides > Mn-oxides; Zn, Mn-oxides {reversed tilde equals} organics > Fe-oxides; Pb, Fe-oxides > organics > Mn-oxides. In the sediments, organics are the most efficient scavengers of all three ore metals. These results emphasize the importance of organics as sinks for the ore metals, even in environments with high concentrations of Mn- and Fe-oxides. Of the ore metals, Zn appears to be the most mobile, and is partitioned most strongly into the coatings. However, anomaly contrast for hydromorphic Zn, normalized to the MnFe-oxide or organic content, is similar in sediments and coatings. Cu shows the highest anomaly on the boulder coatings, probably due to precipitation of a secondary Cu mineral. In contrast, detrital Pb in the pan concentrates shows a better anomaly than any hydromorphic Pb component. ?? 1981.

  5. Spatial and temporal variability of 7Be and 210Pb wet deposition during four successive monsoon storms in a catchment of northern Laos

    International Nuclear Information System (INIS)

    Gourdin, E.; Evrard, O.; Huon, S.; Reyss, J.-L.; Ribolzi, O.; Bariac, T.; Sengtaheuanghoung, O.; Ayrault, S.

    2014-01-01

    Fallout radionuclides 7 Be and 210 Pb have been identified as potentially relevant temporal tracers for studying soil particles dynamics (surface vs. subsurface sources contribution; remobilization of in-channel sediment) during erosive events in river catchments. An increasing number of studies compared 7 Be: 210 Pb activity ratio in rainwater and sediment to estimate percentages of freshly eroded particles. However, the lack of data regarding the spatial and temporal variability of radionuclide wet deposition during individual storms has been identified as one of the main gaps in these estimates. In order to determine these key parameters, rainwater samples were collected at three stations during four storms that occurred at the beginning of the monsoon (June 2013) in the Houay Xon mountainous catchment in northern Laos. Rainwater 7 Be and 210 Pb activities measured using very low background hyperpure Germanium detectors ranged from 0.05 to 1.72 Bq L −1 and 0.02 to 0.26 Bq L −1 , respectively. Water δ 18 O were determined on the same samples. Total rainfall amount of the four sampled storms ranged from 4.8 to 26.4 mm (51 mm in total) at the time-fractionated collection point. Corresponding cumulative 7 Be and 210 Pb wet depositions during the sampling period were 17.6 and 2.9 Bq m −2 , respectively. The 7 Be: 210 Pb activity ratio varied (1) in space from 6 to 9 for daily deposition and (2) in time from 3 to 12 for samples successively collected. Intra-event evolution of rainwater 7 Be and 210 Pb activities as well as δ 18 O highlighted the progressive depletion of local infra-cloud atmosphere radionuclide stock with time (washout), which remains consistent with a Raleigh-type distillation process for water vapour. Intra-storm ratio increasing with time showed the increasing contribution of rainout scavenging. Implications of such variability for soil particle labelling and erosion studies are briefly discussed and recommendations are formulated for the

  6. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China.

    Science.gov (United States)

    Cheng, Xianfeng; Danek, Tomas; Drozdova, Jarmila; Huang, Qianrui; Qi, Wufu; Zou, Liling; Yang, Shuran; Zhao, Xinliang; Xiang, Yungang

    2018-03-07

    The environmental assessment and identification of sources of heavy metals in Zn-Pb ore deposits are important steps for the effective prevention of subsequent contamination and for the development of corrective measures. The concentrations of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in soils from 40 sampling points around the Jinding Zn-Pb mine in Yunnan, China, were analyzed. An environmental quality assessment of the obtained data was performed using five different contamination and pollution indexes. Statistical analyses were performed to identify the relations among the heavy metals and the pH in soils and possible sources of pollution. The concentrations of As, Cd, Pb, and Zn were extremely high, and 23, 95, 25, and 35% of the samples, respectively, exceeded the heavy metal limits set in the Chinese Environmental Quality Standard for Soils (GB15618-1995, grade III). According to the contamination and pollution indexes, environmental risks in the area are high or extremely high. The highest risk is represented by Cd contamination, the median concentration of which exceeds the GB15618-1995 limit. Based on the combination of statistical analyses and geostatistical mapping, we identified three groups of heavy metals that originate from different sources. The main sources of As, Cd, Pb, Zn, and Cu are mining activities, airborne particulates from smelters, and the weathering of tailings. The main sources of Hg are dust fallout and gaseous emissions from smelters and tailing dams. Cr and Ni originate from lithogenic sources.

  7. Biodynamic modelling of the bioaccumulation of trace metals (Ag, As and Zn) by an infaunal estuarine invertebrate, the clam Scrobicularia plana

    International Nuclear Information System (INIS)

    Kalman, J.; Smith, B.D.; Bury, N.R.; Rainbow, P.S.

    2014-01-01

    Highlights: • Biodynamic modelling is used to predict accumulation of Ag, As and Zn in S. plana. • Dissolved and sediment-associated metals contribute to total metal bioaccumulation. • Relative importance varies with water and sediment concentrations and geochemistries. - Abstract: Biodynamic modelling was used to investigate the uptake and accumulation of three trace metals (Ag, As, Zn) by the deposit feeding estuarine bivalve mollusc Scrobicularia plana. Radioactive labelling techniques were used to quantify the rates of trace metal uptake (and subsequent elimination) from water and sediment diet. The uptake rate constant from solution (±SE) was greatest for Ag (3.954 ± 0.375 l g −1 d −1 ) followed by As (0.807 ± 0.129 l g −1 d −1 ) and Zn (0.103 ± 0.016 l g −1 d −1 ). Assimilation efficiencies from ingested sediment were 40.2 ± 1.3% (Ag), 31.7 ± 1.0% (Zn) and 25.3 ± 0.9% (As). Efflux rate constants after exposure to metals in the solution or sediment fell in the range of 0.014–0.060 d −1 . By incorporating these physiological parameters into biodynamic models, our results showed that dissolved metal is the predominant source of accumulated Ag, As and Zn in S. plana, accounting for 66–99%, 50–97% and 52–98% of total accumulation of Ag, As and Zn, respectively, under different field exposure conditions. In general, model-predicted steady state concentrations of Ag, As and Zn matched well with those observed in clams collected in SW England estuaries. Our findings highlight the potential of biodynamic modelling to predict Ag, As and Zn accumulation in S. plana, taking into account specific dissolved and sediment concentrations of the metals at a particular field site, together with local water and sediment geochemistries

  8. Synthesis and Characterization of Pb(Zr., Ti.)O-Pb(Nb/, Zn/)O Thin Film Cantilevers for Energy Harvesting Applications

    KAUST Repository

    Fuentes-Fernandez, E. M. A.

    2012-01-18

    A complete analysis of the morphology, crystallographic orientation, and resulting electrical properties of Pb(Zr0.53,Ti0.47) Pb(Nb1/3, Zn2/3)O3 (PZT-PZN) thin films, as well as the electrical behavior when integrated in a cantilever for energy harvesting applications, is presented. The PZT-PZN films were deposited using sol-gel methods. We report that using 20% excess Pb, a nucleation layer of PbTiO3 (PT), and a fast ramp rate provides large grains, as well as denser films. The PZT-PZN is deposited on a stack of TiO2/PECVD SiO2/Si3N4/thermal SiO2/Poly-Si/Si. This stack is designed to allow wet-etching the poly-Si layer to release the cantilever structures. It was also found that the introduction of the poly-Si layer results in larger grains in the PZT-PZN film. PZT-PZN films with a dielectric constant of 3200 and maximum polarization of 30 μC/cm2 were obtained. The fabricated cantilever devices produced ~300–400 mV peak-to-peak depending on the cantilever design. Experimental results are compared with simulations.

  9. The fabrication and photocatalytic performances of flower-like Ag nanoparticles/ZnO nanosheets-assembled microspheres

    International Nuclear Information System (INIS)

    Deng, Quan; Tang, Haibin; Liu, Gang; Song, Xiaoping; Xu, Guoping; Li, Qian; Ng, Dickon H.L.; Wang, Guozhong

    2015-01-01

    Graphical abstract: - Highlights: • ZnO nanosheets-assembled microspheres (ZnOs) were prepared. • Ag nanoparticles (Ag-NPs) were decorated onto the whole surface of the ZnOs. • The Ag-NPs/ZnOs composite showed enhanced photocatalytic performance to MB and MO. • Cyclic voltammetry and impedance spectra revealed enhanced charge transportation. - Abstract: A new micro/nanostructure photocatalyst, Ag nanoparticles decorated ZnO nanosheets-assembled microspheres (Ag-NPs/ZnOs), was synthesised by a two-step method. The flower-like micron-sized ZnO spheres assembled with ∼25 nm thick ZnO nanosheets were initially fabricated via a facile solvothermal method. Then, highly dispersed Ag nanoparticles (Ag-NPs) with dimension ranging from 15 to 50 nm were anchored onto the surface of the each ZnO nanosheet by the Sn(II) ion activation method. The as-prepared Ag-NPs/ZnOs demonstrated enhanced photocatalytic performance in eliminating methylene blue and methyl orange aqueous solutions under UV irradiation, showing twice faster reaction rate than the bare ZnOs. The enhanced photocatalytic activity was due to the suppression of electron/hole pair recombination and the acceleration of surface charge transfer induced by the highly dispersive Ag-NPs, which was further demonstrated by the cyclic voltammetry and impedance spectra measurements

  10. A review of silver-rich mineral deposits and their metallogeny

    Science.gov (United States)

    Graybeal, Frederick T.; Vikre, Peter

    2010-01-01

    Mineral deposits with large inventories or high grades of silver are found in four genetic groups: (1) volcanogenic massive sulfide (VMS), (2) sedimentary exhalative (SEDEX), (3) lithogene, and, (4) magmatichydrothermal. Principal differences between the four groups relate to source rocks and regions, metal associations, process and timing of mineralization, and tectonic setting. These four groups may be subdivided into specific metal associations on ternary diagrams based on relative metal contents. The VMS deposits rarely contain more than 15,600 t Ag (500 Moz). Grades average 33 g/t Ag. Variable Ag- Pb-Zn-Cu-Au ± Sn concentrations are interpreted as having been derived both from shallow plutons and by leaching of the volcanic rock pile in regions of thin or no continental crust and the mineralization is syngenetic. Higher silver grades are associated with areas of abundant felsic volcanic rocks. The SEDEX deposits rarely contain more than 15,600 t Ag (500 Moz). Grades average 46 g/t Ag. Silver, lead, and zinc in relatively consistent proportions are leached from sedimentary rocks filling rift-related basins, where the continental crust is thin, and deposited as syngenetic to diagenetic massive sulfides. Pre-mineral volcanic rocks and their detritus may occur deep within the basin and gold is typically absent. Lithogene silver-rich deposits are epigenetic products of varying combinations of compaction, dewatering, meteoric water recharge, and metamorphism of rift basin-related clastic sedimentary and interbedded volcanic rocks. Individual deposits may contain more than 15,600 t Ag (500 Moz) at high grades. Ores are characterized by four well-defined metal associations, including Ag, Ag-Pb-Zn, Ag-Cu, and Ag-Co-Ni-U. Leaching, transport, and deposition of metals may occur both in specific sedimentary strata and other rock types adjacent to the rift. Multiple mineralizing events lasting 10 to 15 m.y., separated by as much as 1 b.y., may occur in a single basin

  11. Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities

    International Nuclear Information System (INIS)

    Choi, Young In; Jung, Hye Jin; Shin, Weon Gyu; Sohn, Youngku

    2015-01-01

    Graphical abstract: - Highlights: • Ag/ZnO hybrid materials were prepared by a ball-milling method. • Adsorption and photocatalytic dye degradation were tested for pure RhB under visible light. • Adsorption and photocatalytic dye degradation were tested for mixed dye (MO + RhB + MB) under visible light. • Fenton-like photocatalytic activity (H 2 O 2 addition effects) was examined. - Abstract: The hybridization of ZnO with Ag has been performed extensively to increase the efficiency of ZnO in various applications, including catalysis. In this study, a wet (w) and dry (d) ball-milling method was used to hybridize Ag with ZnO nanoparticles, and their physicochemical properties were examined. Visible light absorption was enhanced and the band gap was engineered by ball-milling and Ag hybridization. Their photocatalytic activities were tested with rhodamine B (RhB) and a mixed dye (methyl orange + RhB + methylene blue) under visible light irradiation. For pure RhB, the photocatalytic activity was decreased by ball-milling and was observed in the order of ZnO(d) < Ag/ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). For the degradation of RhB and methylene blue (MB) in the mixed dye (or the simulated real contaminated water), the photocatalytic activity was observed in the order of Ag/ZnO(d) < ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). When the photodegradation tested with H 2 O 2 addition, however, the Fenton-like photocatalytic activity was reversed and the ZnO(ref) showed the poorest activity for the degradation of RhB and methylene blue (MB). In the mixed dye over all the catalysts, methyl orange (MO) was degraded most rapidly. The relative degradation rates of RhB and MB were found to be dependent on the catalyst and reaction conditions.

  12. Mineralogical and geochemical characterization of supergene Cu-Pb-Zn-V ores in the Oriental High Atlas, Morocco

    Science.gov (United States)

    Verhaert, Michèle; Bernard, Alain; Dekoninck, Augustin; Lafforgue, Ludovic; Saddiqi, Omar; Yans, Johan

    2017-10-01

    In the Moroccan High Atlas, two sulfide deposits hosted by Jurassic dolostones underwent significant weathering. In the Cu deposit of Jbel Klakh, several stages of supergene mineralization are distinguished: (1) the replacement of hypogene sulfides in the protolith (chalcopyrite) by secondary sulfides in the cementation zone (bornite, digenite, chalcocite, covellite), (2) the formation of oxidized minerals in the saprolite (malachite, azurite, brochantite) where the environment becomes more oxidizing and neutral, and (3) the precipitation of late carbonates (calcite) and iron (hydr-)oxides in the laterite. The precipitation of carbonates is related to the dissolution of dolomitic host rocks, which buffers the fluid acidity due to the oxidation of sulfides. In the Jbel Haouanit Pb-Zn deposit, the mineral assemblage is dominated by typical calamine minerals, Cu minerals (chalcocite, covellite, malachite), and a Cu-Pb-Zn vanadate (mottramite). Galena is successively weathered in anglesite and cerussite. Sphalerite is weathered in smithsonite, which is rapidly replaced by hydrozincite. Late iron (hydr-)oxides are mainly found at the top of both deposits (laterite). Both deposits are thus characterized by specific mineral zoning, from laterite to protolith, related to variations in the mineralogy and ore grades and probably caused by varying Eh-pH conditions.

  13. Sulfonated graphene oxide-ZnO-Ag photocatalyst for fast photodegradation and disinfection under visible light.

    Science.gov (United States)

    Gao, Peng; Ng, Kokseng; Sun, Darren Delai

    2013-11-15

    Synthesis of efficient visible-light-driven photocatalyst is urgent but challenging for environmental remediation. In this work, for the first time, the hierarchical plasmonic sulfonated graphene oxide-ZnO-Ag (SGO-ZnO-Ag) composites were prepared through nanocrystal-seed-directed hydrothermal method combining with polyol-reduction process. The results indicated that SGO-ZnO-Ag exhibited much faster rate in photodegradation of Rhodamine B (RhB) and disinfection of Escherichia coli (E. coli), than ZnO, SGO-ZnO and ZnO-Ag. SGO-ZnO-Ag totally degraded RhB dye and kill 99% of E. coli within 20 min under visible light irradiation. The outstanding performances of SGO-ZnO-Ag were attributed to the synergetic merits of SGO sheets, ZnO nanorod arrays and Ag nanoparticles. Firstly, the light absorption ability of SGO-ZnO-Ag composite in the visible region was enhanced due to the surface plasmon resonance of Ag. In addition, the hierarchical structure of SGO-ZnO-Ag composite improved the incident light scattering and reflection. Furthermore, SGO sheets facilitated charge transfer and reduce electron-hole recombination rate. Finally, the tentative mechanism was proposed and verified by the photoluminescence (PL) measurement as well as the theoretical finite-difference time-domain (FDTD) simulation. In view of above, this work paves the way for preparation of multi-component plasmonic composites and highlights the potential applications of SGO-ZnO-Ag in photocatalytic wastewater treatment field. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  14. Photoluminescence characteristics of Pb-doped, molecular-beam-epitaxy grown ZnSe crystal layers

    International Nuclear Information System (INIS)

    Mita, Yoh; Kuronuma, Ryoichi; Inoue, Masanori; Sasaki, Shoichiro; Miyamoto, Yoshinobu

    2004-01-01

    The characteristic green photoluminescence emission and related phenomena in Pb-doped, molecular-beam-epitaxy (MBE)-grown ZnSe crystal layers were investigated to explore the nature of the center responsible for the green emission. The intensity of the green emission showed a distinct nonlinear dependence on excitation intensity. Pb-diffused polycrystalline ZnSe was similarly examined for comparison. The characteristic green emission has been observed only in MBE-grown ZnSe crystal layers with moderate Pb doping. The results of the investigations on the growth conditions, luminescence, and related properties of the ZnSe crystal layers suggest that the green emission is due to isolated Pb replacing Zn and surrounded with regular ZnSe lattice with a high perfection

  15. Electrically conductive nanostructured silver doped zinc oxide (Ag:ZnO) prepared by solution-immersion technique

    International Nuclear Information System (INIS)

    Afaah, A. N.; Asib, N. A. M.; Aadila, A.; Khusaimi, Z.; Mohamed, R.; Rusop, M.

    2016-01-01

    p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO_3 as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films were characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.

  16. Effect of heavy Ag doping on the physical properties of ZnO

    Science.gov (United States)

    Hou, Qingyu; Zhao, Chunwang; Jia, Xiaofang; Xu, Zhenchao

    2018-04-01

    The band structure, density of state and absorption spectrum of Zn1‑xAgxO (x = 0.02778, 0.04167) were calculated. Results indicated that a higher doping content of Ag led to a higher total energy, lower stability, higher formation energy, narrower bandgap, more significant red shift of the absorption spectrum, higher relative concentration of free hole, smaller hole effective mass, lower mobility and better conductivity. Furthermore, four types of model with the same doping content of double Ag-doped Zn1‑xAgxO (x = 0.125) but different manners of doping were established. Two types of models with different doping contents of double Ag-doped Zn1‑xAgxO (x = 0.0626, 0.0833) but the same manner of doping, were also established. Under the same doping content and different ordering occupations in Ag double doping, the doped system almost caused magnetic quenching upon the nearest neighbor -Ag-O-Ag- bonding at the direction partial to the a- or b-axis. Upon the next-nearest neighbor of -Ag-O-Zn-O-Ag- bonding at the direction partial to the c-axis, the total magnetic moment of the doped system increased, and the doped system reached a Curie temperature above the room-temperature. All these results indicated that the magnetic moments of Ag double-doped ZnO systems decreased with increased Ag doping content. Within the range of the mole number of the doping content of 0.02778-0.04167, a greater Ag doping content led to a narrower bandgap of the doped system and a more significant red shift in the absorption spectrum. The absorption spectrum of the doped ZnO system with interstitial Ag also shows a red shift.

  17. Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation

    International Nuclear Information System (INIS)

    Ahmad, M.; Ahmed, E.; Hong, Z.L.; Khalid, N.R.; Ahmed, W.; Elhissi, A.

    2013-01-01

    Highlights: •Synthesis of Graphene–Ag/ZnO composite photocatalysts by facile one-step nontoxic approach. •Enhanced visible light absorption and efficient charge separation of ZnO by graphene modification and silver doping. •Effective utilization of photo-induced conduction band electron and valance band hole to photocatalytic degradation process. •Excellent photocatalytic performance of composites over pure ZnO. •The reduction in COD and TOC confirms the destruction of the organic molecules in the effluents along with colour removal. -- Abstract: Visible-light-responsive Graphene–Ag/ZnO nanocomposites were fabricated using a facile, one-pot, nontoxic solvothermal process for the photodegradation of organic dyes. During the solvothermal process reduction of graphene oxide and loading of Ag-doped ZnO nanoparticles on two-dimensional graphene sheets were achieved. Electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray analysis, BET surface area measurements, X-ray photoelectron spectroscopy and powder X-ray diffraction were used to confirm that the Ag-doped ZnO nanoparticles as randomly dispersed and effectively decorated on graphene sheets via covalent bonds between Zn and C atoms. Optical properties studied using UV–vis diffuse reflectance spectroscopy confirmed that the absorption edge of Ag-doped ZnO shifted to visible-light region with the incorporation of graphene. The as-synthesized Graphene–Ag/ZnO nanocomposites showed unprecedented photodecomposition efficiency compared to the Ag-doped ZnO, pristine ZnO and commercial ZnO under visible-light. The textile mill effluent containing organic substances was also treated using photocatalysis and the reduction in the chemical oxygen demand (COD) of the treated effluent revealed a complete destruction of the organic molecules along with colour removal. This dramatically enhanced photoactivity of the composite which is attributed to retarded charge recombination rate

  18. Synthesis and characterization of ZnO nanostructures on noble-metal coated substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dikovska, A.Og. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Sofia 1784 (Bulgaria); Atanasova, G.B. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 11, 1113 Sofia (Bulgaria); Avdeev, G.V. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 11, 1113 Sofia (Bulgaria); Nedyalkov, N.N. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Sofia 1784 (Bulgaria)

    2016-06-30

    Highlights: • ZnO nanostructures were fabricated on Au–Ag alloy coated silicon substrates by applying pulsed laser deposition. • Morphology of the ZnO nanostructures was related to the Au–Ag alloy content in the catalyst layer. • Increasing the Ag content in Au–Ag catalyst layer changes the morphology of the ZnO nanostructures from nanorods to nanobelts. - Abstract: In this work, ZnO nanostructures were fabricated on noble-metal (Au, Ag and Au–Ag alloys) coated silicon substrates by applying pulsed laser deposition. The samples were prepared at a substrate temperature of 550 °C, an oxygen pressure of 5 Pa, and a laser fluence of 2 J cm{sup −2} – process parameters usually used for deposition of smooth and dense thin films. The metal layer's role is substantial for the preparation of nanostructures. Heating of the substrate changed the morphology of the metal layer and, subsequently, nanoparticles were formed. The use of different metal particles resulted in different morphologies and properties of the ZnO nanostructures synthesized. The morphology of the ZnO nanostructures was related to the Au–Ag alloy's content of the catalyst layer. It was found that the morphology of the ZnO nanostructures evolved from nanorods to nanobelts as the ratio of Au/Ag in the alloy catalyst was varied. The use of a small quantity of Ag in the Au–Ag catalyst (Au{sub 3}Ag) layer resulted predominantly in the deposition of ZnO nanorods. A higher Ag content in the catalyst alloy (AuAg{sub 2}) layer resulted in the growth of a dense structure of ZnO nanobelts.

  19. Geochronology and petrogenesis of the Qibaoshan Cu-polymetallic deposit, northeastern Hunan Province: Implications for the metal source and metallogenic evolution of the intracontinental Qinhang Cu-polymetallic belt, South China

    Science.gov (United States)

    Yuan, Shunda; Mao, Jingwen; Zhao, Panlao; Yuan, Yabin

    2018-03-01

    The recently recognized Qinhang metallogenic belt (QHMB) is an economically important intracontinental Mesozoic porphyry-skarn Cu-polymetallic metallogenic belt in South China. However, the origin of the ore-bearing magma and the major factors controlling the different metal assemblages in the QHMB are still unclear. The Qibaoshan deposit is a large Cu-Au-Pb-Zn-Ag-Fe deposit located at the juncture between the northern and central parts of the QHMB. In this study, new zircon U-Pb ages, Hf-O isotopic data, molybdenite Re-Os ages, and whole-rock geochemical data are combined to constrain the timing of the mineralization and the origin and petrogenesis of the ore-bearing porphyry in the Qibaoshan deposit. The ages obtained from both zircon U-Pb and molybdenite Re-Os dating fall in the Late Jurassic (between 152.7 and 148.3 Ma), revealing that this deposit is significantly younger than previously estimated (227-184 Ma). The Qibaoshan ore-bearing quartz porphyry shows variable negative zircon εHf(t) values (-14.8 to -5.5), high δ18O values (8.4 to 10.8‰), and high Mg# values (69.1 to 73.0), indicating that it formed via the partial melting of ancient crust triggered by the injection of mantle-derived magma. Zircon Hf-O isotopic modeling of the mixing of two extreme endmembers indicates that the magmatic source comprised 70-80% reworked ancient crustal components and 20-30% depleted mantle components. Based on comparisons with other ore-bearing porphyries in the QHMB, a magmatic source dominated by crust-derived material and relatively low oxygen fugacities (ΔFMQ -1.8 to ΔFMQ +0.8) was responsible for the high (Pb + Zn)/Cu ratio in the Qibaoshan deposit, and the Pb, Zn and Ag were mainly derived from the reworked ancient crust. Although four analyses of inherited Neoproterozoic zircons ( 800 Ma) have variable positive εHf(t) values (0.72 to 11.21), indicating that Neoproterozoic juvenile crust was involved in the formation of the Qibaoshan ore-bearing quartz

  20. Suppression of superconductivity in a single Pb layer on Ag/Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Vanegas, Augusto; Kirschner, Juergen [Max Plank Instituet fuer Mikrostukturphysik (Germany); Martin Luther Univeristaet, Halle-Wittenberg (Germany); Caminale, Michael; Stepniak, Agnieszka; Oka, Hirofumi; Sanna, Antonio; Linscheid, Andreas; Sander, Dirk [Max Plank Instituet fuer Mikrostukturphysik (Germany)

    2015-07-01

    Recently, superconductivity was reported in a single layer of Pb on Si(111) with a critical temperature of 1.83 K. It has been proposed that the interaction of Pb with the Si substrate provides the electron phonon coupling to support superconductivity in this system. We have used a {sup 3}He-cooled STM with a vector magnetic field to study the effect of insertion of a Ag interlayer on the superconducting properties of a single Pb layer on Si(111). In contrast to the experiments on Pb/Si(111), the differential conductance of Pb/Ag/Si(111) does not show a gap indicative of superconductivity even at the lowest experimental temperature of 0.38 K. We ascribe this to the suppression of superconductivity. This result is explained by means of ab-initio calculations, showing that the effect of a chemical hybridization between Pb and Ag/Si occurring at the Fermi level dramatically reduces the strength of the electron phonon coupling. This contrasts with the case of Pb/Si(111), where no overlap between Pb and Si electronic states at the Fermi level is found in the calculations.

  1. Enhanced photocatalytic performances and magnetic recovery capacity of visible-light-driven Z-scheme ZnFe2O4/AgBr/Ag photocatalyst

    Science.gov (United States)

    He, Jie; Cheng, Yahui; Wang, Tianzhao; Feng, Deqiang; Zheng, Lingcheng; Shao, Dawei; Wang, Weichao; Wang, Weihua; Lu, Feng; Dong, Hong; Zheng, Rongkun; Liu, Hui

    2018-05-01

    High efficiency, high stability and easy recovery are three key factors for practical photocatalysts. Z-scheme heterostructure is one of the most promising photocatalytic systems to meet all above requirements. However, efficient Z-scheme photocatalysts which could absorb visible light are still few and difficult to implement at present. In this work, the composite photocatalysts ZnFe2O4/AgBr/Ag were prepared through a two-step method. A ∼92% photodegradation rate on methyl orange was observed within 30 min under visible light, which is much better than that of individual ZnFe2O4 or AgBr/Ag. The stability was also greatly improved compared with AgBr/Ag. The increased performance is resulted from the suitable band alignment of ZnFe2O4 and AgBr, and it is defined as Z-scheme mechanism which was demonstrated by detecting active species and electrochemical impedance spectroscopy. Besides, ZnFe2O4/AgBr/Ag is ferromagnetic and can be recycled by magnet. These results show that ZnFe2O4/AgBr/Ag is a potential magnetically recyclable photocatalyst which can be driven by visible light.

  2. Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young In [School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of); Jung, Hye Jin [Department of Mechanical Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of); Shin, Weon Gyu, E-mail: wgshin@cnu.ac.kr [Department of Mechanical Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of); Sohn, Youngku, E-mail: youngkusohn@ynu.ac.kr [School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of)

    2015-11-30

    Graphical abstract: - Highlights: • Ag/ZnO hybrid materials were prepared by a ball-milling method. • Adsorption and photocatalytic dye degradation were tested for pure RhB under visible light. • Adsorption and photocatalytic dye degradation were tested for mixed dye (MO + RhB + MB) under visible light. • Fenton-like photocatalytic activity (H{sub 2}O{sub 2} addition effects) was examined. - Abstract: The hybridization of ZnO with Ag has been performed extensively to increase the efficiency of ZnO in various applications, including catalysis. In this study, a wet (w) and dry (d) ball-milling method was used to hybridize Ag with ZnO nanoparticles, and their physicochemical properties were examined. Visible light absorption was enhanced and the band gap was engineered by ball-milling and Ag hybridization. Their photocatalytic activities were tested with rhodamine B (RhB) and a mixed dye (methyl orange + RhB + methylene blue) under visible light irradiation. For pure RhB, the photocatalytic activity was decreased by ball-milling and was observed in the order of ZnO(d) < Ag/ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). For the degradation of RhB and methylene blue (MB) in the mixed dye (or the simulated real contaminated water), the photocatalytic activity was observed in the order of Ag/ZnO(d) < ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). When the photodegradation tested with H{sub 2}O{sub 2} addition, however, the Fenton-like photocatalytic activity was reversed and the ZnO(ref) showed the poorest activity for the degradation of RhB and methylene blue (MB). In the mixed dye over all the catalysts, methyl orange (MO) was degraded most rapidly. The relative degradation rates of RhB and MB were found to be dependent on the catalyst and reaction conditions.

  3. Ag/PEPC/NiPc/ZnO/Ag thin film capacitive and resistive humidity sensors

    International Nuclear Information System (INIS)

    Karimov, Kh. S.; Saleem, M.; Murtaza, Imran; Farooq, M.; Cheong, Kuan Yew; Noor, Ahmad Fauzi Mohd

    2010-01-01

    A thin film of blended poly-N-epoxypropylcarbazole (PEPC) (25 wt.%), nickel phthalocyanine (NiPc) (50 wt.%) and ZnO nano-powder (25 wt.%) in benzene (5 wt.%) was spin-coated on a glass substrate with silver electrodes to produce a surface-type Ag/PEPC/NiPc/ZnO/Ag capacitive and resistive sensor. Sensors with two different PEPC/NiPc/ZnO film thicknesses (330 and 400 nm) were fabricated and compared. The effects of humidity on capacitance and resistance of the Ag/PEPC/NiPc/ZnO/Ag sensors were investigated at two frequencies of the applied voltage: 120 Hz and 1 kHz. It was observed that at 120 Hz under humidity of up to 95% RH the capacitance of the sensors increased by 540 times and resistance decreased by 450 times with respect to humidity conditions of 50% RH. It was found that the sensor with a thinner semiconducting film (330 nm) was more sensitive than the sensor with a thicker film (400 nm). The sensitivity was improved when the sensor was used at a lower frequency as compared with a high frequency. It is assumed that the humidity response of the sensors is associated with absorption of water vapors and doping of water molecules in the semiconductor blend layer. This had been proven by simulation of the capacitance-humidity relationship. (semiconductor devices)

  4. Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: Implications for Ore Formation

    Science.gov (United States)

    Kelley, K.D.; Leach, D.L.; Johnson, C.A.; Clark, J.L.; Fayek, M.; Slack, J.F.; Anderson, V.M.; Ayuso, R.A.; Ridley, W.I.

    2004-01-01

    The Red Dog Zn-Pb deposits are hosted in organic-rich mudstone and shale of the Mississippian Kuna Formation. A complex mineralization history is defined by four sphalerite types or stages: (1) early brown sphalerite, (2) yellow-brown sphalerite, (3) red-brown sphalerite, and (4) late tan sphalerite. Stages 2 and 3 constitute the main ore-forming event and are volumetrically the most important. Sulfides in stages 1 and 2 were deposited with barite, whereas stage 3 largely replaces barite. Distinct chemical differences exist among the different stages of sphalerite. From early brown sphalerite to later yellow-brown sphalerite and red-brown sphalerite, Fe and Co content generally increase and Mn and Tl content generally decrease. Early brown sphalerite contains no more than 1.9 wt percent Fe and 63 ppm Co, with high Mn (up to 37 ppm) and Tl (126 ppm), whereas yellow-brown sphalerite and red-brown sphalerite contain high Fe (up to 7.3 wt %) and Co (up to 382 ppm), and low Mn (ion microprobe sulfur isotope analyses show a progression from extremely low ??34S values for stage 1 (as low as -37.20???) to much higher values for yellow-brown sphalerite (mean of 3.3???; n = 30) and red-brown sphalerite (mean of 3.4; n = 20). Late tan sphalerite is isotopically light (-16.4 to -27.2???). The textural, chem ical, and isotopic data indicate the following paragenesis: (1) deposition of early brown sphalerite with abundant barite, minor pyrite, and trace galena immediately beneath the sea floor in unconsolidated mud; (2) deposition of yellow-brown sphalerite during subsea-floor hydrothermal recrystallization and coarsening of preexisting barite; (3) open-space deposition of barite, red-brown sphalerite and other sulfides in veins and coeval replacement of barite; and (4) postore sulfide deposition, including the formation of late tan sphalerite breccias. Stage 1 mineralization took place in a low-temperature environment where fluids rich in Ba mixed with pore water or water

  5. Highly transparent and thermal-stable silver nanowire conductive film covered with ZnMgO by atomic-layer-deposition

    Science.gov (United States)

    Wang, Lei; Huang, Dongchen; Li, Min; Xu, Hua; Zou, Jianhua; Tao, Hong; Peng, Junbiao; Xu, Miao

    2017-12-01

    Solution-processed silver nanowires (AgNWs) have been considered as a promising material for next generation flexible transparent conductive electrodes. However AgNWs films have several intrinsic drawbacks, such as thermal stability and storage stability. Herein, we demonstrate a laminated ZnO/MgO (ZnMgO, ZMO) as a protective layer on the AgNWs films using atomic layer deposition (ALD). The fabricated films exhibited a low sheet resistance of 16 Ω/sq with high transmittance of 91% at 550 nm, an excellent thermal stability and bending property. The ZMO film grows perpendicularly on the surface of the AgNWs, making a perfect coverage of bulk silver nanowires and junction, which can effectively prompt the electrical transport behavior and enhance stability of the silver nanowires network.

  6. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hai-Xia [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Xiao-Xu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Computing Center, Beijing 100094 (China); Hu, Yao-Wen [Department of Physics, Tsinghua University, Beijing 100084 (China); Song, Hong-Quan; Huo, Jin-Rong; Li, Lu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Qian, Ping, E-mail: ustbqianp@163.com [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Song, Yu-Jun [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-12-15

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations show that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.

  7. Synthesis and luminescence properties of (Zn,Cd)S:Ag nanocrystals by hydrothermal method

    International Nuclear Information System (INIS)

    Luo Xixian; Cao Wanghe; Zhou Lixin

    2007-01-01

    ZnS:Ag and (Zn,Cd)S:Ag nanoparticles with particle sizes of about 50 and 150 nm have been prepared by hydrothermal method. The effects of hydrothermal process on the physical and luminescence characteristics are investigated. The photoluminescence intensities of hydrothermal treatment ZnS:Ag samples are 10 times higher than that of non-treated samples after annealing at 800 deg. C

  8. Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment

    Science.gov (United States)

    Shanks, W.C. Pat; Koski, Randolph A.; Mosier, Dan L.; Schulz, Klaus J.; Morgan, Lisa A.; Slack, John F.; Ridley, W. Ian; Dusel-Bacon, Cynthia; Seal, Robert R.; Piatak, Nadine M.; Shanks, W.C. Pat; Thurston, Roland

    2012-01-01

    Volcanogenic massive sulfide deposits, also known as volcanic-hosted massive sulfide, volcanic-associated massive sulfide, or seafloor massive sulfide deposits, are important sources of copper, zinc, lead, gold, and silver (Cu, Zn, Pb, Au, and Ag). These deposits form at or near the seafloor where circulating hydrothermal fluids driven by magmatic heat are quenched through mixing with bottom waters or porewaters in near-seafloor lithologies. Massive sulfide lenses vary widely in shape and size and may be podlike or sheetlike. They are generally stratiform and may occur as multiple lenses.

  9. Biodynamic modelling of the bioaccumulation of trace metals (Ag, As and Zn) by an infaunal estuarine invertebrate, the clam Scrobicularia plana

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, J., E-mail: judit.kalman@uca.es [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Smith, B.D. [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Bury, N.R. [Division of Diabetes and Nutritional Science, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Rainbow, P.S. [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom)

    2014-09-15

    Highlights: • Biodynamic modelling is used to predict accumulation of Ag, As and Zn in S. plana. • Dissolved and sediment-associated metals contribute to total metal bioaccumulation. • Relative importance varies with water and sediment concentrations and geochemistries. - Abstract: Biodynamic modelling was used to investigate the uptake and accumulation of three trace metals (Ag, As, Zn) by the deposit feeding estuarine bivalve mollusc Scrobicularia plana. Radioactive labelling techniques were used to quantify the rates of trace metal uptake (and subsequent elimination) from water and sediment diet. The uptake rate constant from solution (±SE) was greatest for Ag (3.954 ± 0.375 l g{sup −1} d{sup −1}) followed by As (0.807 ± 0.129 l g{sup −1} d{sup −1}) and Zn (0.103 ± 0.016 l g{sup −1} d{sup −1}). Assimilation efficiencies from ingested sediment were 40.2 ± 1.3% (Ag), 31.7 ± 1.0% (Zn) and 25.3 ± 0.9% (As). Efflux rate constants after exposure to metals in the solution or sediment fell in the range of 0.014–0.060 d{sup −1}. By incorporating these physiological parameters into biodynamic models, our results showed that dissolved metal is the predominant source of accumulated Ag, As and Zn in S. plana, accounting for 66–99%, 50–97% and 52–98% of total accumulation of Ag, As and Zn, respectively, under different field exposure conditions. In general, model-predicted steady state concentrations of Ag, As and Zn matched well with those observed in clams collected in SW England estuaries. Our findings highlight the potential of biodynamic modelling to predict Ag, As and Zn accumulation in S. plana, taking into account specific dissolved and sediment concentrations of the metals at a particular field site, together with local water and sediment geochemistries.

  10. Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition

    Science.gov (United States)

    Maijenburg, A. Wouter; Rodijk, Eddy J.B.; Maas, Michiel G.; ten Elshof, Johan E.

    2014-01-01

    Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution. PMID:24837535

  11. Assessment of soil contamination with Cd, Pb and Zn and source identification in the area around the Huludao Zinc Plant

    International Nuclear Information System (INIS)

    Lu, C.A.; Zhang, J.F.; Jiang, H.M.; Yang, J.C.; Zhang, J.T.; Wang, J.Z.; Shan, H.X.

    2010-01-01

    The distribution characteristics of heavy metals (cadmium (Cd), lead (Pb) and zinc (Zn)) in the natural soil profiles around the Huludao Zinc Plant (HZP), an old industrial base in Northeast China, were analyzed. The pollutant source was identified using 210 Pb isotope technique to evaluate the geochemical characteristics of Pb and the historical production records of HZP. The results indicated: dust precipitation from HZP was the primary source of the pollutants. The average deposition rates of Cd, Pb and Zn were 0.33, 1.75, and 30.97 g/m 2 year, respectively at 1 km away after HZP, and 0.0048, 0.035, and 0.20 g/m 2 year, respectively at 10 km away after HZP. There is a risk of secondary pollution to the environment as well as the food chain in seriously polluted areas used for cultivation.

  12. Photoelectric properties of ZnO/Ag2S heterostructure and its photoelectric ethanol sensing characteristics

    International Nuclear Information System (INIS)

    Zhang Yu; Liu Bingkun; Wang Dejun; Lin Yanhong; Xie Tengfeng; Zhai Jiali

    2012-01-01

    Highlights: ► The ZnO/Ag 2 S heterostructure shows good photoelectric properties under visible-light irradiation. ► Transient photovoltage results reveal the separation process of photo-generated charges and give further evidence of interfacial effects. ► Photoelectric ethanol sensing characteristics have been found for the ZnO/Ag 2 S heterostructure at room temperature. - Abstract: The photoelectric properties of ZnO microspheres, ZnO/Ag 2 S heterogeneous microspheres and Ag 2 S hollow microspheres were investigated systematically by surface photovoltage, transient photovoltage and surface photocurrent techniques. The ZnO/Ag 2 S heterostructure shows superior photoelectric properties in visible-light region compared with pure Ag 2 S. Transient photovoltage results reveal the separation processes of photo-generated charge carriers in the samples. The photoelectric ethanol sensing property induced by visible light for the ZnO/Ag 2 S heterostructure has been found, which should be valuable for the practical application of semiconductor gas sensors at room temperature.

  13. Ternary ZnO/AgI/Ag2CO3 nanocomposites: Novel visible-light-driven photocatalysts with excellent activity in degradation of different water pollutants

    International Nuclear Information System (INIS)

    Golzad-Nonakaran, Behrouz; Habibi-Yangjeh, Aziz

    2016-01-01

    ZnO/AgI/Ag 2 CO 3 nanocomposites with different Ag 2 CO 3 contents were fabricated by a facile ultrasonic-irradiation method. The resultant samples were fairly characterized using XRD, EDX, SEM, TEM, UV–vis DRS, FT-IR, and PL techniques to reveal their microstructure, purity, morphology, and spectroscopic properties. Photocatalytic activity of the prepared samples was investigated by photodegradation of four dye pollutants (rhodamine B, methyl orange, methylene blue, and fuchsine) under visible-light irradiation. The photocatalytic experiments in degradation of rhodamine B showed that the ternary ZnO/AgI/Ag 2 CO 3 (30%) nanocomposite has an enhanced activity nearly 19 and 14 times higher than those of the binary ZnO/Ag 2 CO 3 and ZnO/AgI photocatalysts, respectively. Based on the obtained results, the highly enhanced activity was attributed to generation of more electron-hole pairs under visible-light irradiation and separation of the photogenerated charge carriers due to formation of tandem n-n heterojunctions between counterparts of the nanocomposite. The active species trapping experiments were also examined and it was showed that superoxide ion radicals play a vital role in the photocatalytic degradation reaction. More importantly, the ternary photocatalyst demonstrated good photostability. - Highlights: • ZnO/AgI/Ag 2 CO 3 nanocomposites were fabricated by an ultrasonic-irradiation method. • The activity was investigated by photodegradation of four dyes under visible light. • ZnO/AgI/Ag 2 CO 3 (30%) nanocomposite has the best activity under visible light. • Activity is 19 and 14-folds higher than ZnO/Ag 2 CO 3 and ZnO/AgI in degradation of RhB.

  14. Simple and Sensitive Colorimetric Assay for Pb2+ Based on Glutathione Protected Ag Nanoparticles by Salt Amplification.

    Science.gov (United States)

    Chen, Zhang; Li, Huidong; Chu, Lin; Liu, Chenbin; Luo, Shenglian

    2015-02-01

    A simple and sensitive colorimetric assay for Pb2+ detection has been reported using glutathione protected silver nanoparticles (AgNPs) by salt amplification. The naked AgNPs aggregate under the influence of salt. Glutathione (GSH) can bind to AgNPs via Ag-S bond, helping AgNPs to against salt-induced aggregation. However, GSH binding to AgNPs can be compromised by the interaction between Pb2+ and GSH. As a result, Pb2+-mediated aggregation of AgNPs under the influence of salt is reflected by the UV-Visible spectrum, and the qualitative and quantitative detection for Pb2+ is accomplished, with the detection range 0.5-4 µM and a detection limit of 0.5 µM. At the same time, Pb2+ in real water sample is detected. Furthermore, the high selectivity and low cost of the assay means it is promising for enviromental applications.

  15. Influence of mechanical activation on the leaching of non-ferrous metals from a CuPbZn complex concentrate

    Directory of Open Access Journals (Sweden)

    Godoèíková Erika

    2000-09-01

    Full Text Available The aim of study was to research the procedures of copper, lead and zinc leaching from CuPbZn complex sulphide concentrate during the intervention of mechanical activation.Mechanical activation belongs to innovative procedures, which intensifies technological processes by means of creation of new surfaces and making defective structure of solid phase. Mechanical impact on the solid phase is a suitable procedure to ensure the mobility of its structure elements and to accumulate the mechanical energy that is later used in following processes of leaching.This paper deals with the intensification of the chloride and thiourea leaching of copper, lead and zinc from a CuPbZn complex concentrate of Hodruša-Hámre (Slovak deposit by using the mechanical activation in an attritor. Ferric chloride and thiourea were used as leaching reagents. The leaching of the concentrate with ferric chloride solution afforded 23 % recovery of Cu, 99 % of Pb and 28 % of Zn. 9 % recovery of Cu, 17 % of Pb and 3 % of Zn were achieved by the leaching with thiourea. Thus results showed that the extraction of Cu, Zn and also Pb in the case of thiourea leaching was low. The use of milling in the attritor as an innovation method of pretreatment leads to the structural degradation and increasing the surface area of the investigated concentrate from the original value of 0.18 m2g-1 to the maximum value of 4.67 m2g-1. This fact manifested itself in the subsequent process of extraction of Cu, Pb and Zn into the chloride and thiourea solutions. Our results indicate more effective leaching of pretreated concentrate in the chloride medium with recoveries of 84 % Zn and 100 % Pb. In thiourea, the recoveries for Zn and Pb were low, however 99 % Cu can be recovered. In regard to the economy, the extraction of Cu, Pb and Zn was studied in this work with the aspect of minimal energy consumption during milling. The maximum recoveries of non-ferrous metals in the solutions of ferric chloride

  16. Pb-Zn mineralization of Ali ou Daoud area (Central High Atlas, Morocco: characterisation of deposit and relationship with the clay assemblages

    Directory of Open Access Journals (Sweden)

    Daoudi, L.

    2008-12-01

    Full Text Available Zn-Pb-Fe ores in the Ali ou Daoud deposit (Central High Atlas are found as stratiform levels and as karst fillings in carbonate platforms facies of Bajocian age. Tectonic structures (e.g., synsedimentary faults played a relevant role in the ore emplacement. The dolomitic ore-related host-rock levels are characterized by the presence of kaolinite enrichment in clay levels in amounts directly related to the proportion of the clay minerals. The latter is evidenced by correlation between kaolinite and sulphide contents, suggesting that the installation of kaolinite and mineralisations would result from the same hydrothermal fluid.[Français] Dans les séries sédimentaires carbonatées d’Ali ou Daoud (Haut Atlas Central, les minéralisations à Zn, Pb et Fe en amas stratiformes forment les faciès de remplissage des karsts d’une plateforme carbonatée bajocienne. Le contrôle structural joue un rôle capital dans la localisation du gîte en bordure de plateforme sur des failles synsédimentaires. Dans les niveaux dolomitiques encaissants des minéralisations, les assemblages argileux sont caractérisés par la présence de kaolinite dont la teneur varie parallèlement avec celle du minerai. Ceci suggère que la mise en place de la kaolinite et des minéralisations résulterait du même fluide hydrothermal. [Español] En las series sedimentarias carbonatadas de Ali ou Daoud (Alto Atlas Central, las mineralizaciones de Zn, Pb y Fe aparecen en niveles estratiformes como facies de reemplazamiento de los karsts de una plataforma carbonatada Bajociense. El control estructural desempeña un papel crucial en la localización del yacimiento a lo largo de la plataforma sobre fallas sinsedimentarias. En los niveles dolomíticos que incluyen las mineralizaciones, las asociaciones arcillosas se caracterizan por la presencia de caolinita, cuyo contenido varía paralelamente al de la mineralización. Esto sugiere que la creación de caolinita y de la

  17. Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post-depositional fractionation processes in smelter-impacted soils from Northern France

    Science.gov (United States)

    Juillot, Farid; Maréchal, Chloe; Morin, Guillaume; Jouvin, Delphine; Cacaly, Sylvain; Telouk, Philipe; Benedetti, Marc F.; Ildefonse, Philippe; Sutton, Steve; Guyot, François; Brown, Gordon E., Jr.

    2011-05-01

    Zinc isotopes have been studied along two smelter-impacted soil profiles sampled near one of the largest Pb and Zn processing plants in Europe located in northern France, about 50 km south of Lille. Mean δ 66Zn values along these two soil profiles range from +0.22 ± 0.17‰ (2 σ) to +0.34 ± 0.17‰ (2 σ) at the lowest horizons and from +0.38 ± 0.45‰ (2 σ) to +0.76 ± 0.14‰ (2 σ) near the surface. The δ 66Zn values in the lowest horizons of the soils are interpreted as being representative of the local geochemical background (mean value +0.31 ± 0.38‰), whereas heavier δ 66Zn values near the surface of the two soils are related to anthropogenic Zn. This anthropogenic Zn occurs in the form of franklinite (ZnFe 2O 4)-bearing slag grains originating from processing wastes at the smelter site and exhibiting δ 66Zn values of +0.81 ± 0.20‰ (2 σ). The presence of franklinite is indicated by EXAFS analysis of the topsoil samples from both soil profiles as well as by micro-XANES analysis of the surface horizon of a third smelter-impacted soil from a distant site. These results indicate that naturally occurring Zn and smelter-derived Zn exhibit significantly different δ 66Zn values, which suggests that zinc isotopes can be used to distinguish between geogenic and anthropogenic sources of Zn in smelter-impacted soils. In addition to a possible influence of additional past sources of light Zn (likely Zn-sulfides and Zn-sulfates directly emitted by the smelter), the light δ 66Zn values in the surface horizons compared to smelter-derived slag materials are interpreted as resulting mainly from fractionation processes associated with biotic and/or abiotic pedological processes (Zn-bearing mineral precipitation, Zn complexation by organic matter, and plant uptake of Zn). This conclusion emphasizes the need for additional Zn isotopic studies before being able to use Zn isotopes to trace sources and pathways of this element in surface environments.

  18. Preparation of ZnO/Ag nanocomposite and coating on polymers for anti-infection biomaterial application.

    Science.gov (United States)

    Sadeghi, Babak

    2014-01-24

    ZnO/Ag nanocomposites coated with polyvinyl chloride (PVC) were prepared by chemical reduction method, for anti-infection biomaterial application. There is a growing interest in attempts in using biomolecular as the templates to grow inorganic nanocomposites in controlled morphology and structure. By optimizing the experiment conditions, we successfully fabricated high yield of ZnO/Ag nanocomposite with full coverage of high-density polyvinyl chloride (PVC) coating. More importantly, ZnO/Ag nanocomposites were shown to significantly inhibit the growth of Staphylococcus aureus in solution. It was further shown that ZnO/Ag nanocomposites induced thiol depletion that caused death of S. aureus. The coatings were fully characterized using techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Most importantly, compared to uncoated metals, the coatings on PVC promoted healthy antibacterial activity. Importantly, compared to ZnO-Ag -uncoated PVC, the ZnO/Ag nanocomposites coated was approximately triplet more effective in preventing bacteria attachment. The result of Thermal Gravimetric Analysis (TGA) indicates that, the ZnO/Ag nanocomposites are chemically stable in the temperature range from 50 to 900°C. This result, for the first time, demonstrates the potential of using ZnO/Ag nanocomposites as a coating material for numerous anti-bacterial applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Microstructure analyses and thermoelectric properties of Ag1−xPb18Sb1+yTe20

    International Nuclear Information System (INIS)

    Perlt, S.; Höche, Th.; Dadda, J.; Müller, E.; Bauer Pereira, P.; Hermann, R.; Sarahan, M.; Pippel, E.; Brydson, R.

