WorldWideScience

Sample records for zn model complexes

  1. Zn vacancy-donor impurity complexes in ZnO

    Science.gov (United States)

    Frodason, Y. K.; Johansen, K. M.; Bjørheim, T. S.; Svensson, B. G.; Alkauskas, A.

    2018-03-01

    Results from hybrid density functional theory calculations on the thermodynamic stability and optical properties of the Zn vacancy (VZn) complexed with common donor impurities in ZnO are reported. Complexing VZn with donors successively removes its charge-state transition levels in the band gap, starting from the most negative one. Interestingly, the presence of a donor leads only to modest shifts in the positions of the VZn charge-state transition levels, the sign and magnitude of which can be interpreted from a polaron energetics model by taking hole-donor repulsion into account. By employing a one-dimensional configuration coordinate model, luminescence lineshapes and positions were calculated. Due to the aforementioned effects, the isolated VZn gradually changes from a mainly nonradiative defect with transitions in the infrared region in n -type material, to a radiative one with broad emission in the visible range when complexed with shallow donors.

  2. Zn/Ga−DFO iron–chelating complex attenuates the inflammatory process in a mouse model of asthma

    Directory of Open Access Journals (Sweden)

    Haim Bibi

    2014-01-01

    Conclusion: In this mouse model of allergic asthma, Zn/Ga−DFO attenuated allergic airway inflammation. The beneficial effects of treatment were in accord with iron overload abatement in asthmatic lungs by Zn/Ga−DFO. The findings in both cellular and tissue levels supported the existence of a significant anti-inflammatory effect of Zn/Ga−DFO.

  3. White organic light-emitting diodes with Zn-complexes.

    Science.gov (United States)

    Kim, Dong-Eun; Shin, Hoon-Kyu; Kim, Nam-Kyu; Lee, Burm-Jong; Kwon, Young-Soo

    2014-02-01

    This paper reviews OLEDs fabricated using Zn-complexes. Zn(HPB)2, Zn(HPB)q, and Zn(phen)q were synthesized as new electroluminescence materials. The electron affinity (EA) and ionization potential (IP) of Zn complexes were also determined and devices were characterized. Zn complexes such as Zn(HPB)2, Zn(HPB)q, and Zn(phen)q were found to exhibit blue and yellow emissions with wavelengths of 455, 532, and 535 nm, respectively. On the other hand, Zn(HPB)2 and Zn(HPB)q were applied as hole-blocking materials. As a result, the OLED efficiency by using Zn(HPB)2 as a hole-blocking material was improved. In particular, the OLED property of Zn(HPB)2 was found to be better than that of Zn(HPB)q. Moreover, Zn(phen)q was used as an electron-transporting material and compared with Alq3. The performance of the device with Zn(phen)q as an electron-transporting material was improved compared with Alq3-based devices. The Zn complexes can possibly be used as hole-blocking and electron-transporting materials in OLED devices. A white emission was ultimately realized from the OLED devices using Zn-complexes as inter-layer components.

  4. Synthesis and characterization of heterobinuclear (La-Zn, Pr-Zn, Nd-Zn, Sm-Zn, Eu-Zn, Gd-Zn, Tb-Zn, Dy-Zn) azine-bridged complexes

    International Nuclear Information System (INIS)

    Singh, Bachcha; Srivastav, A.K.; Singh, P.K.

    1997-01-01

    Zinc(II) complex of 2-acetylpyridine salicyl aldazine (Haps) of the type Zn(aps) 2 (H 2 O) 2 has been synthesised. The reaction of Zn(aps) 2 (H 2 O) 2 with lanthanide chlorides, LnCl 3 (where Ln=La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) yields azine-bridged heterobinuclear complexes of the formulae LnCl 3 Zn(aps) 2 (H 2 O) 2 . These complexes have been characterized by elemental analyses, molecular weight, conductance (solid and solution) and magnetic susceptibility measurements, mass, IR and electronic spectral data. X-ray powder diffraction data indicate the tetragonal unit lattice for Zn(aps) 2 (H 2 O) 2 and PrCl 3 Zn(aps) 2 (H 2 O) 2 . (author)

  5. Complexity and Productivity Differentiation Models of Metallogenic Indicator Elements in Rocks and Supergene Media Around Daijiazhuang Pb–Zn Deposit in Dangchang County, Gansu Province

    International Nuclear Information System (INIS)

    He, Jin-zhong; Yao, Shu-zhen; Zhang, Zhong-ping; You, Guan-jin

    2013-01-01

    With the help of complexity indices, we quantitatively studied multifractals, frequency distributions, and linear and nonlinear characteristics of geochemical data for exploration of the Daijiazhuang Pb–Zn deposit. Furthermore, we derived productivity differentiation models of elements from thermodynamics and self-organized criticality of metallogenic systems. With respect to frequency distributions and multifractals, only Zn in rocks and most elements except Sb in secondary media, which had been derived mainly from weathering and alluviation, exhibit nonlinear distributions. The relations of productivity to concentrations of metallogenic elements and paragenic elements in rocks and those of elements strongly leached in secondary media can be seen as linear addition of exponential functions with a characteristic weak chaos. The relations of associated elements such as Mo, Sb, and Hg in rocks and other elements in secondary media can be expressed as an exponential function, and the relations of one-phase self-organized geological or metallogenic processes can be represented by a power function, each representing secondary chaos or strong chaos. For secondary media, exploration data of most elements should be processed using nonlinear mathematical methods or should be transformed to linear distributions before processing using linear mathematical methods.

  6. Model studies of the Cu(B) site of cytochrome c oxidase utilizing a Zn(II) complex containing an imidazole-phenol cross-linked ligand.

    Science.gov (United States)

    Pesavento, Russell P; Pratt, Derek A; Jeffers, Jerry; van der Donk, Wilfred A

    2006-07-21

    Cytochrome c oxidase, the enzyme complex responsible for the four-electron reduction of O2 to H2O, contains an unusual histidine-tyrosine cross-link in its bimetallic heme a3-CuB active site. We have synthesised an unhindered, tripodal chelating ligand, BPAIP, containing the unusual ortho-imidazole-phenol linkage, which mimics the coordination environment of the CuB center. The ligand was used to investigate the physicochemical (pKa, oxidation potential) and coordination properties of the imidazole-phenol linkage when bound to a dication. Zn(II) coordination lowers the pKa of the phenol by 0.6 log units, and increases the potential of the phenolate/phenoxyl radical couple by approximately 50 mV. These results are consistent with inductive withdrawal of electron density from the phenolic ring. Spectroscopic data and theoretical calculations (DFT) were used to establish that the cationic complex [Zn(BPAIP)Br]+ has an axially distorted trigonal bipyramidal structure, with three coordinating nitrogen ligands (two pyridine and one imidazole) occupying the equatorial plane and the bromide and the tertiary amine nitrogen of the tripod in the axial positions. Interestingly, the Zn-Namine bonding interaction is weak or absent in [Zn(BPAIP)Br]+ and the complex gains stability in basic solutions, as indicated by 1H NMR spectroscopy. These observations are supported by theoretical calculations (DFT), which suggest that the electron-donating capacity of the equatorial imidazole ligand can be varied by modulation of the protonation and/or redox state of the cross-linked phenol. Deprotonation of the phenol makes the equatorial imidazole a stronger sigma-donor, resulting in an increased Zn-Nimd interaction and thereby leading to distortion of the axial ligand axis toward a more tetrahedral geometry.

  7. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; Berrie, Barbara H. (NGA); (Bordeaux)

    2016-09-23

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K+, Zn2+, Pb2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm–1 for Pb(II) and ca. 1580 cm–1 for Zn(II) are consistent with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.

  8. Chemical-Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes.

    Science.gov (United States)

    Nowakowski, Andrew B; Meeusen, Jeffrey W; Menden, Heather; Tomasiewicz, Henry; Petering, David H

    2015-12-21

    Fluorescent zinc sensors are the most commonly used tool to study the intracellular mobile zinc status within cellular systems. Previously, we have shown that the quinoline-based sensors Zinquin and 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ) predominantly form ternary adducts with members of the Zn-proteome. Here, the chemistries of these sensors are further characterized, including how Zn(sensor)2 complexes may react in an intracellular environment. We demonstrate that these sensors are typically used in higher concentrations than needed to obtain maximum signal. Exposing cells to either Zn(Zinquin)2 or Zn(TSQ)2 resulted in efficient cellular uptake and the formation of sensor-Zn-protein adducts as evidenced by both a fluorescence spectral shift toward that of ternary adducts and the localization of the fluorescence signal within the proteome after gel filtration of cellular lysates. Likewise, reacting Zn(sensor)2 with the Zn-proteome from LLC-PK1 cells resulted in the formation of sensor-Zn-protein ternary adducts that could be inhibited by first saturating the Zn- proteome with excess sensor. Further, a native SDS-PAGE analysis of the Zn-proteome reacted with either the sensor or the Zn(sensor)2 complex revealed that both reactions result in the formation of a similar set of sensor-Zn-protein fluorescent products. The results of this experiment also demonstrated that TSQ and Zinquin react with different members of the Zn-proteome. Reactions with the model apo-Zn-protein bovine serum albumin showed that both Zn(TSQ)2 and Zn(Zinquin)2 reacted to form ternary adducts with its apo-Zn-binding site. Moreover, incubating Zn(sensor)2 complexes with non-zinc binding proteins failed to elicit a spectral shift in the fluorescence spectrum, supporting the premise that blue-shifted emission spectra are due to sensor-Zn-protein ternary adducts. It was concluded that Zn(sensors)2 species do not play a significant role in the overall reaction between these sensors and

  9. Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): Speciation modeling of metal-citric acid complexes

    International Nuclear Information System (INIS)

    Kabra, Kavita; Chaudhary, Rubina; Sawhney, R.L.

    2008-01-01

    The present study is targeted on solar photocatalytic removal of metal ions from wastewater. Photoreductive deposition and dark adsorption of metal ions Cu(II), Ni(II), Pb(II) and Zn(II), using solar energy irradiated TiO 2 , has been investigated. Citric acid has been used as a hole scavenger. Modeling of metal species has been performed and speciation is used as a tool for discussing the photodeposition trends. Ninety-seven percent reductive deposition was obtained for copper. The deposition values of other metals were significantly low [nickel (36.4%), zinc (22.2%) and lead (41.4%)], indicating that the photocatalytic treatment process, using solar energy, was more suitable for wastewater containing Cu(II) ions. In absence of citric acid, the decreasing order deposition was Cu(II) > Ni(II) > Pb(II) > Zn(II), which proves the theoretical thermodynamic predictions about the metals

  10. Defect complexes formed with Ag atoms in CDTE, ZnTe, and ZnSe

    CERN Document Server

    Wolf, H; Ostheimer, V; Hamann, J; Lany, S; Wichert, T

    2000-01-01

    Using the radioactive acceptor $^{111}\\!$Ag for perturbed $\\gamma$-$\\gamma$-angular correlation (PAC) spectroscopy for the first time, defect complexes formed with Ag are investigated in the II-VI semiconductors CdTe, ZnTe and ZnSe. The donors In, Br and the Te-vacancy were found to passivate Ag acceptors in CdTe via pair formation, which was also observed in In-doped ZnTe. In undoped or Sb-doped CdTe and in undoped ZnSe, the PAC experiments indicate the compensation of Ag acceptors by the formation of double broken bond centres, which are characterised by an electric field gradient with an asymmetry parameter close to h = 1. Additionally, a very large electric field gradient was observed in CdTe, which is possibly connected with residual impurities.

  11. Synthesis, spectroscopic, thermal and molecular modeling studies of Zn2+, Cd2+ and UO22+ complexes of Schiff bases containing triazole moiety. Antimicrobial, anticancer, antioxidant and DNA binding studies.

    Science.gov (United States)

    Gaber, Mohamed; El-Ghamry, Hoda A; Fathalla, Shaimaa K; Mansour, Mohammed A

    2018-02-01

    A novel series of Zn 2+ , Cd 2+ and UO 2 2+ complexes of ligands namely 1-[(5-mercapto-1H-1,2,4-triazole-3-ylimino) methyl]naphthalene-2-ol (HL 1 ) and [(1H-1,2,4-triazole-3-ylimino) methyl] naphthalene-2-ol (HL 2 ) have been prepared and characterized by different analytical and spectral techniques. The stoichiometry, stereochemistry, conductivity measurements and mode of bonding of the complexes have been elucidated. Accurate comparison of the IR spectra of the ligands with their metal chelates proved the involvement of nitrogen atoms of the azomethine group and/or triazole ring in chelation in addition to the deprotonated hydroxyl oxygen. The UV-Vis and molar conductance data supported the octahedral geometry for the metal complexes. TGA technique has been used to study the thermal decomposition way of the metal complexes and the thermo kinetic parameters were estimated. Valuable information is obtained from calculations of molecular parameters using the molecular modeling techniques. The interaction between the metal complexes and CT-DNA has been studied from which the binding constants (k b ) were calculated. The Schiff bases and their metal chelates have shown potent antimicrobial, antioxidant and antitumor activities. The antitumor activities of the compounds have been tested in vitro against HEPG2 cell line and in silico by the molecular docking analysis with the VEGFR-2 receptor responsible for angiogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Zeeman spectroscopy of Zn-H complex in germanium

    International Nuclear Information System (INIS)

    Prabakar, J.P.C.; Vickers, R.E.M.; Fisher, P.

    1998-01-01

    Full text: A divalent substitutional zinc atom in germanium complexed with an interstitial hydrogen atom gives rise to a monovalent acceptor of trigonal symmetry. The axial nature of this complex splits the four-fold degenerate states associated with substitutional point defects into two two-fold degenerate states. Zeeman spectra of the Zn-H complex have been observed for B along and crystallographic directions in the Voigt configuration using linearly polarised radiation. Spectra of the C and D lines for B ≤ 2 Tesla are essentially identical to those of these lines of group III impurities; here B is the field strength. At all fields, splitting of the excited state of the D lines is identical to that for group III acceptors in germanium. The magnetic field dependence of the D components for both E parallel B and E perpendicular B and the selection rules demand that only one of the two two-fold 1s-like energy levels is occupied at the temperatures used instead of both. The results confirm piezospectroscopic studies which demonstrated that the axes of the complexes are along the four covalent bond directions of the host

  13. Identification of Zn-vacancy-hydrogen complexes in ZnO single crystals: A challenge to positron annihilation spectroscopy

    Science.gov (United States)

    Brauer, G.; Anwand, W.; Grambole, D.; Grenzer, J.; Skorupa, W.; Čížek, J.; Kuriplach, J.; Procházka, I.; Ling, C. C.; So, C. K.; Schulz, D.; Klimm, D.

    2009-03-01

    A systematic study of various, nominally undoped ZnO single crystals, either hydrothermally grown (HTG) or melt grown (MG), has been performed. The crystal quality has been assessed by x-ray diffraction, and a comprehensive estimation of the detailed impurity and hydrogen contents by inductively coupled plasma mass spectrometry and nuclear reaction analysis, respectively, has been made also. High precision positron lifetime experiments show that a single positron lifetime is observed in all crystals investigated, which clusters at 180-182 ps and 165-167 ps for HTG and MG crystals, respectively. Furthermore, hydrogen is detected in all crystals in a bound state with a high concentration (at least 0.3at.% ), whereas the concentrations of other impurities are very small. From ab initio calculations it is suggested that the existence of Zn-vacancy-hydrogen complexes is the most natural explanation for the given experimental facts at present. Furthermore, the distribution of H at a metal/ZnO interface of a MG crystal, and the H content of a HTG crystal upon annealing and time afterward has been monitored, as this is most probably related to the properties of electrical contacts made at ZnO and the instability in p -type conductivity observed at ZnO nanorods in literature. All experimental findings and presented theoretical considerations support the conclusion that various types of Zn-vacancy-hydrogen complexes exist in ZnO and need to be taken into account in future studies, especially for HTG materials.

  14. Thermodynamic modelling of Ag-Zn alloys

    International Nuclear Information System (INIS)

    Gomez-Acebo, T.; Sundman, B.

    1998-01-01

    A thermodynamic assessment of the Ag-Zn system has been done using a computerized CALPHAD (calculation of phase diagrams) technique. The liquid, α,β,ε and η phases are described by a regular solution model, the ζ phase by a two-sublattices model, and the γ phase by a four-sublattices model both based on considerations of their crystal structure and compatibility with the same phase in other systems. Some calculated phase and property diagrams are presented. (Author) 27 refs

  15. Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex.

    Science.gov (United States)

    del Mundo, Imee Marie A; Fountain, Matthew A; Morrow, Janet R

    2011-08-14

    A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge. This journal is © The Royal Society of Chemistry 2011

  16. Novel Zinc(II Complexes [Zn(atc-Et2] and [Zn(atc-Ph2]: In Vitro and in Vivo Antiproliferative Studies

    Directory of Open Access Journals (Sweden)

    Erica de O. Lopes

    2016-05-01

    Full Text Available Cisplatin and its derivatives are the main metallodrugs used in cancer therapy. However, low selectivity, toxicity and drug resistance are associated with their use. The zinc(II (ZnII thiosemicarbazone complexes [Zn(atc-Et2] (1 and [Zn(atc-Ph2] (2 (atc-R: monovalent anion of 2-acetylpyridine N4-R-thiosemicarbazone were synthesized and fully characterized in the solid state and in solution via elemental analysis, Fourier transform infrared (FTIR, ultraviolet-visible (UV-Vis and proton nuclear magnetic resonance (1H NMR spectroscopy, conductometry and single-crystal X-ray diffraction. The cytotoxicity of these complexes was evaluated in the HepG2, HeLa, MDA-MB-231, K-562, DU 145 and MRC-5 cancer cell lines. The strongest antiproliferative results were observed in MDA-MB-231 and HepG2 cells, in which these complexes displayed significant selective toxicity (3.1 and 3.6, respectively compared with their effects on normal MRC-5 cells. In vivo studies were performed using an alternative model (Artemia salina L. to assure the safety of these complexes, and the results were confirmed using a conventional model (BALB/c mice. Finally, tests of oral bioavailability showed maximum plasma concentrations of 3029.50 µg/L and 1191.95 µg/L for complexes 1 and 2, respectively. According to all obtained results, both compounds could be considered as prospective antiproliferative agents that warrant further research.

  17. Modeling Complex Time Limits

    Directory of Open Access Journals (Sweden)

    Oleg Svatos

    2013-01-01

    Full Text Available In this paper we analyze complexity of time limits we can find especially in regulated processes of public administration. First we review the most popular process modeling languages. There is defined an example scenario based on the current Czech legislature which is then captured in discussed process modeling languages. Analysis shows that the contemporary process modeling languages support capturing of the time limit only partially. This causes troubles to analysts and unnecessary complexity of the models. Upon unsatisfying results of the contemporary process modeling languages we analyze the complexity of the time limits in greater detail and outline lifecycles of a time limit using the multiple dynamic generalizations pattern. As an alternative to the popular process modeling languages there is presented PSD process modeling language, which supports the defined lifecycles of a time limit natively and therefore allows keeping the models simple and easy to understand.

  18. Thermodynamic modeling of the Ce-Zn and Pr-Zn systems

    International Nuclear Information System (INIS)

    Wang, C.P.; Chen, X.; Liu, X.J.; Pan, F.S.; Ishida, K.

    2008-01-01

    In order to develop the thermodynamic database of phase equilibria in the Mg-Zn-Re (Re: rare earth element) base alloys, the thermodynamic assessments of the Ce-Zn and Pr-Zn systems were carried out by using the calculation of phase diagrams (CALPHAD) method on the basis of the experimental data including thermodynamic properties and phase equilibria. Based on the available experimental data, Gibbs free energies of the solution phases (liquid, bcc, fcc, hcp and dhcp) were modeled by the subregular solution model with the Redlich-Kister formula, and those of the intermetallic compounds were described by the sublattice model. A consistent set of thermodynamic parameters has been derived for describing the Gibbs free energies of each solution phase and intermetallic compound in the Ce-Zn and Pr-Zn binary systems. An agreement between the present calculated results and experimental data is obtained

  19. Adsorptive Desulfurization of Model Gasoline by Using Different Zn Sources Exchanged NaY Zeolites

    Directory of Open Access Journals (Sweden)

    Jingwei Rui

    2017-02-01

    Full Text Available A series of Zn-modified NaY zeolites were prepared by the liquid-phase ion-exchange method with different Zn sources, including Zn(NO32, Zn(Ac2 and ZnSO4. The samples were tested as adsorbents for removing an organic sulfur compound from a model gasoline fuel containing 1000 ppmw sulfur. Zn(Ac2-Y exhibited the best performance for the desulfurization of gasoline at ambient conditions. Combined with the adsorbents’ characterization results, the higher adsorption capacity of Zn(Ac2-Y is associated with a higher ion-exchange degree. Further, the results demonstrated that the addition of 5 wt % toluene or 1-hexene to the diluted thiophene (TP solution in cyclohexane caused a large decrease in the removal of TP from the model gasoline fuel. This provides evidence about the competition through the π-complexation between TP and toluene for adsorption on the active sites. The acid-catalyzed alkylation by 1-hexene of TP and the generated complex mixture of bulky alkylthiophenes would adsorb on the surface active sites of the adsorbent and block the pores. The regenerated Zn(Ac2-Y adsorbent afforded 84.42% and 66.10% of the initial adsorption capacity after the first two regeneration cycles.

  20. Complex matrix model duality

    International Nuclear Information System (INIS)

    Brown, T.W.

    2010-11-01

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  1. Complex matrix model duality

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W.

    2010-11-15

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  2. Acceptor Type Vacancy Complexes In As-Grown ZnO

    International Nuclear Information System (INIS)

    Zubiaga, A.; Tuomisto, F.; Zuniga-Perez, J.

    2010-01-01

    One of the many technological areas that ZnO is interesting for is the construction of opto-electronic devices working in the blue-UV range as its large band gap (∼3.4 eV at 10 K) makes them suitable for that purpose. As-grown ZnO shows generally n-type conductivity partially due to the large concentration of unintentional shallow donors, like H, but impurities can also form complexes with acceptor type defects (Zn vacancy) leading to the creation of compensating defects. Recently, Li Zn and Na Zn acceptors have been measured and H could form similar type of defects. Doppler Broadening Positron Annihilation spectroscopy experimental results on the observation of Zn related vacancy complexes in ZnO thin films, as-grown, O implanted and Al doped will be presented. Results show that as-grown ZnO film show small Zn vacancy related complexed that could be related to presence of H as a unintentional doping element.

  3. Acceptor Type Vacancy Complexes In As-Grown ZnO

    Science.gov (United States)

    Zubiaga, A.; Tuomisto, F.; Zuñiga-Pérez, J.

    2010-11-01

    One of the many technological areas that ZnO is interesting for is the construction of opto-electronic devices working in the blue-UV range as its large band gap (˜3.4 eV at 10 K) makes them suitable for that purpose. As-grown ZnO shows generally n-type conductivity partially due to the large concentration of unintentional shallow donors, like H, but impurities can also form complexes with acceptor type defects (Zn vacancy) leading to the creation of compensating defects. Recently, LiZn and NaZn acceptors have been measured and H could form similar type of defects. Doppler Broadening Positron Annihilation spectroscopy experimental results on the observation of Zn related vacancy complexes in ZnO thin films, as-grown, O implanted and Al doped will be presented. Results show that as-grown ZnO film show small Zn vacancy related complexed that could be related to presence of H as a unintentional doping element.

  4. Neuroprotective Effects and Mechanisms of Curcumin–Cu(II and –Zn(II Complexes Systems and Their Pharmacological Implications

    Directory of Open Access Journals (Sweden)

    Fa-Shun Yan

    2017-12-01

    Full Text Available Alzheimer’s disease (AD is the main form of dementia and has a steadily increasing prevalence. As both oxidative stress and metal homeostasis are involved in the pathogenesis of AD, it would be interesting to develop a dual function agent, targeting the two factors. Curcumin, a natural compound isolated from the rhizome of Curcuma longa, is an antioxidant and can also chelate metal ions. Whether the complexes of curcumin with metal ions possess neuroprotective effects has not been evaluated. Therefore, the present study was designed to investigate the protective effects of the complexes of curcumin with Cu(II or Zn(II on hydrogen peroxide (H2O2-induced injury and the underlying molecular mechanisms. The use of rat pheochromocytoma (PC12 cells, a widely used neuronal cell model system, was adopted. It was revealed that curcumin–Cu(II complexes systems possessed enhanced O2·–-scavenging activities compared to unchelated curcumin. In comparison with unchelated curcumin, the protective effects of curcumin–Cu(II complexes systems were stronger than curcumin–Zn(II system. Curcumin–Cu(II or –Zn(II complexes systems significantly enhanced the superoxide dismutase, catalase, and glutathione peroxidase activities and attenuated the increase of malondialdehyde levels and caspase-3 and caspase-9 activities, in a dose-dependent manner. The curcumin–Cu(II complex system with a 2:1 ratio exhibited the most significant effect. Further mechanistic study demonstrated that curcumin–Cu(II or –Zn(II complexes systems inhibited cell apoptosis via downregulating the nuclear factor κB (NF-κB pathway and upregulating Bcl-2/Bax pathway. In summary, the present study found that curcumin–Cu(II or –Zn(II complexes systems, especially the former, possess significant neuroprotective effects, which indicates the potential advantage of curcumin as a promising agent against AD and deserves further study.

  5. Neuroprotective Effects and Mechanisms of Curcumin-Cu(II) and -Zn(II) Complexes Systems and Their Pharmacological Implications.

    Science.gov (United States)

    Yan, Fa-Shun; Sun, Jian-Long; Xie, Wen-Hai; Shen, Liang; Ji, Hong-Fang

    2017-12-28

    Alzheimer's disease (AD) is the main form of dementia and has a steadily increasing prevalence. As both oxidative stress and metal homeostasis are involved in the pathogenesis of AD, it would be interesting to develop a dual function agent, targeting the two factors. Curcumin, a natural compound isolated from the rhizome of Curcuma longa , is an antioxidant and can also chelate metal ions. Whether the complexes of curcumin with metal ions possess neuroprotective effects has not been evaluated. Therefore, the present study was designed to investigate the protective effects of the complexes of curcumin with Cu(II) or Zn(II) on hydrogen peroxide (H₂O₂)-induced injury and the underlying molecular mechanisms. The use of rat pheochromocytoma (PC12) cells, a widely used neuronal cell model system, was adopted. It was revealed that curcumin-Cu(II) complexes systems possessed enhanced O₂ ·- -scavenging activities compared to unchelated curcumin. In comparison with unchelated curcumin, the protective effects of curcumin-Cu(II) complexes systems were stronger than curcumin-Zn(II) system. Curcumin-Cu(II) or -Zn(II) complexes systems significantly enhanced the superoxide dismutase, catalase, and glutathione peroxidase activities and attenuated the increase of malondialdehyde levels and caspase-3 and caspase-9 activities, in a dose-dependent manner. The curcumin-Cu(II) complex system with a 2:1 ratio exhibited the most significant effect. Further mechanistic study demonstrated that curcumin-Cu(II) or -Zn(II) complexes systems inhibited cell apoptosis via downregulating the nuclear factor κB (NF-κB) pathway and upregulating Bcl-2/Bax pathway. In summary, the present study found that curcumin-Cu(II) or -Zn(II) complexes systems, especially the former, possess significant neuroprotective effects, which indicates the potential advantage of curcumin as a promising agent against AD and deserves further study.

  6. Simulation in Complex Modelling

    DEFF Research Database (Denmark)

    Nicholas, Paul; Ramsgaard Thomsen, Mette; Tamke, Martin

    2017-01-01

    This paper will discuss the role of simulation in extended architectural design modelling. As a framing paper, the aim is to present and discuss the role of integrated design simulation and feedback between design and simulation in a series of projects under the Complex Modelling framework. Complex...... performance, engage with high degrees of interdependency and allow the emergence of design agency and feedback between the multiple scales of architectural construction. This paper presents examples for integrated design simulation from a series of projects including Lace Wall, A Bridge Too Far and Inflated...... Restraint developed for the research exhibition Complex Modelling, Meldahls Smedie Gallery, Copenhagen in 2016. Where the direct project aims and outcomes have been reported elsewhere, the aim for this paper is to discuss overarching strategies for working with design integrated simulation....

  7. Modeling Complex Systems

    CERN Document Server

    Boccara, Nino

    2010-01-01

    Modeling Complex Systems, 2nd Edition, explores the process of modeling complex systems, providing examples from such diverse fields as ecology, epidemiology, sociology, seismology, and economics. It illustrates how models of complex systems are built and provides indispensable mathematical tools for studying their dynamics. This vital introductory text is useful for advanced undergraduate students in various scientific disciplines, and serves as an important reference book for graduate students and young researchers. This enhanced second edition includes: . -recent research results and bibliographic references -extra footnotes which provide biographical information on cited scientists who have made significant contributions to the field -new and improved worked-out examples to aid a student’s comprehension of the content -exercises to challenge the reader and complement the material Nino Boccara is also the author of Essentials of Mathematica: With Applications to Mathematics and Physics (Springer, 2007).

  8. Modeling Complex Systems

    International Nuclear Information System (INIS)

    Schreckenberg, M

    2004-01-01

    This book by Nino Boccara presents a compilation of model systems commonly termed as 'complex'. It starts with a definition of the systems under consideration and how to build up a model to describe the complex dynamics. The subsequent chapters are devoted to various categories of mean-field type models (differential and recurrence equations, chaos) and of agent-based models (cellular automata, networks and power-law distributions). Each chapter is supplemented by a number of exercises and their solutions. The table of contents looks a little arbitrary but the author took the most prominent model systems investigated over the years (and up until now there has been no unified theory covering the various aspects of complex dynamics). The model systems are explained by looking at a number of applications in various fields. The book is written as a textbook for interested students as well as serving as a comprehensive reference for experts. It is an ideal source for topics to be presented in a lecture on dynamics of complex systems. This is the first book on this 'wide' topic and I have long awaited such a book (in fact I planned to write it myself but this is much better than I could ever have written it!). Only section 6 on cellular automata is a little too limited to the author's point of view and one would have expected more about the famous Domany-Kinzel model (and more accurate citation!). In my opinion this is one of the best textbooks published during the last decade and even experts can learn a lot from it. Hopefully there will be an actualization after, say, five years since this field is growing so quickly. The price is too high for students but this, unfortunately, is the normal case today. Nevertheless I think it will be a great success! (book review)

  9. Surface tension modelling of liquid Cd-Sn-Zn alloys

    Science.gov (United States)

    Fima, Przemyslaw; Novakovic, Rada

    2018-06-01

    The thermodynamic model in conjunction with Butler equation and the geometric models were used for the surface tension calculation of Cd-Sn-Zn liquid alloys. Good agreement was found between the experimental data for limiting binaries and model calculations performed with Butler model. In the case of ternary alloys, the surface tension variation with Cd content is better reproduced in the case of alloys lying on vertical sections defined by high Sn to Zn molar fraction ratio. The calculated surface tension is in relatively good agreement with the available experimental data. In addition, the surface segregation of liquid ternary Cd-Sn-Zn and constituent binaries has also been calculated.

  10. Modeling complexes of modeled proteins.

    Science.gov (United States)

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Intercalation of a Zn(II) complex containing ciprofloxacin drug between DNA base pairs.

    Science.gov (United States)

    Shahabadi, Nahid; Asadian, Ali Ashraf; Mahdavi, Mryam

    2017-11-02

    In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV-Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (K b = 1.4 × 10 4 M -1 ) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 -4.8 × 10 4 M -1 . CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.

  12. Synthesis Al complex and investigating effect of doped ZnO nanoparticles in the electrical and optical efficiency of OLEDS

    Science.gov (United States)

    Shahedi, Zahra; Jafari, Mohammad Reza

    2017-01-01

    In this study, an organometallic complex based on aluminum ions is synthesized. And it is utilized as fluorescent material in the organic light-emitting diodes (OLEDs). The synthesized complex was characterized using XRD, UV-Vis, FT-IR as well as PL spectroscopy analyses. The energy levels of Al complex were determined by cyclic voltammetry measurements. Then, the effects of ZnO nanoparticles (NPs) of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS, on the electrical and optical performance of the organic light-emitting diodes have been investigated. For this purpose, two samples containing ITO/PEDOT:PSS/PVK/Alq3/PBD/Al with two different concentration and two samples containing ITO/PEDOT:PSS:ZnO/PVK/Alq3/PBD/Al with two different concentration were prepared. Then, hole transport, electron transport and emissive layers were deposited by the spin coating method and the cathode layer (Al) was deposited by the thermal evaporation method. The OLED simulation was also done by constructing the model and choosing appropriate parameters. Then, the experimental data were collected and the results interpreted both qualitatively and quantitatively. The results of the simulations were compared with experimental data of the J-V spectra. Comparing experimental data and simulation results showed that the electrical and optical efficiency of the samples with ZnO NPs is appreciably higher than the samples without ZnO NPs.

  13. Electronic structure of gadolinium complexes in ZnO in the GW approximation

    Science.gov (United States)

    Rosa, A. L.; Frauenheim, Th.

    2018-04-01

    The role of intrinsic defects has been investigated to determine binding energies and the electronic structure of Gd complexes in ZnO. We use density-functional theory and the GW method to show that the presence of vacancies and interstitials affect the electronic structure of Gd doped ZnO. However, the strong localization of the Gd-f and d states suggest that carrier mediated ferromagnetism in this material may be difficult to achieve.

  14. Predictive Surface Complexation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences

    2016-11-29

    Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.

  15. Complex impedance spectra of chip inductor using Li-Zn-Cu-Mn ferrite

    International Nuclear Information System (INIS)

    Nakamura, Tatsuya; Naoe, Masayuki; Yamada, Yoshihiro

    2006-01-01

    A multi-layer chip inductor (MCI) was fabricated using polycrystalline Li-Zn-Cu-Mn ferrite and the green-sheet technique, and its complex impedance spectrum was evaluated with the help of numerical calculations. The complex impedance spectra of the MCI component using Ni-Zn-Cu ferrite, which have been widely used for this application, were very sensitive to the residual stress and deviated much from the calculated values; however, it was found that the complex impedance spectrum of the MCI component using Li-Zn-Cu-Mn ferrite is quite well reproduced by calculation, where the complex permittivity and permeability of the polycrystalline ferrite as well as the MCI dimensions, were used. It implied that the magneto-striction effect was negligible in case of MCI using Li-Zn-Cu-Mn ferrite, and that the difference was related to magneto-strictive coefficient of the polycrystalline ferrite. Consequently, utilization of Li-Zn-Cu-Mn ferrite enabled us to easily design the complex impedance of MCI component

  16. Polystochastic Models for Complexity

    CERN Document Server

    Iordache, Octavian

    2010-01-01

    This book is devoted to complexity understanding and management, considered as the main source of efficiency and prosperity for the next decades. Divided into six chapters, the book begins with a presentation of basic concepts as complexity, emergence and closure. The second chapter looks to methods and introduces polystochastic models, the wave equation, possibilities and entropy. The third chapter focusing on physical and chemical systems analyzes flow-sheet synthesis, cyclic operations of separation, drug delivery systems and entropy production. Biomimetic systems represent the main objective of the fourth chapter. Case studies refer to bio-inspired calculation methods, to the role of artificial genetic codes, neural networks and neural codes for evolutionary calculus and for evolvable circuits as biomimetic devices. The fifth chapter, taking its inspiration from systems sciences and cognitive sciences looks to engineering design, case base reasoning methods, failure analysis, and multi-agent manufacturing...

  17. The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate-polluted groundwater

    DEFF Research Database (Denmark)

    Christensen, J. B.; Christensen, Thomas Højlund

    2000-01-01

    model provided useful predictions of the complexation of Cd and Zn by DOC in the pH range 5±8, and of Ni in the pH range 5±7. At pH 8, however, the model overestimates the extent of Ni-DOC complexation to an unacceptable degree. The MINTEQA2 model predicts virtually no pH dependence for DOC complexation...

  18. The influence of phthalocyanine aggregation in complexes with CdSe/ZnS quantum dots on the photophysical properties of the complexes

    Directory of Open Access Journals (Sweden)

    Irina V. Martynenko

    2016-07-01

    Full Text Available The formation of nonluminescent aggregates of aluminium sulfonated phthalocyanine in complexes with CdSe/ZnS quantum dots causes a decrease of the intracomplex energy transfer efficiency with increasing phthalocyanine concentration. This was confirmed by steady-state absorption and photoluminescent spectroscopy. A corresponding physical model was developed that describes well the experimental data. The results can be used at designing of QD/molecule systems with the desired spatial arrangement for photodynamic therapy.

  19. Fabrication of White Organic Light Emitting Diode Using Two Types of Zn-Complexes as an Emitting Layer.

    Science.gov (United States)

    Kim, Dong-Eun; Kwon, Young-Soo; Shin, Hoon-Kyu

    2015-01-01

    We have studied white OLED using two types of Zn-complexes as an emitting layer. We synthesized brand new two emissive materials, Zn(HPQ)2 as a yellow emitting material and Zn(HPB)2 as a blue emitting material. The Zn-complexes are low-molecular compounds and stable thermally. The fundamental structures of the fabricated OLED was ITO/NPB (40 nm)/Zn(HPB)2 (30 nm)/Zn(HPQ)2/LiF/Al. We varied the thickness of the Zn(HPQ)2 layer by 20, 30, and 40 nm. When the thickness of the Zn(HPQ)2 layer was 20 nm, the white emission was achieved. The maximum luminance was 12,000 cd/m2 at a current density of 800 mA/cm2. The CIE coordinates of the white emission were (0.319, 0.338) at an applied voltage of 10 V.

  20. The relative contribution of natural zinc complexing agents and ZnSO4 to growth and zinc nutrition of maize

    International Nuclear Information System (INIS)

    Kumar, M.; Prasad, B.

    1989-01-01

    Relative evaluation of different natural zinc-complexes indicated that application of Zn-FA 2 (PM), Zn-FA 3 (Comp), Zn-FA 1 (BGS), Zn-FA 5 (PR), Zn-FA 4 (SS) and ZnSO 4 significantly enhanced the drymatter yield and zinc uptake by maize. The natural zinc-complexes in particular increased, to a greater extent, the uptake of both native and applied sources than that observed with ZnSO 4 as zinc carrier. Significant positive relationship between self-diffusion coefficient of Zn and drymatter yield and uptake of zinc by maize suggested that diffusion is responsible for the supply of zinc from ambient soil matrix to plant roots. (author). 12 refs., 5 tabs

  1. Structural and optical characterization of indium-antimony complexes in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Türker, M.; Deicher, M., E-mail: manfred.deicher@tech-phys.uni-sb.de; Johnston, K.; Wolf, H.; Wichert, Th. [Universität des Saarlandes, Experimentalphysik (Germany)

    2015-04-15

    One of the main obstacles to the technical application of the wide-gap semiconductor ZnO represents the difficulty to achieve reliable p-type doping of ZnO with group V elements (N, P, As, Sb) acting as acceptors located on O lattice sites. The theoretically proposed concepts of cluster-doping or codoping may lead to an enhanced and stable p-type conductivity of ZnO. We report on PAC results obtained by codoping experiments of ZnO by ion implantation using the donor {sup 111}In and the group-V acceptor Sb. The formation of In-Sb pairs has been observed. Based on these PAC results, there is no evidence for the formation of In-acceptor complexes involving more than one Sb acceptor. These results has been complemented by photoluminescence measurements.

  2. A Method for Selective Depletion of Zn(II) Ions from Complex Biological Media and Evaluation of Cellular Consequences of Zn(II) Deficiency

    Science.gov (United States)

    Richardson, Christopher E. R.; Cunden, Lisa S.; Butty, Vincent L.; Nolan, Elizabeth M.; Lippard, Stephen J.; Shoulders, Matthew D.

    2018-01-01

    We describe the preparation, evaluation, and application of an S100A12 protein-conjugated solid support, hereafter the “A12-resin,” that can remove 99% of Zn(II) from complex biological solutions without significantly perturbing the concentrations of other metal ions. The A12-resin can be applied to selectively deplete Zn(II) from diverse tissue culture media and from other biological fluids, including human serum. To further demonstrate the utility of this approach, we investigated metabolic, transcriptomic, and metallomic responses of HEK293 cells cultured in medium depleted of Zn(II) using S100A12. The resulting data provide insight into how cells respond to acute Zn(II) deficiency. We expect that the A12-resin will facilitate interrogation of disrupted Zn(II) homeostasis in biological settings, uncovering novel roles for Zn(II) in biology. PMID:29334734

  3. Intermetallic Competition in the Fragmentation of Trimetallic Au-Zn-Alkali Complexes.

    Science.gov (United States)

    Lang, Johannes; Cayir, Merve; Walg, Simon P; Di Martino-Fumo, Patrick; Thiel, Werner R; Niedner-Schatteburg, Gereon

    2016-02-12

    Cationization is a valuable tool to enable mass spectrometric studies on neutral transition-metal complexes (e.g., homogenous catalysts). However, knowledge of potential impacts on the molecular structure and catalytic reactivity induced by the cationization is indispensable to extract information about the neutral complex. In this study, we cationize a bimetallic complex [AuZnCl3 ] with alkali metal ions (M(+) ) and investigate the charged adducts [AuZnCl3 M](+) by electrospray ionization mass spectrometry (ESI-MS). Infrared multiple photon dissociation (IR-MPD) in combination with density functional theory (DFT) calculations reveal a μ(3) binding motif of all alkali ions to the three chlorido ligands. The cationization induces a reorientation of the organic backbone. Collision-induced dissociation (CID) studies reveal switches of fragmentation channels by the alkali ion and by the CID amplitude. The Li(+) and Na(+) adducts prefer the sole loss of ZnCl2 , whereas the K(+) , Rb(+) , and Cs(+) adducts preferably split off MCl2 ZnCl. Calculated energetics along the fragmentation coordinate profiles allow us to interpret the experimental findings to a level of subtle details. The Zn(2+) cation wins the competition for the nitrogen coordination sites against K(+) , Rb(+) , and Cs(+) , but it loses against Li(+) and Na(+) in a remarkable deviation from a naive hard and soft acids and bases (HSAB) concept. The computations indicate expulsion of MCl2 ZnCl rather than of MCl and ZnCl2 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah, Is, E-mail: isfatimah@uii.ac.id; Yudha, Septian P.; Mutiara, Nur Afisa Lintang [Chemistry Department, Islamic University of Indonesia Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta (Indonesia)

    2016-02-08

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  5. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    International Nuclear Information System (INIS)

    Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-01-01

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction

  6. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    Science.gov (United States)

    Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-02-01

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  7. Hydrogen-related complexes in Li-diffused ZnO single crystals

    Science.gov (United States)

    Corolewski, Caleb D.; Parmar, Narendra S.; Lynn, Kelvin G.; McCluskey, Matthew D.

    2016-07-01

    Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li2O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>1019 cm-3). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm-1, attributed to surface O-H species. When Li2CO3 is used, a structured blue luminescence band and O-H mode at 3327 cm-1 are observed at 10 K. These observations, along with positron annihilation measurements, suggest a zinc vacancy-hydrogen complex, with an acceptor level ˜0.3 eV above the valence-band maximum. This relatively shallow acceptor could be beneficial for p-type ZnO.

  8. A saponification-triggered gelation of ester-based Zn(II) complex through conformational transformations.

    Science.gov (United States)

    Kumar, Ashish; Dubey, Mrigendra; Kumar, Amit; Pandey, Daya Shankar

    2014-09-11

    Novel saponification-triggered gelation in an ester-based bis-salen Zn(II) complex (1) is described. Strategic structural modifications induced by NaOH in 1 tune the dipolar-/π-interactions leading to J-aggregation and the creation of an inorganic gel material (IGM), which has been established by photophysical, DFT and rheological studies.

  9. Hydrogen-related complexes in Li-diffused ZnO single crystals

    International Nuclear Information System (INIS)

    Corolewski, Caleb D.; Parmar, Narendra S.; Lynn, Kelvin G.; McCluskey, Matthew D.

    2016-01-01

    Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li_2O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>10"1"9" cm"−"3). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm"−"1, attributed to surface O-H species. When Li_2CO_3 is used, a structured blue luminescence band and O-H mode at 3327 cm"−"1 are observed at 10 K. These observations, along with positron annihilation measurements, suggest a zinc vacancy–hydrogen complex, with an acceptor level ∼0.3 eV above the valence-band maximum. This relatively shallow acceptor could be beneficial for p-type ZnO.

  10. Hydrogen-related complexes in Li-diffused ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Corolewski, Caleb D. [Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164-2814 (United States); Parmar, Narendra S.; Lynn, Kelvin G. [Center for Materials Research, Washington State University, Pullman, Washington 99164-2814 (United States); McCluskey, Matthew D., E-mail: mattmcc@wsu.edu [Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164-2814 (United States); Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States)

    2016-07-21

    Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li{sub 2}O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>10{sup 19 }cm{sup −3}). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm{sup −1}, attributed to surface O-H species. When Li{sub 2}CO{sub 3} is used, a structured blue luminescence band and O-H mode at 3327 cm{sup −1} are observed at 10 K. These observations, along with positron annihilation measurements, suggest a zinc vacancy–hydrogen complex, with an acceptor level ∼0.3 eV above the valence-band maximum. This relatively shallow acceptor could be beneficial for p-type ZnO.

  11. The synthesis of N–Zn, N–Cu complexes involving 2-amino pyridine ...

    Indian Academy of Sciences (India)

    Administrator

    alcohol, and the reaction mixture was refluxed for. 14 h. The mixture was filtered to furnish white cry- .... benzaldehyde to 2-nitro-1-phenylethanol was esta- blished according to the content ratio of the remin- ... Zn(OAc)2 ·2 H2O in ethanol, THF or acetonitrile, the corresponding complexes were obtained after reflux- ing for 14 ...

  12. Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Wei, Aixiang, E-mail: weiax@gdut.edu.cn; Zhao, Yu

    2014-03-05

    Highlights: • To fabricate high quality ZnS films need to promote the ion-by-ion process and restrain cluster-by-cluster process. • The complexation ability of tri-sodium citrate is stronger than that of hydrazine hydrate. • The nucleation density of nuclei determine the performance of ZnS thin films. -- Abstract: Zinc sulfide (ZnS) thin films were deposited on glass substrates using the chemical bath deposition (CBD) technique. The effects of different complexing agents (tri-sodium citrate, hydrazine hydrate) and their concentrations on the structure, composition, morphology, optical properties and growth mechanism of ZnS thin films were investigated. The results indicated that the chemical-bath-deposited ZnS thin films exhibit poor crystallinity and a high Zn/S atomic ratio with an average transmittance of 75% in the range of visible light. The ZnS thin films prepared using hydrazine hydrate as the complexing agent present a more compact surface, a smaller average particle size, and a sharper absorption edge at 300–340 nm compared with those prepared using tri-sodium citrate. Based on our experimental observations and analysis, we conclude that the predominant growth mechanism of ZnS thin films is an ion-by-ion process. The nucleation density of Zn(OH){sub 2} nuclei on the substrate in the initial stage produces the different morphologies and properties of the ZnS thin films prepared using the two complexing agents.

  13. Ultraviolet photoemission spectroscopy of hydrogen complex deactivation on InP:Zn(1 0 0) surfaces

    International Nuclear Information System (INIS)

    Williams, M.D.; Williams, S.C.; Yasharahla, S.A.; Jallow, N.

    2007-01-01

    Ultraviolet photoemission spectroscopy is used to study the kinetics of the H-Zn complex deactivation in Zn doped InP(1 0 0). Hydrogen injected into the material electronically passivates the local carrier concentration. Reverse-biased anneals of the InP under ultra-high vacuum show a dramatic change in the work function of the material with increasing temperature. Spectral features are also shown to be sensitive to sample temperature. To our knowledge, we show the first view of hydrogen retrapping at the surface using photoemission spectroscopy. A simple photoelectron threshold energy analysis shows the state of charge compensation of the material

  14. Synthesis, crystal structure and DFT studies of a Zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n. The additional stabilizing role of S⋯π chalcogen bond

    Science.gov (United States)

    Alotaibi, Mshari A.; Alharthi, Abdulrahman I.; Zierkiewicz, Wiktor; Akhtar, Muhammad; Tahir, Muhammad Nawaz; Mazhar, Muhammad; Isab, Anvarhusein A.; Ahmad, Saeed

    2017-04-01

    A zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n (1) has been prepared and characterized by elemental analysis, IR, 1H &13C NMR spectroscopy, and its crystal structure was determined by X-ray crystallography. The crystal structure of 1 consists of two types of molecules, a discrete monomer and a polymeric one. In the monomeric unit, the zinc atom is bound to one terminal Dap molecule and to two N-bound thiocyanate ions, while in the polymeric unit, Dap acts as a bridging ligand forming a linear chain. The Zn(II) ions in both assume a slightly distorted tetrahedral geometry. The structures of two systems: the [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]3 complex as a model of 1 and [Zn(Dap)(NCS)2]4 as a simple polymeric structure were optimized with the B3LYP-D3 method. The DFT results support that the experimentally determined structure (1) is more stable in comparison to a simple polymeric structure, [Zn(Dap)(NCS)2]n (2). The interaction energies (ΔE) for NCS anions obtained by B3LYP-D3 method are about -145 kcal mol-1, while the calculated ΔE values for neutral organic ligands are about twice smaller. The X-ray structure of 1 shows that the complex is stabilized mainly by hydrogen bonds. We also found that weak chalcogen bonds play an additional role in stabilization of compound 1. Some of the intermolecular S⋯N distances are smaller than the sum of the van der Waals radii of the corresponding atoms. To the best of our knowledge, this is the first study that shows the structure where the trivalent sulfur is involved in formation of a S⋯π chalcogen bond. The NBO and NCI analyses confirm the existence of this kind of interactions.