    2012-01-01

    This study reports microstructural investigations of long-term annealed Ag 1−x Pb m Sb 1+y Te 2+m (m=18, x=y=0, hereinafter referred to as AgPb 18 SbTe 20 ) (Lead–Antimony–Silver–Tellurium, LAST-18) as well as of Ag 1−x Pb 18 Sb 1+y Te 20 , i.e. Ag-deficient and Sb-excess LAST-18 (x≠0,y≠0), respectively. Two different length scales are explored. The micrometer scale was evaluated by SEM to analyze the volume fraction and the number of secondary phases as well as the impact of processing parameters on the homogeneity of bulk samples. For AgPb 18 SbTe 20 , site-specific FIB liftout of TEM lamellae from thermoelectrically characterized samples was accomplished to investigate the structure on the nanometer scale. High-resolution TEM and energy-filtered TEM were performed to reveal shape and size distribution of nanoprecipitates, respectively. A hypothesis concerning the structure–property relationship is set out within the frame of a gradient annealing experiment. This study is completed by results dealing with inhomogeneities on the micrometer scale of Ag 1−x Pb 18 Sb 1+y Te 20 and its electronic properties. Highlights: ► SEM and TEM microstructure investigation of long-term annealed AgPb 18 SbTe 20 . ► SEM and thermoelectric studies on Ag 1−x Pb 18 Sb 1+y Te 20 . ► Discussion concerning structure–property relationship in long-term annealed AgPb 18 SbTe 20 . ► Correlation between Ag 1−x Pb 18 Sb 1+y Te 20 microscale structure and electronic properties.

  20. Fluid inclusion and sulfur stable isotope evidence for the origin of the Ahangran Pb-Ag deposit

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou

    2015-10-01

    Full Text Available Introduction The Ahangaran Pb-Ag deposit is located in the Hamedan province, west Iran, 25 km southeast of the city of Malayer . . The deposit lies in the strongly folded Sanandaj-Sirjan tectonic zone, in which the ore bodies occur as thin lenses and layers. The host rocks of the deposit are Early Cretaceous carbonates and sandstones that are unconformably underlain by Jurassic rocks. Ore minerals include galena, pyrite, chalcopyrite, pyrrhotite and supergene iron oxide minerals. Gangue minerals consist of barite, dolomite, chlorite, calcite and quartz. The mineralization occurs as open-space fillings, veins, veinlets, disseminations, and massive replacements. Alteration consists of silicification, sericitization, and dolomitization. In this study, we carried out studies of mineralogy, microthermometry of fluid inclusions and sulfur isotopes to determine the source of sulfur and the physico-chemical conditions of formation. Materials and methods Seventy samples of different host rocks, alteration, and mineralization were collected from surface outcrops and different tunnels. Twenty of the samples were prepared for mineralogical studies at Tarbiat Modarres University in Tehran and 25 for petrological studies at the University of Bu-Ali Sina. Fluid-inclusion studies were done on 5 samples of quartz and calcite at Pouya Zamin Azin Company in Tehran using a Linkam THM 600 model heating-freezing stage (with a range of -196 to 480ºC. The accuracy and precision of the homogenization measurements are about ±1°C. Salinity estimates were determined from the last melting temperatures of ice, utilizing the equations by Bodnar and Vityk (1994 and for CO2 fluids using equations by Chen (1972. Nine samples of sulfides and barite were crushed and separated by handpicking under binocular microscope and powdered with agate mortar and pestle. About one gram of each sample was sent to the Stable Isotope and ICP/MS Laboratory of Queen’s University, Canada for

  1. Assessment of soil contamination with Cd, Pb and Zn and source identification in the area around the Huludao Zinc Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lu, C.A.; Zhang, J.F.; Jiang, H.M. [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences,100081 Beijing (China); Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, 100081 Beijing (China); Yang, J.C., E-mail: yangjch@263.net [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences,100081 Beijing (China) and Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, 100081 Beijing (China); Zhang, J.T.; Wang, J.Z.; Shan, H.X. [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing (China); Graduate School of Chinese Academy of Agricultural Sciences,100081 Beijing (China)

    2010-10-15

    The distribution characteristics of heavy metals (cadmium (Cd), lead (Pb) and zinc (Zn)) in the natural soil profiles around the Huludao Zinc Plant (HZP), an old industrial base in Northeast China, were analyzed. The pollutant source was identified using {sup 210}Pb isotope technique to evaluate the geochemical characteristics of Pb and the historical production records of HZP. The results indicated: dust precipitation from HZP was the primary source of the pollutants. The average deposition rates of Cd, Pb and Zn were 0.33, 1.75, and 30.97 g/m{sup 2} year, respectively at 1 km away after HZP, and 0.0048, 0.035, and 0.20 g/m{sup 2} year, respectively at 10 km away after HZP. There is a risk of secondary pollution to the environment as well as the food chain in seriously polluted areas used for cultivation.

  2. Pb migration in the OKLO uranium deposit

    International Nuclear Information System (INIS)

    Gancarz, A.J.; Curtis, D.B.

    1979-01-01

    U-Pb and Pb isotopic data are presented which indicate that Pb is lost from host uraninite by diffusion, and that not only in situ uranogenic Pb but also the initial Pb is lost by diffusion. The conglomerate underlying the U deposit contains excess Pb and is both a transport zone and the repository for the Pb. 2 figures

  3. Superconducting properties of Pb nanoislands on Pb/Ag/Si(111) studied by a "3He-cooled scanning tunnelling microscope in magnetic fields at variable temperatures

    International Nuclear Information System (INIS)

    Leon Vanegas, Alvaro Augusto

    2015-01-01

    A "3He-cooled scanning tunneling microscope was used to investigate the superconducting properties of Pb single layers on Si(111) and Ag/Si(111) and Pb islands on Pb/Ag/Si(111) at temperatures between 0.38 K and 6 K and in magnetic fields of up to 3 T. The spectroscopy measurements show that in contrast with Pb/Si(111), a single Pb layer on Ag/Si(111) is non-superconducting. The superconductivity of Pb islands on Pb/Ag/Si(111) was characterized as a function of temperature and magnetic field. A non-uniform critical magnetic field for suppression of superconductivity on islands of uniform thickness but sitting of regions of different height is reported. The proximity induced superconductivity on the wetting layer surrounding a Pb island on Pb/Ag/Si(111) was studied. Spatially resolved, magnetic field dependent spectroscopy uncovers a non-trivial reduction of the extension of the induced superconductivity with increasing field. A breakdown of the proximity effect for fields larger than 0.5 T is found. Tunneling spectroscopy reveals a strong decrease of the proximity length with increasing temperature. This is ascribed to the thermally induced broadening of the electronic density of states in the tip used in the STM experiment.

  4. Hydrodynamic analysis of clastic injection and hydraulic fracturing structures in the Jinding Zn-Pb deposit, Yunnan, China

    Directory of Open Access Journals (Sweden)

    Guoxiang Chi

    2012-01-01

    Full Text Available The Jinding Zn-Pb deposit has been generally considered to have formed from circulating basinal fluids in a relatively passive way, with fluid flow being controlled by structures and sedimentary facies, similar to many other sediments-hosted base metal deposits. However, several recent studies have revealed the presence of sand injection structures, intrusive breccias, and hydraulic fractures in the open pit of the Jinding deposit and suggested that the deposit was formed from explosive release of overpressured fluids. This study reports new observations of fluid overpressure-related structures from underground workings (Paomaping and Fengzishan, which show clearer crosscutting relationships than in the open pit. The observed structures include: 1 sand (±rock fragment dikes injecting into fractures in solidified rocks; 2 sand (±rock fragment bodies intruding into unconsolidated or semi-consolidated sediments; 3 disintegrated semi-consolidated sand bodies; and 4 veins and breccias formed from hydraulic fracturing of solidified rocks followed by cementation of hydrothermal minerals. The development of ore minerals (sphalerite in the cement of the various clastic injection and hydraulic fractures indicate that these structures were formed at the same time as mineralization. The development of hydraulic fractures and breccias with random orientation indicates small differential stress during mineralization, which is different from the stress field with strong horizontal shortening prior to mineralization. Fluid flow velocity may have been up to more than 11 m/s based on calculations from the size of the fragments in the clastic dikes. The clastic injection and hydraulic fracturing structures are interpreted to have formed from explosive release of overpressured fluids, which may have been related to either magmatic intrusions at depth or seismic activities that episodically tapped an overpressured fluid reservoir. Because the clastic injection

  5. Nature and Evolution of the Ore-Forming Fluids from Nanmushu Carbonate-Hosted Zn-Pb Deposit in the Mayuan District, Shaanxi Province, Southwest China

    Directory of Open Access Journals (Sweden)

    Suo-Fei Xiong

    2017-01-01

    Full Text Available The Nanmushu carbonate-hosted Zn-Pb deposit is located in the Mayuan district of Shaanxi Province, a newly discovered metallogenic district next to the Sichuan Basin, in the northern margin of the Yangtze Block, which is the largest and the only one that is currently mined in this district. The δ34S values of sulfides are characterized by positive values with a peak around +18‰, and the reduced sulfur may have derived from reduction of SO42- from paleoseawater or evaporitic sulfates that have possibly been leached by basinal brines during mineralization stage. Detailed fluid inclusion study shows two types of fluids in the sphalerite, quartz, dolomite, calcite and barite, that is, aqueous-salt dominant inclusions (type I and hydrocarbon-bearing inclusions (type II. The Laser Raman spectroscopy study shows occurrence of certain amount of CH4, C4H6, and bitumen. The salinities show similar values around 6 to 12 wt% NaCl equivalent but a decreasing temperature from early to late stages (typically 200° to 320°C in stage I, 180° to 260°C in stage II, and 140° to 180°C in stage III. These features may be related to basinal brines mixing between an external higher salinity CaCl2  ±  MgCl2-rich fluid and a local H2O-NaCl methane-rich fluid.

  6. Interfacial potential approach for Ag/ZnO (0001) interfaces

    International Nuclear Information System (INIS)

    Song Hong-Quan; Shen Jiang; Qian Ping; Chen Nan-Xian

    2014-01-01

    Systematic approaches are presented to extract the interfacial potentials from the ab initio adhesive energy of the interface system by using the Chen—Möbius inversion method. We focus on the interface structure of the metal (111)/ZnO (0001) in this work. The interfacial potentials of Ag—Zn and Ag—O are obtained. These potentials can be used to solve some problems about Ag/ZnO interfacial structure. Three metastable interfacial structures are investigated in order to check these potentials. Using the interfacial potentials we study the procedure of interface fracture in the Ag/ZnO (0001) interface and discuss the change of the energy, stress, and atomic structures in tensile process. The result indicates that the exact misfit dislocation reduces the total energy and softens the fracture process. Meanwhile, the formation and mobility of the vacancy near the interface are observed. (condensed matter: structural, mechanical, and thermal properties)

  7. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hairui, E-mail: liuhairui1@126.com [College of Physics & Electronics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Hu, Yanchun [College of Physics & Electronics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Zhang, Zhuxia [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China); Jia, Husheng [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China)

    2015-11-15

    Graphical abstract: Ag nanoparticles decorated ZnO microspheres heterostructural composites were fabricated via a two-step chemical method, and present enhanced UV and visible light photocatalytic activity, which ascribed to the formation of Schottky barriers in the regions between Ag-NPs and ZnO-MSs and effective electron transfer from plasmon-excited Ag(0) nanoparticles to ZnO-MSs by strong localization of surface plasmonic resonance. - Highlights: • Ag/ZnO microspheres heterostructural composites were fabricated via a two-step chemical method. • Ag/ZnO composites exhibits enhanced visible light and UV light photocatalytic activity. • The UV and visible-light photocatalytic activity sequences are different for Ag/ZnO composites with the increase of Ag content. • The enhanced UV and visible light photocatalytic activity could be attributed to the formation of the Schottky barriers and surface plasmon resonance. - Abstract: Ag nanoparticles (Ag-NPs) decorated ZnO microspheres (ZnO-MSs) heterostructural composites were fabricated via a two-step chemical method. The ZnO-MSs with the diameter about 700 nm was initially prepared by ultrasonic technology. Subsequently, Ag-NPs with a diameter of 20–50 nm were anchored onto the surface of the as-prepared ZnO-MSs by a microwave polyol process. The morphology, structural and optical properties of the as-synthesized materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV–visible absorption spectroscopy, and photoluminescence spectroscopy. The results show that the surface plasmon absorption band of Ag/ZnO composites is distinctly broadened and the PL intensity of Ag/ZnO heterostructural composites varies with the increase of Ag loading. The photocatalytic activity of the Ag/ZnO composites were evaluated by the degradation of rhodamine B (Rh

  8. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation

    International Nuclear Information System (INIS)

    Liu, Hairui; Hu, Yanchun; Zhang, Zhuxia; Liu, Xuguang; Jia, Husheng; Xu, Bingshe

    2015-01-01

    Graphical abstract: Ag nanoparticles decorated ZnO microspheres heterostructural composites were fabricated via a two-step chemical method, and present enhanced UV and visible light photocatalytic activity, which ascribed to the formation of Schottky barriers in the regions between Ag-NPs and ZnO-MSs and effective electron transfer from plasmon-excited Ag(0) nanoparticles to ZnO-MSs by strong localization of surface plasmonic resonance. - Highlights: • Ag/ZnO microspheres heterostructural composites were fabricated via a two-step chemical method. • Ag/ZnO composites exhibits enhanced visible light and UV light photocatalytic activity. • The UV and visible-light photocatalytic activity sequences are different for Ag/ZnO composites with the increase of Ag content. • The enhanced UV and visible light photocatalytic activity could be attributed to the formation of the Schottky barriers and surface plasmon resonance. - Abstract: Ag nanoparticles (Ag-NPs) decorated ZnO microspheres (ZnO-MSs) heterostructural composites were fabricated via a two-step chemical method. The ZnO-MSs with the diameter about 700 nm was initially prepared by ultrasonic technology. Subsequently, Ag-NPs with a diameter of 20–50 nm were anchored onto the surface of the as-prepared ZnO-MSs by a microwave polyol process. The morphology, structural and optical properties of the as-synthesized materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV–visible absorption spectroscopy, and photoluminescence spectroscopy. The results show that the surface plasmon absorption band of Ag/ZnO composites is distinctly broadened and the PL intensity of Ag/ZnO heterostructural composites varies with the increase of Ag loading. The photocatalytic activity of the Ag/ZnO composites were evaluated by the degradation of rhodamine B (Rh

  9. Optical studies on Zn-doped lead chalcogenide (PbSe){sub 100−x}Zn{sub x} thin films composed of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, Md. Tanweer [Department of Applied Sciences and Humanities, Jamia Millia Islamia (JMI), New Delhi-25 (India); Salah, Numan A. [Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Rafat, M. [Department of Applied Sciences and Humanities, Jamia Millia Islamia (JMI), New Delhi-25 (India); Zulfequar, M. [Department of Physics, Jamia Millia Islamia, New Delhi-25 (India); Khan, Zishan H., E-mail: zishan_hk@yahoo.co.in [Department of Applied Sciences and Humanities, Jamia Millia Islamia (JMI), New Delhi-25 (India)

    2016-08-01

    The effect of laser-Irradiation on the optical properties of Zn-doped PbSe thin films composed of nanoparticles has been studied. Scanning electron microscope (SEM) investigations suggest the formation of nanoparticles of average size of 50 nm for all the studied Zn compositions. XRD studies show that the as-prepared thin films are polycrystalline in nature. The formation of nanoparticles of Zn-doped PbSe has been confirmed by indexing the crystal planes as observed in the XRD spectra. The addition of Zn in (PbSe){sub 100−x}Zn{sub x} thin films result in the blue shift in photoluminescence spectra, this blue shift is associated with the narrowing of the band gap. Optical absorption measurements reveal a direct band gap for the present samples, which decreases on increasing the Zn content. The same trend has also been observed for the samples irradiated with laser. Further, the calculated values of Urbach energy are found to increase with the increase in Zn contents for the as-prepared as well as laser-irradiated samples. All the above observations agree well with the results of optical band gap and suggest that the decrease in band gap may be due to increase in band tails, defects and particle size. - Highlights: • Nanoparticles of Zn doped (PbSe){sub 100−x}Zn{sub x} lead chalcogenides have been synthesized. • Effect of laser irradiation on optical properties of (PbSe){sub 100−x}Zn{sub x} has been studied. • A blue shift in PL spectra is obtained on Zn incorporation.

  10. One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Tian Chungui; Li Wei; Pan Kai; Zhang Qi; Tian Guohui; Zhou Wei; Fu Honggang

    2010-01-01

    Ag nanoparticles (NPs) modified ZnO microspheres (Ag/ZnO microspheres) were prepared by a facile one pot strategy in ethylene glycol (EG) medium. The EG played two important roles in the synthesis: it could act as a reaction media for the formation of ZnO and reduce Ag + to Ag 0 . A series of the characterizations indicated the successful combination of Ag NPs with ZnO microspheres. It was shown that Ag modification could greatly enhance the photocatalytic efficiency of ZnO microspheres by taking the photodegradation of Rhodamine B as a model reaction. With appropriate ratio of Ag and ZnO, Ag/ZnO microspheres showed the better photocatalytic performance than commercial Degussa P-25 TiO 2 . Photoluminescence and surface photovoltage spectra demonstrated that Ag modification could effectively inhibit the recombination of the photoinduced electron and holes of ZnO. This is responsible for the higher photocatalytic activity of Ag/ZnO composites. -- Graphical abstract: A 'one-pot' strategy was developed for preparing the Ag/ZnO microspheres in ethylene glycol. The composites exhibited superior photocatalytic performance for photodegradation of Rhodamine B dye in water. Display Omitted

  11. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    Science.gov (United States)

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  12. Nanoscale clusters in the high performance thermoelectric AgPb{sub m}SbTe{sub m+2}

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H; Bozin, E S; Billinge, S J.L.; Quarez, Eric; Kanatzidis, M G [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 (United States)

    2005-11-01

    The local structure of the AgPb{sub m}SbTe{sub m+2} series of thermoelectric materials has been studied using the atomic pair distribution function (PDF) method. Three candidate-models were attempted for the structure of this class of materials using either a one- or a two-phase modeling procedure. Combining modeling the PDF with HRTEM data we show that AgPb{sub m}SbTe{sub m+2} contains nanoscale inclusions with composition close to AgPb{sub 3}SbTe{sub 5} randomly embedded in a PbTe matrix.

  13. Band alignment of type I at (100ZnTe/PbSe interface

    Directory of Open Access Journals (Sweden)

    Igor Konovalov

    2016-06-01

    Full Text Available A junction of lattice-matched cubic semiconductors ZnTe and PbSe results in a band alignment of type I so that the narrow band gap of PbSe is completely within the wider band gap of ZnTe. The valence band offset of 0.27 eV was found, representing a minor barrier during injection of holes from PbSe into ZnTe. Simple linear extrapolation of the valence band edge results in a smaller calculated band offset, but a more elaborate square root approximation was used instead, which accounts for parabolic bands. PbSe was electrodeposited at room temperature with and without Cd2+ ions in the electrolyte. Although Cd adsorbs at the surface, the presence of Cd in the electrolyte does not influence the band offset.

  14. Design of Ag-Ge-Zn braze/solder alloys: Experimental thermodynamics and surface properties

    Directory of Open Access Journals (Sweden)

    Delsante S.

    2017-01-01

    Full Text Available The experimental investigation of the Ag-Ge-Zn phase diagram was performed by using combined microstructural and Differential Scanning Calorimeter (DSC analyses. The samples were subjected to thermal cycles by a heat-flux DSC apparatus with heating and cooling rate of 0.5 or 0.3°C/min. The microstructure of the samples, both after annealing and after DSC analysis, was studied by optical and scanning electron microscopy coupled with EDS (Energy Dispersive Spectroscopy analysis. Considering the slow heating and cooling rate adopted, the isothermal section at room temperature was established. No ternary compounds were observed. On the basis of the experimental investigations the invariant reactions were identified. Combining the thermodynamic data on the Ag-Ge, Ag-Zn and Ge-Zn liquid phases by means of Butler’s model the surface tension of Ag-Ge-Zn alloys was calculated.

  15. Dissolved trace metals (Ni, Zn, Co, Cd, Pb, Al, and Mn) around the Crozet Islands, Southern Ocean

    Science.gov (United States)

    Castrillejo, Maxi; Statham, Peter J.; Fones, Gary R.; Planquette, Hélène; Idrus, Farah; Roberts, Keiron

    2013-10-01

    A phytoplankton bloom shown to be naturally iron (Fe) induced occurs north of the Crozet Islands (Southern Ocean) every year, providing an ideal opportunity to study dissolved trace metal distributions within an island system located in a high nutrient low chlorophyll (HNLC) region. We present water column profiles of dissolved nickel (Ni), zinc (Zn), cobalt (Co), cadmium (Cd), lead (Pb), aluminium (Al), and manganese (Mn) obtained as part of the NERC CROZEX program during austral summer (2004-2005). Two stations (M3 and M1) were sampled downstream (north) of Crozet in the bloom area and near the islands, along with a control station (M2) in the HNLC zone upstream (south) of the islands. The general range found was for Ni, 4.64-6.31 nM; Zn, 1.59-7.75 nM; Co, 24-49 pM; Cd, 135-673 pM; Pb, 6-22 pM; Al, 0.13-2.15 nM; and Mn, 0.07-0.64 nM. Vertical profiles indicate little island influence to the south with values in the range of other trace metal deprived regions of the Southern Ocean. Significant removal of Ni and Cd was observed in the bloom and Zn was moderately correlated with reactive silicate (Si) indicating diatom control over the internal cycling of this metal. Higher concentrations of Zn and Cd were observed near the islands. Pb, Al, and Mn distributions also suggest small but significant atmospheric dust supply particularly in the northern region.

  16. The Effect of (Ag, Ni, Zn-Addition on the Thermoelectric Properties of Copper Aluminate

    Directory of Open Access Journals (Sweden)

    Jianxiao Xu

    2010-01-01

    Full Text Available Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied. The addition of Ag and Zn was found to enhance the formation of CuAlO2 phase and to increase the electrical conductivity. The addition of Ag or Ag and Ni on the other hand decreases the electrical conductivity. The highest power factor of 1.26 × 10-4 W/mK2 was obtained for the addition of Ag and Zn at 1,060 K, indicating a significant improvement compared with the non-doped CuAlO2 sample.

  17. Structural Properties and Antifungal Activity against Candida albicans Biofilm of Different Composite Layers Based on Ag/Zn Doped Hydroxyapatite-Polydimethylsiloxanes

    Directory of Open Access Journals (Sweden)

    Andreea Groza

    2016-04-01

    Full Text Available Modern medicine is still struggling to find new and more effective methods for fighting off viruses, bacteria and fungi. Among the most dangerous and at times life-threatening fungi is Candida albicans. Our work is focused on surface and structural characterization of hydroxyapatite, silver doped hydroxyapatite and zinc doped hydroxyapatite deposited on a titanium substrate previously coated with polydimethylsiloxane (HAp-PDMS, Ag:HAp-PDMS, Zn:HAp-PDMS by different techniques: Scanning Electron Microscopy (SEM, Glow Discharge Optical Emission Spectroscopy (GDOES and Fourier Transform Infrared Spectroscopy (FTIR. The morphological studies revealed that the use of the PDMS polymer as an interlayer improves the quality of the coatings. The structural characterizations of the thin films revealed the basic constituents of both apatitic and PDMS structure. In addition, the GD depth profiles indicated the formation of a composite material as well as the successful embedding of the HAp, Zn:HAp and Ag:HAp into the polymer. On the other hand, in vitro evaluation of the antifungal properties of Ag:HAp-PDMS and Zn:HAp-PDMS demonstrated the fungicidal effects of Ag:HAp-PDMS and the potential antifungal effect of Zn:HAp-PDMS composite layers against C. albicans biofilm. The results acquired in this research complete previous research on the potential use of new complex materials produced by nanotechnology in biomedicine.

  18. Superconducting properties of Pb nanoislands on Pb/Ag/Si(111) studied by a {sup 3}He-cooled scanning tunnelling microscope in magnetic fields at variable temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Leon Vanegas, Alvaro Augusto

    2015-02-26

    A {sup 3}He-cooled scanning tunneling microscope was used to investigate the superconducting properties of Pb single layers on Si(111) and Ag/Si(111) and Pb islands on Pb/Ag/Si(111) at temperatures between 0.38 K and 6 K and in magnetic fields of up to 3 T. The spectroscopy measurements show that in contrast with Pb/Si(111), a single Pb layer on Ag/Si(111) is non-superconducting. The superconductivity of Pb islands on Pb/Ag/Si(111) was characterized as a function of temperature and magnetic field. A non-uniform critical magnetic field for suppression of superconductivity on islands of uniform thickness but sitting of regions of different height is reported. The proximity induced superconductivity on the wetting layer surrounding a Pb island on Pb/Ag/Si(111) was studied. Spatially resolved, magnetic field dependent spectroscopy uncovers a non-trivial reduction of the extension of the induced superconductivity with increasing field. A breakdown of the proximity effect for fields larger than 0.5 T is found. Tunneling spectroscopy reveals a strong decrease of the proximity length with increasing temperature. This is ascribed to the thermally induced broadening of the electronic density of states in the tip used in the STM experiment.

  19. Formation of nanodots and enhancement of thermoelectric power induced by ion irradiation in PbTe:Ag composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Manju, E-mail: manjubala474@gmail.com [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Meena, Ramcharan; Gupta, Srashti; Pannu, Compesh [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Tripathi, Tripurari S. [Aalto University, Värmemansgränden 2, 02150 Espoo (Finland); Varma, Shikha [Institute of Physics, Bhubaneshwar, Odisha 751005 (India); Tripathi, Surya K. [Department of Physics, Panjab University, Chandigarh 160 014 (India); Asokan, K., E-mail: asokaniuac@gmail.com [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Avasthi, Devesh K. [Amity University, Noida 201313, Uttar Pradesh (India)

    2016-07-15

    Present study demonstrates an enhancement in thermoelectric power of 10% Ag doped PbTe (PbTe:Ag) thin films when irradiated with 200 keV Ar ion. X-ray diffraction showed an increase in crystallinity for both PbTe and PbTe:10Ag nano-composite films after Ar ion irradiation due to annealing of defects in the grain boundaries. The preferential sputtering of Pb and Te ions in comparison to Ag ions resulted in the formation of nano-dots. This was further confirmed by X-ray photoelectron spectroscopy (XPS). Such an enhancement in thermoelectric power of irradiated PbTe:10Ag films in comparison to pristine PbTe:10Ag film is attributed to the decrease in charge carrier concentration that takes part in the transport process via restricting the tunneling of carriers through the wider potential barrier formed at the interface of nano-dots.

  20. Gamma radiation effects on nano composites of Ag nanoparticles in Zn O matrices; Efectos de la radiacion gamma en nanocompositos de nanoparticulas de Ag en matrices de ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Villasenor C, L. S.

    2015-07-01

    The study of gamma radiation effects in nano composites of silver nanoparticles in a Zn O matrix has been performed in this work. First, silver nanoparticles (AgNPs) were synthesized by colloidal methods, with two different mean average sizes, 48 nm and 24 nm respectively. These nanoparticles were characterized by transmission electron microscopy (Tem) and UV-Vis spectroscopy (UV-Vis). Then, with the synthesized AgNPs, nano composites in a matrix of Zn O were prepared. The first nano composite was prepared with the 48 nm AgNPs at 9.5 weight % of silver (Ag) and the second nano composite with the 24 nm nanoparticles at 1.0 weight % of Ag. Both nano composites were analyzed by scanning electron microscopy (Sem). The formation of the Zn O phase in the nano composite was corroborated through X-ray diffraction analysis. It was observed that the presence of AgNPs during the formation of the AgNPs/Zn O nano composite modified the size and morphology of the structures obtained compared to those of the pure Zn O without nanoparticles, however both exhibit a radial structure. Then, the nano composite at 9.5 weight % of Ag was irradiated with gamma rays at doses of 1, 20 and 50 kGy. Samples were analyzed by Sem and the Bet technique, before and after being irradiated, in order to determine the effect of gamma radiation in the morphology, porosity and surface area of the studied material. Even when there are changes in porosity and Surface area, this difference is not very significant for some applications, however it will have to be considered during the design of a specific application of the nano composites. On the other hand, no morphology modifications were identified on the samples irradiated at the studied doses, with the electron microscopy techniques used. (Author)

  1. Electrochemical corrosion behaviour of lead-free Sn-8.5 Zn-X Ag-0.1 Al-0.5 Ga solder in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Mohanty, Udit Surya; Lin, K.-L.

    2005-01-01

    The electrochemical corrosion behaviour of Pb-free Sn-8.5 Zn-X Ag-0.1 Al-0.5 Ga solder in 3.5% NaCl solution was investigated by using potentiodynamic polarization methods, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) analysis. The results obtained from polarization studies showed that an increase in the Ag content from 0.1 to 1.5 wt% decreased the corrosion current density (I corr ) and shifted the corrosion potential (E corr ) towards more noble values. These changes were also reflected in the linear polarization resistance (LPR), corrosion rate, anodic Tafel slope (b A ) and the cathodic Tafel slope (b c ) values, respectively. Passivation behaviour was noted in the Sn-Zn-X Ag-Al-Ga solders with Ag content > 0.1 wt%. The oxides and hydroxides of zinc were responsible for the formation of passive film. Presence of Ag atoms in the oxide layer also improved the passivation behaviour of solders to a certain extent. X-ray photoelectron spectroscopy revealed that two different oxygen species were formed on the surface films, one was assigned to OH - in Zn(OH) 2 and the other to O 2 - in ZnO. XPS depth profile results revealed that the two species had different depth distribution in the films. SEM and EDX analyses confirmed SnCl 2 as the major corrosion product formed after the electrochemical experiments

  2. The matrix effect study in the spectrographic analysis of rare earth elements. Pt. 1. The influence of Sn, Pb, Sb, Bi, Cu, Ag, Zn and Cd on the spectral lines intensity of Y, La, Ce, Pr, Nd and Sm in the current arc exciting between C-electrodes

    International Nuclear Information System (INIS)

    Wysocka-Lisek, J.; Paszkowska, B.; Mularczyk, K.

    1976-01-01

    In the beginning the influence of Sn, Pb, Sb, Bi, Cu, Ag, Zn and Cd on the light rare earth spectral lines using Ni as the internal standard, during the intermittent current arc excitation between C-electrodes was studied. On the basis of the spectral lines intensity measurements, it was stated that one may apply the addition of Ni as the internal standard by the quantitative determination of Sn, Pb, Sb, Bi, Zn and Cd in the light rare earth mixtures with one of the above. Also a great influence of the presence of the individually studied metal was observed on the spectral line intensity of rare earth elements and nickel. The differences of the thermo-chemical reactions nature between excited elements and the carbon of the electrodes may cause that influence. (author)

  3. Ternary ZnO/AgI/Ag{sub 2}CO{sub 3} nanocomposites: Novel visible-light-driven photocatalysts with excellent activity in degradation of different water pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Golzad-Nonakaran, Behrouz; Habibi-Yangjeh, Aziz, E-mail: ahabibi@uma.ac.ir

    2016-12-01

    ZnO/AgI/Ag{sub 2}CO{sub 3} nanocomposites with different Ag{sub 2}CO{sub 3} contents were fabricated by a facile ultrasonic-irradiation method. The resultant samples were fairly characterized using XRD, EDX, SEM, TEM, UV–vis DRS, FT-IR, and PL techniques to reveal their microstructure, purity, morphology, and spectroscopic properties. Photocatalytic activity of the prepared samples was investigated by photodegradation of four dye pollutants (rhodamine B, methyl orange, methylene blue, and fuchsine) under visible-light irradiation. The photocatalytic experiments in degradation of rhodamine B showed that the ternary ZnO/AgI/Ag{sub 2}CO{sub 3} (30%) nanocomposite has an enhanced activity nearly 19 and 14 times higher than those of the binary ZnO/Ag{sub 2}CO{sub 3} and ZnO/AgI photocatalysts, respectively. Based on the obtained results, the highly enhanced activity was attributed to generation of more electron-hole pairs under visible-light irradiation and separation of the photogenerated charge carriers due to formation of tandem n-n heterojunctions between counterparts of the nanocomposite. The active species trapping experiments were also examined and it was showed that superoxide ion radicals play a vital role in the photocatalytic degradation reaction. More importantly, the ternary photocatalyst demonstrated good photostability. - Highlights: • ZnO/AgI/Ag{sub 2}CO{sub 3} nanocomposites were fabricated by an ultrasonic-irradiation method. • The activity was investigated by photodegradation of four dyes under visible light. • ZnO/AgI/Ag{sub 2}CO{sub 3} (30%) nanocomposite has the best activity under visible light. • Activity is 19 and 14-folds higher than ZnO/Ag{sub 2}CO{sub 3} and ZnO/AgI in degradation of RhB.

  4. Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance

    Science.gov (United States)

    Wang, Shanyu; Zheng, Gang; Luo, Tingting; She, Xiaoyu; Li, Han; Tang, Xinfeng

    2011-11-01

    In this study, we prepared a series of Ag-doped PbSe bulk materials by a melting-quenching process combined with a subsequent spark plasma sintering process, and systematically investigated the doping effects of Ag on the thermoelectric properties. Ag substitution in the Pb site does not introduce resonant levels near the valence band edge or detectable change in the density of state in the vicinity of the Fermi level, but moves the Fermi level down and increases the carrier concentration to a maximum value of ~4.7 × 1019 cm-3 which is still insufficient for heavily doped PbSe compounds. Nonetheless, the non-monotonic variation in carrier concentration with increasing Ag content indicates that Ag doping reaches the solution limit at ~1.0% and the excessive Ag presumably acts as donors in the materials. Moreover, the large energy gap of the PbSe-based material wipes off significant 'roll-over' in the Seebeck coefficient at elevated temperatures which gives rise to high power factors, being comparable to p-type Te analogues. Consequently, the maximum ZT reaches ~1.0 for the 1.5% Ag-doped samples with optimized carrier density, which is ~70% improvement in comparison with an undoped sample and also superior to the commercialized p-type PbTe materials.

  5. Structural and optical studies on mesoscopic defect structure in highly conductive AgI-ZnO composites

    International Nuclear Information System (INIS)

    Fujishiro, Fumito; Mochizuki, Shosuke

    2003-01-01

    The electrical conductivity of (x)AgI-(1-x)ZnO (0≤x≤1) composites at room temperature increases with increasing AgI content and reaches a maximum at about 50% AgI. The results obtained by the scanning electron microscopy, X-ray diffractometry and photoluminescence spectroscopy have clarified high-ionic-conduction pathways related to mesoscopic defect structure at AgI/ZnO interfaces and mesoscopically disordered structure in AgI domain. We have observed also new optical phenomenon, which may arise from excitation energy transfer between AgI-exciton and photoinduced oxygen vacancy at the AgI/ZnO interface

  6. Stabilization of lead (Pb) and zinc (Zn) in contaminated rice paddy soil using starfish: A preliminary study.

    Science.gov (United States)

    Moon, Deok Hyun; Hwang, Inseong; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Ok, Yong Sik; Ji, Won Hyun; Park, Jeong-Hun

    2018-05-01

    Lead (Pb) and zinc (Zn) contaminated rice paddy soil was stabilized using natural (NSF) and calcined starfish (CSF). Contaminated soil was treated with NSF in the range of 0-10 wt% and CSF in the range of 0-5 wt% and cured for 28 days. Toxicity characteristic leaching procedure (TCLP) test was used to evaluate effectiveness of starfish treatment. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) analyses were conducted to investigate the mechanism responsible for effective immobilization of Pb and Zn. Experimental results suggest that NSF and CSF treatments effectively immobilize Pb and Zn in treated rice paddy soil. TCLP levels for Pb and Zn were reduced with increasing NSF and CSF dosage. Comparison of the two treatment methods reveals that CSF treatment is more effective than NSF treatment. Leachability of the two metals is reduced approximately 58% for Pb and 51% for Zn, upon 10 wt% NSF treatment. More pronounced leachability reductions, 93% for Pb and 76% for Zn, are achieved upon treatment with 5 wt% CSF. Sequential extraction results reveal that NSF and CSF treatments of contaminated soil generated decrease in exchangeable/weak acid Pb and Zn soluble fractions, and increase of residual Pb and Zn fractions. Results for the SEM-EDX sample treated with 5 wt% CSF indicate that effective Pb and Zn immobilization is most probably associated with calcium silicate hydrates (CSHs) and calcium aluminum hydrates (CAHs). Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effects of deposition time in chemically deposited ZnS films in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, H.; Chelouche, A., E-mail: azeddinechelouche@gmail.com; Talantikite, D.; Merzouk, H.; Boudjouan, F.; Djouadi, D.

    2015-08-31

    We report an experimental study on the synthesis and characterization of zinc sulfide (ZnS) single layer thin films deposited on glass substrates by chemical bath deposition technique in acidic solution. The effect of deposition time on the microstructure, surface morphology, optical absorption, transmittance, and photoluminescence (PL) was investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), UV-Vis–NIR spectrophotometry and photoluminescence (PL) spectroscopy. The results showed that the samples exhibit wurtzite structure and their crystal quality is improved by increasing deposition time. The latter, was found to affect the morphology of the thin films as showed by SEM micrographs. The optical measurements revealed a high transparency in the visible range and a dependence of absorption edge and band gap on deposition time. The room temperature PL spectra indicated that all ZnS grown thin films emit a UV and blue light, while the band intensities are found to be dependent on deposition times. - Highlights: • Single layer ZnS thin films were deposited by CBD in acidic solution at 95 °C. • The effect of deposition time was investigated. • Coexistence of ZnS and ZnO hexagonal structures for time deposition below 2 h • Thicker ZnS films were achieved after monolayer deposition for 5 h. • The highest UV-blue emission observed in thin film deposited at 5 h.

  8. Formation of Ag nanoparticles in percolative Ag–PbTiO3 composite thin films through lead-rich Ag–Pb alloy particles formed as transitional phase

    International Nuclear Information System (INIS)

    Hu, Tao; Wang, Zongrong; Su, Yanbo; Tang, Liwen; Shen, Ge; Song, Chenlu; Han, Gaorong; Weng, Wenjian; Ma, Ning; Du, Piyi

    2012-01-01

    The Ag nanoparticle dispersed percolative PbTiO 3 ceramic thin film was prepared in situ by sol–gel method with excess lead introduced into a sol precursor. The influence of excess lead and the heat treatment time on the formation of Ag nanoparticles was investigated by energy dispersive X-ray spectra, scanning electron microscopy, X-ray diffraction, and ultraviolet–visible absorption spectra. Results showed that the excess lead introduced into the sol precursor was in favor of the crystallization of the thin film and in favor of formation of the perovskite phase without the pyrochlore phase. Lead-rich Ag–Pb alloy particles first formed in the thin films and then decomposed to become large numbers of Ag nanoparticles of about 3 nm in size in the thin films when the heat treatment time was longer than 2 min. The content of the Ag nanoparticles increased with increasing the heat treatment time. The percolative behavior appears typically in the Ag nanoparticle dispersed thin films. The dielectric constant of the thin film was about 3 times of that without Ag nanoparticles. - Highlights: ► The Ag nanoparticles formed in the PbTiO 3 percolative ceramic thin film. ► The Ag–Pb alloy particles formed as transitional phase during thin film preparation. ► The lead-rich Ag–Pb alloy particles decomposed to form Ag nanoparticles in the film. ► Permittivity of the thin film is 3 times higher than that without Ag nanoparticles.

  9. ZnO film deposition on Al film and effects of deposition temperature on ZnO film growth characteristics

    International Nuclear Information System (INIS)

    Yoon, Giwan; Yim, Munhyuk; Kim, Donghyun; Linh, Mai; Chai, Dongkyu

    2004-01-01

    The effects of the deposition temperature on the growth characteristics of the ZnO films were studied for film bulk acoustic wave resonator (FBAR) device applications. All films were deposited using a radio frequency magnetron sputtering technique. It was found that the growth characteristics of ZnO films have a strong dependence on the deposition temperature from 25 to 350 deg. C. ZnO films deposited below 200 deg. C exhibited reasonably good columnar grain structures with highly preferred c-axis orientation while those above 200 deg. C showed very poor columnar grain structures with mixed-axis orientation. This study seems very useful for future FBAR device applications

  10. Tri-functional Fe2O3-encased Ag-doped ZnO nanoframework: magnetically retrievable antimicrobial photocatalyst

    Science.gov (United States)

    Karunakaran, Chockalingam; Vinayagamoorthy, Pazhamalai

    2016-11-01

    Fe2O3-encased ZnO nanoframework was obtained by hydrothermal method and was doped with Ag through photoreduction process. Energy dispersive x-ray spectroscopy, transmission electron microscopy (TEM), high resolution TEM, selected area electron diffractometry, x-ray diffractometry and Raman spectroscopy were employed for the structural characterization of the synthesized material. While the charge transfer resistance of the prepared nanomaterial is larger than those of Fe2O3 and ZnO the coercivity of the nanocomposite is less than that of hydrothermally obtained Fe2O3 nanostructures. Although Fe2O3/Ag-ZnO exhibits weak visible light absorption its band gap energy does not differ from that of ZnO. The photoluminescence of the fabricated nanoframework is similar to that of ZnO. The radiative recombination of charge carriers is slightly slower in Fe2O3/Ag-ZnO than in ZnO. The synthesized Fe2O3-encased Ag-doped ZnO, under UV A light, exhibits sustainable photocatalytic activity to degrade dye and is magnetically recoverable. Also, the Fe2O3/Ag-ZnO nanocomposite disinfects bacteria effectively in absence of direct illumination.

  11. The sources of trace element pollution of dry depositions nearby a drinking water source.

    Science.gov (United States)

    Guo, Xinyue; Ji, Hongbing; Li, Cai; Gao, Yang; Ding, Huaijian; Tang, Lei; Feng, Jinguo

    2017-02-01

    Miyun Reservoir is one of the most important drinking water sources for Beijing. Thirteen atmospheric PM sampling sites were established around this reservoir to analyze the mineral composition, morphological characteristics, element concentration, and sources of atmospheric PM pollution, using transmission electron microscope, X-ray diffraction, and inductively coupled plasma mass spectrometry analyses. The average monthly dry deposition flux of aerosols was 15.18 g/m 2 , with a range of 5.78-47.56 g/m 2 . The maximum flux season was winter, followed by summer, autumn, and spring. Zn and Pb pollution in this area was serious, and some of the sample sites had Cr, Co, Ni, and Cu pollution. Deposition fluxes of Zn/Pb in winter and summer reached 99.77/143.63 and 17.04/33.23 g/(hm 2 month), respectively. Principal component analysis showed two main components in the dry deposition; the first was Cr, Co, Ni, Cu, and Zn, and the other was Pb and Cd. Principal sources of the trace elements were iron mining and other anthropogenic activities in the surrounding areas and mountainous area north of the reservoir. Mineralogy analysis and microscopic conformation results showed many iron minerals and some unweathered minerals in dry deposition and atmospheric particulate matter, which came from an iron ore yard in the northern mountainous area of Miyun County. There was possible iron-rich dry deposition into Miyun Reservoir, affecting its water quality and harming the health of people living in areas around the reservoir and Beijing.

  12. Dependence of nonlinear optical properties of Ag2S@ZnS core-shells on Zinc precursor and capping agent

    Science.gov (United States)

    Dehghanipour, M.; Khanzadeh, M.; Karimipour, M.; Molaei, M.

    2018-03-01

    In this research, four different types of Ag2S@ZnS core-shells were synthesized and their nonlinear optical (NLO) properties were investigated using a Z-scan technique by a 532 nm laser diode. Here, Ag2S and ZnS nanoparticles were also synthesized and their NLO properties were compared with Ag2S@ZnS core-shells. It was observed that the NLO properties of Ag2S@ZnS quantum dots significantly increased by increasing the values of Zn(NO3)2 and thioglycolic acid (TGA). It was also observed that the NLO properties of Ag2S@ZnS core-shells for 0.1 g of Zn(NO3)2 and 7000 μl TGA is higher than sole Ag2S and ZnS nanoparticles. In open aperture Z-scan curve of ZnS sample, a saturable absorption peak was observed and this peak was seen also in type of Ag2S@ZnS nanoparticles which the value of Zn(NO3)2 much more.

  13. Effects of Cu, Zn and Pb Combined Pollution on Soil Hydrolase Activities

    Directory of Open Access Journals (Sweden)

    FENG Dan

    2015-08-01

    Full Text Available To study the relations between soil enzyme activities and heavy metal pollution, the combined effects of Cu, Zn and Pb on the three hydrolase activities, including invertase(IN, urease(Uand alkaline phosphatase(ALPwere investigated via an orthogonal experiment. Results showed as the following: When the concentration of Cu was 400 mg·kg-1, the U and ALP activities were decreased 51% and 44%, separately; When Zn was at 500 mg·kg-1, IN and ALP activities were only decreased 3% and 9%, while U activity was increased; When Pb was at 500 mg·kg-1, IN and U activities were increased, while ALP activity was decreased 13%. As a whole, Cu was considered as the most remarkable influence factor for IN, U and ALP activity regardless of interactions among the heavy metals, Zn came second, and Pb mainly showed activation. Considering interactions, Cu×Zn could significantly influence U activity(P<0.05, effects of Cu×Pb and Cu×Zn on ALP activity were remarkable(95% confidence interval. The response of ALP activity was more sensitive than the other two enzymes. Soil ALP activity might be a sensitive tool for assessing the pollution degree of Cu.

  14. Effect of PbI2 deposition rate on two-step PVD/CVD all-vacuum prepared perovskite

    International Nuclear Information System (INIS)

    Ioakeimidis, Apostolos; Christodoulou, Christos; Lux-Steiner, Martha; Fostiropoulos, Konstantinos

    2016-01-01

    In this work we fabricate all-vacuum processed methyl ammonium lead halide perovskite by a sequence of physical vapour deposition of PbI 2 and chemical vapour deposition (CVD) of CH 3 NH 3 I under a static atmosphere. We demonstrate that for higher deposition rate the (001) planes of PbI 2 film show a higher degree of alignment parallel to the sample's surface. From X-ray diffraction data of the resulted perovskite film we derive that the intercalation rate of CH 3 NH 3 I is fostered for PbI 2 films with higher degree of (001) planes alignment. The stoichiometry of the produced perovskite film is also studied by Hard X-ray photoelectron spectroscopy measurements. Complete all-vacuum perovskite solar cells were fabricated on glass/ITO substrates coated by an ultra-thin (5 nm) Zn-phthalocyanine film as hole selective layer. A dependence of residual PbI 2 on the solar cells performance is displayed, while photovoltaic devices with efficiency up to η=11.6% were achieved. - Graphical abstract: A two-step PVD/CVD processed perovskite film with the CVD intercalation rate of CH 3 NCH 3 molecules been fostered by increasing the PVD rate of PbI 2 and prolonging the CVD time. - Highlights: • A simple PVD/CVD process for perovskite film production. • Increased PVD rate yields better alignment of the PbI 2 (001) crystallite planes. • CH 3 NH 3 I intercalation process fostered by increased PbI 2 PVD rate. • Stoichiometric CH 3 NH 3 PbI 3 suitable as absorber in photovoltaic applications • Reduced PbI 2 residue at the bottom of CH 3 NH 3 PbI 3 improves device performance.

  15. Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions

    Directory of Open Access Journals (Sweden)

    Nur Hasiba Kamaruddin

    2017-10-01

    Full Text Available The study of binding affinity is essential in surface plasmon resonance (SPR sensing because it allows researchers to quantify the affinity between the analyte and immobilised ligands of an SPR sensor. In this study, we demonstrate the derivation of the binding affinity constant, K, for Pb2+ and Hg2+ ions according to their SPR response using a gold/silver/gold/chitosan–graphene oxide (Au/Ag/Au/CS–GO sensor for the concentration range of 0.1–5 ppm. The higher affinity of Pb2+ to binding with the CS–GO sensor explains the outstanding sensitivity of 2.05 °ppm−1 against 1.66 °ppm−1 of Hg2+. The maximum signal-to-noise ratio (SNR upon detection of Pb2+ is 1.53, and exceeds the suggested logical criterion of an SNR. The Au/Ag/Au/CS–GO SPR sensor also exhibits excellent repeatability in Pb2+ due to the strong bond between its functional groups and this cation. The adsorption data of Pb2+ and Hg2+ on the CS–GO sensor fits well with the Langmuir isotherm model where the affinity constant, K, of Pb2+ and Hg2+ ions is computed. The affinity of Pb2+ ions to the Au/Ag/Au/CS–GO sensor is significantly higher than that of Hg2+ based on the value of K, 7 × 105 M−1 and 4 × 105 M−1, respectively. The higher shift in SPR angles due to Pb2+ and Hg2+ compared to Cr3+, Cu2+ and Zn2+ ions also reveals the greater affinity of the CS–GO SPR sensor to them, thus supporting the rationale for obtaining K for these two heavy metals. This study provides a better understanding on the sensing performance of such sensors in detecting heavy metal ions.

  16. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    Directory of Open Access Journals (Sweden)

    Longbin Huang

    Full Text Available Elevated inorganic phosphate (Pi concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu-lead (Pb-zinc (Zn mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7, the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5, EHM-TD (fresh Cu-stream, high magnetite content and local soil (weathered shale and schist, respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed, oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2, ankerite (Ca(Fe Mg(CO32 and siderite (FeCO3, as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,FeS, ZnS, (Zn,CdS may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  17. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi; Fujimoto, Kazuya; Suzuki, Atsushi; Balachandran, Jeyadevan; Oku, Takeo, E-mail: oku@mat.usp.ac.jp [Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} with the longest ZnO nanorods.

  18. Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance

    International Nuclear Information System (INIS)

    Wang Shanyu; Zheng Gang; Luo Tingting; She Xiaoyu; Li Han; Tang Xinfeng

    2011-01-01

    In this study, we prepared a series of Ag-doped PbSe bulk materials by a melting-quenching process combined with a subsequent spark plasma sintering process, and systematically investigated the doping effects of Ag on the thermoelectric properties. Ag substitution in the Pb site does not introduce resonant levels near the valence band edge or detectable change in the density of state in the vicinity of the Fermi level, but moves the Fermi level down and increases the carrier concentration to a maximum value of ∼4.7 × 10 19 cm -3 which is still insufficient for heavily doped PbSe compounds. Nonetheless, the non-monotonic variation in carrier concentration with increasing Ag content indicates that Ag doping reaches the solution limit at ∼1.0% and the excessive Ag presumably acts as donors in the materials. Moreover, the large energy gap of the PbSe-based material wipes off significant 'roll-over' in the Seebeck coefficient at elevated temperatures which gives rise to high power factors, being comparable to p-type Te analogues. Consequently, the maximum ZT reaches ∼1.0 for the 1.5% Ag-doped samples with optimized carrier density, which is ∼70% improvement in comparison with an undoped sample and also superior to the commercialized p-type PbTe materials.

  19. Copper separation using modified active carbon before the polarographic determination of Pb, Cd, Ni, Zn and Fe in wastes

    International Nuclear Information System (INIS)

    Rubel, S.; Lada, Z.M.; Golimowski, J.

    1977-01-01

    The investigations on the selective separation of Pb 2+ , Cd 2+ , Ni 2+ , Zn 2+ and Fe 3+ ions from the excess of copper were carried out. For this purpose active carbon modified by Na-diethyldithiocarbamate was used. The manner of DDTK-Na deposition on active carbon has been elaborated. The influence of pH was investigated and it was found that at pH 1(HNO 3 ) copper ions are quantitavely bound on modified carbon whereas other ions (Pb 2+ , Cd 2+ , Ni 2+ , Zn 2+ and Fe 3+ ) remain in the solution and can be determined polarographically. The elaborated method was applied to the determination of mentioned ions in the samples of wastes containing even 100-fold excess of copper. The concentration of copper can not exceed 100 mg/dm 3 . (author)

  20. Dependence of surface-enhanced infrared absorption (SEIRA) enhancement and spectral quality on the choice of underlying substrate: a closer look at silver (Ag) films prepared by physical vapor deposition (PVD).

    Science.gov (United States)

    Killian, Michelle M; Villa-Aleman, Eliel; Sun, Zhelin; Crittenden, Scott; Leverette, Chad L

    2011-03-01

    Silver (Ag) films of varying thickness were simultaneously deposited using physical vapor deposition (PVD) onto six infrared (IR) substrates (BaF(2), CaF(2), Ge, AMTIR, KRS-5, and ZnSe) in order to correlate the morphology of the deposited film with optimal SEIRA response and spectral band symmetry and quality. Significant differences were observed in the surface morphology of the deposited silver films, the degree of enhancement provided, and the spectral appearance of para-nitrobenzoic acid (PNBA) cast films for each silver-coated substrate. These differences were attributed to each substrate's chemical properties, which dictate the morphology of the Ag film and ultimately determine the spectral appearance of the adsorbed analyte and the magnitude of SEIRA enhancement. Routine SEIRA enhancement factors (EFs) for all substrates were between 5 and 150. For single-step Ag depositions, the following ranking identifies the greatest SEIRA enhancement factor and the maximum absorption of the 1345 cm(-1) spectral marker of PNBA at the optimal silver thickness for each substrate: BaF(2) (EF = 85 ± 19, 0.059 A, 10 nm Ag) > CaF(2) (EF = 75 ± 30, 0.052 A, 10 nm Ag) > Ge (EF = 45 ± 8, 0.019 A, 5 nm Ag) > AMTIR (EF = 38 ± 8, 0.024 A, 15 nm Ag) > KRS-5 (EF = 24 ± 1, 0.015 A, 12 nm Ag) > ZnSe (EF = 9 ± 5, 0.008 A, 8 nm Ag). A two-step deposition provides 59% larger EFs than single-step depositions of Ag on CaF(2). A maximum EF of 147 was calculated for a cast film of PNBA (surface coverage = 341 ng/cm(2)) on a 10 nm two-step Ag film on CaF(2) (0.102 A, 1345 cm(-1) symmetric NO(2) stretching band). The morphology of the two-step Ag film has smaller particles and greater particle density than the single-step Ag film.

  1. Use of cattails in treating wastewater from a Pb/Zn mine

    Science.gov (United States)

    Lan, Chongyu; Chen, Guizhu; Li, Liuchun; Wong, M. H.

    1992-01-01

    This article describes the use of a combined treatment system, which includes an aquatic treatment pond with Typha latifolia Linn. (Typhaceae) as the dominant species and a stabilization pond, to treat the wastewater from a Pn/Zn mine at Shaoguan, Guangdong Province, China. In 1983, it was noted that T. latifolia bloomed in areas affected by the wastewater emitted from the mine, hence a combined purification system was subsequently built. The influent contained high levels of total suspended solids (4635 mg/liter), chemical oxygen demand (14.5 mg/liter) as well as Pb (1.6 mg/liter) and Zn (1.9 mg/liter). The results of the effluent after treatment showed that the total suspended solids, chemical oxygen demand, Pb, and Zn had been reduced by 99%, 55%, 95%, and 80% respectively. The results of plant tissue analysis indicled that T. latifolia assimilated significant amounts of Pb and Zn, especially in the root portion. During 1986 several species of algae and fish were present in the pond, usually with a higher density in areas containing lower metal concentrations in the water.

  2. Fate of Heavy Metals Pb and Zn in the West Season at Jeneberang Estuary, Makassar

    Directory of Open Access Journals (Sweden)

    Najamuddin .

    2017-08-01

    Full Text Available The pollutant quantity of heavy metals entering water environment does not give complete answer toward the generated effect and risk, however it needs thoroughly study related to the pollutant dynamic. The aim of this research was to investigate the fate of Pb and Zn in water, such as: distribution, behavior, and reactivity (case study: Jeneberang Estuary, Makassar. Pb and Zn concentrations were determined using Atomic Absorption Spectrophotometry (AAS. The distribution of dissolved Pb and Zn showed a pattern that the lowest concentration was in the fresh water (the river zone, whereas the highest concentration was in the salt water (the marine zone. The distribution pattern of particulate Pb and Zn showed that the highest concentration was in the fresh water (the river zone and the salt water (the marine zone, whereas the lowest concentration was in the estuary zone. The behavior of dissolved Pb and Zn tended to increase the concentration (desorption along the increased salinity gradient. The residual fraction was the dominant component of geochemical fractions in the sediment that indicated the sources of Pb and Zn mainly derived from a natural process and the reactivity was low in the water.   Keywords: distribution, behavior, reactivity, lead, zinc, pollution

  3. Oyonite, Ag3Mn2Pb4Sb7As4S24, a New Member of the Lillianite Homologous Series from the Uchucchacua Base-Metal Deposit, Oyon District, Peru

    Directory of Open Access Journals (Sweden)

    Luca Bindi

    2018-05-01

    Full Text Available The new mineral species oyonite, ideally Ag3Mn2Pb4Sb7As4S24, has been discovered in the Uchucchacua base-metal deposit, Oyon district, Catajambo, Lima Department, Peru, as very rare black metallic subhedral to anhedral crystals, up to 100 μm in length, associated with orpiment, tennantite/tetrahedrite, menchettiite, and other unnamed minerals of the system Pb-Ag-Sb-Mn-As-S, in calcite matrix. Its Vickers hardness (VHN100 is 137 kg/mm2 (range 132–147. In reflected light, oyonite is weakly to moderately bireflectant and weakly pleochroic from dark grey to a dark green. Internal reflections are absent. Reflectance values for the four COM wavelengths [Rmin, Rmax (% (λ in nm] are: 33.9, 40.2 (471.1; 32.5, 38.9 (548.3, 31.6, 38.0 (586.6; and 29.8, 36.5 (652.3. Electron microprobe analysis gave (in wt %, average of 5 spot analyses: Cu 0.76 (2, Ag 8.39 (10, Mn 3.02 (7, Pb 24.70 (25, As 9.54 (12, Sb 28.87 (21, S 24.30 (18, total 99.58 (23. Based on 20 cations per formula unit, the chemical formula of oyonite is Cu0.38Ag2.48Mn1.75Pb3.79Sb7.55As4.05S24.12. The main diffraction lines are (d in Å, hkl and relative intensity: 3.34 (−312; 40, 3.29 (−520; 100, 2.920 (−132; 40, 2.821 (−232; 70, 2.045 (004; 50. The crystal structure study revealed oyonite to be monoclinic, space group P21/n, with unit-cell parameters a = 19.1806 (18, b = 12.7755 (14, c = 8.1789 (10 Å, β = 90.471 (11°, V = 2004.1 (4 Å3, Z = 2. The crystal structure was refined to a final R1 = 0.032 for 6272 independent reflections. Oyonite belongs to the Sb-rich members of the andorite homeotypic sub-series within the lillianite homologous series. The name oyonite is after the Oyon district, Lima Department, Peru, the district where the type locality (Uchucchacua mine is located.

  4. Luminescence decay of S Zn::Ag and O Zn:Ga scintillation detectors excited by a pulsed laser

    International Nuclear Information System (INIS)

    Romero, L.; Campos, J.

    1981-01-01

    In the present work a high sensitivity experimental set up for luminescence decay measurements in the 1 0 - 1 sec range has been developed. As an application, luminescence light decay In S Zn:Ag and 0Zn:Ga after excitation by a pulsed N 2 laser has been measured. In SZnrAg, measurements of total light decay was compared with donor acceptor pairs theory. In both substances, spectral evolution in the first 15 sec was investigated. (Author) 4 refs

  5. ZnSe thin films by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, C.D.; Patil, P.S.; Tributsch, H. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CS, Glienicker Strasse-100, D-14109 Berlin (Germany); Ennaoui, A. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CG, Glienicker Strasse-100, D-14109 Berlin (Germany)

    1998-09-04

    The ZnSe thin films have been deposited onto glass substrates by the simple chemical bath deposition method using selenourea as a selenide ion source from an aqueous alkaline medium. The effect of Zn ion concentration, bath temperature and deposition time period on the quality and thickness of ZnSe films has been studied. The ZnSe films have been characterized by XRD, TEM, EDAX, TRMC (time-resolved microwave conductivity), optical absorbance and RBS techniques for their structural, compositional, electronic and optical properties. The as-deposited ZnSe films are found to be amorphous, Zn rich with optical band gap, Eg, equal to 2.9 eV

  6. Gamma radiation effects on nano composites of Ag nanoparticles in Zn O matrices

    International Nuclear Information System (INIS)

    Villasenor C, L. S.

    2015-01-01

    The study of gamma radiation effects in nano composites of silver nanoparticles in a Zn O matrix has been performed in this work. First, silver nanoparticles (AgNPs) were synthesized by colloidal methods, with two different mean average sizes, 48 nm and 24 nm respectively. These nanoparticles were characterized by transmission electron microscopy (Tem) and UV-Vis spectroscopy (UV-Vis). Then, with the synthesized AgNPs, nano composites in a matrix of Zn O were prepared. The first nano composite was prepared with the 48 nm AgNPs at 9.5 weight % of silver (Ag) and the second nano composite with the 24 nm nanoparticles at 1.0 weight % of Ag. Both nano composites were analyzed by scanning electron microscopy (Sem). The formation of the Zn O phase in the nano composite was corroborated through X-ray diffraction analysis. It was observed that the presence of AgNPs during the formation of the AgNPs/Zn O nano composite modified the size and morphology of the structures obtained compared to those of the pure Zn O without nanoparticles, however both exhibit a radial structure. Then, the nano composite at 9.5 weight % of Ag was irradiated with gamma rays at doses of 1, 20 and 50 kGy. Samples were analyzed by Sem and the Bet technique, before and after being irradiated, in order to determine the effect of gamma radiation in the morphology, porosity and surface area of the studied material. Even when there are changes in porosity and Surface area, this difference is not very significant for some applications, however it will have to be considered during the design of a specific application of the nano composites. On the other hand, no morphology modifications were identified on the samples irradiated at the studied doses, with the electron microscopy techniques used. (Author)

  7. Mass change calculations of hydrothermal alterations within the volcanogenic metasediments hosted Cu-Pb (-Zn) mineralization at Halilar area, NW Turkey

    Science.gov (United States)

    Kiran Yildirim, Demet; Abdelnasser, Amr; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Halilar Cu-Pb (-Zn) mineralization that is formed in the volcanogenic metasediments of Bagcagiz Formation at Balikesir province, NW Turkey, represents locally vein-type deposit as well as restricted to fault gouge zone directed NE-SW along with the lower boundary of Bagcagiz Formation and Duztarla granitic intrusion in the study area. Furthermore, This granite is traversed by numerous mineralized sheeted vein systems, which locally transgress into the surrounding metasediments. Therefore, this mineralization closely associated with intense hydrothermal alteration within brecciation, and quartz stockwork veining. The ore mineral assemblage includes chalcopyrite, galena, and some sphalerite with covellite and goethite formed during three phases of mineralization (pre-ore, main ore, and supergene) within an abundant gangue of quartz and calcite. The geologic and field relationships, petrographic and mineralogical studies reveal two alteration zones occurred with the Cu-Pb (-Zn) mineralization along the contact between the Bagcagiz Formation and Duztarla granite; pervasive phyllic alteration (quartz, sericite, and pyrite), and selective propylitic alteration (albite, calcite, epidote, sericite and/or chlorite). This work, by using the mass balance calculations, reports the mass/volume changes (gain and loss) of the chemical components of the hydrothermal alteration zones associated with Halilar Cu-Pb (-Zn) mineralization at Balikesir area (Turkey). It revealed that the phyllic alteration has enrichments of Si, Fe, K, Ba, and LOI with depletion of Mg, Ca, and Na reflect sericitization of alkali feldspar and destruction of ferromagnesian minerals. This zone has high Cu and Pb with Zn contents represents the main mineralized zone. On the other hand, the propylitic zone is characterized by addition of Ca, Na, K, Ti, P, and Ba with LOI and Cu (lower content) referring to the replacement of plagioclase and ferromagnesian minerals by albite, calcite, epidote, and sericite

  8. Plasmonic Perovskite Light-Emitting Diodes Based on the Ag-CsPbBr3 System.

    Science.gov (United States)

    Zhang, Xiaoli; Xu, Bing; Wang, Weigao; Liu, Sheng; Zheng, Yuanjin; Chen, Shuming; Wang, Kai; Sun, Xiao Wei

    2017-02-08

    The enhanced luminescence through semiconductor-metal interactions suggests the great potential of device performance improvement via properly tailored plasmonic nanostructures. Surface plasmon enhanced electroluminescence in an all-inorganic CsPbBr 3 perovskite light-emitting diode (LED) is fabricated by decorating the hole transport layer with the synthesized Ag nanorods. An increase of 42% and 43.3% in the luminance and efficiency is demonstrated for devices incorporated with Ag nanorods. The device with Ag introduction indicates identical optoelectronic properties to the controlled device without Ag nanostructures. The increased spontaneous emission rate caused by the Ag-induced plasmonic near-field effect is responsible for the performance enhancement. Therefore, the plasmonic Ag-CsPbBr 3 nanostructure studied here provides a novel strategy on the road to the future development of perovskite LEDs.

  9. Application of Fractal Technique for Analysis of Geophysical - Geochemical Databases in Tekieh Pb-Zn Ore Deposit (SE of Arak)

    International Nuclear Information System (INIS)

    Mehrnia, S.R.

    2017-01-01

    In this research, two statistical techniques that consist of classical and fractal equations (Mandelbrot, 2005) were applied in geochemical (Torkashvand et al., 2009) and geophysical (Jafari, 2007) databases for obtaining the linear and nonlinear distributions of geochemical elements (Tekieh Pb-Zn content) in association with resistivity variations and induction polarization measurements (Calagari, 2010). According to linear statistical techniques (Torkashvand et al., 2009), the main central parameters such as mean, median and mode in addition to variances and standard deviations as distribution tendencies could be used for obtaining the regression coefficients of the databases. However, in fractal statistics, a reliable regression between geo electrical - geochemical anomalies should be calculated based on measuring the fractal dimensional variations in the recursive patterns (Mehrnia, 2013). In practice, the Area-Concentration equations (Mandelbrot, 2005) were applied in resistivity, induction polarization, Pb and Zn datasets for achieving the nonlinear relationships in anomalous regions which were characterized by increasing in regression coefficients with more spatial correlation of the variable than linear statistics (Mehrnia, 2013).

  10. Lead (Pb) and Zinc (Zn) Concentrations in Marine Gastropod Strombus Canarium in Johor Coastal Areas

    International Nuclear Information System (INIS)

    Shaikhah Sabri; Mohd Ismid Mohd Said; Shamila Azman

    2014-01-01

    Strombus canarium is a popular food source with high commercial value in southern part of Peninsular Malaysia. As a deposit feeder, Strombus canarium can accumulate pollutants especially heavy metals in their system. Study on this species was conducted at Teluk Sengat and Mersing, Johor where samples of seawater and Strombus canarium were collected during spring low tides around 0 to 0.2 meters. Lead (Pb) and zinc (Zn) concentrations were investigated to determine pollution status in the area. Samples from Teluk Sengat showed that Zn has higher concentration in both water and S. canarium with 0.055 mg/ L and 20.257 mg/ kg wet weight respectively. However the concentrations were within permissible limit of Malaysia Marine Water Quality Criteria and Standard (MMWQS). In contrast, Pb concentration at Teluk Sengat exceeded the MMWQS and its concentration in soft tissues of S. canarium also exceeded the permissible limit recommended by Food and Agriculture Organisation (0.5 mg/ kg wet weight) and World Health Organisation (0.2 mg/ kg wet weight). (author)

  11. Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn

    International Nuclear Information System (INIS)

    Shi Dalin; Wang Wenxiong

    2004-01-01

    To examine the Cd, Hg, Ag, and Zn accumulation in the green mussel Perna viridis affected by previous exposure to Cu, Ag, or Zn, the dietary metal assimilation efficiency (AE) and the uptake rate from the dissolved phase were quantified. The mussel's filtration rate, metallothionein (MT) concentration, and metal tissue burden as well as the metal subcellular partitioning were also determined to illustrate the potential mechanisms underlying the influences caused by one metal pre-exposure on the bioaccumulation of the other metals. The green mussels were pre-exposed to Cu, Ag, or Zn for different periods (1-5 weeks) and the bioaccumulation of Cd, Hg, Ag, and Zn were concurrently determined. Pre-exposure to the three metals did not result in any significant increase in MT concentration in the green mussels. Ag concentration in the insoluble fraction increased with increasing Ag exposure period and Ag ambient concentration. Our data indicated that Cd assimilation were not influenced by the mussel's pre-exposure to the three metals (Cu, Ag, and Zn), but its dissolved uptake was depressed by Ag and Zn exposure. Although Hg assimilation from food was not affected by the metal pre-exposure, its influx rate from solution was generally inhibited by the exposure to Cu, Ag, and Zn. Ag bioaccumulation was affected the most obviously, in which its AE increased with increasing Ag tissue concentration, and its dissolved uptake decreased with increasing tissue concentrations of Ag and Cu. As an essential metal, Zn bioaccumulation remained relatively stable following the metal pre-exposure, suggesting the regulatory ability of Zn uptake in the mussels. Zn AE was not affected by metal pre-exposure, but its dissolved uptake was depressed by Ag and Zn pre-exposure. All these results indicated that the influences of one metal pre-exposure on the bioaccumulation of other metals were metal-specific due to the differential binding and toxicity of metals to the mussels. Such factors should

  12. Comparison between the fragmentation processes in central Pb + Ag and Pb + Au collisions

    International Nuclear Information System (INIS)

    Jouault, B.; Royer, G.; Sebille, F.; Haddad, F.; Lecolley, J.F.

    1996-01-01

    The fragmentation processes of a medium mass system and of a very massive one formed in central collisions are compared within the Landau-Vlasov model taking into account both the isospin dependence and the two-body residual interactions. The simulations predict the formation of a roughly ellipsoidal source in the central Pb + Ag reactions while, for the Pb + Au system, the fragmentation occurs from an hollow source, the configuration of which being intermediate between bubble-like and toroidal shapes. This difference shapes explain and allow to reproduce semi-quantitatively the two different profiles of the experimental kinetic energy spectra. (authors)

  13. Petrography, geochemistry and genesis of the Skiftesmyr Cu-Zn VMS deposit, Grong, Norway

    OpenAIRE

    Walsh, Kristoffer Jøtne

    2013-01-01

    The Skiftesmyr Cu-Zn VMS-deposit is located in the Grong municipality of Northern Trøndelag, Norway. The mineralization has been known since at least 1903, when mention of small workings in the area were first published, and has later been the subject of several exploration projects by different companies, of which MetPro AS is the latest. The Skiftesmyr deposit is a part of the Gjersvik Nappe, which is a part of the Köli Nappe Complex, which in turn is a part of the Upper Allo...

  14. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China

    Science.gov (United States)

    Gao, Zhaofu; Zhu, Xiangkun; Sun, Jian; Luo, Zhaohua; Bao, Chuang; Tang, Chao; Ma, Jianxiong

    2018-01-01

    Analyses of sphalerite minerals from the characteristic brecciated Zn-Pb ores of the main ore body in the giant Dongshengmiao deposit have revealed variations in δ66Zn from 0.17 to 0.40‰ and in δ56Fe from -1.78 to -0.35‰. Further, the investigated pyrrhotite samples have iron that is isotopically similar to that of associated sphalerite minerals. The most distinctive pattern revealed by the zinc and iron isotope data is the lateral trend of increasing δ66Zn and δ56Fe values from southwest to northeast within the main ore body. The lead isotopic homogeneity of ore sulfides from the main ore body suggests that there is only one significant source for metal, thus precluding the mixing of multiple metal sources as the key factor controlling spatial variations of zinc and iron isotopes. The most likely control on spatial variations is Rayleigh fractionation during hydrothermal fluid flow, with lighter Zn and Fe isotopes preferentially incorporated into the earliest sulfides to precipitate from fluids. Precipitations of sphalerite and pyrrhotite have played vital roles in the Zn and Fe isotopic variations, respectively, of the ore-forming system. Accordingly, the larger isotopic variability for Fe than Zn within the same hydrothermal system perhaps resulted from a larger proportion of precipitation for pyrrhotite than for sphalerite. The lateral trend pattern revealed by the zinc and iron isotope data is consistent with the occurrence of a cystic-shaped breccia zone, which is characterized by marked elevation in Cu. The results further confirm that Zn and Fe isotopes can be used as a vectoring tool for mineral prospecting.

  15. Effect of PbI{sub 2} deposition rate on two-step PVD/CVD all-vacuum prepared perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Ioakeimidis, Apostolos; Christodoulou, Christos; Lux-Steiner, Martha; Fostiropoulos, Konstantinos, E-mail: fostiropoulos@helmholtz-berlin.de

    2016-12-15

    In this work we fabricate all-vacuum processed methyl ammonium lead halide perovskite by a sequence of physical vapour deposition of PbI{sub 2} and chemical vapour deposition (CVD) of CH{sub 3}NH{sub 3}I under a static atmosphere. We demonstrate that for higher deposition rate the (001) planes of PbI{sub 2} film show a higher degree of alignment parallel to the sample's surface. From X-ray diffraction data of the resulted perovskite film we derive that the intercalation rate of CH{sub 3}NH{sub 3}I is fostered for PbI{sub 2} films with higher degree of (001) planes alignment. The stoichiometry of the produced perovskite film is also studied by Hard X-ray photoelectron spectroscopy measurements. Complete all-vacuum perovskite solar cells were fabricated on glass/ITO substrates coated by an ultra-thin (5 nm) Zn-phthalocyanine film as hole selective layer. A dependence of residual PbI{sub 2} on the solar cells performance is displayed, while photovoltaic devices with efficiency up to η=11.6% were achieved. - Graphical abstract: A two-step PVD/CVD processed perovskite film with the CVD intercalation rate of CH{sub 3}NCH{sub 3} molecules been fostered by increasing the PVD rate of PbI{sub 2} and prolonging the CVD time. - Highlights: • A simple PVD/CVD process for perovskite film production. • Increased PVD rate yields better alignment of the PbI{sub 2} (001) crystallite planes. • CH{sub 3}NH{sub 3}I intercalation process fostered by increased PbI{sub 2} PVD rate. • Stoichiometric CH{sub 3}NH{sub 3}PbI{sub 3} suitable as absorber in photovoltaic applications • Reduced PbI{sub 2} residue at the bottom of CH{sub 3}NH{sub 3}PbI{sub 3} improves device performance.

  16. Aqueous synthesis of high bright Ag{sub 2}Se−ZnSe quantum dots with tunable near-infrared emission

    Energy Technology Data Exchange (ETDEWEB)

    Che, Dongchen; Ding, Di [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201602 (China); Wang, Hongzhi, E-mail: wanghz@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201602 (China); Zhang, Qinghong [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201602 (China); Li, Yaogang, E-mail: yaogang_li@dhu.edu.cn [Engineering Research Center of Advanced Glass Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201602 (China)

    2016-09-05

    Efficient aqueous synthetic methods for near-infrared quantum dots as bioimaging agents are urgently required. In this work, a simple and fast synthesis of highly luminescent, near-infrared Ag{sub 2}Se quantum dots (QDs) in aqueous media is reported. The method avoids high temperature, pressure and organic solvents to directly generate water-dispersible Ag{sub 2}Se QDs. The photoluminescence emission of Ag{sub 2}Se QDs ranges from 835 to 940 nm by different Ag:Se molar ratio. Using the ZnSe as a shell, the quantum yield reaches up to 42%. The Ag{sub 2}Se−ZnSe QDs with high quantum yield, near-infrared and low cytotoxic could be used as good cell labels, showing great potential applications in bio-imaging. - Highlights: • Ag{sub 2}Se−ZnSe nanocrystals are prepared directly in aqueous media at low temperature. • Ag{sub 2}Se−ZnSe nanocrystals show excellent water solubility and colloidal stability. • Ag{sub 2}Se nanocrystals exhibit tunable near-infrared emission with ultrasmall size. • Ag{sub 2}Se−ZnSe nanocrystals show high quantum yield with low cytotoxicity. • Ag{sub 2}Se−ZnSe nanocrystals are stable over a month at room temperature in the air.

  17. Adsorption of Pb, Cd, Zn, Cu and Hg ions on Formaldehyde and ...

    African Journals Online (AJOL)

    Adsorption of Pb(II), Cd(II), Zn(II), Cu(II) and Hg(II) ions on formaldehyde and Pyridine modified bean husks were determined. The adsorption capacity of formaldehyde modified bean husks (mg/g) was: Pb2+, 5.01; Cd2+, 3.63; Zn2+, 2.18; Hg2+, 1.82; Cu2+, 1.58 and that of pyridine modified bean husk was: Hg2+, 6.92; Cd2+ ...

  18. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    Science.gov (United States)

    Bhattacharya, Raghu N [Littleton, CO

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  19. Preparation, structural and luminescent properties of nanocrystalline ZnO films doped Ag by close space sublimation method

    Science.gov (United States)

    Khomchenko, Viktoriya; Mazin, Mikhail; Sopinskyy, Mykola; Lytvyn, Oksana; Dan'ko, Viktor; Piryatinskii, Yurii; Demydiuk, Pavlo

    2018-05-01

    The simple way for silver doping of ZnO films is presented. The ZnO films were prepared by reactive rf-magnetron sputtering on silicon and sapphire substrates. Ag doping is carried out by sublimation of the Ag source located at close space at atmospheric pressure in air. Then the ZnO and ZnO-Ag films were annealed in wet media. The microstructure and optical properties of the films were compared and studied by atomic force microscopy (AFM), X-ray diffraction (XRD), photoluminescence (PL) and cathodoluminescence (CL). XRD results indicated that all the ZnO films have a polycrystalline hexagonal structure and a preferred orientation with the c-axis perpendicular to the substrate. The annealing and Ag doping promote increasing grain's sizes and modification of grain size distribution. The effect of substrate temperature, substrate type, Ag doping and post-growth annealing of the films was studied by PL spectroscopy. The effect of Ag doping was obvious and identical for all the films, namely the wide visible bands of PL spectra are suppressed by Ag doping. The intensity of ultraviolet band increased 15 times as compared to their reference films on sapphire substrate. The ultraviolet/visible emission ratio was 20. The full width at half maximum (FWHM) for a 380 nm band was 14 nm, which is comparable with that of epitaxial ZnO. The data implies the high quality of ZnO-Ag films. Possible mechanisms to enhance UV emission are discussed.

  20. Characteristic of total suspended particulate (TSP) containing Pb and Zn at solid waste landfill

    Science.gov (United States)

    Budihardjo, M. A.; Noveandra, K.; Samadikun, B. P.

    2018-05-01

    Activities conducted at municipal solid waste landfills (MSWLs) potentially cause air pollution. Heavy vehicles in MSWLs release various pollutants that can have negative impacts for humans. One noticeable pollutant at MSWLs is airborne total suspended particulate (TSP) which may contain heavy metals such as Pb and Zn and can cause disease when inhaled by humans. In this study, TSP from a landfill in Semarang, Indonesia was collected and characterized to quantify the concentration of Pb and Zn. Meteorological factors (i.e. temperature, humidity and wind velocity) and landfill activities were considered as factors affecting pollutant concentrations. TSP was sampled using dust samplers while the concentrations of heavy metals in TSP were analyzed using an Atomic Absorption Spectrophotometer (AAS). Pb concentration ranged from 0.84 to 1.78 µg/m3 while Zn concentration was from 7.87 to 8.76 µg/m3. The levels of Pb were below the threshold specified by the Indonesian Government. Meanwhile, the threshold for Zn has not yet been determined.

  1. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits

    Science.gov (United States)

    Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.

    2009-01-01

    Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.

  2. The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey.

    Science.gov (United States)

    Sasmaz, Merve; Arslan Topal, Emine Işıl; Obek, Erdal; Sasmaz, Ahmet

    2015-11-01

    This study was designed to investigate removal efficiencies of Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey by Lemna gibba L. and Lemna minor L. These plants were placed in the gallery water of Keban Pb-Zn ore deposits and adapted individually fed to the reactors. During the study period (8 days), the plant and water samples were collected daily and the temperature, pH, and electric conductivity of the gallery water were measured daily. The plants were washed, dried, and burned at 300 °C for 24 h in a drying oven. These ash and water samples were analyzed by ICP-MS to determine the amounts of Cu, Pb, Zn, and As. The Cu, Pb, Zn and As concentrations in the gallery water of the study area detected 67, 7.5, 7230, and 96 μg L(-1), respectively. According to the results, the obtained efficiencies in L. minor L. and L. gibba L. are: 87% at day 2 and 36% at day 3 for Cu; 1259% at day 2 and 1015% at day 2 for Pb; 628% at day 3 and 382% at day 3 for Zn; and 7070% at day 3 and 19,709% at day 2 for As, respectively. The present study revealed that both L. minor L. and L. gibba L. had very high potential to remove Cu, Pb, Zn, and As in gallery water contaminated by different ores. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  3. A chemical bath deposition route to facet-controlled Ag{sub 3}PO{sub 4} thin films with improved visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young; Lee, Jang Mee; Patil, Sharad B. [Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760 (Korea, Republic of); Pyun, Jae-Chul [Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul (Korea, Republic of); Hwang, Seong-Ju, E-mail: hwangsju@ewha.ac.kr [Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760 (Korea, Republic of)

    2016-08-15

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag{sub 3}PO{sub 4} thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag{sub 3}PO{sub 4} nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag{sub 3}PO{sub 4} from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag{sup +}]/[phosphate] ratio enables to maximize the loading amount of Ag{sub 3}PO{sub 4} crystals per the unit area of the deposited film. All the fabricated Ag{sub 3}PO{sub 4} thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag{sub 3}PO{sub 4}–ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid. - Highlights: • The crystal facet of Ag{sub 3}PO{sub 4} films can be tuned by chemical bath deposition. • The crystal shape of Ag{sub 3}PO{sub 4} is tailorable from cube to rhombic dodecahedron. • Facet-tuned Ag{sub 3}PO{sub 4} film shows enhanced visible light photocatalyst activity.

  4. Direct current magnetron sputter-deposited ZnO thin films

    International Nuclear Information System (INIS)

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong; Knipp, Dietmar

    2011-01-01

    Zinc oxide (ZnO) is a very promising electronic material for emerging transparent large-area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 150 nm to 750 nm were deposited on glass substrates. The deposition pressure and the substrate temperature were varied from 12 mTorr to 25 mTorr, and from room temperature to 450 deg. C, respectively. The influence of the film thickness, deposition pressure and the substrate temperature on structural and optical properties of the ZnO films was investigated using atomic force microscopy (AFM) and ultraviolet-visible (UV-Vis) spectrometer. The experimental results reveal that the film thickness, deposition pressure and the substrate temperature play significant role in the structural formation and the optical properties of the deposited ZnO thin films.

  5. Application of the Rb-Sr, Pb-Pb and Sm-Nd systems on the Salobe 3A polymetallic deposit, Carajas Mineral Province, Para, Brazil; Aplicacao dos sistemas Rb-Sr, Pb-Pb e Sm-Nd do deposito polimetalico do Salobo 3A, Provincia Mineral de Carajas, Para

    Energy Technology Data Exchange (ETDEWEB)

    Mellito, Katia Maria

    1998-07-01

    The Salobo 3A polymetallic Cu (Au-Mo-Ag) deposit, located in the northern part of the Carajas Mineral Province, Para, consists of a metavolcano-sedimentary sequence represented by iron formation, amphibolite, schist and quartzite of the Igarape Salobo Group. This rock sequence rest uncomformably on the gneissic basement of the Xingu Complex. The copper mineralization hosted by iron formation consists of bornite-chalcocite and bornite-chalcopyrite disseminations associated with magnetite. The geochronological data determined through the application of the Rb-Sr, Sm-Nd and Pb-Pb methods, contribute to characterize the complex evolution of both the geological setting and the cupriferous mineralization of the Salobo deposit. The 3.11-2.92 Ga interval (T{sub DM}, Sm-Nd, whole rock) represents the age of the igneous protholith of the gneiss. The {epsilon}{sub Nd} values calculated for the time of the gneiss formation (2859 Ma) vary between +1.02 and -1.08, and indicate a short period between the mantle-crust differentiation epoch and the gneiss formation. Moreover, the {epsilon}{sub Nd} parameter suggest a mantle source with late crustal contamination. The application of the leaching technique allows a gradual extraction of Pb at each leaching step and it was applied to chalcocite and magnetite. The 2762 {+-} 180 Ma and 2776 {+-} 240 Ma ages determined on those minerals are interpreted to be close to the epoch of the formation of the copper mineralization with Uu and Th enrichment and of the iron formation deposition, respectively, in a conventional setting. The leaching technique was also applied to tourmaline from gneiss and quartzite, and the age near to 2400 Ma was attributed to its formation. The random variability of the Pb isotope compositions of the tourmaline together with its petrographic characteristics suggest the boron source is not associated with the metassedimentary rocks of the Igarape Salobo Group. The Sm-Nd mineral isochron attributed to schists

  6. Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag in the southeastern Atlantic and the Southern Ocean

    Directory of Open Access Journals (Sweden)

    M. Boye

    2012-08-01

    Full Text Available Comprehensive synoptic datasets (surface water down to 4000 m of dissolved cadmium (Cd, copper (Cu, manganese (Mn, lead (Pb and silver (Ag are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu and Ag display nutrient-like profiles similar to silicic acid, and of Cd similar to phosphate. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs may have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However, uptake by dino- and nano-flagellates may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P, yielding lower Cd / P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd uptake induced by iron-limiting conditions in these high

  7. Recovery of thermal-degraded ZnO photodetector by embedding nano silver oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhan-Shuo [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hung, Fei-Yi, E-mail: fyhung@mail.ncku.edu.tw [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Chen, Kuan-Jen [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); The Instrument Center, National Cheng Kung University, Tainan 701, Taiwan (China); Chang, Shoou-Jinn [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hsieh, Wei-Kang; Liao, Tsai-Yu; Chen, Tse-Pu [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China)

    2013-08-15

    The degraded performance of annealed ZnO-based photodetector can be recovered by embedding Ag{sub 2}O nanoparticles resulted from the transformation of as-deposited Ag layer. After thermal treatment, the electrons were attracted at the interface between ZnO and Ag{sub 2}O. The excess Ag{sup +} ions form the cluster to incorporate into the interstitial sites of ZnO lattice to create a larger amount of lattice defects for the leakage path. The photo-current of ZnO film with Ag{sub 2}O nanoparticles is less than annealed ZnO film because the photo-induced electrons would flow into Ag{sub 2}O side. ZnO photodetector with the appropriate Ag{sub 2}O nanoparticles possesses the best rejection ratio.

  8. A more rugged ZnS(Ag) alpha scintillation detector

    International Nuclear Information System (INIS)

    McElhaney, S.A.; Ramsey, J.A.; Bauer, M.L.; Chiles, M.M.

    1990-01-01

    Conventional alpha scintillation detectors comprise a phosphor-coated light-pipe covered by a thin aluminized Mylar layer. This opaque radiation entrance window serves as a shield against ambient light entering the detector with minimum alpha attenuation. Unfortunately, Mylar is extremely fragile and easily punctured or torn by sticks, stones, and screws encountered during regular radiation surveys. The authors have been developing an alpha scintillation detector more rugged and durable than conventional models. This paper presents the scintillator assembly, which consists of a mixture of silver-activated zinc sulfide [ZnS(Ag)] and clear epoxy. The ZnS(Ag) scintillation powder is mixed with a low-viscosity, optically transparent epoxy and poured into a glass-smooth mold of desired shape and size

  9. Tolerance of Portulaca grandiflora to individual and combined application of Ni, Pb and Zn.

    Science.gov (United States)

    Mihailovic, N; Andrejić, G; Dželetović, Ž

    2015-01-01

    In the present study, metal accumulation capacity and tolerance of Portulaca grandiflora were investigated. Plants were grown under greenhouse conditions in pots on soil amended with Ni, Pb and Zn to the final concentration of 2 mmol kg(-1) for each metal. Results show considerable accumulating capacity and translocation of Ni and Zn, as well as significant accumulation of Pb in roots. A slight decrease of biomass with Zn and of chlorophyll content with Zn and Ni were observed, as well as an increase of proline content with each of the metals. Combinations of metals revealed mutual interference affecting both the uptake and translocation of the metals and their impact on physiological parameters. Results suggest that Portulaca grandiflora, although not a hyperaccumulator, shows a good tolerance and accumulation capacity for Ni, Pb and Zn, but, for the purposes of remediation, interference of the metals must be taken into account.

  10. Thermodynamics of Pb(ii) and Zn(ii) binding to MT-3, a neurologically important metallothionein.

    Science.gov (United States)

    Carpenter, M C; Shami Shah, A; DeSilva, S; Gleaton, A; Su, A; Goundie, B; Croteau, M L; Stevenson, M J; Wilcox, D E; Austin, R N

    2016-06-01

    Isothermal titration calorimetry (ITC) was used to quantify the thermodynamics of Pb(2+) and Zn(2+) binding to metallothionein-3 (MT-3). Pb(2+) binds to zinc-replete Zn7MT-3 displacing each zinc ion with a similar change in free energy (ΔG) and enthalpy (ΔH). EDTA chelation measurements of Zn7MT-3 and Pb7MT-3 reveal that both metal ions are extracted in a tri-phasic process, indicating that they bind to the protein in three populations with different binding thermodynamics. Metal binding is entropically favoured, with an enthalpic penalty that reflects the enthalpic cost of cysteine deprotonation accompanying thiolate ligation of the metal ions. These data indicate that Pb(2+) binding to both apo MT-3 and Zn7MT-3 is thermodynamically favourable, and implicate MT-3 in neuronal lead biochemistry.

  11. The CdS/CdSe/ZnS Photoanode Cosensitized Solar Cells Basedon Pt, CuS, Cu2S, and PbS Counter Electrodes

    Directory of Open Access Journals (Sweden)

    Tung Ha Thanh

    2014-01-01

    Full Text Available Highly ordered mesoporous TiO2 modified by CdS, CdSe, and ZnS quantum dots (QDs was fabricated by successive ionic layer adsorption and reaction (SILAR method. The quantity of material deposition seems to be affected not only by the employed deposition method but also and mainly by the nature of the underlying layer. The CdS, CdSe, and ZnS QDs modification expands the photoresponse range of mesoporous TiO2 from ultraviolet region to visible range, as confirmed by UV-Vis spectrum. Optimized anode electrodes led to solar cells producing high current densities. Pt, CuS, PbS, and Cu2S have been used as electrocatalysts on counter electrodes. The maximum solar conversion efficiency reached in this work was 1.52% and was obtained by using Pt electrocatalyst. CuS, PbS, and Cu2S gave high currents and this was in line with the low charge transfer resistances recorded in their case.

  12. Adsorption of Cu, As, Pb and Zn by Banana Trunk

    International Nuclear Information System (INIS)

    Nurzulaifa Shaheera Erne Mohd Yasim; Zitty Sarah Ismail; Suhanom Mohd Zaki; Mohd Fahmi Abd Azis

    2016-01-01

    The purpose of this study is to investigate the effectiveness of banana trunk as an adsorbent in removal of heavy metals in aqueous solution. Functional groups of adsorbent were determined using Fourier Transform Infrared spectroscopy (FTIR). Batch experiments were conducted to determine the adsorption percentage of heavy metals (Cu, As, Pb and Zn). The optimum adsorption using banana trunk was based on pH difference, contact time and dosage. Adsorption percentage was found to be proportional to pH, contact time and dosage. Maximum adsorption percentage of Cu, As, Pb and Zn at pH 6, 100 minutes and 8 gram of dosage are 95.80 %, 75.40 %, 99.36 % and 97.24 %, respectively. Langmuir and Freundlich isotherms were used to determine the equilibrium state for heavy metals ion adsorption experiments. All equilibrium heavy metals were well explained by the Freundlich isotherm model with R"2= 0.9441, R"2= 0.8671, R"2= 0.9489 and R"2= 0.9375 for Cu, As, Pb and Zn respectively. It is concluded that banana trunk has considerable potential for the removal of heavy metals from aqueous solution. (author)

  13. Wood-derived-biochar combined with compost or iron grit for in situ stabilization of Cd, Pb, and Zn in a contaminated soil.

    Science.gov (United States)

    Oustriere, Nadège; Marchand, Lilian; Rosette, Gabriel; Friesl-Hanl, Wolfgang; Mench, Michel

    2017-03-01

    In situ stabilization of Cd, Pb, and Zn in an Austrian agricultural soil contaminated by atmospheric depositions from a smelter plant was assessed with a pine bark chip-derived biochar, alone and in combination with either compost or iron grit. Biochar amendment was also trialed in an uncontaminated soil to detect any detrimental effect. The pot experiment consisted in ten soil treatments (% w/w): untreated contaminated soil (Unt); Unt soil amended with biochar alone (1%: B1; 2.5%: B2.5) and in combination: B1 and B2.5 + 5% compost (B1C and B2.5C), B1 and B2.5 + 1% iron grit (B1Z and B2.5Z); uncontaminated soil (Ctrl); Ctrl soil amended with 1 or 2.5% biochar (CtrlB1, CtrlB2.5). After a 3-month reaction period, the soil pore water (SPW) was sampled in potted soils and dwarf beans were grown for a 2-week period. The SPW Cd, Pb, and Zn concentrations decreased in all amended-contaminated soils. The biochar effects increased with its addition rate and its combination with either compost or iron grit. Shoot Cd and Zn removals by beans were reduced and shoot Cd, Pb, and Zn concentrations decreased to common values in all amended soils except the B1 soil. Decreases in the SPW Cd/Pb/Zn concentrations did not improve the root and shoot yields of plants as compared to the Ctrl soil.

  14. Assessment Of Heavy Metal Contamination Of Water Sources From Enyigba Pb-Zn District South Eastern Nigeria

    Directory of Open Access Journals (Sweden)

    Nnabo Paulinus N

    2015-08-01

    Full Text Available Abstract A total of thirty 30 water samples were collected from the Enyigba PbZn mining district to assess the contamination of the water sources as a result of mining of lead and zinc minerals in the area. This comprises of 12 samples of surface water 14 from mine ponds and 4 from underground borehole water. The samples were acidified to stabilize the metals for periods more than four days without the use of refrigeration. The acidified water samples were analysed by a commercial laboratory at Projects Development Institute PRODA Enugu using Atomic Absorption Spectroscopy AAS. The elements determined by this method are lead Pb zinc Zn copper Cu arsenic As cadmium Cd nickel Ni manganese Mn and cobalt Co. The result and analysis of contamination factor showed that in surface water Cd had the highest concentration followed by As and Pb while Ni had the lowest. In mine ponds Cd also had the highest concentration and followed by Pb and As and Ni the lowest. In borehole water Cd has the highest concentration followed by Pb and As while Ni had the lowest concentration. Compared to WHO permissible limits the contamination of the heavy metals in all water sources are in order CdAsPbNiZnCu. In surface water the order is CdAsPbNiZnCu in mine ponds it is CdPbAsNiZnCu and in borehole water the order is CdAsPbZnNiCu. The calculated contamination factors show very high contamination status for Cd Pb and As. These levels of contamination and values indicate that under the prevailing conditions and environmental regulations in Nigeria the mining district would face major and hazardous discharges of these metals to the water sources.

  15. Voltammetric determination of Zn(II in Zn-Fe alloy electroplating baths using square-wave voltammetry

    Directory of Open Access Journals (Sweden)

    Favaron Regiane

    2001-01-01

    Full Text Available A routine analytical method for zinc (II determination in Zn-Fe alloy galvanic baths was developed employing square-wave voltammetry with the static mercury drop electrode (SMDE as working electrode. Real alloy bath samples were analyzed by the standard addition method and recovery tests were undertaken. The supporting electrolytes used in the analyses were 1.0 mol L-1 NH3 / 0.2 mol L-1 NH4Cl or 0.1 mol L-1 citric acid (pH=3, presenting peak potentials for zinc (II, respectively, at -1.30 V and -0.99 V vs. Ag|AgCl (saturated KCl. The proposed voltammetric method showed a linear response range at 25 °C between 1.0 x 10-5 and 2.2 x 10-4 mol L-1 for zinc (II, in both electrolytes studied. The interference levels for some metals, such as Cu (II, Pb (II, Cr (III and Mn (II, which could prejudice Zn-Fe alloy deposition, were evaluated. These ions did not present significant degrees of interference in the zinc (II determination. The zinc (II recovery tests for the proposed method exhibited a good agreement with the reference method, showing relative errors lower than 3.0%.

  16. Stress induced martensitic transformation from bcc to fcc in Ag-Zn

    International Nuclear Information System (INIS)

    Takezawa, K.; Akamatsu, R.; Marukawa, K.

    1995-01-01

    The martensitic transformation in Ag-Zn alloys of low-Zn content has been studied by optical and electron microscopic observations and by tensile tests. The β 1 phase of B2 structure transforms to the thermo-elastic martensite having 9R structure similar to Cu-based alloys upon cooling to temperature below Ms. When the β 1 phase is stretched at room temperature, the slip deformation occurs at first and then the stress-induced martensite(SIM) of wedge-like morphology forms. The SIM has the ordered fcc structure containing micro-twins. This direct transformation from bcc to fcc is a unique feature in Ag-Zn alloys. In Cu alloys, martensites of fcc structure appear only after the second transformation from the first transformation product of 9R structure. The critical stress for the martensitic transformation and a degree of order of SIM decrease as the deformation temperature rises. In Ag-Zn alloys, the martensite of disordered fcc is thermally produced also by up-quenching to a higher temperature. In the present study, the relation between martensites of ordered and disordered fcc is discussed through thermodynamical calculations. The condition for the direct transformation from bcc to fcc is also examined. (orig.)

  17. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  18. Application of Zn isotopes in environmental impact assessment of Zn–Pb metallurgical industries: A mini review

    International Nuclear Information System (INIS)

    Yin, Nang-Htay; Sivry, Yann; Benedetti, Marc F.; Lens, Piet N.L.; Hullebusch, Eric D. van

    2016-01-01

    Zn and Pb smelters are the major contributors to Zn and Pb emissions among all anthropogenic sources, thus, it is essential to understand Zn isotopic variations within the context of metallurgical industries, as well as its fractionation in different environments impacted by smelting activities. This mini review outlines the current state of knowledge on Zn isotopic fractionation during the high-temperature roasting process in Zn and Pb refineries; δ"6"6Zn values variations in air emissions, slags and effluents from the smelters in comparison to the geogenic Zn isotopic signature of ores formation and weathering. In order to assess the environmental impact of these smelters, the available and measured δ"6"6Zn values are compiled for smelter impacted natural water bodies (groundwater, stream and river water), sediments (lake and reservoir) and soils (peat bog soil, inland soil). Finally, the discussion is extended to the fractionation induced during numerous physicochemical reactions and transformations, i.e. adsorption, precipitation as well as both inorganic and organic surface complexation. - Highlights: • Zn and Pb smelters are the major contributors to Zn emissions among all anthropogenic sources. • Zn isotopic variations in this context has been widely studied over the last 15 years. • Zn isotopic fractionation during the high-temperature roasting process and electroplating process is summarize. • Subsequent δ"6"6Zn values variations in air emissions, slags and effluents from the smelters are compared to the geogenic one. • The usefulness of δ"6"6Zn values to trace environmental impact of these smelters is discussed.

  19. Multi-year Surface Deposition of {sup 210}Pb and {sup 210}Po at Lisbon - Atmospheric Depositions of {sup 210}Pb and {sup 210}Po in Lisbon, Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fernando P.; Oliveira, Joao M.; Alberto, G. [Instituto Superior Tecnico/ Campus Tecnologico e Nuclear, Universidade Tecnica de Lisboa, E.N. 10, 2686-953 Sacavem (Portugal)

    2014-07-01

    The long lived radon daughters {sup 210}Pb and {sup 210}Po were determined in samples of total atmospheric depositions obtained with surface collectors continuously operated during 5 years, near Lisbon. The average annual {sup 210}Pb flux was 66±12 Bq m{sup -2}, and the average annual {sup 210}Po flux was 8±3 Bq m{sup -2}, with an overall {sup 210}Po/{sup 210}Pb activity ratio of 0.15±0.06. Direct determination of the {sup 210}Pb atmospheric flux was compared with the {sup 210}Pb excess determined in soil surface layers along with atmospheric depositions of {sup 137}Cs. The deposition of atmospheric {sup 210}Pb was positively correlated with seasonal rainfall, while {sup 210}Po was mainly originated in soil particles re-suspension throughout the year and also in seasonal forest fires. Unusually high {sup 210}Po/{sup 210}Pb activity ratios, higher than unity, were occasionally recorded in atmospheric depositions and the sources and causes are discussed. Long time-series of {sup 210}Pb and {sup 210}Po deposition fluxes, as presented herein are useful to test and constrain parameters of the atmospheric Global Circulation Models. (authors)

  20. Facile synthesis and enhanced visible-light photocatalytic activity of micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jin [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001 (China); Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2015-03-15

    Graphical abstract: - Highlights: • Micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres were synthesized by a facile method. • The formation mechanism for the Ag{sub 2}ZnGeO{sub 4} hollow spheres was investigated. • The catalyst exhibited an enhanced visible-light photocatalytic activity. • The reactive species in the photocatalytic process were studied. - Abstract: Micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres were successfully synthesized by a one-step and low-temperature route under ambient pressure. The micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres have a diameter of 1–2 μm and their shells are composed of numerous nanoparticles and nanorods. The growth process of the micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres was investigated in detail. The results indicated that the morphologies and composition of Ag{sub 2}ZnGeO{sub 4} samples were strongly dependent on the dose of the AgNO{sub 3} and reaction time. Excessive AgNO{sub 3} was favorable for the nucleation and growth rate of Ag{sub 2}ZnGeO{sub 4} crystals and the formation of pure Ag{sub 2}ZnGeO{sub 4}. Moreover, the formation mechanism of the micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres is related to the Ostwald ripening. Under the same conditions, the photocatalytic activity of micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres is about 1.7 times and 11 times higher than that of bulk Ag{sub 2}ZnGeO{sub 4} and Degussa P25, respectively. These interesting findings could provide new insight on the synthesis of micro/nanostructured ternary-metal oxides with enhanced photocatalytic activity.

  1. Trace elements in tourmalines from massive sulfide deposits and tourmalinites: Geochemical controls and exploration applications

    Science.gov (United States)

    Griffin, W.L.; Slack, J.F.; Ramsden, A.R.; Win, T.T.; Ryan, C.G.

    1996-01-01

    Trace element contents of tourmalines from massive sulfide deposits and tourmalinites have been determined in situ by proton microprobe; >390 analyses were acquired from 32 polished thin sections. Concentrations of trace elements in the tourmalines vary widely, from Sr, Ba, and Ca). Base metal proportions in the tourmalines show systematic patterns on ternary Cu-Pb-Zn diagrams that correlate well with the major commodity metals in the associated massive sulfide deposits. For example, data for tourmalines from Cu-Zn deposits (e.g., Ming mine, Newfoundland) fall mainly on the Cu-Zn join, whereas those from Pb-Zn deposits (e.g., Broken Hill, Australia) plot on the Pb-Zn join; no data fall on the Cu-Pb join, consistent with the lack of this metal association in massive sulfide deposits. The systematic relationship between base metal proportions in the tourmalines and the metallogeny of the host massive sulfide deposits indicates that the analyzed tourmalines retain a strong chemical signature of their original hydrothermal formation, in spite of variable metamorphic recrystallization. Such trace element patterns in massive sulfide tourmalines may be useful in mineral exploration, specifically for the evaluation of tourmaline concentrations in rocks, soils, and stream sediments.

  2. Investigation of effect of Ag(1), Cd(2) and Zn(2) on chemical nickel plating

    International Nuclear Information System (INIS)

    Lunyatskas, A.M.; Tarozajte, R.K.; Gyanutene, I.K.; Lyaukonis, Yu.Yu.