  15. Influence of Exciplex formation on the electroluminescent properties of dimeric Zn (II) bis-2-(2'-hydroxyphenyl) benzoxazole complex and monomeric Zn (II) 2-(1'-hydroxynaphthyl) benzothiazole complex

    Science.gov (United States)

    Prakash, Sattey; Anand, R. S.; Manoharan, S. Sundar

    2011-10-01

    In this paper we present the factors affecting electroluminescent properties of Zinc complexes of oxazole & thiazole derivatives. Electroluminescent spectra of the Zinc (II) complex of bis-[2-(2'-hydroxyphenyl) benzoxazole], [Zn (HPBO)2]2 and 2-(1'-hydroxynaphthyl) benzothiazole [Zn (HNBT)2] show unusual broadening and shows structural and photophysical similarity with [Zn (HPBT)2]2, a dimeric complex. The [Zn (HPBO)2]2 complex as an emissive layer in the device structure ITO /PEDOT:PSS /TPD (30nm) /[Zn (HPBO)2]2 (60nm) /BCP (6nm) /Ca (3nm) /Al (200nm) shows a broad bluish green emission, with a full width at half maxima (FWHM1˜70nm). The EL spectra is much broader compared to the PL spectra because of exciplex formation at the interfacial region between the emissive layer (EML) & hole transport layer (HTL). We also show the device performance of Zinc 2-(1'-hydroxynaphthyl) benzothiazole [Zn (HNBT)2] complex as emissive layer. Distinctly this device shows a broad greenish yellow emission with a peak maxima at 535nm and 690nm, owing to the exciplex formation between electron transport layer (ETL) and emissive layer (EML), which is in sharp contrast to the exciplex formation across the HTL-EML interface observed for the [Zn (HPBO)2]2 complex.

  16. Thermodynamic modeling of the Sc-Zn system coupled with first-principles calculation

    Directory of Open Access Journals (Sweden)

    Tang C.

    2012-01-01

    Full Text Available The Sc-Zn system has been critically reviewed and assessed by means of CALPHAD (CALculation of PHAse Diagram approach. By means of first-principles calculation, the enthalpies of formation at 0 K for the ScZn, ScZn2, Sc17Zn58, Sc3Zn17 and ScZn12 have been computed with the desire to assist thermodynamic modeling. A set of self-consistent thermodynamic parameters for the Sc-Zn system is then obtained. The calculated phase diagram and thermodynamic properties agree well with the experimental data and first-principles calculations, respectively.

  17. Precipitation, stabilization and molecular modeling of ZnS nanoparticles in the presence of cetyltrimethylammonium bromide.

    Science.gov (United States)

    Praus, Petr; Dvorský, Richard; Horínková, Petra; Pospíšil, Miroslav; Kovář, Petr

    2012-07-01

    ZnS nanoparticles were precipitated in aqueous dispersions of cationic surfactant cetyltrimethylammonium bromide (CTAB). The sphere radii of ZnS nanoparticles calculated by using band-gap energies steeply decreased from 4.5 nm to 2.2 nm within CTAB concentrations of 0.4-1.5 mmol L(-1). Above the concentration of 1.5 mmol L(-1), the radii were stabilized at R=2.0 nm and increased up to R=2.5 nm after 24 h. The hydrodynamic diameters of CTAB-ZnS structures observed by the dynamic light scattering (DLS) method ranged from 130 nm to 23 nm depending on CTAB concentrations of 0.5-1.5 mmol L(-1). The complex structures were observed by transmission electron microscopy (TEM). At the higher CTAB concentrations, ZnS nanoparticles were surrounded by CTA(+) bilayers forming positively charged micelles with the diameter of 10nm. The positive zeta-potentials of the micelles and their agglomerates were from 16 mV to 33 mV. Wurtzite and sphalerite nanoparticles with R=2.0 nm and 2.5 nm covered by CTA(+) were modeled with and without water. Calculated sublimation energies confirmed that a bilayer arrangement of CTA(+) on the ZnS nanoparticles was preferred to a monolayer. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Curcumin-Zn(II) complex for enhanced solubility and stability: an approach for improved delivery and pharmacodynamic effects.

    Science.gov (United States)

    Sareen, Rashmi; Jain, Nitin; Dhar, K L

    2016-08-01

    The aim of present investigation was to prepare Curcumin-Zn(II) complex in a view to enhance solubility, stability and pharmacodynamic effect in experimentally induced ulcerative colitis. Curcumin-Zn(II) complex was prepared by stirring curcumin with anhydrous zinc chloride at a molar ratio of 1:1. The prepared curcumin metallocomplex was characterized by TLC, FTIR, UV spectroscopy and (1)H NMR. In vitro kinetic degradation and solubility of Curcumin and Curcumin-Zn(II) complex was analyzed spectrophotometrically. Pharmacodynamic evaluation of curcumin and its metal complex was assessed in ulcerative colitis in mice. Curcumin showed chelation with zinc ion as confirmed by the TLC, FTIR, UV spectroscopy and (1)H NMR. The results of TLC [Rf value], IR Spectroscopy [shifting of stretching vibrations of υ(C=C) and υ(C=O)], UV spectra [deconvoluted with absorption band at 432-466.4 nm] of Curcumin-Zn(II) complex compared to curcumin confirmed the formation of metallocomplex. (1)HNMR spectra of Curcumin-Zn(II) showed the upfield shift of Ha and Hb. Kinetic stability studies showed metallocomplex with zinc exhibited good stability. In vivo study revealed significant reduction in severity and extent of colonic damage with Curcumin-Zn(II) which were further confirmed by histopathological study. This study recognizes higher solubility and stability of Curcumin-Zn(II) complex and suggested better pharmacodynamic effects.

  19. Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols

    International Nuclear Information System (INIS)

    Esparza, I.; Salinas, I.; Santamaria, C.; Garcia-Mina, J.M.; Fernandez, J.M.

    2005-01-01

    Zn and Cu interactions with three selected flavonoids (catechin, quercetin and rutin) have been electrochemically monitored. It has been shown that catechin takes one atom of metal per molecule; quercetin takes two atoms, and rutin is able to take up to three atoms. Not all ligands bind metals equally strong, and weakly bonded metals can be distinguished. Zn shows a sluggish kinetics and, at the same time, the highest conditional formation constants. The method could be applied to a real sample. Theoretical models are proposed for the most favourable compounds

  20. Nanotoxicity modelling and removal efficiencies of ZnONP.

    Science.gov (United States)

    Fikirdeşici Ergen, Şeyda; Üçüncü Tunca, Esra

    2018-01-02

    In this paper the aim is to investigate the toxic effect of zinc oxide nanoparticles (ZnONPs) and is to analyze the removal of ZnONP in aqueous medium by the consortium consisted of Daphnia magna and Lemna minor. Three separate test groups are formed: L. minor ([Formula: see text]), D. magna ([Formula: see text]), and L. minor + D. magna ([Formula: see text]) and all these test groups are exposed to three different nanoparticle concentrations ([Formula: see text]). Time-dependent, concentration-dependent, and group-dependent removal efficiencies are statistically compared by non-parametric Mann-Whitney U test and statistically significant differences are observed. The optimum removal values are observed at the highest concentration [Formula: see text] for [Formula: see text], [Formula: see text] for [Formula: see text]and [Formula: see text] for [Formula: see text] and realized at [Formula: see text] for all test groups [Formula: see text]. There is no statistically significant differences in removal at low concentrations [Formula: see text] in terms of groups but [Formula: see text] test groups are more efficient than [Formula: see text] test groups in removal of ZnONP, at [Formula: see text] concentration. Regression analysis is also performed for all prediction models. Different models are tested and it is seen that cubic models show the highest predicted values (R 2 ). In toxicity models, R 2 values are obtained at (0.892, 0.997) interval. A simple solution-phase method is used to synthesize ZnO nanoparticles. Dynamic Light Scattering and X-Ray Diffraction (XRD) are used to detect the particle size of synthesized ZnO nanoparticles.

  1. Appropriate complexity landscape modeling

    NARCIS (Netherlands)

    Larsen, Laurel G.; Eppinga, Maarten B.; Passalacqua, Paola; Getz, Wayne M.; Rose, Kenneth A.; Liang, Man

    Advances in computing technology, new and ongoing restoration initiatives, concerns about climate change's effects, and the increasing interdisciplinarity of research have encouraged the development of landscape-scale mechanistic models of coupled ecological-geophysical systems. However,

  2. Experimental and Theoretical Investigations of Infrared Multiple Photon Dissociation Spectra of Aspartic Acid Complexes with Zn2+ and Cd2.

    Science.gov (United States)

    Boles, Georgia C; Hightower, Randy L; Coates, Rebecca A; McNary, Christopher P; Berden, Giel; Oomens, Jos; Armentrout, P B

    2018-04-12

    Complexes of aspartic acid (Asp) cationized with Zn 2+ : Zn(Asp-H) + , Zn(Asp-H) + (ACN) where ACN = acetonitrile, and Zn(Asp-H) + (Asp); as well as with Cd 2+ , CdCl + (Asp), were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy using light generated from a free electron laser. A series of low-energy conformers for each complex was found using quantum chemical calculations to identify the structures formed experimentally. The main binding motif observed for the heavy-metal complex, CdCl + (Asp)[N,CO,CO s ], is a charge-solvated, tridentate structure, where the metal center binds to the backbone amino group and carbonyl oxygens of the backbone and side-chain carboxylic acids. Likewise, the deprotonated Zn(Asp-H) + (ACN) and Zn(Asp-H) + (Asp) complexes show comparable [N,CO - ,CO s ](ACN) and [N,CO - ,CO s ][N,CO,CO s ] coordinations, respectively. Interestingly, there was only minor spectral evidence for the analogous Zn(Asp-H) + [N,CO - ,CO s ] binding motif, even though this species is predicted to be the lowest-energy conformer. Instead, rearrangement and partial dissociation of the amino acid are observed, as spectral features most consistent with the experimental spectrum are exhibited by a four-coordinate Zn(Asp-NH 4 ) + [CO 2 - ,CO s ](NH 3 ) complex. Analysis of the mechanistic pathway leading from the predicted lowest-energy conformer to the isobaric deaminated complex is explored theoretically. Further, comparison of the current work to that of Zn 2+ and Cd 2+ complexes of asparagine (Asn) allows additional conclusions regarding populated conformers and effects of carboxamide versus carboxylic acid binding to be drawn.

  3. Electronic and atomic structure of complex defects in Al- and Ga-highly doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Menéndez-Proupin, Eduardo [Instituto de Energía Solar, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria, 28040 Madrid (Spain); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, 780-0003 Ñuñoa, Santiago (Chile); Palacios, Pablo, E-mail: pablo.palacios@upm.es [Instituto de Energía Solar, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria, 28040 Madrid (Spain); Dpt. FAIAN, E.T.S.I. Aeronáutica y del Espacio, UPM, Pz. Cardenal Cisneros 3, 28040 Madrid (Spain); Wahnón, Perla [Instituto de Energía Solar, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria, 28040 Madrid (Spain); Dpt. TFO, E.T.S.I. Telecomunicación, UPM, Ciudad Universitaria, 28040 Madrid (Spain)

    2015-06-15

    Point defects in Ga- and Al-doped ZnO thin films are studied by means of first principles electronic structure calculations. Candidate defects are identified to explain recently observed differences in electrical and spectroscopic behavior of both systems. Substitutional doping in Ga–ZnO explain the metallic behavior of the electrical properties. Complexes of interstitial oxygen with substitutional Ga can behave as acceptor and cause partial compensation, as well as gap states below the conduction band minimum as observed in photoemission experiments. Zn vacancies can also act as compensating acceptors. On the other hand, the semiconducting behavior of Al–ZnO and the small variation in the optical gap compared with pure ZnO, can be explained by almost complete compensation between acceptor Zn vacancies and substitutional Al donors. Interstitial Al can also be donor levels and can be the origin of the small band observed in photoemission experiments below the Fermi level. Combinations of substitutional Al with interstitial oxygen can act simultaneously as compensating acceptor and generator of the mentioned photoemission band. The theoretical calculations have been done using density functional theory (DFT) within the generalized gradient approximation with on-site Coulomb interaction. In selected cases, DFT calculations with semilocal-exact exchange hybrid functionals have been performed. Results explain photoelectron spectra of Ga–ZnO and Al–ZnO at the corresponding doping levels. - Highlights: • Defects in Ga- and Al-heavy-doped ZnO films are studied by quantum calculations. • Defects compatible with electrical, optical, and HAXPES spectra are proposed. • Doping efficiency is reduced by Zn vacancies and O interstitials. • HAXPES bands near the Fermi level are induced by Al{sub i}, and complexes Ga{sub Zn}-O{sub i}, and Al{sub Zn}-O{sub i}.

  4. Complexes of Zn(2) and Cd(2) with 2-methyl-benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Slyusarenko, K F; Artemenko, M V; Pokhodnya, G A; Kononenko, O.M. (Kievskij Tekhnologicheskij Inst. Pishchevoj Promyshlennosti (Ukrainian SSR))

    1978-07-01

    Coordination compounds of Zn(2) and Cd(2) salts with 2-methyl-benzimidazole (MBI) of 2MBIxMeX/sub 2/ composition, where Me is Zn (2), Cd (2); X is NO/sub 3//sup -/, CH/sub 3/COO/sup -/, CL/sup -/, Br/sup -/, I/sup -/, 1/2SO/sub 4//sup -2/, as well as acid compounds of (MBIH)/sub 2/(CdX/sub 4/) composition, where X is Cl/sup -/, Br/sup -/, I/sup -/, have been obtained and investigated. The synthetized compounds are of white colour, they are stable in air, soluble in alcohols, decomposed by water. Decomposition temperatures for most of the Cd(2) compounds lie above 250 deg C. Infrared spectra and diffractograms of these compounds have been studied. From the curves of radial distribution of atomic density, the ionic nature of the bonding of halide groups in the complexes has been established.

  5. QTAIM investigation of bis(pyrazol-1-ylmethane derivative and its Zn(II complexes (ZnLX2, X=Cl, Br or I

    Directory of Open Access Journals (Sweden)

    Dehestani Maryam

    2015-01-01

    Full Text Available Topological analyses of the electron density using the quantum theory of atoms in molecules (QTAIM have been carried out at the B3PW91/6-31g (d theoretical level, on bis(pyrazol-1-ylmethanes derivatives 9-(4-(di (1H-pyrazol-1-yl-methylphenyl-9H-carbazole (L and its zinc(II complexes: ZnLCl2 (1, ZnLBr2 (2 and ZnLI2 (3. The topological parameters derived from Bader theory were also analyzed; these are characteristics of Zn-bond critical points and also of ring critical points. The calculated structural parameters are the frontier molecular orbital energies highest occupied molecular orbital energy (EHOMO, lowest unoccupied molecular orbital energy (ELUMO, hardness (η, softness (S, the absolute electronegativity (χ, the electrophilicity index (ω and the fractions of electrons transferred (ΔN from ZnLX2 complexes to L. The numerous correlations and dependencies between energy terms of the Symmetry Adapted Perturbation Theory approach (SAPT, geometrical, topological and energetic parameters were detected and described.

  6. Liquidus Projection and Thermodynamic Modeling of a Sn-Ag-Zn System

    Science.gov (United States)

    Chen, Sinn-wen; Chiu, Wan-ting; Gierlotka, Wojciech; Chang, Jui-shen; Wang, Chao-hong

    2017-12-01

    Sn-Ag-Zn alloys are promising Pb-free solders. In this study, the Sn-Ag-Zn liquidus projection was determined, and the Sn-Ag-Zn thermodynamic modeling was developed. Various Sn-Ag-Zn alloys were prepared. Their as-cast microstructures and primary solidification phases were examined. The invariant reaction temperatures of the ternary Sn-Ag-Zn system were determined. The liquidus projection of the Sn-Ag-Zn ternary system was constructed. It was found that the Sn-Ag-Zn ternary system has eight primary solidification phases: ɛ2-AgZn3, γ-Ag5Zn8, β-AgZn, ζ-Ag4Sn, (Ag), ɛ1-Ag3Sn, β-(Sn) and (Zn) phases. There are eight ternary invariant reactions, and the liquid + (Ag) = β-AgZn + ζ-Ag4Sn reaction is of the highest temperature at 935.5 K. Thermodynamic modeling of the ternary Sn-Ag-Zn system was also carried out in this study based on the thermodynamic models of the three constituent binary systems and the experimentally determined liquidus projection. The liquidus projection and the isothermal sections are calculated. The calculated and experimentally determined liquidus projections are in good agreement.

  7. Epidemic modeling in complex realities.

    Science.gov (United States)

    Colizza, Vittoria; Barthélemy, Marc; Barrat, Alain; Vespignani, Alessandro

    2007-04-01

    In our global world, the increasing complexity of social relations and transport infrastructures are key factors in the spread of epidemics. In recent years, the increasing availability of computer power has enabled both to obtain reliable data allowing one to quantify the complexity of the networks on which epidemics may propagate and to envision computational tools able to tackle the analysis of such propagation phenomena. These advances have put in evidence the limits of homogeneous assumptions and simple spatial diffusion approaches, and stimulated the inclusion of complex features and heterogeneities relevant in the description of epidemic diffusion. In this paper, we review recent progresses that integrate complex systems and networks analysis with epidemic modelling and focus on the impact of the various complex features of real systems on the dynamics of epidemic spreading.

  8. Fe-tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs

    Science.gov (United States)

    Çakar, Soner; Özacar, Mahmut

    2016-06-01

    In this paper we have synthesized different morphological ZnO nanostructures via microwave hydrothermal methods at low temperature within a short time. We described different morphologies of ZnO at different Zn(NO3)2/KOH mole ratio. The ZnO nanostructures were characterized via X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV-vis spectrophotometry. All ZnO structures have hexagonal wurtzite type structures. The FESEM images showed various morphologies of ZnO such as plate, rod and nanoparticles. Dye sensitized solar cells have been assembled by these different morphological structures photo electrode and tannic acid or Fe-tannic acid complex dye as sensitizer. We have achieved at maximum efficiencies of photovoltaic cells prepared with ZnO plate in all dye systems. The conversion efficiencies of dye sensitized solar cells are 0.37% and 1.00% with tannic acid and Fe-tannic acid complex dye, respectively.

  9. The role of the VZn-NO-H complex in the p-type conductivity in ZnO.

    Science.gov (United States)

    Amini, M N; Saniz, R; Lamoen, D; Partoens, B

    2015-02-21

    Past research efforts aiming at obtaining stable p-type ZnO have been based on complexes involving nitrogen doping. A recent experiment by (J. G. Reynolds et al., Appl. Phys. Lett., 2013, 102, 152114) demonstrated a significant (∼10(18) cm(-3)) p-type behavior in N-doped ZnO films after appropriate annealing. The p-type conductivity was attributed to a VZn-NO-H shallow acceptor complex, formed by a Zn vacancy (VZn), N substituting O (NO), and H interstitial (Hi). We present here a first-principles hybrid functional study of this complex compared to the one without hydrogen. Our results confirm that the VZn-NO-H complex acts as an acceptor in ZnO. We find that H plays an important role, because it lowers the formation energy of the complex with respect to VZn-NO, a complex known to exhibit (unstable) p-type behavior. However, this additional H atom also occupies the hole level at the origin of the shallow behavior of VZn-NO, leaving only two states empty higher in the band gap and making the VZn-NO-H complex a deep acceptor. Therefore, we conclude that the cause of the observed p-type conductivity in experiment is not the presence of the VZn-NO-H complex, but probably the formation of the VZn-NO complex during the annealing process.

  10. Induced assembly and photoluminescence of lanthanum (Tb, Eu, Dy) complexes/ZnO/polyethylene glycol hybrid phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Yan Bing [Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092 (China)]. E-mail: byan@tongji.edu.cn; Chen Xi [Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092 (China); Wu Jianhua [Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092 (China)

    2007-08-31

    Some novel kinds of hybrid phosphors were assembled with lanthanum (Tb, Eu, Dy) complexes (with four kinds of terbium complexes is 2,4-dihydroxybenzonic acid (DHBA), 1,10-phenanthroline (phen), acetylacetone (AA) and nicotinic acid (Nic), respectively) doped ZnO/PEG particles by co-precipitation approach derived from Zn(CH{sub 3}COO){sub 2} (Zn(AC){sub 2}), NaOH, PEG as precursors at room temperature. The characteristic luminescence spectra for f-f transitions of Tb{sup 3+}, Eu{sup 3+}, Dy{sup 3+} were observed. It is worthy to point out that ZnO is the excellent host for lanthanum ions by the assembly of PEG matrices.

  11. Decomposição térmica de complexos de Zn e Cd com isomaleonitriladitiolato (imnt Thermal decomposition of Zn and Cd complexes with isomaleonitriledithiolate (imnt

    Directory of Open Access Journals (Sweden)

    Cristiane M. L. Barbosa

    2005-10-01

    Full Text Available Thermal decomposition of [Bu4N]2[Zn(imnt2] and [M(NH32(imnt] complexes with M = Zn and Cd, and imnt = (bis 1,1-dicyanoethylene-2,2 dithiolate in inert atmosphere was investigated by thermogravimetric analysis (TG and differential scanning calorimetry (DSC. Pyrolysis studies at different temperatures, 300, 400, 500, and 600 ºC, in N2 atmosphere were performed and the products were characterized by X-ray diffraction (XRD, infrared and Raman spectroscopy, and scanning electron microscopy (SEM. The products were identified as sulfide sub-micron particles, along with amorphous carbon. Particle sizes estimated by SEM were ca. 50 nm for the cationic complexes and 500 nm for the neutral complexes.

  12. Synthesis and structure of a 2D Zn complex with mixed ligands stacked in offset ABAB manner

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ling, E-mail: qinling0924013@163.com; Wang, Yan-Qing; Ni, Gang [Hefei University of Technology, Department of chemical engineering and food processing, Xuancheng Campus (China)

    2016-07-15

    The title complex, ([Zn(ODIB){sub 1/2}(bpdc)]·2DMF){sub n} was prepared under hydrothermal conditions (dimethylformamide and water) based on two ligands, namely, 1,1′-oxy-bis[3,5-diimidazolyl-benzene] (ODIB) and biphenyldicarboxylic acid (H{sub 2}bpdc). ODIB ligands link Zn cations to give layers in crystal. bpdc{sup 2–} anions coordinate to Zn atoms, however, their introduction does not increase the dimension of the structure. Each layer is partially passes through the adjacent layers in the offset ABAB manner.

  13. The complex transfer reaction (14C, 15O) on Ni, Zn and Ge targets: existence and mass of 69Ni

    International Nuclear Information System (INIS)

    Dessagne, P.; Bernas, M.; Langevin, M.; Pougheon, F.; Roussel, P.; Morrison, G.C.

    1984-01-01

    The ( 14 C, 15 O) complex transfer reaction has been studied at 72 MeV incident energy on 58 Ni, 60 Ni, 62 Ni, 64 Ni, 68 Zn, 70 Zn and 74 Ge, 76 Ge targets. Spectra and differential cross sections have been measured in a 5 0 angular range centred around a laboratory angle of 6 0 . The nucleus 69 Ni has been observed and its mass determined for the first time

  14. Preparation, distribution, stability and tumor imaging properties of [62Zn] Bleomycin complex in normal and tumor-bearing mice

    International Nuclear Information System (INIS)

    Jalilian, A.R.; Fateh, B.; Ghergherehchi, M.; Karimian, A.; Matloobi, M.; Moradkhani, S.; Kamalidehghan, M.; Tabeie, F.

    2003-01-01

    Backgrounds: Bleomycin (BLM) has been labeled with radioisotopes and widely used in therapy and diagnosis. In this study BLM was labeled with [ 62 Zn] zinc chloride for oncologic PET studies. Materials and methods: The complex was obtained at the P H=2 normal saline at 90 d eg C in 60 min. Radio-TLC showed on overall radiochemical yield of 95-97% (radiochemical purity>97%). Stability of complex was checked in vitro in mice and human plasma/urine. Results: Preliminary in vitro studies performed to determined complex stability and distribution of [ 62 Zn] BLM in normal and fibrosarcoma tumors in mice according to bio-distribution/imaging studies. Conclusion: [ 62 Zn] BLM can be used in PET oncology studies due to its suitable physico-chemical propertied as a diagnostic complex behavior in higher animals

  15. P-EXAFS investigations of Zn uptake by montmorillonite. The strong and weak sites concept in the 2SPNE SC/CE sorption model

    International Nuclear Information System (INIS)

    Daehn, R.; Baeyens, B.; Bradbury, M.H.

    2012-01-01

    Document available in extended abstract form only. The sorption of radioactive elements on the immobile components in the near- and far-fields of a deep geological radioactive waste repository is a significant process in retarding their aqueous phase transport and an important component in safety assessment studies. The development of robust and well-founded mechanistic sorption models to predict the uptake of radionuclides under different geochemical conditions would enhance the justification and defensibility of the sorption values used in safety studies and thereby represent a considerable contribution to the scientific basis for radioactive waste disposal. The 2 site proto-lysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) sorption model has been used over the past decade or so to quantitatively describe the uptake of metals with oxidation states from II to VI on 2:1 clay minerals; montmorillonite and illite (Bradbury and Baeyens, 1997). One of the main features in this model is that there are two broad categories of amphoteric edge sorption sites; the so called strong (≡SSOH) and weak (≡SW1OH) sites. Because of their different sorption characteristics, it was expected that the coordination environments of the surface complexes on the two site types would be different. Although the 2SPNE SC/CE model uses different mechanistic uptake processes to describe sorption, it can only be described as a 'quasi mechanistic' model because the exact nature of the surface binding sites and surface complexes is not known. In order to check the 'strong site / weak site' sorption sites hypothesis in the 2SPNE SC/CE sorption model, it was essential to perform polarised extended X-ray absorption fine structure (P-EXAFS) measurements on an uptake system, in which it was possible to obtain good spectra particularly at the low metal loadings (∼2 mmol kg-1 or less) corresponding to occupancies dominated by strong sites. The Zn-montmorillonite system

  16. Using model complexes to augment and advance metalloproteinase inhibitor design.

    Science.gov (United States)

    Jacobsen, Faith E; Cohen, Seth M

    2004-05-17

    The tetrahedral zinc complex [(Tp(Ph,Me))ZnOH] (Tp(Ph,Me) = hydrotris(3,5-phenylmethylpyrazolyl)borate) was combined with 2-thenylmercaptan, ethyl 4,4,4-trifluoroacetoacetate, salicylic acid, salicylamide, thiosalicylic acid, thiosalicylamide, methyl salicylate, methyl thiosalicyliate, and 2-hydroxyacetophenone to form the corresponding [(Tp(Ph,Me))Zn(ZBG)] complexes (ZBG = zinc-binding group). X-ray crystal structures of these complexes were obtained to determine the mode of binding for each ZBG, several of which had been previously studied with SAR by NMR (structure-activity relationship by nuclear magnetic resonance) as potential ligands for use in matrix metalloproteinase inhibitors. The [(Tp(Ph,Me))Zn(ZBG)] complexes show that hydrogen bonding and donor atom acidity have a pronounced effect on the mode of binding for this series of ligands. The results of these studies give valuable insight into how ligand protonation state and intramolecular hydrogen bonds can influence the coordination mode of metal-binding proteinase inhibitors. The findings here suggest that model-based approaches can be used to augment drug discovery methods applied to metalloproteins and can aid second-generation drug design.

  17. Exploring the activated state of Cu/ZnO-Zn, a model catalyst for methanol synthesis

    NARCIS (Netherlands)

    Batyrev, E.D.; Shiju, N.R.; Rothenberg, G.

    2012-01-01

    The interaction of Cu clusters with ZnO(0001)-Zn terminated crystal faces is studied after reduction at high temperatures by a combination of scanning tunneling microscopy, scanning tunneling spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy. We find that tiny

  18. Computational models of complex systems

    CERN Document Server

    Dabbaghian, Vahid

    2014-01-01

    Computational and mathematical models provide us with the opportunities to investigate the complexities of real world problems. They allow us to apply our best analytical methods to define problems in a clearly mathematical manner and exhaustively test our solutions before committing expensive resources. This is made possible by assuming parameter(s) in a bounded environment, allowing for controllable experimentation, not always possible in live scenarios. For example, simulation of computational models allows the testing of theories in a manner that is both fundamentally deductive and experimental in nature. The main ingredients for such research ideas come from multiple disciplines and the importance of interdisciplinary research is well recognized by the scientific community. This book provides a window to the novel endeavours of the research communities to present their works by highlighting the value of computational modelling as a research tool when investigating complex systems. We hope that the reader...

  19. Emission solvatochromic behavior of a pentacoordinated Zn(II) complex: A viable tool for studying the metallodrug–protein interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, Loredana, E-mail: loredana.ricciardi@unical.it [Department of Chemistry and Chemical Technology, University of Calabria, I-87036 Rende (CS) (Italy); Centre of Excellence “Functional Nanostructured Materials” CEMIF.CAL, LASCAMM and CR INSTM, INSTM Calabria Unit, and CNR-IPCF-UOS Cosenza - Licryl Laboratory, I-87036 Rende (CS) (Italy); Pucci, Daniela; Pirillo, Sante; La Deda, Massimo [Department of Chemistry and Chemical Technology, University of Calabria, I-87036 Rende (CS) (Italy); Centre of Excellence “Functional Nanostructured Materials” CEMIF.CAL, LASCAMM and CR INSTM, INSTM Calabria Unit, and CNR-IPCF-UOS Cosenza - Licryl Laboratory, I-87036 Rende (CS) (Italy)

    2014-07-01

    A metal complex with antitumoral activity, Zn(Curcumin)(bypiridine)Cl, was characterized from a photophysical point of view, showing a green emission and a positive solvatochromism. These characteristics can be conveniently used to study its interaction with Human Serum Albumin (HSA), a protein carrier of many non-aqueous biologically-active compounds in the blood stream. The intrinsic fluorescence of HSA was quenched by Fluorescence Resonance Energy Transfer toward the Zn(II) complex, and the Stern–Volmer equation was applied to determine the bimolecular quenching rate constant of the interaction. - Highlights: • Albumin binding information is a key characteristic of drug pharmacology. • Fluorescence spectroscopy offers a simple method for revealing drug–protein interaction. • The fluorescence of the Zn(II) complex and its solvatochromisms has allowed studying the binding from a dual perspective.

  20. Modelling Zn(II) sorption onto clayey sediments using a multi-site ion-exchange model

    International Nuclear Information System (INIS)

    Tertre, E.; Beaucaire, C.; Coreau, N.; Juery, A.

    2009-01-01

    In environmental studies, it is necessary to be able to predict the behaviour of contaminants in more or less complex physico-chemical contexts. The improvement of this prediction partly depends on establishing thermodynamic models that can describe the behaviour of these contaminants and, in particular, the sorption reactions on mineral surfaces. In this way, based on the mass action law, it is possible to use surface complexation models and ion exchange models. Therefore, the aim of this study is (i) to develop an ion-exchange model able to describe the sorption of transition metal onto pure clay minerals and (ii) to test the ability of this approach to predict the sorption of these elements onto natural materials containing clay minerals (i.e. soils/sediments) under various chemical conditions. This study is focused on the behaviour of Zn(II) in the presence of clayey sediments. Considering that clay minerals are cation exchangers containing multiple sorption sites, it is possible to interpret the sorption of Zn(II), as well as competitor cations, by ion-exchange equilibria with the clay minerals. This approach is applied with success to interpret the experimental data obtained previously in the Zn(II)-H + -Na + -montmorillonite system. The authors' research team has already studied the behaviour of Na + , K + , Ca 2+ and Mg 2+ versus pH in terms of ion exchange onto pure montmorillonite, leading to the development of a thermodynamic database including the exchange site concentrations associated with montmorillonite and the selectivity coefficients of Na + , K + , Ca 2+ , Mg 2+ , and Zn 2+ versus H + . In the present study, experimental isotherms of Zn(II) on two different sediments in batch reactors at different pH and ionic strengths, using NaCl and CaSO 4 as electrolytes are reported. Assuming clay minerals are the main ion-exchanging phases, it is possible to predict Zn(II) sorption onto sediments under different experimental conditions, using the previously

  1. Surface complexation modeling of zinc sorption onto ferrihydrite.

    Science.gov (United States)

    Dyer, James A; Trivedi, Paras; Scrivner, Noel C; Sparks, Donald L

    2004-02-01

    A previous study involving lead(II) [Pb(II)] sorption onto ferrihydrite over a wide range of conditions highlighted the advantages of combining molecular- and macroscopic-scale investigations with surface complexation modeling to predict Pb(II) speciation and partitioning in aqueous systems. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute zinc(II) [Zn(II)] sorption onto 2-line ferrihydrite in NaNO(3) solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data, together with potentiometric titration and pH edge data, was a much more rigorous test of the modified TLM than fitting pH edge data alone. When coupled with valuable input from spectroscopic analyses, good fits of the isotherm data were obtained with a one-species, one-Zn-sorption-site model using the bidentate-mononuclear surface complex, (triple bond FeO)(2)Zn; however, surprisingly, both the density of Zn(II) sorption sites and the value of the best-fit equilibrium "constant" for the bidentate-mononuclear complex had to be adjusted with pH to adequately fit the isotherm data. Although spectroscopy provided some evidence for multinuclear surface complex formation at surface loadings approaching site saturation at pH >/=6.5, the assumption of a bidentate-mononuclear surface complex provided acceptable fits of the sorption data over the entire range of conditions studied. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data, but unacceptable fits of the isotherm data. A linear relationship between logK((triple bond FeO)2Zn) and pH was found, given by logK((triple bond FeO)2Znat1g/l)=2.058 (pH)-6.131. In addition, a surface activity coefficient term was introduced to the model to reduce the ionic strength

  2. Cu(II AND Zn(II COMPLEX COMPOUNDS WITH BIGUANIDES AROMATIC DERIVATIVES. SYNTHESIS, CHARACTERIZATION, BIOLOGICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Ticuţa Negreanu-Pîrjol

    2011-05-01

    Full Text Available In this paper we report the synthesis, physical-chemical characterization and antimicrobial activity of some new complex compounds of hetero-aromatic biguanides ligands, chlorhexidine base (CHX and chlorhexidine diacetate (CHXac2 with metallic ions Cu(II and Zn(II, in different molar ratio. The synthesized complexes were characterized by elemental chemical analysis and differential thermal analysis. The stereochemistry of the metallic ions was determined by infrared spectra, UV-Vis, EPR spectroscopy and magnetic susceptibility in the aim to establish the complexes structures. The biological activity of the new complex compounds was identified in solid technique by measuring minimum inhibition diameter of bacterial and fungal culture, against three standard pathogen strains, Escherichia coli ATCC 25922, Staphilococcus aureus ATCC 25923 and Candida albicans ATCC 10231. The results show an increased specific antimicrobial activity for the complexes chlorhexidine:Cu(II 1:1 and 1:2 compared with the one of the Zn(II complexes.

  3. Complexity-aware simple modeling.

    Science.gov (United States)

    Gómez-Schiavon, Mariana; El-Samad, Hana

    2018-02-26

    Mathematical models continue to be essential for deepening our understanding of biology. On one extreme, simple or small-scale models help delineate general biological principles. However, the parsimony of detail in these models as well as their assumption of modularity and insulation make them inaccurate for describing quantitative features. On the other extreme, large-scale and detailed models can quantitatively recapitulate a phenotype of interest, but have to rely on many unknown parameters, making them often difficult to parse mechanistically and to use for extracting general principles. We discuss some examples of a new approach-complexity-aware simple modeling-that can bridge the gap between the small-scale and large-scale approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Complex Networks in Psychological Models

    Science.gov (United States)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  5. Structural zinc(II thiolate complexes relevant to the modeling of Ada repair protein: Application toward alkylation reactions

    Directory of Open Access Journals (Sweden)

    Mohamed M. Ibrahim

    2014-11-01

    Full Text Available The TtZn(II-bound perchlorate complex [TtZn–OClO3] 1 (Ttxyly = hydrotris[N-xylyl-thioimidazolyl]borate was used for the synthesis of zinc(II-bound ethanthiothiol complex [TtZn–SCH2CH3] 2 and its hydrogen-bond containing analog Tt–ZnSCH2CH2–NH(COOC(CH33 3. These thiolate complexes were examined as structural models for the active sites of Ada repair protein toward methylation reactions. The Zn[S3O] coordination sphere in complex 1 includes three thione donors from the ligand Ttixyl and one oxygen donor from the perchlorate coligand in ideally tetrahedral arrangement around the zinc center. The average Zn(1–S(thione bond length is 2.344 Å, and the Zn(1–O(1 bond length is 1.917 Å.

  6. Complex fluids modeling and algorithms

    CERN Document Server

    Saramito, Pierre

    2016-01-01

    This book presents a comprehensive overview of the modeling of complex fluids, including many common substances, such as toothpaste, hair gel, mayonnaise, liquid foam, cement and blood, which cannot be described by Navier-Stokes equations. It also offers an up-to-date mathematical and numerical analysis of the corresponding equations, as well as several practical numerical algorithms and software solutions for the approximation of the solutions. It discusses industrial (molten plastics, forming process), geophysical (mud flows, volcanic lava, glaciers and snow avalanches), and biological (blood flows, tissues) modeling applications. This book is a valuable resource for undergraduate students and researchers in applied mathematics, mechanical engineering and physics.

  7. Studies of the polynuclear complexes of labile ligands of vitamin B1 and Zn(II), Cd(II) and Hg(II) with Fe(III)

    International Nuclear Information System (INIS)

    Ojo, J.O.

    2003-01-01

    The ligands (complex salts) of vitamin B/sub 1/ (H Vit.) and the chlorides of Zn, Cd and Hg with the general formula, [H Vit]/sup +2/ [MCl/sub 4/]/sup -2/ were prepared and their interactions with iron (III) investigated. It was found that the complex salts of Zn and Cd produced the dinuclear complexes and that of mercury produced a complex without the thiamine moiety. The possible reason for the absence of a Hg complex similar to those of Zn and Cd may be that large size of mercury ion. The complexes were characterized by elementary analyses, infrared and visible spectra, magnetic moment and conductivity measurements.(author)

  8. Factors affecting nucleolytic efficiency of some ternary metal complexes with DNA binding and recognition domains. Crystal and molecular structure of Zn(phen)(edda).

    Science.gov (United States)

    Seng, Hoi-Ling; Ong, Han-Kiat Alan; Rahman, Raja Noor Zaliha Raja Abd; Yamin, Bohari M; Tiekink, Edward R T; Tan, Kong Wai; Maah, Mohd Jamil; Caracelli, Ignez; Ng, Chew Hee

    2008-11-01

    The binding selectivity of the M(phen)(edda) (M=Cu, Co, Ni, Zn; phen=1,10-phenanthroline, edda=ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(II) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N(4)O(2) octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling.

  9. Synthesis, spectral and third-order nonlinear optical properties of terpyridine Zn(II) complexes based on carbazole derivative with polyether group

    Science.gov (United States)

    Kong, Ming; Liu, Yanqiu; Wang, Hui; Luo, Junshan; Li, Dandan; Zhang, Shengyi; Li, Shengli; Wu, Jieying; Tian, Yupeng

    2015-01-01

    Four novel Zn(II) terpyridine complexes (ZnLCl2, ZnLBr2, ZnLI2, ZnL(SCN)2) based on carbazole derivative group were designed, synthesized and fully characterized. Their photophysical properties including absorption and one-photon excited fluorescence, two-photon absorption (TPA) and optical power limiting (OPL) were further investigated systematically and interpreted on the basis of theoretical calculations (TD-DFT). The influences of different solvents on the absorption and One-Photon Excited Fluorescence (OPEF) spectral behavior, quantum yields and the lifetime of the chromophores have been investigated in detail. The third-order nonlinear optical (NLO) properties were investigated by open/closed aperture Z-scan measurements using femtosecond pulse laser in the range from 680 to 1080 nm. These results revealed that ZnLCl2 and ZnLBr2 exhibited strong two-photon absorption and ZnLCl2 showed superior optical power limiting property.

  10. Syntheses and characterization of two new zinc phosphites with 1D chains decorated by Zn-centered complexes

    Science.gov (United States)

    Zhong, You-Ju; Chen, Yong-Mei; Sun, Yan-Qiong; Yang, Guo-Yu

    2005-09-01

    Two inorganic-organic hybrid solids, Zn 2(phen)(HPO 3) 2 ( 1) and Zn(phen)(HPO 3) ( 2), have been synthesized under solvothermal conditions in the presence of 1,10-phenanthroline (phen) ligands. Their structures were determined by single-crystal X-ray diffraction and further characterized by FTIR, elemental analysis, powder X-ray diffraction, thermogravimetric analysis and fluorescent spectra. Compound 1 crystallizes in the triclnic system, space group P-1, a=8.1813(3) Å, b=8.5535(3) Å, c=12.3031(5) Å, α=75.609(1)°, β=79.145(2)°, γ=67.157(2)°, V=764.46(5) Å3, Z=2. Compound 2 is monoclinic, C2/c, a=16.1044(7) Å, b=18.9447(6) Å, c=8.1713(6) Å, β=94.175(4)°, V=2486.4(2) Å3, Z=8. Both structures consist of 1D chains constructed from strictly alternating ZnO 4 and HPO 3 polyhedra through sharing vertices. The chains are further decorated by Zn-centered complex architectures, [Zn(phen)] 2+ for 1 and [Zn(phen) 2] 2+ for 2. The 2D and 3D supramolecular arrays for 1 and 2 are stably stacked via strong π- π interactions of the phen groups, respectively.

  11. Syntheses and characterization of two new zinc phosphites with 1D chains decorated by Zn-centered complexes

    International Nuclear Information System (INIS)

    Zhong Youju; Chen Yongmei; Sun Yanqiong; Yang Guoyu

    2005-01-01

    Two inorganic-organic hybrid solids, Zn 2 (phen)(HPO 3 ) 2 (1) and Zn(phen)(HPO 3 ) (2), have been synthesized under solvothermal conditions in the presence of 1,10-phenanthroline (phen) ligands. Their structures were determined by single-crystal X-ray diffraction and further characterized by FTIR, elemental analysis, powder X-ray diffraction, thermogravimetric analysis and fluorescent spectra. Compound 1 crystallizes in the triclnic system, space group P-1, a=8.1813(3)A, b=8.5535(3)A, c=12.3031(5)A, α=75.609(1) o , β=79.145(2) o , γ=67.157(2) o , V=764.46(5)A 3 , Z=2. Compound 2 is monoclinic, C2/c, a=16.1044(7)A, b=18.9447(6)A, c=8.1713(6)A, β=94.175(4) o , V=2486.4(2)A 3 , Z=8. Both structures consist of 1D chains constructed from strictly alternating ZnO 4 and HPO 3 polyhedra through sharing vertices. The chains are further decorated by Zn-centered complex architectures, [Zn(phen)] 2+ for 1 and [Zn(phen) 2 ] 2+ for 2. The 2D and 3D supramolecular arrays for 1 and 2 are stably stacked via strong π-π interactions of the phen groups, respectively

  12. Model complexity control for hydrologic prediction

    NARCIS (Netherlands)

    Schoups, G.; Van de Giesen, N.C.; Savenije, H.H.G.

    2008-01-01

    A common concern in hydrologic modeling is overparameterization of complex models given limited and noisy data. This leads to problems of parameter nonuniqueness and equifinality, which may negatively affect prediction uncertainties. A systematic way of controlling model complexity is therefore

  13. A homologous series of homoleptic zinc bis(1,4-di-tert-butyl-1,4-diaza-1,3-butadiene) complexes: Kx[Zn(t-BuNCHCHN-t-Bu)2], Zn(t-BuNCHCHN-t-Bu)2, and [Zn(t-BuNCHCHN-t-Bu)2](OTf)x)(X=1,2)

    NARCIS (Netherlands)

    Koten, G. van; Rijnberg, E.; Richter, B.; Thiele, K.-H.; Boersma, J.; Veldman, N.; Spek, A.L.

    1998-01-01

    A homologous series of mono- and dicationic, neutral, and mono- and dianionic zinc diazabutadiene complexes, Kx[Zn(t-BuNCHCHN-t-Bu)2], Zn(t-BuNCHCHN-t-Bu)2, and [Zn(t-BuNCHCHN-t-Bu)2](OTf)x (x = 1, 2), have been prepared and isolated in pure form. The crystal structures of the mono- and dicationic

  14. Effect of Ligand Substitution around the Dy(III) on the SMM Properties of Dual-Luminescent Zn-Dy and Zn-Dy-Zn Complexes with Large Anisotropy Energy Barriers: A Combined Theoretical and Experimental Magnetostructural Study.

    Science.gov (United States)

    Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique

    2016-05-02

    The new dinuclear Zn(II)-Dy(III) and trinuclear Zn(II)-Dy(III)-Zn(II) complexes of formula [(LZnBrDy(ovan) (NO3)(H2O)](H2O)·0.5(MeOH) (1) and [(L(1)ZnBr)2Dy(MeOH)2](ClO4) (3) (L and L(1) are the dideprotonated forms of the N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato and 2-{(E)-[(3-{[(2E,3E)-3-(hydroxyimino)butan-2-ylidene ]amino}-2,2-dimethylpropyl)imino]methyl}-6-methoxyphenol Schiff base compartmental ligands, respectively) have been prepared and magnetostructurally characterized. The X-ray structure of 1 indicates that the Dy(III) ion exhibits a DyO9 coordination sphere, which is made from four O atoms coming from the compartmental ligand (two methoxy terminal groups and two phenoxido bridging groups connecting Zn(II) and Dy(III) ions), other four atoms belonging to the chelating nitrato and ovanillin ligands, and the last one coming to the coordinated water molecule. The structure of 3 shows the central Dy(III) ion surrounded by two L(1)Zn units, so that the Dy(III) and Zn(II) ions are linked by phenoxido/oximato bridging groups. The Dy ion is eight-coordinated by the six O atoms afforded by two L(1) ligands and two O atoms coming from two methanol molecules. Alternating current (AC) dynamic magnetic measurements of 1, 3, and the previously reported dinuclear [LZnClDy(thd)2] (2) complex (where thd = 2,2,6,6-tetramethyl-3,5-heptanedionato ligand) indicate single molecule magnet (SMM) behavior for all these complexes with large thermal energy barriers for the reversal of the magnetization and butterfly-shaped hysteresis loops at 2 K. Ab initio calculations on 1-3 show a pure Ising ground state for all of them, which induces almost completely suppressed quantum tunnelling magnetization (QTM), and thermally assisted quantum tunnelling magnetization (TA-QTM) relaxations via the first excited Kramers doublet, leading to large energy barriers, thus supporting the observation of SMM behavior. The comparison between the experimental and theoretical

  15. Syntheses, structures, and properties of imidazolate-bridged Cu(II)-Cu(II) and Cu(II)-Zn(II) dinuclear complexes of a single macrocyclic ligand with two hydroxyethyl pendants.

    Science.gov (United States)

    Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia

    2003-09-22

    The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.

  16. New heteroleptic Zn(II) complexes of thiosemicarbazone and diimine Co-Ligands: Structural analysis and their biological impacts

    Science.gov (United States)

    Mathan Kumar, Shanmugaiah; Kesavan, Mookkandi Palsamy; Vinoth Kumar, Gujuluva Gangatharan; Sankarganesh, Murugesan; Chakkaravarthi, Ganesan; Rajagopal, Gurusamy; Rajesh, Jegathalaprathaban

    2018-02-01

    A thiosemicarbazone ligand HL appended new Zn(II) complexes [Zn(L)(bpy)] (1) and [Zn(L)(phen)] (2) (where, HL = {2-(3-bromo-5-chloro-2-hydroxybenzylidene)-N-phenylhydrazinecarbothioamide}, bpy = 2, 2‧-bipyridine and phen = 1, 10-phenanthroline) have been synthesized and well characterized using conventional spectroscopic techniques viz.,1H NMR, FTIR and UV-Vis spectra. The crystal structures of complexes 1 and 2 have been determined by single crystal X-ray diffraction studies. Both the complex 1 (τ = 0.5) and 2 (τ = 0.37) possesses square based pyramidally distorted trigonal bipyramidal geometry. The ground state electronic structures of complexes 1 and 2 were investigated by DFT/B3LYP theoretical analysis using 6-311G (d,p) and LANL2DZ basis set level. The superior DNA binding ability of complex 2 has been evaluated using absorption and fluorescence spectral titration studies. Antimicrobial evaluation reveals that complex 2 endowed better screening than HL and complex 1 against both bacterial as well as fungal species. Consequently, complex 2 possesses highest antibacterial screening against Staphylococcus aureus (MIC = 3.0 ± 0.23 mM) and antifungal screening against Candida albicans (MIC = 6.0 ± 0.11 mM). Furthermore, the anticancer activity of the ligand HL, complexes 1 and 2 have been examined against the MCF-7 cell line (Human breast cancer cell line) using MTT assay. It is remarkable that complex 2 (12 ± 0.67 μM) show highest anticancer activity than HL (25.0 ± 0.91 μM) and complex 1 (15 ± 0.88 μM) due to the presence of phen ligand moiety.