    1978-01-01

    Investigated is the effect of Ag(1), Cd(2) and Zn(2) on chemical nickel plating using hypophosphite aimed to get corresponding alloys from alkali solutions. The H 2 formed volume and potential of coating have been measured while nickel plating. It is possible to have plating of Ni-P-Ag, Ni-P-Zn, Ni-P-Cd, Ni-P-Zn-Cd content coatings in alkali solutions using hypophosphite Ni-P-Zh and Ni-P-Zn-Cd coatings have corrosion resistance and unporousness. Cd and Zn inclusion in Ni-P coating is supposed to have both chemical and electrochemical origin

  3. Photoproduced fluorescent Au(I)@(Ag2/Ag3)-thiolate giant cluster: an intriguing sensing platform for DMSO and Pb(II).

    Science.gov (United States)

    Ganguly, Mainak; Mondal, Chanchal; Jana, Jayasmita; Pal, Anjali; Pal, Tarasankar

    2014-01-14

    Synergistic evolution of fluorescent Au(I)@(Ag2/Ag3)-thiolate core-shell particles has been made possible under the Sun in presence of the respective precursor coinage metal compounds and glutathione (GSH). The green chemically synthesized fluorescent clusters are giant (∼600 nm) in size and robust. Among all the common water miscible solvents, exclusively DMSO exhibits selective fluorescence quenching (Turn Off) because of the removal of GSH from the giant cluster. Again, only Pb(II) ion brings back the lost fluorescence (Turn On) leaving aside all other metal ions. This happens owing to the strong affinity of the sulfur donor of DMSO for Pb(II). Thus, employing the aqueous solution containing the giant cluster, we can detect DMSO contamination in water bodies at trace level. Besides, a selective sensing platform has emerged out for Pb(II) ion with a detection limit of 14 × 10(-8) M. Pb(II) induced fluorescence recovery is again vanished by I(-) implying a promising route to sense I(-) ion.

  4. Effects of Post- Heat Treatment of Nanocrystalline ZnO Thin Films deposited on Zn-Deposited FTO Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ikhyun; Kim, Younggyu; Nam, Giwoong; Leem, Jae-Young [Inje University, Gimhae (Korea, Republic of)

    2015-10-15

    The effects of heat-treatment temperature on the structural and optical properties of ZnO thin films were investigated with field-effect scanning electron microscopy (SEM), X-ray diffraction analysis, and photoluminescence (PL) measurements. The ZnO thin films were grown on Zn-deposited fluorine-doped tin oxide substrates by sol-gel spin coating. The SEM images of the samples showed that their surfaces had a mountain-chain-like structure. The film annealed at 400 ℃ had the highest degree of alignment along the c-axis, and its residual stress was close to zero. The PL spectra of the ZnO thin films consisted of sharp near-band-edge emissions (NBE) and broad deep-level emissions (DLE) in the visible range. The DLE peaks exhibited a green-to-red shift with an increase in the temperature. The highest INBE/IDLE ratio was observed in the film annealed at 400 ℃. Thus, the optimal temperature for growing high-quality ZnO thin films on Zn-deposited FTO substrates is 400 ℃.

  5. Migration of Sn and Pb from Solder Ribbon onto Ag Fingers in Field-Aged Silicon Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Wonwook Oh

    2015-01-01

    Full Text Available We investigated the migration of Sn and Pb onto the Ag fingers of crystalline Si solar cells in photovoltaic modules aged in field for 6 years. Layers of Sn and Pb were found on the Ag fingers down to the edge of the solar cells. This phenomenon is not observed in a standard acceleration test condition for PV modules. In contrast to the acceleration test conditions, field aging subjects the PV modules to solar irradiation and moisture condensation at the interface between the solar cells and the encapsulant. The solder ribbon releases Sn and Pb via repeated galvanic corrosion and the Sn and Pb precipitate on Ag fingers due to the light-induced plating under solar irradiation.

  6. Bioaccessibility of Ba, Cu, Pb, and Zn in urban garden and orchard soils

    International Nuclear Information System (INIS)

    Cai, Meifang; McBride, Murray B.; Li, Kaiming

    2016-01-01

    Exposure of young children to toxic metals in urban environments is largely due to soil and dust ingestion. Soil particle size distribution and concentrations of toxic metals in different particle sizes are important risk factors in addition to bioaccessibility of these metals in the particles. Analysis of particle size distribution and metals concentrations for 13 soils, 12 sampled from urban gardens and 1 from orchard found that fine particles (<105 μm) comprised from 22 to 66% by weight of the tested soils, with Ba, Cu, Pb and Zn generally at higher concentrations in the finer particles. However, metal bioaccessibility was generally lower in finer particles, a trend most pronounced for Ba and Pb. Gastric was higher than gastrointestinal bioaccessibility for all metals except Cu. The lower bioaccessibility of Pb in urban garden soils compared to orchard soil is attributable to the higher organic matter content of the garden soils. - Highlights: • The bioaccessibility of metals in urban garden and orchard soils was measured. • Ba, Cu, Pb, Zn were concentrated in fine particles of the soils. • Bioaccessibilities of Ba and Pb were generally lower in fine particles of soils. • Pb bioaccessibility was generally lower in soils with higher organic matter content. • Pb bioaccessibility was lower in urban garden soils than in an orchard soil. - Pb and other trace metals (Ba, Cu, Zn) were concentrated in fine particles of urban and orchard soils, but the bioaccessibility of Ba and Pb was generally lower in finer particles.

  7. Reaction mechanism of a PbS-on-ZnO heterostructure and enhanced photovoltaic diode performance with an interface-modulated heterojunction energy band structure.

    Science.gov (United States)

    Li, Haili; Jiao, Shujie; Ren, Jinxian; Li, Hongtao; Gao, Shiyong; Wang, Jinzhong; Wang, Dongbo; Yu, Qingjiang; Zhang, Yong; Li, Lin

    2016-02-07

    A room temperature successive ionic layer adsorption and reaction (SILAR) method is introduced for fabricating quantum dots-on-wide bandgap semiconductors. Detailed exploration of how SILAR begins and proceeds is performed by analyzing changes in the electronic structure of related elements at interfaces by X-ray photoelectric spectroscopy, together with characterization of optical properties and X-ray diffraction. The distribution of PbS QDs on ZnO, which is critical for optoelectrical applications of PbS with a large dielectric constant, shows a close relationship with the dipping order. A successively deposited PbS QDs layer is obtained when the sample is first immersed in Na2S solution. This is reasonable because the initial formation of different chemical bonds on ZnO nanorods is closely related to dangling bonds and defect states on surfaces. Most importantly, dipping order also affects their optoelectrical characteristics greatly, which can be explained by the heterojunction energy band structure related to the interface. The formation mechanism for PbS QDs on ZnO is confirmed by the fact that the photovoltaic diode device performance is closely related to the dipping order. Our atomic-scale understanding emphasises the fundamental role of surface chemistry in the structure and tuning of optoelectrical properties, and consequently in devices.

  8. Pb-Zn mineralization of the Ali ou Daoud area (Central High Atlas, Morocco): characterisation of the deposit and relationships with the clay assemblages; Mineralisation Pb-Zn du type MVT de la region d'Ali ou Daoud (Haut Atlas Central, Maroc): caracterisations du gite et relations avec les corteges de mineraux argileux

    Energy Technology Data Exchange (ETDEWEB)

    Mouguina, E. M.; Daoudi, L.

    2008-07-01

    Zn-Pb-Fe ores in the Ali ou Daoud deposit (Central High Atlas) are found as stratiform levels and as karst fillings in carbonate platforms facies of Bajocian age. Tectonic structures (e.g., syn sedimentary faults) played a relevant role in the ore emplacement. The dolomitic ore-related host-rock levels are characterized by the presence of kaolinite enrichment in clay levels in amounts directly related to the proportion of the clay minerals. The latter is evidenced by correlation between kaolinite and sulphide contents, suggesting that the installation of kaolinite and mineralizations would result from the same hydrothermal fluid. (Author) 55 refs.

  9. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    Science.gov (United States)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  10. Comparative of Quercus spp. and Salix spp. for phytoremediation of Pb/Zn mine tailings.

    Science.gov (United States)

    Shi, Xiang; Wang, Shufeng; Sun, Haijing; Chen, Yitai; Wang, Dongxue; Pan, Hongwei; Zou, Yazhu; Liu, Jianfeng; Zheng, Linyu; Zhao, Xiulian; Jiang, Zeping

    2017-02-01

    A pot experiment was conducted to evaluate the feasibility of using tree seedlings for the phytoremediation of lead/zinc (Pb/Zn) mine tailings. Seedlings of three Quercus spp. (Q. shumardii, Q. phellos, and Q. virginiana) and rooted cuttings of two Salix spp. (S. matsudana and S. integra) were transplanted into pots containing 50 and 100 % Pb/Zn mine tailings to evaluate their tolerance of heavy metals. The five species showed different tolerance levels to the Pb/Zn tailings treatments. Q. virginiana was highly tolerant to heavy metals and grew normally in the Pb/Zn tailings. The root systems showed marked differences between the Quercus spp. and Salix spp., indicating that different mechanisms operated to confer tolerance of heavy metals. The maximum efficiency of photosystem II photochemistry value of the five species showed no differences among the treatments, except for Q. shumardii. All species showed low metal translocation factors (TFs). However, S. integra had significantly higher TF values for Zn (1.42-2.18) and cadmium (1.03-1.45) than did the other species. In this respect, Q. virginiana showed the highest tolerance and a low TF, implying that it is a candidate for phytostabilization of mine tailings in southern China. S. integra may be useful for phytoextraction of tailings in temperate regions.

  11. 210Pb dating of sediments from the central and the northern Adriatic Sea: The deposition and preservation of sedimentary organic carbon

    International Nuclear Information System (INIS)

    Hamilton, T.; Fowler, S.; Miquel, J.C.; La Rosa, J.

    1996-04-01

    A central goal of the ELNA project is to assess the carbon assimilation capacity of the Northern Adriatic Sea. This requires fundamental quantitative information on budgets and sinks of organic carbon. Any change in carbon production in the water column should be reflected in the underlying sediments. Moreover, the fraction of particulate organic carbon reaching the sea floor which is subsequently preserved in the sediment will be strongly coupled to sediment accumulation and mixing. In this study a series of box cores were collected in order to characterize a hypothetical eutrophication gradient extending from the Po River outflow region in the north down to the shallow meso-Adriatic depression (Jabuka Pit). The main tasks assigned to IAEA-MEL were to provide 210 Pb derived sedimentation and dry-mass accumulation rates and to examine the possible correlations between sedimentary processes, the deposition and preservation of sedimentary organic carbon and pelagic primary productivity

  12. The determination of the optimum counting conditions for a ZnS(Ag) scintillation detector

    International Nuclear Information System (INIS)

    Djurasevic, M.M.; Kandic, A.B.; Novkovic, D.N; Vukanac, I.S. . E-mail address of corresponding author: mirad@vin.bg.ac.yu; Djurasevic, M.M.)

    2005-01-01

    The methods that use scintillation counting with ZnS(Ag) scintillation detector are widely used for gross alpha activity determination. The common criteria for the selection of optimum counting condition for a ZnS(Ag) scintillation detector do not consider simultaneously operating voltage and discrimination level variation. In presented method a relationship between voltage and discrimination level is derived for counting efficiency. (author)

  13. Deposition of atmospheric 210Pb and total beta activity in Finland

    International Nuclear Information System (INIS)

    Jussi Paatero; Murat Buyukay; Juha Hatakka; Kaisa Vaaramaa; Jukka Lehto

    2015-01-01

    The seasonal and regional variation of the atmospheric 210 Pb deposition in Finland was studied. The 210 Pb activity concentration in precipitation shows a decreasing trend from southeastern Finland north-westwards. An average deposition of 40 Bq/m 2 during a 12 months period was observed. The deposition of 210 Pb shows a seasonal variation with minimum in spring and maximum in autumn and winter. The specific activity of 210 Pb (activity of 210 Pb per unit mass of stable lead) in the atmosphere has returned to the level prior to World War II owing to the reduced lead emissions into the atmosphere. (author)

  14. Transformation of technogenic compounds of Ni, Cu, Zn and Pb in different soil types in model experiment

    International Nuclear Information System (INIS)

    Ladonin, D.V.; Smirnova, M.S.; Karpukhin, M.M.; Plyaskina, O.V.

    2008-01-01

    In model experiment fractional distribution of Ni, Cu, Zn and Pb in soils artificially polluted with readily and sparingly soluble compounds (nitrates and oxides respectively) of these heavy metals was investigated. It is shown that heavy metals fractional distribution may strongly vary depending on the form in which the metal deposits in the soil. Transformation of heavy metals oxides is controlled by two main factors: solubility of an oxide and characteristics of reactions between dissolution products and the soil components

  15. Ag3PO4/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B

    International Nuclear Information System (INIS)

    Liu, Wei; Wang, Mingliang; Xu, Chunxiang; Chen, Shifu; Fu, Xianliang

    2013-01-01

    Graphical abstract: The free OH radicals generated in the VB of ZnO play the primary role in the visible-light photocatalytic degradation of RhB in Ag 3 PO 4 /ZnO system. The accumulated electrons in the CB of Ag 3 PO 4 can be transferred to O 2 adsorbed on the surface of the composite semiconductors and H 2 O 2 yields. H 2 O 2 reacts with electrons in succession to produce active ·OH to some extent. Display Omitted Highlights: ► Efficient visible-light-sensitized Ag 3 PO 4 /ZnO composites were successfully prepared. ► Effect of Ag 3 PO 4 content on the catalytic activity of Ag 3 PO 4 /ZnO is studied in detail. ► Rate constant of RhB degradation over Ag 3 PO 4 (3.0 wt.%)/ZnO is 3 times that of Ag 3 PO 4 . ► The active species in RhB degradation are examined by adding a series of scavengers. ► Visible light degradation mechanism of RhB over Ag 3 PO 4 /ZnO is systematically studied. -- Abstract: The efficient visible-light-sensitized Ag 3 PO 4 /ZnO composites with various weight percents of Ag 3 PO 4 were prepared by a facile ball milling method. The photocatalysts were characterized by XRD, DRS, SEM, EDS, XPS, and BET specific area. The ·OH radicals produced during the photocatalytic reaction was detected by the TA–PL technique. The photocatalytic property of Ag 3 PO 4 /ZnO was evaluated by photocatalytic degradation of Rhodamine B under visible light irradiation. Significantly, the results revealed that the photocatalytic activity of the composites was much higher than that of pure Ag 3 PO 4 and ZnO. The rate constant of RhB degradation over Ag 3 PO 4 (3.0 wt.%)/ZnO is 3 times that of single-phase Ag 3 PO 4 . The optimal percentage of Ag 3 PO 4 in the composite is 3.0 wt.%. It is proposed that the ·OH radicals produced in the valence band of ZnO play the leading role in the photocatalytic degradation of Rhodamine B by Ag 3 PO 4 /ZnO systems under visible light irradiation.

  16. Atomic Layer Deposition of Electron Selective SnOx and ZnO Films on Mixed Halide Perovskite: Compatibility and Performance.

    Science.gov (United States)

    Hultqvist, Adam; Aitola, Kerttu; Sveinbjörnsson, Kári; Saki, Zahra; Larsson, Fredrik; Törndahl, Tobias; Johansson, Erik; Boschloo, Gerrit; Edoff, Marika

    2017-09-06

    The compatibility of atomic layer deposition directly onto the mixed halide perovskite formamidinium lead iodide:methylammonium lead bromide (CH(NH 2 ) 2 , CH 3 NH 3 )Pb(I,Br) 3 (FAPbI 3 :MAPbBr 3 ) perovskite films is investigated by exposing the perovskite films to the full or partial atomic layer deposition processes for the electron selective layer candidates ZnO and SnO x . Exposing the samples to the heat, the vacuum, and even the counter reactant of H 2 O of the atomic layer deposition processes does not appear to alter the perovskite films in terms of crystallinity, but the choice of metal precursor is found to be critical. The Zn precursor Zn(C 2 H 5 ) 2 either by itself or in combination with H 2 O during the ZnO atomic layer deposition (ALD) process is found to enhance the decomposition of the bulk of the perovskite film into PbI 2 without even forming ZnO. In contrast, the Sn precursor Sn(N(CH 3 ) 2 ) 4 does not seem to degrade the bulk of the perovskite film, and conformal SnO x films can successfully be grown on top of it using atomic layer deposition. Using this SnO x film as the electron selective layer in inverted perovskite solar cells results in a lower power conversion efficiency of 3.4% than the 8.4% for the reference devices using phenyl-C 70 -butyric acid methyl ester. However, the devices with SnO x show strong hysteresis and can be pushed to an efficiency of 7.8% after biasing treatments. Still, these cells lacks both open circuit voltage and fill factor compared to the references, especially when thicker SnO x films are used. Upon further investigation, a possible cause of these losses could be that the perovskite/SnO x interface is not ideal and more specifically found to be rich in Sn, O, and halides, which is probably a result of the nucleation during the SnO x growth and which might introduce barriers or alter the band alignment for the transport of charge carriers.

  17. A New Occurrence Model for National Assessment of Undiscovered Volcanogenic Massive Sulfide Deposits

    Science.gov (United States)

    Shanks, W.C. Pat; Dusel-Bacon, Cynthia; Koski, Randolph; Morgan, Lisa A.; Mosier, Dan; Piatak, Nadine M.; Ridley, Ian; Seal, Robert R.; Schulz, Klaus J.; Slack, John F.; Thurston, Roland

    2009-01-01

    Volcanogenic massive sulfide (VMS) deposits are very significant current and historical resources of Cu-Pb-Zn-Au-Ag, are active exploration targets in several areas of the United States and potentially have significant environmental effects. This new USGS VMS deposit model provides a comprehensive review of deposit occurrence and ore genesis, and fully integrates recent advances in the understanding of active seafloor VMS-forming environments, and integrates consideration of geoenvironmental consequences of mining VMS deposits. Because VMS deposits exhibit a broad range of geological and geochemical characteristics, a suitable classification system is required to incorporate these variations into the mineral deposit model. We classify VMS deposits based on compositional variations in volcanic and sedimentary host rocks. The advantage of the classification method is that it provides a closer linkage between tectonic setting and lithostratigraphic assemblages, and an increased predictive capability during field-based studies.

  18. The accumulation of elements in plants growing spontaneously on small heaps left by the historical Zn-Pb ore mining.

    Science.gov (United States)

    Stefanowicz, Anna M; Stanek, Małgorzata; Woch, Marcin W; Kapusta, Paweł

    2016-04-01

    The study evaluated the levels of nine metals, namely Ca, Cd, Fe, K, Mg, Mn, Pb, Tl, and Zn, in soils and tissues of ten plant species growing spontaneously on heaps left by historical mining for Zn-Pb ores. The concentrations of Cd, Pb, Tl, and Zn in heap soils were much higher than in control soils. Plants growing on heaps accumulated excessive amounts of these elements in tissues, on average 1.3-52 mg Cd kg(-1), 9.4-254 mg Pb kg(-1), 0.06-23 mg Tl kg(-1) and 134-1479 mg Zn kg(-1) in comparison to 0.5-1.1 mg Cd kg(-1), 2.1-11 mg Pb kg(-1), 0.02-0.06 mg Tl kg(-1), and 23-124 mg Zn kg(-1) in control plants. The highest concentrations of Cd, Pb, and Zn were found in the roots of Euphorbia cyparissias, Fragaria vesca, and Potentilla arenaria, and Tl in Plantago lanceolata. Many species growing on heaps were enriched in K and Mg, and depleted in Ca, Fe, and Mn. The concentrations of all elements in plant tissues were dependent on species, organ (root vs. shoot), and species-organ interactions. Average concentrations of Ca, K, and Mg were generally higher in shoots than in roots or similar in the two organs, whereas Cd, Fe, Pb, Tl, and Zn were accumulated predominantly in the roots. Our results imply that heaps left by historical mining for Zn-Pb ores may pose a potential threat to the environment and human health.

  19. Photoinduced absorption of Ag nanoparticles deposited on ITO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ozga, K., E-mail: cate.ozga@wp.pl [Chair of Public Health, Czestochowa University of Technology, Al. Armii Krajowej 36B, 42-200 Czestochowa (Poland); Oyama, M. [Department of Material Chemisrty, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Szota, M. [Institute of Materials Science and Engineering, Technical University of Czestochowa, al. Armii Krajowej 19, 42-200 Czestochowa (Poland); Nabialek, M. [Institute of Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland); Kityk, I.V. [Electrical Engineering Department, Czestochowa University of Technology, Al. Armii Krajowej 17/19, 42-200 Czestochowa (Poland); Slezak, A. [Chair of Public Health, Czestochowa University of Technology, Al. Armii Krajowej 36B, 42-200 Czestochowa (Poland); Umar, A.A. [Institute of Micronegineering and Nanoelectronics Universiti Kebangsaan Malaysia 43600 UKM bangi, Selangor D.E. (Malaysia); Nouneh, K. [INANOTECH, Institute of Nanomaterials and Nanotechnology, MAScIR (Moroccan Advanced Science, Innovation and Research Foundation), ENSET, Av. Armee Royale, 10100, Rabat (Morocco)

    2011-06-15

    Research highlights: > We study photoinduced absorption for two Ag NP deposited on the ITO. > The higher resistance eof the NP favors larger photoinduced changes. > Principal role is played by nanointerfaces. - Abstract: Substantial changes of absorption after illumination by 300 mW continuous wave green laser at 532 nm were observed. The effect of indium tin oxide (ITO) substrate was explored versus Ag nanoparticles (AgNPs) size, their regularity and surface plasmon resonance. The ITO substrate features play a crucial role for the formation of homogenous AgNPs. The attachments of AgNPs on ITO surface as well as their homogeneity are significantly changed under the influence of the laser treatment. We study the Ag NP deposited on the two different substrates which play a crucial role in the photoinduced absorption. The dependence of the photoinduced absorption versus the time of optical treatment is explained within a framework of the photopolarization of the particular trapping levels on the borders between the ITO substrate and the Ag NP.

  20. Picosecond and subpicosecond pulsed laser deposition of Pb thin films

    Directory of Open Access Journals (Sweden)

    F. Gontad

    2013-09-01

    Full Text Available Pb thin films were deposited on Nb substrates by means of pulsed laser deposition (PLD with UV radiation (248 nm, in two different ablation regimes: picosecond (5 ps and subpicosecond (0.5 ps. Granular films with grain size on the micron scale have been obtained, with no evidence of large droplet formation. All films presented a polycrystalline character with preferential orientation along the (111 crystalline planes. A maximum quantum efficiency (QE of 7.3×10^{-5} (at 266 nm and 7 ns pulse duration was measured, after laser cleaning, demonstrating good photoemission performance for Pb thin films deposited by ultrashort PLD. Moreover, Pb thin film photocathodes have maintained their QE for days, providing excellent chemical stability and durability. These results suggest that Pb thin films deposited on Nb by ultrashort PLD are a noteworthy alternative for the fabrication of photocathodes for superconductive radio-frequency electron guns. Finally, a comparison with the characteristics of Pb films prepared by ns PLD is illustrated and discussed.

  1. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals

    Science.gov (United States)

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-01

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I–III–VI semiconductor nanocrystals (NCs), such as CuInS2 and AgInS2. However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS2 and AgInS2/ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS2 and AgInS2/ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility {χ }(3) of AgInS2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  2. Thermodynamic modelling of Ag-Zn alloys

    International Nuclear Information System (INIS)

    Gomez-Acebo, T.; Sundman, B.

    1998-01-01

    A thermodynamic assessment of the Ag-Zn system has been done using a computerized CALPHAD (calculation of phase diagrams) technique. The liquid, α,β,ε and η phases are described by a regular solution model, the ζ phase by a two-sublattices model, and the γ phase by a four-sublattices model both based on considerations of their crystal structure and compatibility with the same phase in other systems. Some calculated phase and property diagrams are presented. (Author) 27 refs

  3. Element migration of pyrites during ductile deformation of the Yuleken porphyry Cu deposit (NW-China)

    Science.gov (United States)

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Li, Jilei; Cao, Mingjian; Xiang, Peng; Wu, Chu; You, Jun

    2017-01-01

    The strongly deformed Yuleken porphyry Cu deposit (YPCD) occurs in the Kalaxiangar porphyry Cu belt (KPCB), which occupies the central area of the Central Asian Orogenic Belt (CAOB) between the Sawu’er island arc and the Altay Terrane in northern Xinjiang. The YPCD is one of several typical subduction-related deposits in the KPCB, which has undergone syn-collisional and post-collisional metallogenic overprinting. The YPCD is characterized by three pyrite-forming stages, namely a hydrothermal stage A (Py I), a syn-ductile deformation stage B (Py II) characterized by Cu-Au enrichment, and a fracture-filling stage C (Py III). In this study, we conducted systematic petrographic and geochemical studies of pyrites and coexist biotite, which formed during different stages, in order to constrain the physicochemical conditions of the ore formation. Euhedral, fragmented Py I has low Pb and high Te and Se concentration and Ni contents are low with Co/Ni ratios mostly between 1 and 10 (average 9.00). Py I is further characterized by enrichments of Bi, As, Ni, Cu, Te and Se in the core relative to the rim domains. Anhedral round Py II has moderate Co and Ni contents with high Co/Ni ratios >10 (average 95.2), and average contents of 46.5 ppm Pb and 5.80 ppm Te. Py II is further characterized by decreasing Bi, Cu, Pb, Zn, Ag, Te, Mo, Sb and Au contents from the rim to the core domains. Annealed Py III has the lowest Co content of all pyrite types with Co/Ni ratios mostly <0.1 (average 1.33). Furthermore, Py III has average contents of 3.31 ppm Pb, 1.33 ppm Te and 94.6 ppm Se. In addition, Fe does not correlate with Cu and S in the Py I and Py III, while Py II displays a negative correlation between Fe and Cu as well as a positive correlation between Fe and S. Therefore, pyrites which formed during different tectonic regimes also have different chemical compositions. Biotite geothermometer and oxygen fugacity estimates display increasing temperatures and oxygen

  4. Ionic liquid-assisted photochemical synthesis of ZnO/Ag_2O heterostructures with enhanced visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhao, Shuo; Zhang, Yiwei; Zhou, Yuming; Zhang, Chao; Fang, Jiasheng; Sheng, Xiaoli

    2017-01-01

    Highlights: • ZnO/Ag_2O heterostructures have been successfully fabricated by a photochemical route. • Ionic liquids were used as template for shape-controllable ZnO nanomaterials. • The type of ionic liquid played an important role in the growth of ZnO nanoparticles. • ZnO/Ag_2O heterostructures had the enhanced photocatalytic ability. • Photocatalytic activity is a result of the combination of various factors. - Abstract: ZnO/Ag_2O heterostructures have been successfully fabricated using ionic liquids (ILs) as templates by a simple photochemical route. The influence of the type of ionic liquid and synthetic method on the morphology of ZnO, as well as the photocatalytic activity for the degradation of Rhodamine B (RhB), tetracycline (TC) and ciprofloxacin (CIP) under ultraviolet and visible light irradiation was studied. The samples were characterized by XRD, SEM, TEM, PL and UV–vis DRS. The results established that the type of ionic liquid and synthetic method played an important role in the growth of ZnO nanoparticles. And as-fabricated ZnO/Ag_2O materials exhibited self-assembled flower-like architecture whose size was about 3 μm. Moreover, as-prepared ZnO/Ag_2O exhibited the enhanced photocatalytic activity than ZnO sample, which may be due to the special structure, heterojunction, enhanced adsorption capability of dye, the improved separation rate of photogenerated electron–hole pairs. According to the results of radical trapping experiments, it can be found that • OH and h"+ were the main active species for the photocatalytic degradation of RhB. It is valuable to develop this facile route preparing the highly dispersive flower-like ZnO/Ag_2O materials, which can be beneficial for environmental protection.

  5. Lead, cadmium and zinc in mineral structure of deposits of the gallbladder in men and women

    Directory of Open Access Journals (Sweden)

    Jerzy Kwapuliński

    2012-11-01

    Full Text Available Introduction: The former studies have shown the presence of As and Sb in deposits of the gallbladder. The aim of studies: The aim of the studies was to define the level of accumulation of Pb, Cd, Zn in deposits of the gallbladder as supplementary biological test for exposure assessment in a long run. Materials and methods: Pb, Cd and Zn content was investigated with inductive coupled plasmaatomic emission spectrometry were deposits of the gallbladder in men and women living in the Silesia Region. Results: The change of these elements content was analyzed in connection with behavioral factors ( diet, alcohol, coffee, obesity and tobacco addiction of the gender. Attention was drawn to the probability of interaction of Pb, Cd, Zn with other elements during their accumulation in deposits of the gallbladder. It appeared that deposits of the gall bladder can be used as an additional biological test in individual exposure assessment to Pb, Cd and Zn. It was noted that the level of content of Pb, Zn and Cd in deposits of the gallbladder is impacted by behavioral factors (diet, alcohol, coffee, obesity tobacco addiction. A characteristic impact of the tobacco addiction on the rise in the content of lead, cadmium and zinc was demonstrated as well as significant role of the presence of these elements in the total environmental pollution in relevant living areas.

  6. Microstructure and adhesion strength of Sn-9Zn-xAg lead-free solders wetted on Cu substrate

    International Nuclear Information System (INIS)

    Chang, T.-C.; Chou, S.-M.; Hon, M.-H.; Wang, M.-C.

    2006-01-01

    The microstructure and adhesion strength of the Sn-9Zn-xAg lead-free solders wetted on Cu substrates have been investigated by differential scanning calorimetry, optical microscopy, scanning electron microscopy, energy dispersive spectrometry and pull-off testing. The liquidus temperatures of the Sn-9Zn-xAg solder alloys are 222.1, 226.7, 231.4 and 232.9 deg. C for x = 2.5, 3.5, 5.0 and 7.5 wt%, respectively. A flat interface can be obtained as wetted at 350 deg. C at a rate of 11.8 mm/s. The adhesion strength of the Sn-9Zn-xAg/Cu interfaces decreases from 23.09 ± 0.31 to 12.32 ± 1.40 MPa with increasing Ag content from 2.5 to 7.5 wt% at 400 deg. C. After heat treatment at 150 deg. C, the adhesion strength of the Sn-9Zn-xAg/Cu interface decreases with increasing aging time

  7. Determination of 210Po in Slovak mineral waters by sorption on ZnS(Ag)

    International Nuclear Information System (INIS)

    Krivosik, M.

    2009-01-01

    In determining of 210 Po it was followed according to the Czech technical standard CSN 75 7626 Water quality - Determination of polonium-210. The aim of this work was to optimize the conditions for sorption of 210 Po on ZnS (Ag) from acidic environment from the model solutions. The effect of pH of the sample, its volume and the presence of NaCl on the sorption of 210 Po on ZnS (Ag) was studied. Three types of filters for filtering ZnS (Ag), Synpor, paper and glass fiber filters were tested. Bulk activity of 210 Po was determined in the samples of Slovak mineral waters and healing waters as well as in water samples from antimony mine (mine Rufus) near the village Poproc (rural Kosice district). (author)

  8. Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey

    Science.gov (United States)

    Kara, Melik; Dumanoglu, Yetkin; Altiok, Hasan; Elbir, Tolga; Odabasi, Mustafa; Bayram, Abdurrahman

    2014-11-01

    Atmospheric bulk deposition (wet + dry deposition) samples (n = 40) were collected concurrently at ten sites in four seasons between June 2009 and April 2010 in the Aliaga heavily industrialized region, Turkey, containing a number of significant air pollutant sources. Analyses of trace elements were carried out using inductively coupled plasma-mass spectrometry (ICP-MS). While there were significant differences in the particulate matter (PM) deposition fluxes among the sampling sites, seasonal variations were not statistically significant (Kruskal-Wallis test, p < 0.05). Both PM deposition and elemental fluxes were increased at the sampling sites in the vicinity of industrial activities. The crustal elements (i.e., Ca, Mg) and some anthropogenic elements (such as Fe, Zn, Mn, Pb, Cu, and Cr) were high, and the highest fluxes were mostly measured in summer and winter seasons. The enrichment factor (EF) and principal component analysis (PCA) was applied to the data to determine the possible sources in the study area. High EF values were obtained for the anthropogenic elements such as Ag, Cd, Zn, Pb, Cu and Sb. The possible sources were identified as anthropogenic sources (i.e., iron-steel production) (45.4%), crustal and re-suspended dust (27.1%), marine aerosol (7.9%), and coal and wood combustion (8.2%). Thus, the iron-steel production and its related activities were found to be the main pollutant sources for this region.

  9. High photocurrent gain in NiO thin film/M-doped ZnO nanorods (M=Ag, Cd and Ni) heterojunction based ultraviolet photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Echresh, Ahmad, E-mail: ahmadechresh@gmail.com [Department of Science and Technology, Physical Electronics and Nanotechnology Division, Campus Norrköping, Linköping University, SE-601 74 Norrköping (Sweden); Echresh, Mohammad [Department of Physics, Sanati Hoveizeh University, Ahvaz (Iran, Islamic Republic of); Khranovskyy, Volodymyr [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-5818358183 Linköping (Sweden); Nur, Omer; Willander, Magnus [Department of Science and Technology, Physical Electronics and Nanotechnology Division, Campus Norrköping, Linköping University, SE-601 74 Norrköping (Sweden)

    2016-10-15

    The thermal evaporation method has been used to deposit p-type NiO thin film, which was combined with hydrothermally grown n-type pure and M-doped ZnO nanorods (M=Ag, Cd and Ni) to fabricate a high performance p-n heterojunction ultraviolet photodiodes. The fabricated photodiodes show high rectification ratio and relatively low leakage current. The p-NiO/n-Zn{sub 0.94}Ag{sub 0.06}O heterojunction photodiode displays the highest photocurrent gain (~1.52×10{sup 4}), a photoresponsivity of ~4.48×10{sup 3} AW{sup −1} and a photosensitivity of ~13.56 compared with the other fabricated photodiodes. The predominated transport mechanisms of the p-n heterojunction ultraviolet photodiodes at low and high applied forward bias may be recombination-tunneling and space charge limited current, respectively.

  10. MODEL ADSORPSI TIMBAL (PB DAN SENG (ZN DALAM SISTEM AIR-SEDIMEN DI WADUK RIAM KANAN KALIMANTAN SELATAN

    Directory of Open Access Journals (Sweden)

    Chatimatun Nisa

    2013-04-01

    Full Text Available Heavy metals are often considered as main contaminant in water pollution and its highly dangerous for living organisms in the contaminated area. The aim of this research is to predict the movement pattern of Pb and Zn metal ions from water onto sediment in the Riam Kanan Reservoir, Aranio Sub-district, Banjar District. In addition, this study is expected to give information on the initial condition of Riam Kanan reservoir; dynamics; and the fate of Pb and Zn ions from upstream to downstream. The samples were analysed using AAS (Atomic Absorption Spectrophotometer based on the Indonesian National Standard (SNI. Result of laboratory analysis showed that in the water, contents of metal Pb were 0.0494 ppm – 0.2582 ppm, Zn 0.0002 ppm – 0.0370 ppm. In the sediment, contents of Pb were 0.8311 mg/kg – 21.1756 mg/kg and Zn 3.3778 mg/kg – 28.3522 mg/kg. Based on the experimental data, it was found that the displacement of Pb and Zn onto sediment complies with Langmuir adsorption model where the determination coefficient (R2 were 0.8167 and 0.8801 respectively.

  11. Effect of Ag Doping on the Electronic Structure and Optical Properties of ZnO(0001 Surface

    Directory of Open Access Journals (Sweden)

    Xiang Qian

    2018-01-01

    Full Text Available Using first-principle calculations, the geometrical structure, the electronic and optical properties of Ag-doped ZnO(0001 surface have been investigated. We found that Ag-doped ZnO(0001 surface is more easily formed on the first layer. On the other hand, the doped surface has gradually become an equipotential body, showing obvious metallic characteristics. We found that a new peak appeared in the low energy region after Ag doping, which was mainly due to the electron transition between the two orbital levels of Ag-4d and O-2p.

  12. Porous nanostructured ZnO films deposited by picosecond laser ablation

    International Nuclear Information System (INIS)

    Sima, Cornelia; Grigoriu, Constantin; Besleaga, Cristina; Mitran, Tudor; Ion, Lucian; Antohe, Stefan

    2012-01-01

    Highlights: ► We deposite porous nanostructured ZnO films by picoseconds laser ablation (PLA). ► We examine changes of the films structure on the experimental parameter deposition. ► We demonstrate PLA capability to produce ZnO nanostructured films free of particulates. - Abstract: Porous nanostructured polycrystalline ZnO films, free of large particulates, were deposited by picosecond laser ablation. Using a Zn target, zinc oxide films were deposited on indium tin oxide (ITO) substrates using a picosecond Nd:YVO 4 laser (8 ps, 50 kHz, 532 nm, 0.17 J/cm 2 ) in an oxygen atmosphere at room temperature (RT). The morpho-structural characteristics of ZnO films deposited at different oxygen pressures (150–900 mTorr) and gas flow rates (0.25 and 10 sccm) were studied. The post-deposition influence of annealing (250–550 °C) in oxygen on the film characteristics was also investigated. At RT, a mixture of Zn and ZnO formed. At substrate temperatures above 350 °C, the films were completely oxidized, containing a ZnO wurtzite phase with crystallite sizes of 12.2–40.1 nm. At pressures of up to 450 mTorr, the porous films consisted of well-distinguished primary nanoparticles with average sizes of 45–58 nm, while at higher pressures, larger clusters (3.1–14.7 μm) were dominant, leading to thicker films; higher flow rates favored clustering.

  13. Re-Os dating on pyrite and metal sources tracing in porphyry-type and neutral epithermal deposits: example of the Bolcana, Troita and Magura deposits, Apuseni Mountains, Romania

    International Nuclear Information System (INIS)

    Cardon, Olivier

    2007-01-01

    Many porphyry-type (Cu-Au) and neutral epithermal (Pb-Zn and Au ± Ag) ore deposits are encountered in the region of the Apuseni Mountains, located at the foot of the Carpathian chain in the Western Romania. These deposits are related to a Neogene andesitic volcanism. In order to demonstrate possible genetic relationships between the porphyry-type and neutral epithermal deposits, the Bolcana porphyry has been investigated since it is surrounded by a number of epithermal low-sulfidation veins with a Pb-Zn ± Au mineralisation. These veins are currently mined at the Troita and Magura sites. A structural analysis and a 3D modelling pf these deposits indicate that the geometry and orientation of fractures and mineralized vein are consistent both with direction of regional extension and with a NW-SE progression of the different andesitic intrusions. In order to establish precisely the temporal relationship between the different ore deposits, a Re-Os dating method has been developed and applied on pyrite which is ubiquitous in all of the deposits. This method enabled us to assign an age of 10.9 ± 1.9 Ma for the porphyry-hosted mineralization. The ages obtained for the epithermal systems are somewhat approximative as perturbations of the Re-Os system are observed for these environments. A fractionation of rhenium responsible for a significant enrichment in this element for the apical zone of the porphyry has been demonstrated. This enrichment is most probably related to a maximum boiling event, which may also explain a similar enrichment in arsenic for the pyrite in the same zone. The sources for the metals have been characterized at the district scale by combining two isotopic systems (Re-Os and Pb-Pb) on both pyrite and galena. The osmium data indicate that the Troita deposit has composition which is similar to that of the Bolcana porphyry. In contrast the results obtained for the Magura deposits indicate the Re-OS system has in this case been perturbed due to a

  14. Carbon-coated ZnO mat passivation by atomic-layer-deposited HfO2 as an anode material for lithium-ion batteries.

    Science.gov (United States)

    Jung, Mi-Hee

    2017-11-01

    ZnO has had little consideration as an anode material in lithium-ion batteries compared with other transition-metal oxides due to its inherent poor electrical conductivity and large volume expansion upon cycling and pulverization of ZnO-based electrodes. A logical design and facile synthesis of ZnO with well-controlled particle sizes and a specific morphology is essential to improving the performance of ZnO in lithium-ion batteries. In this paper, a simple approach is reported that uses a cation surfactant and a chelating agent to synthesize three-dimensional hierarchical nanostructured carbon-coated ZnO mats, in which the ZnO mats are composed of stacked individual ZnO nanowires and form well-defined nanoporous structures with high surface areas. In order to improve the performance of lithium-ion batteries, HfO 2 is deposited on the carbon-coated ZnO mat electrode via atomic layer deposition. Lithium-ion battery devices based on the carbon-coated ZnO mat passivation by atomic layer deposited HfO 2 exhibit an excellent initial discharge and charge capacities of 2684.01 and 963.21mAhg -1 , respectively, at a current density of 100mAg -1 in the voltage range of 0.01-3V. They also exhibit cycle stability after 125 cycles with a capacity of 740mAhg -1 and a remarkable rate capability. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Evolution with time of 12 metals (V, Cr, Mn, Co, Cu, Zn, Ag, Cd, Ba, Pb, Bi and U) and of lead isotopes in the snows of Coats Land (Antarctica) since the 1830's

    International Nuclear Information System (INIS)

    Planchon, F.

    2001-01-01

    This work shows that it is now possible to get reliable data on the occurrence of numerous heavy metals at ultra low levels in Antarctic snow, by combining ultra clean field sampling and laboratory sub-sampling procedures and the use of ultra sensitive analytical techniques such as ICP-SFMS and TIMS. It has allowed us to determine concentrations of twelve metals (V, Cr, Mn, Co, Cu, Zn, Ag, Cd, Ba, Pb, Bi et U) and lead isotopic composition in the ultra clean series of snow samples collected at Coats Land, in the Atlantic sector of Antarctica. This work presents a 150 years record of metal inputs from natural and anthropogenic sources to Antarctica from the 1830's to the early 1990's. Lead atmospheric pollution begins as early as the end of the 19. century, peaks during the 1970's-1980's and then falls sharply during recent decades. Evolution in lead isotopic abundance shows that Pb inputs to Antarctica reflect a complex blend of contributions originating from the Southern part of South America and Australia. For Cr, Cu, Zn, Ag, Bi and U, concentrations in the snow show significant increases from 1950 to 1980. These enhancements which cannot be explained by variations in natural inputs, illustrate that atmospheric pollution for heavy metals linked with anthropogenic activities in the Southern Hemisphere countries such as for example ferrous and non-ferrous metal mining and smelting is really global. Study of the time period 1920-1990, has allowed us to detail short-term (intra and inter annual) heavy metals concentration's changes. The large short-term variability, observed in Coats Land snow, shows the complex patterns of metal inputs to Antarctica, associated for instance to changes in long-range transport processes from mid-latitude to polar zone and to variability in the different natural sources, such local volcanic activity, sea-salt spray or crustal dust inputs. (author)

  16. Ag nanodots decorated SiO2 coated ZnO core-shell nanostructure with enhanced luminescence property as potential imaging agent

    Science.gov (United States)

    Gupta, Jagriti; Barick, K. C.; Hassan, P. A.; Bahadur, Dhirendra

    2018-04-01

    Ag decorated silica coated ZnO nanocomposite (Ag@SiO2@ZnO NCs) has been synthesized by soft chemical approach. The physico-chemical properties of Ag@SiO2@ZnO NCs are investigated by various sophisticated characterization techniques such as X-ray diffraction, Transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible absorption and photoluminescent spectroscopy. X-ray diffraction confirms the phase formation of ZnO and Ag in nanocomposite. TEM micrograph clearly shows that Ag nanodots are well decorated over silica coated ZnO NCs. The photoluminescent study reveals the enhancement in the photoluminance property when the Ag nanodots are decorated over silica coated ZnO nanocomposite due to an electromagnetic coupling between excitons and plasmons. Furthermore, the photoluminescent property is an important tool for bio-imaging application, reveal that NCs give green and red emission after excitation with 488 and 535 nm. Therefore, low cytotoxicity and excellent fluorescence stability in vitro makes it a more suitable material for both cellular imaging and therapy for biomedical applications.

  17. Chemical bath ZnSe thin films: deposition and characterisation

    Science.gov (United States)

    Lokhande, C. D.; Patil, P. S.; Ennaoui, A.; Tributsch, H.

    1998-01-01

    The zinc selenide (ZnSe) thin films have been deposited by a simple and inexpensive chemical bath deposition (CBD) method. The selenourea was used as a selenide ion source. The ZnSe films have been characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDAX), Rutherford back scattering (RBS), and optical absorption. The as-deposited ZnSe films on various substrates are found to be amorphous and contain O2 and N2 in addition to Zn and Se. The optical band gap of the film is estimated to be 2.9 eV. The films are photoactive as evidenced by time resolved microwave conductivity (TRMC).

  18. Determination of toxicity limiting values of Zn, Cu, and Pb for oat and red clover

    Energy Technology Data Exchange (ETDEWEB)

    Hodenberg, A V; Finck, A

    1975-01-01

    Toxicity limiting values of Zn, Cu and Pb are determined in order to investigate the causes of growth damages in certain fields. Since the true toxicity limit is difficult to estimate, a somewhat higher content is called the toxicity limiting value resulting after the subtraction of a significant yield difference. The pot experiments with increasing fertilization of Zn, Cu and Pb in soil cultures gave the following results. For Zn, the toxicity limit is 410 ppm in oats at the beginning of tilling. In red clover six weeks of age, it is only 290 ppm of Zn and therefore much lower. For Cu, the toxicity limit is 20 ppm in oats at the beginning of tilling and 18 ppm in six weeks old red clover. For Pb, a toxic effect could be observed above 50 ppm, but this does not seem to be the true limit because of disturbing salt effects.

  19. Structural characterization of chemically deposited PbS thin films

    International Nuclear Information System (INIS)

    Fernandez-Lima, F.A.; Gonzalez-Alfaro, Y.; Larramendi, E.M.; Fonseca Filho, H.D.; Maia da Costa, M.E.H.; Freire, F.L.; Prioli, R.; Avillez, R.R. de; Silveira, E.F. da; Calzadilla, O.; Melo, O. de; Pedrero, E.; Hernandez, E.

    2007-01-01

    Polycrystalline thin films of lead sulfide (PbS) grown using substrate colloidal coating chemical bath depositions were characterized by RBS, XPS, AFM and GIXRD techniques. The films were grown on glass substrates previously coated with PbS colloidal particles in a polyvinyl alcohol solution. The PbS films obtained with the inclusion of the polymer showed non-oxygen-containing organic contamination. All samples maintained the Pb:S 1:1 stoichiometry throughout the film. The amount of effective nucleation centers and the mean grain size have being controlled by the substrate colloidal coating. The analysis of the polycrystalline PbS films showed that a preferable (1 0 0) lattice plane orientation parallel to the substrate surface can be obtained using a substrate colloidal coating chemical bath deposition, and the orientation increases when a layer of colloid is initially dried on the substrate

  20. Photoinduced absorption of Ag nanoparticles deposited on ITO substrate

    International Nuclear Information System (INIS)

    Ozga, K.; Oyama, M.; Szota, M.; Nabialek, M.; Kityk, I.V.; Slezak, A.; Umar, A.A.; Nouneh, K.

    2011-01-01

    Research highlights: → We study photoinduced absorption for two Ag NP deposited on the ITO. → The higher resistance eof the NP favors larger photoinduced changes. → Principal role is played by nanointerfaces. - Abstract: Substantial changes of absorption after illumination by 300 mW continuous wave green laser at 532 nm were observed. The effect of indium tin oxide (ITO) substrate was explored versus Ag nanoparticles (AgNPs) size, their regularity and surface plasmon resonance. The ITO substrate features play a crucial role for the formation of homogenous AgNPs. The attachments of AgNPs on ITO surface as well as their homogeneity are significantly changed under the influence of the laser treatment. We study the Ag NP deposited on the two different substrates which play a crucial role in the photoinduced absorption. The dependence of the photoinduced absorption versus the time of optical treatment is explained within a framework of the photopolarization of the particular trapping levels on the borders between the ITO substrate and the Ag NP.

  1. Isotopic data from proterozoic sediment-hosted sulfide deposits of Brazil: Implications for their metallogenic evolution and for mineral exploration

    International Nuclear Information System (INIS)

    Misi, Aroldo; Coelho, Carlos E.S.; Franca Rocha, Washington J.S.; Gomez, Adriana S.R.; Cunha, Iona A.; Iyer, Sundaram S.; Tassinari, Colombo C.G.; Kyle, J. Richard

    1998-01-01

    Geological, petrographic, fluid inclusions studies and isotopic data of seven Proterozoic sediment-hosted Pb-Zn-Ag sulfide deposits of Brazil, permit the estimation of the age of the hosting sequence and the mineralization, the nature of the sulfur and metal sources, the temperature range of sulfide formation and the environment of deposition of the mineral deposits. The studies suggest that they were formed during periods of extensional tectonics: Growth faults or reactivated basement faults were responsible for localized circulation of metal-bearing fluids within the sedimentary sequences. In most cases, sulfides were formed by the reduction of sedimentary sulfates. Linear structures are important controls for sulfide concentration in these Proterozoic basins. (author)

  2. Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum-field brines at 100°C: the influence of pH and oxygen fugacity

    Directory of Open Access Journals (Sweden)

    Giordano Thomas H

    2002-09-01

    Full Text Available It is well established through field observations, experiments, and chemical models that oxidation (redox state and pH exert a strong influence on the speciation of dissolved components and the solubility of minerals in hydrothermal fluids. log –pH diagrams were used to depict the influence of oxygen fugacity and pH on monocarboxylate- and dicarboxylate-transport of Pb and Zn in low-temperature (100°C hydrothermal ore fluids that are related to diagenetic processes in deep sedimentary basins, and allow a first-order comparison of Pb and Zn transport among proposed model fluids for Mississippi Valley-type (MVT and red-bed related base metal (RBRBM deposits in terms of their approximate pH and conditions. To construct these diagrams, total Pb and Zn concentrations and Pb and Zn speciation were calculated as a function of log and pH for a composite ore-brine with concentrations of major elements, total sulfur, and total carbonate that approximate the composition of MVT and RBRBM model ore fluids and modern basinal brines. In addition to acetate and malonate complexation, complexes involving the ligands Cl-, HS-, H2S, and OH- were included in the model of calculated total metal concentration and metal speciation. Also, in the model, Zn and Pb are competing with the common-rock forming metals Ca, Mg, Na, Fe, and Al for the same ligands. Calculated total Pb concentration and calculated total Zn concentration are constrained by galena and sphalerite solubility, respectively. Isopleths, in log –pH space, of the concentration of Pb and concentration of Zn in carboxylate (acetate + malonate complexes illustrate that the oxidized model fluids of T. H. Giordano (in Organic Acids in Geological Processes, ed. E. D. Pittman and M. D. Lewan, Springer-Verlag, New York, 1994, pp. 319–354 and G. M. Anderson (Econ. Geol., 1975, 70, 937–942 are capable of transporting sufficient amounts of Pb (up to 10 ppm and Zn (up to 100 ppm in the form of carboxylate

  3. Fabrication and characterization of Pb(Zr 0.53,Ti 0.47)O 3-Pb(Nb 1/3,Zn 2/3)O 3 thin films on cantilever stacks

    KAUST Repository

    Fuentes-Fernandez, E. M A

    2010-11-18

    0.9Pb(Zr 0.53,Ti 0.47)O 3-0.1Pb(Zn 1/3,Nb 2/3)O 3 (PZT-PZN) thin films and integrated cantilevers have been fabricated. The PZT-PZN films were deposited on SiO 2/Si or SiO 2/Si 3N 4/SiO 2/poly-Si/Si membranes capped with a sol-gel-derived ZrO 2 buffer layer. It is found that the membrane layer stack, lead content, existence of a template layer of PbTiO 3 (PT), and ramp rate during film crystallization are critical for obtaining large-grained, single-phase PZT-PZN films on the ZrO 2 surface. By controlling these parameters, the electrical properties of the PZT-PZN films, their microstructure, and phase purity were significantly improved. PZT-PZN films with a dielectric constant of 700 to 920 were obtained, depending on the underlying stack structure. © 2010 TMS.

  4. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  5. Influence of plasmon coupling on the photoluminescence of ZnS/Ag nanoparticles obtained by laser irradiation in liquid

    Science.gov (United States)

    Moos, Rafaela; Graff, Ismael L.; de Oliveira, Vinicius S.; Schreiner, Wido H.; Bezerra, Arandi G.

    2017-10-01

    We investigate the photoluminescence, optical absorption and structural properties of ZnS submitted to laser irradiation in water and isopropyl alcohol. Nanoparticles were produced by irradiating micro-sized ZnS particles dispersed in both liquids, with and without the addition of Ag nanoparticles, taking advantage of the laser-assisted fragmentation effect. When ZnS microparticles are irradiated either in pure water or isopropyl alcohol a considerable size reduction is achieved (from micra to few nanometers). The photoluminescence of these nanoparticles mainly occurs in the UV, centered at 350 nm, and with smaller intensity in the visible, centered at 600 nm. Irradiation of ZnS microparticles dispersed in colloidal silver triggers a reaction between both materials, modifying its optical absorption and photoluminescent properties. After irradiation of ZnS in alcohol containing Ag nanoparticles, a giant increase of the UV photoluminescence is observed. Interestingly, when the irradiation is performed in aqueous Ag nanoparticles colloids, the photoluminescence suffers a red-shift towards the violet-blue. The data show that core-shell (Ag-ZnO) nanostructures are formed after irradiation and the visible emission likely originates from the ZnO shell grown around silver nanoparticles. The presence of Ag nanoparticles in the liquid medium promotes a stronger absorption of the laser beam during irradiation due to the coupling with the surface plasmon resonance, fostering intense reactions among ZnS, Ag nanoparticles, and the liquid medium. Our study shows that with a simple change of the liquid medium wherein the irradiation is conducted the photoluminescence can be tuned from UV to visible and core-shell nanostructures can be obtained.

  6. Ionic liquid-assisted photochemical synthesis of ZnO/Ag{sub 2}O heterostructures with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuo; Zhang, Yiwei, E-mail: zhangchem@seu.edu.cn; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Zhang, Chao; Fang, Jiasheng; Sheng, Xiaoli

    2017-07-15

    Highlights: • ZnO/Ag{sub 2}O heterostructures have been successfully fabricated by a photochemical route. • Ionic liquids were used as template for shape-controllable ZnO nanomaterials. • The type of ionic liquid played an important role in the growth of ZnO nanoparticles. • ZnO/Ag{sub 2}O heterostructures had the enhanced photocatalytic ability. • Photocatalytic activity is a result of the combination of various factors. - Abstract: ZnO/Ag{sub 2}O heterostructures have been successfully fabricated using ionic liquids (ILs) as templates by a simple photochemical route. The influence of the type of ionic liquid and synthetic method on the morphology of ZnO, as well as the photocatalytic activity for the degradation of Rhodamine B (RhB), tetracycline (TC) and ciprofloxacin (CIP) under ultraviolet and visible light irradiation was studied. The samples were characterized by XRD, SEM, TEM, PL and UV–vis DRS. The results established that the type of ionic liquid and synthetic method played an important role in the growth of ZnO nanoparticles. And as-fabricated ZnO/Ag{sub 2}O materials exhibited self-assembled flower-like architecture whose size was about 3 μm. Moreover, as-prepared ZnO/Ag{sub 2}O exhibited the enhanced photocatalytic activity than ZnO sample, which may be due to the special structure, heterojunction, enhanced adsorption capability of dye, the improved separation rate of photogenerated electron–hole pairs. According to the results of radical trapping experiments, it can be found that • OH and h{sup +} were the main active species for the photocatalytic degradation of RhB. It is valuable to develop this facile route preparing the highly dispersive flower-like ZnO/Ag{sub 2}O materials, which can be beneficial for environmental protection.

  7. Preparation of Ag deposited TiO2 (Ag/TiO2) composites and investigation on visible-light photocatalytic degradation activity in magnetic field

    Science.gov (United States)

    Zhang, L.; Ma, C. H.; Wang, J.; Li, S. G.; Li, Y.

    2014-12-01

    In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.

  8. Controllable synthesis of dual emissive Ag:InP/ZnS quantum dots with high fluorescence quantum yield

    Science.gov (United States)

    Yang, Wu; He, Guoxing; Mei, Shiliang; Zhu, Jiatao; Zhang, Wanlu; Chen, Qiuhang; Zhang, Guilin; Guo, Ruiqian

    2017-11-01

    Dual emissive Cd-free quantum dots (QDs) are in great demand for various applications. However, their synthesis has been faced with challenges. Here, we demonstrate the dual emissive Ag:InP/ZnS core/shell QDs with the excellent photoluminescence quantum yield (PL QY) up to 75% and their PL dependence on the reaction temperature, reaction time, the different ZnX2 (X = I, Cl, and Br) precursors, the ratio of In/Zn and the Ag dopant concentration. The as-prepared Ag:InP/ZnS QDs exhibit dual emission with one peak position of about 492 nm owing to the intrinsic emission, and the other peak position of about 575 nm resulting from Ag-doped emission. These dual emissive QDs are integrated with the commercial GaN-based blue LEDs, and the simulation results show that the Ag:InP/ZnS QDs-based white LEDs could realize bright natural white-lights with the luminous efficacy (LE) of 94.2-98.4 lm/W, the color rendering index (CRI) of 82-83 and the color quality scale (CQS) of 82-83 at different correlated color temperatures (CCT). This unique combination of the above properties makes this new class of dual emissive QDs attractive for white LED applications.

  9. Contamination of potentially toxic elements in streams and water sediments in the area of abandoned Pb-Zn-Cu deposits (Hrubý Jesenník, Czech Republic)

    Science.gov (United States)

    Lichnovský, J.; Kupka, J.; Štěrbová, V.; Andráš, P.; Midula, P.

    2017-10-01

    The deposits, located in Nová Ves and Zlaté Hory were well known and important sources of metal ore in Jesenniky region in the past. Especially the one in Nová Ves, which is recently the most important hydrothermal deposit of venous type in the whole area. The mining activity, aimed on lead and zinc minerals was practically permanent here from the middle-age to 1959. On the other hand, the site in Zlaté Hory is the most important ore deposit in Czech Silesia. The non-venous types of polymetallic, copper and gold deposits, evolved in the complex of metamorphic devon rocks are located on south and south-west directions of the area. Long and permanent mining industry caused remarkable changes in the local environment, creating mine heaps and depressions. The probability, that dump material contains potentially toxic substances that could be possibly leaked into surrounded environment is high. This contribution presents the part of complex study results, aimed on evaluating of potential environmental impacts in above mentioned locations. It aims on contamination, caused by potentially toxic heavy metals (Pb, Zn, Cu, Ni, Fe, Mn, Co, Cd, Cr and As) at the sites, exposed to mining activity in the past. The study focus on the contamination of these sites and evaluate them as potential risk for surrounded environment.

  10. Solvothermal preparation of ZnO nanorods as anode material for improved cycle life Zn/AgO batteries.

    Directory of Open Access Journals (Sweden)

    Shafiq Ullah

    Full Text Available Nano materials with high surface area increase the kinetics and extent of the redox reactions, thus resulting in high power and energy densities. In this study high surface area zinc oxide nanorods have been synthesized by surfactant free ethylene glycol assisted solvothermal method. The nanorods thus prepared have diameters in the submicron range (300 ~ 500 nm with high aspect ratio. They have uniform geometry and well aligned direction. These nanorods are characterized by XRD, SEM, Specific Surface Area Analysis, solubility in alkaline medium, EDX analysis and galvanostatic charge/discharge studies in Zn/AgO batteries. The prepared zinc oxide nanorods have low solubility in alkaline medium with higher structural stability, which imparts the improved cycle life stability to Zn/AgO cells.

  11. Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon.

    Science.gov (United States)

    Loganathan, Paripurnanda; Shim, Wang Geun; Sounthararajah, Danious Pratheep; Kalaruban, Mahatheva; Nur, Tanjina; Vigneswaran, Saravanamuthu

    2018-03-30

    Elevated concentrations of heavy metals in water can be toxic to humans, animals, and aquatic organisms. A study was conducted on the removal of Cu, Pb, and Zn by a commonly used water treatment adsorbent, granular activated carbon (GAC), from three single, three binary (Cu-Pb, Cu-Zn, Pb-Zn), and one ternary (Cu-Pb-Zn) combination of metals. It also investigated seven mathematical models on their suitability to predict the metals adsorption capacities. Adsorption of Cu, Pb, and Zn increased with pH with an abrupt increase in adsorption at around pH 5.5, 4.5, and 6.0, respectively. At all pHs tested (2.5-7.0), the adsorption capacity followed the order Pb > Cu > Zn. The Langmuir and Sips models fitted better than the Freundlich model to the data in the single-metal system at pH 5. The Langmuir maximum adsorption capacities of Pb, Cu, and Zn (mmol/g) obtained from the model's fits were 0.142, 0.094, and 0.058, respectively. The adsorption capacities (mmol/g) for these metals at 0.01 mmol/L equilibrium liquid concentration were 0.130, 0.085, and 0.040, respectively. Ideal Adsorbed Solution (IAS)-Langmuir and IAS-Sips models fitted well to the binary and ternary metals adsorption data, whereas the Extended Langmuir and Extended Sips models' fits to the data were poor. The selectivity of adsorption followed the same order as the metals' capacities and affinities of adsorption in the single-metal systems.

  12. X-ray fluorescence analysis of Pb, Fe and Zn in kohl

    Directory of Open Access Journals (Sweden)

    Eman Daar

    Full Text Available Kohl, a facial salve used in ancient times as a symbol of affluence, now enjoys more widespread traditional followings, for cosmetic, religious and supposed medicinal purposes. Popularly used by women and men of all ages, particularly those of North African, Middle Eastern, Southern Asia, Japanese and Chinese origins, it is also known to be used on neonates and children from such populations. With small-scale producers of kohl possessing a growing awareness of the adverse market impact of products that contain (lead Pb and other toxicity related elements, some claim their products to be Pb-free, offering an apparent change from the more traditional galena-based (lead sulphide media. Among the published physiological effects of exposure to Pb is that it replaces Ca in bones and teeth, making them weak and fragile, other impacts including nephrotoxicity, also linked with increased Pb blood levels in studies in Oman, Canada, Saudi Arabia, India and Pakistan. Current study involves XRF analysis of Pb, Fe and Zn concentrations in 135 samples of kohl from nine randomly selected suppliers (15 samples of each brand being represented. In pursuit of this, use was made of an in-house assembled facility comprising compact high-performance components, the arrangement offering sufficient sensitivity for the purposes of present study. In most of the samples investigated in the present study observation has been made of concentrations of Pb at elevated levels, quantification of those levels also demonstrating a need to address self-attenuation by the Pb itself. Significant concentration of Fe have also been found in several of the samples. Keywords: X-ray florescence, Pb, Fe and Zn contamination, Kohl

  13. Nano-crystalline Ag–PbTe thermoelectric thin films by a multi-target PLD system

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, E., E-mail: emilia.cappelli@ism.cnr.it [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Bellucci, A. [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Dip. Fisica, Un. Roma Sapienza, Piazzale Aldo Moro 2, 00185 Rome (Italy); Medici, L. [CNR-IMAA, Tito Scalo, 85050 Potenza (Italy); Mezzi, A.; Kaciulis, S. [CNR-ISMN, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Fumagalli, F.; Di Fonzo, F. [Center Nano Science Technology @Polimi, I.I.T., Via Pascoli 70/3, 20133 Milano (Italy); Trucchi, D.M. [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy)

    2015-05-01

    Highlights: • Thermoelectric PbTe thin films, with increasing Ag percentage, were deposited by PLD. • Almost stoichiometric PbTe (Ag doped) films were grown, as verified by XPS analysis. • GI-XRD established the formation of cubic PbTe, with nano-metric structure (∼35 nm). • Surface resistivity shows an increase in conductivity, with increasing Ag doping. • From Seebeck values and XPS depth analysis, 10% Ag seems to be the solubility limit. - Abstract: It has been evaluated the ability of ArF pulsed laser ablation to grow nano-crystalline thin films of high temperature PbTe thermoelectric material, and to obtain a uniform and controlled Ag blending, through the entire thickness of the film, using a multi-target system in vacuum. The substrate used was a mirror polished technical alumina slab. The increasing atomic percentage of Ag effect on physical–chemical and electronic properties was evaluated in the range 300–575 K. The stoichiometry and the distribution of the Ag component, over the whole thickness of the samples deposited, have been studied by XPS (X-ray photoelectron spectroscopy) and corresponding depth profiles. The crystallographic structure of the film was analyzed by grazing incidence X-ray diffraction (GI-XRD) system. Scherrer analysis for crystallite size shows the presence of nano-structures, of the order of 30–35 nm. Electrical resistivity of the samples, studied by the four point probe method, as a function of increasing Ag content, shows a typical semi-conductor behavior. From conductivity values, carrier concentration and Seebeck parameter determination, the power factor of deposited films was calculated. Both XPS, Hall mobility and Seebeck analysis seem to indicate a limit value to the Ag solubility of the order of 5%, for thin films of ∼200 nm thickness, deposited at 350 °C. These data resulted to be comparable to theoretical evaluation for thin films but order of magnitude lower than the corresponding bulk materials.

  14. Improving the {sup 210}Pb-chronology of Pb deposition in peat cores from Chao de Lamoso (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Olid, Carolina, E-mail: carolina.olid@emg.umu.se [Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå (Sweden); Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Garcia-Orellana, Jordi, E-mail: jordi.garcia@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Masqué, Pere, E-mail: pere.masque@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Cortizas, Antonio Martínez, E-mail: antonio.martinez.cortizas@usc.es [Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); and others

    2013-01-15

    The natural radionuclide {sup 210}Pb is commonly used to establish accurate and precise chronologies for the recent (past 100–150 years) layers of peat deposits. The most widely used {sup 210}Pb-dating model, Constant Rate of Supply (CRS), was applied using data from three peat cores from Chao de Lamoso, an ombrotrophic mire in Galicia (NW Spain). On the basis of the CRS-chronologies, maximum Pb concentrations and enrichment factors (EFs) occurred in the 1960s and late 1970s, consistent with the historical use of Pb. However, maximum Pb fluxes were dated in the 1940s and the late 1960s, 10 to 20 years earlier. Principal component analysis (PCA) showed that, although the {sup 210}Pb distribution was mainly (74%) controlled by radioactive decay, about 20% of the {sup 210}Pb flux variability was associated with atmospheric metal pollution, suggesting an extra {sup 210}Pb supply source and thus invalidating the main assumption of the CRS model. When the CRS-ages were recalculated after correcting for the extra input from the {sup 210}Pb inventory of the uppermost peat layers of each core, Pb flux variations were consistent with the historical atmospheric Pb deposition. Our results not only show the robustness of the CRS model to establish accurate chronologies of recent peat deposits but also provide evidence that there are confounding factors that might influence the calculation of reliable peat accumulation rates (and thus also element accumulation rates/fluxes). This study emphasizes the need to verify the hypotheses of {sup 210}Pb-dating models and the usefulness of a full geochemical interpretation of peat bog records. - Highlights: ► Peat cores collected in NW Spain were used to reconstruct recent Pb deposition. ► Applicability of {sup 210}Pb-dating models (CRS) in bogs is discussed based on PCA results. ► Results showed that ∼ 20% of the {sup 210}Pb flux was related to anthropogenic metal pollution. ► Geochemical analysis of bogs is useful to

  15. Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete.

    Science.gov (United States)

    Solpuker, U; Sheets, J; Kim, Y; Schwartz, F W

    2014-06-01

    This paper investigates the leaching potential of pervious concrete and its capacity for immobilizing Cu, Pb and Zn, which are common contaminants in urban runoff. Batch experiments showed that the leachability of Cu, Pb and Zn increased when pHconcrete might function to attenuate contaminant migration. A porous concrete block was sprayed with low pH water (pH=4.3±0.1) for 190 h. The effluent was highly alkaline (pH~10 to 12). In the first 50 h, specific conductance and trace-metal were high but declined towards steady state values. PHREEQC modeling showed that mixing of interstitial alkaline matrix waters with capillary pore water was required in order to produce the observed water chemistry. The interstitial pore solutions seem responsible for the high pH values and relatively high concentrations of trace metals and major cations in the early stages of the experiment. Finally, pervious concrete was sprayed with a synthetic contaminated urban runoff (10 ppb Cu, Pb and Zn) with a pH of 4.3±0.1 for 135 h. It was found that Pb immobilization was greater than either Cu or Zn. Zn is the most mobile among three and also has the highest variation in the observed degree of immobilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Ag-Coated Heterostructures of ZnO-TiO2/Delaminated Montmorillonite as Solar Photocatalysts

    Directory of Open Access Journals (Sweden)

    Carolina Belver

    2017-08-01

    Full Text Available Heterostructures based on ZnO-TiO2/delaminated montmorillonite coated with Ag have been prepared by sol–gel and photoreduction procedures, varying the Ag and ZnO contents. They have been thoroughly characterized by XRD, WDXRF, UV–Vis, and XPS spectroscopies, and N2 adsorption, SEM, and TEM. In all cases, the montmorillonite was effectively delaminated with the formation of TiO2 anatase particles anchored on the clay layer’s surface, yielding porous materials with high surface areas. The structural and textural properties of the heterostructures synthesized were unaffected by the ZnO incorporated. The photoreduction led to solids with Ag nanoparticles decorating the surface. These materials were tested as photocatalysts for the degradation of several emerging contaminants with different nitrogen-bearing chemical structures under solar light. The catalysts yielded high rates of disappearance of the starting pollutants and showed quite stable performance upon successive applications.

  17. Synthesis and Characterization of Pb(Zr𝟎.𝟓𝟑, Ti𝟎.𝟒𝟕)O𝟑-Pb(Nb𝟏/𝟑, Zn𝟐/𝟑)O𝟑 Thin Film Cantilevers for Energy Harvesting Applications

    KAUST Repository

    Fuentes-Fernandez, E. M. A.; Debray-Mechtaly, W.; Quevedo-Lopez, M. A.; Gnade, B.; Leon-Salguero, E.; Shah, P.; Alshareef, Husam N.

    2012-01-01

    A complete analysis of the morphology, crystallographic orientation, and resulting electrical properties of Pb(Zr0.53,Ti0.47) Pb(Nb1/3, Zn2/3)O3 (PZT-PZN) thin films, as well as the electrical behavior when integrated in a cantilever for energy harvesting applications, is presented. The PZT-PZN films were deposited using sol-gel methods. We report that using 20% excess Pb, a nucleation layer of PbTiO3 (PT), and a fast ramp rate provides large grains, as well as denser films. The PZT-PZN is deposited on a stack of TiO2/PECVD SiO2/Si3N4/thermal SiO2/Poly-Si/Si. This stack is designed to allow wet-etching the poly-Si layer to release the cantilever structures. It was also found that the introduction of the poly-Si layer results in larger grains in the PZT-PZN film. PZT-PZN films with a dielectric constant of 3200 and maximum polarization of 30 μC/cm2 were obtained. The fabricated cantilever devices produced ~300–400 mV peak-to-peak depending on the cantilever design. Experimental results are compared with simulations.

  18. Permissive tracts for sediment-hosted lead-zinc-silver deposits in the Islamic Republic of Mauritania (phase V, deliverable 73): Chapter J in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Mauk, Jeffrey L.

    2015-01-01

    Although Mississippi Valley-type (MVT) deposits have not been recognized in Mauritania there are permissive tracts for these deposits in the regionally extensive Proterozoic carbonate rocks of the Taoudeni Basin. Permissive tracts for undiscovered MVT Pb-Zn-Ag deposits in the Proterozoic carbonate units are supported by the occurrences of MVT mineral and alteration assemblages, presence of evaporites, proximity to major orogenic events that have produced MVT ores elsewhere, red bed sequences and basal aquifers that may have been potential brine migration pathways for large MVT hydrothermal systems.

  19. The potential effect of metallothionein 2A - 5 A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels

    International Nuclear Information System (INIS)

    Kayaalti, Zeliha; Aliyev, Vugar; Soeylemezoglu, Tuelin

    2011-01-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins. Because of their rich thiol groups, MTs bind to the biologically essential metals and perform these metals' homeostatic regulations; absorb the heavy metals and assist with their transportation and extraction. The aim of this study was to investigate the association between the metallothionein 2A (MT2A) core promoter region - 5 A/G single nucleotide polymorphism (SNP) and Cd, Pb, Zn and Cu levels in the blood samples. MT2A polymorphism was determined by the standard polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique using the 616 blood samples and the genotype frequencies were found as 86.6% homozygote typical (AA), 12.8% heterozygote (AG) and 0.6% homozygote atypical (GG). Metal levels were analyzed by dual atomic absorption spectrophotometer system and the average levels of Cd, Pb, Zn and Cu in the blood samples were 1.69 ± 1.57 ppb, 30.62 ± 14.13 ppb, 0.98 ± 0.49 ppm and 1.04 ± 0.45 ppm, respectively. As a result; highly statistically significant associations were detected between the - 5 A/G core promoter region SNP in the MT2A gene and Cd, Pb and Zn levels (p = 0.004, p = 0.012 and p = 0.002, respectively), but no association was found with Cu level (p = 0.595). Individuals with the GG genotype had statistically lower Zn level and higher Cd and Pb levels in the blood samples than individuals with AA and AG genotypes. This study suggests that having the GG genotype individuals may be more sensitive for the metal toxicity and they should be more careful about protecting their health against the toxic effects of the heavy metals. - Highlights: → MT2A -5A/G SNP has strong effect on the Cd, Pb and Zn levels in the blood. → MT2A GG individuals should be more careful for their health against metal toxicity. → This SNP might be considered as a biomarker for risk of disease related to metals.

  20. Formation mechanisms of metallic Zn nanodots by using ZnO thin films deposited on n-Si substrates

    International Nuclear Information System (INIS)

    Yuk, J. M.; Lee, J. Y.; Kim, Y.; No, Y. S.; Kim, T. W.; Choi, W. K.

    2010-01-01

    High-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy results showed that metallic Zn nanodots (NDs) were fabricated through transformation of ZnO thin films by deposition of SiO x on ZnO/n-Si (100) heterostructures. The Zn NDs with various sizes and densities were formed due to the occurrence of the mass diffusion of atoms along the grain boundaries in the ZnO thin films. The fabrication mechanisms of metallic Zn NDs through transformation of ZnO thin films deposited on n-Si substrates are described on the basis of the experimental results.

  1. Concentrations, spatial distribution, and risk assessment of soil heavy metals in a Zn-Pb mine district in southern China.

    Science.gov (United States)

    Qi, Jianying; Zhang, Hailong; Li, Xiangping; Lu, Jian; Zhang, Gaosheng

    2016-07-01

    China is one of the largest producers and consumers of lead and zinc in the world. Lead and zinc mining and smelting can release hazardous heavy metals such as Cd, Pb, Zn, and As into soils, exerting health risks to human by chronic exposure. The concentrations of Cd, Zn, Pb, and As in soil samples collected from a Pb-Zn mining area with exploitation history of 60 years were investigated. Health risks of the heavy metals in soil were evaluated using US Environmental Protection Agency (US EPA) recommended method. A geo-statistical technique (Kriging) was used for the interpolation of heavy metals pollution and Hazard Index (HI). The results indicated that the long-term Pb/Zn mining activities caused the serious pollution in the local soil. The concentrations of Cd, As, Pb, and Zn in topsoil were 40.3 ± 6.3, 103.7 ± 37.3, 3518.4 ± 896.1, and 10,413 ± 2973.2 mg/kg dry weight, respectively. The spatial distribution of the four metals possessed similar patterns, with higher concentrations around Aayiken (AYK), Maseka (MSK), and Kuangshan (KS) area and more rapidly dropped concentrations at upwind direction than those at downwind direction. The main pollutions of Cd and Zn were found in the upper 60 cm, the Pb was found in the upper 40 cm, and the As was in the upper 20 cm. The mobility of metals in soil profile of study area was classed as Cd > Zn ≫ Pb > As. Results indicated that there was a higher health risk (child higher than adult) in the study area. Pb contributed to the highest Hazard Quotient (57.0 ~ 73.9 %) for the Hazard Index.

  2. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China

    International Nuclear Information System (INIS)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-01-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. -- Highlights: •Large-scale Pb/Zn smelters contributed to elevated trace elements in the street dust. •The hard alloy processing caused the enrichment of a few elements. •Cd, In, Zn, Ag and Pb were the most polluted elements. •Northwestern Zhuzhou suffered severe contamination for a range of trace elements. -- Pb/Zn smelting and hard alloy processing operations have caused seriously contamination of trace metal/metalloids in the street dust

  3. Estudos da eletrodeposição de metais em regime de subtensão Studies of the underpotential deposition of metals

    Directory of Open Access Journals (Sweden)

    Mauro C. Santos

    2000-06-01

    Full Text Available This work reviews recent studies of underpotential deposition (UPD of several metals on Pt and Au substrates performed in the Grupo de Materiais Eletroquímicos e Métodos Eletroanalíticos (IQSC -- USP, São Carlos. The UPD Cu, Cd and Pb on Pt were analysed in terms of their influence in the oxygen evolution reaction. Partial blockage of surface active sites, promoted by Pb ad-atoms, resulted in a change from water to hydrogen peroxide as the final product. The Ag UPD on Pt and Au substrates was also discussed in this work. A detailed model of charge calculation for Ag monolayer was developed and confirmed by the rotating ring-disk data. The partial charge transfer in UPD studies was analysed in the Cd/Pt and Cd/Au systems and a value of 0.5 was found for the adsorption electrovalence of Cd ad-ions. The Sn/Pt UPD systems were studied from the point of view of the valences of metallic ions in solution. The deposition from Sn(IV generates a full monolayer with a maximum occupation of approximately 40% of the surface active sites (340 µC cm-2 plus 105 µC cm-2 of Hads (half monolayer. Changing the metallic ion for Sn(II, it was possible to deposit a full monolayer (210 µC cm-2 without any detectable Hads. Finally, the effect of anions was discussed in the Zn/Pt and Zn/Au systems. Here, the hydrogen evolution reaction (her and the hydrogen adsorption/desorption were used in order to investigate the maximum coverage of the surface with Zn ad-atoms. The full monolayer, characterised by the complete absence of Hads, was achieved only in 0.5 M HF solutions.

  4. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens - a field case

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fayuan [Agricultural College, Henan University of Science and Technology, 70 Tianjin Road, Luoyang, Henan Province 471003 (China) and Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China)]. E-mail: wfy1975@163.com; Lin Xiangui [Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China); Yin Rui [Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China)

    2007-05-15

    A field experiment was carried out to study the effect of microbial inoculation on heavy metal phytoextraction by Elsholtzia splendens and whether chitosan could have a synergistic effect with the microbial inocula. The microbial inocula consisted of a consortium of arbuscular mycorrhizal fungi and two Penicillium fungi. Three treatments were included: the control, inoculation with microbial inocula, and the inoculation combined with chitosan. Microbial inoculation increased plant biomass especially shoot dry weight, enhanced shoot Cu, Zn and Pb concentrations but did not affect Cd, leading to higher shoot Cu, Zn, Pb and Cd uptake. Compared with microbial inoculation alone, chitosan application did not affect plant growth but increased shoot Zn, Pb and Cd concentrations except Cu, which led to higher phytoextraction efficiencies and partitioning to shoots of Zn, Pb and Cd. These results indicated synergistic effects between microbial inocula and chitosan on Zn, Pb and Cd phytoextraction. - Co-application of microbial inocula and chitosan enhanced heavy metal phytoextraction by E. splendens.

  5. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens - a field case

    International Nuclear Information System (INIS)

    Wang Fayuan; Lin Xiangui; Yin Rui

    2007-01-01

    A field experiment was carried out to study the effect of microbial inoculation on heavy metal phytoextraction by Elsholtzia splendens and whether chitosan could have a synergistic effect with the microbial inocula. The microbial inocula consisted of a consortium of arbuscular mycorrhizal fungi and two Penicillium fungi. Three treatments were included: the control, inoculation with microbial inocula, and the inoculation combined with chitosan. Microbial inoculation increased plant biomass especially shoot dry weight, enhanced shoot Cu, Zn and Pb concentrations but did not affect Cd, leading to higher shoot Cu, Zn, Pb and Cd uptake. Compared with microbial inoculation alone, chitosan application did not affect plant growth but increased shoot Zn, Pb and Cd concentrations except Cu, which led to higher phytoextraction efficiencies and partitioning to shoots of Zn, Pb and Cd. These results indicated synergistic effects between microbial inocula and chitosan on Zn, Pb and Cd phytoextraction. - Co-application of microbial inocula and chitosan enhanced heavy metal phytoextraction by E. splendens

  6. The Role of Sedimentation on Waters Edge and Analysis Pb and Zn Concentration in Water from Sentani Lake, Jayapura-Papua

    Directory of Open Access Journals (Sweden)

    Frans Deminggus

    2015-05-01

    Full Text Available We have conducted research on the role of sediment on the waters edge and content analysis of metal concentrations of lead (Pb, zinc (Zn in the water of Sentani Lake in Jayapura, Papua Province. The experiment was conducted in April 2013. The study was conducted to determine the role of lake sediments on water quality, sediment characteristics and metal analysis has been analyzed in the laboratory to determine the concentration of Pb and Zn in the sediment. Metal analysis using Atomic Absorption Spectrophotometry (AAS instrumentation. Sediment characteristics that have analysis, namely physical and chemical parameters are bulk density, density, porosity, water content, texture, pH, DO, colors and others. Sediment sampling locations are Ifale, estuary, Yahim beach and Yoboy with each location in depth of 0-5 cm, 5-10 cm and 10-15 cm vertically. The results showed that at each sampling site and every sediment depths showed highly significant influence on the metal content of Pb and Zn. In general, the deeper the sediment content of Pb and Zn showed different results. Average content of heavy metals (Pb and Zn in sediments at each location that are Ifale at 27.37 mg/Kg and 35.04 mg/Kg, estuary of 15.37 mg/Kg and Pb is 28.01 mg/Kg, Yahim beach of 3.83 mg/Kg and 33.50 mg/Kg, while the location of Yoboy of 6.69 mg/Kg and 34.60 mg/Kg. Concentration of Pb (3.83 to 27.37 mg/Kg and Zn (6.69 to 35.04 mg/Kg in sediments is lower than the standard quality of heavy metals in sediments (EPA Region Va is 40 mg/Kg for Pb and 90 mg/Kg for Zn metals, therefore concentrations of Pb and Zn in sediments at four locations of Sentani lake is still below the quality standard so that the levels of Pb and Zn in the sediment is not contaminated. The existence of Sentani lake sediments act as a reservoir heavy metal and not as a source of pollutants to the water quality in the Sentani lake.

  7. The Enrichment and Transfer of Heavy Metals for Two Ferns in Pb-Zn Tailing

    Directory of Open Access Journals (Sweden)

    Mai Jiajie

    2017-01-01

    Full Text Available The enrichment and transfer of 8 heavy metals of Equisetum ramosissimum and Pteris vittata growing naturally close to edge of the sewage pool in Bencun Pb-Zn Tailing, Eastern Guangdong were investigated. The results indicated that the pollution of Cd, Pb, Hg, Zn was very severe in this tailing, followed by Cu and Mn. The potential ecological risk of heavy metals was assessed to be very strong based on soil background values of Guangdong Province and at high risk according to criteria of the second grade State Soil Environmental Quality Standard, and Cd, Hg, Pb were the main factors leading to potential ecological risk. The content of 8 heavy metals in the two ferns did not reach critical content of hyperaccumulator, so neither of them was typical hyperaccumulator, but both had a certain tolerance to these heavy metal pollution. Underground parts of Pteris vittata had an enrichment coefficient above 1 and that of Equisetum ramosissimum had a value near 1, therefore the two ferns could be utilized as potential enrichment plants. The two ferns have strong adaptability to the tailing habitat and can be used as pioneers in ecological restoration of Pb-Zn tailings.

  8. Growth and characterization of Ag/n-ZnO/p-Si/Al heterojunction diode by sol–gel spin technique

    International Nuclear Information System (INIS)

    Keskenler, E.F.; Tomakin, M.; Doğan, S.; Turgut, G.; Aydın, S.; Duman, S.; Gürbulak, B.

    2013-01-01

    Highlights: ► Ag/n-ZnO/p-Si/Al heterojunction diode was grown via sol–gel technique. ► The characterization of ZnO material was investigated. ► The heterojunction structure showed a rectification behavior. ► Ideality factor and barrier height were found to be 2.03 and 0.71 eV, respectively. - Abstract: Polycrystalline ZnO thin film was obtained on the p-Si for the heterojunction diode fabrication by sol–gel method. X-ray diffraction study showed that the texture of the film is hexagonal with a strong (0 0 2) preferred direction. Scanning electron microscope image of ZnO showed that the obtained ZnO thin films had more porous character. High purity vacuum evaporated silver (Ag) and aluminum (Al) metals were used to make Ohmic contacts to the n-ZnO/p-Si heterojunction structure. The electrical properties of Ag/n-ZnO/p-Si/Al diode were investigated by using current–voltage measurements. Ag/n-ZnO/p-Si/Al heterojunction diode showed a rectification behavior, and its ideality factor and barrier height values were found to be 2.03 and 0.71 eV by applying a thermionic emission theory, respectively. The values of series resistance from dV/d (ln I) versus I and H(I) versus I curves were found to be 42.1 and 198.3 Ω, respectively.

  9. Hydrothermal, biogenic, and seawater components in metalliferous black shales of the Brooks Range, Alaska: Synsedimentary metal enrichment in a carbonate ramp setting

    Science.gov (United States)

    Slack, John F.; Selby, David; Dumoulin, Julie A.

    2015-01-01

    Trace element and Os isotope data for Lisburne Group metalliferous black shales of Middle Mississippian (early Chesterian) age in the Brooks Range of northern Alaska suggest that metals were sourced chiefly from local seawater (including biogenic detritus) but also from externally derived hydrothermal fluids. These black shales are interbedded with phosphorites and limestones in sequences 3 to 35 m thick; deposition occurred mainly on a carbonate ramp during intermittent upwelling under varying redox conditions, from suboxic to anoxic to sulfidic. Deposition of the black shales at ~335 Ma was broadly contemporaneous with sulfide mineralization in the Red Dog and Drenchwater Zn-Pb-Ag deposits, which formed in a distal marginal basin.Relative to the composition of average black shale, the metalliferous black shales (n = 29) display large average enrichment factors (>10) for Zn (10.1), Cd (11.0), and Ag (20.1). Small enrichments (>2–rare earth elements except Ce, Nd, and Sm. A detailed stratigraphic profile over 23 m in the Skimo Creek area (central Brooks Range) indicates that samples from at and near the top of the section, which accumulated during a period of major upwelling and is broadly correlative with the stratigraphic levels of the Red Dog and Drenchwater Zn-Pb-Ag deposits, have the highest Zn/TOC (total organic carbon), Cu/TOC, and Tl/TOC ratios for calculated marine fractions (no detrital component) of these three metals.Average authigenic (detrital-free) contents of Mo, V, U, Ni, Cu, Cd, Pb, Ge, Re, Se, As, Sb, Tl, Pd, and Au show enrichment factors of 4.3 × 103 to 1.2 × 106 relative to modern seawater. Such moderate enrichments, which are common in other metalliferous black shales, suggest wholly marine sources (seawater and biogenic material) for these metals, given similar trends for enrichment factors in organic-rich sediments of modern upwelling zones on the Namibian, Peruvian, and Chilean shelves. The largest enrichment factors for Zn and Ag

  10. Possibilities for reusing the waste from the process of Zn-Pb ore beneficiation

    Directory of Open Access Journals (Sweden)

    Cichy Krystian

    2017-01-01

    Full Text Available This paper discusses the areas of storage, resources, and granulometric and chemical characteristics of old Zn-Pb tailings stored in heaps in the city of Bytom area. It presents the results of laboratory tests for development of the technological flowsheet for transformation of the material into Zn- Pb sulfide concentrates and the results of trials in an experimental system of the beneficiation flowsheet which was developed. In the further part of the paper, the results of the research work on preparation of the tailings with reduced metal content for further use are presented.

  11. Deformation of Ag clusters deposited on Au(111) - Experiment and molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Miroslawski, Natalie; Groenhagen, Niklas; Hoevel, Heinz [TU Dortmund, Experimentelle Physik I (Germany); Issendorff, Bernd von [Universitaet Freiburg, Fakultaet Physik (Germany); Jaervi, Tommi [Fraunhofer Institut fuer Werkstoffmechanik, Freiburg (Germany); Moseler, Michael [Universitaet Freiburg, Fakultaet Physik (Germany); Fraunhofer Institut fuer Werkstoffmechanik, Freiburg (Germany); Freiburger Materialforschungszentrum (Germany)

    2011-07-01

    Mass selected clusters from Ag{sup +}{sub 55} to Ag{sup +}{sub 147{+-}}{sub 2} were deposited with different deposition energies at 77 K on Au(111) and imaged with STM at 77 K. We observed a deformation of the cluster shape due to the strong metallic interaction between the cluster and the substrate. The clusters became epitaxial and developed a structure composed of several Ag monolayers. The number of these monolayers depends on the number of atoms in the cluster and the deposition energy. The larger the cluster mass the more monolayers the cluster develops on Au(111) and the larger the deposition energy the fewer monolayers occur. These results were verified by molecular dynamic simulations. Additionally the behaviour of Ag{sub N} clusters on Au(111) after different annealing steps was investigated.

  12. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Bechambi, Olfa [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Chalbi, Manel [Laboratoire de Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, B.P. 1177, 3018 Sfax (Tunisia); Najjar, Wahiba, E-mail: najjarwahiba2014@gmail.com [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Sayadi, Sami [Laboratoire de Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, B.P. 1177, 3018 Sfax (Tunisia)

    2015-08-30

    Graphical abstract: - Highlights: • A series of Ag-doped ZnO were synthesized via hydrothermal method. • Effect of doping with silver on the textural, structural optical properties of ZnO. • The photocatalytic activity has been tested using bisphenol A and nonylphenol. • The highest degradation efficiency was obtained with 1% Ag. • Ag doping enhances the photocatalytic and antibacterial activities of ZnO. - Abstract: Ag-doped ZnO photocatalysts with different Ag molar content (0.0, 0.5, 1.0, 2.0 and 4.0%) were prepared via hydrothermal method. The X-ray diffraction (XRD), Nitrogen physisorption at 77 K, Fourier transformed infrared spectroscopy (FTIR), UV–-Visible spectroscopy, Photoluminescence spectra (PL) and Raman spectroscopy were used to characterize the structural, textural and optical properties of the samples. The results showed that Ag-doping does not change the average crystallite size with the Ag low content (≤1.0%) but slightly decreases with Ag high content (>1.0%). The specific surface area (S{sub BET}) increases with the increase of the Ag content. The band gap values of ZnO are decreased with the increase of the Ag doping level. The results of the photocatalytic degradation of bisphenol A (BPA) and nonylphenol (NP) in aqueous solutions under UV irradiation and in the presence of hydrogen peroxide (H{sub 2}O{sub 2}) showed that silver ions doping greatly improved the photocatalytic efficiency of ZnO. The TOC conversion BPA and NP are 72.1% and 81.08% respectively obtained using 1% Ag-doped ZnO. The enhancement of photocatalytic activity is ascribed to the fact that the modification of ZnO with an appropriate amount of Ag can increase the separation efficiency of the photogenerated electrons-holes in ZnO. The antibacterial activity of the catalysts which uses Escherichia coli as a model for Gram-negative bacteria confirmed that Ag-doped ZnO possessed more antibacterial activity than the pure ZnO.

  13. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity

    International Nuclear Information System (INIS)

    Bechambi, Olfa; Chalbi, Manel; Najjar, Wahiba; Sayadi, Sami

    2015-01-01

    Graphical abstract: - Highlights: • A series of Ag-doped ZnO were synthesized via hydrothermal method. • Effect of doping with silver on the textural, structural optical properties of ZnO. • The photocatalytic activity has been tested using bisphenol A and nonylphenol. • The highest degradation efficiency was obtained with 1% Ag. • Ag doping enhances the photocatalytic and antibacterial activities of ZnO. - Abstract: Ag-doped ZnO photocatalysts with different Ag molar content (0.0, 0.5, 1.0, 2.0 and 4.0%) were prepared via hydrothermal method. The X-ray diffraction (XRD), Nitrogen physisorption at 77 K, Fourier transformed infrared spectroscopy (FTIR), UV–-Visible spectroscopy, Photoluminescence spectra (PL) and Raman spectroscopy were used to characterize the structural, textural and optical properties of the samples. The results showed that Ag-doping does not change the average crystallite size with the Ag low content (≤1.0%) but slightly decreases with Ag high content (>1.0%). The specific surface area (S BET ) increases with the increase of the Ag content. The band gap values of ZnO are decreased with the increase of the Ag doping level. The results of the photocatalytic degradation of bisphenol A (BPA) and nonylphenol (NP) in aqueous solutions under UV irradiation and in the presence of hydrogen peroxide (H 2 O 2 ) showed that silver ions doping greatly improved the photocatalytic efficiency of ZnO. The TOC conversion BPA and NP are 72.1% and 81.08% respectively obtained using 1% Ag-doped ZnO. The enhancement of photocatalytic activity is ascribed to the fact that the modification of ZnO with an appropriate amount of Ag can increase the separation efficiency of the photogenerated electrons-holes in ZnO. The antibacterial activity of the catalysts which uses Escherichia coli as a model for Gram-negative bacteria confirmed that Ag-doped ZnO possessed more antibacterial activity than the pure ZnO

  14. XPS-and-DFT analyses of the Pb 4f — Zn 3s and Pb 5d — O 2s overlapped ambiguity contributions to the final electronic structure of bulk and thin-film Pb-modulated zincite

    Energy Technology Data Exchange (ETDEWEB)

    Zatsepin, D.A. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Boukhvalov, D.W., E-mail: danil@hanyang.ac.kr [Department of Chemistry, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Theoretical Physics and Applied Mathematics Department, Ural Federal University,Mira Street 19, 620002 Yekaterinburg (Russian Federation); Gavrilov, N.V. [Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, 620990 Yekaterinburg (Russian Federation); Kurmaev, E.Z. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Zatsepin, A.F. [Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Cui, L. [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Shur, V. Ya.; Esin, A.A. [Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave, 620000 Yekaterinburg (Russian Federation)

    2017-05-31

    Highlights: • Two modes of ZnO:Pb in the bulk and surface morphologies were established: the high- and low-interaction. • It was shown the ambiguity contribution of Pb 4f − Zn 3s and Pb 5d − O 2s states into final electronic structure. • The main type of defects is PbO-like with some PbO{sub 2}-like contributions. • An applied wurzite-like structural model well agrees with experimental data obtained for zincite. - Abstract: The electronic structures of zincite Pb-modulated bulk and thin-films were studied via X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) techniques. Both XPS data and DFT-calculations allowed the derivation of two different Pb-embedding scenarios into the ZnO-hosts. These included the high-interaction mode of Pb-impurity with initial zinc-oxygen host-lattice for the bulk morphology, accompanied with low Pb-metal losses; and the low-interaction mode for thin-films, where there was intake of Pb-impurities into the hollows of the surface. Despite dissimilar mechanisms of Pb-impurity accumulation and distribution in the bulk and thin-films zincite host-matrices, the strong Pb 4f — Zn 3s and Pb 5d — O 2s overlapped ambiguity contribution to the appropriate core-level structure and valence bands was established by XPS analysis and reproduced with the help of DFT-calculations. It was shown that the microscopic structure of the embedded lead-impurity played a crucial role in the Pb ion-beam stimulated synthesis of secondary lead-oxygen phases via large-area defect fabrication, and the difference among zincite and wurzite polymorphs played almost no role in this case.

  15. Lead, Zn, and Cd in slags, stream sediments, and soils in an abandoned Zn smelting region, southwest of China, and Pb and S isotopes as source tracers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuangen; Li, Sun; Bi, Xiangyang; Wu, Pan; Liu, Taozhe; Li, Feili; Liu, Congqiang [Chinese Academy of Sciences, Guiyang City (China). Inst. of Geochemistry

    2010-12-15

    Smelting activity produced tons of slags with large quantities of highly toxic metals, resulting in contamination in adjacent soils and sediments as well. This study investigated the fractionation and sources of metals Pb, Zn, and Cd in polluted soils and sediments in a region with once prosperous Zn smelting activities in southwestern China. Soils with varying land uses were of a special concern due to their connection to the food chain. Obtained data would offer a valuable reference to the development of land-use management strategy in this region. In total, 130 soils and 22 stream sediments were sampled in the studied region. After air-dried and passed through a 2 mm sieve, soils and sediments were subjected to a three-step sequential extraction for the fractionation of Pb, Zn, and Cd. Besides, 66 slags were sampled, and acid-digested for the determination of total Pb, Zn, and Cd. Soils/sediments with extremely high Pb, Zn, and Cd concentrations were selected for observation and analysis using a scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. Stable lead and sulphur isotope techniques were applied for source tracing of metals in soils and sediments. Data were pooled for analysis of variance together with a post-hoc multiple comparison procedure. High concentrations of Pb ({proportional_to}46,219 mg kg{sup -1} with medians of 846 mg kg{sup -1} in soil, 7,415 mg kg{sup -1} in sediment, and 8,543 mg kg{sup -1} in slag), Zn ({proportional_to}57, 178 mg kg{sup -1} with medians of 1,085 mg kg{sup -1} in soil, 15,678 mg kg{sup -1} in sediment, and 14,548 mg kg{sup -1} in slag), and Cd ({proportional_to}312 mg kg{sup -1} with medians of 29.6 mg kg{sup -1} in soil, 47.1 mg kg{sup -1} in sediment, and 47.9 mg kg{sup -1} in slag) were measured. Soils with no cultivation had greater concentrations of Pb (16,686 mg kg{sup -1} in median), Zn (13,587 mg kg{sup -1} in median), and Cd (44.1 mg kg{sup -1} in median) than those with cultivation. Al

  16. Novel transparent high-performance AgNWs/ZnO electrodes prepared on unconventional substrates with 3D structured surfaces

    Science.gov (United States)

    Lan, Wei; Yang, Zhiwei; Zhang, Yue; Wei, Yupeng; Wang, Pengxiang; Abas, Asim; Tang, Guomei; Zhang, Xuetao; Wang, Junya; Xie, Erqing

    2018-03-01

    With the development of optoelectronic devices with three-dimensional (3D) structured surfaces, transparent electrodes that can be deposited on non-plane substrates have become increasingly important. In this paper, novel transparent silver nanowire (AgNWs)/ZnO film electrodes were uniformly prepared on treated 3D glass and PET substrates with a combination of spin-coating and heat-welding. The AgNWs/ZnO films show a transmittance of ∼88% and a sheet resistance of ∼10 Ω/sq. They are comparable with commercial ITO films. Furthermore, only a small in-plane resistance variation of ∼1 Ω/sq was measured using four-point probe mapping in films with a 10 cm × 10 cm area. These results confirm that these novel film electrodes are very uniform. Both electrical resistance and optical transmittance of the films remain mostly intact after 1000 bending cycles and tape peeling-tests with 10 cycles. The films show high thermal stability for more than one month at 80 °C. The strategy provides a new route for the design and fabrication of optoelectronic devices with 3D structured surfaces.

  17. Preparation of ZnS microdisks using chemical bath deposition and ZnS/p-Si heterojunction solar cells

    Science.gov (United States)

    Hsiao, Y. J.; Meen, T. H.; Ji, L. W.; Tsai, J. K.; Wu, Y. S.; Huang, C. J.

    2013-10-01

    The synthesis and heterojunction solar cell properties of ZnS microdisks prepared by the chemical bath deposition method were investigated. The ZnS deposited on the p-Si blanket substrate exhibits good coverage. The lower reflectance spectra were found as the thickness of the ZnS film increased. The optical absorption spectra of the 80 °C ZnS microdisk exhibited a band-gap energy of 3.4 eV and the power conversion efficiency (PCE) of the AZO/ZnS/p-Si heterojunction solar cell with a 300 nm thick ZnS film was η=2.72%.

  18. Lethal critical body residues as measures of Cd, Pb, and Zn bioavailability and toxicity in the earthworm Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Conder, J.M.; Lanno, R.P. [Oklahoma State Univ., Dept. of Zoology, Stillwater, OK (United States)

    2003-07-01

    Background. Earthworm heavy metal concentrations (critical body residues, CBRs) may be the most relevant measures of heavy metal bioavailability in soils and may be linkable to toxic effects in order to better assess soil ecotoxicity. However, as earthworms possess physiological mechanisms to secrete and/or sequester absorbed metals as toxicologically inactive forms, total earthworm metal concentrations may not relate well with toxicity. Objective. The objectives of this research were to: i) develop LD{sub 50}s (total earthworm metal concentration associated with 50% mortality) for Cd, Pb, and Zn; ii) evaluate the LD{sub 50} for Zn in a lethal Zn-smelter soil; iii) evaluate the lethal mixture toxicity of Cd, Pb, and Zn using earthworm metal concentrations and the toxic unit (TU) approach; and iv) evaluate total and fractionated earthworm concentrations as indicators of sublethal exposure. Methods. Earthworms (Eisenia fetida (Savigny)) were exposed to artificial soils spiked with Cd, Pb, Zn, and a Cd-Pb-Zn equitoxic mixture to estimate lethal CBRs and mixture toxicity. To evaluate the CBR developed for Zn, earthworms were also exposed to Zn-contaminated field soils receiving three different remediation treatments. Earthworm metal concentrations were measured using a procedure devised to isolate toxicologically active metal burdens via separation into cytosolic and pellet fractions. (orig.)

  19. Ag nanoparticle–ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach

    International Nuclear Information System (INIS)

    Li, Zhou; Yuan, Weiwei; Song, Wei; Niu, Yongshan; Yan, Ling; Yu, Min; Dai, Ming; Feng, Siyu; Wang, Menghang; Fan, Yubo; Tang, Haoying; Liu, Tengjiao; Jiang, Peng; Wang, Zhong Lin

    2014-01-01

    A new approach for fabrication of a long-term and recoverable antimicrobial nanostructure/textile hybrid without increasing the antimicrobial resistance is demonstrated. Using in situ synthesized Ag nanoparticles (NPs) anchored on ZnO nanowires (NWs) grown on textiles by a ‘dip-in and light-irradiation’ green chemical method, we obtained ZnONW@AgNP nanocomposites with small-size and uniform Ag NPs, which have shown superior performance for antibacterial applications. These new Ag/ZnO/textile antimicrobial composites can be used for wound dressings and medical textiles for topical and prophylactic antibacterial treatments, point-of-use water treatment to improve the cleanliness of water and antimicrobial air filters to prevent bioaerosols accumulating in ventilation, heating, and air-conditioning systems. (paper)

  20. Studying Selective Transparency in ZnS/ Cu/ ZnS Thin Films

    International Nuclear Information System (INIS)

    Ksibe, A.; Howari, H.; Diab, M.

    2009-01-01

    Dielectric/ Metal/ Dielectric (DMD) thin films deposited on glass offer of significant energy saving in buildings and can find other applications of advanced materials design. In an effort to reduce the complexity and cost production of DMD films, physical vapor deposition was used for the laboratory manufacture of ZnS/ Cu/ ZnS films on glass. ZnS was used because of its high refractive index, ease of deposition and low cost; Cu was used because of its low absorption in the visible spectrum and its thermal stability. The films produced were of good quality, with transmittance as high as 85%. The ZnS layers were found not only to antireflect the Ag layer, but also to stabilize the ZnS/ Cu/ ZnS films, improve its adherence on glass and increase the film thermal resistance up to 240 C. The influence of annealing on the optical properties was investigated. The experimental results show that the properties of the multilayers are improved with annealing in air. the change of maximum transmission indicates that, with the increase of annealing temperature, maximum transmittance was change. Multilayer films annealed at after 200 C, show a decrease in the maximum transmittance witch might be due to the diffused Cu atoms onto ZnS layer. (author)

  1. Metal and metalloid contamination in roadside soil and wild rats around a Pb-Zn mine in Kabwe, Zambia

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Shouta M.M.; Ikenaka, Yoshinori; Hamada, Kyohei [Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818 (Japan); Muzandu, Kaampwe; Choongo, Kennedy [Department of Biomedical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka (Zambia); Teraoka, Hiroki; Mizuno, Naoharu [Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); Ishizuka, Mayumi, E-mail: ishizum@vetmed.hokudai.ac.j [Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818 (Japan)

    2011-01-15

    Metal (Cr, Co, Cu, Zn, Cd, Pb, Ni) and metalloid (As) accumulation was studied in roadside soil and wild rat (Rattus sp.) samples from near a Pb-Zn mine (Kabwe, Zambia) and the capital city of Zambia (Lusaka). The concentrations of the seven metals and As in the soil samples and Pb in the rat tissue samples were quantified using atomic absorption spectroscopy. The concentrations of Pb, Zn, Cu, Cd, and As in Kabwe soil were much higher than benchmark values. Geographic Information System analysis indicated the source of metal pollution was mining and smelting activity. Interestingly, the area south of the mine was more highly contaminated even though the prevailing wind flow was westward. Wild rats from Kabwe had much higher tissue concentrations of Pb than those from Lusaka. Their body weight and renal Pb levels were negatively correlated, which suggests that mining activity might affect terrestrial animals in Kabwe. - The area around Kabwe, Zambia is highly polluted with metals and As. Wild rats from this area had high tissue concentrations of Pb and decreased body weight.