  17. A new trinuclear Zn(II) complex {[Zn(μ-ONN)(μ.sub.2./sub.-O)(μ-OO)].sub.2./sub.Zn}: Synthesis, characterization, thermal decomposition and antibacterial activity

    Czech Academy of Sciences Publication Activity Database

    Far, B.S.; Grivani, G.; Khalaji, A.D.; Khorshidi, M.; Eigner, Václav; Dušek, Michal

    2017-01-01

    Roč. 28, č. 6 (2017), s. 3217-3227 ISSN 1040-7278 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : trinuclear complex * Schiff base * single-crystal structure analysis * ZnO nano particle * antibacterial activity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.471, year: 2016

  18. Unsymmetrical dizinc complexes as models for the active sites of phosphohydrolases.

    Science.gov (United States)

    Jarenmark, Martin; Csapó, Edit; Singh, Jyoti; Wöckel, Simone; Farkas, Etelka; Meyer, Franc; Haukka, Matti; Nordlander, Ebbe

    2010-09-21

    The unsymmetrical dinucleating ligand 2-(N-isopropyl-N-((2-pyridyl)methyl)aminomethyl)-6-(N-(carboxylmethyl)-N-((2-pyridyl)methyl)aminomethyl)-4-methylphenol (IPCPMP or L) has been synthesized to model the active site environment of dinuclear metallohydrolases. It has been isolated as the hexafluorophosphate salt H(4)IPCPMP(PF(6))(2) x 2 H(2)O (H(4)L), which has been structurally characterized, and has been used to form two different Zn(II) complexes, [{Zn(2)(IPCPMP)(OAc)}(2)][PF(6)](2) (2) and [{Zn(2)(IPCPMP)(Piv)}(2)][PF(6)](2) (3) (OAc = acetate; Piv = pivalate). The crystal structures of and show that they consist of tetranuclear complexes with very similar structures. Infrared spectroscopy and mass spectrometry indicate that the tetranuclear complexes dissociate into dinuclear complexes in solution. Potentiometric studies of the Zn(II):IPCPMP system in aqueous solution reveal that a mononuclear complex is surprisingly stable at low pH, even at a 2:1 Zn(II):L ratio, but a dinuclear complex dominates at high pH and transforms into a dihydroxido complex by a cooperative deprotonation of two, probably terminally coordinated, water molecules. A kinetic investigation indicates that one of these hydroxides is the active nucleophile in the hydrolysis of bis(2,4-dinitrophenyl)phosphate (BDNPP) enhanced by complex 2, and mechanistic proposals are presented for this reaction as well as the previously reported transesterification of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP) promoted by Zn(II) complexes of IPCPMP.

  19. Evaluation of the complexes of galactomannan of Leucaena leucocephala and Co2+, Mn2+ , Ni2+ and Zn2+

    Directory of Open Access Journals (Sweden)

    Mercê Ana Lucia R.

    2000-01-01

    Full Text Available The binding constants for the complexed species formed in aqueous solution between galactomannan of Leucaena leucocephala and the metal ions Co2+, Mn2+, Ni2+ and Zn2+ were determined by potentiometric titrations. The calculated values showed Ni2+ as the best Lewis acid towards the Lewis base -OH groups of the sugar monomers, with Zn2+ being the poorest. For all systems, a higher percentage of the complexed species was present near pH=7.0, although complexed species existed over a wide range of acidic and basic pH values. The isolated solid complexes were studied by TG-DSC thermal analysis and by EPR spectroscopy. The thermal profiles obtained showed higher thermal resistance to final degradation than the biopolymer alone for the complexed species ML having the smallest log K values. The EPR spectra confirmed the complexation of the metal ions via the Lewis base deprotonated hydroxyl groups (-O and showed that the distances between metal ions in the complexed biopolymer structure depend on the nature of the metal ion. The ability of galactomannans to complex a variety of metal ions in their web like structure and the resistance to high temperatures and a wide range of pH values of these complexes open new perspectives in possible industrial uses whenever these properties are required, such as in bioremediation of waste waters and in the application of slow-release fertilizers.

  20. Thermodynamic modelling and in-situ neutron diffraction investigation of the (Ce + Mg + Zn) system

    International Nuclear Information System (INIS)

    Zhu, Zhijun; Gharghouri, Michael A.; Medraj, Mamoun; Lee, Soo Yeol; Pelton, Arthur D.

    2016-01-01

    Highlights: • All phase diagram and thermodynamic data critically assessed for the (Ce + Mg + Zn) system. • All phases described by optimized thermodynamic models. • In-situ neutron diffraction performed to identify phases and transition temperatures. • Assessments of other (RE + Mg + Zn) systems have been carried out simultaneously. • The final product is a thermodynamic database for multicomponent (Mg + RE + Zn) systems. - Abstract: All available phase diagram data for the (Ce + Mg + Zn) system were critically assessed. In-situ neutron diffraction (ND) experiments were performed on selected samples to identify phases and transition temperatures. A critical thermodynamic evaluation and optimization of the (Ce + Mg + Zn) system were carried out and model parameters for the thermodynamic properties of all phases were obtained. The phase transformation behaviour of selected samples was well resolved from the ND experiments and experimental data were used to refine the thermodynamic model parameters.

  1. Coulomb excitation $^{74}$Zn-$^{80}$Zn (N=50): probing the validity of shell-model descriptions around $^{78}$Ni

    CERN Multimedia

    A study of the evolution of the nuclear structure along the zinc isotopic chain close to the doubly magic nucleus $^{78}$Ni is proposed to probe recent shell-model calculations in this area of the nuclear chart. Excitation energies and connecting B(E2) values will be measured through multiple Coulomb excitation experiment with laser ionized purified beams of $^{74-80}$Zn from HIE ISOLDE. The current proposal request 30 shifts.

  2. Nonparametric Bayesian Modeling of Complex Networks

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Mørup, Morten

    2013-01-01

    an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...

  3. A quantitative mechanistic description of Ni, Zn and Ca sorption on Na-montmorillonite. Part III: modelling

    International Nuclear Information System (INIS)

    Baeyens, B.; Bradbury, M.H.

    1995-07-01

    Titration and sorption measurements, carried out under a wide variety of conditions on Na-montmorillonite, were examined in terms of cation exchange and surface complexation mechanisms. A computer code called MINSORB was developed and used throughout this work. This code allowed the uptake of radionuclides by both mechanisms to be calculated simultaneously; also taking into account competitive reactions from other cations present. A stepwise iterative fitting/modelling procedure is described. For the case of Na-montmorillonite it is demonstrated that an electrostatic term in the surface complexation model is not required. A basic data set comprising of site capacities and protonation/deprotonation constants was defined, which was valid for all surface complexation sorption reactions. The main study was carried out with Ni, but impurity cations present in the system, particularly Zn, had to be examined in addition due to their competitive effects on Ni sorption. The surface complexation behaviour of Ni and Zn was investigated in detail to give intrinsic surface complexation constants on two of the =SOH type sites included in the model. The sorption of Mg, Ca and Mn is also considered, though in less detail, and estimated surface complexation constants for these nuclides are presented. Cation exchange was included in all of the calculations. Measured selectivity coefficients for Ni-Na, Zn-Na and Ca-Na exchange reactions are given. The model, with the derived parameters, allowed all the data from titration measurements through sorption edges to sorption isotherms to be calculated. (author) 31 figs., 9 tabs., refs

  4. A quantitative mechanistic description of Ni, Zn and Ca sorption on Na-Montmorillonite. Part III: Modelling

    International Nuclear Information System (INIS)

    Baeyens, B.; Bradbury, M.H.

    1995-07-01

    Titration and sorption measurements, carried out under a wide variety of conditions on Na-montmorillonite, were examined in terms of cation exchange and surface complexation mechanisms. A computer code called MINSORB was developed and used throughout this work. This code allowed the uptake of radionuclides by both mechanisms to be calculated simultaneously; also taking into account competitive reactions from other cations present. A stepwise iterative fitting/modelling procedure is described. For the case of Na-montmorillonite it is demonstrated that an electrostatic term in the surface complexation model is not required. A basic data set comprising of site capacities and protonation/deprotonation constants was defined, which was valid for all surface complexation sorption reactions. The main study was carried out with Ni, but impurity cations present in the system, particularly Zn, had to be examined in addition due to their competitive effects on Ni sorption. The surface complexation behaviour of Ni and Zn was investigated in detail to give intrinsic surface complexation constants on two of the ≡SOH type sites included in the model. The sorption of Mg, Ca and Mn is also considered, though in less detail, and estimated surface complexation constants for these nuclides are presented. Cation exchange was included in all of the calculations. Measured selectivity coefficients for Ni-Na, Zn-Na and Ca-Na exchange reactions are given. The model, with the derived parameters, allowed all the data from titration measurements through sorption edges to sorption isotherms to be calculated. (author) 31 figs., 9 tabs., refs

  5. A family of acetato-diphenoxo triply bridged dimetallic Zn(II)Ln(III) complexes: SMM behavior and luminescent properties.

    Science.gov (United States)

    Oyarzabal, Itziar; Artetxe, Beñat; Rodríguez-Diéguez, Antonio; García, JoséÁngel; Seco, José Manuel; Colacio, Enrique

    2016-06-21

    Eleven dimetallic Zn(II)-Ln(III) complexes of the general formula [Zn(µ-L)(µ-OAc)Ln(NO3)2]·CH3CN (Ln(III) = Pr (1), Nd (2), Sm (3), Eu (4), Gd (5), Tb (6), Dy (7), Ho (8), Er (9), Tm (10), Yb (11)) have been prepared in a one-pot reaction from the compartmental ligand N,N'-dimethyl-N,N'-bis(2-hydroxy-3-formyl-5-bromo-benzyl)ethylenediamine (H2L). In all these complexes, the Zn(II) ions occupy the internal N2O2 site whereas the Ln(III) ions show preference for the O4 external site. Both metallic ions are bridged by an acetate bridge, giving rise to triple mixed diphenoxido/acetate bridged Zn(II)Ln(III) compounds. The Nd, Dy, Er and Yb complexes exhibit field induced single-ion magnet (SIM) behaviour, with Ueff values ranging from 14.12 to 41.55 K. The Er complex shows two relaxation processes, but only the second relaxation process with an energy barrier of 21.0 K has been characterized. The chromophoric L(2-) ligand is able to act as an "antenna" group, sensitizing the near-infrared (NIR) Nd(III) and Yb(III)-based luminescence in complexes 2 and 11 and therefore, both compounds can be considered as magneto-luminescent materials. In addition, the Sm(III), Eu(III) and Tb(III) derivatives exhibit characteristic emissions in the visible region.

  6. The Interactions between ZnO Nanoparticles (NPs and α-Linolenic Acid (LNA Complexed to BSA Did Not Influence the Toxicity of ZnO NPs on HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Yiwei Zhou

    2017-04-01

    Full Text Available Background: Nanoparticles (NPs entering the biological environment could interact with biomolecules, but little is known about the interaction between unsaturated fatty acids (UFA and NPs. Methods: This study used α-linolenic acid (LNA complexed to bovine serum albumin (BSA for UFA and HepG2 cells for hepatocytes. The interactions between BSA or LNA and ZnO NPs were studied. Results: The presence of BSA or LNA affected the hydrodynamic size, zeta potential, UV-Vis, fluorescence, and synchronous fluorescence spectra of ZnO NPs, which indicated an interaction between BSA or LNA and NPs. Exposure to ZnO NPs with the presence of BSA significantly induced the damage to mitochondria and lysosomes in HepG2 cells, associated with an increase of intracellular Zn ions, but not intracellular superoxide. Paradoxically, the release of inflammatory cytokine interleukin-6 (IL-6 was decreased, which indicated the anti-inflammatory effects of ZnO NPs when BSA was present. The presence of LNA did not significantly affect all of these endpoints in HepG2 cells exposed to ZnO NPs and BSA. Conclusions: the results from the present study indicated that BSA-complexed LNA might modestly interact with ZnO NPs, but did not significantly affect ZnO NPs and BSA-induced biological effects in HepG2 cells.

  7. Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).

    Science.gov (United States)

    Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin

    2017-04-01

    Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, 1 H and 13 C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their 1 H, 13 C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).

  8. Optimizing the relaxivity of GdIII complexes appended to InP/ZnS quantum dots by linker tuning.

    Science.gov (United States)

    Stasiuk, Graeme J; Tamang, Sudarsan; Imbert, Daniel; Gateau, Christelle; Reiss, Peter; Fries, Pascal; Mazzanti, Marinella

    2013-06-21

    Three bimodal MRI/optical nanosized contrast agents with high per-nanoparticle relaxivity (up to 2523 mM(-1) s(-1) at 35 MHz and 932 mM(-1) s(-1) at 200 MHz) have been prepared connecting up to 115 tris-aqua Gd(III) complexes to fluorescent non-toxic InP/ZnS quantum dots. The structure of the linker has an important effect on the relaxivity of the final multimeric contrast agent.

  9. Synthesis, structural studies and antituberculosis evaluation of new hydrazone derivatives of quinoline and their Zn(II complexes

    Directory of Open Access Journals (Sweden)

    Mustapha C. Mandewale

    2018-02-01

    Full Text Available The quinoline hydrazone ligands were synthesized through multi-step reactions. The 2-hydroxy-3-formylquinoline derivatives (1a–1c were prepared from acetanilide derivatives as starting materials using Vilsmeier–Haack reaction. Then the condensation of 2-hydroxy-3-formylquinoline derivatives with hydrazide derivatives (2a–2c yielded quinoline hydrazone ligands (3a–3i. The synthesis of a new series of Zn(II complexes carried out by refluxing with these quinoline hydrazone ligands (3a–3i is reported. The molecular structures of the ligands (3a–3i and the Zn complexes were characterized by elemental analysis and spectral studies like FT-IR, 1H and 13C NMR, MS, UV–Visible and fluorescence. The preliminary results of antituberculosis study showed that most of the Zn(II complexes 4a–4i demonstrated very good antituberculosis activity while the ligands 3a–3i showed moderate activity. Among the tested compounds 4e and 4g were found to be most active with minimum inhibitory concentration (MIC of 8.00μM and 7.42 μM respectively against Mycobacterium tuberculosis (H37 RV strain ATCC No-27294 which is comparable to “first and second line” drugs used to treat tuberculosis.

  10. A Zn-porphyrin complex contributes to bright red color in Parma ham.

    Science.gov (United States)

    Wakamatsu, J; Nishimura, T; Hattori, A

    2004-05-01

    The Italian traditional dry-cured ham (Parma ham) shows a stable bright red color that is achieved without the use of nitrite and/or nitrate. In this study we examined the pigment spectroscopically, fluoroscopically and by using HPLC and ESI-HR-MASS analysis. Porphyrin derivative other than acid hematin were contained in the HCl-containing acetone extract from Parma ham. A strong fluorescence peak at 588 nm and a weak fluorescence peak at 641 nm were observed. By HPLC analysis the acetone extract of Parma ham was observed at the single peak, which eluted at the same time as Zn-protoporphyrin IX and emitted fluorescence. The results of ESI-HR-MS analysis showed both agreement with the molecular weight of Zn-protoporphyrin IX and the characteristic isotope pattern caused by Zn isotopes. These results suggest that the bright red color in Parma ham is caused by Zn-protoporphyrin IX.

  11. Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum-field brines at 100°C: the influence of pH and oxygen fugacity

    Directory of Open Access Journals (Sweden)

    Giordano Thomas H

    2002-09-01

    Full Text Available It is well established through field observations, experiments, and chemical models that oxidation (redox state and pH exert a strong influence on the speciation of dissolved components and the solubility of minerals in hydrothermal fluids. log –pH diagrams were used to depict the influence of oxygen fugacity and pH on monocarboxylate- and dicarboxylate-transport of Pb and Zn in low-temperature (100°C hydrothermal ore fluids that are related to diagenetic processes in deep sedimentary basins, and allow a first-order comparison of Pb and Zn transport among proposed model fluids for Mississippi Valley-type (MVT and red-bed related base metal (RBRBM deposits in terms of their approximate pH and conditions. To construct these diagrams, total Pb and Zn concentrations and Pb and Zn speciation were calculated as a function of log and pH for a composite ore-brine with concentrations of major elements, total sulfur, and total carbonate that approximate the composition of MVT and RBRBM model ore fluids and modern basinal brines. In addition to acetate and malonate complexation, complexes involving the ligands Cl-, HS-, H2S, and OH- were included in the model of calculated total metal concentration and metal speciation. Also, in the model, Zn and Pb are competing with the common-rock forming metals Ca, Mg, Na, Fe, and Al for the same ligands. Calculated total Pb concentration and calculated total Zn concentration are constrained by galena and sphalerite solubility, respectively. Isopleths, in log –pH space, of the concentration of Pb and concentration of Zn in carboxylate (acetate + malonate complexes illustrate that the oxidized model fluids of T. H. Giordano (in Organic Acids in Geological Processes, ed. E. D. Pittman and M. D. Lewan, Springer-Verlag, New York, 1994, pp. 319–354 and G. M. Anderson (Econ. Geol., 1975, 70, 937–942 are capable of transporting sufficient amounts of Pb (up to 10 ppm and Zn (up to 100 ppm in the form of carboxylate

  12. The origin of room temperature ferromagnetism mediated by Co–VZn complexes in the ZnO grain boundary

    KAUST Repository

    Devi, Assa Aravindh Sasikala

    2016-05-20

    Ferromagnetism in polycrystalline ZnO doped with Co has been observed to be sustainable in recent experiments. We use first-principle calculations to show that Co impurities favorably substitute at the grain boundary (GB) rather than in the bulk. We reveal that room-temperature ferromagnetism (RTFM) at the Co-doped ZnO GB in the presence of Zn vacancies is due to ferromagnetic exchange coupling of a pair of closely associated Co atoms in the GB, with a ferromagnetic exchange coupling energy of ∼300 meV, which is in contrast to a previous study that suggested the O vacancy-Co complex induced ferromagnetism. Electronic structure analysis was used to predict the exchange coupling mechanism, showing that the hybridization of O p states with Co and Zn d states enhances the magnetic polarization originating from the GB. Our results indicate that RTFM originates from Co clusters at interfaces or in GBs. © 2016 The Royal Society of Chemistry.

  13. Synthesis and investigation of new heteronuclear [Zn-La] coordination compounds based on unsaturated lanthanum complex with N,N'-tetraethyl-N''-trichloacetylphosphortriamide

    International Nuclear Information System (INIS)

    Amyirkhanov, O.V.; Sliva, T.Yu.; Moroz, O.V.; Trush, Je.A.; Frits'kij, Yi.O.

    2011-01-01

    New heteronuclear [Zn-La] coordination compounds, perspective luminescent materials, with general formulas [Zn(Ve)La(X) 2 (Ac)] ({Zn-La;Ve;X}) and [Zn(Vp)La(X) 2 (Ac)] ({Zn-La;Vp;X}) have been synthesized HX=CCl 3 C(O)NHP(O)[N(C 2 H 5 ) 2 ] 2 - N,N'-tetraethyl-N''-trichloracetylphosphortriamide, H 2 Ve and H 2 Vp are products of the condensation of 1,2-diaminoethane and 1,3-diaminopropane with o-vanillin, respectively). The composition of [Zn-La] complexes has been determined, and the coordination mode of a phosphorylated ligand has been suggested by element analysis, IR- and 1 H, 31 P NMR-spectroscopy.

  14. Coordination Behavior of Ni2+, Cu2+, and Zn2+ in Tetrahedral 1-Methylimidazole Complexes: A DFT/CSD Study

    OpenAIRE

    Tetteh, Samuel

    2018-01-01

    The interaction between nickel (Ni2+), copper (Cu2+), and zinc (Zn2+) ions and 1-methylimidazole has been studied by exploring the geometries of eleven crystal structures in the Cambridge Structural Database (CSD). The coordination behavior of the respective ions was further investigated by means of density functional theory (DFT) methods. The gas-phase complexes were fully optimized using B3LYP/GENECP functionals with 6-31G∗ and LANL2DZ basis sets. The Ni2+ and Cu2+ complexes show distorted ...

  15. A mononuclear zinc(II) complex with piroxicam: Crystal structure, DNA- and BSA-binding studies; in vitro cell cytotoxicity and molecular modeling of oxicam complexes

    Science.gov (United States)

    Jannesari, Zahra; Hadadzadeh, Hassan; Amirghofran, Zahra; Simpson, Jim; Khayamian, Taghi; Maleki, Batool

    2015-02-01

    A new mononuclear Zn(II) complex, trans-[Zn(Pir)2(DMSO)2], where Pir- is 4-hydroxy-2-methyl-N-2-pyridyl-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (piroxicam), has been synthesized and characterized. The crystal structure of the complex was obtained by the single crystal X-ray diffraction technique. The interaction of the complex with DNA and BSA was investigated. The complex interacts with FS-DNA by two binding modes, viz., electrostatic and groove binding (major and minor). The microenvironment and the secondary structure of BSA are changed in the presence of the complex. The anticancer effects of the seven complexes of oxicam family were also determined on the human K562 cell lines and the results showed reasonable cytotoxicities. The interactions of the oxicam complexes with BSA and DNA were modeled by molecular docking and molecular dynamic simulation methods.

  16. Remarkable fluorescence enhancement versus complex formation of cationic porphyrins on the surface of ZnO nanoparticles

    KAUST Repository

    Aly, Shawkat Mohammede

    2014-06-12

    Fluorescence enhancement of organic fluorophores shows tremendous potential to improve image contrast in fluorescence-based bioimaging. Here, we present an experimental study of the interaction of two cationic porphyrins, meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride (TMPyP) and meso-tetrakis(4-N,N,N-trimethylanilinium)porphyrin chloride (TMAP), with cationic surfactant-stabilized zinc oxide nanoparticles (ZnO NPs) based on several steady-state and time-resolved techniques. We show the first experimental measurements demonstrating a clear transition from pronounced fluorescence enhancement to charge transfer (CT) complex formation by simply changing the nature and location of the positive charge of the meso substituent of the cationic porphyrins. For TMPyP, we observe a sixfold increase in the fluorescence intensity of TMPyP upon addition of ZnO NPs. Our experimental results indicate that the electrostatic binding of TMPyP with the surface of ZnO NPs increases the symmetry of the porphyrin macrocycle. This electronic communication hinders the rotational relaxation of the meso unit and/or decreases the intramolecular CT character between the cavity and the meso substituent of the porphyrin, resulting in the enhancement of the intensity of the fluorescence. For TMAP, on the other hand, the different type and nature of the positive charge resulting in the development of the CT band arise from the interaction with the surface of ZnO NPs. This observation is confirmed by the femtosecond transient absorption spectroscopy, which provides clear spectroscopic signatures of photoinduced electron transfer from TMAP to ZnO NPs. © 2014 American Chemical Society.

  17. Complex formation of CdSe/ZnS/TOPO nanocrystal vs. molecular chaperone in aqueous solution by hydrophobic interaction

    International Nuclear Information System (INIS)

    Horiuchi, Hiromi; Iwami, Noriya; Tachibana, Fumi; Ohtaki, Akashi; Iizuka, Ryo; Zako, Tamotsu; Oda, Masaru; Yohda, Masafumi; Tani, Toshiro

    2007-01-01

    Feasibilities to stabilize CdSe/ZnS/trioctylphosphineoxide (TOPO) nanocrystals (quantum dots, QDs) in aqueous solutions with prefoldin macromolecules in their bioactive states are reported. Prefoldin is a jellyfish-shaped hexameric co-chaperone of the group II chaperonins. As a protein folding intermediate is captured within its central cavity, so CdSe/ZnS/TOPO QDs would also be included within this cavity. It is also found the QDs can be much more dispersed in aqueous solutions and suspended for certain period of time by adding trace amount of t-butanol in the buffer prior to the mixing of the QDs mother solution. While biochemical procedures are evaluated with ordinary fluorescence measurements, possible complex formations are also evaluated with TIRFM single-molecule detection techniques

  18. Supramolecularly assembled water layers stabilized by sebacic anions in complexes of Zn(II) and Co(II)

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Two three-dimensional supramolecular water architectures,[Zn(phen)3]2 ·[Zn(C10H16O4)·(H2O)3]·(C10H16O4)2·20H2O(1) and [Co(phen)3]2 ·[Co(H2O)6]·(C10H16O4)3·30H2O(2)[phen=1,10-Phenanthroline,C10H16O4=sebacic dianion],have been synthesized and characterized by IR,elemental analysis,thermogravimetric analysis,and single-crystal X-ray diffractions.The two structures both contain extensive hydrogen bonding between water molecules as well as between water molecules and sebacic anions.The water molecules and sebacic acid O atoms assembled 2D supramolecular corrugated sheets with different morphology in the two complexes.

  19. Influence of mechanical activation on the leaching of non-ferrous metals from a CuPbZn complex concentrate

    Directory of Open Access Journals (Sweden)

    Godoèíková Erika

    2000-09-01

    Full Text Available The aim of study was to research the procedures of copper, lead and zinc leaching from CuPbZn complex sulphide concentrate during the intervention of mechanical activation.Mechanical activation belongs to innovative procedures, which intensifies technological processes by means of creation of new surfaces and making defective structure of solid phase. Mechanical impact on the solid phase is a suitable procedure to ensure the mobility of its structure elements and to accumulate the mechanical energy that is later used in following processes of leaching.This paper deals with the intensification of the chloride and thiourea leaching of copper, lead and zinc from a CuPbZn complex concentrate of Hodruša-Hámre (Slovak deposit by using the mechanical activation in an attritor. Ferric chloride and thiourea were used as leaching reagents. The leaching of the concentrate with ferric chloride solution afforded 23 % recovery of Cu, 99 % of Pb and 28 % of Zn. 9 % recovery of Cu, 17 % of Pb and 3 % of Zn were achieved by the leaching with thiourea. Thus results showed that the extraction of Cu, Zn and also Pb in the case of thiourea leaching was low. The use of milling in the attritor as an innovation method of pretreatment leads to the structural degradation and increasing the surface area of the investigated concentrate from the original value of 0.18 m2g-1 to the maximum value of 4.67 m2g-1. This fact manifested itself in the subsequent process of extraction of Cu, Pb and Zn into the chloride and thiourea solutions. Our results indicate more effective leaching of pretreated concentrate in the chloride medium with recoveries of 84 % Zn and 100 % Pb. In thiourea, the recoveries for Zn and Pb were low, however 99 % Cu can be recovered. In regard to the economy, the extraction of Cu, Pb and Zn was studied in this work with the aspect of minimal energy consumption during milling. The maximum recoveries of non-ferrous metals in the solutions of ferric chloride

  20. Synthesis of ZnS films on Si(100) wafers by using chemical bath deposition assisted by the complexing agent ethylenediamine

    Science.gov (United States)

    Zhu, He-Jie; Wang, Xue-Mei; Gao, Xiao-Yong

    2015-07-01

    Low-cost synthesis of high-quality ZnS films on silicon wafers is of much importance to the ZnSbased heterojunction blue light-emitting device integrated with silicon. Thus, a series of ZnS films were chemically synthesized at low cost on Si(100) wafers at 353 K under a mixed acidic solution with a pH of 4 with zinc acetate and thioacetamide as precursors and with ethylenediamine and hydrochloric acid as the complexing agent and the pH value modifier, respectively. The effects of the ethylenediamine concentration on the crystallization, surface morphology, and optical properties of the ZnS films were investigated by using X-ray diffractometry, scanning electron microscopy, spectrophotometry, and fluorescence spectroscopy. A mechanism for the formation of ZnS film under an acidic condition was also proposed. All of the ZnS films were polycrystalline in nature, with a dominant cubic phase and a small amounts of hexagonal phases. The crystallization and the surface pattern of the films were clearly improved with increasing ethylenediamine concentration due to its enhanced complexing role. The absorption edge of the films almost underwent a blue shift with increasing ethylenediamine concentration, which was largely attributed to the quantum confinement effects caused by the small particle size of the polycrystalline ZnS films. Defect species and the corresponding strengths of the ZnS films were strongly affected by the ethylenediamine concentration.

  1. Usage of a statistical method of designing factorial experiments in the mechanical activation of a complex CuPbZn sulphide concentrate

    Directory of Open Access Journals (Sweden)

    BalហPeter

    2003-09-01

    Full Text Available Mechanical activation belongs to innovative procedures which intensify technological processes by creating new surfaces and making a defective structure of solid phase. Mechanical impact on the solid phase is a suitable procedure to ensure the mobility of its structure elements and to accumulate the mechanical energy that is later used in the processes of leaching.The aim of this study was to realize the mechanical activation of a complex CuPbZn sulphide concentrate (Slovak deposit in an attritor by using of statistical methods for the design of factorial experiments and to determine the conditions for preparing the optimum mechanically activated sample of studied concentrate.The following parameters of the attritor were studied as variables:the weight of sample/steel balls (degree of mill filling, the number of revolutions of the milling shaft and the time of mechanical activation. Interpretation of the chosen variables inducing the mechanical activation of the complex CuPbZn concentrate was also carried out by using statistical methods of factorial design experiments. The presented linear model (23 factorial experiment does not support directly the optimum search, therefore this model was extended to the nonlinear model by the utilization of second order ortogonal polynom. This nonlinear model does not describe adequately the process of new surface formation by the mechanical activation of the studied concentrate. It would be necessary to extend the presented nonlinear model to the nonlinear model of the third order or choose another model. In regard to the economy with the aspect of minimal energy input consumption, the sample with the value of 524 kWht-1 and with the maximum value of specific surface area 8.59 m2g-1 (as a response of the factorial experiment was chosen as the optimum mechanically activated sample of the studied concentrate. The optimum mechanically activated sample of the complex CuPbZn sulphide concentrate was prepared

  2. Cd(II) and Zn(II) Complexes Containing N,N'-Bidentate N-(Pyridin-2-ylmethylene)cyclopentanamine: Synthesis, Characterisation and Methyl Methacrylate Polymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yu Jin; Lee, Ha Jun; Lee, Hyo Sun [Kyungpook National University, Daeju (Korea, Republic of)

    2014-09-15

    The reaction between [CdBr{sub 2}·4H{sub 2}O] and anhydrous [ZnCl{sub 2}] with N,N'-bidentate N-(pyridin-2-ylmethylene)- cyclopentanamine (impy) in ethanol yields dimeric [(impy)Cd(μ-Br)Br]2 and monomeric [(impy)ZnCl{sub 2}] complexes, respectively. The X-ray crystal structure of Cd(II) and Zn(II) complexes revealed that the cadmium atom in [(impy)Cd(μ-Br)Br]2 and zinc in [(impy)ZnCl{sub 2}] formed a distorted trigonal–bipyramidal and tetrahedral geometry, respectively. Both complexes showed moderate catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO), with polymethylmethacrylate (PMMA) syndiotacticity of about 0.70.

  3. Osteosarcoma models : understanding complex disease

    NARCIS (Netherlands)

    Mohseny, Alexander Behzad

    2012-01-01

    A mesenchymal stem cell (MSC) based osteosarcoma model was established. The model provided evidence for a MSC origin of osteosarcoma. Normal MSCs transformed spontaneously to osteosarcoma-like cells which was always accompanied by genomic instability and loss of the Cdkn2a locus. Accordingly loss of

  4. Detection of DNA via the fluorescence quenching of Mn-doped ZnSe D-dots/doxorubicin/DNA ternary complexes system.

    Science.gov (United States)

    Gao, Xue; Niu, Lu; Su, Xingguang

    2012-01-01

    This manuscript reports a method for the detection of double-stranded DNA, based on Mn:ZnSe d-dots and intercalating agent doxorubicin (DOX). DOX can quench the photoluminescence (PL) of Mn:ZnSe d-dots through photoinduced electron transfer process, after binding with Mn:ZnSe d-dots. The addition of DNA can result in the formation of the Mn:ZnSe d-dots-DOX-DNA ternary complexes, the fluorescence of the Mn:ZnSe d-dots-DOX complexes would be further quenched by the addition of DNA, thus allowing the detection of DNA. The formation mechanism of the Mn:ZnSe d-dots-DOX-DNA ternary complexes was studied in detail in this paper. Under optimal conditions, the quenched fluorescence intensity of Mn:ZnSe d-dots-DOX system are perfectly described by Stern-Volmer equation with the concentration of hsDNA ranging from 0.006 μg mL(-1) to 6.4 μg mL(-1). The detection limit (S/N = 3) for hsDNA is 0.5 ng mL(-1). The proposed method was successfully applied to the detection of DNA in synthetic samples and the results were satisfactory.

  5. The bipyridine adducts of N-phenyldithiocarbamato complexes of Zn(II) and Cd(II); synthesis, spectral, thermal decomposition studies and use as precursors for ZnS and CdS nanoparticles

    Science.gov (United States)

    Onwudiwe, Damian C.; Strydom, Christien A.

    2015-01-01

    Bipyridine adducts of N-phenyldithiocarbamato complexes, [ML12L2] (M = Cd(II), Zn(II); L1 = N-phenyldithiocarbamate, L2 = 2,2‧ bipyridine), have been synthesized and characterised. The decomposition of these complexes to metal sulphides has been investigated by thermogravimetric analysis (TGA). The complexes were used as single-source precursors to synthesize MS (M = Zn, Cd) nanoparticles (NPs) passivated by hexadecyl amine (HDA). The growth of the nanoparticles was carried out at two different temperatures: 180 and 220 °C, and the optical and structural properties of the nanoparticles were studied using UV-Vis spectroscopy, photoluminescence spectroscopy (PL), transmission emission microscopy (TEM) and powdered X-ray diffraction (p-XRD). Nanoparticles, whose average diameters are 2.90 and 3.54 nm for ZnS, and 8.96 and 9.76 nm for CdS grown at 180 and 220 °C respectively, were obtained.

  6. Thermodynamic modeling of complex systems

    DEFF Research Database (Denmark)

    Liang, Xiaodong

    after an oil spill. Engineering thermodynamics could be applied in the state-of-the-art sonar products through advanced artificial technology, if the speed of sound, solubility and density of oil-seawater systems could be satisfactorily modelled. The addition of methanol or glycols into unprocessed well...... is successfully applied to model the phase behaviour of water, chemical and hydrocarbon (oil) containing systems with newly developed pure component parameters for water and chemicals and characterization procedures for petroleum fluids. The performance of the PCSAFT EOS on liquid-liquid equilibria of water...... with hydrocarbons has been under debate for some vii years. An interactive step-wise procedure is proposed to fit the model parameters for small associating fluids by taking the liquid-liquid equilibrium data into account. It is still far away from a simple task to apply PC-SAFT in routine PVT simulations and phase...

  7. Unsaturated b-ketoesters and their Ni(II, Cu(II and Zn(II complexes

    Directory of Open Access Journals (Sweden)

    MUHAMMED BASHEER UMMATHUR

    2009-03-01

    Full Text Available A new series of b-ketoesters in which the keto group is attached to the olefinic linkage were synthesized by the reaction of methyl acetoacetate and aromatic aldehydes under specified conditions. The existence of these compounds predominantly in the intramolecularly hydrogen bonded enol form was well demonstrated from their IR, 1H-NMR and mass spectral data. Details on the formation of their [ML2] complexes with Ni(II, Cu(II and Zn(II and the nature of the bonding are discussed on the basis of analytical and spectral data.

  8. Ultrafast pump-probe spectroscopy of Zinc Phthalocynine (ZnPc) and light harvesting complex II (LHC II)

    CSIR Research Space (South Africa)

    Ombinda-Lemboumba, Saturnin

    2009-07-01

    Full Text Available pump-probe spectroscopy of Zinc Phthalocynine (ZnPc) and light harvesting complex II (LHC II) SAIP 7-10 July 2009, University of Kwazulu Natal. S. Ombinda-Lemboumba1, 2 A. du Plessis1, L. Botha1, D.E. Roberts1, P. Molukanele1, 3, R.W. Sparrow3, E... and phtobiology (2008) Page 12 Conclusion SAIP 7-10 July 2009, University of Kwazulu natal Femto group © CSIR 2008 www.csir.co.za • Presented our method of correcting chirp induced by white light generation. • Pump...

  9. Evaluation of soil flushing of complex contaminated soil: An experimental and modeling simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sung Mi; Kang, Christina S. [Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Kim, Jonghwa [Department of Industrial Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Kim, Han S., E-mail: hankim@konkuk.ac.kr [Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)

    2015-04-28

    Highlights: • Remediation of complex contaminated soil achieved by sequential soil flushing. • Removal of Zn, Pb, and heavy petroleum oils using 0.05 M citric acid and 2% SDS. • Unified desorption distribution coefficients modeled and experimentally determined. • Nonequilibrium models for the transport behavior of complex contaminants in soils. - Abstract: The removal of heavy metals (Zn and Pb) and heavy petroleum oils (HPOs) from a soil with complex contamination was examined by soil flushing. Desorption and transport behaviors of the complex contaminants were assessed by batch and continuous flow reactor experiments and through modeling simulations. Flushing a one-dimensional flow column packed with complex contaminated soil sequentially with citric acid then a surfactant resulted in the removal of 85.6% of Zn, 62% of Pb, and 31.6% of HPO. The desorption distribution coefficients, K{sub Ubatch} and K{sub Lbatch}, converged to constant values as C{sub e} increased. An equilibrium model (ADR) and nonequilibrium models (TSNE and TRNE) were used to predict the desorption and transport of complex contaminants. The nonequilibrium models demonstrated better fits with the experimental values obtained from the column test than the equilibrium model. The ranges of K{sub Ubatch} and K{sub Lbatch} were very close to those of K{sub Ufit} and K{sub Lfit} determined from model simulations. The parameters (R, β, ω, α, and f) determined from model simulations were useful for characterizing the transport of contaminants within the soil matrix. The results of this study provide useful information for the operational parameters of the flushing process for soils with complex contamination.

  10. Role models for complex networks

    Science.gov (United States)

    Reichardt, J.; White, D. R.

    2007-11-01

    We present a framework for automatically decomposing (“block-modeling”) the functional classes of agents within a complex network. These classes are represented by the nodes of an image graph (“block model”) depicting the main patterns of connectivity and thus functional roles in the network. Using a first principles approach, we derive a measure for the fit of a network to any given image graph allowing objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting image graph directly from the network and present a criterion to avoid overfitting. The method can handle both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient. The concepts of structural equivalence and modularity are found as special cases of our approach. We apply our method to the world trade network and analyze the roles individual countries play in the global economy.

  11. Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Sayiter [Engineering Faculty, Cumhuriyet University, Sivas (Turkmenistan)

    2017-09-15

    Artificial neural networks (ANN) were applied to predict adsorption efficiency of peanut shells for the removal of Zn(II) ions from aqueous solutions. Effects of initial pH, Zn(II) concentrations, temperature, contact duration and adsorbent dosage were determined in batch experiments. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The Zn(II) ions adsorption onto peanut shell was better defined by the pseudo-second-order kinetic model, for both initial pH, and temperature. The highest R{sup 2} value in isotherm studies was obtained from Freundlich isotherm for the inlet concentration and from Temkin isotherm for the sorbent amount. The high R{sup 2} values prove that modeling the adsorption process with ANN is a satisfactory approach. The experimental results and the predicted results by the model with the ANN were found to be highly compatible with each other.

  12. Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process

    International Nuclear Information System (INIS)

    Yildiz, Sayiter

    2017-01-01

    Artificial neural networks (ANN) were applied to predict adsorption efficiency of peanut shells for the removal of Zn(II) ions from aqueous solutions. Effects of initial pH, Zn(II) concentrations, temperature, contact duration and adsorbent dosage were determined in batch experiments. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The Zn(II) ions adsorption onto peanut shell was better defined by the pseudo-second-order kinetic model, for both initial pH, and temperature. The highest R"2 value in isotherm studies was obtained from Freundlich isotherm for the inlet concentration and from Temkin isotherm for the sorbent amount. The high R"2 values prove that modeling the adsorption process with ANN is a satisfactory approach. The experimental results and the predicted results by the model with the ANN were found to be highly compatible with each other.

  13. Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales

    International Nuclear Information System (INIS)

    Knoops, Harm C. M.; Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish; Kessels, Wilhelmus M. M.; Creatore, Mariadriana

    2015-01-01

    In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific

  14. Modelling the structure of complex networks

    DEFF Research Database (Denmark)

    Herlau, Tue

    networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...

  15. Computational Modeling of Complex Protein Activity Networks

    NARCIS (Netherlands)

    Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude

    2017-01-01

    Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a

  16. Models of complex attitude systems

    DEFF Research Database (Denmark)

    Sørensen, Bjarne Taulo

    search algorithms and structural equation models. The results suggest that evaluative judgments of the importance of production system attributes are generated in a schematic manner, driven by personal value orientations. The effect of personal value orientations was strong and largely unmediated...... that evaluative affect propagates through the system in such a way that the system becomes evaluatively consistent and operates as a schema for the generation of evaluative judgments. In the empirical part of the paper, the causal structure of an attitude system from which people derive their evaluations of pork......Existing research on public attitudes towards agricultural production systems is largely descriptive, abstracting from the processes through which members of the general public generate their evaluations of such systems. The present paper adopts a systems perspective on such evaluations...

  17. Synthesis, characterization and in vivo evaluation of [(62)Zn]-benzo-δ-sultam complex as a possible pet imaging agent.

    Science.gov (United States)

    Ghandi, Mehdi; Feizi, Shahzad; Ziaie, Farhood; Fazaeli, Yousef; Notash, Behrooz

    2014-11-01

    The development of a new tracer based on the cyclic sulfonamides (sultams) was investigated. 3-(Methoxy-phenyl-methyl)-1,6-dimethyl-1H benzo[c][1,2] thiazine 2,2-dioxide (benzo-δ-sultam) was synthesized and characterized by elemental analysis, FT-IR spectroscopy and single crystal X-ray structure determination. The prepared cyclic sulfonamide was labeled with non-commercial (62)Zn radioisotope for fast in vivo targeting and Coincidence imaging purposes (radiochemical purity 97 % ITLC, 96 % HPLC, specific activity 20-23 GBq/mmol). In vivo biodistribution of the final complex was investigated in Sprague Dawley(®) rats bearing fibro sarcoma tumor after 2, 4 and 8 h post injection and compared with free Zn(+2) cation. Using instant paper chromatography method, the physicochemical properties of labeled compounds were found sufficiently stable in organic phases, e.g. a human serum, to be reliably used in bioapplications. The complex exhibited a rapid as well as high tumor uptake (tumor to blood ratio 4.38 and tumor to muscle ratio 9.63) resulting in an efficient tumor targeting agent.

  18. Kinetics and equilibrium models for the sorption of tributyltin to nZnO, activated carbon and nZnO/activated carbon composite in artificial seawater

    International Nuclear Information System (INIS)

    Ayanda, Olushola S.; Fatoki, Olalekan S.; Adekola, Folahan A.; Ximba, Bhekumusa J.

    2013-01-01

    Highlights: • Removal of tributyltin from artificial seawater using nZnO/activated carbon and its precursors was studied. • Detailed equilibrium and kinetic studies were reported. • Adsorption conditions were optimized and applied to natural seawater. • Higher removal efficiency of TBT was obtained for the composite and activated carbon except nZnO. • TBT concentration was determine by GC-FPD following derivatization. -- Abstract: The removal of tributyltin (TBT) from artificial seawater using nZnO, activated carbon and nZnO/activated carbon composite was systematically studied. The equilibrium and kinetics of adsorption were investigated in a batch adsorption system. Equilibrium adsorption data were analyzed using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D–R) isotherm models. Pseudo first- and second-order, Elovich, fractional power and intraparticle diffusion models were applied to test the kinetic data. Thermodynamic parameters such as ΔG°, ΔS° and ΔH° were also calculated to understand the mechanisms of adsorption. Optimal conditions for the adsorption of TBT from artificial seawater were then applied to TBT removal from natural seawater. A higher removal efficiency of TBT (>99%) was obtained for the nZnO/activated carbon composite material and for activated carbon but not for nZnO

  19. Synthesis, crystal structure and computational chemistry research of a Zinc(II complex: [Zn(Pt(Biim2

    Directory of Open Access Journals (Sweden)

    Teng Fei

    2012-01-01

    Full Text Available The title metal-organic coordination complex [Zn(pt(Biim2] (pt=phthalic acid, benzene-1,2-dicarboxylate, Biim=2,2'-biimidazole 1 has been obtained by using hydrothermal synthesis and characterized by single-crystal X-ray diffraction. The complex crystallizes in monoclinic, space group P21/n with a = 8.5466(15 Å, b = 11.760(2 Å, c = 20.829(4 Å, β = 95.56(2º, V = 2083.5(6 Å3, Mr =497.78, Dc = 1.587 g/cm3, μ(MoKα = 1.226 mm−1, F(000 = 1016, Z = 4, the final R = 0.0564 and wR = 0.1851 for 3656 observed reflections (I > 2σ(I. The elemental analysis, IR, TG and the theoretical calculation were also investigated.

  20. Intercalation of iron hexacyano complexes in Zn,Al hydrotalcite. Part 2. A mid-infrared and Raman spectroscopic study

    International Nuclear Information System (INIS)

    Kloprogge, J.T.; Weier, Matt; Crespo, Inmaculada; Ulibarri, M.A.; Barriga, Cristobalina; Rives, V.; Martens, W.N.; Frost, R.L.

    2004-01-01

    Combined mid-IR and Raman spectroscopies indicate that intercalation of hexacyanoferrate (II) and (III) in the interlayer space of a Zn,Al hydrotalcite dried at 60 deg. C leads to layered solids where the intercalated species correspond to both hexacyanoferrate(II) and (III). This is an indication that depending on the oxidation state of the initial hexacyanoferrate, partial oxidation and reduction takes place upon intercalation. The symmetry of the intercalated hexacyanoferrate decreases from O h existing in the free anions to D 3d . The observation of a broad band around 2080 cm -1 is indicative of the removal of cyanide from the intercalation complex to the outside surface of the crystals. Its position in the intercalation complex is probably filled by a hydroxyl group

  1. Exploring the Photovoltaic Properties of Metal Bipyridine Complexes (Metal = Fe, Zn, Cr, and Ru) by Density Functional Theory

    Science.gov (United States)

    Irfan, Ahmad; Abbas, Ghulam

    2018-03-01

    The synthesis and characterisation of mononuclear Fe complexes were carried out by using bipyridine (Compound 1) at ambient conditions. Additionally, three more derivatives were designed by substituting the central Fe metal with Zn, Cr, and Ru (Compound 2, Compound 3, and Compound 4), respectively. The ground state geometry calculations were carried out by using density functional theory (DFT) at B3LYP/6-31G** (LANL2DZ) level of theory. We shed light on the frontier molecular orbitals, electronic properties, photovoltaic parameters, and structure-property relationship. The open-circuit voltage is a promising parameter that considerably affects the photovoltaic performance; thus, we have estimated its value by considering the complexes as donors whereas TiO2 and/or Si were used as acceptors. The solar cell performance behaviour was also studied by shedding light on the band alignment and energy level offset.

  2. New octahedral ZnII and CdII complexes based on azo derivatives and azomethines of pyrazole-5-thione

    International Nuclear Information System (INIS)

    Uraev, A.I.; Vasil'chenko, I.S.; Borodkin, G.S.; Borodkina, I.G.; Vlasenko, V.G.; Burlov, A.S.; Divaeva, L.N.; Garnovskij, A.D.; Lysenko, K.A.; Antipin, M.Yu.

    2005-01-01

    New metal chelates of Zn II and Cd II (ML 2 ) based on (4Z)-3-methyl-1-phenyl-5-thioxo- 1,5-dihydro-4H-pyrazol-4-one quinolin-8-ylhydrazone (HL 1 ) and (4Z)-5-methyl-2-phenyl- 4-[(quinolin-8-ylimino)methyl]-2,4-dihydro-3H-pyrazole-3-thione (HL 2 ) were synthesized. The structures of the metal chelates were studied by EXAFS and NMR ( 1 H, 13 C, and 111 Cd) spectroscopy. The structure of the Cd(L 1 ) 2 complex was established by X-ray diffraction analysis. The complexes have pseudo octahedral structures with the N 4 S 2 ligand environment [ru

  3. Synthesis and photocatalytic studies of ZnS nanoparticles from heteroleptic complex of Zn(II) 1-cyano-1-carboethoxy-2,-2-ethylenedithiolato diisopropylthiourea and its adducts with N-donor ligands

    Science.gov (United States)

    Osuntokun, Jejenija; Ajibade, Peter A.; Onwudiwe, Damian C.