  2. Study of Zn-Pb ore tailings and their potential in cement technology

    Science.gov (United States)

    Nouairi, J.; Hajjaji, W.; Costa, C. S.; Senff, L.; Patinha, C.; Ferreira da Silva, E.; Labrincha, J. A.; Rocha, F.; Medhioub, M.

    2018-03-01

    This paper describes the synthesis of sulfobelite clinkers incorporating mining rejects. The targeted Zn-Pb tailing wastes generated in the diapiric zone (NW Tunisia) were tested in clinker/cement compositions to ensure the inertization of existing hazardous heavy metals. Mineralogical composition of the two selected samples revealed calcite, dolomite, quartz, kaolinite, galena, pyrite and gypsum as crystalline phases. Vertical distributions of dominant heavy metals (Pb, Zn and Cu) in soil profiles show enrichment in the surface layers and decrease towards the depth. In sintered clinkers powders, the presence of the targeted crystalline phases (trialuminate sulphate (C4A3Š), belite (C2S), and ferrite (C4AF)) are in the predicted desirable amounts. Heat flow generated during the hydration of different cement pastes showed a slower reaction for clinkers with higher amounts of C4A3Š or constituted by coarser particles. After 28 days curing, the best mechanical resistance (24.34 MPa under compression) was obtained for the clinker calcined at 1350 °C and showing a suitable particle size distribution. Concerning heavy metals, immobilisation of 75-85% of Pb, Zn and Cu was assessed in the mortars formulated with the produced clinker/cement, posing no hazardous risks to the environment.

  3. SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection

    Science.gov (United States)

    Lu, Junfeng; Xu, Chunxiang; Nan, Haiyan; Zhu, Qiuxiang; Qin, Feifei; Manohari, A. Gowri; Wei, Ming; Zhu, Zhu; Shi, Zengliang; Ni, Zhenhua

    2016-08-01

    Dopamine (DA) is a potential neuro modulator in the brain which influences a variety of motivated behaviors and plays a key role in life science. A hybrid ZnO/Ag microcavity based on Whispering Gallery Mode (WGM) effect has been developed for ultrasensitive detection of dopamine. Utilizing this effect of structural cavity mode, a Raman signal of R6G (5 × 10-3 M) detected by this designed surface-enhanced Raman spectroscopy (SERS)-active substrate was enhanced more than 10-fold compared with that of ZnO film/Ag substrate. Also, this hybrid microcavity substrate manifests high SERS sensitivity to rhodamine 6 G and detection limit as low as 10-12 M to DA. The Localized Surface Plasmons of Ag nanoparticles and WGM-enhanced light-matter interaction mainly contribute to the high SERS sensitivity and help to achieve a lower detection limit. This designed SERS-active substrate based on the WGM effect has the potential for detecting neurotransmitters in life science.

  4. Synthesis and properties of Ag/ZnO/g-C3N4 ternary micro/nano composites by microwave-assisted method

    Science.gov (United States)

    Zhang, Zijie; Li, Xuexue; Chen, Haitao; Shao, Gang; Zhang, Rui; Lu, Hongxia

    2018-01-01

    Ag/ZnO/g-C3N4 ternary micro/nanocomposites, as novel visible-light-driven photocatalysts, were prepared by a simple and convenient microwave-assisted method. The resulting ternary structure micro/nano composites were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy and infrared radiation techniques to examine its phase structure, valence state, morphological, thermal and optical properties. Well crystallized Ag/ZnO/g-C3N4 ternary micro/nano composites were synthesized under microwave-radiation for 15 min with the output of 240 W. Further experiments indicated Ag(5.0mol%)/ZnO/g-C3N4 photocatalyst in degradation of methylene blue exhibited an outstanding photocatalytic activity and its reaction rate constant (k, 0.0084 min-1) is 7.5, 2.4 2.9 and 3.5 times higher than that of monolithic ZnO (k, 0.0011 min-1), ZnO/g-C3N4(k, 0.0035 min-1), Ag(5 mol%)/ZnO(k, 0.0029 min-1) and Ag(5mol%)/g-C3N4 (k, 0.0024 min-1) respectively. Finally, a possible photocatalytic mechanism of Ag/ZnO/g-C3N4 photocatalyst in degradation process was proposed. This work provides a feasible strategy to synthesize an efficient ZnO-based photocatalyst which combines structure and properties of different dimensional components and made this ternary system an exciting candidate for sunlight-driven photocatalytic water treatment.

  5. Resistivity of atomic layer deposition grown ZnO: The influence of deposition temperature and post-annealing

    Energy Technology Data Exchange (ETDEWEB)

    Laube, J., E-mail: laube@imtek.de; Nübling, D.; Beh, H.; Gutsch, S.; Hiller, D.; Zacharias, M.

    2016-03-31

    Conductive zinc oxide (ZnO) films deposited by atomic layer deposition were studied as function of post-annealing treatments. Effusion experiments were conducted on ZnO films deposited at different temperatures. The influence of different annealing atmospheres on the resistivity of the films was investigated and compared to reference samples. It was found that the influence of the deposition temperature on the resistivity is much higher than that of subsequent annealings. This leads to the conclusion that reduction of the resistivity by diffusion of different gases, such as oxygen and hydrogen, into annealed ZnO films is unlikely. - Highlights: • Conformal growth of ZnO-ALD over a temperature range of 25 °C up to 300 °C. • Post-annealing in different atmospheres (H{sub 2}, O{sub 2}, vacuum) and temperatures. • Analysis of film-conductivity and effusion characteristic.

  6. Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jai-young; Chun, Su-jin; Kim, Nam-suk; Cho, Jeung-won; Kim, Jae-hyun [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Yeom, Jong-taek [Light Metal Division, Korea Institute of Materials Science (KIMS), Changwon 642-831 (Korea, Republic of); Kim, Jae-il [Materials Science and Engineering, University of Dong-A, Hadan-dong, Saha-gu, Busan 604-714 (Korea, Republic of); Nam, Tae-hyun, E-mail: tahynam@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2013-12-15

    Graphical abstract: - Highlights: • Ag, In and Sn were soluble in TiNi matrix, while Sb, Te, Tl, Pb and Bi were not. • The B2-R-B19′transformation occurred in Ti-Ni-(Ag, In, Sn) alloys. • Solid solution hardening was essential for inducing the B2-R transformation. - Abstract: The microstructures and transformation behaviors of Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys were investigated using electron probe micro-analysis (EPMA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Micro Vickers hardness tests. All specimens consisted of Ti–Ni matrices and second phase particles. Ag, In and Sn were soluble in Ti–Ni matrices with a limited solubility (≤1.0 at%), while Sb, Te, Tl, Pb and Bi were not soluble. Two-stage B2-R-B19′ transformation occurred in Ti–48.8Ni–1.2Ag, Ti–49.0Ni–1.0In and Ti–49.0Ni–1.0Sn alloys, while one-stage B2-B19′ transformation occurred in Ti–49.0Ni–1.0Ag, Ti–49.0Ni–1.0Sb, Ti–49.0Ni–1.0Te, Ti–49.0Ni–1.0Pb and Ti–49.0Ni–1.0Bi alloys. Micro Vickers hardness of the alloys displaying the B2-R-B19′ transformation (Hv 250–368) was much larger than that (

  7. Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys

    International Nuclear Information System (INIS)

    Jang, Jai-young; Chun, Su-jin; Kim, Nam-suk; Cho, Jeung-won; Kim, Jae-hyun; Yeom, Jong-taek; Kim, Jae-il; Nam, Tae-hyun

    2013-01-01

    Graphical abstract: - Highlights: • Ag, In and Sn were soluble in TiNi matrix, while Sb, Te, Tl, Pb and Bi were not. • The B2-R-B19′transformation occurred in Ti-Ni-(Ag, In, Sn) alloys. • Solid solution hardening was essential for inducing the B2-R transformation. - Abstract: The microstructures and transformation behaviors of Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys were investigated using electron probe micro-analysis (EPMA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Micro Vickers hardness tests. All specimens consisted of Ti–Ni matrices and second phase particles. Ag, In and Sn were soluble in Ti–Ni matrices with a limited solubility (≤1.0 at%), while Sb, Te, Tl, Pb and Bi were not soluble. Two-stage B2-R-B19′ transformation occurred in Ti–48.8Ni–1.2Ag, Ti–49.0Ni–1.0In and Ti–49.0Ni–1.0Sn alloys, while one-stage B2-B19′ transformation occurred in Ti–49.0Ni–1.0Ag, Ti–49.0Ni–1.0Sb, Ti–49.0Ni–1.0Te, Ti–49.0Ni–1.0Pb and Ti–49.0Ni–1.0Bi alloys. Micro Vickers hardness of the alloys displaying the B2-R-B19′ transformation (Hv 250–368) was much larger than that (< Hv 200) of the alloys displaying the B2-B19′ transformation. Solid solution hardening was an important factor for inducing the B2-R transformation in Ti–Ni–X (X = non-transition elements) alloys

  8. Development of heat resistant Pb-free joints by TLPS process of Ag and Sn-Bi-Ag alloy powders

    Directory of Open Access Journals (Sweden)

    Ohnuma I.

    2012-01-01

    Full Text Available TLPS (Transient Liquid Phase Sintering process is a candidate method of heat-resistant bonding, which makes use of the reaction between low-melting temperature powder of Sn-Bi base alloys and reactive powder of Ag. During heat treatment above the melting temperature of a Sn-Bi base alloy, the molten Sn-Bi reacts rapidly with solid Ag particles, which results in the formation of heat-resistant intermetallic compound (IMC. In this study, the TLPS properties between Sn-17Bi-1Ag (at.% powder with its liquidus temperature of 200°C and pure Ag powder were investigated. During differential scanning calorimetry (DSC measurement, an exothermic reaction and an endothermic reaction occurred, which correspond to the formation of the e-Ag3Sn IMC phase and the melting of the Sn-17Bi-1Ag alloy, respectively. After the overall measurement, the obtained reactant consists of the Ag3Sn-IMC and Bi-rich phases, both of which start melting above 250°C, with a small amount of the residual Sn-Bi eutectic phase. These results suggest that the TLPS process can be applied for Pb-free heatresistant bonding.

  9. The composition of pyrite in volcanogenic massive sulfide deposits as determined with the proton microprobe

    International Nuclear Information System (INIS)

    Huston, D.L.; Sie, S.H.; Suter, G.F.; Ryan, C.G.

    1993-01-01

    Pixeprobe analysis of pyrite from Australian volcanogenic massive sulfide (VMS) deposits indicate significant levels of Cu, Zn, Pb, Ba, Ag, Sb, Bi (from inclusions), As, Tl, Mo, Au, In, Cd (from nonstoichiometric substitution), Co, Ni, Se and Te (from stoichiometric substitution). Pyrite in massive sulfide lenses is enriched in trace elements compared to that in the stringer zone owing to hydrothermal recrystallization. Metamorphic recrystallization also 'cleans' pyrite of trace elements. High Au values occur in pyrite with high As content. Pyrite in stringer zones is enriched in Se relative to the overlying massive sulfide lenses and the surrounding alteration zones. (orig.)

  10. Synthesis of a ternary Ag/RGO/ZnO nanocomposite via microwave irradiation and its application for the degradation of Rhodamine B under visible light.

    Science.gov (United States)

    Surendran, Divya Kollikkara; Xavier, Marilyn Mary; Viswanathan, Vandana Parakkal; Mathew, Suresh

    2017-06-01

    Reduced graphene oxide supporting plasmonic photocatalyst (Ag) on ZnO has been synthesized via a facile two-step microwave synthesis using RGO/ZnO and AgNO 3 . First step involves fabrication of RGO/ZnO via microwave irradiation. The nanocomposites were characterized by X-ray diffraction analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Ag/RGO/ZnO shows enhanced photoactivity under visible light for the degradation of Rhodamine B. Enhanced charge separation and migration have been assigned using UV-vis diffuse reflectance spectra, photoluminescence spectra, electrochemical impedance spectra, and TCSPC analysis. The improved photoactivity of Ag/RGO/ZnO can be ascribed to the prolonged lifetime of photogenerated electron-hole pairs and effective interfacial hybridization between RGO and Ag with ZnO nanoparticles. Ag nanoparticles can absorb visible light via surface plasmon resonance to enhance photocatalytic activity.

  11. Relation Between pH and Desorption of Cu, Cr, Zn, and Pb from Industrially Polluted Soils

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Jensen, Pernille Erland

    2009-01-01

    Desorption of Cu, Cr, Pb, and Zn from industrially polluted soils as a result of acidification is in focus. The eight soils of the investigation vary greatly in composition and heavy metal concentration/combination. Three soils had elevated concentrations of Cu, Pb, and Zn; regardless of pollution...... level, pollution origin, and soil type, the order for desorption as pH decreased was Zn > Cu > Pb. Turning to a single heavy metal in different soils, there was a huge difference in the pH at which the major desorption started. The variation was most significant for Pb where, e.g., less than 10......% was desorbed at pH 2.5 from one soil, whereas in another soil 60% Pb was desorbed at this pH. Sequential extraction was made and the soils in which a high percentage of Pb was found in the residual phase (adsorbed strongest) was also the soils where less Pb was desorbed at low pH in the desorption experiments...

  12. Ag doped (Bi1.6Pb0.4Sr2CaCu2O8+δ textured rods

    Directory of Open Access Journals (Sweden)

    Díez, J. C.

    2008-06-01

    Full Text Available In this work, superconducting samples of (Bi1.6Pb0.4Sr2CaCu2O8+δ with Ag additions have been studied. (Bi1.6Pb0.4Sr2CaCu2O8+δ + x wt.% Ag (with x = 0, 1 and 3 powders were synthesized using a sol-gel method. The obtained powders were used as precursors to fabricate long textured cylindrical bars through a floating zone melting method. A drastic change on the microstructure has been found when comparing with undoped Bi2Sr2CaCu2O8+δ samples. The results showed that electrical resistivity at room temperature, critical current as well as flexural strength are improved when Ag is added to these Pb doped samples, while critical temperature does not change. On the other hand, it has been found that samples with composition (Bi1.6Pb0.4Sr2CaCu2O8+δ + Ag shown E-I curves with very high sharpness values on the zone of the superconducting to normal transition, reaching n-values (E∼In as high as 45 at 65K.Se han preparado polvos cerámicos de composición (Bi1.6Pb0.4Sr2CaCu2O8+δ + x % Ag en peso (con x = 0, 1 y 3 mediante un proceso sol-gel. Estos polvos se han utilizado para fabricar precursores que se texturaron por medio del método de fusión zonal flotante. Se ha encontrado un gran cambio en la microestructura cuando se compara con muestras de composición pura Bi2Sr2CaCu2O8+δ. Tanto la resistividad eléctrica a temperatura ambiente, como la corriente crítica, así como la resistencia a flexión se mejoran cuando la Ag se adiciona a estas muestras dopadas con Pb, mientras que no se observa cambio en la temperatura crítica. Por otra parte, se ha encontrado que las muestras de composición (Bi1.6Pb0.4Sr2CaCu2O8+δ + Ag presentan una gran pendiente de la curva E-I en la zona de transición entre el estado superconductor y el estado normal. Con estas composiciones, se han encontrado valores de n (E∼In de hasta 45 a 65K.

  13. Mechanisms and rates of atmospheric deposition of selected trace elements and sulfate to a deciduous forest watershed. [Roles of dry and wet deposition concentrations measured in Walker Branch Watershed

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, S.E.; Harriss, R.C.; Turner, R.R.; Shriner, D.S.; Huff, D.D.

    1979-06-01

    The critical links between anthropogenic emissions to the atmosphere and their effects on ecosystems are the mechanisms and rates of atmospheric deposition. The atmospheric input of several trace elements and sulfate to a deciduous forest canopy is quantified and the major mechanisms of deposition are determined. The study area was Walker Branch Watershed (WBW) in eastern Tennessee. The presence of a significant quantity of fly ash and dispersed soil particles on upward-facing leaf and flat surfaces suggested sedimentation to be a major mechanism of dry deposition to upper canopy elements. The agreement for deposition rates measured to inert, flat surfaces and to leaves was good for Cd, SO/sub 4//sup =/, Zn, and Mn but poor for Pb. The precipitation concentrations of H/sup +/, Pb, Mn, and SO/sub 4//sup =/ reached maximum values during the summer months. About 90% of the wet deposition of Pb and SO/sub 4//sup =/ was attributed to scavenging by in-cloud processes while for Cd and Mn, removal by in-cloud scavenging accounted for 60 to 70% of the deposition. The interception of incoming rain by the forest canopy resulted in a net increase in the concentrations of Cd, Mn, Pb, Zn, and SO/sub 4//sup =/ but a net decrease in the concentration of H/sup +/. The source of these elements in the forest canopy was primarily dry deposited aerosols for Pb, primarily internal plant leaching for Mn, Cd, and Zn, and an approximately equal combination of the two for SO/sub 4//sup =/. Significant fractions of the total annual elemental flux to the forest floor in a representative chestnut oak stand were attributable to external sources for Pb (99%), Zn (44%), Cd (42%), SO/sub 4//sup =/ (39%), and Mn (14%), the remainder being related to internal element cycling mechanisms. On an annual scale the dry deposition process constituted a significant fraction of the total atmospheric input. (ERB)

  14. Lead Isotopic Compositions of Selected Coals, Pb/Zn Ores and Fuels in China and the Application for Source Tracing.

    Science.gov (United States)

    Bi, Xiang-Yang; Li, Zhong-Gen; Wang, Shu-Xiao; Zhang, Lei; Xu, Rui; Liu, Jin-Ling; Yang, Hong-Mei; Guo, Ming-Zhi

    2017-11-21

    Lead (Pb) pollution emission from China is becoming a potential worldwide threat. Pb isotopic composition analysis is a useful tool to accurately trace the Pb sources of aerosols in atmosphere. In this study, a comprehensive data set of Pb isotopes for coals, Pb/Zn ores, and fuels from China was presented. The ratios of 206 Pb/ 207 Pb and 208 Pb/ 206 Pb in the coals were in the range of 1.114-1.383 and 1.791-2.317, similar to those from Europe, Oceania, and South Asia, but different from those from America (p fuels from in coals. Urban aerosols demonstrated similar Pb isotopic compositions to coals, Pb/Zn ores, and fuels in China. After removing the leaded gasoline, the Pb in aerosols is more radiogenic, supporting the heavy contribution of coal combustion to the atmospheric Pb pollution.

  15. The Influence of Pb and Zn Contaminated soil on the Germination ...

    African Journals Online (AJOL)

    ADOWIE PERE

    www.bioline.org.br/ja. The Influence of Pb and Zn Contaminated soil on the Germination and Growth of ... of the periodic table such as aluminium, cadmium, zinc, chromium, copper ..... Remediation Division Robert S. Kerr. Environmental ...

  16. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    Science.gov (United States)

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4. Copyright © 2015. Published by Elsevier B.V.

  17. Measurement of the valence band-offset in a PbSe/ZnO heterojunction by x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li Lin; Qiu Jijun; Weng Binbin; Yuan Zijian; Shi Zhisheng [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Li Xiaomin; Gan Xiaoyan [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Sellers, Ian R. [Deparment of Physics, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2012-12-24

    A heterojunction of PbSe/ZnO has been grown by molecular beam epitaxy. X-ray photoelectron spectroscopy was used to directly measure the valence-band offset (VBO) of the heterojunction. The VBO, {Delta}E{sub V}, was determined as 2.51 {+-} 0.05 eV using the Pb 4p{sup 3/2} and Zn 2p{sup 3/2} core levels as a reference. The conduction-band offset, {Delta}E{sub C}, was, therefore, determined to be 0.59 {+-} 0.05 eV based on the above {Delta}E{sub V} value. This analysis indicates that the PbSe/ZnO heterojunction forms a type I (Straddling Gap) heterostructure.

  18. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering

    International Nuclear Information System (INIS)

    Wang Heng; Li Jingfeng; Nan Cewen; Zhou Min; Liu Weishu; Zhang Boping; Kita, Takuji

    2006-01-01

    Polycrystalline Ag n Pb m SbTe m+2n thermoelectric materials, whose compositions can be described as Ag 0.8 Pb 18+x SbTe 20 were prepared using a combined process of mechanical alloying and spark plasma sintering. Electric properties of the sintered samples with different Pb contents were measured from room temperature to 700 K. The maximum power factor of 1.766 mW/mK 2 was obtained at 673 K for the Ag 0.8 Pb 22 SbTe 20 sample, which corresponds to a high dimensionless figure of merit, ZT=1.37. This best composition is different from that reported before

  19. Metal pollution (Cd, Pb, Zn, and As) in agricultural soils and soybean, Glycine max, in southern China.

    Science.gov (United States)

    Zhao, Yunyun; Fang, Xiaolong; Mu, Yinghui; Cheng, Yanbo; Ma, Qibin; Nian, Hai; Yang, Cunyi

    2014-04-01

    Crops produced on metal-polluted agricultural soils may lead to chronic toxicity to humans via the food chain. To assess metal pollution in agricultural soils and soybean in southern China, 30 soybean grain samples and 17 soybean-field soil samples were collected from 17 sites in southern China, and metal concentrations of samples were analyzed by graphite furnace atomic absorption spectrophotometer. The integrated pollution index was used to evaluate if the samples were contaminated by Cd, Pb, Zn and As. Results showed that Cd concentration of 12 samples, Pb concentration of 2 samples, Zn concentration of 2 samples, and As concentrations of 2 samples were above the maximum permissible levels in soils. The integrated pollution index indicated that 11 of 17 soil samples were polluted by metals. Metal concentrations in soybean grain samples ranged from 0.11 to 0.91 mg kg(-1) for Cd; 0.34 to 2.83 mg kg(-1) for Pb; 42 to 88 mg kg(-1) for Zn; and 0.26 to 5.07 mg kg(-1) for As, which means all 30 soybean grain samples were polluted by Pb, Pb/Cd, Cd/Pb/As or Pb/As. Taken together, our study provides evidence that metal pollution is an important concern in agricultural soils and soybeans in southern China.

  20. Si substrate by chemical solution deposition

    Indian Academy of Sciences (India)

    ZnMn2O4 active layer for resistance random access memory (RRAM) was ... The bipolar resistive switching behaviours of the Ag/ZnMn2O4/p+-Si capacitor ... nal electric field were first proposed by Chua (1971). In ... In this work, the spinel ZnMn2O4 films were deposited .... The typical I–V curves plotted in double logarithmic.

  1. An in vivo invertebrate bioassay of Pb, Zn and Cd stabilization in contaminated soil.

    Science.gov (United States)

    Udovic, Metka; Drobne, Damjana; Lestan, Domen

    2013-08-01

    The terrestrial isopod (Porcellio scaber) was used to assess the remediation efficiency of limestone and a mixture of gravel sludge and red mud as stabilizing agents of Pb, Zn and Cd in industrially polluted soil, which contains 800, 540 and 7mgkg(-1) of Pb, Zn and Cd, respectively. The aim of our study was to compare and evaluate the results of the biological and non-biological assessment of metal bioavailability after soil remediation. Results of a 14d bioaccumulation test with P. scaber showed that that Pb and Zn stabilization were more successful with gravel sludge and red mud, while Cd was better stabilized and thus less bioavailable following limestone treatment. In vivo bioaccumulation tests confirmed the results of chemical bioaccessibility, however it was more sensitive. Biotesting with isopods is a relevant approach for fast screening of bioavailability of metals in soils which includes temporal and spatial components. Bioavailability assessed by P. scaber is a more relevant and sensitive measure of metal bioavailability than chemical bioaccessibility testing in remediated industrially polluted soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Geology and mineralization of the Jabalat alkali-feldspar granite, northern Asir region, Kingdom of Saudi Arabia

    Science.gov (United States)

    Al Tayyar, Jaffar; Jackson, Norman J.; Al-Yazidi, Saeed

    The Jabalat post-tectonic granite pluton is composed of albite- and oligoclase-bearing, low-calcium, F-, Sn- and Rb-rich subsolvus granites. These granites display evidence of late-magmatic, granitophile- and metallic-element specialization, resulting ultimately in the development of post-magmatic, metalliferous hydrothermal systems characterized by a Mo sbnd Sn sbnd Cu sbnd Pb sbnd Zn sbnd Bi sbnd Ag sbnd F signature. Two main types of mineralization are present within the pluton and its environs: (1) weakly mineralized felsic and aplitic dikes and veins enhanced in Mo, Bi, Ag, Pb and Cu; and (2) pyrite—molybdenite—chalcopyrite-bearing quartz and quartz—feldspar veins rich in Mo, Sn, Bi, Cu, Zn and Ag. A satellite stock, 3 km north of the main intrusion, is composed of fine-grained, miarolitic, muscovite—albite—microcline (microperthite) granite. The flanks of this intrusion and adjacent dioritic rocks are greisenized and highly enriched in Sn, Bi and Ag. Quartz veins which transect the satellite stock contain molybdenite and stannite.

  3. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes.

    Science.gov (United States)

    Romero-Hernández, Jorge Alberto; Amaya-Chávez, Araceli; Balderas-Hernández, Patricia; Roa-Morales, Gabriela; González-Rivas, Nelly; Balderas-Plata, Miguel Ángel

    2017-03-04

    In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu +2 , Hg +2 , Pb +2 , and Zn +2 ). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.

  4. Atmospheric deposition patterns of (210)Pb and (7)Be in Cienfuegos, Cuba.

    Science.gov (United States)

    Alonso-Hernández, Carlos M; Morera-Gómez, Yasser; Cartas-Águila, Héctor; Guillén-Arruebarrena, Aniel

    2014-12-01

    The radiometric composition of bulk deposition samples, collected monthly for one year, February 2010 until January 2011, at a site located in Cienfuegos (22° 03' N, 80° 29' W) (Cuba), are analysed in this paper. Measurement of (7)Be and (210)Pb activity concentrations were carried out in 12 bulk deposition samples. The atmospheric deposition fluxes of (7)Be and (210)Pb are in the range of 13.2-132 and 1.24-8.29 Bq m(-2), and their mean values are: 56.6 and 3.97 Bq m(-2), respectively. The time variations of the different radionuclide have been discussed in relation with meteorological factors and the mean values have been compared to those published in recent literature from other sites located at different latitudes. The annual average flux of (210)Pb and (7)Be were 47 and 700 Bq m(-2) y(-1), respectively. Observed seasonal variations of deposition data are explained in terms of different environmental features. The atmospheric deposition fluxes of (7)Be and (210)Pb were moderately well correlated with precipitation and well correlated with one another. The (210)Pb/(7)Be ratios in the monthly depositions samples varied in the range of 0.05-0.10 and showed a strong correlation with the number of rainy days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Metal speciation in agricultural soils adjacent to the Irankuh Pb-Zn mining area, central Iran

    Science.gov (United States)

    Mokhtari, Ahmad Reza; Roshani Rodsari, Parisa; Cohen, David R.; Emami, Adel; Dehghanzadeh Bafghi, Ali Akbar; Khodaian Ghegeni, Ziba

    2015-01-01

    Mining activities are a significant potential source of metal contamination of soils in surrounding areas, with particular concern for metals dispersed into agricultural area in forms that are bioavailable and which may affect human health. Soils in agricultural land adjacent to Pb-Zn mining operations in the southern part of the Irankuh Mountains contain elevated concentrations for a range of metals associated with the mineralization (including Pb, Zn and As). Total and partial geochemical extraction data from a suite of 137 soil samples is used to establish mineralogical controls on ore-related trace elements and help differentiate spatial patterns that can be related to the effects of mining on the agricultural land soils from general geological and environmental controls. Whereas the patterns for Pb, Zn and As are spatially related to the mining operations they display little correlation with the distribution of secondary Fe + Mn oxyhydroxides or carbonates, suggesting dispersion as dust and in forms with limited bioavailability.

  6. Tem Observation Of Precipitate Structures In Al-Zn-Mg Alloys With Additions Of Cu/Ag

    Directory of Open Access Journals (Sweden)

    Watanabe K.

    2015-06-01

    Full Text Available Al-Zn-Mg alloy has been known as one of the aluminum alloys with the good age-hardening ability and the high strength among commercial aluminum alloys. The mechanical property of the limited ductility, however, is required to further improvement. In this work, three alloys, which were added Cu or Ag into the Al-Zn-Mg alloy, were prepared to compare the effect of the additional elements on the aging behavior. The content of Ag and Cu were 0.2at.% and the same as, respectively. Ag or Cu added alloy showed higher maximum hardness than base alloy. The particle shape and rod shape precipitates were observed in all alloys peak-aged at 423K. According to addition of Ag or Cu, the number density of the precipitates increased higher than that of base alloy.

  7. Effect of different solutions on electrochemical deposition of ZnO

    International Nuclear Information System (INIS)

    Asil, H.; Chinar, K.; Gur, E.; Tuzemen, S.

    2010-01-01

    ZnO thin films were grown by electrochemical deposition (ECD) onto indium tin oxide using different compounds such as Zn(NO 3 ) 2 , Zn(C 2 H 3 O 2 ) 2 , ZnCl 2 , Zn(ClO 4 ) 2 and different solvents such as dimethylsulfoxide (DMSO) and 18 M deionized water. Furthermore, solutions were prepared using different electrolytes and concentrations in order to determine the optimum deposition parameters of ZnO. All the grown films were characterized by X-ray diffraction, optical absorption and photoluminescence measurement techniques. It is indicated that films grown by using Zn(ClO 4 ) 2 show high crystallinity and optical quality. The X-ray diffraction analysis showed that ZnO thin films which were grown electrochemically in a non-aqueous solution (DMSO) prepared by Zn(ClO 4 ) 2 have highly c-axis preferential orientation. PL measurements showed that ZnO thin films grown in Zn(ClO 4 ) 2 indicates high quality emission characteristics compared to the thin films grown by other solutions

  8. Effects of Zn2+ and Pb2+ dopants on the activity of Ga2O3-based photocatalysts for water splitting.

    Science.gov (United States)

    Wang, Xiang; Shen, Shuai; Jin, Shaoqing; Yang, Jingxiu; Li, Mingrun; Wang, Xiuli; Han, Hongxian; Li, Can

    2013-11-28

    Zn-doped and Pb-doped β-Ga2O3-based photocatalysts were prepared by an impregnation method. The photocatalyst based on the Zn-doped β-Ga2O3 shows a greatly enhanced activity in water splitting while the Pb-doped β-Ga2O3 one shows a dramatic decrease in activity. The effects of Zn(2+) and Pb(2+) dopants on the activity of Ga2O3-based photocatalysts for water splitting were investigated by HRTEM, XPS and time-resolved IR spectroscopy. A ZnGa2O4-β-Ga2O3 heterojunction is formed in the surface region of the Zn-doped β-Ga2O3 and a slower decay of photogenerated electrons is observed. The ZnGa2O4-β-Ga2O3 heterojunction exhibits type-II band alignment and facilitates charge separation, thus leading to an enhanced photocatalytic activity for water splitting. Unlike Zn(2+) ions, Pb(2+) ions are coordinated by oxygen atoms to form polyhedra as dopants, resulting in distorted surface structure and fast decay of photogenerated electrons of β-Ga2O3. These results suggest that the Pb dopants act as charge recombination centers expediting the recombination of photogenerated electrons and holes, thus decreasing the photocatalytic activity.

  9. 206Pb/207Pb ratios in dry deposit samples from the Metropolitan Zone of Mexico Valle

    International Nuclear Information System (INIS)

    Martinez, T.; Lartigue, J.; Marquez, C.

    2007-01-01

    206 Pb/ 207 Pb isotope ratios of dry deposit samples in the Metropolitan Zone of Mexico Valley (MZMV) were determined and correlated with some contemporary environmental material such as gasoline, urban dust, etc., as possible pollution sources, the latter presenting different signatures. 206 Pb/ 207 Pb ratios were determined in samples 'as is' by ICP-MS, using an Elan-6100. A standard material NIST-981 was used to monitor accuracy and to correct mass fractionation. The calculated enrichment factors of lead (taking rubidium as a conservative endogenous element) show its anthropogenic origin with percentages higher than 97.65%. 206 Pb/ 207 Pb ratio in dry deposit samples ranges from 0.816 to a maximum of 1.154, following a normal distribution. Arithmetic mean was 0.9967±0.0864 lower than those of possible pollution sources: 1.1395±0.0165 for gasoline, 1.071±0.008 for industrially derived lead and, for the more radiogenic natural soil and urban dust values ranging from 1.2082±0.022 to 1.211±0.108. The possible origin of lead in gasoline used prior to 1960 is discussed. (author)

  10. Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells

    Science.gov (United States)

    Ruankham, Pipat; Wongratanaphisan, Duangmanee; Gardchareon, Atcharawon; Phadungdhitidhada, Surachet; Choopun, Supab; Sagawa, Takashi

    2017-07-01

    Full coverage of perovskite layer onto ZnO nanorod substrates with less pinholes is crucial for achieving high-efficiency perovskite solar cells. In this work, a two-step sequential deposition method is modified to achieve an appropriate property of perovskite (MAPbI3) film. Surface treatment of perovskite layer and its precursor have been systematically performed and their morphologies have been investigated. By pre-wetting of lead iodide (PbI2) and letting it dry before reacting with methylammonium iodide (MAI) provide better coverage of perovskite film onto ZnO nanorod substrate than one without any treatment. An additional MAI deposition followed with toluene drop-casting technique on the perovskite film is also found to increase the coverage and enhance the transformation of PbI2 to MAPbI3. These lead to longer charge carrier lifetime, resulting in an enhanced power conversion efficiency (PCE) from 1.21% to 3.05%. The modified method could been applied to a complex ZnO nanorods/TiO2 nanoparticles substrate. The enhancement in PCE to 3.41% is observed. These imply that our introduced method provides a simple way to obtain the full coverage and better transformation to MAPbI3 phase for enhancement in performances of perovskite solar cells.

  11. Transformaciones de fase en aleaciones Zn-22%Al-2%Cu y Zn-22%Al-2%Cu-X (X = 1, 2 y 3%Ag envejecidas isotérmicamente

    Directory of Open Access Journals (Sweden)

    Flores-Ramos, Alfredo

    2014-12-01

    Full Text Available The study of phase transformations that take place in Zn-22%Al-2%Cu and Zn-22%Al-2%Cu-X (X = 1, 2 and 3%Ag alloys was carried out using X-Ray Diffraction (XRD and Scanning Electron Microscopy (SEM. Alloys were homogenized at 350 °C during 10 days and quenched at ~2 °C. Subsequently, samples were aged at 200 °C for different times. The initial microstructure consists in a matrix of fine equiaxial grains of α and η phases for all the alloys. Besides isolated particles of ε and Φ were observed without and with Ag addition, respectively. During the aging, the four phase reaction, α + ε→η + τ’, takes place to obtain the equilibrium η, α and τ’ phases. However, the Ag addition promotes the formation of the Φ phase, which retards or inhibits the four phase reaction. The stability of the Φ phase is obtained with 3%Ag, which could improve the dimensional stability of the alloy for future industrial applications.En el presente estudio sobre las transformaciones de fase en las aleaciones Zn-22%Al-2%Cu y Zn-22%Al-2%Cu-X (X = 1, 2 y 3%Ag se utilizó Difracción de Rayos X (DRX y Microscopía Electrónica de Barrido (MEB. Las aleaciones fueron homogeneizadas a 350 °C durante 10 días, templadas a ~2 °C y posteriormente envejecidas a 200 °C durante diferentes tiempos. Todas las aleaciones ensayadas presentaron una microestructura inicial formada por una matriz de granos finos y equiaxiales de las fases α y η. Además, para las aleaciones sin Ag se observa la presencia de partículas de la fase ε (CuZn4 y de Φ ((Ag, Cu Zn4 en las que se adicionó Ag. Durante el envejecido, ocurre la reacción de cuatro fases, α + ε→η + τ’, para obtener las fases de equilibrio η, α y τ’. Sin embargo, la adición de Ag promueve la formación de la fase Φ, la cual retarda e incluso inhibe la reacción de cuatro fases. La estabilidad de la fase Φ se obtiene con 3%Ag, lo que podría mejorar la estabilidad dimensional de la aleación para

  12. Adsorption-desorption characteristics of Ni, Zn and Pb in soils of a landfill environment in Metro Manila, Philippines

    International Nuclear Information System (INIS)

    Castañeda, Soledad S.; Cuarto, Christina D.; David, Carlos Primo C.

    2015-01-01

    This study investigated the sorption-desorption characteristics of Ni, Zn, and Pb on two soil types in the environment of a municipal waste disposal facility. Batch experiments were carried out in ambient temperature and in unadjusted and close to soil field pH conditions. The kinetics of of adsorption fitted a pseudo second-order model. Rate constants were calculated and an empirical model for predicting adsorption of metal ions at a given time was derived from these constants. The equilibrium sorption capacities for the heavy metals in the clay and sandy loam soils were estimated using the Linear, Freundlich, and Langmuir isotherm models. The sorption process of Ni, Pb, and Zn in both soils generally fitted well with the Freundlich isotherm model at moderate to high initial concentration range of the metals. The Langmuir isotherm was applicable to the adsorption of Ni and Zn only. The adsorption capacity of the clay soil for the metals followed the order Zn > Pb > Ni. In the sandy loam soil, the adsorption capacity for the metals under the same conditions followed the order Pb > Zn > Ni. The adsorption capacities for the metals were in order of 1mg/g in both the landfill clay soil and the Lukutan River sandy loam soil, with slightly higher values for the clay soil. Desorption was minimal, less than 1% in the clay soil and about 2% in the sandy loam soil. Sorption reversibility tests showed that the retention of the metals in both soils follows the order Ni> Pb> Zn. (author)

  13. Assessment of Pb, Zn, Cu, Ni and Cr in vegetables grown around Zanjan

    Directory of Open Access Journals (Sweden)

    A. Afshari

    2017-05-01

    Full Text Available This study was conducted aimed to assess the potential risk of heavy metals on human health resulting from consumption of vegetables. To this end, the vegetables grown around town and industrial center of Zanjan were sampled randomly. Plant samples were digested using hydrochloric acid (HCL 2 M and concentration of elements (Pb, Zn, Cu, Ni and Cr were recorded by atomic absorption. Obtained means of heavy metals in all vegetables (N= 32 for Zn, Pb, Cu, Ni and Cr is 98.8, 31.9, 19.3, 4.4 and 2.3 mg/kg, respectively. The highest amount of metal pollution index (MPI in the basil and the lowest was observed in the garden cress (respectively 16.46 and 4.88. Daily intake (EDI for zinc, copper and chromium in all age groups was lower than the provisional tolerable daily intake (PTDI. This amount for nickel was 2, 1.6 and 1.3 %, and for Pb 28.1, 22 and 19 % higher than PTDI in children, adults and seniors, respectively. The potential risk (THQ was calculated in all age groups as Pb>>Cu>Zn>Ni>Cr. The potential risks (THQ of chromium, nickel and zinc were calculated lower than 1, for copper a bit more of 1 and for lead much higher than 1. Health index (HI for children, adults and the elderly was estimated 31.331, 24.58 and 21.14, respectively, with the largest contribution of the lead (89.7%.

  14. Impedance analysis of PbS colloidal quantum dot solar cells with different ZnO nanowire lengths

    Science.gov (United States)

    Fukuda, Takeshi; Takahashi, Akihiro; Wang, Haibin; Takahira, Kazuya; Kubo, Takaya; Segawa, Hiroshi

    2018-03-01

    The photoconversion efficiency of colloidal quantum dot (QD) solar cells has been markedly improved by optimizing the surface passivation and device structure, and details of device physics are now under investigation. In this study, we investigated the resistance and capacitance components at the ZnO/PbS-QD interface and inside a PbS-QD layer by measuring the impedance spectrum while the interface area was controlled by changing the ZnO nanowire length. By evaluating the dependence of optical intensity and DC bias voltage on the ZnO nanowire length, only the capacitance was observed to be influenced by the interface area, and this indicates that photoinduced carriers are generated at the surface of PbS-QD. In addition, since the capacitance is proportional to the surface area of the QD, the interface area can be evaluated from the capacitance. Finally, photovoltaic performance was observed to increase with increasing ZnO nanowire length owing to the large interface area, and this result is in good agreement with the capacitance measurement.

  15. Zn Electrodeposition on Single-Crystal GaN(0001 Surface: Nucleation and Growth Mechanism

    Directory of Open Access Journals (Sweden)

    Fei Peng

    2016-01-01

    Full Text Available The electrochemical deposition of zinc on single-crystal n-type GaN(0001 from a sulphate solution has been investigated on the basis of electrochemical techniques including cyclic voltammetry, chronoamperometry, and Tafel plot. The morphology and crystal structure of zinc deposits have been characterized by means of scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray analysis. The result has revealed that the deposition of Zn on GaN electrode commenced at a potential of −1.12 V versus Ag/AgCl. According to the Tafel plot, an exchange current density of ~0.132 mA cm−2 was calculated. In addition, the current transient measurements have shown that Zn deposition process followed the instantaneous nucleation in 10 mM ZnSO4 + 0.5 M Na2SO4 + 0.5 M H3BO3 (pH = 4.

  16. Decadal trends in atmospheric deposition in a high elevation station: Effects of climate and pollution on the long-range flux of metals and trace elements over SW Europe

    Science.gov (United States)

    Camarero, Lluís; Bacardit, Montserrat; de Diego, Alberto; Arana, Gorka

    2017-10-01

    Atmospheric deposition collected at remote, high elevation stations is representative of long-range transport of elements. Here we present time-series of Al, Fe, Ti, Mn, Zn, Ni, Cu, As, Cd and Pb deposition sampled in the Central Pyrenees at 2240 m a.s.l, representative of the fluxes of these elements over South West Europe. Trace element deposition did not show a simple trend. Rather, there was statistical evidence of several underlying factors governing the variability of the time-series recorded: seasonal cycles, trends, the effects of the amount of precipitation, climate-controlled export of dust, and changes in anthropogenic emissions. Overall, there were three main modes of variation in deposition. The first mode was related to North Atlantic Oscillation (NAO), and affected Al, Fe, Ti, Mn and Pb. We interpret this as changes in the dust export from Northern Africa under the different meteorological conditions that the NAO index indicates. The second mode was an upward trend related to a rise in the frequency of precipitation events (that also lead to an increase in the amount). More frequent events might cause a higher efficiency in the scavenging of aerosols. As, Cu and Ni responded to this. And finally, the third mode of variation was related to changes in anthropogenic emissions of Pb and Zn.

  17. ZnO/SnO{sub 2} nanoflower based ZnO template synthesized by thermal chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sin, N. D. Md., E-mail: diyana0366@johor.uitm.edu.my; Amalina, M. N., E-mail: amalina0942@johor.uitm.edu.my [NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Fakulti Kejuruteraan Elektrik, Universiti Teknologi MARA Cawangan Johor, Kampus Pasir Gudang, 81750 Masai, Johor (Malaysia); Ismail, Ahmad Syakirin, E-mail: kyrin-samaxi@yahoo.com; Shafura, A. K., E-mail: shafura@ymail.com; Ahmad, Samsiah, E-mail: samsiah.ahmad@johor.uitm.edu.my; Mamat, M. H., E-mail: mhmamat@salam.uitm.edu.my [NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Rusop, M., E-mail: rusop@salam.uitm.edu.my [NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    The ZnO/SnO{sub 2} nanoflower like structures was grown on a glass substrate deposited with seed layer using thermal chemical vapor deposition (CVD) with combining two source materials. The ZnO/SnO{sub 2} nanoflower like structures had diameter in the range 70 to 100 nm. The atomic percentage of ZnO nanoparticle , SnO{sub 2} nanorods and ZnO/SnO{sub 2} nanoflower was taken using EDS. Based on the FESEM observations, the growth mechanism is applied to describe the growth for the synthesized nanostructures.

  18. Hydrothermal, biogenic, and seawater components in metalliferous black shales of the Brooks Range, Alaska: Synsedimentary metal enrichment in a carbonate ramp setting

    Science.gov (United States)

    Slack, John F.; Selby, David; Dumoulin, Julie A.

    2015-01-01

    Trace element and Os isotope data for Lisburne Group metalliferous black shales of Middle Mississippian (early Chesterian) age in the Brooks Range of northern Alaska suggest that metals were sourced chiefly from local seawater (including biogenic detritus) but also from externally derived hydrothermal fluids. These black shales are interbedded with phosphorites and limestones in sequences 3 to 35 m thick; deposition occurred mainly on a carbonate ramp during intermittent upwelling under varying redox conditions, from suboxic to anoxic to sulfidic. Deposition of the black shales at ~335 Ma was broadly contemporaneous with sulfide mineralization in the Red Dog and Drenchwater Zn-Pb-Ag deposits, which formed in a distal marginal basin.Relative to the composition of average black shale, the metalliferous black shales (n = 29) display large average enrichment factors (>10) for Zn (10.1), Cd (11.0), and Ag (20.1). Small enrichments (>2–seawater. Such moderate enrichments, which are common in other metalliferous black shales, suggest wholly marine sources (seawater and biogenic material) for these metals, given similar trends for enrichment factors in organic-rich sediments of modern upwelling zones on the Namibian, Peruvian, and Chilean shelves. The largest enrichment factors for Zn and Ag are much higher (1.4 × 107 and 2.9 × 107, respectively), consistent with an appreciable hydrothermal component. Other metals such as Cu, Pb, and Tl that are concentrated in several black shale samples, and are locally abundant in the Red Dog and Drenchwater Zn-Pb-Ag deposits, may have a partly hydrothermal origin but this cannot be fully established with the available data. Enrichments in Cr (up to 7.8 × 106) are attributed to marine and not hydrothermal processes. The presence in some samples of large enrichments in Eu (up to 6.1 × 107) relative to modern seawater and of small positive Eu anomalies (Eu/Eu* up to 1.12) are considered unrelated to hydrothermal activity, instead

  19. High quality antireflective ZnS thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    Tec-Yam, S.; Rojas, J.; Rejón, V.; Oliva, A.I.

    2012-01-01

    Zinc sulfide (ZnS) thin films for antireflective applications were deposited on glass substrates by chemical bath deposition (CBD). Chemical analysis of the soluble species permits to predict the optimal pH conditions to obtain high quality ZnS films. For the CBD, the ZnCl 2 , NH 4 NO 3 , and CS(NH 2 ) 2 were fixed components, whereas the KOH concentration was varied from 0.8 to 1.4 M. Groups of samples with deposition times from 60 to 120 min were prepared in a bath with magnetic agitation and heated at 90 °C. ZnS films obtained from optimal KOH concentrations of 0.9 M and 1.0 M exhibited high transparency, homogeneity, adherence, and crystalline. The ZnS films presented a band gap energy of 3.84 eV, an atomic Zn:S stoichiometry ratio of 49:51, a transmittance above 85% in the 300–800 nm wavelength range, and a reflectance below 25% in the UV–Vis range. X-ray diffraction analysis revealed a cubic structure in the (111) orientation for the films. The thickness of the films was tuned between 60 nm and 135 nm by controlling the deposition time and KOH concentration. The incorporation of the CBD-ZnS films into ITO/ZnS/CdS/CdTe and glass/Mo/ZnS heterostructures as antireflective layer confirms their high optical quality. -- Highlights: ► High quality ZnS thin films were prepared by chemical bath deposition (CBD). ► Better CBD-ZnS films were achieved by using 0.9 M-KOH concentration. ► Reduction in the reflectance was obtained for ZnS films used as buffer layers.

  20. The effect of water molecules on the thiol collector interaction on the galena (PbS) and sphalerite (ZnS) surfaces: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Long, Xianhao [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Chen, Ye, E-mail: fby18@126.com [College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China); Chen, Jianhua, E-mail: jhchen@gxu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China); Xu, Zhenghe; Liu, Qingxia [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2V4 (Canada); Du, Zheng [National Supercomputing Center in Shenzhen, Shenzhen 518055 (China)

    2016-12-15

    Highlights: • Water adsorption has a greater effect on the electron distribution of ZnS surface than PbS surface. • Water adsorption decreases the reactivity of ZnS surface atoms but improves that of PbS. • Thiol collectors cannot interact with the hydrated ZnS surface. • The hydration has little influence on the interaction of thiol collectors with PbS surface. - Abstracts: In froth flotation the molecular interaction between reagents and mineral surfaces take place at the solid liquid interface. In this paper, the effect of water molecule on the three typical thiol collectors (xanthate, dithiocarbomate and dithiophosphate) interactions at the galena (PbS) and sphalerite (ZnS) surfaces has been studied adopting density functional theory (DFT). The results suggests that the presence of water molecule shows a greater influence on the electron distribution of ZnS surface than PbS surface, and reduce the reactivity of ZnS surface atoms but improves the reactivity of PbS surface atoms during the reaction with xanthate. Water adsorption could also reduce the covalent binding between Zn and S atoms but have little influence on Pb-S bond. In the presence of water, xanthate, dithiocarbomate (DTC) and dithiophosphate (DTP) could not adsorb on the sphalerite surface. And for galena (PbS) surface, the interaction of DTP is the strongest, then the DTC and the interaction of xanthate is the weakest. These results agree well with the flotation practice.

  1. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils

    International Nuclear Information System (INIS)

    Lamb, Dane T.; Ming Hui; Megharaj, Mallavarapu; Naidu, Ravi

    2009-01-01

    We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl 2 ) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg -1 , 10.3 to 95 mg kg -1 Zn, 0.1 to 1.8 mg Cd kg -1 and 5.2 to 183 mg kg -1 Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg -1 , 312 to 39,000 mg kg -1 Zn, 6 to 302 mg Cd kg -1 and 609 to 12,000 mg kg -1 Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K d ) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.

  2. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Dane T.; Ming Hui; Megharaj, Mallavarapu [Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), P.O. Box 486, Salisbury, SA 5106 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), P.O. Box 486, Salisbury, SA 5106 (Australia)

    2009-11-15

    We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl{sub 2}) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg{sup -1}, 10.3 to 95 mg kg{sup -1} Zn, 0.1 to 1.8 mg Cd kg{sup -1} and 5.2 to 183 mg kg{sup -1} Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg{sup -1}, 312 to 39,000 mg kg{sup -1} Zn, 6 to 302 mg Cd kg{sup -1} and 609 to 12,000 mg kg{sup -1} Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K{sub d}) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.

  3. Influence of Zn and Pb on Rhizopogon roseolus mycelium - energy dispersion spectroscopy and cytochemical investigation

    Directory of Open Access Journals (Sweden)

    Katarzyna Turnau

    2014-01-01

    Full Text Available Mycelium isolated from fruitbodies of Rhizopogon roseolus, collected from calamine wastes in Poland, was cultivated on agar media supplemented with Zn or Pb salts. The stimulation of exudate production by the aerial mycelium and the mycelium growing on the surface of the media, accompanied by the change of mycelium pigmentation, was found as a result of Zn application. The presence of Pb resulted mainly in the stimulation of crystalloid production on the surface of mycelium, in direct contact with the medium. Exudate droplets formed on the surface of mycelium cultivated on media with and without the Zn addition, were investigated by means of cytochemical tests (PATAg and Gomori-Swift reaction. In the control media most droplets gave a diffused, positive reaction to both tests. In media supplemented with Zn salts, besides the droplet-like material described in the control also another kind of exudate was observed. It was characterized by the collar showing apositive Gomori-Swift reaction, while the rest of the exudate had an oily appearance and gave a faint or no reaction to both tests. Comparative research by means of scanning electron microscopy accompanied by energy dispersion spectroscopy, was carried out showing the differences in exudate and in mycelia composition as a result of the Zn and Pb presence in the medium.