    2016-12-01

    Zinc complexes of the type [Zn(diptu)2(ced)] (1), [Zn(diptu)2(ced)py] (2), [Zn(diptu)2(ced)bpy] (3), and [Zn(diptu)2(ced)phen] (4), (where (diptu)2(ced) = 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S‧-bis(N,N-diisopropyllthiourea), py = pyridine, bpy = 2, 2‧ bipyridine and phen = 1, 10 phenanthroline have been synthesized and characterized by elemental analyses, Fourier transform infra-red (FTIR) and Nuclear magnetic resonance (NMR) spectroscopies. The parent complex (1) was formulated as four coordinate species, which gave rise to 5 coordinate complex in (2) and six coordinate compounds in (3) and (4), with the dithiolate acting as bidentate chelating ligand. The complexes were used as single-source precursors for the synthesis of HDA-capped ZnS nanoparticles. The nanoparticles gave different morphologies with sizes in the range of 1.92-4.72 nm as observed from the TEM analysis and supported by XRD. The UV-vis spectroscopy showed that all the ZnS nanoparticles are blue shifted, with respect to the bulk, which confirmed quantum confinement. The photoluminescence spectra showed narrow and broad emission peaks around 290 and 360 nm which are ascribed to spontaneous emission peaks from band to band transition and surface states respectively. Photocatalytic activities of all the nanoparticles were investigated with methylene blue (MB) acting as the organic dye, and the UV-vis spectral revealed a gradual decrease in absorption peak that confirmed the degradation of the MB.

  4. Modeling Musical Complexity: Commentary on Eerola (2016

    Directory of Open Access Journals (Sweden)

    Joshua Albrecht

    2016-07-01

    Full Text Available In his paper, "Expectancy violation and information-theoretic models of melodic complexity," Eerola compares a number of models that correlate musical features of monophonic melodies with participant ratings of perceived melodic complexity. He finds that fairly strong results can be achieved using several different approaches to modeling perceived melodic complexity. The data used in this study are gathered from several previously published studies that use widely different types of melodies, including isochronous folk melodies, isochronous 12-tone rows, and rhythmically complex African folk melodies. This commentary first briefly reviews the article's method and main findings, then suggests a rethinking of the theoretical framework of the study. Finally, some of the methodological issues of the study are discussed.

  5. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2

    International Nuclear Information System (INIS)

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-01-01

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In 2 O 3 and SnO 2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies. (paper)

  6. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2

    Science.gov (United States)

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-01

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  7. Polymerization of Methyl Methacrylate Catalyzed by Co(II), Cu(II), and Zn(II) Complexes Bearing N-Methyl-N-((pyridin-2-yl)methyl) cyclohexanamine

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Seoung Hyun; Lee, Hyosun [Kyungpook National University, Daegu (Korea, Republic of); Shin, Jongwon [POSTECH, Pohang (Korea, Republic of); Nayab, Saira [Shaheed Benazir Bhutto University, Sheringal (Pakistan)

    2016-05-15

    We demonstrated the synthesis and characterization of Co(II), Cu(II), and Zn(II) complexes ligated to N-methyl-N-((pyridin-2-yl)methyl)cyclohexanamine. The complex [Co(nmpc)Cl{sub 2}] in the presence of MMAO showed the highest catalytic activity for MMA polymerization at 60 °C compared with its Zn(II) and Cu(II) analogs. The metal center showed an obvious influence on the catalytic activity, although this appeared to have no effect on the stereo-regularity of the resultant PMMA. X-ray diffraction analysis revealed that [Co(nmpc)Cl{sub 2}] and [Zn(nmpc)Cl{sub 2}] crystallized in the monoclinic system with space group P2{sub 1}/c and existed as monomeric and solvent-free complexes.

  8. Modeling complex work systems - method meets reality

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; Hoeve, Machteld; Lenting, Bert

    1996-01-01

    Modeling an existing task situation is often a first phase in the (re)design of information systems. For complex systems design, this model should consider both the people and the organization involved, the work, and situational aspects. Groupware Task Analysis (GTA) as part of a method for the

  9. Fatigue modeling of materials with complex microstructures

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2011-01-01

    with the phenomenological model of fatigue damage growth. As a result, the fatigue lifetime of materials with complex structures can be determined as a function of the parameters of their structures. As an example, the fatigue lifetimes of wood modeled as a cellular material with multilayered, fiber reinforced walls were...

  10. Updating the debate on model complexity

    Science.gov (United States)

    Simmons, Craig T.; Hunt, Randall J.

    2012-01-01

    As scientists who are trying to understand a complex natural world that cannot be fully characterized in the field, how can we best inform the society in which we live? This founding context was addressed in a special session, “Complexity in Modeling: How Much is Too Much?” convened at the 2011 Geological Society of America Annual Meeting. The session had a variety of thought-provoking presentations—ranging from philosophy to cost-benefit analyses—and provided some areas of broad agreement that were not evident in discussions of the topic in 1998 (Hunt and Zheng, 1999). The session began with a short introduction during which model complexity was framed borrowing from an economic concept, the Law of Diminishing Returns, and an example of enjoyment derived by eating ice cream. Initially, there is increasing satisfaction gained from eating more ice cream, to a point where the gain in satisfaction starts to decrease, ending at a point when the eater sees no value in eating more ice cream. A traditional view of model complexity is similar—understanding gained from modeling can actually decrease if models become unnecessarily complex. However, oversimplified models—those that omit important aspects of the problem needed to make a good prediction—can also limit and confound our understanding. Thus, the goal of all modeling is to find the “sweet spot” of model sophistication—regardless of whether complexity was added sequentially to an overly simple model or collapsed from an initial highly parameterized framework that uses mathematics and statistics to attain an optimum (e.g., Hunt et al., 2007). Thus, holistic parsimony is attained, incorporating “as simple as possible,” as well as the equally important corollary “but no simpler.”

  11. Bifunctional Zn(II)Ln(III) dinuclear complexes combining field induced SMM behavior and luminescence: enhanced NIR lanthanide emission by 9-anthracene carboxylate bridging ligands.

    Science.gov (United States)

    Palacios, María A; Titos-Padilla, Silvia; Ruiz, José; Herrera, Juan Manuel; Pope, Simon J A; Brechin, Euan K; Colacio, Enrique

    2014-02-03

    There were new dinuclear Zn(II)-Ln(III) complexes of general formulas [Zn(μ-L)(μ-OAc)Ln(NO3)2] (Ln(III) = Tb (1), Dy (2), Er (3), and Yb (4)), [Zn(μ-L)(μ-NO3)Er(NO3)2] (5), [Zn(H2O)(μ-L)Nd(NO3)3]·2CH3OH (6), [Zn(μ-L)(μ-9-An)Ln(NO3)2]·2CH3CN (Ln(III) = Tb (7), Dy (8), Er (9), Yb(10)), [Zn(μ-L)(μ-9-An)Yb(9-An)(NO3)3]·3CH3CN (11), [Zn(μ-L)(μ-9-An)Nd(9-An)(NO3)3]·2CH3CN·3H2O (12), and [Zn(μ-L)(μ-9-An)Nd(CH3OH)2(NO3)]ClO4·2CH3OH (13) prepared from the reaction of the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L), with ZnX2·nH2O (X = NO3(-) or OAc(-)) salts, Ln(NO3)3·nH2O, and, in some instances, 9-anthracenecarboxylate anion (9-An). In all these complexes, the Zn(II) ions invariably occupy the internal N3O2 site whereas the Ln(III) ions show preference for the O4 external site, giving rise to a Zn(μ-diphenoxo)Ln bridging fragment. Depending on the Zn(II) salt and solvent used in the reaction, a third bridge can connect the Zn(II) and Ln(III) metal ions, giving rise to triple-bridged diphenoxoacetate in complexes 1-4, diphenoxonitrate in complex 5, and diphenoxo(9-anthracenecarboxylate) in complexes 8-13. Dy(III) and Er(III) complexes 2, 8 and 3, 5, respectively, exhibit field induced single molecule magnet (SMM) behavior, with Ueff values ranging from 11.7 (3) to 41(2) K. Additionally, the solid-state photophysical properties of these complexes are presented showing that ligand L(2-) is able to sensitize Tb(III)- and Dy(III)-based luminescence in the visible region through an energy transfer process (antenna effect). The efficiency of this process is much lower when NIR emitters such as Er(III), Nd(III), and Yb(III) are considered. When the luminophore 9-anthracene carboxylate is incorporated into these complexes, the NIR luminescence is enhanced which proves the efficiency of this bridging ligand to act as antenna group. Complexes 2, 3, 5, and 8 can be considered as dual materials

  12. Complexity, Modeling, and Natural Resource Management

    Directory of Open Access Journals (Sweden)

    Paul Cilliers

    2013-09-01

    Full Text Available This paper contends that natural resource management (NRM issues are, by their very nature, complex and that both scientists and managers in this broad field will benefit from a theoretical understanding of complex systems. It starts off by presenting the core features of a view of complexity that not only deals with the limits to our understanding, but also points toward a responsible and motivating position. Everything we do involves explicit or implicit modeling, and as we can never have comprehensive access to any complex system, we need to be aware both of what we leave out as we model and of the implications of the choice of our modeling framework. One vantage point is never sufficient, as complexity necessarily implies that multiple (independent conceptualizations are needed to engage the system adequately. We use two South African cases as examples of complex systems - restricting the case narratives mainly to the biophysical domain associated with NRM issues - that make the point that even the behavior of the biophysical subsystems themselves are already complex. From the insights into complex systems discussed in the first part of the paper and the lessons emerging from the way these cases have been dealt with in reality, we extract five interrelated generic principles for practicing science and management in complex NRM environments. These principles are then further elucidated using four further South African case studies - organized as two contrasting pairs - and now focusing on the more difficult organizational and social side, comparing the human organizational endeavors in managing such systems.

  13. Multifaceted Modelling of Complex Business Enterprises.

    Science.gov (United States)

    Chakraborty, Subrata; Mengersen, Kerrie; Fidge, Colin; Ma, Lin; Lassen, David

    2015-01-01

    We formalise and present a new generic multifaceted complex system approach for modelling complex business enterprises. Our method has a strong focus on integrating the various data types available in an enterprise which represent the diverse perspectives of various stakeholders. We explain the challenges faced and define a novel approach to converting diverse data types into usable Bayesian probability forms. The data types that can be integrated include historic data, survey data, and management planning data, expert knowledge and incomplete data. The structural complexities of the complex system modelling process, based on various decision contexts, are also explained along with a solution. This new application of complex system models as a management tool for decision making is demonstrated using a railway transport case study. The case study demonstrates how the new approach can be utilised to develop a customised decision support model for a specific enterprise. Various decision scenarios are also provided to illustrate the versatility of the decision model at different phases of enterprise operations such as planning and control.

  14. Multifaceted Modelling of Complex Business Enterprises

    Science.gov (United States)

    2015-01-01

    We formalise and present a new generic multifaceted complex system approach for modelling complex business enterprises. Our method has a strong focus on integrating the various data types available in an enterprise which represent the diverse perspectives of various stakeholders. We explain the challenges faced and define a novel approach to converting diverse data types into usable Bayesian probability forms. The data types that can be integrated include historic data, survey data, and management planning data, expert knowledge and incomplete data. The structural complexities of the complex system modelling process, based on various decision contexts, are also explained along with a solution. This new application of complex system models as a management tool for decision making is demonstrated using a railway transport case study. The case study demonstrates how the new approach can be utilised to develop a customised decision support model for a specific enterprise. Various decision scenarios are also provided to illustrate the versatility of the decision model at different phases of enterprise operations such as planning and control. PMID:26247591

  15. Modeling OPC complexity for design for manufacturability

    Science.gov (United States)

    Gupta, Puneet; Kahng, Andrew B.; Muddu, Swamy; Nakagawa, Sam; Park, Chul-Hong

    2005-11-01

    Increasing design complexity in sub-90nm designs results in increased mask complexity and cost. Resolution enhancement techniques (RET) such as assist feature addition, phase shifting (attenuated PSM) and aggressive optical proximity correction (OPC) help in preserving feature fidelity in silicon but increase mask complexity and cost. Data volume increase with rise in mask complexity is becoming prohibitive for manufacturing. Mask cost is determined by mask write time and mask inspection time, which are directly related to the complexity of features printed on the mask. Aggressive RET increase complexity by adding assist features and by modifying existing features. Passing design intent to OPC has been identified as a solution for reducing mask complexity and cost in several recent works. The goal of design-aware OPC is to relax OPC tolerances of layout features to minimize mask cost, without sacrificing parametric yield. To convey optimal OPC tolerances for manufacturing, design optimization should drive OPC tolerance optimization using models of mask cost for devices and wires. Design optimization should be aware of impact of OPC correction levels on mask cost and performance of the design. This work introduces mask cost characterization (MCC) that quantifies OPC complexity, measured in terms of fracture count of the mask, for different OPC tolerances. MCC with different OPC tolerances is a critical step in linking design and manufacturing. In this paper, we present a MCC methodology that provides models of fracture count of standard cells and wire patterns for use in design optimization. MCC cannot be performed by designers as they do not have access to foundry OPC recipes and RET tools. To build a fracture count model, we perform OPC and fracturing on a limited set of standard cells and wire configurations with all tolerance combinations. Separately, we identify the characteristics of the layout that impact fracture count. Based on the fracture count (FC) data

  16. Unified physical DC model of staggered amorphous InGaZnO transistors

    NARCIS (Netherlands)

    Ghittorelli, M.; Torricelli, F.; Garripoli, C.; van der Steen, J.L.; Gelinck, G.H.; Cantatore, E.; Colalongo, L.; Kovács-Vajna, Z.M.

    In this paper, we propose a unified physical model of InGaZnO [amorphous indium-gallium-zinc-oxide (a-IGZO)] thin-film transistors (TFTs) accounting for both charge injection at the contact and charge transport within the channel. We extract the current-voltage characteristics of the injecting

  17. Adsorption of multi-heavy metals Zn and Cu onto surficial sediments: modeling and adsorption capacity analysis.

    Science.gov (United States)

    Li, Shanshan; Zhang, Chen; Wang, Meng; Li, Yu

    2014-01-01

    Improved multiple regression adsorption models (IMRAMs) was developed to estimate the adsorption capacity of the components [Fe oxides (Fe), Mn oxides (Mn), organic materials (OMs), residuals] in surficial sediments for multi-heavy metal Zn and Cu. IMRAM is an improved version over MRAM, which introduces a computer program in the model developing process. As MRAM, Zn(Cu) IMRAM, and Cu(Zn) IMRAM again confirmed that there is significant interaction effects that control the adsorption of compounded Zn and Cu, which was neglected by additional adsorption model. The verification experiment shows that the relative deviation of the IMRAMs is less than 13%. It is revealed by the IMRAMs that Mn, which has the greatest adsorption capability for compounded Zn and Cu (54.889 and 161.180 mg/l, respectively), follows by interference adsorption capacity of Fe/Mn (-1.072 and -24.591 mg/l respectively). Zn and Cu influence each other through different mechanisms. When Zn is the adsorbate, compounded Cu mainly affects the adsorption capacities of Fe/Mn and Fe/Mn/OMs; while when Cu is the adsorbate, compounded Zn mainly exerts its effect on Mn, Fe/Mn, and Mn/OMs. It also shows that the compounded Zn or Cu weakened the interference adsorption of Fe/Mn, and meanwhile, strengthened the interference adsorption of Mn/OMs.

  18. Sutherland models for complex reflection groups

    International Nuclear Information System (INIS)

    Crampe, N.; Young, C.A.S.

    2008-01-01

    There are known to be integrable Sutherland models associated to every real root system, or, which is almost equivalent, to every real reflection group. Real reflection groups are special cases of complex reflection groups. In this paper we associate certain integrable Sutherland models to the classical family of complex reflection groups. Internal degrees of freedom are introduced, defining dynamical spin chains, and the freezing limit taken to obtain static chains of Haldane-Shastry type. By considering the relation of these models to the usual BC N case, we are led to systems with both real and complex reflection groups as symmetries. We demonstrate their integrability by means of new Dunkl operators, associated to wreath products of dihedral groups

  19. Minimum-complexity helicopter simulation math model

    Science.gov (United States)

    Heffley, Robert K.; Mnich, Marc A.

    1988-01-01

    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.

  20. Parameter identification of ZnO surge arrester models based on genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bayadi, Abdelhafid [Laboratoire d' Automatique de Setif, Departement d' Electrotechnique, Faculte des Sciences de l' Ingenieur, Universite Ferhat ABBAS de Setif, Route de Bejaia Setif 19000 (Algeria)

    2008-07-15

    The correct and adequate modelling of ZnO surge arresters characteristics is very important for insulation coordination studies and systems reliability. In this context many researchers addressed considerable efforts to the development of surge arresters models to reproduce the dynamic characteristics observed in their behaviour when subjected to fast front impulse currents. The difficulties with these models reside essentially in the calculation and the adjustment of their parameters. This paper proposes a new technique based on genetic algorithm to obtain the best possible series of parameter values of ZnO surge arresters models. The validity of the predicted parameters is then checked by comparing the predicted results with the experimental results available in the literature. Using the ATP-EMTP package, an application of the arrester model on network system studies is presented and discussed. (author)

  1. 4,4′-Bipyridine-aided synthesis and characterization of Zn(II) and Cd(II) 2-sulfoterephthalate complexes

    International Nuclear Information System (INIS)

    Xiao, Shan-Shan; Li, Xin-Xin; Zheng, Xiang-Jun; Jia, Tian-Jing; Jin, Lin-Pei

    2013-01-01

    Six d 10 complexes, [Zn 1.5 (stp)(bpy) 0.5 (H 2 O) 2 ]·0.5H 2 O (1), Cd 1.5 (stp)(bpy) 0.5 (H 2 O) 2 (2), [Cd 1.5 (stp)(bpy)(H 2 O)]·H 2 O (3), [Zn 0.5 (bpy) 0.5 (H 2 O) 2 ][Zn(stp)(bpy)(H 2 O)]·0.5H 2 O (4), Cd 3 (stp) 2 (bpy) 3 (H 2 O) 3 (5), Hbpy·[Zn 0.5 (bpy)(H 2 O) 2 ][Zn 0.5 (stp)(H 2 O)]·H 2 O (6) based on 2-sulfoterephthalate (stp 3− ) and 4,4′-bipyridine (bpy) have been synthesized under hydro/solvo-thermal conditions and structurally characterized. Complex 1 exhibits a three-fold interpenetrated 3D porous architecture. Complexes 2 and 3 possess helices with different chirality arranging alternately. 4 and 6 are addition compounds, which compose of complex cation and complex anion. Complex 5 features a 3D layer-pillar framework in which a (4, 4) grid layer is constructed by stp 3− ligands and Cd(II) ions, and the layers are further connected by bpy pillars. The solid-state luminescent properties of the coordination polymers have also been investigated. - Graphical abstract: Display Omitted - Highlights: • Complexes 1–3 possess helices with different chirality arranging alternately. • The structural diversity can be attributed to various coordination modes of ligands. • The formation of helical structure is related to the adjacent carboxyl and sulfonate groups. • Bpy exhibits three roles: bridge, hydrogen bonding acceptor, and template

  2. Computer augumented modelling studies of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II complexes of L-glutamic acid in 1,2-propanediol–water mixtures

    Directory of Open Access Journals (Sweden)

    MAHESWARA RAO VEGI

    2008-12-01

    Full Text Available Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II complexes of L-glutamic acid was studied at 303 K in 0–60 vol. % 1,2-propanediol–water mixtures, whereby the ionic strength was maintained at 0.16 mol dm-3. The active forms of the ligand are LH3+, LH2 and LH–. The predominant detected species were ML, ML2, MLH, ML2H and ML2H2. The trend of the variation in the stability constants with changing dielectric constant of the medium is explained based on the cation stabilizing nature of the co-solvents, specific solvent–water interactions, charge dispersion and specific interactions of the co-solvent with the solute. The effect of systematic errors in the concentrations of the substances on the stability constants is in the order alkali > > acid > ligand > metal. The bioavailability and transportation of metals are explained based on distribution diagrams and stability constants.

  3. Complex Systems and Self-organization Modelling

    CERN Document Server

    Bertelle, Cyrille; Kadri-Dahmani, Hakima

    2009-01-01

    The concern of this book is the use of emergent computing and self-organization modelling within various applications of complex systems. The authors focus their attention both on the innovative concepts and implementations in order to model self-organizations, but also on the relevant applicative domains in which they can be used efficiently. This book is the outcome of a workshop meeting within ESM 2006 (Eurosis), held in Toulouse, France in October 2006.

  4. Geometric Modelling with a-Complexes

    NARCIS (Netherlands)

    Gerritsen, B.H.M.; Werff, K. van der; Veltkamp, R.C.

    2001-01-01

    The shape of real objects can be so complicated, that only a sampling data point set can accurately represent them. Analytic descriptions are too complicated or impossible. Natural objects, for example, can be vague and rough with many holes. For this kind of modelling, a-complexes offer advantages

  5. The Kuramoto model in complex networks

    Science.gov (United States)

    Rodrigues, Francisco A.; Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen

    2016-01-01

    Synchronization of an ensemble of oscillators is an emergent phenomenon present in several complex systems, ranging from social and physical to biological and technological systems. The most successful approach to describe how coherent behavior emerges in these complex systems is given by the paradigmatic Kuramoto model. This model has been traditionally studied in complete graphs. However, besides being intrinsically dynamical, complex systems present very heterogeneous structure, which can be represented as complex networks. This report is dedicated to review main contributions in the field of synchronization in networks of Kuramoto oscillators. In particular, we provide an overview of the impact of network patterns on the local and global dynamics of coupled phase oscillators. We cover many relevant topics, which encompass a description of the most used analytical approaches and the analysis of several numerical results. Furthermore, we discuss recent developments on variations of the Kuramoto model in networks, including the presence of noise and inertia. The rich potential for applications is discussed for special fields in engineering, neuroscience, physics and Earth science. Finally, we conclude by discussing problems that remain open after the last decade of intensive research on the Kuramoto model and point out some promising directions for future research.

  6. A cognitive model for software architecture complexity

    NARCIS (Netherlands)

    Bouwers, E.; Lilienthal, C.; Visser, J.; Van Deursen, A.

    2010-01-01

    Evaluating the complexity of the architecture of a softwaresystem is a difficult task. Many aspects have to be considered to come to a balanced assessment. Several architecture evaluation methods have been proposed, but very few define a quality model to be used during the evaluation process. In

  7. and Zn(II) Complexes with the Schiff base N-salicylidene-4-chlor

    African Journals Online (AJOL)

    2017-12-13

    Dec 13, 2017 ... 2010) Schiff bases are used as intermediate for the ... Infrared spectral analysis .... Table 6: Percentage Composition of the Metal in the complexes using Gravimetric Method .... Internal journal of pharmacy & Technology.

  8. Synthesis and characterization of mixed ligand complexes of Zn(II ...

    Indian Academy of Sciences (India)

    Unknown

    the total % weight loss is 60⋅73%, and the weight loss at 891°C was 54⋅24%, which corresponds to a weight loss of molecular weight of 179 units. The. TGA curve of 3 complex showed sudden weight loss at 300°C, indicating the absence of water molecules in the coordination sphere of the complex. The total weight loss ...

  9. Zn and Fe complexes containing a redox active macrocyclic biquinazoline ligand.

    Science.gov (United States)

    Banerjee, Priyabrata; Company, Anna; Weyhermüller, Thomas; Bill, Eckhard; Hess, Corinna R

    2009-04-06

    A series of iron and zinc complexes has been synthesized, coordinated by the macrocyclic biquinazoline ligand, 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N(6) (Mabiq). The Mabiq ligand consists of a bipyrimidine moiety and two dihydropyrrole units. The electronic structures of the metal-Mabiq complexes have been characterized using spectroscopic and density-functional theory (DFT) computational methods. The parent zinc complex exhibits a ligand-centered reduction to generate the metal-coordinated Mabiq radical dianion, establishing the redox non-innocence of this ligand. Iron-Mabiq complexes have been isolated in three oxidation states. This redox series includes low-spin ferric and low-spin ferrous species, as well as an intermediate-spin Fe(II) compound. In the latter complex, the iron ion is antiferromagnetically coupled to a Mabiq-centered pi-radical. The results demonstrate the rich redox chemistry and electronic properties of metal complexes coordinated by the Mabiq ligand.

  10. Parameters Calculation of ZnO Surge Arrester Models by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    A. Bayadi

    2006-09-01

    Full Text Available This paper proposes to provide a new technique based on the genetic algorithm to obtain the best possible series of values of the parameters of the ZnO surge arresters models. The validity of the predicted parameters is then checked by comparing the results predicted with the experimental results available in the literature. Using the ATP-EMTP package an application of the arrester model on network system studies is presented and discussed.

  11. Heteroleptic complexes of Zn(II) based on 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide: Synthesis, structural characterization, theoretical studies and antibacterial activity

    Science.gov (United States)

    Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim

    2017-04-01

    Four new ternary complexes, [ZnL (2,2‧-bipy)] (1), Zn2L2(4,4‧-bipy)] (2), [ZnL(Imd)]·H2O (3) and [ZnL3(MeImd)] (4), have been synthesized from the reaction of Zn(II) acetate with 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide (H2L) in the presence of a heterocyclic base, 2,2‧-bipyridine, 4,4‧-bipyridine, imidazole or 2-methylimidazole, as an auxiliary ligand. The complexes have been investigated by elemental analysis and FT-IR, UV-Vis and 1HNMR spectroscopy. These data show that the thiosemicarbazone acts as a tridentate dianionic ligand and coordinates via the thiol group, imine nitrogen, and phenolic oxygen. The coordination sphere was completed by the nitrogen atom(s) of the secondary ligand. The structure of 1 was also confirmed by X-ray crystallography and shown to be a five coordinate complex with coordination geometry between the square-pyramidal and trigonal-bipyramidal. Density functional theory (DFT) calculations including geometry optimization, vibrational frequencies and electronic absorptions have been performed for 1 with the B3LYP functional at the TZP(6-311G*) basis set using the Gaussian 03 or ADF 2009 packages. The optimization calculation showed that the crystallographically determined geometry parameters can be reproduced with that basis set. Experimental IR frequencies and calculated vibration frequencies also support each other. The in vitro antibacterial activities of the ligand and complexes have been evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and compared with the standard antibacterial drugs. The results reveal that all of the complexes show much better activity in comparison to the individual thiosemoicarbazone ligand (H2L), against all bacterial strains used, with complex 3 showing the most promising results.

  12. Comparing flood loss models of different complexity

    Science.gov (United States)

    Schröter, Kai; Kreibich, Heidi; Vogel, Kristin; Riggelsen, Carsten; Scherbaum, Frank; Merz, Bruno

    2013-04-01

    Any deliberation on flood risk requires the consideration of potential flood losses. In particular, reliable flood loss models are needed to evaluate cost-effectiveness of mitigation measures, to assess vulnerability, for comparative risk analysis and financial appraisal during and after floods. In recent years, considerable improvements have been made both concerning the data basis and the methodological approaches used for the development of flood loss models. Despite of that, flood loss models remain an important source of uncertainty. Likewise the temporal and spatial transferability of flood loss models is still limited. This contribution investigates the predictive capability of different flood loss models in a split sample cross regional validation approach. For this purpose, flood loss models of different complexity, i.e. based on different numbers of explaining variables, are learned from a set of damage records that was obtained from a survey after the Elbe flood in 2002. The validation of model predictions is carried out for different flood events in the Elbe and Danube river basins in 2002, 2005 and 2006 for which damage records are available from surveys after the flood events. The models investigated are a stage-damage model, the rule based model FLEMOps+r as well as novel model approaches which are derived using data mining techniques of regression trees and Bayesian networks. The Bayesian network approach to flood loss modelling provides attractive additional information concerning the probability distribution of both model predictions and explaining variables.

  13. Complex scaling in the cluster model

    International Nuclear Information System (INIS)

    Kruppa, A.T.; Lovas, R.G.; Gyarmati, B.

    1987-01-01

    To find the positions and widths of resonances, a complex scaling of the intercluster relative coordinate is introduced into the resonating-group model. In the generator-coordinate technique used to solve the resonating-group equation the complex scaling requires minor changes in the formulae and code. The finding of the resonances does not need any preliminary guess or explicit reference to any asymptotic prescription. The procedure is applied to the resonances in the relative motion of two ground-state α clusters in 8 Be, but is appropriate for any systems consisting of two clusters. (author) 23 refs.; 5 figs

  14. Modeling of anaerobic digestion of complex substrates

    International Nuclear Information System (INIS)

    Keshtkar, A. R.; Abolhamd, G.; Meyssami, B.; Ghaforian, H.

    2003-01-01

    A structured mathematical model of anaerobic conversion of complex organic materials in non-ideally cyclic-batch reactors for biogas production has been developed. The model is based on multiple-reaction stoichiometry (enzymatic hydrolysis, acidogenesis, aceto genesis and methano genesis), microbial growth kinetics, conventional material balances in the liquid and gas phases for a cyclic-batch reactor, liquid-gas interactions, liquid-phase equilibrium reactions and a simple mixing model which considers the reactor volume in two separate sections: the flow-through and the retention regions. The dynamic model describes the effects of reactant's distribution resulting from the mixing conditions, time interval of feeding, hydraulic retention time and mixing parameters on the process performance. The model is applied in the simulation of anaerobic digestion of cattle manure under different operating conditions. The model is compared with experimental data and good correlations are obtained

  15. ZNxZN generalization of the chiral Potts model

    International Nuclear Information System (INIS)

    Bazhanov, V.V.; Kashaev, R.M.; Mangazeev, V.V.

    1990-01-01

    It is shown that the R-matrix which interwines two 3-by-N 2 state cyclic L-operators can be considered as a Boltzmann weight of four-spin box for a lattice model with two-spin interaction juct as the R-matrix of the checkerboard chiral Potts model. The rapidity variables lie on the same algebraiz curve as in the chiral Potts model. Factorization properties of the L-operator and its connection to the SOS models, are also discussed. 13 refs.; 11 figs

  16. The synthesis of N-Zn, N-Cu complexes involving 2-amino pyridine ...

    Indian Academy of Sciences (India)

    amino pyridine and ethylenediamine ligands (1a-b and 2a-b) have been described. They were synthesized with a simple, one-pot method, and the crystal structures of 1a, 1b, 2a and 2b were determined by X-ray crystallography. The complexes ...

  17. Complexation of 1,3-dimorpholinopropane with Hg(II) and Zn(II) salts: Synthese, crystal structures and antibacterial studies

    Czech Academy of Sciences Publication Activity Database

    Goudarziafshar, H.; Yousefi, S.; Abbasityula, Y.; Dušek, Michal; Eigner, Václav; Rezaeivala, M.; Özbek, N.

    2015-01-01

    Roč. 31, č. 6 (2015), s. 1076-1084 ISSN 1001-4861 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : crystal structure * 1,3-dimorpholinopropane * antibacterial activity * Hg(II) complex * Zn(II) complex Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.488, year: 2015

  18. Sorption of Sr, Co and Zn on illite: Batch experiments and modelling including Co in-diffusion measurements on compacted samples

    Science.gov (United States)

    Montoya, V.; Baeyens, B.; Glaus, M. A.; Kupcik, T.; Marques Fernandes, M.; Van Laer, L.; Bruggeman, C.; Maes, N.; Schäfer, T.

    2018-02-01

    Experimental investigations on the uptake of divalent cations (Sr, Co and Zn) onto illite (Illite du Puy, Le-Puy-en-Velay, France) were carried out by three different international research groups (Institute for Nuclear Waste Disposal, KIT (Germany), Group Waste & Disposal, SCK-CEN, (Belgium) and Laboratory for Waste Management, PSI (Switzerland)) in the framework of the European FP7 CatClay project. The dependence of solid-liquid distribution ratios (Rd values) on pH at trace metal conditions (sorption edges) and on the metal ion concentration (sorption isotherms) was determined in dilute suspensions of homo-ionic Na-illite (Na-IdP) under controlled N2 atmosphere. The experimental results were modelled using the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) sorption model. The sorption of Sr depends strongly on ionic strength, while a rather weak pH dependence is observed in a pH range between 3 and 11. The data were modelled with cation exchange reactions, taking into account competition with H, K, Ca, Mg and Al, and surface complexation on weak amphotheric edge sites at higher pH values. The sorption of Co on Na-IdP, however, is strongly pH dependent. Cation exchange on the planar sites and surface complexation on strong and weak amphoteric edge sites were used to describe the Co sorption data. Rd values for Co derived from in-diffusion measurements on compacted Na-IdP samples (bulk-dry density of 1700 kg m-3) between pH 5.0 and 9.0 are in good agreement with the batch sorption data. The equivalence of both approaches to measure sorption was thus confirmed for the present test system. In addition, the results highlight the importance of both major and minor surface species for the diffusive transport behaviour of strongly sorbing metal cations. While surface complexes at the edge sites determine largely the Rd value, the diffusive flux may be governed by those species bound to the planar sites, even at low fractional

  19. A Practical Philosophy of Complex Climate Modelling

    Science.gov (United States)

    Schmidt, Gavin A.; Sherwood, Steven

    2014-01-01

    We give an overview of the practice of developing and using complex climate models, as seen from experiences in a major climate modelling center and through participation in the Coupled Model Intercomparison Project (CMIP).We discuss the construction and calibration of models; their evaluation, especially through use of out-of-sample tests; and their exploitation in multi-model ensembles to identify biases and make predictions. We stress that adequacy or utility of climate models is best assessed via their skill against more naive predictions. The framework we use for making inferences about reality using simulations is naturally Bayesian (in an informal sense), and has many points of contact with more familiar examples of scientific epistemology. While the use of complex simulations in science is a development that changes much in how science is done in practice, we argue that the concepts being applied fit very much into traditional practices of the scientific method, albeit those more often associated with laboratory work.

  20. Intrinsic Uncertainties in Modeling Complex Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Curtis S; Bramson, Aaron L.; Ames, Arlo L.

    2014-09-01

    Models are built to understand and predict the behaviors of both natural and artificial systems. Because it is always necessary to abstract away aspects of any non-trivial system being modeled, we know models can potentially leave out important, even critical elements. This reality of the modeling enterprise forces us to consider the prospective impacts of those effects completely left out of a model - either intentionally or unconsidered. Insensitivity to new structure is an indication of diminishing returns. In this work, we represent a hypothetical unknown effect on a validated model as a finite perturba- tion whose amplitude is constrained within a control region. We find robustly that without further constraints, no meaningful bounds can be placed on the amplitude of a perturbation outside of the control region. Thus, forecasting into unsampled regions is a very risky proposition. We also present inherent difficulties with proper time discretization of models and representing in- herently discrete quantities. We point out potentially worrisome uncertainties, arising from math- ematical formulation alone, which modelers can inadvertently introduce into models of complex systems. Acknowledgements This work has been funded under early-career LDRD project #170979, entitled "Quantify- ing Confidence in Complex Systems Models Having Structural Uncertainties", which ran from 04/2013 to 09/2014. We wish to express our gratitude to the many researchers at Sandia who con- tributed ideas to this work, as well as feedback on the manuscript. In particular, we would like to mention George Barr, Alexander Outkin, Walt Beyeler, Eric Vugrin, and Laura Swiler for provid- ing invaluable advice and guidance through the course of the project. We would also like to thank Steven Kleban, Amanda Gonzales, Trevor Manzanares, and Sarah Burwell for their assistance in managing project tasks and resources.

  1. Different Epidemic Models on Complex Networks

    International Nuclear Information System (INIS)

    Zhang Haifeng; Small, Michael; Fu Xinchu

    2009-01-01

    Models for diseases spreading are not just limited to SIS or SIR. For instance, for the spreading of AIDS/HIV, the susceptible individuals can be classified into different cases according to their immunity, and similarly, the infected individuals can be sorted into different classes according to their infectivity. Moreover, some diseases may develop through several stages. Many authors have shown that the individuals' relation can be viewed as a complex network. So in this paper, in order to better explain the dynamical behavior of epidemics, we consider different epidemic models on complex networks, and obtain the epidemic threshold for each case. Finally, we present numerical simulations for each case to verify our results.

  2. The bipyridine adducts of N-phenyldithiocarbamato complexes of Zn(II) and Cd(II); synthesis, spectral, thermal decomposition studies and use as precursors for ZnS and CdS nanoparticles.

    Science.gov (United States)

    Onwudiwe, Damian C; Strydom, Christien A

    2015-01-25

    Bipyridine adducts of N-phenyldithiocarbamato complexes, [ML(1)2L(2)] (M=Cd(II), Zn(II); L(1)=N-phenyldithiocarbamate, L(2)=2,2' bipyridine), have been synthesized and characterised. The decomposition of these complexes to metal sulphides has been investigated by thermogravimetric analysis (TGA). The complexes were used as single-source precursors to synthesize MS (M=Zn, Cd) nanoparticles (NPs) passivated by hexadecyl amine (HDA). The growth of the nanoparticles was carried out at two different temperatures: 180 and 220 °C, and the optical and structural properties of the nanoparticles were studied using UV-Vis spectroscopy, photoluminescence spectroscopy (PL), transmission emission microscopy (TEM) and powdered X-ray diffraction (p-XRD). Nanoparticles, whose average diameters are 2.90 and 3.54 nm for ZnS, and 8.96 and 9.76 nm for CdS grown at 180 and 220 °C respectively, were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. FRAM Modelling Complex Socio-technical Systems

    CERN Document Server

    Hollnagel, Erik

    2012-01-01

    There has not yet been a comprehensive method that goes behind 'human error' and beyond the failure concept, and various complicated accidents have accentuated the need for it. The Functional Resonance Analysis Method (FRAM) fulfils that need. This book presents a detailed and tested method that can be used to model how complex and dynamic socio-technical systems work, and understand both why things sometimes go wrong but also why they normally succeed.

  4. Complex Constructivism: A Theoretical Model of Complexity and Cognition

    Science.gov (United States)

    Doolittle, Peter E.

    2014-01-01

    Education has long been driven by its metaphors for teaching and learning. These metaphors have influenced both educational research and educational practice. Complexity and constructivism are two theories that provide functional and robust metaphors. Complexity provides a metaphor for the structure of myriad phenomena, while constructivism…

  5. Calculations of the energy spectra of Zn, Ga and Ge isotopes by the shell model

    International Nuclear Information System (INIS)

    Sakakura, M.; Shikata, Y.; Arima, A.; Sebe, T.

    1979-01-01

    The effective Hamiltonian which was determined empirically by Koops and Glaudemans is tested in shell model calculations for the 65-68 Zn, 67-69 Ga, and 68-70 Ge nuclei in the full (1p 3 / 2 , 0f 5 / 2 , 1p 1 / 2 )n space. The resulting energy spectra are compared with the experimental spectra and results of previous calculations. The overall agreement with experiment is as satisfactory for these nuclei as for the Ni and Cu isotopes, by which the Hamiltonian was determined. It is noticed that the spectra of 67 Zn and 67 , 69 Ga calculated in this work are similar to those provided by the Alaga model. (orig.) [de

  6. Complex impedance techniques and some properties of Mn sub 0.5 Zn sub 0.5 Fe sub 2 O sub 4 ferrite

    International Nuclear Information System (INIS)

    Ahmad Nazlim Yusoff; Mustaffa Abdullah

    1995-01-01

    Complex impedances (Z-axes = Z' - jZ ) of a standard parallel R-C circuit and a Mn sub 0.5 Zn sub 0.5 Fe sub 2 O sub 4 ferrite sample at 300 K have been measured in the frequency range 1 Hz to 10 MHz by a technique of phase shift. For comparison, the impedances of both systems were also measured using Schlumberger HF 1255 frequency response analyzer. The complex impedance spectrum (Z' vs Z') from the R-C circuit is a perfect semicircle, whereas the spectrum for the ferrite sample is a semicircular curve with its centre being depressed to below the real impedance axis. The depression of the semicircle for the ferrite is discussed as due to a deviation from the ideal Debye relaxation process. An equivalent circuit model that comprises of a capacitor and a resistor in parallel is suggested for the ferrite, but the result for the impedance is modified by including a factor that accounts for the distribution of the relaxation time. The simulated data from the circuit are in agreement with those from the experiment. The dispersion of the impedance is attributed to the conduction and polarization processes in the material

  7. Complex cubic metallides AM{sub ∝6} (A=Ca, Sr; M=Zn, Cd, Hg). Synthesis, crystal chemistry and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Michael; Wendorff, Marco; Roehr, Caroline [Freiburg Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-09-01

    In a systematic synthetic, crystallographic and bond theoretical study, the stability ranges as well as the distribution of the isoelectronic late d-block elements Zn, Cd and Hg (M) in the polyanions of the YCd{sub 6}-type phases (Ca/Sr)Cd{sub 6} have been investigated. Starting from Ca(Cd/Hg){sub 6}, 12-30% of the M atoms can be substituted by Zn, which gradually occupies the center of the empty cubes. In all ternary compounds, smaller/less electronegative Zn/Cd atoms occupy the disordered tetrahedra explaining the lack of the YCd{sub 6}-type for pure mercurides. Along the section SrCd{sub 6}-SrHg{sub 6}, the ordered Eu{sub 4}Cd{sub 25}-type is formed (Sr{sub 4}Cd{sub 16.1}Hg{sub 8.9}: cF1392, Fd anti 3, a=3191.93(5) pm, R1=0.0404). Besides, two new complex cubic Ca phases appear at increased Zn proportion: Ca{sub 2}Zn{sub 5.1}Cd{sub 5.8}, which exhibits a nearly complete site preference of Zn and Cd, crystallizes in the rare cubic Mg{sub 2}Zn{sub 11}-type structure (cP39-δ, Pm anti 3, a=918.1(1) pm, R1=0.0349). In the Ca-Hg system, an increased Zn proportion yielded the new compound CaZn{sub 1.31}Hg{sub 3.69} (cF480, F anti 43m, a=2145.43(9) pm, R1=0.0572), with a complex cubic structure closely related to Ba{sub 20}Hg{sub 103}. All structures, which are commonly described using nested polyhedra around high-symmetric sites, are alternatively described in accordance with the calculated electron densities and charge distribution: building blocks are face-sharing [M{sub 4}] tetrahedra (star polyhedra such as TS, IS, OS), each with a cage-critical point in its center, and [M{sub 8}] cubes (deformed TS), which are either empty, distorted or filled. The M element distribution in the anion is determined by size criteria and the difference in electronegativity, which induces a preferred formation of heteroatomic polar bonds.

  8. Deposition and characterization of ZnS thin films using chemical bath deposition method in the presence of sodium tartrate as complexing agent

    International Nuclear Information System (INIS)

    Kassim, A.; Tee, T.W.; Min, H.S.; Nagalingam, S.

    2011-01-01

    ZnS thin films were deposited on indium tin oxide glass substrate using the chemical bath deposition method. The deposited films were characterized by X-ray diffraction and atomic force microscopy. The influence of bath temperature on the structure and morphology of the thin films was investigated at three different bath temperatures of 60, 70 and 80 deg. C in the presence of sodium tartrate as a complexing agent. The XRD results indicated that the deposited ZnS thin films exhibited a polycrystalline cubic structure. The number of ZnS peaks increased from three to four peaks as the bath temperature was increased from 60 to 80 deg. C based on the XRD patterns. From the AFM measurements, the film thickness and surface roughness were found to be dependent on the bath temperature. The grain size increased as the bath temperature was increased from 60 to 80 deg. C. (author)

  9. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  10. From complex to simple: interdisciplinary stochastic models

    International Nuclear Information System (INIS)

    Mazilu, D A; Zamora, G; Mazilu, I

    2012-01-01

    We present two simple, one-dimensional, stochastic models that lead to a qualitative understanding of very complex systems from biology, nanoscience and social sciences. The first model explains the complicated dynamics of microtubules, stochastic cellular highways. Using the theory of random walks in one dimension, we find analytical expressions for certain physical quantities, such as the time dependence of the length of the microtubules, and diffusion coefficients. The second one is a stochastic adsorption model with applications in surface deposition, epidemics and voter systems. We introduce the ‘empty interval method’ and show sample calculations for the time-dependent particle density. These models can serve as an introduction to the field of non-equilibrium statistical physics, and can also be used as a pedagogical tool to exemplify standard statistical physics concepts, such as random walks or the kinetic approach of the master equation. (paper)

  11. Deformed shell model studies of spectroscopic properties of Zn and ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... April 2014 physics pp. 757–767. Deformed shell model studies of ... experiments without isotopical enrichment thereby reducing the cost considerably. By taking a large mass of the sample because of its low cost, one can ...

  12. The complexity of non-Schmid behavior in the CuZnAl shape memory alloy

    Science.gov (United States)

    Alkan, S.; Ojha, A.; Sehitoglu, H.

    2018-05-01

    The paper addresses one of the most important yet overlooked phenomenon in shape memory research- the plastic slip response. We show that the slip response is highly crystal orientation dependent and we demonstrate the precise reasons behind such complex response. The fractional dislocations on {112} or {011} systems can be activated depending on the sample orientation and solutions are derived for the variations in disregistries and dislocation core spreadings. This leads to the calculation of critical resolved shear stress in close agreement with experimental trends. The results show considerable dependence of the flow behavior on the non-Schmid stress components and the proposed yield criterion captures the role of stress tensor components.

  13. Facile preparation of branched hierarchical ZnO nanowire arrays with enhanced photocatalytic activity: A photodegradation kinetic model

    Science.gov (United States)

    Ebrahimi, M.; Yousefzadeh, S.; Samadi, M.; Dong, Chunyang; Zhang, Jinlong; Moshfegh, A. Z.

    2018-03-01

    Branched hierarchical zinc oxide nanowires (BH-ZnO NWs) were fabricated successfully by a facile and rapid synthesis using two-step growth process. Initially, ZnO NWs have been prepared by anodizing zinc foil at room temperature and followed by annealing treatment. Then, the BH- ZnO NWs were grown on the ZnO NWs by a solution based method at very low temperature (31 oC). The BH- ZnO NWs with different aspect ratio were obtained by varying reaction time (0.5, 2, 5, 10 h). Photocatalytic activity of the samples was studied under both UV and visible light. The results indicated that the optimized BH-ZnO NWs (5 h) as a photocatalyst exhibited the highest photoactivity with about 3 times higher than the ZnO NWs under UV light. In addition, it was also determined that photodegradation rate constant (k) for the BH- ZnO NWs surface obeys a linear function with the branch length (l) and their correlation was described by using a proposed kinetic model.

  14. Phenoxo bridged dinuclear Zn(II) Schiff base complex as new precursor for preparation zinc oxide nanoparticles: Synthesis, characterization, crystal structures and photoluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Saeednia, S., E-mail: sami_saeednia@yahoo.com [Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan 77188-97111 (Iran, Islamic Republic of); Iranmanesh, P. [Department of physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan 77188-97111 (Iran, Islamic Republic of); Ardakani, M. Hatefi; Mohammadi, M.; Norouzi, Gh. [Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan 77188-97111 (Iran, Islamic Republic of)

    2016-06-15

    Highlights: • A novel nano-scale Zn(II) complex was synthesized by solvothermal method. • Chemical structure of the nanostructures was characterized as well as bulk complex. • The photoluminescence property of the complex was investigated at room temperature. • The thermogravimetry and differential thermal analysis were carried out. • Thermal decomposition of the nanostructures was prepared zinc oxide nanoparticles. - Abstract: Nanoparticles of a novel Zn(II) Schiff base complex, [Zn(HL)NO{sub 3}]{sub 2} (1), (H{sub 2}L = 2-[(2-hydroxy-propylimino) methyl] phenol), was synthesized by using solvothermal method. Shape, morphology and chemical structure of the synthesized nanoparticles were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier Transform Infrared Spectoscopy (FT-IR) and UV–vis spectroscopy. Structural determination of compound 1 was determined by single-crystal X-ray diffraction. The results were revealed that the zinc complex is a centrosymmetric dimer in which deprotonated phenolates bridge the two five-coordinate metal atoms and link the two halves of the dimer. The thermal stability of compound 1 was analyzed by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect of the initial substrates concentration and reaction time on size and morphology of compound 1 nanostructure was investigated as well. Furthermore, the luminescent properties of the complex 1 were examined. ZnO nanoparticles with diameter between 15 and 20 nm were simply synthesized by solid-state transformation of compound 1 at 700 °C.

  15. A SIMULATION MODEL OF THE GAS COMPLEX

    Directory of Open Access Journals (Sweden)

    Sokolova G. E.

    2016-06-01

    Full Text Available The article considers the dynamics of gas production in Russia, the structure of sales in the different market segments, as well as comparative dynamics of selling prices on these segments. Problems of approach to the creation of the gas complex using a simulation model, allowing to estimate efficiency of the project and determine the stability region of the obtained solutions. In the presented model takes into account the unit repayment of the loan, allowing with the first year of simulation to determine the possibility of repayment of the loan. The model object is a group of gas fields, which is determined by the minimum flow rate above which the project is cost-effective. In determining the minimum source flow rate for the norm of discount is taken as a generalized weighted average percentage on debt and equity taking into account risk premiums. He also serves as the lower barrier to internal rate of return below which the project is rejected as ineffective. Analysis of the dynamics and methods of expert evaluation allow to determine the intervals of variation of the simulated parameters, such as the price of gas and the exit gas complex at projected capacity. Calculated using the Monte Carlo method, for each random realization of the model simulated values of parameters allow to obtain a set of optimal for each realization of values minimum yield of wells, and also allows to determine the stability region of the solution.

  16. String networks in ZN Lotka–Volterra competition models

    International Nuclear Information System (INIS)

    Avelino, P.P.; Bazeia, D.; Menezes, J.; Oliveira, B.F. de

    2014-01-01

    In this Letter we give specific examples of Z N Lotka–Volterra competition models leading to the formation of string networks. We show that, in order to promote coexistence, the species may arrange themselves around regions with a high number density of empty sites generated by predator–prey interactions between competing species. These configurations extend into the third dimension giving rise to string networks. We investigate the corresponding dynamics using both stochastic and mean field theory simulations, showing that the coarsening of these string networks follows a scaling law which is analogous to that found in other physical systems in condensed matter and cosmology

  17. Structured analysis and modeling of complex systems

    Science.gov (United States)

    Strome, David R.; Dalrymple, Mathieu A.

    1992-01-01

    The Aircrew Evaluation Sustained Operations Performance (AESOP) facility at Brooks AFB, Texas, combines the realism of an operational environment with the control of a research laboratory. In recent studies we collected extensive data from the Airborne Warning and Control Systems (AWACS) Weapons Directors subjected to high and low workload Defensive Counter Air Scenarios. A critical and complex task in this environment involves committing a friendly fighter against a hostile fighter. Structured Analysis and Design techniques and computer modeling systems were applied to this task as tools for analyzing subject performance and workload. This technology is being transferred to the Man-Systems Division of NASA Johnson Space Center for application to complex mission related tasks, such as manipulating the Shuttle grappler arm.

  18. Equilibrium and NMR studies on GdIII, YIII, CuII and ZnII complexes of various DTPA-N,N''-bis(amide) ligands. Kinetic stabilities of the gadolinium(III) complexes.

    Science.gov (United States)

    Jászberényi, Zoltán; Bányai, István; Brücher, Ernö; Király, Róbert; Hideg, Kálmán; Kálai, Tamás

    2006-02-28

    Three DTPA-derivative ligands, the non-substituted DTPA-bis(amide) (L(0)), the mono-substituted DTPA-bis(n-butylamide) (L(1)) and the di-substituted DTPA-bis[bis(n-butylamide)] (L(2)) were synthesized. The stability constants of their Gd3+ complexes (GdL) have been determined by pH-potentiometry with the use of EDTA or DTPA as competing ligands. The endogenous Cu2+ and Zn2+ ions form ML, MHL and M(2)L species. For the complexes CuL(0) and CuL(1) the dissociation of the amide hydrogens (CuLH(-1)) has also been detected. The stability constants of complexes formed with Gd3+, Cu2+ and Zn2+ increase with an increase in the number of butyl substituents in the order ML(0) DTPA)2-, while the complex GdL2 possesses a much higher kinetic stability.

  19. Determination of the structure, morphology and complex refractive index in ZnO-nanopencils/P3HT hybrid structures

    CSIR Research Space (South Africa)

    Motaung, DE

    2012-08-01

    Full Text Available of the base of the flower-shapes. ZnO-NPs were incorporated into the nanomorphology of P3HT and two variations of P3HT:C60 and P3HT: PCBM blended films in order to facilitate charge separation and transport. Thermo-gravimetric analysis revealed that Zn...

  20. Glass Durability Modeling, Activated Complex Theory (ACT)

    International Nuclear Information System (INIS)

    CAROL, JANTZEN

    2005-01-01

    The most important requirement for high-level waste glass acceptance for disposal in a geological repository is the chemical durability, expressed as a glass dissolution rate. During the early stages of glass dissolution in near static conditions that represent a repository disposal environment, a gel layer resembling a membrane forms on the glass surface through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer has been found to age into either clay mineral assemblages or zeolite mineral assemblages. The formation of one phase preferentially over the other has been experimentally related to changes in the pH of the leachant and related to the relative amounts of Al +3 and Fe +3 in a glass. The formation of clay mineral assemblages on the leached glass surface layers ,lower pH and Fe +3 rich glasses, causes the dissolution rate to slow to a long-term steady state rate. The formation of zeolite mineral assemblages ,higher pH and Al +3 rich glasses, on leached glass surface layers causes the dissolution rate to increase and return to the initial high forward rate. The return to the forward dissolution rate is undesirable for long-term performance of glass in a disposal environment. An investigation into the role of glass stoichiometry, in terms of the quasi-crystalline mineral species in a glass, has shown that the chemistry and structure in the parent glass appear to control the activated surface complexes that form in the leached layers, and these mineral complexes ,some Fe +3 rich and some Al +3 rich, play a role in whether or not clays or zeolites are the dominant species formed on the leached glass surface. The chemistry and structure, in terms of Q distributions of the parent glass, are well represented by the atomic ratios of the glass forming components. Thus, glass dissolution modeling using simple

  1. The crystalline and magnetic properties of Zn doped strontium Z-type hexaferrite synthesized by polymerizable complex method

    Directory of Open Access Journals (Sweden)

    Jung Tae Lim

    2017-05-01

    Full Text Available Polycrystalline samples of Sr3Co2-xZnxFe24O41 (x = 0.0, 0.5, 1.0, 1.5, 2.0 were synthesized by a polymerizable complex method. The crystallographic, and magnetic properties of samples were investigated using x-ray diffractometer (XRD, vibrating sample magnetometer (VSM, and Mössbauer spectroscopy. The crystal structures of all samples were determined to be hexagonal with the space group P63/mmc. The hysteresis curves under 10 kOe at 295 K showed that all samples were not saturated due to the high planar anisotropy of Sr ions. In addition, the coercivity (Hc of samples decreased with increasing Zn ion contents. Mössbauer spectra of all samples were obtained at 295 K, and least-squares fitted below TC as six distinguishable sextets (4fIV, 4fIV*, 12kVI*, 4fVI*+ 4eIV, 12kVI, and 2dV + 2aVI + 4fVI + 4eVI.

  2. Modeling and performance analysis dataset of a CIGS solar cell with ZnS buffer layer

    Directory of Open Access Journals (Sweden)

    Md. Billal Hosen

    2017-10-01

    Full Text Available This article represents the baseline data of the several semiconductor materials used in the model of a CIGS thin film solar cell with an inclusion of ZnS buffer layer. As well, input parameters, contact layer data and operating conditions for CIGS solar cell simulation with ZnS buffer layer have been described. The schematic diagram of photovoltaic solar cell has been depicted. Moreover, the most important performance measurement graph, J-V characteristic curve, resulting from CIGS solar cell simulation has been analyzed to estimate the optimum values of fill factor and cell efficiency. These optimum results have been obtained from the open circuit voltage, short circuit current density, and the maximum points of voltage and current density generated from the cell.

  3. The DNA binding site specificity and antiproliferative property of ternary Pt(II) and Zn(II) complexes of phenanthroline and N,N'-ethylenediaminediacetic acid.

    Science.gov (United States)

    Nakamura, Yusuke; Taruno, Yoko; Sugimoto, Masashi; Kitamura, Yusuke; Seng, Hoi Ling; Kong, Siew Ming; Ng, Chew Hee; Chikira, Makoto

    2013-03-14

    The binding site specificity of the ternary complexes, [M(II)(phen)(edda)] (M(II) = Pt(2+) and Zn(2+); phen = 1,10-phenanthroline; edda = N,N'-ethylenediaminediacetic acid), for the self-complementary oligonucleotides (ODNs), ds(C(1)G(2)C(3)G(4)A(5)A(6)T(7)T(8)C(9)G(10)C(11)G(12))(2) (ODN1) and ds(C(1)G(2)C(3)G(4)T(5)A(6)T(7)A(8)C(9)G(10)C(11)G(12))(2) (ODN2), was studied by NMR measurements. The results indicated that [Pt(ii)(phen)(edda)] was partially intercalated between C(3)/G(10) and G(4)/C(9) base pairs of ODN1 and ODN2 in the major grooves, whereas [Zn(II)(phen)(edda)] was bound specifically to the TATA region of ODN2 in the minor groove and to the terminal G(2)/C(11) base pair of ODN1 in the major groove. The preference for the TATA sequence over the AATT sequence in the binding of [Zn(phen)(edda)] was attributed to the wider minor groove width of the TATA sequence. The bindings of the complexes to ct-DNA were also studied by UV, CD, and fluorescence spectroscopy. Additionally, the antiproliferative property of [Pt(II)(phen)(edda)] towards MCF7 breast cancer cells and normal MCF10-A cells was compared with that of [Zn(II)(phen)(edda)].

  4. Micellar effect on metal-ligand complexes of Co(II, Ni(II, Cu(II and Zn(II with citric acid

    Directory of Open Access Journals (Sweden)

    Nageswara Rao Gollapalli

    2009-12-01

    Full Text Available Chemical speciation of citric acid complexes of Co(II, Ni(II, Cu(II and Zn(II was investigated pH-metrically in 0.0-2.5% anionic, cationic and neutral micellar media. The primary alkalimetric data were pruned with SCPHD program. The existence of different binary species was established from modeling studies using the computer program MINIQUAD75. Alkalimetric titrations were carried out in different relative concentrations (M:L:X = 1:2:5, 1:3:5, 1:5:3 of metal (M to citric acid. The selection of best chemical models was based on statistical parameters and residual analysis. The species detected were MLH, ML2, ML2H and ML2H2. The trend in variation of stability constants with change in mole fraction of the medium is explained on the basis of electrostatic and non-electrostatic forces. Distributions of the species with pH at different compositions of micellar media are also presented.

  5. Antimicrobial evaluation of new metallic complexes with xylitol active against P. aeruginosa and C. albicans: MIC determination, post-agent effect and Zn-uptake.

    Science.gov (United States)

    Santi, E; Facchin, G; Faccio, R; Barroso, R P; Costa-Filho, A J; Borthagaray, G; Torre, M H

    2016-02-01

    Xylitol (xylH5) is metabolized via the pentose pathway in humans, but it is unsuitable as an energy source for many microorganisms where it produces a xylitol-induced growth inhibition and disturbance in protein synthesis. For this reason, xylitol is used in the prophylaxis of several infections. In the search of better antimicrobial agents, new copper and zinc complexes with xylitol were synthesized and characterized by analytical and spectrosco pic methods: Na2[Cu3(xylH−4)2]·NaCl·4.5H2O (Cu-xyl) and [Zn4(xylH−4)2(H2O)2]·NaCl·3H2O (Zn-xyl). Both copper and zinc complexes presented higher MIC against Pseudomona aeruginosa than the free xylitol while two different behaviors were found against Candida albicans depending on the complex. The growth curves showed that Cu-xyl presented lower activity than the free ligand during all the studied period. In the case of Znxyl the growth curves showed that the inhibition of the microorganism growth in the first stage was equivalent to that of xylitol but in the second stage (after 18 h) Zn-xyl inhibited more. Besides, the PAE (post agent effect)obtained for Zn-xyl and xyl showed that the recovery from the damage of microbial cells had a delay of 14 and 13 h respectively. This behavior could be useful in prophylaxis treatments for infectious diseases where it is important that the antimicrobial effect lasts longer. With the aim to understand the microbiological activities the analysis of the particle size, lipophilicity and Zn uptake was performed.

  6. A Comparative Study of the Application of Fluorescence Excitation-Emission Matrices Combined with Parallel Factor Analysis and Nonnegative Matrix Factorization in the Analysis of Zn Complexation by Humic Acids

    Directory of Open Access Journals (Sweden)

    Patrycja Boguta

    2016-10-01

    Full Text Available The main aim of this study was the application of excitation-emission fluorescence matrices (EEMs combined with two decomposition methods: parallel factor analysis (PARAFAC and nonnegative matrix factorization (NMF to study the interaction mechanisms between humic acids (HAs and Zn(II over a wide concentration range (0–50 mg·dm−3. The influence of HA properties on Zn(II complexation was also investigated. Stability constants, quenching degree and complexation capacity were estimated for binding sites found in raw EEM, EEM-PARAFAC and EEM-NMF data using mathematical models. A combination of EEM fluorescence analysis with one of the proposed decomposition methods enabled separation of overlapping binding sites and yielded more accurate calculations of the binding parameters. PARAFAC and NMF processing allowed finding binding sites invisible in a few raw EEM datasets as well as finding totally new maxima attributed to structures of the lowest humification. Decomposed data showed an increase in Zn complexation with an increase in humification, aromaticity and molecular weight of HAs. EEM-PARAFAC analysis also revealed that the most stable compounds were formed by structures containing the highest amounts of nitrogen. The content of oxygen-functional groups did not influence the binding parameters, mainly due to fact of higher competition of metal cation with protons. EEM spectra coupled with NMF and especially PARAFAC processing gave more adequate assessments of interactions as compared to raw EEM data and should be especially recommended for modeling of complexation processes where the fluorescence intensities (FI changes are weak or where the processes are interfered with by the presence of other fluorophores.

  7. Site specific interaction between ZnO nanoparticles and tyrosine: A density functional theory study

    Science.gov (United States)

    Singh, Satvinder; Singh, Janpreet; Singh, Baljinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-05-01

    First Principles Calculations have been performed on ZnO/Tyrosine atomic complex to study site specific interaction of Tyrosine and ZnO nanoparticles. Calculated results shows that -COOH group present in Tyrosine is energetically more favorable than -NH2 group. Interactions show ionic bonding between ZnO and Tyrosine. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/Tyrosine complex have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations.

  8. Nonempirical investigations of the structure and stability of complex boro- and alumohydrides of K, Ca, Cu and Zn

    International Nuclear Information System (INIS)

    Musaev, D.G.; Charkin, O.P.

    1991-01-01

    Using nonempirical MO LCAO SCF method the structural and relative energy characteristics of boro- and alumohydrides of alternative configurations, CuAlH 4 , ZnBH 4 + , ZnAlH 4 + and HZnAlH 4 , were calculated. Differences and similarities in the properties of identical boro- and alumohydrides, as well as L 1 MH 4 , HL 2 MH 4 and L 2 MH 4 + molecules with the change of cation in the series K + -HCa + -Ca 2+ and Cu + -HZn + -Zn 2+ on the one hand, and with Cu and Zn substitution for K and Ca on the other hand, were considered. It was shown that alumohydrides of electropositive alkali and alkaline-earth cations K and Ca are less, and those of transition metals Cu and Zn are more hard to cation migration around AlH 4 - and BH 4 - anions than borohydrides

  9. Solution equilibrium study of the complexation of Co(II) and Zn(II ...

    African Journals Online (AJOL)

    Protonated and simple mononuclear species in different protonation and deprotonation states were identified. The corresponding formation constants calculated using MINIQUAD-75 computer program, and species distribution diagrams produced using the HYSS computer program. Selection of the best-fit chemical models ...

  10. trans-Methylpyridine cyclen versus cross-bridged trans-methylpyridine cyclen. Synthesis, acid-base and metal complexation studies (metal = Co2+, Cu2+, and Zn2+).

    Science.gov (United States)

    Bernier, Nicolas; Costa, Judite; Delgado, Rita; Félix, Vítor; Royal, Guy; Tripier, Raphaël

    2011-05-07

    The synthesis of the cross-bridged cyclen CRpy(2) {4,10-bis((pyridin-2-yl)methyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane}, a constrained analogue of the previously described trans-methylpyridine cyclen Cpy(2) is reported. The additional ethylene bridge confers to CRpy(2) proton-sponge type behaviour which was explored by NMR and potentiometric studies. Transition metal complexes have been synthesized (by complexation of both ligands with Co(2+), Cu(2+) and Zn(2+)) and characterized in solution and in the solid state. The single crystal X-ray structures of [CoCpy(2)](2+), [CuCpy(2)](2+) and [ZnCpy(2)](2+) complexes were determined. Stability constants of the complexes, including those of the cross-bridged derivative, were determined using potentiometric titration data and the kinetic inertness of the [CuCRpy(2)](2+) complex in an acidic medium (half-life values) was evaluated by spectrophotometry. The pre-organized structure of the cross-bridged ligand imposes an additional strain for the complexation leading to complexes with smaller thermodynamic stability in comparison with the related non-bridged ligand. The electrochemical study involving cyclic voltammetry underlines the importance of the ethylene cross-bridge on the redox properties of the transition metal complexes.

  11. The mitochondrial toxin, 3-nitropropionic acid, induces extracellular Zn2+ accumulation in rat hippocampus slices.

    Science.gov (United States)

    Wei, Guo; Hough, Christopher J; Sarvey, John M

    2004-11-11

    3-nitropropionic acid (3-NPA), a suicide inhibitor of succinate dehydrogenase (SDH; complex II), has been used to provide useful experimental models of Huntington's disease (HD) and "chemical hypoxia" in rodents. The trace ion Zn2+ has been shown to cause neurodegeneration. Employing real-time Newport Green fluorescence imaging of extracellular Zn2+, we found that 3-NPA (10-100 microM) caused a concentration-dependent increase in the concentration of extracellular Zn2+ ([Zn2+]o) in acute rat hippocampus slices. This increase in [Zn2+]o was abolished by 10 mM CaEDTA. The increase of [Zn2+]o was also accompanied by a rapid increase of cytoplasmic-free Zn2+ concentration ([Zn2+]i). The induction of Zn2+ release by 3-MPA in hippocampus slices points to a potential mechanism by which 3-NPA might induce neurodegeneration.

  12. Chaos from simple models to complex systems

    CERN Document Server

    Cencini, Massimo; Vulpiani, Angelo

    2010-01-01

    Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theor

  13. Investigation on Al(III) and Zn(II) complexes containing a calix[4]arene bearing two 8-oxyquinoline pendant arms used as emitting materials for OLEDs

    International Nuclear Information System (INIS)

    Bagatin, Izilda A.; Legnani, Cristiano; Cremona, Marco

    2009-01-01

    A comparison between [Al·1] 3+ and [Zn·1] 2+ complexes (1 = 5,11,17,23-tetra-tert-butyl-25,27-bis[(quinoline-8-oxy)propyloxy]-26, 28-dihydroxy-calix[4]arene) has been made using electrochemical techniques and the experimental results obtained in the fabrication of organic light emitting devices (OLEDs). The electrochemically determined values of the ionization potential I p and electron affinity E a parameters for the [Al·1] 3+ (I p = 5.82eV, E a = 2.80eV) and [Zn·1] 2+ (I p = 5.67eV, E a = 2.32eV) evidenced that the [Al·1] 3+ complex is a better electron transporting layer with respect to the Zn complex one. The fabricated OLEDs based on these supramolecular complexes show a superior quality with the [Al·1] 3+ systems expected from the energy level diagrams

  14. Evaluation of Alternative Atomistic Models for the Incipient Growth of ZnO by Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Manh-Hung; Tian, Liang; Chaker, Ahmad; Skopin, Evgenii; Cantelli, Valentina; Ouled, Toufik; Boichot, Raphaël; Crisci, Alexandre; Lay, Sabine; Richard, Marie-Ingrid; Thomas, Olivier; Deschanvres, Jean-Luc; Renevier, Hubert; Fong, Dillon; Ciatto, Gianluca

    2017-03-20

    ZnO thin films are interesting for applications in several technological fields, including optoelectronics and renewable energies. Nanodevice applications require controlled synthesis of ZnO structures at nanometer scale, which can be achieved via atomic layer deposition (ALD). However, the mechanisms governing the initial stages of ALD had not been addressed until very recently. Investigations into the initial nucleation and growth as well as the atomic structure of the heterointerface are crucial to optimize the ALD process and understand the structure-property relationships for ZnO. We have used a complementary suite of in situ synchrotron x-ray techniques to investigate both the structural and chemical evolution during ZnO growth by ALD on two different substrates, i.e., SiO2 and Al2O3, which led us to formulate an atomistic model of the incipient growth of ZnO. The model relies on the formation of nanoscale islands of different size and aspect ratio and consequent disorder induced in the Zn neighbors' distribution. However, endorsement of our model requires testing and discussion of possible alternative models which could account for the experimental results. In this work, we review, test, and rule out several alternative models; the results confirm our view of the atomistic mechanisms at play, which influence the overall microstructure and resulting properties of the final thin film.

  15. DNA binding and cleavage studies of new sulfasalazine-derived dipeptide Zn(II) complex: Validation for specific recognition with 5 Prime -TMP

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, Sartaj [Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002 (India); Al-Asbahy, Waddhaah M.; Afzal, Mohd.; Shamsi, Manal; Arjmand, Farukh [Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002 (India)

    2012-11-15

    A new water soluble complex [Zn(glygly)(ssz)(H{sub 2}O)]{center_dot}6H{sub 2}O, 1 derived from dipeptide (glycyl glycine) and sulfasalazine was synthesized and characterized by spectroscopic (IR, UV-vis, NMR, ESI-MS) and analytical methods. The in vitro DNA binding studies of complex 1 with calf-thymus DNA were carried out by employing various biophysical methods and molecular docking technique which reveals strong electrostatic binding via phosphate backbone of DNA helix, in addition to partial intercalation. To gain further insight into the molecular recognition at the target site, interaction studies of complex 1 with 5 Prime -TMP and 5 Prime -GMP were carried out by UV-vis titration which was validated by {sup 1}H and {sup 31}P NMR with 5 Prime -TMP, which implicate the preferential selectivity of 1 towards N3 of thymine. Complex 1 is accessible to minor groove of DNA and cleaved pBR322 DNA via hydrolytic pathway (validated by T4 ligase assay). - Graphical abstract: Synthesis, characterization, DNA binding and cleavage studies of [Zn(glygly)(ssz)(H{sub 2}O)]{center_dot}6H{sub 2}O (1) containing glycyl glycine and sulfasalazine ligand. Complex 1 recognize minor groove of DNA and show hydrolytic DNA cleavage. Highlights: Black-Right-Pointing-Pointer Novel Zn(II) complex 1 bearing bioactive glycyl glycine and sulfasalazine ligand scaffold. Black-Right-Pointing-Pointer Cleavage activity of 1 was enhanced in presence of activators: H{sub 2}O{sub 2}>MPA>GSH>Asc. Black-Right-Pointing-Pointer Complex 1 recognize minor groove as depicted in the cleavage pattern and molecular docking. Black-Right-Pointing-Pointer Complex 1 cleaves pBR322 DNA via hydrolytic mechanism and validated by T4 DNA ligase experiments.

  16. DNA binding and cleavage studies of new sulfasalazine-derived dipeptide Zn(II) complex: Validation for specific recognition with 5′–TMP

    International Nuclear Information System (INIS)

    Tabassum, Sartaj; Al–Asbahy, Waddhaah M.; Afzal, Mohd.; Shamsi, Manal; Arjmand, Farukh

    2012-01-01

    A new water soluble complex [Zn(glygly)(ssz)(H 2 O)]·6H 2 O, 1 derived from dipeptide (glycyl glycine) and sulfasalazine was synthesized and characterized by spectroscopic (IR, UV–vis, NMR, ESI–MS) and analytical methods. The in vitro DNA binding studies of complex 1 with calf–thymus DNA were carried out by employing various biophysical methods and molecular docking technique which reveals strong electrostatic binding via phosphate backbone of DNA helix, in addition to partial intercalation. To gain further insight into the molecular recognition at the target site, interaction studies of complex 1 with 5′-TMP and 5′-GMP were carried out by UV–vis titration which was validated by 1 H and 31 P NMR with 5′-TMP, which implicate the preferential selectivity of 1 towards N3 of thymine. Complex 1 is accessible to minor groove of DNA and cleaved pBR322 DNA via hydrolytic pathway (validated by T4 ligase assay). - Graphical abstract: Synthesis, characterization, DNA binding and cleavage studies of [Zn(glygly)(ssz)(H 2 O)]·6H 2 O (1) containing glycyl glycine and sulfasalazine ligand. Complex 1 recognize minor groove of DNA and show hydrolytic DNA cleavage. Highlights: ► Novel Zn(II) complex 1 bearing bioactive glycyl glycine and sulfasalazine ligand scaffold. ► Cleavage activity of 1 was enhanced in presence of activators: H 2 O 2 >MPA>GSH>Asc. ► Complex 1 recognize minor groove as depicted in the cleavage pattern and molecular docking. ► Complex 1 cleaves pBR322 DNA via hydrolytic mechanism and validated by T4 DNA ligase experiments.

  17. Comparison of CdZnTe neutron detector models using MCNP6 and Geant4

    Science.gov (United States)

    Wilson, Emma; Anderson, Mike; Prendergasty, David; Cheneler, David

    2018-01-01

    The production of accurate detector models is of high importance in the development and use of detectors. Initially, MCNP and Geant were developed to specialise in neutral particle models and accelerator models, respectively; there is now a greater overlap of the capabilities of both, and it is therefore useful to produce comparative models to evaluate detector characteristics. In a collaboration between Lancaster University, UK, and Innovative Physics Ltd., UK, models have been developed in both MCNP6 and Geant4 of Cadmium Zinc Telluride (CdZnTe) detectors developed by Innovative Physics Ltd. Herein, a comparison is made of the relative strengths of MCNP6 and Geant4 for modelling neutron flux and secondary γ-ray emission. Given the increasing overlap of the modelling capabilities of MCNP6 and Geant4, it is worthwhile to comment on differences in results for simulations which have similarities in terms of geometries and source configurations.

  18. Interactions and Toxicity of Cu-Zn mixtures to Hordeum vulgare in Different Soils Can Be Rationalized with Bioavailability-Based Prediction Models.

    Science.gov (United States)

    Qiu, Hao; Versieren, Liske; Rangel, Georgina Guzman; Smolders, Erik

    2016-01-19

    Soil contamination with copper (Cu) is often associated with zinc (Zn), and the biological response to such mixed contamination is complex. Here, we investigated Cu and Zn mixture toxicity to Hordeum vulgare in three different soils, the premise being that the observed interactions are mainly due to effects on bioavailability. The toxic effect of Cu and Zn mixtures on seedling root elongation was more than additive (i.e., synergism) in soils with high and medium cation-exchange capacity (CEC) but less than additive (antagonism) in a low-CEC soil. This was found when we expressed the dose as the conventional total soil concentration. In contrast, antagonism was found in all soils when we expressed the dose as free-ion activities in soil solution, indicating that there is metal-ion competition for binding to the plant roots. Neither a concentration addition nor an independent action model explained mixture effects, irrespective of the dose expressions. In contrast, a multimetal BLM model and a WHAM-Ftox model successfully explained the mixture effects across all soils and showed that bioavailability factors mainly explain the interactions in soils. The WHAM-Ftox model is a promising tool for the risk assessment of mixed-metal contamination in soils.

  19. Complex singlet extension of the standard model

    International Nuclear Information System (INIS)

    Barger, Vernon; McCaskey, Mathew; Langacker, Paul; Ramsey-Musolf, Michael; Shaughnessy, Gabe

    2009-01-01

    We analyze a simple extension of the standard model (SM) obtained by adding a complex singlet to the scalar sector (cxSM). We show that the cxSM can contain one or two viable cold dark matter candidates and analyze the conditions on the parameters of the scalar potential that yield the observed relic density. When the cxSM potential contains a global U(1) symmetry that is both softly and spontaneously broken, it contains both a viable dark matter candidate and the ingredients necessary for a strong first order electroweak phase transition as needed for electroweak baryogenesis. We also study the implications of the model for discovery of a Higgs boson at the Large Hadron Collider.

  20. Extension of association models to complex chemicals

    DEFF Research Database (Denmark)

    Avlund, Ane Søgaard

    Summary of “Extension of association models to complex chemicals”. Ph.D. thesis by Ane Søgaard Avlund The subject of this thesis is application of SAFT type equations of state (EoS). Accurate and predictive thermodynamic models are important in many industries including the petroleum industry......; CPA and sPC-SAFT. Phase equilibrium and monomer fraction calculations with sPC-SAFT for methanol are used in the thesis to illustrate the importance of parameter estimation when using SAFT. Different parameter sets give similar pure component vapor pressure and liquid density results, whereas very...... association is presented in the thesis, and compared to the corresponding lattice theory. The theory for intramolecular association is then applied in connection with sPC-SAFT for mixtures containing glycol ethers. Calculations with sPC-SAFT (without intramolecular association) are presented for comparison...

  1. Synthesis, characterization and crystal structure determination of a new Zn(II Schiff base complex derived from condensation of a new asymmetrical tripodal amine, 3-((4-aminobutyl(pyridin-2-ylmethylaminopropan-1-ol and 2-hydroxy-3-methoxybenzaldehyde

    Directory of Open Access Journals (Sweden)

    Majid Rezaeivala

    2017-05-01

    Full Text Available A new tripodal amine, 3-((4-aminobutyl(pyridin-2-ylmethylaminopropan-1-ol (HL has been prepared. This has been used to synthesize a new Schiff base complex by template condensation with 2-hydroxy-3-methoxybenzaldehyde in the presence of Zn(II metal ion in methanol. The complex has been characterized using spectroscopic methods and the crystal structure of [ZnL]BF4, L:3-((4-aminobutyl(pyridin-2-ylmethylaminopropan-1-ol was confirmed by single crystal X-ray diffraction studies. Single crystal X-ray structure analysis showed that in the mononuclear Zn(II complex, [ZnL]BF4 the Zn(II ion is in a distorted square pyramidal environment.

  2. Interface Study of ITO/ZnO and ITO/SnO2 Complex Transparent Conductive Layers and Their Effect on CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Tingliang Liu

    2013-01-01

    Full Text Available Transparent ITO/ZnO and ITO/SnO2 complex conductive layers were prepared by DC- and RF-magnetron sputtering. Their structure and optical and electronic performances were studied by XRD, UV/Vis Spectroscopy, and four-probe technology. The interface characteristic and band offset of the ITO/ZnO, ITO/SnO2, and ITO/CdS were investigated by Ultraviolet Photoelectron Spectroscopy (UPS and X-ray Photoelectron Spectroscopy (XPS, and the energy band diagrams have also been determined. The results show that ITO/ZnO and ITO/SnO2 films have good optical and electrical properties. The energy barrier those at the interface of ITO/ZnO and ITO/SnO2 layers are almost 0.4 and 0.44 eV, which are lower than in ITO/CdS heterojunctions (0.9 eV, which is beneficial for the transfer and collection of electrons in CdTe solar cells and reduces the minority carrier recombination at the interface, compared to CdS/ITO. The effects of their use in CdTe solar cells were studied by AMPS-1D software simulation using experiment values obtained from ZnO, ITO, and SnO2. From the simulation, we confirmed the increase of Eff, FF, Voc, and Isc by the introduction of ITO/ZnO and ITO/SnO2 layers in CdTe solar cells.

  3. AB INITIO INVESTIGATION OF 12-CROWN-4 AND BENZO-12-CROWN-4 COMPLEXES WITH Li+, Na+, K+, Zn2+, Cd2+, AND Hg2+

    Directory of Open Access Journals (Sweden)

    Yahmin Yahmin

    2010-06-01

    Full Text Available The structure and binding energies of 12-crown-4 and benzo-12-crown-4 complexes with Li+, Na+, K+, Zn2+, Cd2+, and Hg2+were investigated with ab initio calculations using Hartree-Fock approximation and second-order perturbation theory. The basis set used in this study is lanl2mb. The structure optimization of cation-crown ether complexes was evaluated at HF/lanl2mb level of theory and interaction energy of the corresponding complexes was calculated at MP2/lanl2mb level of theory (MP2/lanl2mb//HF/lanl2mb. Interactions of the crown ethers and the cations were discussed in term of the structure parameter of crown ether. The binding energies of the complexes show that all complex formed from transition metal cations is more stable than the complexes formed from alkali metal cations.   Keywords: 12-crown-4, benzo-12-crown-4, alkali metals, transition metals

  4. Gas-phase synthesis and structure of monomeric ZnOH: a model species for metalloenzymes and catalytic surfaces.

    Science.gov (United States)

    Zack, Lindsay N; Sun, Ming; Bucchino, Matthew P; Clouthier, Dennis J; Ziurys, Lucy M

    2012-02-16

    Monomeric ZnOH has been studied for the first time using millimeter and microwave gas-phase spectroscopy. ZnOH is important in surface processes and at the active site of the enzyme carbonic anhydrase. In the millimeter-wave direct-absorption experiments, ZnOH was synthesized by reacting zinc vapor, produced in a Broida-type oven, with water. In the Fourier-transform microwave measurements, ZnOH was produced in a supersonic jet expansion of CH(3)OH and zinc vapor, created by laser ablation. Multiple rotational transitions of six ZnOH isotopologues in their X(2)A' ground states were measured over the frequency range of 22-482 GHz, and splittings due to fine and hyperfine structure were resolved. An asymmetric top pattern was observed in the spectra, showing that ZnOH is bent, indicative of covalent bonding. From these data, spectroscopic constants and an accurate structure were determined. The Zn-O bond length was found to be similar to that in carbonic anhydrase and other model enzyme systems.

  5. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model.

    Science.gov (United States)

    Alaraby, Mohamed; Annangi, Balasubramanyam; Hernández, Alba; Creus, Amadeu; Marcos, Ricard

    2015-10-15

    This study planned to determine the range of biological effects associated with ZnO-NP exposure using Drosophila melanogaster as an in vivo model. In addition, ZnCl2 was used to determine the potential role of Zn ions alone. Toxicity, internalization through the intestinal barrier, gene expression changes, ROS production, and genotoxicity were the end-points evaluated. No toxicity or oxidative stress induction was observed in D. melanogaster larvae, whether using ZnO-NPs or ZnCl2. Internalization of ZnO-NPs through the intestinal barrier was observed. No significant changes in the frequency of mutant clones (wing-spot test) or percentage of DNA in tail (comet assay) were observed although significant changes in Hsp70 and p53 gene expression were detected. Our study shows that ZnO-NPs do not induce toxicity or genotoxicity in D. melanogaster, although uptake occurs and altered gene expression is observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The Model of Complex Structure of Quark

    Science.gov (United States)

    Liu, Rongwu

    2017-09-01

    In Quantum Chromodynamics, quark is known as a kind of point-like fundamental particle which carries mass, charge, color, and flavor, strong interaction takes place between quarks by means of exchanging intermediate particles-gluons. An important consequence of this theory is that, strong interaction is a kind of short-range force, and it has the features of ``asymptotic freedom'' and ``quark confinement''. In order to reveal the nature of strong interaction, the ``bag'' model of vacuum and the ``string'' model of string theory were proposed in the context of quantum mechanics, but neither of them can provide a clear interaction mechanism. This article formulates a new mechanism by proposing a model of complex structure of quark, it can be outlined as follows: (1) Quark (as well as electron, etc) is a kind of complex structure, it is composed of fundamental particle (fundamental matter mass and electricity) and fundamental volume field (fundamental matter flavor and color) which exists in the form of limited volume; fundamental particle lies in the center of fundamental volume field, forms the ``nucleus'' of quark. (2) As static electric force, the color field force between quarks has classical form, it is proportional to the square of the color quantity carried by each color field, and inversely proportional to the area of cross section of overlapping color fields which is along force direction, it has the properties of overlap, saturation, non-central, and constant. (3) Any volume field undergoes deformation when interacting with other volume field, the deformation force follows Hooke's law. (4) The phenomena of ``asymptotic freedom'' and ``quark confinement'' are the result of color field force and deformation force.

  7. Effects of organic complexed or inorganic Co, Cu, Mn and Zn supplementation during a 45-day preconditioning period on productive and health responses of feeder cattle.

    Science.gov (United States)

    Lippolis, K D; Cooke, R F; Silva, L G T; Schubach, K M; Brandao, A P; Marques, R S; Larson, C K; Russell, J R; Arispe, S A; DelCurto, T; Bohnert, D W

    2017-11-01

    This experiment evaluated production and health parameters among cattle offered concentrates containing inorganic or organic complexed sources of supplemental Cu, Co, Mn and Zn during a 45-day preconditioning period. In total, 90 Angus×Hereford calves were weaned at 7 months (day -1), sorted by sex, weaning BW and age (261±2 kg; 224±2 days), and allocated to 18 drylot pens (one heifer and four steers per pen) on day 0; thus, all pens had equivalent initial BW and age. Pens were randomly assigned to receive a corn-based preconditioning concentrate containing: (1) Cu, Co, Mn and Zn sulfate sources (INR), (2) Cu, Mn, Co and Zn complexed organic source (AAC) or (3) no Cu, Co, Mn and Zn supplementation (CON). From day 0 to 45, cattle received concentrate treatments (2.7 kg/animal daily, as-fed basis) and had free-choice access to orchardgrass (Dactylis glomerata L.), long-stem hay and water. The INR and AAC treatments were formulated to provide the same daily amount of Co, Cu, Mn and Zn at a 50-, 16-, 8- and ninefold increase, respectively, compared with the CON treatment. On day 46, cattle were transported to a commercial feedlot, maintained as a single pen, and offered a free-choice receiving diet until day 103. Calf full BW was recorded on days -1 and 0, 45 and 46, and 102 and 103 for average daily gain (ADG) calculation. Liver biopsy was performed on days 0 (used as covariate), 22 and 45. Cattle were vaccinated against respiratory pathogens on days 15, 29 and 46. Blood samples were collected on days 15, 29, 45, 47, 49, 53 and 60. During preconditioning, mean liver concentrations of Co, Zn and Cu were greater (P⩽0.03) in AAC and INR compared with CON. No treatment effects were detected (P⩾0.17) for preconditioning feed intake, ADG or feed efficiency. No treatment effects were detected (P⩾0.48) for plasma concentrations of antibodies against Mannheimia haemolytica, bovine viral diarrhea types 1 and 2 viruses. Plasma haptoglobin concentrations were similar

  8. Biologically active new Fe(II, Co(II, Ni(II, Cu(II, Zn(II and Cd(II complexes of N-(2-thienylmethylenemethanamine

    Directory of Open Access Journals (Sweden)

    C. SPÎNU

    2008-04-01

    Full Text Available Iron(II, cobalt(II, nickel (II, copper (II, zinc(II and cadmium(II complexes of the type ML2Cl2, where M is a metal and L is the Schiff base N-(2-thienylmethylenemethanamine (TNAM formed by the condensation of 2-thiophenecarboxaldehyde and methylamine, were prepared and characterized by elemental analysis as well as magnetic and spectroscopic measurements. The elemental analyses suggest the stoichiometry to be 1:2 (metal:ligand. Magnetic susceptibility data coupled with electronic, ESR and Mössbauer spectra suggest a distorted octahedral structure for the Fe(II, Co(II and Ni(II complexes, a square-planar geometry for the Cu(II compound and a tetrahedral geometry for the Zn(II and Cd(II complexes. The infrared and NMR spectra of the complexes agree with co-ordination to the central metal atom through nitrogen and sulphur atoms. Conductance measurements suggest the non-electrolytic nature of the complexes, except for the Cu(II, Zn(II and Cd(II complexes, which are 1:2 electrolytes. The Schiff base and its metal chelates were screened for their biological activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and the metal chelates were found to possess better antibacterial activity than that of the uncomplexed Schiff base.

  9. Clinical Complexity in Medicine: A Measurement Model of Task and Patient Complexity.

    Science.gov (United States)

    Islam, R; Weir, C; Del Fiol, G

    2016-01-01

    Complexity in medicine needs to be reduced to simple components in a way that is comprehensible to researchers and clinicians. Few studies in the current literature propose a measurement model that addresses both task and patient complexity in medicine. The objective of this paper is to develop an integrated approach to understand and measure clinical complexity by incorporating both task and patient complexity components focusing on the infectious disease domain. The measurement model was adapted and modified for the healthcare domain. Three clinical infectious disease teams were observed, audio-recorded and transcribed. Each team included an infectious diseases expert, one infectious diseases fellow, one physician assistant and one pharmacy resident fellow. The transcripts were parsed and the authors independently coded complexity attributes. This baseline measurement model of clinical complexity was modified in an initial set of coding processes and further validated in a consensus-based iterative process that included several meetings and email discussions by three clinical experts from diverse backgrounds from the Department of Biomedical Informatics at the University of Utah. Inter-rater reliability was calculated using Cohen's kappa. The proposed clinical complexity model consists of two separate components. The first is a clinical task complexity model with 13 clinical complexity-contributing factors and 7 dimensions. The second is the patient complexity model with 11 complexity-contributing factors and 5 dimensions. The measurement model for complexity encompassing both task and patient complexity will be a valuable resource for future researchers and industry to measure and understand complexity in healthcare.

  10. Reducing Spatial Data Complexity for Classification Models

    International Nuclear Information System (INIS)

    Ruta, Dymitr; Gabrys, Bogdan

    2007-01-01

    Intelligent data analytics gradually becomes a day-to-day reality of today's businesses. However, despite rapidly increasing storage and computational power current state-of-the-art predictive models still can not handle massive and noisy corporate data warehouses. What is more adaptive and real-time operational environment requires multiple models to be frequently retrained which further hinders their use. Various data reduction techniques ranging from data sampling up to density retention models attempt to address this challenge by capturing a summarised data structure, yet they either do not account for labelled data or degrade the classification performance of the model trained on the condensed dataset. Our response is a proposition of a new general framework for reducing the complexity of labelled data by means of controlled spatial redistribution of class densities in the input space. On the example of Parzen Labelled Data Compressor (PLDC) we demonstrate a simulatory data condensation process directly inspired by the electrostatic field interaction where the data are moved and merged following the attracting and repelling interactions with the other labelled data. The process is controlled by the class density function built on the original data that acts as a class-sensitive potential field ensuring preservation of the original class density distributions, yet allowing data to rearrange and merge joining together their soft class partitions. As a result we achieved a model that reduces the labelled datasets much further than any competitive approaches yet with the maximum retention of the original class densities and hence the classification performance. PLDC leaves the reduced dataset with the soft accumulative class weights allowing for efficient online updates and as shown in a series of experiments if coupled with Parzen Density Classifier (PDC) significantly outperforms competitive data condensation methods in terms of classification performance at the

  11. Reducing Spatial Data Complexity for Classification Models

    Science.gov (United States)

    Ruta, Dymitr; Gabrys, Bogdan

    2007-11-01

    Intelligent data analytics gradually becomes a day-to-day reality of today's businesses. However, despite rapidly increasing storage and computational power current state-of-the-art predictive models still can not handle massive and noisy corporate data warehouses. What is more adaptive and real-time operational environment requires multiple models to be frequently retrained which further hinders their use. Various data reduction techniques ranging from data sampling up to density retention models attempt to address this challenge by capturing a summarised data structure, yet they either do not account for labelled data or degrade the classification performance of the model trained on the condensed dataset. Our response is a proposition of a new general framework for reducing the complexity of labelled data by means of controlled spatial redistribution of class densities in the input space. On the example of Parzen Labelled Data Compressor (PLDC) we demonstrate a simulatory data condensation process directly inspired by the electrostatic field interaction where the data are moved and merged following the attracting and repelling interactions with the other labelled data. The process is controlled by the class density function built on the original data that acts as a class-sensitive potential field ensuring preservation of the original class density distributions, yet allowing data to rearrange and merge joining together their soft class partitions. As a result we achieved a model that reduces the labelled datasets much further than any competitive approaches yet with the maximum retention of the original class densities and hence the classification performance. PLDC leaves the reduced dataset with the soft accumulative class weights allowing for efficient online updates and as shown in a series of experiments if coupled with Parzen Density Classifier (PDC) significantly outperforms competitive data condensation methods in terms of classification performance at the

  12. Synthesis, structures, nuclease activity, cytotoxicity, DFT and molecular docking studies of two nitrato bridged homodinuclear (Cu-Cu, Zn-Zn) complexes containing 2,2'-bipyridine and a chalcone derivative.

    Science.gov (United States)

    Gaur, Ruchi; Choubey, Diksha Kumari; Usman, Mohammad; Ward, Benzamin D; Roy, Jagat Kumar; Mishra, Lallan

    2017-08-01

    Nitrato briged dinuclear complexes of type [Cu 2 (L) 2 (bpy) 2 (NO 3 )](NO 3 )·4H 2 O, 1 and [Zn 2 (L) 2 (bpy) 2 (NO 3 )](NO 3 )·4H 2 O, 2 (L=deprotonated form of free ligand LH, [1-(2-hydroxyphenyl)-3-(9-anthracenyl) propenone; bpy=2,2'bipyridine] are synthesized and characterized using a battery of physicochemical techniques and X-ray crystallography. A distorted square pyramidal geometry is assigned to them with N 2 O 3 coordination core around the metal ion. The co-ligand L binds the metal ions through its O,O' atoms in anti-syn mode. The metal centers in complexes 1 and 2 are separated via bridging nitrato group at a distance of 6.073Å and 5.635Å respectively. Their structures and absorption spectra are supported by the computational studies using density functional theory (DFT) and TD-DFT. Both complexes exhibit nuclease activity and cleave supercoiled (form I) DNA. The complex 1 preferentially binds major groove of DNA and follows an oxidative pathway whereas complex 2 binds with minor groove of DNA via hydrolytic pathway. Both complexes inhibit topoisomerase I relaxation activity with IC 50 values of 7 and 35μM. Molecular docking studies support the groove binding and topoisomerase I binding of the complexes. The complex 1 showed a significant cytotoxicity against HeLa cell lines (a cervical cancer cell lines) in vitro with IC 50 value calculated as 2.9±0.021μM as compared to 28.2±0. 044μΜ for complex 2. Complex 2 induces the cell apoptosis at a later-stage as compared to complex 1. The cell apoptosis and topoisomerase inhibition by complexes enable them to be potential candidates as future anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. On sampling and modeling complex systems

    International Nuclear Information System (INIS)

    Marsili, Matteo; Mastromatteo, Iacopo; Roudi, Yasser

    2013-01-01

    The study of complex systems is limited by the fact that only a few variables are accessible for modeling and sampling, which are not necessarily the most relevant ones to explain the system behavior. In addition, empirical data typically undersample the space of possible states. We study a generic framework where a complex system is seen as a system of many interacting degrees of freedom, which are known only in part, that optimize a given function. We show that the underlying distribution with respect to the known variables has the Boltzmann form, with a temperature that depends on the number of unknown variables. In particular, when the influence of the unknown degrees of freedom on the known variables is not too irregular, the temperature decreases as the number of variables increases. This suggests that models can be predictable only when the number of relevant variables is less than a critical threshold. Concerning sampling, we argue that the information that a sample contains on the behavior of the system is quantified by the entropy of the frequency with which different states occur. This allows us to characterize the properties of maximally informative samples: within a simple approximation, the most informative frequency size distributions have power law behavior and Zipf’s law emerges at the crossover between the under sampled regime and the regime where the sample contains enough statistics to make inferences on the behavior of the system. These ideas are illustrated in some applications, showing that they can be used to identify relevant variables or to select the most informative representations of data, e.g. in data clustering. (paper)

  14. Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon.

    Science.gov (United States)

    Loganathan, Paripurnanda; Shim, Wang Geun; Sounthararajah, Danious Pratheep; Kalaruban, Mahatheva; Nur, Tanjina; Vigneswaran, Saravanamuthu

    2018-03-30

    Elevated concentrations of heavy metals in water can be toxic to humans, animals, and aquatic organisms. A study was conducted on the removal of Cu, Pb, and Zn by a commonly used water treatment adsorbent, granular activated carbon (GAC), from three single, three binary (Cu-Pb, Cu-Zn, Pb-Zn), and one ternary (Cu-Pb-Zn) combination of metals. It also investigated seven mathematical models on their suitability to predict the metals adsorption capacities. Adsorption of Cu, Pb, and Zn increased with pH with an abrupt increase in adsorption at around pH 5.5, 4.5, and 6.0, respectively. At all pHs tested (2.5-7.0), the adsorption capacity followed the order Pb > Cu > Zn. The Langmuir and Sips models fitted better than the Freundlich model to the data in the single-metal system at pH 5. The Langmuir maximum adsorption capacities of Pb, Cu, and Zn (mmol/g) obtained from the model's fits were 0.142, 0.094, and 0.058, respectively. The adsorption capacities (mmol/g) for these metals at 0.01 mmol/L equilibrium liquid concentration were 0.130, 0.085, and 0.040, respectively. Ideal Adsorbed Solution (IAS)-Langmuir and IAS-Sips models fitted well to the binary and ternary metals adsorption data, whereas the Extended Langmuir and Extended Sips models' fits to the data were poor. The selectivity of adsorption followed the same order as the metals' capacities and affinities of adsorption in the single-metal systems.