  4. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    OpenAIRE

    Meilkhova, O.; Čížek, J.; Lukáč,, F.; Vlček, M.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    ZnO films with thickness of ~80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects...

  5. Effect of Zn(NO3)2 concentration in hydrothermal-electrochemical deposition on morphology and photoelectrochemical properties of ZnO nanorods

    Science.gov (United States)

    Yilmaz, Ceren; Unal, Ugur

    2016-04-01

    Zn(NO3)2 concentration had been reported to be significantly influential on electrodeposition of ZnO structures. In this work, this issue is revisited using hydrothermal-electrochemical deposition (HED). Seedless, cathodic electrochemical deposition of ZnO films is carried out on ITO electrode at 130 °C in a closed glass reactor with varying Zn(NO3)2 concentration. Regardless of the concentration of Zn2+ precursor (0.001-0.1 M) in the deposition solution, vertically aligned 1-D ZnO nanorods are obtained as opposed to electrodepositions at lower temperatures (70-80 °C). We also report the effects of high bath temperature and pressure on the photoelectrochemical properties of the ZnO films. Manipulation of precursor concentration in the deposition solution allows adjustment of the aspect ratio of the nanorods and the degree of texturation along the c-axis; hence photoinduced current density. HED is shown to provide a single step synthesis route to prepare ZnO rods with desired aspect ratio specific for the desired application just by controlling the precursor concentration.

  6. Deposition of polycrystalline Cd{sub 1-x}Zn{sub x} Te films on ZnTe/graphite and graphite substrates by close-spaced sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Tamotsu; Akiba, Sho; Takahashi, Kohei; Nagatsuka, Satsuki; Kanda, Yohei [Department of Electrical and Electronic Engineering, Kisarazu National College of Technology, 2-11-1 Kiyomidai-higashi, Kisarazu, Chiba 292-0041 (Japan); Tokuda, Satoshi; Kishihara, Hiroyuki; Sato, Toshiyuki [Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan)

    2014-07-15

    The effects of a ZnTe layer on the deposition of a Cd{sub 1-x}Zn{sub x}Te (CZT) layer in the initial stage of the close-spaced sublimation (CSS) deposition were investigated. The deposition rate was almost constant in the initial stage of the CdTe deposition on the ZnTe/graphite substrates. However, the deposition rate within 1 minute was lower than that after 1 minute in the CdTe deposition on graphite substrates. This result suggests that nucleation of CdTe directly deposited on graphite substrate is difficult when compared to that with a ZnTe layer. Furthermore, the effects of CdCl{sub 2} and ZnTe additions to the CdTe sources in the CSS deposition were also investigated. Both the grain size and the intensity of donor-acceptor pair (DAP) emission in photoluminescence (PL) spectra were decreased by the effect of CdCl{sub 2} addition. Zn content in CZT films was controlled by the ZnTe ratio in the CdTe/ZnTe powder sources. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. TiO2/PbS/ZnS heterostructure for panchromatic quantum dot sensitized solar cells synthesized by wet chemical route

    Science.gov (United States)

    Bhat, T. S.; Mali, S. S.; Sheikh, A. D.; Korade, S. D.; Pawar, K. K.; Hong, C. K.; Kim, J. H.; Patil, P. S.

    2017-11-01

    So far we developed the efficient photoelectrodes which can harness the UV as well as the visible regime of the solar spectrum effectively. In order to exploit a maximum portion of solar spectrum, it is necessary to study the synergistic effect of a photoelectrode comprising UV and visible radiations absorbing materials. Present research work highlights the efforts to study the synchronized effect of TiO2 and PbS on the power conversion efficiency of quantum dot sensitized solar cell (QDSSC). A cascade structure of TiO2/PbS/ZnS QDSSC is achieved to enhance the photoconversion efficiency of TiO2/PbS system by incorporating a surface passivation layer of ZnS which avoids the recombination of charge carriers. A QDSSC is fabricated using a simple and cost-effective technique such as hydrothermally grown TiO2 nanorod arrays decorated with PbS and ZnS using successive ionic layer adsorption and reaction (SILAR) method. Synthesized electrode materials are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), High resolution-transmission electron microscopy (TEM), STEM-EDS mapping, optical and solar cell performances. Phase formation of TiO2, PbS and ZnS get confirmed from the XPS study. FE-SEM images of the photoelectrode show uniform coverage of PbS QDs onto the TiO2 nanorods which increases with increasing number of SILAR cycles. The ZnS layer not only improves the charge transport but also reduces the photocorrosion of lead chalcogenides in the presence of a liquid electrolyte. Finally, the photoelectrochemical (PEC) study is carried out using an optimized photoanode comprising TiO2/PbS/ZnS assembly. Under AM 1.5G illumination the TiO2/PbS/ZnS QDSSC photoelectrode shows 4.08 mA/cm2 short circuit current density in a polysulfide electrolyte which is higher than that of a bare TiO2 nanorod array.

  8. Effect of Ag doping on the properties of ZnO thin films for UV stimulated emission

    Science.gov (United States)

    Razeen, Ahmed S.; Gadallah, A.-S.; El-Nahass, M. M.

    2018-06-01

    Ag doped ZnO thin films have been prepared using sol-gel spin coating method, with different doping concentrations. Structural and morphological properties of the films have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Thin films have been optically pumped and stimulated emission has been observed with strong peaks in the UV region. The UV stimulated emission is found to be due to exciton-exciton scattering, and Ag doping promoted this process by increasing the excitons concentrations in the ZnO lattice. Output-input intensity relation and peak emission, FWHM, and quantum efficiency relations with pump intensity have been reported. The threshold for which stimulated emission started has been evaluated to be about 18 MW/cm2 with quantum efficiency of about 58.7%. Mechanisms explaining the role of Ag in enhancement of stimulated emission from ZnO thin films have been proposed.

  9. The effect of Ag and Ca additions on the age hardening response of Mg–Zn alloys

    International Nuclear Information System (INIS)

    Bhattacharjee, T.; Mendis, C.L.; Oh-ishi, K.; Ohkubo, T.; Hono, K.

    2013-01-01

    The effect of sole and combined additions of Ag and Ca in enhancing the age hardening response in a Mg–2.4Zn (at%) alloy have been studied by systematic microstructure investigations using transmission electron microscopy (TEM) and three dimensional atom probe (3DAP). In the early aging stage of a Mg–2.4Zn–0.1Ag–0.1Ca (at%) alloy at 160 °C, Zn-rich Guinier Preston (G.P.) zones form with Ag and Ca enrichment. Further aging lead to the formation of fine β′ 1 precipitates with Ag and Ca enrichment. We confirmed that the G.P. zones do not form in the Mg–2.4Zn (at%) binary alloy at 160 °C, but form after a prolonged aging at 70 °C. This suggests that the combined addition of Ag and Ca shifts the metastable solvus for the G.P. zones to a higher temperature, thereby making it possible to form G.P. zones even at the artificial aging temperature of 160 °C. Since G.P. zones act as nucleation sites for the β′ 1 precipitates, the peak-aged microstructure is refined substantially by the addition of Ag and Ca

  10. Electrodeposition and Characterization of Mn-Cu-Zn Alloys for Corrosion Protection Coating

    Science.gov (United States)

    Tsurtsumia, Gigla; Gogoli, David; Koiava, Nana; Kakhniashvili, Izolda; Jokhadze, Nunu; Lezhava, Tinatin; Nioradze, Nikoloz; Tatishvili, Dimitri

    2017-12-01

    Mn-Cu-Zn alloys were electrodeposited from sulphate bath, containing citrate or EDTA and their mixtures as complexing ligands. The influence of bath composition and deposition parameters on alloys composition, cathodic current efficiency and structural and electrochemical properties were studied. At a higher current density (≥ 37.5 A dm-2) a uniform surface deposit of Mn-Cu-Zn was obtained. Optimal pH of electrolyte (0.3 mol/dm3Mn2+ + 0.6 mol/dm3 (NH4)2SO4 +0.1 mol/dm3Zn2++0.005 mol/dm3 Cu2++ 0.05mol/dm3Na3Cit + 0.15mol/dm3 EDTA; t=300C; τ=20 min) for silvery, nonporous coating of Mn-Cu-Zn alloy was within 6.5-7.5; coating composition: 71-83% Mn, 6-7.8% Cu, 11.5-20% Zn, current efficiency up to 40%. XRD patterns revealed BCT (body centred tetragonal) γ-Mn solid phase solution (lattice constants a=2.68 Å c=3.59 Å). Corrosion measurements of deposited alloys were performed in aerated 3.5% NaCl solution. The corrosion current density (icorr) of the electrodeposited alloys on carbon steel was 10 times lower than corrosion rate of pure zinc and manganese coatings. Triple alloy coatings corrosion potential (Ecorr = -1140 mV vs. Ag/AgCl) preserved negative potential value longer (more than three months) compared to carbon steel substrate (Ecorr = -670 mV vs. Ag/AgCl). Tafel polarization curves taken on Mn-Cu-Zn alloy coating in aerated 3.5% NaCl solution did not show a typical passivation behaviour which can be explained by formation oflow solubility of adherent corrosion products on the alloy surface. Corrosion test of Mn-Cu-Zn electrocoating in chlorine environment shows that it is the best cathodic protective coating for a steel product.

  11. Late-Hercynian intrusion-related gold deposits: An integrated model on the Tighza polymetallic district, central Morocco

    Science.gov (United States)

    Éric, Marcoux; Khadija, Nerci; Yannick, Branquet; Claire, Ramboz; Gilles, Ruffet; Jean-Jacques, Peucat; Ross, Stevenson; Michel, Jébrak

    2015-07-01

    Gold have been recently recognized in the Tighza (formerly Jebel Aouam) district, in the Hercynian belt of central Morocco. This district has long been known for its W mineralization, as well as major Pb-Ag-Zn, and minor Sb-Ba deposits, all geographically associated with late-Hercynian calc-alkaline magmatism. Gold mineralization in the district is mainly hosted by thick W-Au quartz veins located around the "Mine granite" small granitic plug. Within the veins, gold grade is highest (up to 70 g/t) close to the granite but rapidly decreases going outward from the granite, defining a perigranitic zoning. Anomalous gold grades have also been measured in hydrothermal skarn layers close to two other granitic plugs (Kaolin granite and Mispickel granite), associated with disseminated As-Fe sulfides. The paragenetic sequence for the W-Au quartz veins shows three stages: (1) an early oxidized stage with wolframite-scheelite associated with early quartz (Q1), (2) an intermediate Bi-As-Te-Mo-Au sulfide stage with loellingite, bismuth minerals and native gold with a later quartz (Q2), restricted to a narrow distance from the granite, and (3) a late lower temperature As-Cu-Zn-(Pb) stage with abundant massive pyrrhotite, arsenopyrite and sphalerite, locally forming independent veins ("pyrrhotite vein"). Both Q1 hyaline and Q2 saccharoidal gold-bearing quartz display aqua-carbonic fluids with minor H2S and Cu and an homogeneous composition (81 mole% H2O, 18 mole% CO2 and about 1 mole% NaCl). The trapping pressure is estimated to 1.5-2 kbar with temperature ranging from 300 to 350 °C. Q1 inclusions have exploded indicating an uplift of the Tighza block, that lead to saccharoidal Q2 quartz deposition with multiphase NaCl-saturated fluid inclusions. 40Ar/39Ar dating demonstrates that the "Mine granite", tungsten skarnoid, scheelite-molybdenite veins, and very likely gold-bearing veins are coeval, emplaced at 286 ± 1 Ma. Multiple and widespread metal sources are indicated by

  12. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    Science.gov (United States)

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-09-01

    Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb

  13. Photoluminescence of spray pyrolysis deposited ZnO nanorods

    Directory of Open Access Journals (Sweden)

    Mikli Valdek

    2011-01-01

    Full Text Available Abstract Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm were grown in air onto a preheated soda-lime glass (SGL or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods. PACS: 78.55.Et, 81.15.Rs, 61.46.Km

  14. Microstructural and optical properties of nanocrystalline ZnO deposited onto vertically aligned carbon nanotubes by physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Borkar, Tushar [Department of Materials Science and Engineering and Center for Advanced Research and Technology, University of North Texas, Denton 76203 (United States); Chang, Won Seok [Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Hwang, Jun Yeon, E-mail: Junyeon.Hwang@kist.re.kr [Department of Materials Science and Engineering and Center for Advanced Research and Technology, University of North Texas, Denton 76203 (United States); Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeonbuk 565-902 (Korea, Republic of); Shepherd, Nigel D.; Banerjee, Rajarshi [Department of Materials Science and Engineering and Center for Advanced Research and Technology, University of North Texas, Denton 76203 (United States)

    2012-10-15

    Nanocrystalline ZnO films with thicknesses of 5 nm, 10 nm, 20 nm, and 50 nm were deposited via magnetron sputtering onto the surface of vertically aligned multi-walled carbon nanotubes (MWCNTs). The ZnO/CNTs heterostructures were characterized by scanning electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. No structural degradation of the CNTs was observed and photoluminescence (PL) measurements of the nanostructured ZnO layers show that the optical properties of these films are typical of ZnO deposited at low temperatures. The results indicate that magnetron sputtering is a viable technique for growing heterostructures and depositing functional layers onto CNTs.

  15. Zircon and cassiterite U-Pb ages, petrogeochemistry and metallogenesis of Sn deposits in the Sibao area, northern Guangxi: constraints on the neoproterozoic granitic magmatism and related Sn mineralization in the western Jiangnan Orogen, South China

    Science.gov (United States)

    Chen, Lei; Wang, Zongqi; Yan, Zhen; Gong, Jianghua; Ma, Shouxian

    2018-01-01

    A number of Sn deposits associated with Neoproterozoic granites are located in the western Jiangnan Orogen of northern Guangxi. The distribution of Sn mineralization is controlled by faults occurring within and around the Neoproterozoic granites. The hydrothermal alteration and mineralization of these Sn deposits exhibit zoning from the granite to the wall rock. The laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb ages of the cassiterite and zircon from ore-bearing granite in the Menggongshan Sn deposit are 829 ± 19 Ma and 822 ± 4 Ma, respectively, indicating that the Sn mineralization and granites formed in the Neoproterozoic and can considered to be products of coeval magmatic and hydrothermal activities. The ore-bearing granite and Neoproterozoic granites in northern Guangxi are high-K, calc-alkaline, peraluminous, S-type granites that are depleted in Nb, Ti, Sr and Ba and highly enriched in Rb, U and Pb. All the granites show steep fractionated light rare earth element (LREE) and flat heavy rare earth element (HREE) patterns, with strongly negative Eu anomalies. The ɛHf(t) values of the ore-bearing granite vary from - 9.0 to - 1.7, with an average value of - 4.1. Additionally, the ore-bearing granite exhibits low oxygen fugacity values. The magmatic source experienced partial melting during their evolution, and the source was dominated by recycled heterogeneous continental crustal materials. Our evidence confirms that the Neoproterozoic granites in northern Guangxi formed in a collisional tectonic setting. The collision between the Cathaysia and Yangtze blocks or between the Sibao arc (Jiangnan arc) and the Yangtze Block caused asthenospheric upwelling, leading to partial melting and recycling of the crust, forming the peraluminous S-type granites in the Neoproterozoic. The Sn mineralization has a close genetic relationship with the Neoproterozoic granite. The highly differentiated, peraluminous, B-enriched, crustally derived

  16. Zn, Pb, Cr and Cd concentrations in fish, water and sediment from ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Zn, Pb, Cr and Cd concentrations in fish, water and sediment from the Azuabie Creek,. Port Harcourt. ... Heavy metal contamination in the aquatic ... Azuabie Creek and the associated water ..... Public in Tianjin, China via Consumption of.

  17. Phase transformation and morphology of the intermetallic compounds formed at the Sn-9Zn-3.5Ag/Cu interface in aging

    International Nuclear Information System (INIS)

    Hon, M.-H.; Chang, T.-C.; Wang, M.-C.

    2008-01-01

    The morphology and phase transformation of the intermetallic compounds (IMCs) formed at the Sn-9Zn-3.5Ag/Cu interface in a solid-state reaction have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The monoclinic η'-Cu 6 Sn 5 transforms to the hexagonal η-Cu 6 Sn 5 and the orthorhombic Cu 5 Zn 8 transforms to the body-centered cubic (bcc) γ-Cu 5 Zn 8 as aged at 180 deg. C. The scallop-shaped Cu 6 Sn 5 layer is retained after aging at 180 deg. C for 1000 h. In the solid-state reaction, Ag is repelled from η'-Cu 6 Sn 5 and reacts with Sn to form Ag 3 Sn, and the Cu 5 Zn 8 layer decomposes. Kirkendall voids are not observed at the Sn-9Zn-3.5Ag/Cu interface even after aging at 180 deg. C for 1000 h

  18. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Melikhova, O.; Čížek, J.; Lukáč, F.; Vlček, M.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO

  19. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Melikhova, O., E-mail: oksivmel@yahoo.com [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Čížek, J.; Lukáč, F.; Vlček, M. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Novotný, M.; Bulíř, J.; Lančok, J. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Anwand, W.; Brauer, G. [Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510 119, D-01314 Dresden (Germany); Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P. [National Centre for Plasma Science and Technology, School of Physical Sciences, Glasnevin, Dublin 9 (Ireland)

    2013-12-15

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO.

  20. Mechanism of formation of perovskite phase and dielectric properties of Pb(Zn,Mg)1/3Nb2/3O3 ceramics prepared by columbite precursor routes

    International Nuclear Information System (INIS)

    Jang, H.M.; Cho, S.R.; Lee, K.M.

    1995-01-01

    The mechanism of formation of the perovskite phase and the dielectric properties of Pb(Zn,Mg) 1/3 Nb 2/3 O 3 (PZMN) ceramics were examined using two different types of columbite precursors, (Mg,Zn)Nb 2 O 6 (MZN) and MgNb 2 O 6 + ZnNb 2 O 6 (MN + ZN). The formation of perovskite phase in the PbO + MN + ZN system is characterized by an initial rapid formation of Mg-rich perovskite phase, followed by a sluggish formation of Zn-rich perovskite phase. On the other hand, due to the formation of pyrochlore phase of mixed divalent cations Pb 2-x (Zn,Mg) y Nb 2-y O 7-x-3y/2 , the pyrochlore/perovskite transformation in the PbO + MZN system proceeded uniformly with a spatial homogeneity. Further analysis suggested that the formation of perovskite phase is a diffusion-controlled process. The degree of diffuseness of the rhombohedral/cubic phase transition (DPT) is higher in the PbO + MN + ZN system than in the PbO + MZN specimen for T > T max (temperature of the dielectric permittivity maximum), indicating a broadened compositional distribution of the B-site cations in the PbO + MN + ZN system

  1. Structural and Magnetic Properties of Mn doped ZnO Thin Film Deposited by Pulsed Laser Deposition

    KAUST Repository

    Baras, Abdulaziz

    2011-07-01

    Diluted magnetic oxide (DMO) research is a growing field of interdisciplinary study like spintronic devices and medical imaging. A definite agreement among researchers concerning the origin of ferromagnetism in DMO has yet to be reached. This thesis presents a study on the structural and magnetic properties of DMO thin films. It attempts to contribute to the understanding of ferromagnetism (FM) origin in DMO. Pure ZnO and Mn doped ZnO thin films have been deposited by pulsed laser deposition (PLD) using different deposition conditions. This was conducted in order to correlate the change between structural and magnetic properties. Structural properties of the films were characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM). The superconducting quantum interference device (SQUID) was used to investigate the magnetic properties of these films. The structural characterizations showed that the quality of pure ZnO and Mn doped ZnO films increased as oxygen pressure (PO) increased during deposition. All samples were insulators. In Mn doped films, Mn concentration decreased as PO increased. The Mn doped ZnO samples were deposited at 600˚C and oxygen pressure from 50-500mTorr. All Mn doped films displayed room temperature ferromagnetism (RTFM). However, at 5 K a superparamagnetic (SPM) behavior was observed in these samples. This result was accounted for by the supposition that there were secondary phase(s) causing the superparamagnetic behavior. Our findings hope to strengthen existing research on DMO origins and suggest that secondary phases are the core components that suppress the ferromagnetism. Although RTFM and SPM at low temperature has been observed in other systems (e.g., Co doped ZnO), we are the first to report this behavior in Mn doped ZnO. Future research might extend the characterization and exploration of ferromagnetism in this system.

  2. Effects of GeI2 or ZnI2 addition to perovskite CH3NH3PbI3 photovoltaic devices

    Science.gov (United States)

    Tanaka, Hiroki; Ohishi, Yuya; Oku, Takeo

    2018-01-01

    CH3NH3PbI3 added with GeI2 or ZnI2 perovskite photovoltaic devices were fabricated characterized. The surface coverages of the perovskite layers were improved by the addition of GeI2 or ZnI2. Formation of PbI2 observed for the pristine CH3NH3PbI3 was suppressed by the GeI2 or ZnI2 addition, which resulted in the improvement of the conversion efficiencies of the perovskite photovoltaic devices.

  3. Long life, low cost, rechargeable AgZn battery for non-military applications

    Science.gov (United States)

    Brown, Curtis C.

    1996-03-01

    Of the rechargeable (secondary) battery systems with mature technology, the silver oxide-zinc system (AgZn) safely offers the highest power and energy (watts and watt hours) per unit of volume and mass. As a result they have long been used for aerospace and defense applications where they have also proven their high reliability. In the past, the expense associated with the cost of silver and the resulting low production volume have limited their commercial application. However, the relative low cost of silver now make this system feasible in many applications where high energy and reliability are required. One area of commercial potential is power for a new generation of sophisticated, portable medical equipment. AgZn batteries have recently proven ``enabling technology'' for power critical, advanced medical devices. By extending the cycle calendar life to the system (offers both improved performance and lower operating cost), a combination is achieved which may enable a wide range of future electrical devices. Other areas where AgZn batteries have been used in nonmilitary applications to provide power to aid in the development of commercial equipment have been: (a) Electrically powered vehicles; (b) Remote sensing in nuclear facilities; (c) Special effects equipment for movies; (d) Remote sensing in petroleum pipe lines; (e) Portable computers; (f) Fly by wire systems for commercial aircraft; and (g) Robotics. However none of these applications have progressed to the level where the volume required will significantly lower cost.

  4. Luminescence decay of S Zn::Ag and O Zn:Ga scintillation detectors excited by a pulsed laser; Evolucion temporal de la luminiscencia producida por un laser pulsado de los detectores de centello SZn:Ag y OZn:Ga

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.; Campos, J.

    1981-07-01

    In the present work a high sensitivity experimental set up for luminescence decay measurements in the 1 0 {sup -}1 sec range has been developed. As an application, luminescence light decay In S Zn:Ag and 0Zn:Ga after excitation by a pulsed N{sub 2} laser has been measured. In SZnrAg, measurements of total light decay was compared with donor acceptor pairs theory. In both substances, spectral evolution in the first 15 sec was investigated. (Author) 4 refs.

  5. Historical and current atmospheric deposition to the epilithic lichen Xanthoparmelia in Maricopa County, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Zschau, T.; Getty, S.; Gries, C.; Ameron, Y.; Zambrano, A.; Nash, T.H

    2003-09-01

    Spatial variation of elemental deposition to lichen receptors across Maricopa County, Arizona, USA is documented for 1998 and historical trends relative to 1974 are documented. - Spatial patterns of atmospheric deposition of trace elements to an epilithic lichen were assessed using a spatial grid of 28 field sites in 1998 throughout Maricopa County, Arizona, USA. In addition, samples of Xanthoparmelia spp. from Arizona State University lichen herbarium material (1975-1976) was utilized for a limited number of sites in order to explore temporal trends. The lichen material was cleaned, wet digested and analyzed by ICP-MS for a suite of elemental concentrations [antimony (Sb), cadmium (Cd), cerium (Ce), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), europium (Eu), gadolinium (Gd), gold (Au), holmium (Ho), lead (Pb), lutetium (Lu), neodymium (Nd), nickel (Ni), palladium (Pd), platinum (Pt), praseodymium (Pr), samarium (Sm), scandium (Sc), silver (Ag), terbium (Tb), thulium (Tm), tin (Sn), uranium (U), ytterbium (Yb), yttrium (Y), and zinc (Zn)]. Cluster analysis and principal component analysis suggest three major factors, which, depending on regional aerosol fractionation, explain most of the variation in elemental signatures: (1) a group of widely distributed rare earth elements (2) a highly homogenous Co, Cr, Ni, and Sc component representing the influence of mafic rocks, and (3) anthropogenic emissions. Elemental concentrations in Maricopa County lichens were generally comparable to those reported for relatively unpolluted areas. Only highly urbanized regions, such as the greater Phoenix Metropolitan Area and the NW corner of the county, exhibited elevated concentrations for Zn, Cu, Pb, and Cd. Lead levels in lichens have fallen over the last 30 years by 71%, while Zn concentrations for some regions have increased by as much as 245%. From the spatial pattern of elemental deposition for Cd, Cu, Ni, Pr, Pb, and Cu, we infer that agriculture, mining

  6. Historical and current atmospheric deposition to the epilithic lichen Xanthoparmelia in Maricopa County, Arizona

    International Nuclear Information System (INIS)

    Zschau, T.; Getty, S.; Gries, C.; Ameron, Y.; Zambrano, A.; Nash, T.H.

    2003-01-01

    Spatial variation of elemental deposition to lichen receptors across Maricopa County, Arizona, USA is documented for 1998 and historical trends relative to 1974 are documented. - Spatial patterns of atmospheric deposition of trace elements to an epilithic lichen were assessed using a spatial grid of 28 field sites in 1998 throughout Maricopa County, Arizona, USA. In addition, samples of Xanthoparmelia spp. from Arizona State University lichen herbarium material (1975-1976) was utilized for a limited number of sites in order to explore temporal trends. The lichen material was cleaned, wet digested and analyzed by ICP-MS for a suite of elemental concentrations [antimony (Sb), cadmium (Cd), cerium (Ce), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), europium (Eu), gadolinium (Gd), gold (Au), holmium (Ho), lead (Pb), lutetium (Lu), neodymium (Nd), nickel (Ni), palladium (Pd), platinum (Pt), praseodymium (Pr), samarium (Sm), scandium (Sc), silver (Ag), terbium (Tb), thulium (Tm), tin (Sn), uranium (U), ytterbium (Yb), yttrium (Y), and zinc (Zn)]. Cluster analysis and principal component analysis suggest three major factors, which, depending on regional aerosol fractionation, explain most of the variation in elemental signatures: (1) a group of widely distributed rare earth elements (2) a highly homogenous Co, Cr, Ni, and Sc component representing the influence of mafic rocks, and (3) anthropogenic emissions. Elemental concentrations in Maricopa County lichens were generally comparable to those reported for relatively unpolluted areas. Only highly urbanized regions, such as the greater Phoenix Metropolitan Area and the NW corner of the county, exhibited elevated concentrations for Zn, Cu, Pb, and Cd. Lead levels in lichens have fallen over the last 30 years by 71%, while Zn concentrations for some regions have increased by as much as 245%. From the spatial pattern of elemental deposition for Cd, Cu, Ni, Pr, Pb, and Cu, we infer that agriculture, mining

  7. Apparent discrepancy in contamination history of a sub-tropical estuary evaluated through 210Pb profile and chronostatigraphical markers

    International Nuclear Information System (INIS)

    Marques Junior, Aguinaldo N.

    2005-01-01

    Heavy metal concentrations (Zn, Cd, Cu and Pb), lead stable isotopes ( 204 Pb, 206 Pb, 207 Pb, and 208 Pb), and sediment chronology ( 210 Pb method) were determined in a core from Sepetiba Bay (southeastern coast of Brazil, 30 km west of Rio de Janeiro City). During last decades, this region has been modified by increase of industrial activities, population flows, and by human interventions in the watershed area of the bay. In particular, Zn and Cd emissions are well established to the bay, and inputs started during 1960 and 1970, respectively. The core was sampled in the more contaminated northern part of the bay, in the tidal flat in front of the Coroa Grande mangrove. This area is located near to the Sao Francisco Channel, which accounts for 86 % of the freshwater supply to the bay, and receive waters from the Paraiba do Sul River (another watershed) since 1950s. The proxies at the sediment core showed three successive events: at the depth of 50-52 cm, a marked change in the stable lead isotopic ratios; at 38-42 cm depth, the beginning of the Zn concentration upwards increase; and above 30 cm, relatively high Cd concentrations. Such records can easily be explained by the local metallurgic development history. However, sediment accumulation rates evaluated using these reference levels are higher than those calculated from the 210 Pb profile by using either the Constant Initial Concentration (CIC) or the Constant Rate of Supply (CRS) models. One possible interpretation can be provided by local hydrodynamics, which has been strongly influenced by deposition of particles transported by runoff in the core site. The main source of these particles may be the mangrove flat that experimented enrichment of unsupported 210 Pb by trapping it from the rain. A model, taking into account the exponential increase of the initial 210 Pb activity observed in the core allows the calculated rates to fit well with those evaluated from the 'historic' events. (author)

  8. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity

    Science.gov (United States)

    Agnihotri, Shekhar; Bajaj, Geetika; Mukherji, Suparna; Mukherji, Soumyo

    2015-04-01

    Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a nanoreactor for in situ synthesis and as an immobilizing template in the presence of arginine. The presence of arginine enhanced the stability of ZnO deposition on the glass substrate by hindering the dissolution of zinc under alkaline conditions. Various Ag/ZnO hybrid nanorod (HNR) samples were screened to obtain a high amount of silver immobilization on the ZnO substrate. Ag/ZnO HNRs displayed potent antibacterial ability and could achieve 100% kill for both Escherichia coli and Bacillus subtilis strains under various test conditions. The hybrid material mediated its dual mode of antibacterial action through direct contact-killing and release of silver ions/nanoparticles and showed superior bactericidal performance compared to pure ZnO nanorods and colloidal AgNPs. No significant decline in antibacterial efficacy was observed even after the same substrate was repeatedly reused multiple times. Interestingly, the amount of Ag and Zn release was much below their maximal limit in drinking water, thus preventing potential health hazards. Immobilized AgNPs showed no cytotoxic effects on the human hepatocarcinoma cell line (HepG2). Moreover, treating cells with the antibacterial substrate for 24 hours did not lead to significant generation of reactive oxygen species (ROS). The good biocompatibility and bactericidal efficacy would thus make it feasible to utilize this immobilization strategy for preparing new-generation antibacterial coatings.Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a

  9. Production of porous PTFE-Ag composite thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kecskeméti, Gabriella; Hopp, Béla; Smausz, Tomi; Tóth, Zsolt; Szabó, Gábor

    2012-01-01

    The suitability of pulsed laser deposition technique for preparation of polytetrafluoroethylene (PTFE) and silver (Ag) composite thin films was demonstrated. Disk-shaped targets combined from silver and Teflon with various percentages were ablated with pulses of an ArF excimer laser. The chemical composition of the deposited layers was estimated based on deposition rates determined for the pure PTFE and Ag films. EDX and SEM analyses using secondary electron and backscattered electron images proved that the morphology of the layers is determined by the PTFE which is the main constituent and it is transferred mostly in form of grains and clusters forming a sponge-like structure with high specific surface. The Ag content is distributed over the surface of the PTFE structure. Contact angle measurements showed that with increasing the amount of Ag in the deposited layers the surface significantly enhanced the wetting properties. Conductivity experiments demonstrated that when the average silver content of the layers was increased from 0.16 to 3.28 wt% the resistance of our PTFE-Ag composite films decreased with about three orders of magnitudes (from ∼10 MΩ to ∼10 kΩ). The properties of these films suggest as being a good candidate for future electrochemical sensor applications.

  10. Effect of composition on the fabrication and properties of Ag-Cu alloy sheathed (Bi,Pb)2223 tapes

    International Nuclear Information System (INIS)

    Nakamura, Yuichi; Nakashima, Sohei; Inada, Ryoji; Oota, Akio

    2004-01-01

    To achieve high J c values as well as high mechanical strength, the effects of Ag-Cu alloy sheath and initial composition of precursor on the microstructure and J c properties of Ag-Cu alloy sheathed tapes were investigated. The alkaline-earth cuprate particles were found to form preferentially near the interface between superconducting core and sheath. Although the worse (Bi,Pb)2223 purity and microstructure of alloy sheathed tapes, the reduction of J c values of the tapes was small especially in 7-filaments tapes. This might be explained by the well grain alignment of (Bi,Pb)2223 into the middle region of the filament due to the high strength of alloy sheath. The usage of the Cu deficient composition was effective to reduce the total amount of 14:24 particle while the filament thickness should be thin to maintain J c values for Ag-Cu alloy sheathed tapes due to the lack of Cu diffusion from the sheath to convert 2212 into (Bi,Pb) in the middle region of the filament

  11. Effect of short-term Zn/Pb or long-term multi-metal stress on physiological and morphological parameters of metallicolous and nonmetallicolous Echium vulgare L. populations.

    Science.gov (United States)

    Dresler, Sławomir; Wójciak-Kosior, Magdalena; Sowa, Ireneusz; Stanisławski, Grzegorz; Bany, Izabela; Wójcik, Małgorzata

    2017-06-01

    The aim of the study was to determine the response of metallicolous and nonmetallicolous Echium vulgare L. populations to chronic multi-metal (Zn, Pb, Cd) and acute Zn (200, 400 μM) and Pb (30, 60 μM) stress. Three populations of E. vulgare, one from uncontaminated and two from metal-contaminated areas, were studied. Two types of experiments were performed - a short-term hydroponic experiment with acute Zn or Pb stress and a long-term manipulative soil experiment with the use of soils from the sites of origin of the three populations. Growth parameters, such as shoot and root fresh weight and leaf area, as well as organic acid accumulation were determined. Moreover, the concentration of selected secondary metabolites and antioxidant capacity in the three populations exposed to Pb or Zn excess were measured. Both metallicolous populations generally achieved higher biomass compared with the nonmetallicolous population cultivated under metal stress in hydroponics or on metalliferous substrates. Plants exposed to Pb or Zn excess or contaminated soil substrate exhibited higher malate and citrate concentrations compared with the reference (no metal stress) plants. It was observed that Zn or Pb stress increased accumulation of allantoin, chlorogenic and rosmarinic acids, total phenolics, and flavonoids. Moreover, it was shown that Pb sequestration in the roots or Zn translocation to the shoots may play a role in enhanced metal tolerance of metallicolous populations under acute Pb/Zn stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. The Shah-Ali-Beiglou Zn-Pb-Cu (-Ag Deposit, Iran: An Example of Intermediate Sulfidation Epithermal Type Mineralization

    Directory of Open Access Journals (Sweden)

    Khadijeh Mikaeili

    2018-04-01

    Full Text Available The Shah-Ali-Beiglou epithermal base metal-silver deposit is located in the Tarom-Hashjin metallogenic province (THMP in northwestern Iran. This deposit is hosted by quartz monzonite dikes of Oligocene age and surrounded by andesite to trachyandesite volcanic and volcaniclastic rocks of Eocene age. The subvolcanic rocks in the study area vary in composition from quartz-monzonite to monzonite and have metaluminous, calc-alkaline to shoshonitic affinity. These rocks have I-type geochemical characteristic and are related to post-collisional tectonic setting. The mineralization occurs as NE-SW and E-W-trending brecciated veins controlled by strike-slip and normal faults, which are associated to the Late Oligocene compressional regime. The mineral paragenesis of the vein mineralization is subdivided into pre-ore stage, ore stage, post-ore stage, and supergene stage. Pre-ore stage is dominated by quartz, sericite, and subhedral to anhedral pyrite as disseminated form. Ore-stage is represented by quartz, sphalerite (from 0.1 mol % to 4 mol % FeS, galena, chalcopyrite, tetrahedrite-tennantite, minor seligmannite and enargite, as vein-veinlet, cement and clast breccias. Post-ore stage is defined by deposition of quartz and carbonate along with minor barite, and supergene stage is characterized by bornite, chalcocite, covellite, hematite, goethite, and jarosite. The ore mineralization is associated with the silicic alteration. The styles of alteration are silicic, carbonate, sericitic, chloritic, and propylitic. Fluid inclusions in sphalerite have a wide range of salinities between 0.35 wt % and 21.4 wt % NaCl equivalent and homogenization temperatures range from 123 to 320 °C. The isotopic values of sulfides vary from 2.8‰ to 6.7‰ suggesting a magmatic source for the sulfur. In the present study, based on geological setting, alteration style of the host and wall rocks, main textures, mineral assemblages, composition of ore minerals, and structural

  13. Monitoring of heavy metal load - by mosses or rain water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ruoho-Airola, T. [Finnish Meteorological Inst., Helsinki (Finland); Maekelae, K. [National Board of Waters and the Environment, Helsinki (Finland)

    1995-12-31

    The deposition of heavy metals is usually determined from precipitation chemistry but the moss technique has been increasingly used, particularly in the Nordic countries. Some international monitoring programmes, e.g. UN/ECE Integrated Monitoring, give them as alternative methods. However, their comparability has not been sufficiently determined. This study compares the two monitoring methods for Pb, Cd, Cu and Zn, which have different sources. The metal industry is an important source of Pb and Cd emissions. Long- range transport as well as traffic and local emissions are also important sources for Pb. The use of fertilizers and fossil fuels also result in Cd emissions. Cu and Zn are emitted from metal industries and local sources. Unlike Pb and Cd, Cu and Zn are essential elements for living organisms. Cu and Zn are needed in many enzymes and Zn in proteins. Mosses are thought to take all their nutrients from the air. The deposition of heavy metals is also effectively retained by mosses and may be used to indicate levels of heavy metal deposition. In northern countries the mosses are isolated from air (and therefore also from deposition) by snow in winter. In this study both the bulk deposition of the whole year (later `total deposition`) and the bulk deposition of the snow-free period (later `bare ground deposition`) are compared to the metal concentrations in mosses. (author)

  14. Monitoring of heavy metal load - by mosses or rain water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ruoho-Airola, T [Finnish Meteorological Inst., Helsinki (Finland); Maekelae, K [National Board of Waters and the Environment, Helsinki (Finland)

    1996-12-31

    The deposition of heavy metals is usually determined from precipitation chemistry but the moss technique has been increasingly used, particularly in the Nordic countries. Some international monitoring programmes, e.g. UN/ECE Integrated Monitoring, give them as alternative methods. However, their comparability has not been sufficiently determined. This study compares the two monitoring methods for Pb, Cd, Cu and Zn, which have different sources. The metal industry is an important source of Pb and Cd emissions. Long- range transport as well as traffic and local emissions are also important sources for Pb. The use of fertilizers and fossil fuels also result in Cd emissions. Cu and Zn are emitted from metal industries and local sources. Unlike Pb and Cd, Cu and Zn are essential elements for living organisms. Cu and Zn are needed in many enzymes and Zn in proteins. Mosses are thought to take all their nutrients from the air. The deposition of heavy metals is also effectively retained by mosses and may be used to indicate levels of heavy metal deposition. In northern countries the mosses are isolated from air (and therefore also from deposition) by snow in winter. In this study both the bulk deposition of the whole year (later `total deposition`) and the bulk deposition of the snow-free period (later `bare ground deposition`) are compared to the metal concentrations in mosses. (author)

  15. Nanosecond laser ablation and deposition of silver, copper, zinc and tin

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Ettlinger, Rebecca Bolt; Canulescu, Stela

    2014-01-01

    Nanosecond pulsed laser deposition of different metals (Ag, Cu, Sn, Zn) has been studied in high vacuum at a laser wavelength of 355 nm and pulse length of 6 ns. The deposition rate is roughly similar for Sn, Cu and Ag, which have comparable cohesive energies, and much higher for the deposition...... of Zn which has a low cohesive energy. The deposition rate for all metals is strongly correlated with the total ablation yield, i.e., the total mass ablated per pulse, reported in the literature except for Sn, for which the deposition rate is low, but the total ablation yield is high. This may...... be explained by the continuous erosion by nanoparticles during deposition of the Sn films which appear to have a much rougher surface than those of the other metals studied in the present work....

  16. Effect of Pb and Ag additions on electrical properties Bi2Sr2Ca2Cu3Ox superconductive ceramics

    International Nuclear Information System (INIS)

    Reddi, B.V.; Uskov, E.M.

    1990-01-01

    The influence of Pb and Ag additions on the electrical properties of Bi 2 Sr 2 Ca 2 Cu 3 O x superconducting ceramics has been studied by Hall method. It was found that the Pb additions has more influence on the sample characteristics than Ag. It was found, that Hall EMF at 77 K equal to zero in the samples having some residue resistance

  17. Formation of a ZnS/Zn(S,O) bilayer buffer on CuInS2 thin film solar cell absorbers by chemical bath deposition

    Science.gov (United States)

    Bär, M.; Ennaoui, A.; Klaer, J.; Kropp, T.; Sáez-Araoz, R.; Allsop, N.; Lauermann, I.; Schock, H.-W.; Lux-Steiner, M. C.

    2006-06-01

    The application of Zn compounds as buffer layers was recently extended to wide-gap CuInS2 (CIS) based thin film solar cells. Using an alternative chemical deposition route for the buffer preparation aiming at the deposition of a single-layer, nominal ZnS buffer without the need for any toxic reactants such as hydrazine has helped us to achieve a similar efficiency as respective CdS-buffered reference devices. In order to shed light on the differences of other Zn-compound buffers deposited in conventional chemical baths [chemical bath deposition (CBD)] compared to the buffer layers deposited by this alternative CBD process, the composition of the deposited buffers was investigated by x-ray excited Auger electron and x-ray photoelectron spectroscopy to potentially clarify their superiority in terms of device performance. We have found that in the early stages of this alternative CBD process a thin ZnS layer is formed on the CIS, whereas in the second half of the CBD the growth rate is greatly increased and Zn(S,O) with a ZnS/(ZnS+ZnO) ratio of ~80% is deposited. Thus, a ZnS/Zn(S,O) bilayer buffer is deposited on the CIS thin film solar cell absorbers by the alternative chemical deposition route used in this investigation. No major changes of these findings after a postannealing of the buffer/CIS sample series and recharacterization could be identified.

  18. Deposition and characterization of ZnO/NiO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaprasath, G.; Sakthivel, P.; Murugan, R.; Ravi, G., E-mail: raviganesa@rediffmail.com, E-mail: gravicrc@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630 004 (India); Mahalingam, T. [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of)

    2016-05-23

    In this work, p-n heterojunctions based on p-NiO and n-ZnO composite nanostructures were successfully deposited by sol-gel spin coating method. Structural investigations indicate well aligned ZnO nanorods with hexagonal faces having a preferential orientation along the c-axis (002). Scanning electron microscopy (SEM) was used to characterize, the p-n heterostructures formed grain like spherical structure of NiO fully covered the hexagonal rods of ZnO in the NiO/ZnO thin film and elements were confirmed from EDX analysis. PL and micro-Raman spectra of the deposited films showed the variation in luminescence and structural properties due to the formation of heterojuction of NiO.

  19. Geochemistry and chronology of the early Paleozoic diorites and granites in the Huangtupo volcanogenic massive sulfide (VMS) deposit, Eastern Tianshan, NW China: Implications for petrogenesis and geodynamic setting

    Science.gov (United States)

    Zheng, Jiahao; Chai, Fengmei; Feng, Wanyi; Yang, Fuquan; Shen, Ping

    2018-03-01

    The Eastern Tianshan orogen contains many late Paleozoic porphyry Cu and magmatic Cu-Ni deposits. Recent studies demonstrate that several early Paleozoic volcanogenic massive sulfide (VMS) Cu-polymetallic and porphyry Cu deposits were discovered in the northern part of Eastern Tianshan. This study presents zircon U-Pb, whole-rock geochemical, and Sr-Nd isotopic data for granites and diorites from the Huangtupo VMS Cu-Zn deposit, northern part of the Eastern Tianshan. Our results can provide constraints on the genesis of intermediate and felsic intrusions as well as early Paleozoic geodynamic setting of the northern part of Eastern Tianshan. LA-ICP-MS zircon U-Pb analyses suggest that the granites and diorites were formed at 435 ± 2 Ma and 440 ± 2 Ma, respectively. Geochemical characteristics suggest that the Huangtupo granites and diorites are metaluminous rocks, exhibiting typical subduction-related features such as enrichment in LILE and LREE and depletion in HFSE. The diorites have moderate Mg#, positive εNd(t) values (+6.4 to +7.3), and young Nd model ages, indicative of a depleted mantle origin. The granites exhibit mineral assemblages and geochemical characteristics of I-type granites, and they have positive εNd(t) values (+6.7 to +10.2) and young Nd model ages, suggesting a juvenile crust origin. The early Paleozoic VMS Cu-polymetallic and porphyry Cu deposits in the northern part of Eastern Tianshan were genetically related. The formation of the early Paleozoic magmatic rocks as well as VMS and porphyry Cu deposits in the northern part of Eastern Tianshan was due to a southward subduction of the Junggar oceanic plate.

  20. Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots

    Directory of Open Access Journals (Sweden)

    Sethi Ruchi

    2009-01-01

    Full Text Available Abstract Highly luminescent Ag-ion-doped Cd1−xZnxS (0 ≤ x ≤ 1 alloy nanocrystals were successfully synthesized by a novel wet chemical precipitation method. Influence of dopant concentration and the Zn/Cd stoichiometric variations in doped alloy nanocrystals have been investigated. The samples were characterized by X-ray diffraction (XRD and high resolution transmission electron microscope (HRTEM to investigate the size and structure of the as prepared nanocrystals. A shift in LO phonon modes from micro-Raman investigations and the elemental analysis from the energy dispersive X-ray analysis (EDAX confirms the stoichiometry of the final product. The average crystallite size was found increasing from 1.0 to 1.4 nm with gradual increase in Ag doping. It was observed that photoluminescence (PL intensity corresponding to Ag impurity (570 nm, relative to the other two bands 480 and 520 nm that originates due to native defects, enhanced and showed slight red shift with increasing silver doping. In addition, decrease in the band gap energy of the doped nanocrystals indicates that the introduction of dopant ion in the host material influence the particle size of the nanocrystals. The composition dependent bandgap engineering in CdZnS:Ag was achieved to attain the deliberate color tunability and demonstrated successfully, which are potentially important for white light generation.

  1. Copperton - Areachap Cu-Zn mineralization

    International Nuclear Information System (INIS)

    Theart, H.F.J.

    1985-05-01

    Stratiform massive sulfide deposit at the Prieska Cu-Zn and Areachap mines are situated close to the eastern margin of the Namaqua Province, South Africa, within the Copperton and Jannelsepan Formations. The investigation of the petrology and geochemistry of the Prieska Cu-Zn deposits forms the basis of this study. Borehole core and surface samples were investigated petrographically. Knowledge gained during this investigation was used to select suitable samples for geochemical analysis. Suites of samples were analysed for their major element and some trace element concentrations by wavelength-dispersive X-ray fluorescence spectrometry. Concentrations of some elements in the lanthanide group were determined using the inductively coupled plasma emission spectrometer. Samples were also submitted for analysis by instrumental neutron activation analysis. Determinations of concentrations of U and Pb and isotopic compositions of Pb were done for both whole rock samples and sulfide mineral separates. Major and trace element abundances within different rock types of the Copperton Formation are discussed and compared with those of the Jannelsepan and Hartebeest Pan Formations. The petrogenetic implications of these, the U-Pb isotope systematics and S isotope ratios are used to reconstruct the geological environment of mineralization. 187 refs., 106 figs., 68 tabs

  2. ADSORPSI LOGAM SENG (Zn DAN TIMBAL (Pb PADA LIMBAH CAIR INDUSTRI KERAMIK OLEH TANAH LIAT

    Directory of Open Access Journals (Sweden)

    Cindy Rianti Priadi

    2014-05-01

    Full Text Available ADSORPTION OF ZINC AND LEAD FROM CERAMIC WASTEWATER USING CLAY. Ceramic industry generates glaze wastewater and clay waste. Glaze wastewater contains heavy metal from ceramic painting process which can potentially cause severe pollution problem. Glaze wastewater from PT.X typically contains Cd (0.013 mg/L; Cu (0.033 mg/L; Pb (1.20 mg/L; and Zn (7.00 mg/L. Clay waste used as adsorbent to reduce heavy metal amount in glaze wastewater. The present study investigates in bench scale and uses batch adsorption method to determine effective  adsorbent amount and contact time in removing heavy metals in glaze wastewater in order to fulfill the discharge requirement based on regulation of Minister of Environment No.16/2008concerning effluent water standard for ceramic industries. The results showed that the effective adsorbent amount and contact time respectively are 5 g/L and 15 minutes with pH 8 and stirring speed of 150 rpm. Concentration of heavy metal adsorbed are 0,614 mg/L and 2,07 mg/L for lead (Pb and zinc (Zn with removal efficiency up to 61.0% for Pb and 9.8% for Zn.From this study clay waste could be potentially used as an adsorbent to reduce heavy metal amount in glaze wastewater. Keywords: adsorption, clay waste, heavy metals Abstrak Industri keramik menghasilkan limbah glasir dan limbah tanah liat. Limbah glasir mengandung logam berat yang berasal dari proses pewarnaan keramik dan berpotensi mencemari lingkungan. Kandungan logam berat pada limbah glasir PT.X yaitu Cd (0,013 mg/L; Cu (0,033 mg/L; Pb (1,20 mg/L; dan Zn (7,00 mg/L. Limbah tanah liat digunakan sebagai adsorben yang berguna mengurangi kadar logam berat pada limbah glasir.Penelitian ini dilakukan dalam skala laboratorium menggunakan metode batch adsorpsi untuk menentukan dosis adsorben dan waktu kontak yang efektif dalam mengolah limbah glasir agar memenuhi persyaratan Peraturan Menteri Negara Lingkungan Hidup Nomor 16 Tahun 2008 tentang baku mutu air limbah bagi usaha dan

  3. Defect studies of thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Vlček, M; Čížek, J; Procházka, I; Novotný, M; Bulíř, J; Lančok, J; Anwand, W; Brauer, G; Mosnier, J-P

    2014-01-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  4. Reference Data for the Density, Viscosity, and Surface Tension of Liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn Eutectic Alloys

    Science.gov (United States)

    Dobosz, Alexandra; Gancarz, Tomasz

    2018-03-01

    The data for the physicochemical properties viscosity, density, and surface tension obtained by different experimental techniques have been analyzed for liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn eutectic alloys. All experimental data sets have been categorized and described by the year of publication, the technique used to obtain the data, the purity of the samples and their compositions, the quoted uncertainty, the number of data in the data set, the form of data, and the temperature range. The proposed standard deviations of liquid eutectic Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn alloys are 0.8%, 0.1%, 0.5%, 0.2%, and 0.1% for the density, 8.7%, 4.1%, 3.6%, 5.1%, and 4.0% for viscosity, and 1.0%, 0.5%, 0.3%, N/A, and 0.4% for surface tension, respectively, at a confidence level of 95%.