  15. Transport of Zn (II by TDDA-Polypropylene Supported Liquid Membranes and Recovery from Waste Discharge Liquor of Galvanizing Plant of Zn (II

    Directory of Open Access Journals (Sweden)

    Hanif Ur Rehman

    2017-01-01

    Full Text Available The facilitated passage of Zn (II across flat sheet supported liquid membrane saturated with TDDA (tri-n-dodecylamine in xylene membrane phase has been investigated. The effect of acid and metal ion concentration in the feed solution, the carrier concentration in membrane phase, stripping agent concentration in stripping phase, and coions on the extraction of Zn (II was investigated. The stoichiometry of the extracted species, that is, complex, was investigated on slope analysis method and it was found that the complex (LH2·Zn(Cl2 is responsible for transport of Zn (II. A mathematical model was developed for transport of Zn (II, and the predicted results strongly agree with experimental ones. The mechanism of transport was determined by coupled coion transport mechanism with H+ and Cl− coupled ions. The optimized SLM was effectively used for elimination of Zn (II from waste discharge liquor of galvanizing plant of Zn (II.

  16. (Pyridine)(tetrahydroborato)zinc complex, (Zn(BH4)2(py)), as a new stable, efficient and chemoselective reducing agent for reduction of carbonyl compounds

    International Nuclear Information System (INIS)

    Zeynizadeh, Behzad; Faraji, Fariba

    2003-01-01

    (Pyridine)(tetrahydroborato)zinc complex, (Zn(BH 4 ) 2 (py)), as a stable white solid, was prepared quantitatively by complexation of an equimolar amount of zinc tetrahydroborate and pyridine at room temperature. This reagent can easily reduce variety of carbonyl compounds such as aldehydes, ketones, acyloins, α-diketones and α,β-unsaturated carbonyl compounds to their corresponding alcohols in good to excellent yields. Reduction reactions were performed in ether or THF at room temperature or under reflux conditions. In addition, the chemoselective reduction of aldehydes over ketones was accomplished successfully with this reducing agent

  17. (Pyridine)(tetrahydroborato)zinc complex, (Zn(BH{sub 4}){sub 2}(py)), as a new stable, efficient and chemoselective reducing agent for reduction of carbonyl compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zeynizadeh, Behzad; Faraji, Fariba [Urima Univ., Urima (Iran, Islamic Republic of)

    2003-04-01

    (Pyridine)(tetrahydroborato)zinc complex, (Zn(BH{sub 4}){sub 2}(py)), as a stable white solid, was prepared quantitatively by complexation of an equimolar amount of zinc tetrahydroborate and pyridine at room temperature. This reagent can easily reduce variety of carbonyl compounds such as aldehydes, ketones, acyloins, {alpha}-diketones and {alpha},{beta}-unsaturated carbonyl compounds to their corresponding alcohols in good to excellent yields. Reduction reactions were performed in ether or THF at room temperature or under reflux conditions. In addition, the chemoselective reduction of aldehydes over ketones was accomplished successfully with this reducing agent.

  18. Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II binary complexes of l-methionine in 1,2-propanediol-water mixtures

    Directory of Open Access Journals (Sweden)

    M. Padma Latha

    2007-04-01

    Full Text Available Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II complexes of L-methionine in 0.0-60 % v/v 1,2-propanediol-water mixtures maintaining an ionic strength of 0.16 M at 303 K has been studied pH metrically. The active forms of ligand are LH2+, LH and L-. The predominant species detected are ML, MLH, ML2, ML2H, ML2H2 and MLOH. Models containing different numbers of species were refined by using the computer program MINIQUAD 75. The best-fit chemical models were arrived at based on statistical parameters. The trend in variation of complex stability constants with change in the dielectric constant of the medium is explained on the basis of electrostatic and non-electrostatic forces.

  19. Cu2+ in layered compounds: origin of the compressed geometry in the model system K2ZnF4:Cu2+.

    Science.gov (United States)

    Aramburu, J A; García-Lastra, J M; García-Fernández, P; Barriuso, M T; Moreno, M

    2013-06-17

    Many relevant properties (including superconductivity and colossal magnetoresistance) of layered materials containing Cu(2+), Ag(2+), or Mn(3+) ions are commonly related to the Jahn-Teller instability. Along this line, the properties of the CuF6(4-) complex in the K2ZnF4 layered perovskite have recently been analyzed using a parametrized Jahn-Teller model with an imposed strain [Reinen, D. Inorg. Chem.2012, 51, 4458]. Here, we present results of ab initio periodic supercell and cluster calculations on K2ZnF4:Cu(2+), showing unequivocally that the actual origin of the unusual compressed geometry of the CuF6(4-) complex along the crystal c axis in that tetragonal lattice is due to the presence of an electric field due to the crystal surrounding the impurity. Our calculations closely reproduce the experimental optical spectrum. The calculated values of the equilibrium equatorial and axial Cu(2+)-F(-) distances are, respectively, R(ax) = 193 pm and R(eq) = 204 pm, and so the calculated distortion R(ax) - R(eq) = 11 pm is three times smaller than the estimated through the parametrized Jahn-Teller model. As a salient feature, we find that if the CuF6(4-) complex would assume a perfect octahedral geometry (R(ax) = R(eq) = 203 pm) the antibonding a(1g)*(∼3z(2) - r(2)) orbital is placed above b(1g)*(∼x(2) - y(2)) with a transition energy E((2)A(1g) → (2)B(1g)) = 0.34 eV. This surprising fact stresses that about half the experimental value E((2)A(1g) → (2)B(1g)) = 0.70 eV is not due to the small shortening of the axial Cu(2+)-F(-) distance, but it comes from the electric field, E(R)(r), created by the rest of the lattice ions on the CuF6(4-) complex. This internal field, displaying tetragonal symmetry, is thus responsible for the compressed geometry in K2ZnF4:Cu(2+) and the lack of symmetry breaking behind the ligand relaxation. Moreover, we show that the electronic energy gain in this process comes from bonding orbitals and not from antibonding ones. The present

  20. Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64,66−68Zn targets

    Directory of Open Access Journals (Sweden)

    M. Yiğit

    2017-08-01

    Full Text Available In this paper, nuclear data for cross sections of the 64Zn(n,2n63Zn, 64Zn(n,3n62Zn, 64Zn(n,p64Cu, 66Zn(n,2n65Zn, 66Zn(n,p66Cu, 67Zn(n,p67Cu, 68Zn(n,p68Cu, and 68Zn(n,α65Ni reactions were studied for neutron energies up to 40 MeV. In the nuclear model calculations, TALYS 1.6, ALICE/ASH, and EMPIRE 3.2 codes were used. Furthermore, the nuclear data for the (n,2n and (n,p reaction channels were also calculated using various cross-section systematics at energies around 14–15 MeV. The code calculations were analyzed and obtained using the different level densities in the exciton model and the geometry-dependent hybrid model. The results obtained from the excitation function calculations are discussed and compared with literature experimental data, ENDF/B-VII.1, and the TENDL-2015 evaluated data.

  1. Model-based predictions for nuclear excitation functions of neutron-induced reactions on {sup 64,} {sup 66-68}Zn targets

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, M. [Faculty of Science and Arts, Dept. of Physics, Aksaray University, Aksaray (Turkmenistan); Kara, A. [Faculty of Engineering, Department of Energy Systems Engineering, Giresun University, Giresun (Turkmenistan)

    2017-08-15

    In this paper, nuclear data for cross sections of the {sup 64}Zn(n,2n){sup 63}Zn,{sup 64}Zn(n,3n){sup 62}Zn, {sup 64}Zn(n,p){sup 64}Cu, {sup 66}Zn(n,2n){sup 65}Zn, {sup 66}Zn(n,p){sup 66}Cu, {sup 67}Zn(n,p){sup 67}Cu, {sup 68}Zn(n,p){sup 68}Cu, and {sup 68}Zn(n,α){sup 65}Ni reactions were studied for neutron energies up to 40 MeV. In the nuclear model calculations, TALYS 1.6, ALICE/ASH, and EMPIRE 3.2 codes were used. Furthermore, the nuclear data for the (n,2n) and (n,p) reaction channels were also calculated using various cross-section systematics at energies around 14–15 MeV. The code calculations were analyzed and obtained using the different level densities in the exciton model and the geometry-dependent hybrid model. The results obtained from the excitation function calculations are discussed and compared with literature experimental data, ENDF/B-VII.1, and the TENDL-2015 evaluated data.

  2. Semi-empirical device model for Cu2ZnSn(S,Se)4 solar cells

    Science.gov (United States)

    Gokmen, Tayfun; Gunawan, Oki; Mitzi, David B.

    2014-07-01

    We present a device model for the hydrazine processed kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cell with a world record efficiency of ˜12.6%. Detailed comparison of the simulation results, performed using wxAMPS software, to the measured device parameters shows that our model captures the vast majority of experimental observations, including VOC, JSC, FF, and efficiency under normal operating conditions, and temperature vs. VOC, sun intensity vs. VOC, and quantum efficiency. Moreover, our model is consistent with material properties derived from various techniques. Interestingly, this model does not have any interface defects/states, suggesting that all the experimentally observed features can be accounted for by the bulk properties of CZTSSe. An electrical (mobility) gap that is smaller than the optical gap is critical to fit the VOC data. These findings point to the importance of tail states in CZTSSe solar cells.

  3. Semi-empirical device model for Cu2ZnSn(S,Se)4 solar cells

    International Nuclear Information System (INIS)

    Gokmen, Tayfun; Gunawan, Oki; Mitzi, David B.

    2014-01-01

    We present a device model for the hydrazine processed kesterite Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cell with a world record efficiency of ∼12.6%. Detailed comparison of the simulation results, performed using wxAMPS software, to the measured device parameters shows that our model captures the vast majority of experimental observations, including V OC , J SC , FF, and efficiency under normal operating conditions, and temperature vs. V OC , sun intensity vs. V OC , and quantum efficiency. Moreover, our model is consistent with material properties derived from various techniques. Interestingly, this model does not have any interface defects/states, suggesting that all the experimentally observed features can be accounted for by the bulk properties of CZTSSe. An electrical (mobility) gap that is smaller than the optical gap is critical to fit the V OC data. These findings point to the importance of tail states in CZTSSe solar cells.

  4. Modeling the Structure and Complexity of Engineering Routine Design Problems

    NARCIS (Netherlands)

    Jauregui Becker, Juan Manuel; Wits, Wessel Willems; van Houten, Frederikus J.A.M.

    2011-01-01

    This paper proposes a model to structure routine design problems as well as a model of its design complexity. The idea is that having a proper model of the structure of such problems enables understanding its complexity, and likewise, a proper understanding of its complexity enables the development

  5. Modelling growth of, and removal of Zn and Hg by a wild microalgal consortium

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Cristina M.; Brandao, Teresa R.S.; Castro, Paula M.L. [Universidade Catolica Portuguesa, Porto (Portugal). CBQF/Escola Superior de Biotecnologia; Malcata, F. Xavier [ISMAI - Instituto Superior da Maia, Avioso S. Pedro (Portugal); CIMAR/CIIMAR - Centro Interdisciplinar de Investigacao Marinha e Ambiental, Porto (Portugal)

    2012-04-15

    Microorganisms isolated from sites contaminated with heavy metals usually possess a higher removal capacity than strains from regular cultures. Heavy metal-containing soil samples from an industrial dumpsite in Northern Portugal were accordingly collected; following enrichment under metal stress, a consortium of wild microalgae was obtained. Their ability to grow in the presence of, and their capacity to recover heavy metals was comprehensively studied; the datasets thus generated were fitted to by a combined model of biomass growth and metal uptake, derived from first principles. After exposure to 15 and 25 mg/L Zn{sup 2+} for 6 days, the microalgal consortium reached similar, or higher cell density than the control; however, under 50 and 65 mg/L Zn{sup 2+}, 71% to 84% inhibition was observed. Growth in the presence of Hg{sup 2+} was significantly inhibited, even at a concentration as low as 25 {mu}g/L, and 90% inhibition was observed above 100 {mu}g/L. The maximum amount of Zn{sup 2+} removed was 21.3 mg/L, upon exposure to 25 mg/L for 6 day, whereas the maximum removal of Hg{sup 2+} was 335 {mu}g/L, upon 6 day in the presence of 350 {mu}g/L. The aforementioned mechanistic model was built upon Monod assumptions (including heavy metal inhibition), coupled with Leudeking-Piret relationships between the rates of biomass growth and metal removal. The overall fits were good under all experimental conditions tested, thus conveying a useful tool for rational optimisation of microalga-mediated bioremediation. (orig.)

  6. Synthesis, characterization, DNA interaction and antimicrobial screening of isatin-based polypyridyl mixed-ligand Cu(II and Zn(II complexes

    Directory of Open Access Journals (Sweden)

    NATARAJAN RAMAN

    2010-06-01

    Full Text Available Several mixed ligand Cu(II/Zn(II complexes using 3-(phenyl-imino-1,3-dihydro-2H-indol-2-one (obtained by the condensation of isatin and aniline as the primary ligand and 1,10-phenanthroline (phen/2,2’-bipyridine (bpy as an additional ligand were synthesized and characterized analytically and spectroscopically by elemental analyses, magnetic susceptibility and molar conductance measurements, as well as by UV–Vis, IR, NMR and FAB mass spectroscopy. The interaction of the complexes with calf thymus (CT DNA was studied using absorption spectra, cyclic voltammetric and viscosity measurements. They exhibit absorption hypochromicity, and the specific viscosity increased during the binding of the complexes to calf thymus DNA. The shifts in the oxidation–reduction potential and changes in peak current on addition of DNA were shown by CV measurements. The Cu(II/Zn(II complexes were found to promote cleavage of pUC19 DNA from the supercoiled form I to the open circular form II and linear form III. The complexes show enhanced antifungal and antibacterial activities compared with the free ligand.

  7. Enantioseparation of dansyl amino acids and dipeptides by chiral ligand exchange capillary electrophoresis based on Zn(II)-L-hydroxyproline complexes coordinating with γ-cyclodextrins.

    Science.gov (United States)

    Mu, Xiaoyu; Qi, Li; Qiao, Juan; Yang, Xinzheng; Ma, Huimin

    2014-10-10

    A chiral ligand exchange capillary electrophoresis (CLE-CE) method using Zn(II) as the central ion and L-4-hydroxyproline as the chiral ligand coordinating with γ-cyclodextrin (γ-CD) was developed for the enantioseparation of amino acids (AAs) and dipeptides. The effects of various separation parameters, including the pH of the running buffer, the ratio of Zn(II) to L-4-hydroxyproline, the concentration of complexes and cyclodextrins (CDs) were systematically investigated. After optimization, it has been found that eight pairs of labeled AAs and six pairs of labeled dipeptides could be baseline-separated with a running electrolyte of 100.0mM boric acid, 5.0mM ammonium acetate, 3.0mM Zn(II), 6.0mM L-hydroxyproline and 4.0mM γ-CD at pH 8.2. The quantitation of AAs and dipeptides was conducted and good linearity (r(2)≥0.997) and favorable repeatability (RSD≤3.6%) were obtained. Furthermore, the proposed method was applied in determining the enantiomeric purity of AAs and dipeptides. Meanwhile, the possible enantiorecognition mechanism based on the synergistic effect of chiral metal complexes and γ-CD was explored and discussed briefly. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Improving the SMM and luminescence properties of lanthanide complexes with LnO9 cores in the presence of ZnII: an emissive Zn2Dy single ion magnet.

    Science.gov (United States)

    Fondo, Matilde; Corredoira-Vázquez, Julio; Herrera-Lanzós, Antía; García-Deibe, Ana M; Sanmartín-Matalobos, Jesús; Herrera, Juan Manuel; Colacio, Enrique; Nuñez, Cristina

    2017-12-12

    Mononuclear complexes of stoichiometry [Ln(H 3 L)(H 2 O)(NO 3 )](NO 3 ) 2 (Ln = Tb, 1; Dy, 2, Er, 3), which crystallise with different solvates, and the heterotrinuclear compound [Zn 2 Dy(L)(NO 3 ) 3 (OH)] (4) can be obtained with the same H 3 L compartmental ligand. The single X-ray crystal structure of the mononuclear complexes shows a LnO 9 core with a muffin-like disposition while the geometry of the DyO 9 core in 4 seems to be closer to spherical capped square antiprism. The analysis of the magnetic properties of all the complexes demonstrates that the mononuclear lanthanide compounds do not show slow relaxation of the magnetization, even when the samples are diluted with a diamagnetic matrix and subjected to a dc applied field of 1000 Oe. Nevertheless, the heterotrinuclear dysprosium complex 4·3H 2 O is a field-induced single ion magnet, with an estimated U eff barrier of 59 K. The luminescence characterisation of all the metal complexes in methanol solution at 298 K also shows a notable increase in the fluorescence emission of the heterotrinuclear complex with respect to the mononuclear ones, in such a way that 4 can be defined as a fluorescent single ion magnet.

  9. Effect on the Inhibitory Activity of Potential Microbes on the Complexation of Methyl Anthranilate Derived Hydrazide with Cu, Ni and Zn (II) Metal Ions

    International Nuclear Information System (INIS)

    Ikram, M.; Rehman, S.; Khan, K.

    2013-01-01

    The hydrazide ligand 2-amino-(N-aminobezoyl)benzohydrazide (ABH) have been synthesized and characterized by 1H-NMR, 13C-NMR, ES+-MS, elemental analyses and infrared studies. The ligand was complexed with Ni(II), Cu(II) and Zn(II) metal ions and were characterized by analytical and spectroscopic methods including elemental analyses, ES+-MS, conductance, infrared, UV-Visible and magnetic susceptibilities studies. Infrared spectra show that the ligand form complexes through -NH2 and carbonyl moieties, the elemental studies suggested the M(ABH)X2 composition of the coordination compounds. The synthesized complexes were studied for their biological activities against gram negative bacteria including Escherichia coli, Salmonella typhi, Enterobacter aerogenes, Proteus vulgaris, Pseudomonas aeruginosa, Gram positive bacterial strains like Staphylococcus aureus and fungus like Candida albican. These activities show that the metal complexes are more active to the tested microbes as compared to neat ligand. (author)

  10. Synthesis and complex study of the crystal hydrate Zn{sub 2}ZrF{sub 8}.12H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Voit, Elena; Didenko, Nina; Gayvoronskaya, Kseniya; Slobodyuk, Arseniy; Gerasimenko, Andrey [Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, 159 Prosp. 100-Letiya Vladivostoka, 690022 Vladivostok (Russian Federation)

    2016-05-15

    The synthesis and study of structure and properties of a crystal hydrate of the composition Zn{sub 2}ZrF{sub 8}.12H{sub 2}O were performed by XRD, DTA analysis as well as IR, Raman, and {sup 1}H, and {sup 19}F NMR, including {sup 19}F MAS NMR spectroscopy. The compound crystallizes in the monoclinic syngony with the following unit cell parameters: a = 20.9649 (12), b = 9.6851 (6), c = 24.0209 (14) Aa, β = 103.742 (2) , space group C2/c, Z = 12. The structure is built from monomeric complex [ZrF{sub 8}]{sup 4-} and [Zn(H{sub 2}O){sub 6}]{sup 2+} linked through hydrogen bonds of different lengths (O-H..F and O-H..O). The peculiarity of the structure consists in the presence of short hydrogen bonds (interatomic O..F distances 2.5-2.6 Aa). Analysis of the IR and Raman spectra allowed interpretation of bands corresponding to vibrations of the [ZrF{sub 8}]{sup 4-} anion and to describe hydrogen bonds in the structure of Zn{sub 2}ZrF{sub 8}.12H{sub 2}O. Phase transformations in the process of thermal dehydration were studied on the basis of changes in vibrational and NMR spectra. It has been established that the interligand exchange in the complex anion takes place as early as at -103 C, whereas no reorientation of hexaaquacations was observed up to 47 C. At 58 C, the compound undergoes an incongruent melting accompanied with formation of much more stable ZnZrF{sub 6}.6H{sub 2}O and an aqueous salty liquid phase characterized with high mobility of fluorine atoms and protons, in accordance with the NMR spectroscopic data. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Modeling competitive substitution in a polyelectrolyte complex

    International Nuclear Information System (INIS)

    Peng, B.; Muthukumar, M.

    2015-01-01

    We have simulated the invasion of a polyelectrolyte complex made of a polycation chain and a polyanion chain, by another longer polyanion chain, using the coarse-grained united atom model for the chains and the Langevin dynamics methodology. Our simulations reveal many intricate details of the substitution reaction in terms of conformational changes of the chains and competition between the invading chain and the chain being displaced for the common complementary chain. We show that the invading chain is required to be sufficiently longer than the chain being displaced for effecting the substitution. Yet, having the invading chain to be longer than a certain threshold value does not reduce the substitution time much further. While most of the simulations were carried out in salt-free conditions, we show that presence of salt facilitates the substitution reaction and reduces the substitution time. Analysis of our data shows that the dominant driving force for the substitution process involving polyelectrolytes lies in the release of counterions during the substitution

  12. Modelling of information processes management of educational complex

    Directory of Open Access Journals (Sweden)

    Оксана Николаевна Ромашкова

    2014-12-01

    Full Text Available This work concerns information model of the educational complex which includes several schools. A classification of educational complexes formed in Moscow is given. There are also a consideration of the existing organizational structure of the educational complex and a suggestion of matrix management structure. Basic management information processes of the educational complex were conceptualized.

  13. Sandpile model for relaxation in complex systems

    International Nuclear Information System (INIS)

    Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.

    1997-10-01

    The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)

  14. Cyanide bridged hetero-metallic polymeric complexes: Syntheses, vibrational spectra, thermal analyses and crystal structures of complexes [M(1,2-dmi)2Ni(μ-CN)4]n (M = Zn(II) and Cd(II))

    Science.gov (United States)

    Kürkçüoğlu, Güneş Süheyla; Sayın, Elvan; Şahin, Onur

    2015-12-01

    Two cyanide bridged hetero-metallic complexes of general formula, [M(1,2-dmi)2Ni(μ-CN)4]n (1,2-dmi = 1,2-dimethylimidazole and M = Zn(II) or Cd(II)) have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal analyses and elemental analyses. The crystallographic analyses reveal that the complexes, [Zn(1,2-dmi)2Ni(μ-CN)4] (1) and [Cd(1,2-dmi)2Ni(μ-CN)4] (2), have polymeric 2D networks. In the complexes, four cyanide groups of [Ni(CN)4]2- coordinated to the adjacent M(II) ions and distorted octahedral geometries of complexes are completed by two nitrogen atoms of trans 1,2-dmi ligands. The structures of 1 and 2 are similar and linked via intermolecular hydrogen bonding, C-H⋯Ni interactions to give rise to 3D networks. Vibration assignments are given for all the observed bands and the spectral features also supported to the crystal structures of heteronuclear complexes. The FT-IR and Raman spectra of the complexes are very much consistent with the structural data presented.

  15. Model radioisotope experiments on the influence of acid rain on 65Zn binding with humic acid

    International Nuclear Information System (INIS)

    Koczorowska, E.; Mieloch, M.; Slawinski, J.

    2002-01-01

    Acid rain formed first of all from sulfur oxide emitted by natural and anthropogenic sources, may change the biological equilibrium and the metal stoppage in the soil. The model experiments were performed to determine the influence of acid rain on zinc bond with humic acid (HA). The samples were prepared in glass columns with quartz sand and overlaid HA or HA + 65 Zn radioisotope that simulates natural conditions. Then, solutions of H 2 SO 4 were introduced into the sand - HA layer. Zinc was washed with diluted (10 -4 - 10 -3 M) sulphuric acid as a simulation of acid rain. The results help to evaluate the migration behaviour of zinc in the presence of HA and H 2 SO 4 . The model studies illustrate the considerable influence of sulfuric acid on chemical degradation of HA. (author)

  16. The origin of room temperature ferromagnetism mediated by Co–VZn complexes in the ZnO grain boundary

    KAUST Repository

    Devi, Assa Aravindh Sasikala; Roqan, Iman S.

    2016-01-01

    Ferromagnetism in polycrystalline ZnO doped with Co has been observed to be sustainable in recent experiments. We use first-principle calculations to show that Co impurities favorably substitute at the grain boundary (GB) rather than in the bulk. We

  17. Continuum modeling of {10Ῑ2} twinning in a Mg-3%Al-1%Zn rolled sheet

    Directory of Open Access Journals (Sweden)

    Pérez-Prado, M. T.

    2010-12-01

    Full Text Available Acrystal plasticity continuum model with differentiated self- and cross- hardeningmechanisms for twin and slip systems has been utilized to predict the slip/twin activities and texture evolution in a rolled and annealed Mg-3%Al-1%Zn sheet compressed along the rolling direction (RD and tensile tested along the normal direction (ND. The contribution of twinning is significantly larger during tension along ND, leading to a significant texture change with strain. A good correlation is found between simulations and recent experimental results.

    Un modelo continuo de plasticidad cristalina, que contempla los mecanismos de auto-endurecimiento y endurecimiento cruzado para los sistemas de maclado y deslizamiento, se ha utilizado para predecir las actividades de deslizamiento y del maclado, así como la evolución de la textura, de una chapa laminada y recocida de la aleación de magnesio Mg-3%Al-1%Zn ensayada en compresión, a lo largo de la dirección de laminación (DL y en tensión, a lo largo de la dirección normal (DN. Se encontró que la contribución del maclado es mucho más importante cuando la muestra se tensiona a lo lago de DN, lo que da lugar a un cambio fuerte de textura. Se observó una buena correspondencia entre las simulaciones y resultados experimentales recientes.

  18. Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England)

    International Nuclear Information System (INIS)

    Tipping, E.; Rothwell, J.J.; Shotbolt, L.; Lawlor, A.J.

    2010-01-01

    Simulation modelling with CHUM-AM was carried out to investigate the accumulation and release of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in six moorland catchments, five with organic-rich soils, one with calcareous brown earths, in the Pennine chain of northern England. The model considers two soil layers and a third layer of weathering mineral matter, and operates on a yearly timestep, driven by deposition scenarios covering the period 1400-2010. The principal processes controlling heavy metals are competitive solid-solution partitioning of solutes, chemical interactions in solution, and chemical weathering. Agreement between observed and simulated soil metal pools and surface water concentrations for recent years was generally satisfactory, the results confirming that most contemporary soil metal is from atmospheric pollution. Metals in catchments with organic-rich soils show some mobility, especially under more acid conditions, but the calcareous mineral soils have retained nearly all anthropogenic metal inputs. Complexation by dissolved organic matter and co-transport accounts for up to 80% of the Cu in surface waters. - CHUM-AM is applied to six differing moorland catchments to account for the accumulation and leaching of atmospherically-deposited trace metals over the past several centuries.

  19. Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England)

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E., E-mail: et@ceh.ac.u [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Rothwell, J.J. [Upland Environments Research Unit, School of Environment and Development, University of Manchester, Manchester M13 9PL (United Kingdom); Shotbolt, L. [Geography Department, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Lawlor, A.J. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2010-05-15

    Simulation modelling with CHUM-AM was carried out to investigate the accumulation and release of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in six moorland catchments, five with organic-rich soils, one with calcareous brown earths, in the Pennine chain of northern England. The model considers two soil layers and a third layer of weathering mineral matter, and operates on a yearly timestep, driven by deposition scenarios covering the period 1400-2010. The principal processes controlling heavy metals are competitive solid-solution partitioning of solutes, chemical interactions in solution, and chemical weathering. Agreement between observed and simulated soil metal pools and surface water concentrations for recent years was generally satisfactory, the results confirming that most contemporary soil metal is from atmospheric pollution. Metals in catchments with organic-rich soils show some mobility, especially under more acid conditions, but the calcareous mineral soils have retained nearly all anthropogenic metal inputs. Complexation by dissolved organic matter and co-transport accounts for up to 80% of the Cu in surface waters. - CHUM-AM is applied to six differing moorland catchments to account for the accumulation and leaching of atmospherically-deposited trace metals over the past several centuries.

  20. One-Step Synthesis of Cu–ZnO@C from a 1D Complex [Cu0.02Zn0.98(C8H3NO6(C12H8N2]n for Catalytic Hydroxylation of Benzene to Phenol

    Directory of Open Access Journals (Sweden)

    Guanghui Wang

    2018-05-01

    Full Text Available A novel one-dimensional bimetallic complex [Cu0.02Zn0.98(C8H3NO6(C12H8N2]n (“Complex” has been synthesized by a hydrothermal method. A Cu–ZnO@C composite was obtained by a one-step pyrolysis of Complex. Correlated with the characterization results, it is confirmed that both metallic Cu0 and ZnO nanoparticles were highly dispersed on/in the carbon substrate. This simple one-step pyrolysis method avoids the high-temperature pretreatment under H2 commonly required for preparation of such Cu–ZnO catalysts. The Cu–ZnO@C composite was tested with respect to its catalytic activities for the hydroxylation of benzene to phenol with H2O2. The results indicate that the benzene conversion, phenol yield, and phenol selectivity reached the maximum values (55.7%, 32%, and 57.5%, respectively at Complex carbonized at 600 °C, and were higher than those of the commercial mixed sample. Compared with the other candidate catalysts, the turnover frequency (TOF of our Cu–ZnO@C catalyst (117.9 mmol mol−1 s−1 can be ranked at the top. The higher catalytic activities should be due to the highly dispersed metallic Cu0 and ZnO particles as well as their synergistic interaction.

  1. Modeling Complex Chemical Systems: Problems and Solutions

    Science.gov (United States)

    van Dijk, Jan

    2016-09-01

    Non-equilibrium plasmas in complex gas mixtures are at the heart of numerous contemporary technologies. They typically contain dozens to hundreds of species, involved in hundreds to thousands of reactions. Chemists and physicists have always been interested in what are now called chemical reduction techniques (CRT's). The idea of such CRT's is that they reduce the number of species that need to be considered explicitly without compromising the validity of the model. This is usually achieved on the basis of an analysis of the reaction time scales of the system under study, which identifies species that are in partial equilibrium after a given time span. The first such CRT that has been widely used in plasma physics was developed in the 1960's and resulted in the concept of effective ionization and recombination rates. It was later generalized to systems in which multiple levels are effected by transport. In recent years there has been a renewed interest in tools for chemical reduction and reaction pathway analysis. An example of the latter is the PumpKin tool. Another trend is that techniques that have previously been developed in other fields of science are adapted as to be able to handle the plasma state of matter. Examples are the Intrinsic Low Dimension Manifold (ILDM) method and its derivatives, which originate from combustion engineering, and the general-purpose Principle Component Analysis (PCA) technique. In this contribution we will provide an overview of the most common reduction techniques, then critically assess the pros and cons of the methods that have gained most popularity in recent years. Examples will be provided for plasmas in argon and carbon dioxide.

  2. Modeling the Chemical Complexity in Titan's Atmosphere

    Science.gov (United States)

    Vuitton, Veronique; Yelle, Roger; Klippenstein, Stephen J.; Horst, Sarah; Lavvas, Panayotis

    2018-06-01

    Titan's atmospheric chemistry is extremely complicated because of the multiplicity of chemical as well as physical processes involved. Chemical processes begin with the dissociation and ionization of the most abundant species, N2 and CH4, by a variety of energy sources, i.e. solar UV and X-ray photons, suprathermal electrons (reactions involving radicals as well as positive and negative ions, all possibly in some excited electronic and vibrational state. Heterogeneous chemistry at the surface of the aerosols could also play a significant role. The efficiency and outcome of these reactions depends strongly on the physical characteristics of the atmosphere, namely pressure and temperature, ranging from 1.5×103 to 10-10 mbar and from 70 to 200 K, respectively. Moreover, the distribution of the species is affected by molecular diffusion and winds as well as escape from the top of the atmosphere and condensation in the lower stratosphere.Photochemical and microphysical models are the keystones of our understanding of Titan's atmospheric chemistry. Their main objective is to compute the distribution and nature of minor chemical species (typically containing up to 6 carbon atoms) and haze particles, respectively. Density profiles are compared to the available observations, allowing to identify important processes and to highlight those that remain to be constrained in the laboratory, experimentally and/or theoretically. We argue that positive ion chemistry is at the origin of complex organic molecules, such as benzene, ammonia and hydrogen isocyanide while neutral-neutral radiative association reactions are a significant source of alkanes. We find that negatively charged macromolecules (m/z ~100) attract the abundant positive ions, which ultimately leads to the formation of the aerosols. We also discuss the possibility that an incoming flux of oxygen from Enceladus, another Saturn's satellite, is responsible for the presence of oxygen-bearing species in Titan's reductive

  3. Modelling the complex dynamics of vegetation, livestock and rainfall ...

    African Journals Online (AJOL)

    Open Access DOWNLOAD FULL TEXT ... In this paper, we present mathematical models that incorporate ideas from complex systems theory to integrate several strands of rangeland theory in a hierarchical framework. ... Keywords: catastrophe theory; complexity theory; disequilibrium; hysteresis; moving attractors

  4. ZnS, CdS and HgS nanoparticles via alkyl-phenyl dithiocarbamate complexes as single source precursors.

    Science.gov (United States)

    Onwudiwe, Damian C; Ajibade, Peter A

    2011-01-01

    The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm), 2.91 eV (426 nm) and 4.27 eV (290 nm) for the ZnS, CdS and HgS samples respectively.

  5. ZnS, CdS and HgS Nanoparticles via Alkyl-Phenyl Dithiocarbamate Complexes as Single Source Precursors

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2011-08-01

    Full Text Available The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm, 2.91 eV (426 nm and 4.27 eV (290 nm for the ZnS, CdS and HgS samples respectively.

  6. Thermal Studies of Zn(II, Cd(II and Hg(II Complexes of Some N-Alkyl-N-Phenyl-Dithiocarbamates

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2012-07-01

    Full Text Available The thermal decomposition of Zn(II, Cd(II and Hg(II complexes of N-ethyl-N-phenyl and N-butyl-N-phenyl dithiocarbamates have been studied using thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The products of the decomposition, at two different temperatures, were further characterized by scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDX. The results show that while the zinc and cadmium complexes undergo decomposition to form metal sulphides, and further undergo oxidation forming metal oxides as final products, the mercury complexes gave unstable volatiles as the final product.

  7. Synthesis and Characterization of Some New Cu(II, Ni(II and Zn(II Complexes with Salicylidene Thiosemicarbazones: Antibacterial, Antifungal and in Vitro Antileukemia Activity

    Directory of Open Access Journals (Sweden)

    Tudor Rosu

    2013-07-01

    Full Text Available Thirty two new Cu(II, Ni(II and Zn(II complexes (1–32 with salicylidene thiosemicarbazones (H2L1–H2L10 were synthesized. Salicylidene thiosemicarbazones, of general formula (XN-NH-C(S-NH(Y, were prepared through the condensation reaction of 2-hydroxybenzaldehyde and its derivatives (X with thiosemicarbazide or 4-phenylthiosemicarbazide (Y = H, C6H5. The characterization of the new formed compounds was done by 1H-NMR, 13C-NMR, IR spectroscopy, elemental analysis, magnetochemical, thermoanalytical and molar conductance measurements. In addition, the structure of the complex 5 has been determined by X-ray diffraction method. All ligands and metal complexes were tested as inhibitors of human leukemia (HL-60 cells growth and antibacterial and antifungal activities.

  8. Dissolved and labile concentrations of Cd, Cu, Pb, and Zn in the South Fork Coeur d'Alene River, Idaho: Comparisons among chemical equilibrium models and implications for biotic ligand models

    Science.gov (United States)

    Balistrieri, L.S.; Blank, R.G.

    2008-01-01

    In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.

  9. Crystal Structure, Fluorescence Property and Theoretical Calculation of the Zn(II) Complex with o-Aminobenzoic Acid and 1,10-Phenanthroline

    International Nuclear Information System (INIS)

    Zhang, Zhongyu; Bi, Caifeng; Fan, Yuhua; Zhang, Xia; Zhang, Nan; Yan, Xingchen; Zuo, Jian

    2014-01-01

    A novel complex [Zn(phen)(o-AB) 2 ] [phen: 1,10-phenanthroline o-AB: o-aminobenzoic acid] was synthesized and characterized by elemental analysis and X-ray diffraction single-crystal analysis. The crystal crystallizes in monoclinic, space group P2(1)/c with a = 7.6397(6) A, b = 16.8761(18) A, c = 17.7713(19) A, α = 90 .deg., β = 98.9570(10) .deg., γ = 90 .deg., V = 2.2633(4) nm 3 , Z = 4, F(000) = 1064, S = 1.058, Dc = 1.520 g·cm -3 , R 1 = 0.0412, wR 2 = 0.0948, μ = 1.128 mm -1 . The Zn(II) is six coordinated by two nitrogen and four oxygen atoms from the 1,10-phenanthroline and o-aminobenzoic acid to furnish a distorted octahedron geometry. The complex exhibits intense fluorescence at room temperature. Theoretical studies of the title complex were carried out by density functional theory (DFT) B3LYP method. CCDC: 898291

  10. Generative complexity of Gray-Scott model

    Science.gov (United States)

    Adamatzky, Andrew

    2018-03-01

    In the Gray-Scott reaction-diffusion system one reactant is constantly fed in the system, another reactant is reproduced by consuming the supplied reactant and also converted to an inert product. The rate of feeding one reactant in the system and the rate of removing another reactant from the system determine configurations of concentration profiles: stripes, spots, waves. We calculate the generative complexity-a morphological complexity of concentration profiles grown from a point-wise perturbation of the medium-of the Gray-Scott system for a range of the feeding and removal rates. The morphological complexity is evaluated using Shannon entropy, Simpson diversity, approximation of Lempel-Ziv complexity, and expressivity (Shannon entropy divided by space-filling). We analyse behaviour of the systems with highest values of the generative morphological complexity and show that the Gray-Scott systems expressing highest levels of the complexity are composed of the wave-fragments (similar to wave-fragments in sub-excitable media) and travelling localisations (similar to quasi-dissipative solitons and gliders in Conway's Game of Life).

  11. Synthesis, molecular structure, biological properties and molecular docking studies on Mn(II), Co(II) and Zn(II) complexes containing bipyridine-azide ligands.

    Science.gov (United States)

    Thamilarasan, Vijayan; Jayamani, Arumugam; Sengottuvelan, Nallathambi

    2015-01-07

    Metal complexes of the type Mn(bpy)2(N3)2 (1), Co(bpy)2(N3)2·3H2O (2) and Zn2(bpy)2(N3)4 (3) (Where bpy = 2,2-bipyridine) have been synthesized and characterized by elemental analysis and spectral (FT-IR, UV-vis) studies. The structure of complexes (1-3) have been determined by single crystal X-ray diffraction studies and the configuration of ligand-coordinated metal(II) ion was well described as distorted octahedral coordination geometry for Mn(II), Co(II) and distorted square pyramidal geometry for Zn(II) complexes. DNA binding interaction of these complexes (1-3) were investigated by UV-vis absorption, fluorescence circular dichroism spectral and molecular docking studies. The intrinsic binding constants Kb of complexes 1, 2 and 3 with CT-DNA obtained from UV-vis absorption studies were 8.37 × 10(4), 2.23 × 10(5) and 5.52 × 10(4) M(-1) respectively. The results indicated that the three complexes are able to bind to DNA with different binding affinity, in the order 2 > 1 > 3. Complexes (1-3) exhibit a good binding propensity to bovine serum albumin (BSA) proteins having relatively high binding constant values. Gel electrophoresis assay demonstrated the ability of the complexes 1-3 promote the cleavage ability of the pBR322 plasmid DNA in the presence of the reducing agent 3-mercaptopropionic acid (MPA) but with different cleavage mechanisms: the complex 3 cleaves DNA via hydrolytic pathway (T4 DNA ligase assay), while the DNA cleavage by complexes 1 and 2 follows oxidative pathway. The chemical nuclease activity follows the order: 2 > 1 > 3. The effects of various activators were also investigated and the nuclease activity efficacy followed the order MPA > GSH > H2O2 > Asc. The cytotoxicity studies of complexes 1-3 were tested in vitro on breast cancer cell line (MCF-7) and they found to be active. Copyright © 2014. Published by Elsevier Masson SAS.

  12. MODEL ADSORPSI TIMBAL (PB DAN SENG (ZN DALAM SISTEM AIR-SEDIMEN DI WADUK RIAM KANAN KALIMANTAN SELATAN

    Directory of Open Access Journals (Sweden)

    Chatimatun Nisa

    2013-04-01

    Full Text Available Heavy metals are often considered as main contaminant in water pollution and its highly dangerous for living organisms in the contaminated area. The aim of this research is to predict the movement pattern of Pb and Zn metal ions from water onto sediment in the Riam Kanan Reservoir, Aranio Sub-district, Banjar District. In addition, this study is expected to give information on the initial condition of Riam Kanan reservoir; dynamics; and the fate of Pb and Zn ions from upstream to downstream. The samples were analysed using AAS (Atomic Absorption Spectrophotometer based on the Indonesian National Standard (SNI. Result of laboratory analysis showed that in the water, contents of metal Pb were 0.0494 ppm – 0.2582 ppm, Zn 0.0002 ppm – 0.0370 ppm. In the sediment, contents of Pb were 0.8311 mg/kg – 21.1756 mg/kg and Zn 3.3778 mg/kg – 28.3522 mg/kg. Based on the experimental data, it was found that the displacement of Pb and Zn onto sediment complies with Langmuir adsorption model where the determination coefficient (R2 were 0.8167 and 0.8801 respectively.

  13. A third kind growth model of tetrapod: Rod-based single crystal ZnO tetrapod nanostructure

    International Nuclear Information System (INIS)

    Gong, J.F.; Huang, H.B.; Wang, Z.Q.; Zhao, X.N.; Yang, S.G.; Yu Zhongzhen

    2008-01-01

    In this paper, rod-based ZnO tetrapods were successfully synthesized by burning Zn particles in air covered with two firebricks. The products show hexagonal wurtzite phase. The microstructures of the tetrapod were studied carefully by scanning electron microscope (SEM), transmission electron microscope (TEM), SAED and HRTEM. The results show that tetrapod has single crystalline phase with one broader nanorod growing along [0 0 0 1] direction, three triangular nanosheets, growing out of the three trisection planes along [101-bar0] direction, and three epitaxial nanowires, growing from each tip of the triangular nanosheets. Based on the experimental results, a rod-based growth model was proposed to interpret its growth mechanism. Room temperature photoluminescence spectrum reveals that the ZnO tetrapods have ultra violet (UV) emission band (389 nm) and a green emission band (517 nm)

  14. Experimental analysis and theoretical model for anomalously high ideality factors in ZnO/diamond p-n junction diode

    International Nuclear Information System (INIS)

    Wang Chengxin; Yang Guowei; Liu Hongwu; Han Yonghao; Luo Jifeng; Gao Chunxiao; Zou Guangtian

    2004-01-01

    High-quality heterojunctions between p-type diamond single-crystalline films and highly oriented n-type ZnO films were fabricated by depositing the p-type diamond single-crystal films on the I o -type diamond single crystal using a hot filament chemical vapor deposition, and later growing a highly oriented n-type ZnO film on the p-type diamond single-crystal film by magnetron sputtering. Interestingly, anomalously high ideality factors (n>>2.0) in the prepared ZnO/diamond p-n junction diode in the interim bias voltage range were measured. For this, detailed electronic characterizations of the fabricated p-n junction were conducted, and a theoretical model was proposed to clarify the much higher ideality factors of the special heterojunction diode

  15. Core/shell CdS/ZnS nanoparticles: Molecular modelling and characterization by photocatalytic decomposition of Methylene Blue

    Czech Academy of Sciences Publication Activity Database

    Praus, P.; Svoboda, L.; Tokarský, J.; Hospodková, Alice; Klemm, V.

    2014-01-01

    Roč. 292, Feb (2014), s. 813-822 ISSN 0169-4332 Institutional support: RVO:68378271 Keywords : core/shell nanoparticles * CdS/ZnS * molecular modelling * electron tunnelling * photocatalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.711, year: 2014

  16. Modeling Complex Workflow in Molecular Diagnostics

    Science.gov (United States)

    Gomah, Mohamed E.; Turley, James P.; Lu, Huimin; Jones, Dan

    2010-01-01

    One of the hurdles to achieving personalized medicine has been implementing the laboratory processes for performing and reporting complex molecular tests. The rapidly changing test rosters and complex analysis platforms in molecular diagnostics have meant that many clinical laboratories still use labor-intensive manual processing and testing without the level of automation seen in high-volume chemistry and hematology testing. We provide here a discussion of design requirements and the results of implementation of a suite of lab management tools that incorporate the many elements required for use of molecular diagnostics in personalized medicine, particularly in cancer. These applications provide the functionality required for sample accessioning and tracking, material generation, and testing that are particular to the evolving needs of individualized molecular diagnostics. On implementation, the applications described here resulted in improvements in the turn-around time for reporting of more complex molecular test sets, and significant changes in the workflow. Therefore, careful mapping of workflow can permit design of software applications that simplify even the complex demands of specialized molecular testing. By incorporating design features for order review, software tools can permit a more personalized approach to sample handling and test selection without compromising efficiency. PMID:20007844

  17. Complex systems modeling by cellular automata

    NARCIS (Netherlands)

    Kroc, J.; Sloot, P.M.A.; Rabuñal Dopico, J.R.; Dorado de la Calle, J.; Pazos Sierra, A.

    2009-01-01

    In recent years, the notion of complex systems proved to be a very useful concept to define, describe, and study various natural phenomena observed in a vast number of scientific disciplines. Examples of scientific disciplines that highly benefit from this concept range from physics, mathematics,

  18. Modeling pitch perception of complex tones

    NARCIS (Netherlands)

    Houtsma, A.J.M.

    1986-01-01

    When one listens to a series of harmonic complex tones that have no acoustic energy at their fundamental frequencies, one usually still hears a melody that corresponds to those missing fundamentals. Since it has become evident some two decades ago that neither Helmholtz's difference tone theory nor

  19. The electrostatic role of the Zn-Cys2His2 complex in binding of operator DNA with transcription factors: mouse EGR-1 from the Cys2His2 family.

    Science.gov (United States)

    Chirgadze, Y N; Boshkova, E A; Polozov, R V; Sivozhelezov, V S; Dzyabchenko, A V; Kuzminsky, M B; Stepanenko, V A; Ivanov, V V

    2018-01-07

    The mouse factor Zif268, known also as early growth response protein EGR-1, is a classical representative for the Cys2His2 transcription factor family. It is required for binding the RNA polymerase with operator dsDNA to initialize the transcription process. We have shown that only in this family of total six Zn-finger protein families the Zn complex plays a significant role in the protein-DNA binding. Electrostatic feature of this complex in the binding of factor Zif268 from Mus musculus with operator DNA has been considered. The factor consists of three similar Zn-finger units which bind with triplets of coding DNA. Essential contacts of the factor with the DNA phosphates are formed by three conservative His residues, one in each finger. We describe here the results of calculations of the electrostatic potentials for the Zn-Cys2His2 complex, Zn-finger unit 1, and the whole transcription factor. The potential of Zif268 has a positive area on the factor surface, and it corresponds exactly to the binding sites of each of Zn-finger units. The main part of these areas is determined by conservative His residues, which form contacts with the DNA phosphate groups. Our result shows that the electrostatic positive potential of this histidine residue is enhanced due to the Zn complex. The other contacts of the Zn-finger with DNA are related to nucleotide bases, and they are responsible for the sequence-specific binding with DNA. This result may be extended to all other members of the Cys2His2 transcription factor family.

  20. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model.

    Science.gov (United States)

    González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F

    2017-09-01

    The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between

  1. Phase structure and confinement properties of noncompact gauge theories: Z(N) Wilson loop and effective noncompact model

    International Nuclear Information System (INIS)

    Borisenko, O.A.; Petrov, V.K.; Zinovjev, G.M.; Bohacik, J.

    1997-01-01

    An approach to studying lattice gauge models in the weak-coupling region is proposed. Conceptually, this approach is based on the crucial role of original Z(N) symmetry and of the invariant gauge-group measure. As an example, an effective model from the compact Wilson formulation of SU(2) gauge theory is calculated in d=3 dimensions at zero temperature. The confining properties and the phase structure of the effective model are studied in detail

  2. Synthesis and characterization of new unsymmetrical Schiff base Zn (II) and Co (II) complexes and study of their interactions with bovin serum albumin and DNA by spectroscopic techniques

    Science.gov (United States)

    Sedighipoor, Maryam; Kianfar, Ali Hossein; Sabzalian, Mohammad R.; Abyar, Fatemeh

    2018-06-01

    Two novel tetra-coordinated Cobalt(II) and Zinc (II) chelate series with the general formula of [Co (L)·2H2O] (1) and [Zn (L)] (2) [L = N-2-hydroxyacetophenon-N‧-2-hydroxynaphthaldehyde-1,2 phenylenediimine)] with biologically active Schiff base ligands were synthesized and recognized by elemental analysis and multi-nuclear spectroscopy (IR and 1H and 13C NMR); then, their biological activities including DNA and protein interactions were studied. The interaction of the synthesized compounds with bovine serum albumin (BSA) was investigated via fluorescence spectroscopy, showing the affinity of the complexes for these proteins with relatively high binding constant values and the changed secondary BSA structure in the presence of the complexes. The interaction of these compounds with CT-DNA was considered by UV-Vis technique, emission titration, viscosity measurements, helix melting methods, and circular dichroism (CD) spectroscopy, confirming that the complexes were bound to CT-DNA by the intercalation binding mode. Furthermore, the complexes had the capability to displace the DNA-bound MB, as shown by the competitive studies of these complexes with methylene blue (MB), thereby suggesting the intercalation mode for the competition. Finally, the theoretical studies carried out by the docking method were performed to calculate the binding constants and recognize the binding site of the BSA and DNA by the complexes. In addition, in vitro and in silico studies showed that the compounds were degradable by bacterial and fungal biodegradation activities.

  3. Synthesis, characterization and biological studies of metal complexes of Co (II), Ni (II), Cu (II), Zn (II) with sulphadimidine-benzylidene

    International Nuclear Information System (INIS)

    Tahira, F.; Imran, M.; Iqbal, J.

    2009-01-01

    Some novel complexes of Co (II), Ni (II), Cu (II), and Zn (II) have been synthesized with a Schiff base ligand derived from sulphadimidine and benzaldehyde. The structural features of the complexes have been determined by elemental analysis, magnetic susceptibility, conductance measurement, UV/ Vis. and infrared spectroscopy. IR studies revealed that the Schiff base ligand Sulphadimidine-benzylidene has monoanionic bidendate nature and coordinate with metal ions through nitrogen atom of azomethine (>C = N) and deprotonated -NH group. All the complexes were assigned octahedral geometry on the basis of magnetic moment and electronic spectroscopic data. Low value of conductance supports their non-electrolytic nature. The ligand, as well as its complexes were checked for their in vitro antimicrobial activities against two gram positive bacterial strains, Bacillus subtillus. Staphylococcus aureus and one gram negative Salmonella typhae and five fungal strains, Nigrospora oryzae, Curvularia lunata, Drechslera rostrata, Aspergillus niger and Candida olbicans by disc diffusion method and agar plate technique, respectively. Both the antibacterial and antitungal activities of the synthesized metal complexes were found to be more as compared to parent drug and uncomplexed ligand. All the complexes contain coordinated water, which is lost at 141-160 degree C. (author)

  4. The utility of Earth system Models of Intermediate Complexity

    NARCIS (Netherlands)

    Weber, S.L.

    2010-01-01

    Intermediate-complexity models are models which describe the dynamics of the atmosphere and/or ocean in less detail than conventional General Circulation Models (GCMs). At the same time, they go beyond the approach taken by atmospheric Energy Balance Models (EBMs) or ocean box models by

  5. Advances in dynamic network modeling in complex transportation systems

    CERN Document Server

    Ukkusuri, Satish V

    2013-01-01

    This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.

  6. Narrowing the gap between network models and real complex systems

    OpenAIRE

    Viamontes Esquivel, Alcides

    2014-01-01

    Simple network models that focus only on graph topology or, at best, basic interactions are often insufficient to capture all the aspects of a dynamic complex system. In this thesis, I explore those limitations, and some concrete methods of resolving them. I argue that, in order to succeed at interpreting and influencing complex systems, we need to take into account  slightly more complex parts, interactions and information flows in our models.This thesis supports that affirmation with five a...

  7. A macrocyclic ligand as receptor and Zn(II)-complex receptor for anions in water: binding properties and crystal structures.

    Science.gov (United States)

    Ambrosi, Gianluca; Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Macedi, Eleonora; Micheloni, Mauro; Paoli, Paola; Pontellini, Roberto; Rossi, Patrizia

    2011-02-01

    Binding properties of 24,29-dimethyl-6,7,15,16-tetraoxotetracyclo[19.5.5.0(5,8).0(14,17)]-1,4,9,13,18,21,24,29-octaazaenatriaconta-Δ(5,8),Δ(14,17)-diene ligand L towards Zn(II) and anions, such as the halide series and inorganic oxoanions (phosphate (Pi), sulfate, pyrophosphate (PPi), and others), were investigated in aqueous solution; in addition, the Zn(II)/L system was tested as a metal-ion-based receptor for the halide series. Ligand L is a cryptand receptor incorporating two squaramide functions in an over-structured chain that connects two opposite nitrogen atoms of the Me(2)[12]aneN(4) polyaza macrocyclic base. It binds Zn(II) to form mononuclear species in which the metal ion, coordinated by the Me(2)[12]aneN(4) moiety, lodges inside the three-dimensional cavity. Zn(II)-containing species are able to bind chloride and fluoride at the physiologically important pH value of 7.4; the anion is coordinated to the metal center but the squaramide units play the key role in stabilizing the anion through a hydrogen-bonding network; two crystal structures reported here clearly show this aspect. Free L is able to bind fluoride, chloride, bromide, sulfate, Pi, and PPi in aqueous solution. The halides are bound at acidic pH, whereas the oxoanions are bound in a wide range of pH values ranging from acidic to basic. The cryptand cavity, abundant in hydrogen-bonding sites at all pH values, allows excellent selectivity towards Pi to be achieved mainly at physiological pH 7.4. By joining amine and squaramide moieties and using this preorganized topology, it was possible, with preservation of the solubility of the receptor, to achieve a very wide pH range in which oxoanions can be bound. The good selectivity towards Pi allows its discrimination in a manner not easily obtainable with nonmetallic systems in aqueous environment. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Uncertainty and Complexity in Mathematical Modeling

    Science.gov (United States)

    Cannon, Susan O.; Sanders, Mark

    2017-01-01

    Modeling is an effective tool to help students access mathematical concepts. Finding a math teacher who has not drawn a fraction bar or pie chart on the board would be difficult, as would finding students who have not been asked to draw models and represent numbers in different ways. In this article, the authors will discuss: (1) the properties of…

  9. Information, complexity and efficiency: The automobile model

    Energy Technology Data Exchange (ETDEWEB)

    Allenby, B. [Lucent Technologies (United States)]|[Lawrence Livermore National Lab., CA (United States)

    1996-08-08

    The new, rapidly evolving field of industrial ecology - the objective, multidisciplinary study of industrial and economic systems and their linkages with fundamental natural systems - provides strong ground for believing that a more environmentally and economically efficient economy will be more information intensive and complex. Information and intellectual capital will be substituted for the more traditional inputs of materials and energy in producing a desirable, yet sustainable, quality of life. While at this point this remains a strong hypothesis, the evolution of the automobile industry can be used to illustrate how such substitution may, in fact, already be occurring in an environmentally and economically critical sector.

  10. Modeling Power Systems as Complex Adaptive Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  11. Linking Complexity and Sustainability Theories: Implications for Modeling Sustainability Transitions

    Directory of Open Access Journals (Sweden)

    Camaren Peter

    2014-03-01

    Full Text Available In this paper, we deploy a complexity theory as the foundation for integration of different theoretical approaches to sustainability and develop a rationale for a complexity-based framework for modeling transitions to sustainability. We propose a framework based on a comparison of complex systems’ properties that characterize the different theories that deal with transitions to sustainability. We argue that adopting a complexity theory based approach for modeling transitions requires going beyond deterministic frameworks; by adopting a probabilistic, integrative, inclusive and adaptive approach that can support transitions. We also illustrate how this complexity-based modeling framework can be implemented; i.e., how it can be used to select modeling techniques that address particular properties of complex systems that we need to understand in order to model transitions to sustainability. In doing so, we establish a complexity-based approach towards modeling sustainability transitions that caters for the broad range of complex systems’ properties that are required to model transitions to sustainability.

  12. Variational discussion of the Hamiltonian Z(N) spin model in 1+1 and 2+1 dimensions

    International Nuclear Information System (INIS)

    Jengo, R.; Masperi, L.; Omero, C.

    1982-01-01

    We study the Z(N) spin model, as well as its limiting forms for N → infinity by means of a variational approach. We find, for 1 + 1 dimensions, the two transitions of the model separating the disordered, massless and ordered phases. In the case of 2 + 1 dimensions, we obtain only the disorder-order phase transition which implies for N → infinity single confining phase for the dual U(1) gauge theory. (orig.)

  13. Mathematical modeling and optimization of complex structures

    CERN Document Server

    Repin, Sergey; Tuovinen, Tero

    2016-01-01

    This volume contains selected papers in three closely related areas: mathematical modeling in mechanics, numerical analysis, and optimization methods. The papers are based upon talks presented  on the International Conference for Mathematical Modeling and Optimization in Mechanics, held in Jyväskylä, Finland, March 6-7, 2014 dedicated to Prof. N. Banichuk on the occasion of his 70th birthday. The articles are written by well-known scientists working in computational mechanics and in optimization of complicated technical models. Also, the volume contains papers discussing the historical development, the state of the art, new ideas, and open problems arising in  modern continuum mechanics and applied optimization problems. Several papers are concerned with mathematical problems in numerical analysis, which are also closely related to important mechanical models. The main topics treated include:  * Computer simulation methods in mechanics, physics, and biology;  * Variational problems and methods; minimiz...

  14. Hierarchical Models of the Nearshore Complex System

    National Research Council Canada - National Science Library

    Werner, Brad

    2004-01-01

    .... This grant was termination funding for the Werner group, specifically aimed at finishing up and publishing research related to synoptic imaging of near shore bathymetry, testing models for beach cusp...

  15. Complex models of nodal nuclear data

    International Nuclear Information System (INIS)

    Dufek, Jan

    2011-01-01

    During the core simulations, nuclear data are required at various nodal thermal-hydraulic and fuel burnup conditions. The nodal data are also partially affected by thermal-hydraulic and fuel burnup conditions in surrounding nodes as these change the neutron energy spectrum in the node. Therefore, the nodal data are functions of many parameters (state variables), and the more state variables are considered by the nodal data models the more accurate and flexible the models get. The existing table and polynomial regression models, however, cannot reflect the data dependences on many state variables. As for the table models, the number of mesh points (and necessary lattice calculations) grows exponentially with the number of variables. As for the polynomial regression models, the number of possible multivariate polynomials exceeds the limits of existing selection algorithms that should identify a few dozens of the most important polynomials. Also, the standard scheme of lattice calculations is not convenient for modelling the data dependences on various burnup conditions since it performs only a single or few burnup calculations at fixed nominal conditions. We suggest a new efficient algorithm for selecting the most important multivariate polynomials for the polynomial regression models so that dependences on many state variables can be considered. We also present a new scheme for lattice calculations where a large number of burnup histories are accomplished at varied nodal conditions. The number of lattice calculations being performed and the number of polynomials being analysed are controlled and minimised while building the nodal data models of a required accuracy. (author)

  16. A density model based on the Modified Quasichemical Model and applied to the (NaCl + KCl + ZnCl2) liquid

    International Nuclear Information System (INIS)

    Ouzilleau, Philippe; Robelin, Christian; Chartrand, Patrice

    2012-01-01

    Highlights: ► A model for the density of multicomponent inorganic liquids. ► The density model is based on the Modified Quasichemical Model. ► Application to the (NaCl + KCl + ZnCl 2 ) ternary liquid. ► A Kohler–Toop-like asymmetric interpolation method was used. - Abstract: A theoretical model for the density of multicomponent inorganic liquids based on the Modified Quasichemical Model has been presented previously. By introducing in the Gibbs free energy of the liquid phase temperature-dependent molar volume expressions for the pure components and pressure-dependent excess parameters for the binary (and sometimes higher-order) interactions, it is possible to reproduce, and eventually predict, the molar volume and the density of the multicomponent liquid phase using standard interpolation methods. In the present article, this density model is applied to the (NaCl + KCl + ZnCl 2 ) ternary liquid and a Kohler–Toop-like asymmetric interpolation method is used. All available density data for the (NaCl + KCl + ZnCl 2 ) liquid were collected and critically evaluated, and optimized pressure-dependent model parameters have been found. This new volumetric model can be used with Gibbs free energy minimization software, to calculate the molar volume and the density of (NaCl + KCl + ZnCl 2 ) ternary melts.

  17. Integrated Modeling of Complex Optomechanical Systems

    Science.gov (United States)

    Andersen, Torben; Enmark, Anita

    2011-09-01

    Mathematical modeling and performance simulation are playing an increasing role in large, high-technology projects. There are two reasons; first, projects are now larger than they were before, and the high cost calls for detailed performance prediction before construction. Second, in particular for space-related designs, it is often difficult to test systems under realistic conditions beforehand, and mathematical modeling is then needed to verify in advance that a system will work as planned. Computers have become much more powerful, permitting calculations that were not possible before. At the same time mathematical tools have been further developed and found acceptance in the community. Particular progress has been made in the fields of structural mechanics, optics and control engineering, where new methods have gained importance over the last few decades. Also, methods for combining optical, structural and control system models into global models have found widespread use. Such combined models are usually called integrated models and were the subject of this symposium. The objective was to bring together people working in the fields of groundbased optical telescopes, ground-based radio telescopes, and space telescopes. We succeeded in doing so and had 39 interesting presentations and many fruitful discussions during coffee and lunch breaks and social arrangements. We are grateful that so many top ranked specialists found their way to Kiruna and we believe that these proceedings will prove valuable during much future work.

  18. Dilution-triggered SMM behavior under zero field in a luminescent Zn2Dy2 tetranuclear complex incorporating carbonato-bridging ligands derived from atmospheric CO2 fixation.

    Science.gov (United States)

    Titos-Padilla, Silvia; Ruiz, José; Herrera, Juan Manuel; Brechin, Euan K; Wersndorfer, Wolfgang; Lloret, Francesc; Colacio, Enrique

    2013-08-19

    The synthesis, structure, magnetic, and luminescence properties of the Zn2Dy2 tetranuclear complex of formula {(μ3-CO3)2[Zn(μ-L)Dy(NO3)]2}·4CH3OH (1), where H2L is the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine, are reported. The carbonate anions that bridge two Zn(μ-L)Dy units come from the atmospheric CO2 fixation in a basic medium. Fast quantum tunneling relaxation of the magnetization (QTM) is very effective in this compound, so that single-molecule magnet (SMM) behavior is only observed in the presence of an applied dc field of 1000 Oe, which is able to partly suppress the QTM relaxation process. At variance, a 1:10 Dy:Y magnetic diluted sample, namely, 1', exhibits SMM behavior at zero applied direct-current (dc) field with about 3 times higher thermal energy barrier than that in 1 (U(eff) = 68 K), thus demonstrating the important role of intermolecular dipolar interactions in favoring the fast QTM relaxation process. When a dc field of 1000 Oe is applied to 1', the QTM is almost fully suppressed, the reversal of the magnetization slightly slows, and U(eff) increases to 78 K. The dilution results combined with micro-SQUID magnetization measurements clearly indicate that the SMM behavior comes from single-ion relaxation of the Dy(3+) ions. Analysis of the relaxation data points out that a Raman relaxation process could significantly affect the Orbach relaxation process, reducing the thermal energy barrier U(eff) for slow relaxation of the magnetization.

  19. Smart modeling and simulation for complex systems practice and theory

    CERN Document Server

    Ren, Fenghui; Zhang, Minjie; Ito, Takayuki; Tang, Xijin

    2015-01-01

    This book aims to provide a description of these new Artificial Intelligence technologies and approaches to the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field such as the platforms and/or the software tools for smart modeling and simulating complex systems. These tasks are difficult to accomplish using traditional computational approaches due to the complex relationships of components and distributed features of resources, as well as the dynamic work environments. In order to effectively model the complex systems, intelligent technologies such as multi-agent systems and smart grids are employed to model and simulate the complex systems in the areas of ecosystem, social and economic organization, web-based grid service, transportation systems, power systems and evacuation systems.

  20. The sigma model on complex projective superspaces

    Energy Technology Data Exchange (ETDEWEB)

    Candu, Constantin; Mitev, Vladimir; Schomerus, Volker [DESY, Hamburg (Germany). Theory Group; Quella, Thomas [Amsterdam Univ. (Netherlands). Inst. for Theoretical Physics; Saleur, Hubert [CEA Saclay, 91 - Gif-sur-Yvette (France). Inst. de Physique Theorique; USC, Los Angeles, CA (United States). Physics Dept.

    2009-08-15

    The sigma model on projective superspaces CP{sup S-1} {sup vertical} {sup stroke} {sup S} gives rise to a continuous family of interacting 2D conformal field theories which are parametrized by the curvature radius R and the theta angle {theta}. Our main goal is to determine the spectrum of the model, non-perturbatively as a function of both parameters. We succeed to do so for all open boundary conditions preserving the full global symmetry of the model. In string theory parlor, these correspond to volume filling branes that are equipped with a monopole line bundle and connection. The paper consists of two parts. In the first part, we approach the problem within the continuum formulation. Combining combinatorial arguments with perturbative studies and some simple free field calculations, we determine a closed formula for the partition function of the theory. This is then tested numerically in the second part. There we propose a spin chain regularization of the CP{sup S-1} {sup vertical} {sup stroke} {sup S} model with open boundary conditions and use it to determine the spectrum at the conformal fixed point. The numerical results are in remarkable agreement with the continuum analysis. (orig.)

  1. The sigma model on complex projective superspaces

    International Nuclear Information System (INIS)

    Candu, Constantin; Mitev, Vladimir; Schomerus, Volker; Quella, Thomas; Saleur, Hubert; USC, Los Angeles, CA

    2009-08-01

    The sigma model on projective superspaces CP S-1 vertical stroke S gives rise to a continuous family of interacting 2D conformal field theories which are parametrized by the curvature radius R and the theta angle θ. Our main goal is to determine the spectrum of the model, non-perturbatively as a function of both parameters. We succeed to do so for all open boundary conditions preserving the full global symmetry of the model. In string theory parlor, these correspond to volume filling branes that are equipped with a monopole line bundle and connection. The paper consists of two parts. In the first part, we approach the problem within the continuum formulation. Combining combinatorial arguments with perturbative studies and some simple free field calculations, we determine a closed formula for the partition function of the theory. This is then tested numerically in the second part. There we propose a spin chain regularization of the CP S-1 vertical stroke S model with open boundary conditions and use it to determine the spectrum at the conformal fixed point. The numerical results are in remarkable agreement with the continuum analysis. (orig.)

  2. A complex autoregressive model and application to monthly temperature forecasts

    Directory of Open Access Journals (Sweden)

    X. Gu

    2005-11-01

    Full Text Available A complex autoregressive model was established based on the mathematic derivation of the least squares for the complex number domain which is referred to as the complex least squares. The model is different from the conventional way that the real number and the imaginary number are separately calculated. An application of this new model shows a better forecast than forecasts from other conventional statistical models, in predicting monthly temperature anomalies in July at 160 meteorological stations in mainland China. The conventional statistical models include an autoregressive model, where the real number and the imaginary number are separately disposed, an autoregressive model in the real number domain, and a persistence-forecast model.

  3. Understanding complex urban systems integrating multidisciplinary data in urban models

    CERN Document Server

    Gebetsroither-Geringer, Ernst; Atun, Funda; Werner, Liss

    2016-01-01

    This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Age...

  4. Coordination-organometallic hybrid materials based on the trinuclear M(II)-Ru(II) (M=Ni and Zn) complexes: Synthesis, structural characterization, luminescence and electrochemical properties

    Science.gov (United States)

    Pawal, S. B.; Lolage, S. R.; Chavan, S. S.

    2018-02-01

    A new series of trinuclear complexes of the type Ni[R-C6H4Ndbnd CH(O)C6H3Ctbnd CRu(dppe)2Cl]2 (1a-c) and Zn[Rsbnd C6H4Ndbnd CH(O)C6H3Ctbnd CRu(dppe)2Cl]2 (2a-c) have been prepared from the reaction of trans-[RuCl(dppe)2Ctbnd Csbnd C6H3(OH)(CHO)] (1) with aniline, 4-nitroaniline and 4-methoxyaniline (R1-3) in presence of nickel acetate and zinc acetate in CH2Cl2/MeOH (1:1) mixture. The structural properties of the complexes have been characterized by elemental analyses and spectroscopic techniques viz. FTIR, UV-Visible, 1H NMR and 31P NMR spectral studies. The crystal structure and morphology of the hybrid complexes was investigated with the help of X-ray powder diffraction (XRPD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The thermal properties of 1a-c and 2a-c were studied by thermogravimetric (TG) analysis. The electrochemical behaviour of the complexes reveals that all complexes displayed a quasireversible redox behaviour corresponding to Ru(II)/Ru(III) and Ni(II)/Ni(III) couples for 1a-c and only Ru(II)/Ru(III) couple for 2a-c. All complexes are emissive in solution at room temperature revealing the influence of substituents and solvent polarity on emission properties of the complexes.

  5. Obtaining strong ferromagnetism in diluted Gd-doped ZnO thin films through controlled Gd-defect complexes

    KAUST Repository

    Roqan, Iman S.

    2015-02-21

    We demonstrate the fabrication of reproducible long-range ferromagnetism (FM) in highly crystalline GdxZn1-xO thin films by controlling the defects. Films are grown on lattice-matched substrates by pulsed laser deposition at low oxygen pressures (≤25 mTorr) and low Gd concentrations (x ≤ 0.009). These films feature strong FM (10 μB per Gd atom) at room temperature. While films deposited at higher oxygen pressure do not exhibit FM, FM is recovered by post-annealing these films under vacuum. These findings reveal the contribution of oxygen deficiency defects to the long-range FM. We demonstrate the possible FM mechanisms, which are confirmed by density functional theory study, and show that Gd dopants are essential for establishing FM that is induced by intrinsic defects in these films.

  6. Obtaining strong ferromagnetism in diluted Gd-doped ZnO thin films through controlled Gd-defect complexes

    KAUST Repository

    Roqan, Iman S.; Venkatesh, S.; Zhang, Z.; Hussain, S.; Bantounas, Ioannis; Franklin, J. B.; Flemban, Tahani H.; Zou, B.; Lee, J.-S.; Schwingenschlö gl, Udo; Petrov, P. K.; Ryan, M. P.; Alford, N. M.

    2015-01-01

    We demonstrate the fabrication of reproducible long-range ferromagnetism (FM) in highly crystalline GdxZn1-xO thin films by controlling the defects. Films are grown on lattice-matched substrates by pulsed laser deposition at low oxygen pressures (≤25 mTorr) and low Gd concentrations (x ≤ 0.009). These films feature strong FM (10 μB per Gd atom) at room temperature. While films deposited at higher oxygen pressure do not exhibit FM, FM is recovered by post-annealing these films under vacuum. These findings reveal the contribution of oxygen deficiency defects to the long-range FM. We demonstrate the possible FM mechanisms, which are confirmed by density functional theory study, and show that Gd dopants are essential for establishing FM that is induced by intrinsic defects in these films.

  7. Fluid flow modeling in complex areas*, **

    Directory of Open Access Journals (Sweden)

    Poullet Pascal

    2012-04-01

    Full Text Available We show first results of 3D simulation of sea currents in a realistic context. We use the full Navier–Stokes equations for incompressible viscous fluid. The problem is solved using a second order incremental projection method associated with the finite volume of the staggered (MAC scheme for the spatial discretization. After validation on classical cases, it is used in a numerical simulation of the Pointe à Pitre harbour area. The use of the fictious domain method permits us to take into account the complexity of bathymetric data and allows us to work with regular meshes and thus preserves the efficiency essential for a 3D code. Dans cette étude, nous présentons les premiers résultats de simulation d’un écoulement d’un fluide incompressible visqueux dans un contexte environnemental réel. L’approche utilisée utilise une méthode de domaines fictifs pour une prise en compte d’un domaine physique tridimensionnel très irrégulier. Le schéma numérique combine un schéma de projection incrémentale et des volumes finis utilisant des volumes de contrôle adaptés à un maillage décalé. Les tests de validation sont menés pour les cas tests de la cavité double entraînée ainsi que l’écoulement dans un canal avec un obstacle placé de manière asymmétrique.

  8. Non-bonding interactions and non-covalent delocalization effects play a critical role in the relative stability of group 12 complexes arising from interaction of diethanoldithiocarbamate with the cations of transition metals Zn(II), Cd(II), and Hg(II): a theoretical study.

    Science.gov (United States)

    Bahrami, Homayoon; Farhadi, Saeed; Siadatnasab, Firouzeh

    2016-07-01

    The chelating properties of diethanoldithiocarbamate (DEDC) and π-electron flow from the nitrogen atom to the sulfur atom via a plane-delocalized π-orbital system (quasi ring) was studied using a density functional theory method. The molecular structure of DEDC and its complexes with Zn(II), Cd(II), and Hg(II) were also considered. First, the geometries of this ligand and DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) were optimized, and the formation energies of these complexes were then calculated based on the electronic energy, or sum of electronic energies, with the zero point energy of each species. Formation energies indicated the DEDC-Zn(II) complex as the most stable complex, and DEDC-Cd(II) as the least stable. Structural data showed that the N1-C2 π-bond was localized in the complexes rather than the ligand, and a delocalized π-bond over S7-C2-S8 was also present. The stability of DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) complexes increased in the presence of the non-specific effects of the solvent (PCM model), and their relative stability did not change. There was π-electron flow or resonance along N1-C2-S7 and along S7-C2-S8 in the ligand. The π-electron flow or resonance along N1-C2-S7 was abolished when the metal interacted with sulfur atoms. Energy belonging to van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand was calculated for each complex. The results of nucleus-independent chemical shift (NICS) indicated a decreasing trend as Zn(II) Hg(II) for the aromaticity of the quasi-rings. Finally, by ignoring van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand, the relative stability of the complexes was changed as follows:[Formula: see text] Graphical Abstract Huge electronic cloud localized on Hg(II) in the Hg(II)-DEDC complex.

  9. Cumulative complexity: a functional, patient-centered model of patient complexity can improve research and practice.

    Science.gov (United States)

    Shippee, Nathan D; Shah, Nilay D; May, Carl R; Mair, Frances S; Montori, Victor M

    2012-10-01

    To design a functional, patient-centered model of patient complexity with practical applicability to analytic design and clinical practice. Existing literature on patient complexity has mainly identified its components descriptively and in isolation, lacking clarity as to their combined functions in disrupting care or to how complexity changes over time. The authors developed a cumulative complexity model, which integrates existing literature and emphasizes how clinical and social factors accumulate and interact to complicate patient care. A narrative literature review is used to explicate the model. The model emphasizes a core, patient-level mechanism whereby complicating factors impact care and outcomes: the balance between patient workload of demands and patient capacity to address demands. Workload encompasses the demands on the patient's time and energy, including demands of treatment, self-care, and life in general. Capacity concerns ability to handle work (e.g., functional morbidity, financial/social resources, literacy). Workload-capacity imbalances comprise the mechanism driving patient complexity. Treatment and illness burdens serve as feedback loops, linking negative outcomes to further imbalances, such that complexity may accumulate over time. With its components largely supported by existing literature, the model has implications for analytic design, clinical epidemiology, and clinical practice. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models

    Science.gov (United States)

    Anders, Catherine B.; Chess, Jordan J.; Wingett, Denise G.; Punnoose, Alex

    2015-11-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate

  11. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models.

    Science.gov (United States)

    Anders, Catherine B; Chess, Jordan J; Wingett, Denise G; Punnoose, Alex

    2015-12-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate

  12. Passengers, Crowding and Complexity : Models for passenger oriented public transport

    NARCIS (Netherlands)

    P.C. Bouman (Paul)

    2017-01-01

    markdownabstractPassengers, Crowding and Complexity was written as part of the Complexity in Public Transport (ComPuTr) project funded by the Netherlands Organisation for Scientific Research (NWO). This thesis studies in three parts how microscopic data can be used in models that have the potential

  13. Stability of Rotor Systems: A Complex Modelling Approach

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob

    1996-01-01

    A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared...

  14. Complex versus simple models: ion-channel cardiac toxicity prediction.

    Science.gov (United States)

    Mistry, Hitesh B

    2018-01-01

    There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model B net was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the B net model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.

  15. Complex versus simple models: ion-channel cardiac toxicity prediction

    Directory of Open Access Journals (Sweden)

    Hitesh B. Mistry

    2018-02-01

    Full Text Available There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model Bnet was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the Bnet model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.

  16. Finite element modelling of the mechanics of discrete carbon nanotubes filled with ZnS and comparison with experimental observations

    KAUST Repository

    Monteiro, André O.; Da Costa, Pedro M. F. J.; Cachim, Paulo Barreto

    2013-01-01

    The mechanical response to a uniaxial compressive force of a single carbon nanotube (CNT) filled (or partially-filled) with ZnS has been modelled. A semi-empirical approach based on the finite element method was used whereby modelling outcomes were closely matched to experimental observations. This is the first example of the use of the continuum approach to model the mechanical behaviour of discrete filled CNTs. In contrast to more computationally demanding methods such as density functional theory or molecular dynamics, our approach provides a viable and expedite alternative to model the mechanics of filled multi-walled CNTs. © 2013 Springer Science+Business Media New York.

  17. Finite element modelling of the mechanics of discrete carbon nanotubes filled with ZnS and comparison with experimental observations

    KAUST Repository

    Monteiro, André O.

    2013-09-25

    The mechanical response to a uniaxial compressive force of a single carbon nanotube (CNT) filled (or partially-filled) with ZnS has been modelled. A semi-empirical approach based on the finite element method was used whereby modelling outcomes were closely matched to experimental observations. This is the first example of the use of the continuum approach to model the mechanical behaviour of discrete filled CNTs. In contrast to more computationally demanding methods such as density functional theory or molecular dynamics, our approach provides a viable and expedite alternative to model the mechanics of filled multi-walled CNTs. © 2013 Springer Science+Business Media New York.

  18. Experimental Parametric Model for Indirect Adhesion Wear Measurement in the Dry Turning of UNS A97075 (Al-Zn Alloy

    Directory of Open Access Journals (Sweden)

    Francisco Javier Trujillo

    2017-02-01

    Full Text Available In this work, the study of the influence of cutting parameters (cutting speed, feed, and depth of cut on the tool wear used in in the dry turning of cylindrical bars of the UNS A97075 (Al-Zn alloy, has been analyzed. In addition, a study of the physicochemical mechanisms of the secondary adhesion wear has been carried out. The behavior of this alloy, from the point of view of tool wear, has been compared to similar aeronautical aluminum alloys, such as the UNS A92024 (Al-Cu alloy and UNS A97050 (Al-Zn alloy. Furthermore, a first approach to the measurement of the 2D surface of the adhered material on the rake face of the tool has been conducted. Finally, a parametric model has been developed from the experimental results. This model allows predicting the intensity of the secondary adhesion wear as a function of the cutting parameters applied.

  19. Modeling Air-Quality in Complex Terrain Using Mesoscale and ...

    African Journals Online (AJOL)

    Air-quality in a complex terrain (Colorado-River-Valley/Grand-Canyon Area, Southwest U.S.) is modeled using a higher-order closure mesoscale model and a higher-order closure dispersion model. Non-reactive tracers have been released in the Colorado-River valley, during winter and summer 1992, to study the ...

  20. Surface-complexation models for sorption onto heterogeneous surfaces

    International Nuclear Information System (INIS)

    Harvey, K.B.

    1997-10-01

    This report provides a description of the discrete-logK spectrum model, together with a description of its derivation, and of its place in the larger context of surface-complexation modelling. The tools necessary to apply the discrete-logK spectrum model are discussed, and background information appropriate to this discussion is supplied as appendices. (author)

  1. On spin and matrix models in the complex plane

    International Nuclear Information System (INIS)

    Damgaard, P.H.; Heller, U.M.

    1993-01-01

    We describe various aspects of statistical mechanics defined in the complex temperature or coupling-constant plane. Using exactly solvable models, we analyse such aspects as renormalization group flows in the complex plane, the distribution of partition function zeros, and the question of new coupling-constant symmetries of complex-plane spin models. The double-scaling form of matrix models is shown to be exactly equivalent to finite-size scaling of two-dimensional spin systems. This is used to show that the string susceptibility exponents derived from matrix models can be obtained numerically with very high accuracy from the scaling of finite-N partition function zeros in the complex plane. (orig.)

  2. A Framework for Modeling and Analyzing Complex Distributed Systems

    National Research Council Canada - National Science Library

    Lynch, Nancy A; Shvartsman, Alex Allister

    2005-01-01

    Report developed under STTR contract for topic AF04-T023. This Phase I project developed a modeling language and laid a foundation for computational support tools for specifying, analyzing, and verifying complex distributed system designs...

  3. Modelling the self-organization and collapse of complex networks

    Indian Academy of Sciences (India)

    Modelling the self-organization and collapse of complex networks. Sanjay Jain Department of Physics and Astrophysics, University of Delhi Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore Santa Fe Institute, Santa Fe, New Mexico.

  4. Transformation of technogenic compounds of Ni, Cu, Zn and Pb in different soil types in model experiment

    International Nuclear Information System (INIS)

    Ladonin, D.V.; Smirnova, M.S.; Karpukhin, M.M.; Plyaskina, O.V.

    2008-01-01

    In model experiment fractional distribution of Ni, Cu, Zn and Pb in soils artificially polluted with readily and sparingly soluble compounds (nitrates and oxides respectively) of these heavy metals was investigated. It is shown that heavy metals fractional distribution may strongly vary depending on the form in which the metal deposits in the soil. Transformation of heavy metals oxides is controlled by two main factors: solubility of an oxide and characteristics of reactions between dissolution products and the soil components

  5. Size and complexity in model financial systems

    Science.gov (United States)

    Arinaminpathy, Nimalan; Kapadia, Sujit; May, Robert M.

    2012-01-01

    The global financial crisis has precipitated an increasing appreciation of the need for a systemic perspective toward financial stability. For example: What role do large banks play in systemic risk? How should capital adequacy standards recognize this role? How is stability shaped by concentration and diversification in the financial system? We explore these questions using a deliberately simplified, dynamic model of a banking system that combines three different channels for direct transmission of contagion from one bank to another: liquidity hoarding, asset price contagion, and the propagation of defaults via counterparty credit risk. Importantly, we also introduce a mechanism for capturing how swings in “confidence” in the system may contribute to instability. Our results highlight that the importance of relatively large, well-connected banks in system stability scales more than proportionately with their size: the impact of their collapse arises not only from their connectivity, but also from their effect on confidence in the system. Imposing tougher capital requirements on larger banks than smaller ones can thus enhance the resilience of the system. Moreover, these effects are more pronounced in more concentrated systems, and continue to apply, even when allowing for potential diversification benefits that may be realized by larger banks. We discuss some tentative implications for policy, as well as conceptual analogies in ecosystem stability and in the control of infectious diseases. PMID:23091020

  6. Algebraic computability and enumeration models recursion theory and descriptive complexity

    CERN Document Server

    Nourani, Cyrus F

    2016-01-01

    This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples for languages. Functorial models for Peano arithmetic are described toward important computational complexity areas on a Hilbert program, leading to computability with initial models. Infinite language categories are also introduced to explain descriptive complexity with recursive computability with admissible sets and urelements. Algebraic and categorical realizability is staged on several levels, addressing new computability questions with omitting types realizably. Further applications to computing with ultrafilters on sets and Turing degree computability are examined. Functorial models computability is presented with algebraic trees realizing intuitionistic type...

  7. Modeling of Complex Life Cycle Prediction Based on Cell Division

    Directory of Open Access Journals (Sweden)

    Fucheng Zhang

    2017-01-01

    Full Text Available Effective fault diagnosis and reasonable life expectancy are of great significance and practical engineering value for the safety, reliability, and maintenance cost of equipment and working environment. At present, the life prediction methods of the equipment are equipment life prediction based on condition monitoring, combined forecasting model, and driven data. Most of them need to be based on a large amount of data to achieve the problem. For this issue, we propose learning from the mechanism of cell division in the organism. We have established a moderate complexity of life prediction model across studying the complex multifactor correlation life model. In this paper, we model the life prediction of cell division. Experiments show that our model can effectively simulate the state of cell division. Through the model of reference, we will use it for the equipment of the complex life prediction.

  8. Applications of Nonlinear Dynamics Model and Design of Complex Systems

    CERN Document Server

    In, Visarath; Palacios, Antonio

    2009-01-01

    This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.

  9. Coping with Complexity Model Reduction and Data Analysis

    CERN Document Server

    Gorban, Alexander N

    2011-01-01

    This volume contains the extended version of selected talks given at the international research workshop 'Coping with Complexity: Model Reduction and Data Analysis', Ambleside, UK, August 31 - September 4, 2009. This book is deliberately broad in scope and aims at promoting new ideas and methodological perspectives. The topics of the chapters range from theoretical analysis of complex and multiscale mathematical models to applications in e.g., fluid dynamics and chemical kinetics.

  10. Mathematical Models to Determine Stable Behavior of Complex Systems

    Science.gov (United States)

    Sumin, V. I.; Dushkin, A. V.; Smolentseva, T. E.

    2018-05-01

    The paper analyzes a possibility to predict functioning of a complex dynamic system with a significant amount of circulating information and a large number of random factors impacting its functioning. Functioning of the complex dynamic system is described as a chaotic state, self-organized criticality and bifurcation. This problem may be resolved by modeling such systems as dynamic ones, without applying stochastic models and taking into account strange attractors.

  11. Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation.

    Science.gov (United States)

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Xu, Zhigang; Dong, Zhongyun; Collins, Boyce; Yun, Yeoheung; Sankar, Jagannathan

    2015-03-01

    Mg-Zn-Ca alloys are considered as suitable biodegradable metallic implants because of their biocompatibility and proper physical properties. In this study, we investigated the effect of Zn concentration of Mg-xZn-0.3Ca (x=1, 3 and 5wt.%) alloys and surface modification by plasma electrolytic oxidation (PEO) on corrosion behavior in in vivo environment in terms of microstructure, corrosion rate, types of corrosion, and corrosion product formation. Microstructure analysis of alloys and morphological characterization of corrosion products were conducted using x-ray computed tomography (micro-CT) and scanning electron microscopy (SEM). Elemental composition and crystal structure of corrosion products were determined using x-ray diffraction (XRD) and electron dispersive x-ray spectroscopy (EDX). The results show that 1) as-cast Mg-xZn-0.3Ca alloys are composed of Mg matrix and a secondary phase of Ca2Mg6Zn3 formed along grain boundaries, 2) the corrosion rate of Mg-xZn-0.3Ca alloys increases with increasing concentration of Zn in the alloy, 3) corrosion rates of alloys treated by PEO sample are decreased in in vivo environment, and 4) the corrosion products of these alloys after in vivo tests are identified as brucite (Mg(OH)2), hydroxyapatite (Ca10(PO4)6(OH)2), and magnesite (MgCO3·3H2O). Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Antibacterial Co(II, Ni(II, Cu(II and Zn(II complexes with biacetyl-derived Schiff bases

    Directory of Open Access Journals (Sweden)

    MUHAMMAD IMRAN

    2010-08-01

    Full Text Available The condensation reactions of biacetyl with ortho-hydroxyaniline and 2-aminobenzoic acid to form bidendate NO donor Schiff bases were studied. The prepared Schiff base ligands were further utilized for the formation of metal chelates having the general formula [ML2(H2O2] where M = Co(II, Ni(II, Cu(II and Zn(II and L = HL1 and HL2. These new compounds were characterized by conductance measurements, magnetic susceptibility measurements, elemental analysis, and IR, 1H-NMR, 13C-NMR and electronic spectroscopy. Both Schiff base ligands were found to have a mono-anionic bidentate nature and octahedral geometry was assigned to all metal complexes. All the complexes contained coordinated water which was lost at 141–160 °C. These compounds were also screened for their in vitro antibacterial activity against four bacterial species, namely: Escherichia coli, Staphylococcus aureus, Salmonella typhi and Bacillus subtilis. The metal complexes were found to have greater antibacterial activity than the uncomplexed Schiff base ligands.

  13. Equilibrium modeling of mono and binary sorption of Cu(II and Zn(II onto chitosan gel beads

    Directory of Open Access Journals (Sweden)

    Nastaj Józef

    2016-12-01

    Full Text Available The objective of the work are in-depth experimental studies of Cu(II and Zn(II ion removal on chitosan gel beads from both one- and two-component water solutions at the temperature of 303 K. The optimal process conditions such as: pH value, dose of sorbent and contact time were determined. Based on the optimal process conditions, equilibrium and kinetic studies were carried out. The maximum sorption capacities equaled: 191.25 mg/g and 142.88 mg/g for Cu(II and Zn(II ions respectively, when the sorbent dose was 10 g/L and the pH of a solution was 5.0 for both heavy metal ions. One-component sorption equilibrium data were successfully presented for six of the most useful three-parameter equilibrium models: Langmuir-Freundlich, Redlich-Peterson, Sips, Koble-Corrigan, Hill and Toth. Extended forms of Langmuir-Freundlich, Koble-Corrigan and Sips models were also well fitted to the two-component equilibrium data obtained for different ratios of concentrations of Cu(II and Zn(II ions (1:1, 1:2, 2:1. Experimental sorption data were described by two kinetic models of the pseudo-first and pseudo-second order. Furthermore, an attempt to explain the mechanisms of the divalent metal ion sorption process on chitosan gel beads was undertaken.

  14. Understanding complex urban systems multidisciplinary approaches to modeling

    CERN Document Server

    Gurr, Jens; Schmidt, J

    2014-01-01

    Understanding Complex Urban Systems takes as its point of departure the insight that the challenges of global urbanization and the complexity of urban systems cannot be understood – let alone ‘managed’ – by sectoral and disciplinary approaches alone. But while there has recently been significant progress in broadening and refining the methodologies for the quantitative modeling of complex urban systems, in deepening the theoretical understanding of cities as complex systems, or in illuminating the implications for urban planning, there is still a lack of well-founded conceptual thinking on the methodological foundations and the strategies of modeling urban complexity across the disciplines. Bringing together experts from the fields of urban and spatial planning, ecology, urban geography, real estate analysis, organizational cybernetics, stochastic optimization, and literary studies, as well as specialists in various systems approaches and in transdisciplinary methodologies of urban analysis, the volum...

  15. Dynamic complexities in a parasitoid-host-parasitoid ecological model

    International Nuclear Information System (INIS)

    Yu Hengguo; Zhao Min; Lv Songjuan; Zhu Lili

    2009-01-01

    Chaotic dynamics have been observed in a wide range of population models. In this study, the complex dynamics in a discrete-time ecological model of parasitoid-host-parasitoid are presented. The model shows that the superiority coefficient not only stabilizes the dynamics, but may strongly destabilize them as well. Many forms of complex dynamics were observed, including pitchfork bifurcation with quasi-periodicity, period-doubling cascade, chaotic crisis, chaotic bands with narrow or wide periodic window, intermittent chaos, and supertransient behavior. Furthermore, computation of the largest Lyapunov exponent demonstrated the chaotic dynamic behavior of the model

  16. Dynamic complexities in a parasitoid-host-parasitoid ecological model

    Energy Technology Data Exchange (ETDEWEB)

    Yu Hengguo [School of Mathematic and Information Science, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Zhao Min [School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325027 (China)], E-mail: zmcn@tom.com; Lv Songjuan; Zhu Lili [School of Mathematic and Information Science, Wenzhou University, Wenzhou, Zhejiang 325035 (China)

    2009-01-15

    Chaotic dynamics have been observed in a wide range of population models. In this study, the complex dynamics in a discrete-time ecological model of parasitoid-host-parasitoid are presented. The model shows that the superiority coefficient not only stabilizes the dynamics, but may strongly destabilize them as well. Many forms of complex dynamics were observed, including pitchfork bifurcation with quasi-periodicity, period-doubling cascade, chaotic crisis, chaotic bands with narrow or wide periodic window, intermittent chaos, and supertransient behavior. Furthermore, computation of the largest Lyapunov exponent demonstrated the chaotic dynamic behavior of the model.

  17. Remarkable fluorescence enhancement versus complex formation of cationic porphyrins on the surface of ZnO nanoparticles

    KAUST Repository

    Aly, Shawkat Mohammede; Eita, Mohamed Samir; Khan, Jafar Iqbal; Alarousu, Erkki; Mohammed, Omar F.

    2014-01-01

    the first experimental measurements demonstrating a clear transition from pronounced fluorescence enhancement to charge transfer (CT) complex formation by simply changing the nature and location of the positive charge of the meso substituent of the cationic

  18. Resolutions of Cn/Zn orbifolds, their U(1) bundles, and applications to string model building

    International Nuclear Information System (INIS)

    Nibbelink, Stefan Groot; Trapletti, Michele; Walter, Martin G.A.

    2007-01-01

    We describe blowups of C n /Z n orbifolds as complex line bundles over CP n-1 . We construct some gauge bundles on these resolutions. Apart from the standard embedding, we describe U(1) bundles and an SU(n-1) bundle. Both blowups and their gauge bundles are given explicitly. We investigate ten dimensional SO(32) super Yang-Mills theory coupled to supergravity on these backgrounds. The integrated Bianchi identity implies that there are only a finite number of U(1) bundle models. We describe how the orbifold gauge shift vector can be read off from the gauge background. In this way we can assert that in the blow down limit these models correspond to heterotic C 2 /Z 2 and C 3 /Z 3 orbifold models. (Only the Z 3 model with unbroken gauge group SO(32) cannot be reconstructed in blowup without torsion.) This is confirmed by computing the charged chiral spectra on the resolutions. The construction of these blowup models implies that the mismatch between type-I and heterotic models on T 6 /Z 3 does not signal a complication of S-duality, but rather a problem of type-I model building itself: The standard type-I orbifold model building only allows for a single model on this orbifold, while the blowup models give five different models in blow down

  19. A marketing mix model for a complex and turbulent environment

    Directory of Open Access Journals (Sweden)

    R. B. Mason

    2007-12-01

    Full Text Available Purpose: This paper is based on the proposition that the choice of marketing tactics is determined, or at least significantly influenced, by the nature of the company’s external environment. It aims to illustrate the type of marketing mix tactics that are suggested for a complex and turbulent environment when marketing and the environment are viewed through a chaos and complexity theory lens. Design/Methodology/Approach: Since chaos and complexity theories are proposed as a good means of understanding the dynamics of complex and turbulent markets, a comprehensive review and analysis of literature on the marketing mix and marketing tactics from a chaos and complexity viewpoint was conducted. From this literature review, a marketing mix model was conceptualised. Findings: A marketing mix model considered appropriate for success in complex and turbulent environments was developed. In such environments, the literature suggests destabilising marketing activities are more effective, whereas stabilising type activities are more effective in simple, stable environments. Therefore the model proposes predominantly destabilising type tactics as appropriate for a complex and turbulent environment such as is currently being experienced in South Africa. Implications: This paper is of benefit to marketers by emphasising a new way to consider the future marketing activities of their companies. How this model can assist marketers and suggestions for research to develop and apply this model are provided. It is hoped that the model suggested will form the basis of empirical research to test its applicability in the turbulent South African environment. Originality/Value: Since businesses and markets are complex adaptive systems, using complexity theory to understand how to cope in complex, turbulent environments is necessary, but has not been widely researched. In fact, most chaos and complexity theory work in marketing has concentrated on marketing strategy, with

  20. Generalized complex geometry, generalized branes and the Hitchin sigma model

    International Nuclear Information System (INIS)

    Zucchini, Roberto

    2005-01-01

    Hitchin's generalized complex geometry has been shown to be relevant in compactifications of superstring theory with fluxes and is expected to lead to a deeper understanding of mirror symmetry. Gualtieri's notion of generalized complex submanifold seems to be a natural candidate for the description of branes in this context. Recently, we introduced a Batalin-Vilkovisky field theoretic realization of generalized complex geometry, the Hitchin sigma model, extending the well known Poisson sigma model. In this paper, exploiting Gualtieri's formalism, we incorporate branes into the model. A detailed study of the boundary conditions obeyed by the world sheet fields is provided. Finally, it is found that, when branes are present, the classical Batalin-Vilkovisky cohomology contains an extra sector that is related non trivially to a novel cohomology associated with the branes as generalized complex submanifolds. (author)

  1. Reassessing Geophysical Models of the Bushveld Complex in 3D

    Science.gov (United States)

    Cole, J.; Webb, S. J.; Finn, C.