  5. Effect of Zn(NO{sub 3}){sub 2} concentration in hydrothermal–electrochemical deposition on morphology and photoelectrochemical properties of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Ceren, E-mail: ceryilmaz@ku.edu.tr [Koc University, Department of Chemistry, Rumelifeneri yolu, Sariyer 34450, Istanbul (Turkey); Unal, Ugur [Koc University, Department of Chemistry, Rumelifeneri yolu, Sariyer 34450, Istanbul (Turkey); Graduate School of Science and Engineering, Koc University, Rumelifeneri yolu, Sariyer 34450, Istanbul (Turkey); Koc University Surface Science and Technology Center (KUYTAM), Rumelifeneri yolu, Sariyer 34450, Istanbul (Turkey)

    2016-04-15

    Graphical abstract: - Highlights: • Combined hydrothermal–electrochemical deposition was used to grow ZnO films. • 1-D ZnO NRs are obtained even at high Zn(NO{sub 3}){sub 2} concentrations (1 mM < [Zn{sup 2+}] < 0.1 M). • Aspect ratio and alignment of ZnO NRs can be controlled by initial [Zn(NO{sub 3}){sub 2}]. • [Zn{sup 2+}] dependent structural and photoelectrochemical properties have been studied. • Photocurrent density exhibited by ZnO NRs increases with increasing aspect ratio. - Abstract: Zn(NO{sub 3}){sub 2} concentration had been reported to be significantly influential on electrodeposition of ZnO structures. In this work, this issue is revisited using hydrothermal–electrochemical deposition (HED). Seedless, cathodic electrochemical deposition of ZnO films is carried out on ITO electrode at 130 °C in a closed glass reactor with varying Zn(NO{sub 3}){sub 2} concentration. Regardless of the concentration of Zn{sup 2+} precursor (0.001–0.1 M) in the deposition solution, vertically aligned 1-D ZnO nanorods are obtained as opposed to electrodepositions at lower temperatures (70–80 °C). We also report the effects of high bath temperature and pressure on the photoelectrochemical properties of the ZnO films. Manipulation of precursor concentration in the deposition solution allows adjustment of the aspect ratio of the nanorods and the degree of texturation along the c-axis; hence photoinduced current density. HED is shown to provide a single step synthesis route to prepare ZnO rods with desired aspect ratio specific for the desired application just by controlling the precursor concentration.

  6. Microleakage and antibacterial properties of ZnO and ZnO:Ag nanopowders prepared via a sol-gel method for endodontic sealer application

    Energy Technology Data Exchange (ETDEWEB)

    Shayani Rad, M.; Kompany, A. [Ferdowsi University of Mashhad, Materials and Electroceramics Laboratory, Department of Physics, Faculty of Sciences (Iran, Islamic Republic of); Khorsand Zak, A., E-mail: alikhorsandzak@gmail.com [Esfarayen University, Nanotechnology Laboratory (Iran, Islamic Republic of); Javidi, M.; Mortazavi, S. M. [Mashhad University of Medical Sciences, Dental Material Research Centre, Department of Endodontics, Faculty of Dentistry (Iran, Islamic Republic of)

    2013-09-15

    One of the most important problems in dentistry is the microleakage, whether apical or coronal, which may cause failure of root canal therapy. The aim of this study is to prepare suitable sealer to decrease the microleakage of the root canals as well as having good antibacterial property. Pure ZnO and ZnO:Ag nanopowders were synthesized via sol gel method using gelatin as polymerization agent calcined at different temperatures of 500, 600, and 700 Degree-Sign C for 8 h. The prepared samples were characterized using X-ray diffraction and transition electron microscopy. The microleakage and antibacterial properties of the prepared samples were investigated and compared with zinc oxide eugenol (ZOE) and epoxy resin sealer (AH26), which are commonly used in dentistry as sealers. The results showed that the synthesized pure ZnO and ZnO:Ag nanopowders exhibit better microleakage and antibacterial properties in comparison with ZOE and AH26 sealers, and therefore are more suitable filling materials to be used as sealer in root canal treatment.

  7. Microleakage and antibacterial properties of ZnO and ZnO:Ag nanopowders prepared via a sol–gel method for endodontic sealer application

    International Nuclear Information System (INIS)

    Shayani Rad, M.; Kompany, A.; Khorsand Zak, A.; Javidi, M.; Mortazavi, S. M.

    2013-01-01

    One of the most important problems in dentistry is the microleakage, whether apical or coronal, which may cause failure of root canal therapy. The aim of this study is to prepare suitable sealer to decrease the microleakage of the root canals as well as having good antibacterial property. Pure ZnO and ZnO:Ag nanopowders were synthesized via sol gel method using gelatin as polymerization agent calcined at different temperatures of 500, 600, and 700 °C for 8 h. The prepared samples were characterized using X-ray diffraction and transition electron microscopy. The microleakage and antibacterial properties of the prepared samples were investigated and compared with zinc oxide eugenol (ZOE) and epoxy resin sealer (AH26), which are commonly used in dentistry as sealers. The results showed that the synthesized pure ZnO and ZnO:Ag nanopowders exhibit better microleakage and antibacterial properties in comparison with ZOE and AH26 sealers, and therefore are more suitable filling materials to be used as sealer in root canal treatment

  8. Legacy sediment, lead, and zinc storage in channel and floodplain deposits of the Big River, Old Lead Belt Mining District, Missouri, USA

    Science.gov (United States)

    Pavlowsky, Robert T.; Lecce, Scott A.; Owen, Marc R.; Martin, Derek J.

    2017-12-01

    The Old Lead Belt of southeastern Missouri was one of the leading producers of Pb ore for more than a century (1869-1972). Large quantities of contaminated mine waste have been, and continue to be, supplied to local streams. This study assessed the magnitude and spatial distribution of mining-contaminated legacy sediment stored in channel and floodplain deposits of the Big River in the Ozark Highlands of southeastern Missouri. Although metal concentrations decline downstream from the mine sources, the channel and floodplain sediments are contaminated above background levels with Pb and Zn along its entire 171-km length below the mine sources. Mean concentrations in floodplain cores > 2000 mg kg- 1 for Pb and > 1000 mg kg- 1 for Zn extend 40-50 km downstream from the mining area in association with the supply of fine tailings particles that were easily dispersed downstream in the suspended load. Mean concentrations in channel bed and bar sediments ranging from 1400 to 1700 mg kg- 1 for Pb extend 30 km below the mines, while Zn concentrations of 1000-3000 mg kg- 1 extend 20 km downstream. Coarse dolomite fragments in the 2-16 mm channel sediment fraction provide significant storage of Pb and Zn, representing 13-20% of the bulk sediment storage mass in the channel and can contain concentrations of > 4000 mg kg- 1 for Pb and > 1000 mg kg- 1 for Zn. These coarse tailings have been transported a maximum distance of only about 30 km from the source over a period of 120 years for an average of about 250 m/y. About 37% of the Pb and 9% of the Zn that was originally released to the watershed in tailings wastes is still stored in the Big River. A total of 157 million Mg of contaminated sediment is stored along the Big River, with 92% of it located in floodplain deposits that are typically contaminated to depths of 1.5-3.5 m. These contaminated sediments store a total of 188,549 Mg of Pb and 34,299 Mg of Zn, of which 98% of the Pb and 95% of the Zn are stored in floodplain

  9. Distribution of Pb and Zn and their chemical specieisations in the paddy soils from the Kochani field (Macedonia)

    International Nuclear Information System (INIS)

    Rogan, Nastja; Todor, Serafimovski; Tasev, Goran; Dolenec, Tadej; Dolenec, Matej

    2009-01-01

    The distribution and chemical specifications of Pb and Zn in the paddy soils of Kochani Field, Macedonia, were investigated using a sequential extraction procedure. This study was carried out in order to develop an understanding of the metal contamination found in the area which is due to historical and recent mining operations around Kochani Field. The paddy soil sample from location VII-2 in the vicinity of Zletovo mine in the western part of Kochani Field was found to contain highly elevated concentrations of Pb and Zn which are under reduction conditions very unstable and mobile. According to the total Pb and Zn concentrations, their mobility characteristics and the index of geo accumulation for all studied soil samples, it is observable that the paddy soil sample from location VII-2 represents a potential environmental risk.

  10. Bioremediation of Zn, Cu, Mg and Pb in Fresh Domestic Sewage by Brevibacterium sp

    International Nuclear Information System (INIS)

    Ojoawo, S. O.; Rao, C. V.; Goveas, L. C.

    2016-01-01

    The study applied an isolated Brevibacterium sp. (MTCC 10313) for bioremediation of Zn, Cu, Mg and Pb in domestic sewage. Batch culture experiments were performed on both the fresh and stale sewage samples with glucose supplementation of 1-8g/l. Nutrient broth medium was prepared, sterilized and p H adjusted to 6.5-6.8. 1% of the Brevibacteria sp. stock was inoculated into the broth and maintained at 370C for 24 hours in shaker incubator at 120 rpm. Another 1% of fresh grown sub-culture of broth was inoculated into supplemented and sterilized samples. Optical Density was taken at 600nm, growth monitored over 12 days, cultured samples denatured with TCA and centrifuged, supernatants filtered and analyzed with AAS, Settled pellets oven dried, subjected to SEM analysis for morphology and constituents determination. Fresh sewage samples permitted bacterial growth and facilitated bioremediation of Zn, Cu and Mg through metal uptake and bioabsoption by Brevibacteria sp. This effectively reduced concentration of heavy metals, with treatment efficiency order Cu>Zn>Mg, and respective removal percentages of 77, 63 and 55. The optimum glucose concentration for effective bioremediation found as 2g/l for Zn and Cu, and 8g/l for Mg. Pb was resistant to bioremediation with Brevibacteria sp. Stale sewage produced inhibitory substances preventing adequate growth of bacterium with no bioremediation. Bioremediation with Brevibacteria sp. is found effective in removal of micro-units of Zn, Cu and Mg from domestic sewage. As a readily available low-cost agent, it is recommended for large- scale application on those metals while Pb should be further subjected to advanced treatments.

  11. Microstructural characterization of chemical bath deposited and sputtered Zn(O,S) buffer layers

    International Nuclear Information System (INIS)

    Gautron, E.; Buffière, M.; Harel, S.; Assmann, L.; Arzel, L.; Brohan, L.; Kessler, J.; Barreau, N.

    2013-01-01

    The present work aims at investigating the microstructure of Zn(O,S) buffer layers relative to their deposition route, namely either chemical bath deposition (CBD) or RF co-sputtering process (PVD) under pure Ar. The core of the study consists of cross-sectional transmission electron microscopy (TEM) characterization of the differently grown Zn(O,S) thin films on co-evaporated Cu(In,Ga)Se 2 (CIGSe) absorbers. It shows that the morphology of Zn(O,S) layer deposited on CIGSe using CBD process is made of a thin layer of well oriented ZnS sphalerite-(111) and/or ZnS wurtzite-(0002) planes parallel to CIGSe chalcopyrite-(112) planes at the interface with CIGSe followed by misoriented nanometer-sized ZnS crystallites in an amorphous phase. As far as (PVD)Zn(O,S) is concerned, the TEM analyses reveal two different microstructures depending on the S-content in the films: for [S] / ([O] + [S]) = 0.6, the buffer layer is made of ZnO zincite and ZnS wurtzite crystallites grown nearly coherently to each other, with (0002) planes nearly parallel with CIGSe-(112) planes, while for [S] / ([O] + [S]) = 0.3, it is made of ZnO zincite type crystals with O atoms substituted by S atoms, with (0002) planes perfectly aligned with CIGSe-(112) planes. Such microstructural differences can explain why photovoltaic performances are dependent on the Zn(O,S) buffer layer deposition route. - Highlights: ► Zn(O,S) layers were grown by chemical bath (CBD) or physical vapor (PVD) deposition. ► For CBD, a 3 nm ZnS layer is followed by ZnS nano-crystallites in an amorphous phase. ► For PVD with [S] / ([O] + [S]) = 0.3, the layer has a Zn(O,S) zincite structure. ► For PVD with [S] / ([O] + [S]) = 0.6, ZnS wurtzite and ZnO zincite phases are mixed

  12. Growth of ZnO nanocrystals in silica by rf co-sputter deposition and post-annealing

    International Nuclear Information System (INIS)

    Siva Kumar, V.V.; Singh, F.; Kumar, Amit; Avasthi, D.K.

    2006-01-01

    Thin films with ZnO nanocrystals in silica were synthesized by rf reactive magnetron co-sputter deposition and post-annealing. The films were deposited from a ZnO/Si composite target in an rf oxygen plasma. The deposited films were annealed in air/vacuum at high temperatures to grow ZnO nanocrystals. The deposited and annealed films were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), uv-vis spectroscopy (UV-VIS) and photoluminescence (PL) measurements. FT-IR results of the films show the vibrational features of Si-O-Si and Zn-O bonds. UV-VIS spectra of the deposited film shows the band edge of ZnO. The XRD results of the films annealed at 750 deg. C and 1000 deg. C indicate the growth of ZnO nanocrystals with average crystallite sizes between 7 nm and 26 nm. PL measurements of the deposited film show a broad visible luminescence peak which can be due to ZnO. These results suggest the growth of ZnO nanocrystals in silica matrix

  13. Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Pribram, Czech Republic

    International Nuclear Information System (INIS)

    Ettler, Vojtech; Mihaljevic, Martin; Sebek, Ondrej; Molek, Michael; Grygar, Tomas; Zeman, Josef

    2006-01-01

    Stream sediments from the mining and smelting district of Pribram, Czech Republic, were studied to determine the degree, sources and dispersal of metal contamination using a combination of bulk metal and mineralogical determinations, sequential extractions and Pb isotopic analyses. The highest metal concentrations were found 3-4 km downstream from the main polymetallic mining site (9800 mg Pb kg -1 , 26 039 mg Zn kg -1 , 316.4 mg Cd kg -1 , 256.9 mg Cu kg -1 ). The calculated enrichment factors (EFs) confirmed the extreme degree of contamination by Pb, Zn and Cd (EF > 40). Lead, Zn and Cd are bound mainly to Fe oxides and hydroxides. In the most contaminated samples Pb is also present as Pb carbonates and litharge (PbO). Lead isotopic analysis indicates that the predominant source of stream sediment contamination is historic Pb-Ag mining and primary Pb smelting ( 206 Pb/ 207 Pb = 1.16), while the role of secondary smelting (car battery processing) is negligible. - Pb isotopes properly complete traditional investigations of metal sources and dispersal in contaminated stream sediments

  14. A test of the stability of Cd, Cu, Hg, Pb and Zn profiles over two decades in lake sediments near the Flin Flon Smelter, Manitoba, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Percival, J.B.; Outridge, P.M., E-mail: outridge@nrcan.gc.ca

    2013-06-01

    Lake sediments are valuable archives of atmospheric metal deposition, but the stability of some element profiles may possibly be affected by diagenetic changes over time. In this extensive case study, the stability of sedimentary Cd, Cu, Hg, Pb and Zn profiles was assessed in dated sediment cores that were collected in 2004 from four smelter-affected lakes near Flin Flon, Manitoba, which had previously been cored in 1985. Metal profiles determined in 1985 were in most cases clearly reproduced in the corresponding sediment layers in 2004, although small-scale spatial heterogeneity in metal distribution complicated the temporal comparisons. Pre-smelter (i.e. pre-1930) increases in metal profiles were likely the result of long-range atmospheric metal pollution, coupled with particle mixing at the 1930s sediment surface. However, the close agreement between key inflection points in the metal profiles sampled two decades apart suggests that metals in most of the lakes, and Hg and Zn in the most contaminated lake (Meridian), were stable once the sediments were buried below the surface mixed layer. Cadmium, Cu and Pb profiles in Meridian Lake did not agree as well between studies, showing evidence of upward remobilization over time. Profiles of redox-indicator elements (Fe, Mn, Mo and U) suggested that the rate of Mn oxyhydroxide recycling within sediment was more rapid in Meridian Lake, which may have caused the Cd, Cu and Pb redistribution. - Highlights: • Sedimentary Cd, Cu, Hg, Pb and Zn profiles in four lakes were mostly unchanged over 19 years. • In one lake, Cd, Cu and Pb profiles were offset relative to the originals. • The offset could indicate diagenetic upcore dispersal of these metals.

  15. Ferroelectric switching in epitaxial PbZr0.2Ti0.8O3/ZnO/GaN heterostructures

    Science.gov (United States)

    Wang, Juan; Salev, Pavel; Grigoriev, Alexei

    As a wide-bandgap semiconductor, ZnO has gained substantial interest due to its favorable properties including high electron mobility, strong room-temperature luminescence, etc. The main obstacle of its application is the lack of reproducible and low-resistivity p-type ZnO. P-type doping of ZnO through the interface charge injection, which can be achieved by the polarization switching of ferroelectric films, is a tempting solution. We explored ferroelectric switching behavior of PbZr0.2Ti0.8O3/ZnO/GaN heterostructures epitaxially grown on Sapphire substrates by RF sputtering. The electrical measurements of Pt/PbZr0.2Ti0.8O3/ZnO/GaN ferroelectric-semiconductor capacitors revealed unusual behavior that is a combination of polarization switching and a diode I-V characteristics.

  16. Hercynian Pb-Zn mineralization types in the Alcudia Valley mining district (Spain) and their reflect in Pb isotopic signatures

    Science.gov (United States)

    García de Madinabeitia, S.; Santos Zalduegui, J. F.; Palero, F.; Gil Ibarguchi, J. I.; Carracedo, M.

    2003-04-01

    More than 450 ore deposits indexed within the Alcudia Valley of the Central-Iberian Zone (Spain) may be grouped by their tectonic and lithologic characteristics (1,2) as follows: type A of rare stratabound mineralizations, and types B, C, D and E represented by abundant Hercynian veins (post-Namurian). 86 new Pb isotope analyses of galenas from the four vein types reveal that types B and C have similar isotopic ratios with values of μ_2 = 10.07, ω_2 = 40.6 and a mean model age of 564 Ma. Types D and E have μ_2 and ω_2 values of 9.79 and 38.5, respectively, but differ each other with respect to their model ages, 600 Ma (type D) and 335 Ma (type E). The observed variations appear to be related to the geochemical features of the metasedimentary host-rocks of the mineralizations where two distinct types of Pb isotopic ratios have been reported (3): one with μ_2 and ω_2 comparable to those of the D and E types and another with a more radiogenic composition, close to those of the B and C types of galenas. Nägler et al. have suggested partial rehomogeneization of Pb isotopic composition within the metasediments at ca. 330 Ma, that is, prior to the mineralization events, but the extent of this process and its effects on the ore bodies isotopic features is not evident. The origin of the more abundant E type ore bodies has been related to the Hercynian granitic rocks in the area (2, and references therein). Other plutons within this sector of the Central Iberian Zone (e.g., Linares, etc.; cf. accompanying Abstract) associate ore bodies whose Pb isotopic composition is very similar to that of the E type galenas from the Alcudia Valley. The isotopic data obtained thus point to a related or common source material for the various types of granites within the area studied. Yet, the Pb isotopic composition of other mineralizations (B, C, D), likewise located in Hercynian veins, allow to consider different types of Pb-Zn ore bodies and point therefore to different sources of

  17. The Influence of Pb and Zn Contaminated soil on the Germination ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... The bambara nut seedlings were irrigated with various concentrations of Pb and Zn ... as well as the organic matter, pH and moisture content of the soil were also evaluated. ... down to humans through the food chain if animals eat such plants during grazing.

  18. Apparent discrepancy in contamination history of a sub-tropical estuary evaluated through {sup 210}Pb profile and chronostatigraphical markers

    Energy Technology Data Exchange (ETDEWEB)

    Marques Junior, Aguinaldo N. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Biologia. Dept. de Biologia Marinha]. E-mail: amarques@vm.uff.br; Monna, Fabrice [Universite de Bourgogne, Dijon (France). Centre des Sciences de la Terre; Silva Filho, Emannoel V. da [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Quimica. Dept. de Geoquimica; Fernex, Francois E. [Universite de Nice, Valrose (France). Dept. des Sciences de la Terre; Simoes Filho, Fernando Lamego [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)]. E-mail: flamego@ird.gov.br

    2005-07-01

    Heavy metal concentrations (Zn, Cd, Cu and Pb), lead stable isotopes ({sup 204}Pb, {sup 206}Pb, {sup 207}Pb, and {sup 208}Pb), and sediment chronology ({sup 210}Pb method) were determined in a core from Sepetiba Bay (southeastern coast of Brazil, 30 km west of Rio de Janeiro City). During last decades, this region has been modified by increase of industrial activities, population flows, and by human interventions in the watershed area of the bay. In particular, Zn and Cd emissions are well established to the bay, and inputs started during 1960 and 1970, respectively. The core was sampled in the more contaminated northern part of the bay, in the tidal flat in front of the Coroa Grande mangrove. This area is located near to the Sao Francisco Channel, which accounts for 86 % of the freshwater supply to the bay, and receive waters from the Paraiba do Sul River (another watershed) since 1950s. The proxies at the sediment core showed three successive events: at the depth of 50-52 cm, a marked change in the stable lead isotopic ratios; at 38-42 cm depth, the beginning of the Zn concentration upwards increase; and above 30 cm, relatively high Cd concentrations. Such records can easily be explained by the local metallurgic development history. However, sediment accumulation rates evaluated using these reference levels are higher than those calculated from the {sup 210}Pb profile by using either the Constant Initial Concentration (CIC) or the Constant Rate of Supply (CRS) models. One possible interpretation can be provided by local hydrodynamics, which has been strongly influenced by deposition of particles transported by runoff in the core site. The main source of these particles may be the mangrove flat that experimented enrichment of unsupported {sup 210}Pb by trapping it from the rain. A model, taking into account the exponential increase of the initial {sup 210}Pb activity observed in the core allows the calculated rates to fit well with those evaluated from the &apos

  19. Phase transformation and morphology of the intermetallic compounds formed at the Sn-9Zn-3.5Ag/Cu interface in aging

    Energy Technology Data Exchange (ETDEWEB)

    Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Chang, T.-C. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Electronic and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Bldg. 11, 195, Sec. 4, Chung-Hsing Road, Chutung, Hsinchu, 310, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: mcwang@kmu.edu.tw

    2008-06-30

    The morphology and phase transformation of the intermetallic compounds (IMCs) formed at the Sn-9Zn-3.5Ag/Cu interface in a solid-state reaction have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The monoclinic {eta}'-Cu{sub 6}Sn{sub 5} transforms to the hexagonal {eta}-Cu{sub 6}Sn{sub 5} and the orthorhombic Cu{sub 5}Zn{sub 8} transforms to the body-centered cubic (bcc) {gamma}-Cu{sub 5}Zn{sub 8} as aged at 180 deg. C. The scallop-shaped Cu{sub 6}Sn{sub 5} layer is retained after aging at 180 deg. C for 1000 h. In the solid-state reaction, Ag is repelled from {eta}'-Cu{sub 6}Sn{sub 5} and reacts with Sn to form Ag{sub 3}Sn, and the Cu{sub 5}Zn{sub 8} layer decomposes. Kirkendall voids are not observed at the Sn-9Zn-3.5Ag/Cu interface even after aging at 180 deg. C for 1000 h.

  20. Graphite furnace analysis of a series of metals (Cu, Mn, Pb, Zn and Cd) in ox kidney

    International Nuclear Information System (INIS)

    Souza, Vivianne L.B. de; Nascimento, Rizia K. do; Paiva, Ana Claudia de; Silva, Josenilda M. da; Melo, Jessica V. de

    2013-01-01

    The aim of this study was to create a methodology for animal tissue analysis, with the use of flame atomic absorption spectrophotometry techniques and graphite furnace analysis to determining metal concentrations in ox kidney. The organ of this animal can be considered a great nutritional food, due to the high protein and micronutrient content beyond the ability to absorb and concentrate important metals such as Zn, Fe, Mn and Se. On the other hand, there is a risk when eating this food owing to the capacity to accumulate toxic metals such as Pb and Cd. In accordance with the laboratory analysis, Zn can be analyzed by flame atomic absorption spectrophotometry, but other metals such as Cu, Mn, Pb and Cd, could only be detected by graphite furnace analysis. The results showed that there is more Zn and Cu than other metals. Such metals follows an order reported by the literature (Zn > Cu > Cd > Pb > Mn). The results showed that kidney is actually a rich source of Zn and Cu. The Cd levels in the ox kidney did not exceed the values which cause toxic effects. The adequacy of the results indicates that the proposed methodology can be used for animal tissue analysis.(author)

  1. Graphite furnace analysis of a series of metals (Cu, Mn, Pb, Zn and Cd) in ox kidney

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Nascimento, Rizia K. do; Paiva, Ana Claudia de; Silva, Josenilda M. da, E-mail: vlsouza@cnen.gov.br, E-mail: riziakelia@hotmail.com, E-mail: acpaiva@cnen.gov.br, E-mail: jmnilda@hotmail.com [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Melo, Jessica V. de, E-mail: Jessica_clorofila@hotmail.com [Universidade de Pernambuco, Recife, PE (Brazil)

    2013-07-01

    The aim of this study was to create a methodology for animal tissue analysis, with the use of flame atomic absorption spectrophotometry techniques and graphite furnace analysis to determining metal concentrations in ox kidney. The organ of this animal can be considered a great nutritional food, due to the high protein and micronutrient content beyond the ability to absorb and concentrate important metals such as Zn, Fe, Mn and Se. On the other hand, there is a risk when eating this food owing to the capacity to accumulate toxic metals such as Pb and Cd. In accordance with the laboratory analysis, Zn can be analyzed by flame atomic absorption spectrophotometry, but other metals such as Cu, Mn, Pb and Cd, could only be detected by graphite furnace analysis. The results showed that there is more Zn and Cu than other metals. Such metals follows an order reported by the literature (Zn > Cu > Cd > Pb > Mn). The results showed that kidney is actually a rich source of Zn and Cu. The Cd levels in the ox kidney did not exceed the values which cause toxic effects. The adequacy of the results indicates that the proposed methodology can be used for animal tissue analysis.(author)

  2. Mineralization, geochemistry, fluid inclusion and sulfur stable isotope studies in the carbonate hosted Baqoroq Cu-Zn-As deposit (NE Anarak

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Jazi

    2015-10-01

    , crustification banding,andbotryoidaltexture. The host rock has undergone dolomitization alteration Hypogene minerals include chalcopyrite, pyrite, sphalerite, galena, enargite, barite, and calcite. Supergene minerals include malachite, azurite, covellite, chrysocolla, chalcocite, cerussite, smithsonite, native copper and iron oxide minerals. Sulfantimonides and sulfardenides are abundant in low- and moderate temperature stages of the deposit, while bismuth sulfides generally occur in higher temperature ores, according to Malakhov, 1968. Analysis of rich ore samples indicates copper is the most abundant heavy metal in the ore (average 20.28 wt%, followed by zinc (average ~ 1 wt% and arsenic (average ~ 1 wt%, respectively. Thepresence of many trace elements in the ore, such as Sb, Pb, Ag and V, are very important. Element pairs such as Ag-Cu, Zn-Cd, Zn-Sb, Fe-V and Pb-Mo are correlated with each other. The Baqoroq ore minerals are rich in As, Sb and poor in Bi. Highamountsof antimony usually occur in a low temperature stage (Marshall and Joensuu, 1961. Malakhov (1968 suggested thata high Sb/Biratio in the ore indicates a low temperature of formation for the Baqoroq deposit. Sulfide mineralization fluids were found to have homogenization temperatures between 259 and 354°C and salinities between 8.37 and 13.18 wt% NaCl eq. Surface water apparently diluted theore-bearing fluids in the final stages and deposited sulfide-freecalcite veins at relatively low temperatures (78 to 112 °C and low salinities (3.59 to 6.07 wt% NaCl eq.. The δ34S values of barite of the Baqoroq deposit range from +13.1 to +14.37‰from whichδ34S values of ore fluids were calculated to vary between -8.57‰ and -7.23‰. Sulfur within natural environments is derived ultimately from either igneous or seawater sources (Ohmoto and Rye, 1979. Barite δ34S values of Baqoroq deposit lie within the range of Cretaceous-age oceanic sulfate values. The reduction of sulfate to sulfide couldhave been caused either by

  3. Radiation portal monitor with {sup 10}B+ZnS(Ag) neutron detector performance for the detection of special nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Gallego, E.; Lorente, A.; Ibanez F, S. [Universidad Politecnica de Madrid, Departamento de Ingenieria Energetica, ETSI Industriales, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Gonzalez, J. A. [Universidad Politecnica de Madrid, Laboratorio de Ingenieria Nuclear, ETSI Caminos, Canales y Puertos, C. Prof. Aranguren 3, 28040 Madrid (Spain); Mendez, R., E-mail: ingkarenguzman@gmail.com [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Laboratorio de Patrones Neutronicos, Av. Complutense 40, 28040 Madrid (Spain)

    2016-10-15

    In homeland security, neutron detection is used to prevent the smuggling of special nuclear materials. Thermal neutrons are normally detected with {sup 3}He proportional counters, in the radiation portal monitors, Rpms, however due to the {sup 3}He shortage new procedures are being studied. In this work Monte Carlo methods, using the MCNP6 code, have been used to study the neutron detection features of a {sup 10}B+ZnS(Ag) under real conditions inside of a Rpm. The performance for neutron detection was carried out for {sup 252}Cf, {sup 238}U and {sup 239}Pu under different conditions. In order to mimic an actual situation occurring at border areas, a sample of SNM sited inside a vehicle was simulated and the Rpm with {sup 10}B+ZnS(Ag) response was calculated. At 200 cm the {sup 10}B+ZnS(Ag) on Rpm response is close to 2.5 cps-ng {sup 252}Cf, when the {sup 252}Cf neutron source is shielded with 0.5 cm-thick lead and 2.5 cm-thick polyethylene fulfilling the ANSI recommendations. Three different geometries of neutron detectors of {sup 10}B+ZnS(Ag) in a neutron detection system in Rpm were modeled. Therefore, the {sup 10}B+ZnS(Ag) detectors are an innovative and viable replacement for the {sup 3}He detectors in the Rpm. (Author)

  4. Site-Selective Carving and Co-Deposition: Transformation of Ag Nanocubes into Concave Nanocrystals Encased by Au-Ag Alloy Frames.

    Science.gov (United States)

    Ahn, Jaewan; Wang, Daniel; Ding, Yong; Zhang, Jiawei; Qin, Dong

    2018-01-23

    We report a facile synthesis of Ag nanocubes with concave side faces and Au-Ag alloy frames, namely Ag@Au-Ag concave nanocrystals, by titrating HAuCl 4 solution into an aqueous mixture of Ag nanocubes, ascorbic acid (H 2 Asc), NaOH, and cetyltrimethylammonium chloride (CTAC) at an initial pH of 11.6 under ambient conditions. Different from all previous studies involving poly(vinylpyrrolidine), the use of CTAC at a sufficiently high concentration plays an essential role in carving away Ag atoms from the side faces through galvanic replacement. Concurrent co-deposition of Au and Ag atoms via chemical reduction at orthogonal sites on the surface of Ag nanocubes leads to the generation of Ag@Au-Ag concave nanocrystals with well-defined and controllable structures. Specifically, in the presence of CTAC-derived Cl - ions, the titrated HAuCl 4 is maintained in the AuCl 4 - species, enabling its galvanic replacement with the Ag atoms located on the side faces of nanocubes. The released Ag + ions can be retained in the soluble form of AgCl 2 - by complexing with the Cl - ions. Both the AuCl 4 - and AgCl 2 - in the solution are then reduced by ascorbate monoanion, a product of the neutralization reaction between H 2 Asc and NaOH, to Au and Ag atoms for their preferential co-deposition onto the edges and corners of the Ag nanocubes. Compared with Ag nanocubes, the Ag@Au-Ag concave nanocrystals exhibit much stronger SERS activity at an excitation of 785 nm, making it feasible to monitor the Au-catalyzed reduction of 4-nitrothiophenol by NaBH 4 in situ. When the Ag cores are removed, the concave nanocrystals evolve into Au-Ag nanoframes with controllable ridge thicknesses.

  5. Concentrations of cadmium, Cobalt, Lead, Nickel, and Zinc in Blood and Fillets of Northern Hog Sucker (Hypentelium nigricans) from streams contaminated by lead-Zinc mining: Implications for monitoring

    Science.gov (United States)

    Schmitt, C.J.; Brumbaugh, W.G.; May, T.W.

    2009-01-01

    Lead (Pb) and other metals can accumulate in northern hog sucker (Hypentelium nigricans) and other suckers (Catostomidae), which are harvested in large numbers from Ozark streams by recreational fishers. Suckers are also important in the diets of piscivorous wildlife and fishes. Suckers from streams contaminated by historic Pb-zinc (Zn) mining in southeastern Missouri are presently identified in a consumption advisory because of Pb concentrations. We evaluated blood sampling as a potentially nonlethal alternative to fillet sampling for Pb and other metals in northern hog sucker. Scaled, skin-on, bone-in "fillet" and blood samples were obtained from northern hog suckers (n = 75) collected at nine sites representing a wide range of conditions relative to Pb-Zn mining in southeastern Missouri. All samples were analyzed for cadmium (Cd), cobalt (Co), Pb, nickel (Ni), and Zn. Fillets were also analyzed for calcium as an indicator of the amount of bone, skin, and mucus included in the samples. Pb, Cd, Co, and Ni concentrations were typically higher in blood than in fillets, but Zn concentrations were similar in both sample types. Concentrations of all metals except Zn were typically higher at sites located downstream from active and historic Pb-Zn mines and related facilities than at nonmining sites. Blood concentrations of Pb, Cd, and Co were highly correlated with corresponding fillet concentrations; log-log linear regressions between concentrations in the two sample types explained 94% of the variation for Pb, 73-83% of the variation for Co, and 61% of the variation for Cd. In contrast, relations for Ni and Zn explained Fillet Pb and calcium concentrations were correlated (r = 0.83), but only in the 12 fish from the most contaminated site; concentrations were not significantly correlated across all sites. Conversely, fillet Cd and calcium were correlated across the range of sites (r = 0.78), and the inclusion of calcium in the fillet-to-blood relation explained an

  6. Contemporary Mobilization of Legacy Pb Stores by DOM in a Boreal Peatland

    Science.gov (United States)

    Jeff D. Jeremiason; Erin I. Baumann; Stephen D. Sebestyen; Alison M. Agather; Emily A. Seelen; Benjamin J. Carlson-Stehlin; Meghan M. Funke; James B. Cotner

    2018-01-01

    We examined how different landscape areas in a catchment containing a northern ombrotrophic peatland and upland mineral soils responded to dramatic decreases in atmospheric deposition of lead (Pb). Pb concentrations in the outflow stream from the peatland measured from 2009−2015 indicated continued mobilization and export of Pb derived from historic inputs to the bog....

  7. Ionic Exchange Study of Ternary Glass Membrane (AgI-PbS-As2S3)System in Solution Using Radioisotope Tracers

    International Nuclear Information System (INIS)

    Dawed, E. M.

    2004-01-01

    Glass-formation region was determined for the system AgI-PbS-As 2 S 3 in a large range of composition (from 12-64 mol. % AgI). The homogeneous glasses of AgI-PbS-As 2 S 3 system were chosen for the study. The electrical conductivity of the glasses was measured as a function of temperature and composition by the complex impedance diagram method. At 298 K, the conductivity reached a maximum value of 3.388 x 10 -3 Ω -1 cm -1 for glass containing the highest mole % of AgI. According to the ion conductivity parameters, two glass groups were observed and classified as: ionic conductors (12-50 mol. %, AgI) and super-ionic conductors (50-64 mol. % AgI). Conductivity measurements led to a decrease in the resistivity by eight orders of magnitude on increasing the concentration of AgI. Such a result made the ternary glass AgI-PbS-As 2 S 3 system a proper model to study the ionic processes of membrane surfaces. Ionic exchange processes between the glass membranes and the solutions were studied by the incorporation of radioactive indicators: silver-110 m ( 110m Ag) and cadmium- 115 m (115 mCd) radioisotopes in the form of silver and cadmium nitrate solutions respectively. In the present paper, data on the density, conductivity, and ionic exchange processes of the studied system are given. The conductivity and ionic exchange parameters are also graphically illustrated. (author)

  8. Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2015-08-01

    Full Text Available Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications.

  9. Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance

    Science.gov (United States)

    Fang, Fang; Bai, Lu; Song, Dongsheng; Yang, Hongping; Sun, Xiaoming; Sun, Hongyu; Zhu, Jing

    2015-01-01

    Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications. PMID:26287205

  10. Ternary g-C{sub 3}N{sub 4}/ZnO/AgCl nanocomposites: Synergistic collaboration on visible-light-driven activity in photodegradation of an organic pollutant

    Energy Technology Data Exchange (ETDEWEB)

    Akhundi, Anise; Habibi-Yangjeh, Aziz, E-mail: ahabibi@uma.ac.ir

    2015-12-15

    Graphical abstract: - Highlights: • Novel ternary g-C{sub 3}N{sub 4}/ZnO/AgCl nanocomposites were prepared using a facile method. • g-C{sub 3}N{sub 4}/ZnO/AgCl (40%) has superior activity in degradation of RhB under visible-light. • The activity is 7.5 and 6-fold higher than g-C{sub 3}N{sub 4}/ZnO and g-C{sub 3}N{sub 4}/AgCl, respectively. • There are synergistic collaboration between ZnO and AgCl in enhancing the activity. - Abstract: The present work demonstrates the preparation of ternary g-C{sub 3}N{sub 4}/ZnO/AgCl nanocomposites, as novel visible-light-driven photocatalysts, using a facile large-scale methodology. The microstructure, morphology, purity, thermal, and spectroscopic properties of the prepared samples were studied using XRD, TEM, EDX, TG, UV–vis DRS, FT-IR, and PL techniques. Compared with the g-C{sub 3}N{sub 4}/ZnO and g-C{sub 3}N{sub 4}/AgCl nanocomposites, the g-C{sub 3}N{sub 4}/ZnO/AgCl nanocomposites displayed higher photocatalytic activity for degradation of rhodamine B under visible-light irradiation. Photocatalytic activity of the g-C{sub 3}N{sub 4}/ZnO/AgCl (40%) nanocomposite is about 9.5, 7.5, and 6-fold higher than those of the g-C{sub 3}N{sub 4}, g-C{sub 3}N{sub 4}/ZnO, and g-C{sub 3}N{sub 4}/AgCl samples, respectively. The enhanced photocatalytic activity of the nanocomposites was mainly attributed to efficiently separation of the charge carriers by synergistic collaboration of ZnO and AgCl in removing photogenerated electrons from g-C{sub 3}N{sub 4}. Furthermore, the results showed that the photocatalytic activity of the nanocomposite considerably depends on the preparation time, calcination temperature, and scavengers of the reactive species. Finally, the nanocomposite was found to be a reusable photocatalyst.

  11. Compositional effects in Ag_2ZnSnSe_4 thin films and photovoltaic devices

    International Nuclear Information System (INIS)

    Gershon, Talia; Sardashti, Kasra; Lee, Yun Seog; Gunawan, Oki; Singh, Saurabh; Bishop, Douglas; Kummel, Andrew C.; Haight, Richard

    2017-01-01

    Ag_2ZnSnSe_4 (AZTSe) is a relatively new n-type photovoltaic (PV) absorber material which has recently demonstrated a conversion efficiency of ∼5% in a Schottky device architecture. To date, little is known about how the influence of composition on AZTSe material properties and the resulting PV performance. In this study, the Ag/Sn ratio is shown to be critical in the controlling grain growth, non-radiative recombination, and the bulk defect structure of the absorber. Insufficient Ag (relative to Zn and Sn) results in small grains, low photoluminescence intensities, and band gap narrowing, possibly due to an increase in the bulk defect density. Additionally, etching the AZTSe films in KCN prior to junction formation is found to be important for achieving reproducible efficiencies. Surface analysis using Auger Nanoprobe Microscopy analysis reveals that a KCN etch can selectively remove potentially harmful Ag-rich secondary phases, therefore improving the MoO_3/AZTSe junction quality. Moreover, grain boundaries in AZTSe are found to be enriched in Sn and O following KCN; the role this oxide plays in surface passivation and junction formation has yet to be determined.

  12. Ternary Ag-In-S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications

    International Nuclear Information System (INIS)

    Chang, Wen-Sheng; Wu, Ching-Chen; Jeng, Ming-Shan; Cheng, Kong-Wei; Huang, Chao-Ming; Lee, Tai-Chou

    2010-01-01

    This paper describes the preparation and characterization of ternary Ag-In-S thin films deposited on indium tin oxide (ITO)-coated glass substrates using chemical bath deposition (CBD). The composition of the thin films was varied by changing the concentration ratio of [Ag]/[In] in the precursor solutions. The crystal structure, optical properties, and surface morphology of the thin films were analyzed by grazing incidence X-ray diffraction (GIXRD), UV-vis spectroscopy, and field-emission scanning electron microscopy (FE-SEM). GIXRD results indicate that the samples consisted of AgInS 2 and/or AgIn 5 S 8 crystal phases, depending on the composition of the precursor solutions. The film thicknesses, electrical resistivity, flat band potentials, and band gaps of the samples were between 1.12 and 1.37 μm, 3.73 x 10 -3 and 4.98 x 10 4 Ω cm, -0.67 and -0.90 V vs. NHE, and 1.83 and 1.92 eV, respectively. The highest photocurrent density was observed in the sample with [Ag]/[In] = 4. A photocurrent density of 9.7 mA cm -2 was obtained with an applied potential of 0.25 V vs. SCE in the three-electrode system. The photoresponse experiments were conducted in 0.25 M K 2 SO 3 and 0.35 M Na 2 S aqueous electrolyte solutions under irradiation by a 300 W Xe light (100 mW cm -2 ). The results show that ternary Ag-In-S thin film electrodes have potential in water splitting applications.

  13. Validating modelled data on major and trace element deposition in southern Germany using Sphagnum moss

    Science.gov (United States)

    Kempter, Heike; Krachler, Michael; Shotyk, William; Zaccone, Claudio

    2017-10-01

    Sphagnum mosses were collected from four ombrotrophic bogs in two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and, one year later, plant matter was harvested and productivity determined. Major and trace element concentrations (Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sc, Sr, Th, Ti, Tl, U, V, Zn) were determined in acid digests using sector field ICP-MS. Up to 12 samples (40 × 40 cm) were collected per site, and 6-10 sites investigated per bog. Variation in element accumulation rates within a bog is mostly the result of the annual production rate of the Sphagnum mosses which masks not only the impact of site effects, such as microtopography and the presence of dwarf trees, but also local and regional conditions, including land use in the surrounding area, topography, etc. The difference in productivity between peat bogs results in distinctly higher element accumulation rates at the NBF bogs compared to those from OB for all studied elements. The comparison with the European Monitoring and Evaluation Program (EMEP; wet-only and total deposition) and Modelling of Air Pollutants and Ecosystem Impact (MAPESI; total deposition) data shows that accumulation rates obtained using Sphagnum are in the same range of published values for direct measurements of atmospheric deposition of As, Cd, Cu, Co, Pb, and V in both regions. The accordance is very dependent on how atmospheric deposition rates were obtained, as different models to calculate the deposition rates may yield different fluxes even for the same region. In future studies of atmospheric deposition of trace metals, both Sphagnum moss and deposition collectors have to be used on the same peat bog and results compared. Antimony, however, shows considerable discrepancy, because it is either under-estimated by Sphagnum moss or over-estimated by both atmospheric deposition

  14. Assessment of the Bioavailability of Cu, Pb, and Zn through Petunia axillaris in Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Lydia Bondareva

    2014-01-01

    Full Text Available Heavy metals are potentially toxic to human life and the environment. Metal toxicity depends on chemical associations in soils. For this reason, determining the chemical form of a metal in soils is important to evaluate its mobility and the potential accumulation. The aim of this examination is to evaluate the accumulation potential of Petunia x hybrida as a flower crop for three metals, namely, copper (Cu, lead (Pb, and nickel (Ni. Trace metals (Zn, Cu, and Pb in the soils were partitioned by a sequential extraction procedure into H2O extractable (F1, 1 M CH3COONa extractable (F2. Chemical fractionation showed that F1 and F2 fraction of the metals were near 1% and residue was the dominant form for Zn, Cu, and Pb in all samples. Using fluorescence method allowed us to estimate condition of the plants by adding metals. As result of plant and soil analysis, we can conclude that Petunia has Cu, Zn, and Ni tolerance and accumulation. Therefore, Petunia has the potential to serve as a model species for developing herbaceous, ornamental plants for phytoremediation.

  15. Use of isotope ratios to assess sources of Pb and Zn dispersed in the environment during mining and ore processing within the Orlovka-Spokoinoe mining site (Russia)

    International Nuclear Information System (INIS)

    Dolgopolova, A.; Weiss, D.J.; Seltmann, R.; Kober, B.; Mason, T.F.D.; Coles, B.; Stanley, C.J.

    2006-01-01

    Element concentrations, element ratios and Pb and Zn isotope data are reported for different geologic samples (barren and ore-bearing granites and host rocks), technogenic products (ore concentrates and tailings) and biologic samples (lichens and birch leaves) from the Orlovka-Spokoinoe mining district, Eastern Transbaikalia, Russia, with the aim to trace the sources of Pb and Zn at a local level within the mining site. Lichens and birch leaves were used as receptors of contamination within the mining site. Pb/Zr and Zn/Zr values indicated Pb and Zn enrichment relative to host rocks. Zn isotope data of 15 geologic and 11 lichen samples showed different Zn isotopic signatures with the total range for the geologic suite of -0.4 per mille to +1.2 per mille and for lichens of +0.4 per mille to +1.4 per mille in δ 66 Zn relative to Lyon JMC Zn standard. The source of isotopically heavy Zn within the Orlovka-Spokoinoe mining site could be potentially associated with long-range atmospheric aerosols that also contributed Pb to the studied mining site. Our results demonstrated that Zn isotopes might be used as new tools for Zn source assessment

  16. Structural and Electrical Characteristics of Metal-Ferroelectric Pb1.1(Zr0.40Ti0.60O3-Insulator (ZnO-Silicon Capacitors for Nonvolatile Applications

    Directory of Open Access Journals (Sweden)

    S. R. Krishnamoorthi

    2013-01-01

    Full Text Available In this work metal-ferroelectric-insulator-semiconductor (MFIS thin-film structures using Pb1.1Zr0.40Ti0.60O3 (PZT as the ferroelectric layer and zinc oxide (ZnO as the insulator layer were fabricated on n-type (100 Si substrate. Pb1.1Zr0.40Ti0.60O3 and ZnO thin films were prepared on Si by the sol-gel route and thermal deposition method, respectively. On the optimized PZT (140 nm and ZnO (40 nm films were examined by scanning electron microscope (SEM. From AFM data the root mean square (r.m.s. roughness of the film surface is 13.11 nm. The leakage current density of ZnO/n-Si (MIS structure was as low as 1.8 × 10−8 A/cm2 at 2.5 V. The capacitance versus voltage (C-V characteristics of the annealed ZnO/Si (MIS diode indicated the good interface properties and no hysteresis was observed. Au/PZT (140 nm/ZnO (40 nm/Si (100 leakage-current density was about 5.7 × 10−8 A/cm2 at positive bias voltage of 3 V. The large memory window width in C-V (capacitance-voltage curve of Au/PZT/ZnO/Si capacitor was about 2.9 V under ±12 V which thus possibly enables nonvolatile applications. The memory window as a function of temperature was also discussed.

  17. Effect of bismuth and silver on the corrosion behavior of Sn-9Zn alloy in NaCl 3 wt.% solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahmido, A. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Sabbar, A. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Zouihri, H.; Dakhsi, K. [UATRS, CNRST, Angle Allal Fassi, FAR, BP 8027, Hay Riad, Rabat (Morocco); Guedira, F. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Serghini-Idrissi, M. [Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); El Hajjaji, S., E-mail: selhajjaji@hotmail.com [Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco)

    2011-08-15

    Highlights: > Sn-9Zn-xAg-yBi as alternative for Sn-Pb solder. > Effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt%. > Bi and Ag lead to the increase of corrosion rate. > EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn5(OH){sub 8}Cl{sub 2}H{sub 2}O) as the major corrosion product. - Abstract: The effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt.% solution was investigated using electrochemical techniques. The results showed that the addition of Bi and Ag lead to the increase of corrosion rate and the corrosion potential E{sub corr} is shifted towards less noble values. After immersion, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of spectroscopy (EDS) analysis of the corroded alloy surface revealed the nature of corrosion products. EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn{sub 5}(OH){sub 8}Cl{sub 2}H{sub 2}O) as the major corrosion product formed on the outer surface of in the tested three solder alloys.

  18. Tribological behavior of in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films

    International Nuclear Information System (INIS)

    Guo Yanbao; Wang Deguo; Liu Shuhai

    2010-01-01

    Multilayer polyelectrolyte films containing silver ions were obtained by molecular deposition method on a glass plate or a quartz substrate. The in situ Ag nanoparticles were synthesized in the multilayer polyelectrolyte films which were put into fresh NaBH 4 aqueous solution. The structure and surface morphology of composite molecular deposition films were observed by UV-vis spectrophotometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Tribological characteristic was investigated by AFM and micro-tribometer. It was found that the in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films have lower coefficient of friction and higher anti-wear life than pure polyelectrolyte molecular deposition films.

  19. Separation procedure for the determination of Ag, Cd, Hg and Zn in biological material by radiochemical neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haas, H F; Krivan, V

    1986-05-01

    A simple separation procedure for the determination of Ag, Au, Cd, Hg and Zn in biological material by radiochemical neutron activation analysis was developed. It enables the separation of the indicator radionuclides sup(110m)Ag, /sup 198/Au, /sup 115/Cd, /sup 203/Hg and /sup 65/Zn in a group with yields >99% and is well suited for the separation of /sup 203/Hg from /sup 75/Se and /sup 65/Zn from /sup 46/Sc. The separation of these radionuclides is often necessary because of the occurrence of instrumental interferences in the instrumental neutron activation analysis. Simultaneously, the limits of detection for Ag, Au and Cd can significantly be improved. The method is based on the decomposition of the sample in the mixture of HNO/sub 3//HCl/H/sub 2/O/sub 2/ and on the separation of Ag, Au, Cd, Hg and Zn on Dowex 1X8 from a sample solution being 1.5 M with HCl. The applicability of this method is demonstrated by the analysis of lichens and several kinds of fungi. For the experimental conditions used, the limits of detection are of the order of magnitude of 10 ng/g.

  20. Contrasting fluids and reservoirs in the contiguous Marcona and Mina Justa iron oxide-Cu (-Ag-Au) deposits, south-central Perú

    Science.gov (United States)

    Chen, Huayong; Kyser, T. Kurtis; Clark, Alan H.

    2011-10-01

    The Marcona-Mina Justa deposit cluster, hosted by Lower Paleozoic metaclastic rocks and Middle Jurassic shallow marine andesites, incorporates the most important known magnetite mineralization in the Andes at Marcona (1.9 Gt at 55.4% Fe and 0.12% Cu) and one of the few major iron oxide-copper-gold (IOCG) deposits with economic Cu grades (346.6 Mt at 0.71% Cu, 3.8 g/t Ag and 0.03 g/t Au) at Mina Justa. The Middle Jurassic Marcona deposit is centred in Ica Department, Perú, and the Lower Cretaceous Mina Justa Cu (Ag, Au) prospect is located 3-4 km to the northeast. New fluid inclusion studies, including laser ablation time-of-flight inductively coupled plasma mass spectrometry (LA-TOF-ICPMS) analysis, integrated with sulphur, oxygen, hydrogen and carbon isotope analyses of minerals with well-defined paragenetic relationships, clarify the nature and origin of the hydrothermal fluid responsible for these contiguous but genetically contrasted deposits. At Marcona, early, sulphide-free stage M-III magnetite-biotite-calcic amphibole assemblages are inferred to have crystallized from a 700-800°C Fe oxide melt with a δ18O value from +5.2‰ to +7.7‰. Stage M-IV magnetite-phlogopite-calcic amphibole-sulphide assemblages were subsequently precipitated from 430-600°C aqueous fluids with dominantly magmatic isotopic compositions (δ34S = +0.8‰ to +5.9‰; δ18O = +9.6‰ to +12.2‰; δD = -73‰ to -43‰; and δ13C = -3.3‰). Stages M-III and M-IV account for over 95% of the magnetite mineralization at Marcona. Subsequent non-economic, lower temperature sulphide-calcite-amphibole assemblages (stage M-V) were deposited from fluids with similar δ34S (+1.8‰ to +5.0‰), δ18O (+10.1‰ to +12.5‰) and δ13C (-3.4‰), but higher δD values (average -8‰). Several groups of lower (200°C) fluids can be recognized in the main polymetallic (Cu, Zn, Pb) sulphide stage M-V and may record the involvement of modified seawater. At Mina Justa, early magnetite