    2012-12-01

    Conceptual geophysical models of the Bushveld Igneous Complex show three possible geometries for its mafic component: 1) Separate intrusions with vertical feeders for the eastern and western lobes (Cousins, 1959) 2) Separate dipping sheets for the two lobes (Du Plessis and Kleywegt, 1987) 3) A single saucer-shaped unit connected at depth in the central part between the two lobes (Cawthorn et al, 1998) Model three incorporates isostatic adjustment of the crust in response to the weight of the dense mafic material. The model was corroborated by results of a broadband seismic array over southern Africa, known as the Southern African Seismic Experiment (SASE) (Nguuri, et al, 2001; Webb et al, 2004). This new information about the crustal thickness only became available in the last decade and could not be considered in the earlier models. Nevertheless, there is still on-going debate as to which model is correct. All of the models published up to now have been done in 2 or 2.5 dimensions. This is not well suited to modelling the complex geometry of the Bushveld intrusion. 3D modelling takes into account effects of variations in geometry and geophysical properties of lithologies in a full three dimensional sense and therefore affects the shape and amplitude of calculated fields. The main question is how the new knowledge of the increased crustal thickness, as well as the complexity of the Bushveld Complex, will impact on the gravity fields calculated for the existing conceptual models, when modelling in 3D. The three published geophysical models were remodelled using full 3Dl potential field modelling software, and including crustal thickness obtained from the SASE. The aim was not to construct very detailed models, but to test the existing conceptual models in an equally conceptual way. Firstly a specific 2D model was recreated in 3D, without crustal thickening, to establish the difference between 2D and 3D results. Then the thicker crust was added. Including the less

  2. A study of probabilistic fatigue crack propagation models in Mg Al Zn alloys under different specimen thickness conditions by using the residual of a random variable

    International Nuclear Information System (INIS)

    Choi, Seon Soon

    2012-01-01

    The primary aim of this paper was to evaluate several probabilistic fatigue crack propagation models using the residual of a random variable, and to present the model fit for probabilistic fatigue behavior in Mg Al Zn alloys. The proposed probabilistic models are the probabilistic Paris Erdogan model, probabilistic Walker model, probabilistic Forman model, and probabilistic modified Forman models. These models were prepared by applying a random variable to the empirical fatigue crack propagation models with these names. The best models for describing fatigue crack propagation models with these names. The best models for describing fatigue crack propagation models with these names. The best models for describing fatigue crack propagation models with these names. The best models vor describing fatigue crack propagation behavior in Mg Al Zn alloys were generally the probabilistic Paris Erdogan and probabilistic Walker models. The probabilistic Forman model was a good model only for a specimen with a thickness of 9.45mm

  3. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    Science.gov (United States)

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Modeling Complex Nesting Structures in International Business Research

    DEFF Research Database (Denmark)

    Nielsen, Bo Bernhard; Nielsen, Sabina

    2013-01-01

    hierarchical random coefficient models (RCM) are often used for the analysis of multilevel phenomena, IB issues often result in more complex nested structures. This paper illustrates how cross-nested multilevel modeling allowing for predictor variables and cross-level interactions at multiple (crossed) levels...

  5. Foundations for Streaming Model Transformations by Complex Event Processing.

    Science.gov (United States)

    Dávid, István; Ráth, István; Varró, Dániel

    2018-01-01

    Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.

  6. Universal correlators for multi-arc complex matrix models

    International Nuclear Information System (INIS)

    Akemann, G.

    1997-01-01

    The correlation functions of the multi-arc complex matrix model are shown to be universal for any finite number of arcs. The universality classes are characterized by the support of the eigenvalue density and are conjectured to fall into the same classes as the ones recently found for the Hermitian model. This is explicitly shown to be true for the case of two arcs, apart from the known result for one arc. The basic tool is the iterative solution of the loop equation for the complex matrix model with multiple arcs, which provides all multi-loop correlators up to an arbitrary genus. Explicit results for genus one are given for any number of arcs. The two-arc solution is investigated in detail, including the double-scaling limit. In addition universal expressions for the string susceptibility are given for both the complex and Hermitian model. (orig.)

  7. Ecological modelling of a wetland for phytoremediating Cu, Zn and Mn in a gold–copper mine site using Typha domingensis (Poales: Typhaceae near Orange, NSW, Australia

    Directory of Open Access Journals (Sweden)

    Subrahmanyam Sreenath

    2017-12-01

    Full Text Available An artificial wetland was computationally modelled using STELLA®, a graphical programming tool for an Au-Cu mine site in Central-west NSW, the aim of which was to offer a predictive analysis of a proposed wetland for Cu, Zn and Mn removal using Typha domingensis as the agent. The model considers the important factors that impact phytoremediation of Cu, Zn and Mn. Simulations were performed to optimise the area of the wetland; concentration of Cu, Zn and Mn released from mine (AMD; and flow rates of water for maximum absorption of the metals. A scenario analysis indicates that at AMD = 0.75mg/L for Cu, Zn and Mn, 12.5, 8.6, and 357.9 kg of Cu, Zn and Mn, respectively, will be assimilated by the wetland in 35 years, which would be equivalent to 61 mg of Cu/kg, 70 mg of Zn/kg and 2,886 mg of Mn/kg of T. domingensis, respectively. However, should Cu, Zn and Mn in AMD increase to 3 mg/L, then 18.6 kg of Cu and 11.8 kg of Zn, respectively, will be assimilated in 35 years, whereas no substantial increase in absorption for Mn would occur. This indicates that 91 mg of Cu, 96 mg of Zn and 2917 mg of Mn will be assimilated for every kg of T. domingensis in the wetland. The best option for Cu storage would be to construct a wetland of 50,000 m2 area (AMD = 0.367 mg/L of Cu, which would capture 14.1 kg of Cu in 43 years, eventually releasing only 3.9 kg of Cu downstream. Simulations performed for a WA of 30,000 m2 indicate that for AMD = 0.367 mg/L of Zn, the wetland captures 6.2 kg, releasing only 3.5 kg downstream after 43 years; the concentration of Zn in the leachate would be 10.2 kg, making this the most efficient wetland amongst the options considered for phytoremediating Zn. This work will help mine managers and environmental researchers in developing an effective environmental management plan by focusing on phytoremediation, with a view at extracting Cu, Zn and Mn from the contaminated sites.

  8. Hot spots based gold nanostar@SiO2@CdSe/ZnS quantum dots complex with strong fluorescence enhancement

    Directory of Open Access Journals (Sweden)

    Feng Shan

    2018-02-01

    Full Text Available In this paper, a novel gold nanostar (NS@SiO2@CdSe/ZnS quantum dots (QDs complex with plasmon-enhanced fluorescence synthesized using a step-by-step surface linkage method was presented. The gold NS was synthesized by the seed growth method. The synthesized gold NS with the apexes structure has a hot-spot effect due to the strong electric field distributed at its sharp apexes, which leads to a plasmon resonance enhancement. Because the distance between QDs and metal nanostructures can be precisely controlled by this method, the relationship between enhancement and distance was revealed. The thickness of SiO2 shell was also optimized and the optimum distance of about 21 nm was obtained. The highest fluorescence enhancement of 4.8-fold accompanied by a minimum fluorescence lifetime of 2.3 ns were achieved. This strong enhancement comes from the hot spots distributed at the sharp tip of our constructed nanostructure. Through the finite element method, we calculated the field distribution on the surface of NS and found that gold NS with the sharpest apexes exhibited the highest field enhancement, which matches well with our experiment result. This complex shows tremendous potential applications for liquid-dependent biometric imaging systems.

  9. Ligand-based photooxidations of dithiomaltolato complexes of Ru(II) and Zn(II): photolytic CH activation and evidence of singlet oxygen generation and quenching.

    Science.gov (United States)

    Bruner, Britain; Walker, Malin Backlund; Ghimire, Mukunda M; Zhang, Dong; Selke, Matthias; Klausmeyer, Kevin K; Omary, Mohammad A; Farmer, Patrick J

    2014-08-14

    The complex [Ru(bpy)2(ttma)](+) (bpy = 2,2'-bipyridine; ttma = 3-hydroxy-2-methyl-thiopyran-4-thionate, 1, has previously been shown to undergo an unusual C-H activation of the dithiomaltolato ligand upon outer-sphere oxidation. The reaction generated alcohol and aldehyde products 2 and 3 from C-H oxidation of the pendant methyl group. In this report, we demonstrate that the same products are formed upon photolysis of 1 in presence of mild oxidants such as methyl viologen, [Ru(NH3)6](3+) and [Co(NH3)5Cl](2+), which do not oxidize 1 in the dark. This reactivity is engendered only upon excitation into an absorption band attributed to the ttma ligand. Analogous experiments with the homoleptic Zn(ttma)2, 4, also result in reduction of electron acceptors upon excitation of the ttma absorption band. Complexes 1 and 4 exhibit short-lived visible fluorescence and long-lived near-infrared phosphorescence bands. Singlet oxygen is both generated and quenched during aerobic excitation of 1 or 4, but is not involved in the C-H activation process.

  10. Hot spots based gold nanostar@SiO2@CdSe/ZnS quantum dots complex with strong fluorescence enhancement

    Science.gov (United States)

    Shan, Feng; Su, Dan; Li, Wei; Hu, Wei; Zhang, Tong

    2018-02-01

    In this paper, a novel gold nanostar (NS)@SiO2@CdSe/ZnS quantum dots (QDs) complex with plasmon-enhanced fluorescence synthesized using a step-by-step surface linkage method was presented. The gold NS was synthesized by the seed growth method. The synthesized gold NS with the apexes structure has a hot-spot effect due to the strong electric field distributed at its sharp apexes, which leads to a plasmon resonance enhancement. Because the distance between QDs and metal nanostructures can be precisely controlled by this method, the relationship between enhancement and distance was revealed. The thickness of SiO2 shell was also optimized and the optimum distance of about 21 nm was obtained. The highest fluorescence enhancement of 4.8-fold accompanied by a minimum fluorescence lifetime of 2.3 ns were achieved. This strong enhancement comes from the hot spots distributed at the sharp tip of our constructed nanostructure. Through the finite element method, we calculated the field distribution on the surface of NS and found that gold NS with the sharpest apexes exhibited the highest field enhancement, which matches well with our experiment result. This complex shows tremendous potential applications for liquid-dependent biometric imaging systems.

  11. Synthesis and Crystal Structures of Ni(II)/(III) and Zn(II) Complexes with Schiff Base Ligands

    International Nuclear Information System (INIS)

    Koo, Bon Kweon

    2013-01-01

    Coordination polymers are of great interest due to their intriguing structural motifs and potential applications in optical, electronic, magnetic, and porous materials. The most commonly used strategy for designing such materials relies on the utilization of multidentate N- or Odonor ligands which have the capacity to bridge between metal centers to form polymeric structures. The Schiff bases with N,O,S donor atoms are an useful source as they are readily available and easily form stable complexes with most transition metal ions. Schiff bases are also important intermediates in synthesis of some bioactive compounds and are potent anti-bacterial, anti-fungal, anticancer and antiviral compounds. In this work, the Schiff bases, Hapb and Hbpb, derived from 2-acetylpyridene or 2-benzoylpyridine and benzhydrazide were taken as trifunctional (N,N,O) monobasic ligand (Scheme 1). This ligand is of important because the π-delocalization of charge and the configurational flexibility of their molecular chain can give rise to a great variety of coordination modes. Although many metal.Schiff base complexes have been reported, the 1D, 2D, and 3D networks of coordination polymers linked through the bridging of ligands such as dicyanamide, N(CN) 2 - as coligand have been little published. In the process of working to extend the dimensionality of the metal-Schiff base complexes using benzilic acid as a bridging ligand, we obtained three simple metal (II)/(III) complexes of acetylpyridine/2-benzoyl pyridine based benzhydrazide ligand. Therefore, we report here the synthesis and crystal structures of the complexes

  12. Bim Automation: Advanced Modeling Generative Process for Complex Structures

    Science.gov (United States)

    Banfi, F.; Fai, S.; Brumana, R.

    2017-08-01

    The new paradigm of the complexity of modern and historic structures, which are characterised by complex forms, morphological and typological variables, is one of the greatest challenges for building information modelling (BIM). Generation of complex parametric models needs new scientific knowledge concerning new digital technologies. These elements are helpful to store a vast quantity of information during the life cycle of buildings (LCB). The latest developments of parametric applications do not provide advanced tools, resulting in time-consuming work for the generation of models. This paper presents a method capable of processing and creating complex parametric Building Information Models (BIM) with Non-Uniform to NURBS) with multiple levels of details (Mixed and ReverseLoD) based on accurate 3D photogrammetric and laser scanning surveys. Complex 3D elements are converted into parametric BIM software and finite element applications (BIM to FEA) using specific exchange formats and new modelling tools. The proposed approach has been applied to different case studies: the BIM of modern structure for the courtyard of West Block on Parliament Hill in Ottawa (Ontario) and the BIM of Masegra Castel in Sondrio (Italy), encouraging the dissemination and interaction of scientific results without losing information during the generative process.

  13. Systems Engineering Metrics: Organizational Complexity and Product Quality Modeling

    Science.gov (United States)

    Mog, Robert A.

    1997-01-01

    Innovative organizational complexity and product quality models applicable to performance metrics for NASA-MSFC's Systems Analysis and Integration Laboratory (SAIL) missions and objectives are presented. An intensive research effort focuses on the synergistic combination of stochastic process modeling, nodal and spatial decomposition techniques, organizational and computational complexity, systems science and metrics, chaos, and proprietary statistical tools for accelerated risk assessment. This is followed by the development of a preliminary model, which is uniquely applicable and robust for quantitative purposes. Exercise of the preliminary model using a generic system hierarchy and the AXAF-I architectural hierarchy is provided. The Kendall test for positive dependence provides an initial verification and validation of the model. Finally, the research and development of the innovation is revisited, prior to peer review. This research and development effort results in near-term, measurable SAIL organizational and product quality methodologies, enhanced organizational risk assessment and evolutionary modeling results, and 91 improved statistical quantification of SAIL productivity interests.

  14. Complex groundwater flow systems as traveling agent models

    Directory of Open Access Journals (Sweden)

    Oliver López Corona

    2014-10-01

    Full Text Available Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow.

  15. Biodynamic modelling of the bioaccumulation of trace metals (Ag, As and Zn) by an infaunal estuarine invertebrate, the clam Scrobicularia plana

    International Nuclear Information System (INIS)

    Kalman, J.; Smith, B.D.; Bury, N.R.; Rainbow, P.S.

    2014-01-01

    Highlights: • Biodynamic modelling is used to predict accumulation of Ag, As and Zn in S. plana. • Dissolved and sediment-associated metals contribute to total metal bioaccumulation. • Relative importance varies with water and sediment concentrations and geochemistries. - Abstract: Biodynamic modelling was used to investigate the uptake and accumulation of three trace metals (Ag, As, Zn) by the deposit feeding estuarine bivalve mollusc Scrobicularia plana. Radioactive labelling techniques were used to quantify the rates of trace metal uptake (and subsequent elimination) from water and sediment diet. The uptake rate constant from solution (±SE) was greatest for Ag (3.954 ± 0.375 l g −1 d −1 ) followed by As (0.807 ± 0.129 l g −1 d −1 ) and Zn (0.103 ± 0.016 l g −1 d −1 ). Assimilation efficiencies from ingested sediment were 40.2 ± 1.3% (Ag), 31.7 ± 1.0% (Zn) and 25.3 ± 0.9% (As). Efflux rate constants after exposure to metals in the solution or sediment fell in the range of 0.014–0.060 d −1 . By incorporating these physiological parameters into biodynamic models, our results showed that dissolved metal is the predominant source of accumulated Ag, As and Zn in S. plana, accounting for 66–99%, 50–97% and 52–98% of total accumulation of Ag, As and Zn, respectively, under different field exposure conditions. In general, model-predicted steady state concentrations of Ag, As and Zn matched well with those observed in clams collected in SW England estuaries. Our findings highlight the potential of biodynamic modelling to predict Ag, As and Zn accumulation in S. plana, taking into account specific dissolved and sediment concentrations of the metals at a particular field site, together with local water and sediment geochemistries

  16. Synthesis, basicity and complex properties from A ZN (II) of a acyclic purazol and pyridine proton-ionizable new receptor; Sintesis, basicidad y propiedades complejantes frente a Zn(II) de un nuevo receptor aciclico de pirazol y piridina prton-ionizable

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, J.M.; Campayo, L.; Navarro, P.; Acerete, C. [Instituto de Quimica Medica CSIC, Madrid (Spain)

    1995-12-01

    The synthesis of bis (2`-pyridylmethil) N{sub 1}-H pyrazole 3,5-dicarboxylate 1[L] is reported. The formation of its sodium pyrazolate salt 1` [L] has been studied by ``13 CNMR, and the deprotonation pKa value of the pyrazole ring of 1 and those corresponding to the protonation of their pyridine rings have been measured using potentiometric methods in H{sub 2}O-MeOH (v/v 9:1) Starting from 1[L] or 1`[L-], the formation of mono- and di-nuclear complexes 2Zn[L] and 3[Zn{sub 2}[L-

  17. Synthesis, basicity and complexation properties versus Zn (II) of a new acyclic acceptor of proton-ionizing pyrazole and pyridine; Sintesis, basicidad y propiedades complejantes frente a Zn (II) de un nuevo receptor aciclico de pirazol y piridina proton-ionizable

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, J.M.; Campayo, L.; Navarro, P.; Acerete, C. [Instituto de Quimica Medica, CSIC (Spain)

    1995-12-31

    The synthesis of bis (2`-pyridyl methyl) N{sub 1}-H pyrazole 3,5-dicarboxylate 1[L] is reported. The formation of its sodium pyrazolate salt 1`[L] has been studied by ``13 CNMR, and the deprotonation pKa value of the pyrazole ring of 1 and those corresponding to the protonation of their pyridine rings have been measured using potentiometric methods in H{sub 2}O-MeOH (v/v 9:1) Starting from 1[L] or 1`[L-], the formation of mono- and dinuclear complexes 2 Zn[L] and 3[Zn]{sub 2}[L-]``3+ respectively has been studied. (Author) 17 refs.

  18. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome

    International Nuclear Information System (INIS)

    Epstein, C.J.; Avraham, K.B.; Lovett, M.; Smith, S.; Elroy-Stein, O.; Rotman, G.; Bry, C.; Groner, Y.

    1987-01-01

    Down syndrome, the phenotypic expression of human trisomy 21, is presumed to result from a 1.5-fold increase in the expression of the genes on human chromosome 21. As an approach to the development of an animal model for Down syndrome, several strains of transgenic mice that carry the human Cu/Zn-superoxide dismutase gene have been prepared. The animals express the transgene in a manner similar to that of humans, with 0.9- and 0.7-kilobase transcripts in a 1:4 ratio, and synthesize the human enzyme in an active form capable of forming human-mouse enzyme heterodimers. Cu/Zn-superoxide dismutase activity is increased from 1.6- to 6.0-fold in the brains of four transgenic strains and to an equal or lesser extent in several other tissues. These animals provide a unique system for studying the consequences of increased dosage of the Cu/Zn-superoxide dismutase gene in Down syndrome and the role of this enzyme in a variety of other pathological processes

  19. Synchronization Experiments With A Global Coupled Model of Intermediate Complexity

    Science.gov (United States)

    Selten, Frank; Hiemstra, Paul; Shen, Mao-Lin

    2013-04-01

    In the super modeling approach an ensemble of imperfect models are connected through nudging terms that nudge the solution of each model to the solution of all other models in the ensemble. The goal is to obtain a synchronized state through a proper choice of connection strengths that closely tracks the trajectory of the true system. For the super modeling approach to be successful, the connections should be dense and strong enough for synchronization to occur. In this study we analyze the behavior of an ensemble of connected global atmosphere-ocean models of intermediate complexity. All atmosphere models are connected to the same ocean model through the surface fluxes of heat, water and momentum, the ocean is integrated using weighted averaged surface fluxes. In particular we analyze the degree of synchronization between the atmosphere models and the characteristics of the ensemble mean solution. The results are interpreted using a low order atmosphere-ocean toy model.

  20. Mathematical approaches for complexity/predictivity trade-offs in complex system models : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Goldsby, Michael E.; Mayo, Jackson R.; Bhattacharyya, Arnab (Massachusetts Institute of Technology, Cambridge, MA); Armstrong, Robert C.; Vanderveen, Keith

    2008-09-01

    The goal of this research was to examine foundational methods, both computational and theoretical, that can improve the veracity of entity-based complex system models and increase confidence in their predictions for emergent behavior. The strategy was to seek insight and guidance from simplified yet realistic models, such as cellular automata and Boolean networks, whose properties can be generalized to production entity-based simulations. We have explored the usefulness of renormalization-group methods for finding reduced models of such idealized complex systems. We have prototyped representative models that are both tractable and relevant to Sandia mission applications, and quantified the effect of computational renormalization on the predictive accuracy of these models, finding good predictivity from renormalized versions of cellular automata and Boolean networks. Furthermore, we have theoretically analyzed the robustness properties of certain Boolean networks, relevant for characterizing organic behavior, and obtained precise mathematical constraints on systems that are robust to failures. In combination, our results provide important guidance for more rigorous construction of entity-based models, which currently are often devised in an ad-hoc manner. Our results can also help in designing complex systems with the goal of predictable behavior, e.g., for cybersecurity.

  1. Neuroprotective Effects and Mechanisms of Curcumin–Cu(II) and –Zn(II) Complexes Systems and Their Pharmacological Implications

    OpenAIRE

    Yan, Fa-Shun; Sun, Jian-Long; Xie, Wen-Hai; Shen, Liang; Ji, Hong-Fang

    2017-01-01

    Alzheimer’s disease (AD) is the main form of dementia and has a steadily increasing prevalence. As both oxidative stress and metal homeostasis are involved in the pathogenesis of AD, it would be interesting to develop a dual function agent, targeting the two factors. Curcumin, a natural compound isolated from the rhizome of Curcuma longa, is an antioxidant and can also chelate metal ions. Whether the complexes of curcumin with metal ions possess neuroprotective effects has not been evaluated....

  2. Ethanol mediated As(III) adsorption onto Zn-loaded pinecone biochar: Experimental investigation, modeling, and optimization using hybrid artificial neural network-genetic algorithm approach.

    Science.gov (United States)

    Zafar, Mohd; Van Vinh, N; Behera, Shishir Kumar; Park, Hung-Suck

    2017-04-01

    Organic matters (OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the ethanol (EtOH)-mediated As(III) adsorption onto Zn-loaded pinecone (PC) biochar through batch experiments conducted under Box-Behnken design. The effect of EtOH on As(III) adsorption mechanism was quantitatively elucidated by fitting the experimental data using artificial neural network and quadratic modeling approaches. The quadratic model could describe the limiting nature of EtOH and pH on As(III) adsorption, whereas neural network revealed the stronger influence of EtOH (64.5%) followed by pH (20.75%) and As(III) concentration (14.75%) on the adsorption phenomena. Besides, the interaction among process variables indicated that EtOH enhances As(III) adsorption over a pH range of 2 to 7, possibly due to facilitation of ligand-metal(Zn) binding complexation mechanism. Eventually, hybrid response surface model-genetic algorithm (RSM-GA) approach predicted a better optimal solution than RSM, i.e., the adsorptive removal of As(III) (10.47μg/g) is facilitated at 30.22mg C/L of EtOH with initial As(III) concentration of 196.77μg/L at pH5.8. The implication of this investigation might help in understanding the application of biochar for removal of various As(III) species in the presence of OM. Copyright © 2016. Published by Elsevier B.V.

  3. ANS main control complex three-dimensional computer model development

    International Nuclear Information System (INIS)

    Cleaves, J.E.; Fletcher, W.M.

    1993-01-01

    A three-dimensional (3-D) computer model of the Advanced Neutron Source (ANS) main control complex is being developed. The main control complex includes the main control room, the technical support center, the materials irradiation control room, computer equipment rooms, communications equipment rooms, cable-spreading rooms, and some support offices and breakroom facilities. The model will be used to provide facility designers and operations personnel with capabilities for fit-up/interference analysis, visual ''walk-throughs'' for optimizing maintain-ability, and human factors and operability analyses. It will be used to determine performance design characteristics, to generate construction drawings, and to integrate control room layout, equipment mounting, grounding equipment, electrical cabling, and utility services into ANS building designs. This paper describes the development of the initial phase of the 3-D computer model for the ANS main control complex and plans for its development and use

  4. Nostradamus 2014 prediction, modeling and analysis of complex systems

    CERN Document Server

    Suganthan, Ponnuthurai; Chen, Guanrong; Snasel, Vaclav; Abraham, Ajith; Rössler, Otto

    2014-01-01

    The prediction of behavior of complex systems, analysis and modeling of its structure is a vitally important problem in engineering, economy and generally in science today. Examples of such systems can be seen in the world around us (including our bodies) and of course in almost every scientific discipline including such “exotic” domains as the earth’s atmosphere, turbulent fluids, economics (exchange rate and stock markets), population growth, physics (control of plasma), information flow in social networks and its dynamics, chemistry and complex networks. To understand such complex dynamics, which often exhibit strange behavior, and to use it in research or industrial applications, it is paramount to create its models. For this purpose there exists a rich spectrum of methods, from classical such as ARMA models or Box Jenkins method to modern ones like evolutionary computation, neural networks, fuzzy logic, geometry, deterministic chaos amongst others. This proceedings book is a collection of accepted ...

  5. The effects of model and data complexity on predictions from species distributions models

    DEFF Research Database (Denmark)

    García-Callejas, David; Bastos, Miguel

    2016-01-01

    How complex does a model need to be to provide useful predictions is a matter of continuous debate across environmental sciences. In the species distributions modelling literature, studies have demonstrated that more complex models tend to provide better fits. However, studies have also shown...... that predictive performance does not always increase with complexity. Testing of species distributions models is challenging because independent data for testing are often lacking, but a more general problem is that model complexity has never been formally described in such studies. Here, we systematically...

  6. Development of a simplified simulation model for performance characterization of a pixellated CdZnTe multimodality imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, P; Santos, A [Departamento de IngenierIa Electronica, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Darambara, D G [Joint Department of Physics, Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Fulham Road, London SW3 6JJ (United Kingdom)], E-mail: pguerra@die.um.es

    2008-02-21

    Current requirements of molecular imaging lead to the complete integration of complementary modalities in a single hybrid imaging system to correlate function and structure. Among the various existing detector technologies, which can be implemented to integrate nuclear modalities (PET and/or single-photon emission computed tomography with x-rays (CT) and most probably with MR, pixellated wide bandgap room temperature semiconductor detectors, such as CdZnTe and/or CdTe, are promising candidates. This paper deals with the development of a simplified simulation model for pixellated semiconductor radiation detectors, as a first step towards the performance characterization of a multimodality imaging system based on CdZnTe. In particular, this work presents a simple computational model, based on a 1D approximate solution of the Schockley-Ramo theorem, and its integration into the Geant4 application for tomographic emission (GATE) platform in order to perform accurately and, therefore, improve the simulations of pixellated detectors in different configurations with a simultaneous cathode and anode pixel readout. The model presented here is successfully validated against an existing detailed finite element simulator, the multi-geometry simulation code, with respect to the charge induced at the anode, taking into consideration interpixel charge sharing and crosstalk, and to the detector charge induction efficiency. As a final point, the model provides estimated energy spectra and time resolution for {sup 57}Co and {sup 18}F sources obtained with the GATE code after the incorporation of the proposed model.

  7. Modeling geophysical complexity: a case for geometric determinism

    Directory of Open Access Journals (Sweden)

    C. E. Puente

    2007-01-01

    Full Text Available It has been customary in the last few decades to employ stochastic models to represent complex data sets encountered in geophysics, particularly in hydrology. This article reviews a deterministic geometric procedure to data modeling, one that represents whole data sets as derived distributions of simple multifractal measures via fractal functions. It is shown how such a procedure may lead to faithful holistic representations of existing geophysical data sets that, while complementing existing representations via stochastic methods, may also provide a compact language for geophysical complexity. The implications of these ideas, both scientific and philosophical, are stressed.

  8. Deterministic ripple-spreading model for complex networks.

    Science.gov (United States)

    Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel

    2011-04-01

    This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.

  9. Synthesis, Characterization, and Biological Activity of Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II Complexes of N-Thiophenoyl-N′-Phenylthiocarbohydrazide

    Directory of Open Access Journals (Sweden)

    M. Yadav

    2013-01-01

    Full Text Available Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II complex of N-thiophenoyl -N′-phenylthiocarbohydrazide (H2 TPTH have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, infrared, NMR, electronic, and ESR spectral studies. The complexes were found to have compositions [Mn(H TPTH2], [Co(TPTH (H2O2], [Ni(TPTH (H2O2], [Cu(TPTH], [Zn(H TPTH], [Cd(H TPTH2], and [Fe(H TPTH2(EtOH]. The magnetic and electronic spectral studies suggest square planar geometry for [Cu(TPTH], tetrahedral geometry for [Zn(TPTH] and [Cd(H TPTH2], and octahedral geometry for rest of the complexes. The infrared spectral studies of the 1 : 1 deprotonated complexes suggest bonding through enolic oxygen, thiolato sulfur, and both the hydrazinic nitrogens. Thus, H2TPTH acts as a binegative tetradentate ligand. H2 TPTH and its metal complexes have been screened against several bacteria and fungi.

  10. Electrochemical and spectroscopic studies of the complexed species of models of nitrohumic acids derived from phthalic acid

    Directory of Open Access Journals (Sweden)

    Mercê Ana Lucia Ramalho

    1998-01-01

    Full Text Available The study of model compounds is necessary in order to obtain information about complex organic substances as in the case of humic substances (HS. These substances are potential organic fertilizers and have other important functions in soils, natural waters and organic sediments. The main chemical properties of the complexes formed from 3-nitrophthalic and 4-nitrophthalic acids and the metal ions Fe(III and Zn(II were studied using potentiometric titrations, ultraviolet-visible spectroscopy (UV-Vis and cyclic voltammetry (CV. A trial potentiometric titration was done with a mixture of the models for nitrohumic acids and Cu(II. Equilibrium constants for the systems were calculated and UV-Vis and CV were employed to monitor the formation of the species. Comparative studies involving chelating centres of nitrosalicylic acids and nitrocatechols with Fe(III, Zn(II and Cu(II are presented. The initial studies involving the nitrohumic substances (NHS, a laboratory artifact of HS have been made and good evidence was found for the further use of NHS as a potential organic fertilizer as well as HS. In this present work one of the observed advantages of NHS over HS was that some aromatic nitro- centres can bind some metal ions at p[H] values of normal soils, near 7.0 to 7.5.

  11. Predictive modelling of complex agronomic and biological systems.

    Science.gov (United States)

    Keurentjes, Joost J B; Molenaar, Jaap; Zwaan, Bas J

    2013-09-01

    Biological systems are tremendously complex in their functioning and regulation. Studying the multifaceted behaviour and describing the performance of such complexity has challenged the scientific community for years. The reduction of real-world intricacy into simple descriptive models has therefore convinced many researchers of the usefulness of introducing mathematics into biological sciences. Predictive modelling takes such an approach another step further in that it takes advantage of existing knowledge to project the performance of a system in alternating scenarios. The ever growing amounts of available data generated by assessing biological systems at increasingly higher detail provide unique opportunities for future modelling and experiment design. Here we aim to provide an overview of the progress made in modelling over time and the currently prevalent approaches for iterative modelling cycles in modern biology. We will further argue for the importance of versatility in modelling approaches, including parameter estimation, model reduction and network reconstruction. Finally, we will discuss the difficulties in overcoming the mathematical interpretation of in vivo complexity and address some of the future challenges lying ahead. © 2013 John Wiley & Sons Ltd.

  12. Synthesis, structure, luminescent, and magnetic properties of carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2] (Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato).

    Science.gov (United States)

    Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno

    2013-11-04

    Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those

  13. Assessing Complexity in Learning Outcomes--A Comparison between the SOLO Taxonomy and the Model of Hierarchical Complexity

    Science.gov (United States)

    Stålne, Kristian; Kjellström, Sofia; Utriainen, Jukka

    2016-01-01

    An important aspect of higher education is to educate students who can manage complex relationships and solve complex problems. Teachers need to be able to evaluate course content with regard to complexity, as well as evaluate students' ability to assimilate complex content and express it in the form of a learning outcome. One model for evaluating…

  14. Modelling, Estimation and Control of Networked Complex Systems

    CERN Document Server

    Chiuso, Alessandro; Frasca, Mattia; Rizzo, Alessandro; Schenato, Luca; Zampieri, Sandro

    2009-01-01

    The paradigm of complexity is pervading both science and engineering, leading to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the definition of powerful tools for modelling, estimation, and control; and the cross-fertilization of different disciplines and approaches. This book is devoted to networked systems which are one of the most promising paradigms of complexity. It is demonstrated that complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synchronization, social and economics events, networks of critical infrastructures, resources allocation, information processing, or control over communication networks. Moreover, it is shown how the recent technological advances in wireless communication and decreasing in cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile cap...

  15. Infinite Multiple Membership Relational Modeling for Complex Networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel Nørgaard; Hansen, Lars Kai

    Learning latent structure in complex networks has become an important problem fueled by many types of networked data originating from practically all fields of science. In this paper, we propose a new non-parametric Bayesian multiplemembership latent feature model for networks. Contrary to existing...... multiplemembership models that scale quadratically in the number of vertices the proposedmodel scales linearly in the number of links admittingmultiple-membership analysis in large scale networks. We demonstrate a connection between the single membership relational model and multiple membership models and show...

  16. Modeling data irregularities and structural complexities in data envelopment analysis

    CERN Document Server

    Zhu, Joe

    2007-01-01

    In a relatively short period of time, Data Envelopment Analysis (DEA) has grown into a powerful quantitative, analytical tool for measuring and evaluating performance. It has been successfully applied to a whole variety of problems in many different contexts worldwide. This book deals with the micro aspects of handling and modeling data issues in modeling DEA problems. DEA's use has grown with its capability of dealing with complex "service industry" and the "public service domain" types of problems that require modeling of both qualitative and quantitative data. This handbook treatment deals with specific data problems including: imprecise or inaccurate data; missing data; qualitative data; outliers; undesirable outputs; quality data; statistical analysis; software and other data aspects of modeling complex DEA problems. In addition, the book will demonstrate how to visualize DEA results when the data is more than 3-dimensional, and how to identify efficiency units quickly and accurately.

  17. Modeling the propagation of mobile malware on complex networks

    Science.gov (United States)

    Liu, Wanping; Liu, Chao; Yang, Zheng; Liu, Xiaoyang; Zhang, Yihao; Wei, Zuxue

    2016-08-01

    In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.

  18. Uncertainty and validation. Effect of model complexity on uncertainty estimates

    International Nuclear Information System (INIS)

    Elert, M.

    1996-09-01

    In the Model Complexity subgroup of BIOMOVS II, models of varying complexity have been applied to the problem of downward transport of radionuclides in soils. A scenario describing a case of surface contamination of a pasture soil was defined. Three different radionuclides with different environmental behavior and radioactive half-lives were considered: Cs-137, Sr-90 and I-129. The intention was to give a detailed specification of the parameters required by different kinds of model, together with reasonable values for the parameter uncertainty. A total of seven modelling teams participated in the study using 13 different models. Four of the modelling groups performed uncertainty calculations using nine different modelling approaches. The models used range in complexity from analytical solutions of a 2-box model using annual average data to numerical models coupling hydrology and transport using data varying on a daily basis. The complex models needed to consider all aspects of radionuclide transport in a soil with a variable hydrology are often impractical to use in safety assessments. Instead simpler models, often box models, are preferred. The comparison of predictions made with the complex models and the simple models for this scenario show that the predictions in many cases are very similar, e g in the predictions of the evolution of the root zone concentration. However, in other cases differences of many orders of magnitude can appear. One example is the prediction of the flux to the groundwater of radionuclides being transported through the soil column. Some issues that have come to focus in this study: There are large differences in the predicted soil hydrology and as a consequence also in the radionuclide transport, which suggests that there are large uncertainties in the calculation of effective precipitation and evapotranspiration. The approach used for modelling the water transport in the root zone has an impact on the predictions of the decline in root

  19. Modelling and simulating in-stent restenosis with complex automata

    NARCIS (Netherlands)

    Hoekstra, A.G.; Lawford, P.; Hose, R.

    2010-01-01

    In-stent restenosis, the maladaptive response of a blood vessel to injury caused by the deployment of a stent, is a multiscale system involving a large number of biological and physical processes. We describe a Complex Automata Model for in-stent restenosis, coupling bulk flow, drug diffusion, and

  20. The Complexity of Developmental Predictions from Dual Process Models

    Science.gov (United States)

    Stanovich, Keith E.; West, Richard F.; Toplak, Maggie E.

    2011-01-01

    Drawing developmental predictions from dual-process theories is more complex than is commonly realized. Overly simplified predictions drawn from such models may lead to premature rejection of the dual process approach as one of many tools for understanding cognitive development. Misleading predictions can be avoided by paying attention to several…

  1. Constructive Lower Bounds on Model Complexity of Shallow Perceptron Networks

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra

    2018-01-01

    Roč. 29, č. 7 (2018), s. 305-315 ISSN 0941-0643 R&D Projects: GA ČR GA15-18108S Institutional support: RVO:67985807 Keywords : shallow and deep networks * model complexity and sparsity * signum perceptron networks * finite mappings * variational norms * Hadamard matrices Subject RIV: IN - Informatics, Computer Science Impact factor: 2.505, year: 2016

  2. Complexity effects in choice experiments-based models

    NARCIS (Netherlands)

    Dellaert, B.G.C.; Donkers, B.; van Soest, A.H.O.

    2012-01-01

    Many firms rely on choice experiment–based models to evaluate future marketing actions under various market conditions. This research investigates choice complexity (i.e., number of alternatives, number of attributes, and utility similarity between the most attractive alternatives) and individual

  3. Kolmogorov complexity, pseudorandom generators and statistical models testing

    Czech Academy of Sciences Publication Activity Database

    Šindelář, Jan; Boček, Pavel

    2002-01-01

    Roč. 38, č. 6 (2002), s. 747-759 ISSN 0023-5954 R&D Projects: GA ČR GA102/99/1564 Institutional research plan: CEZ:AV0Z1075907 Keywords : Kolmogorov complexity * pseudorandom generators * statistical models testing Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.341, year: 2002

  4. Framework for Modelling Multiple Input Complex Aggregations for Interactive Installations

    DEFF Research Database (Denmark)

    Padfield, Nicolas; Andreasen, Troels

    2012-01-01

    on fuzzy logic and provides a method for variably balancing interaction and user input with the intention of the artist or director. An experimental design is presented, demonstrating an intuitive interface for parametric modelling of a complex aggregation function. The aggregation function unifies...

  5. Model-based safety architecture framework for complex systems

    NARCIS (Netherlands)

    Schuitemaker, Katja; Rajabali Nejad, Mohammadreza; Braakhuis, J.G.; Podofillini, Luca; Sudret, Bruno; Stojadinovic, Bozidar; Zio, Enrico; Kröger, Wolfgang

    2015-01-01

    The shift to transparency and rising need of the general public for safety, together with the increasing complexity and interdisciplinarity of modern safety-critical Systems of Systems (SoS) have resulted in a Model-Based Safety Architecture Framework (MBSAF) for capturing and sharing architectural

  6. A binary logistic regression model with complex sampling design of ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... Bi-variable and multi-variable binary logistic regression model with complex sampling design was fitted. .... Data was entered into STATA-12 and analyzed using. SPSS-21. .... lack of access/too far or costs too much. 35. 1.2.

  7. On the general procedure for modelling complex ecological systems

    International Nuclear Information System (INIS)

    He Shanyu.

    1987-12-01

    In this paper, the principle of a general procedure for modelling complex ecological systems, i.e. the Adaptive Superposition Procedure (ASP) is shortly stated. The result of application of ASP in a national project for ecological regionalization is also described. (author). 3 refs

  8. The dynamic complexity of a three species food chain model

    International Nuclear Information System (INIS)

    Lv Songjuan; Zhao Min

    2008-01-01

    In this paper, a three-species food chain model is analytically investigated on theories of ecology and using numerical simulation. Bifurcation diagrams are obtained for biologically feasible parameters. The results show that the system exhibits rich complexity features such as stable, periodic and chaotic dynamics

  9. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

    Science.gov (United States)

    Sulis, William H

    2017-10-01

    Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

  10. Complex shaped ZnO nano- and microstructure based polymer composites: mechanically stable and environmentally friendly coatings for potential antifouling applications.

    Science.gov (United States)

    Hölken, Iris; Hoppe, Mathias; Mishra, Yogendra K; Gorb, Stanislav N; Adelung, Rainer; Baum, Martina J

    2016-03-14

    Since the prohibition of tributyltin (TBT)-based antifouling paints in 2008, the development of environmentally compatible and commercially realizable alternatives is a crucial issue. Cost effective fabrication of antifouling paints with desired physical and biocompatible features is simultaneously required and recent developments in the direction of inorganic nanomaterials could play a major role. In the present work, a solvent free polymer/particle-composite coating based on two component polythiourethane (PTU) and tetrapodal shaped ZnO (t-ZnO) nano- and microstructures has been synthesized and studied with respect to mechanical, chemical and biocompatibility properties. Furthermore, antifouling tests have been carried out in artificial seawater tanks. Four different PTU/t-ZnO composites with various t-ZnO filling fractions (0 wt%, 1 wt%, 5 wt%, 10 wt%) were prepared and the corresponding tensile, hardness, and pull-off test results revealed that the composite filled with 5 wt% t-ZnO exhibits the strongest mechanical properties. Surface free energy (SFE) studies using contact angle measurements showed that the SFE value decreases with an increase in t-ZnO filler amounts. The influence of t-ZnO on the polymerization reaction was confirmed by Fourier transform infrared-spectroscopy measurements and thermogravimetric analysis. The immersion tests demonstrated that fouling behavior of the PTU/t-ZnO composite with a 1 wt% t-ZnO filler has been decreased in comparison to pure PTU. The composite with a 5 wt% t-ZnO filler showed almost no biofouling.

  11. Uncertainty and validation. Effect of model complexity on uncertainty estimates

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M. [Kemakta Konsult AB, Stockholm (Sweden)] [ed.

    1996-09-01

    In the Model Complexity subgroup of BIOMOVS II, models of varying complexity have been applied to the problem of downward transport of radionuclides in soils. A scenario describing a case of surface contamination of a pasture soil was defined. Three different radionuclides with different environmental behavior and radioactive half-lives were considered: Cs-137, Sr-90 and I-129. The intention was to give a detailed specification of the parameters required by different kinds of model, together with reasonable values for the parameter uncertainty. A total of seven modelling teams participated in the study using 13 different models. Four of the modelling groups performed uncertainty calculations using nine different modelling approaches. The models used range in complexity from analytical solutions of a 2-box model using annual average data to numerical models coupling hydrology and transport using data varying on a daily basis. The complex models needed to consider all aspects of radionuclide transport in a soil with a variable hydrology are often impractical to use in safety assessments. Instead simpler models, often box models, are preferred. The comparison of predictions made with the complex models and the simple models for this scenario show that the predictions in many cases are very similar, e g in the predictions of the evolution of the root zone concentration. However, in other cases differences of many orders of magnitude can appear. One example is the prediction of the flux to the groundwater of radionuclides being transported through the soil column. Some issues that have come to focus in this study: There are large differences in the predicted soil hydrology and as a consequence also in the radionuclide transport, which suggests that there are large uncertainties in the calculation of effective precipitation and evapotranspiration. The approach used for modelling the water transport in the root zone has an impact on the predictions of the decline in root

  12. Observation of Zn vacancies in ZnO grown by chemical vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, F.; Saarinen, K. [Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, 02015 TKK (Finland); Grasza, K.; Mycielski, A. [Institute of Physics, Polish Academy of Sciences, Lotnikow 32/46, 02-668 Warsaw (Poland)

    2006-03-15

    We have used positron annihilation spectroscopy to study the vacancy defects in ZnO crystals grown by both the conventional and contactless chemical vapor transport (CVT and CCVT). Our results show that Zn vacancies or Zn vacancy related defects are present in as-grown ZnO, irrespective of the growth method. Zn vacancies are observed in CVT-grown undoped ZnO and (Zn,Mn)O. The Zn vacancies present in undoped CCVT-ZnO are the dominant negatively charged point defect in the material. Doping the material with As introduces also Zn vacancy-related defect complexes with larger open volume. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Rethinking the Psychogenic Model of Complex Regional Pain Syndrome: Somatoform Disorders and Complex Regional Pain Syndrome

    Science.gov (United States)

    Hill, Renee J.; Chopra, Pradeep; Richardi, Toni

    2012-01-01

    Abstract Explaining the etiology of Complex Regional Pain Syndrome (CRPS) from the psychogenic model is exceedingly unsophisticated, because neurocognitive deficits, neuroanatomical abnormalities, and distortions in cognitive mapping are features of CRPS pathology. More importantly, many people who have developed CRPS have no history of mental illness. The psychogenic model offers comfort to physicians and mental health practitioners (MHPs) who have difficulty understanding pain maintained by newly uncovered neuro inflammatory processes. With increased education about CRPS through a biopsychosocial perspective, both physicians and MHPs can better diagnose, treat, and manage CRPS symptomatology. PMID:24223338

  14. Development of an electro-thermal model for ZnO surge arrester under contamination; Desarrollo de un modelo electro-termico para apartarrayos de ZnO bajo contaminacion

    Energy Technology Data Exchange (ETDEWEB)

    Guardado Zavala, J.L.; Moreno Barraza, M.; Zazueta Pena, H.; Venegas Rebollar, V.; Melgoza Vazquez, E. [Instituto Tecnologico de Morelia, Morelia, Michoacan (Mexico)]. E-mail: lguarda@prodigy.net.mx; hzazuetapea@yahoo.com; vvenegas@yahoo.com; emelgoza@iimorelia.edu.mx

    2010-01-15

    An electro-thermal model for a Zinc Oxide (ZnO) surge arrester under contamination test is presented. The model is based in three sub-models: electrical, thermal and contamination, which interact in order to obtain the surge arrester performance under contamination tests. The electrical model is obtained from measurements and is based on a capacitance and a non-linear resistor. The thermal model takes into account the heat generated and dissipated by the column of varistors and its surroundings. The contamination is represented by dynamic impedance obtained from measurements in the arrester column during contamination tests. The full model is validated by calculating the temperature increase during contamination tests carried out in a two units ZnO surge arrester, class 190 kV. Finally, the results of the effect of several design and construction parameters in the voltage and temperature distribution in the arrester column during contamination tests are presented. [Spanish] Se presenta el modelo electro-termico para un apartarrayos de Oxido de Zinc (ZnO) durante pruebas de contaminacion. El modelo esta compuesto de tres sub-modelos: electrico, termico y de contaminacion, los cuales interactuan armonicamente para obtener el comportamiento del apartarrayos durante pruebas de contaminacion. El modelo electrico se obtiene de mediciones y esta compuesto de una capacitancia y una resistencia no-lineal. El modelo termico considera el calor generado y disipado en la columna de varistores y su entorno. La contaminacion se representa como una impedancia dinamica, cuyos valores se obtienen de mediciones en la columna del apartarrayos durante pruebas de contaminacion. El modelo se valida determinando el incremento de temperatura durante pruebas de contaminacion en un apartarrayos de ZnO de dos unidades clase 1990 kV. Finalmente, se presentan los resultados del impacto de diversos parametros de diseno y construccion en la distribucion de voltaje y temperatura en el apartarrayos

  15. ASYMMETRIC PRICE TRANSMISSION MODELING: THE IMPORTANCE OF MODEL COMPLEXITY AND THE PERFORMANCE OF THE SELECTION CRITERIA

    Directory of Open Access Journals (Sweden)

    Henry de-Graft Acquah

    2013-01-01

    Full Text Available Information Criteria provides an attractive basis for selecting the best model from a set of competing asymmetric price transmission models or theories. However, little is understood about the sensitivity of the model selection methods to model complexity. This study therefore fits competing asymmetric price transmission models that differ in complexity to simulated data and evaluates the ability of the model selection methods to recover the true model. The results of Monte Carlo experimentation suggest that in general BIC, CAIC and DIC were superior to AIC when the true data generating process was the standard error correction model, whereas AIC was more successful when the true model was the complex error correction model. It is also shown that the model selection methods performed better in large samples for a complex asymmetric data generating process than with a standard asymmetric data generating process. Except for complex models, AIC's performance did not make substantial gains in recovery rates as sample size increased. The research findings demonstrate the influence of model complexity in asymmetric price transmission model comparison and selection.

  16. Higher genus correlators for the complex matrix model

    International Nuclear Information System (INIS)

    Ambjorn, J.; Kristhansen, C.F.; Makeenko, Y.M.

    1992-01-01

    In this paper, the authors describe an iterative scheme which allows us to calculate any multi-loop correlator for the complex matrix model to any genus using only the first in the chain of loop equations. The method works for a completely general potential and the results contain no explicit reference to the couplings. The genus g contribution to the m-loop correlator depends on a finite number of parameters, namely at most 4g - 2 + m. The authors find the generating functional explicitly up to genus three. The authors show as well that the model is equivalent to an external field problem for the complex matrix model with a logarithmic potential

  17. Reduced Complexity Volterra Models for Nonlinear System Identification

    Directory of Open Access Journals (Sweden)

    Hacıoğlu Rıfat

    2001-01-01

    Full Text Available A broad class of nonlinear systems and filters can be modeled by the Volterra series representation. However, its practical use in nonlinear system identification is sometimes limited due to the large number of parameters associated with the Volterra filter′s structure. The parametric complexity also complicates design procedures based upon such a model. This limitation for system identification is addressed in this paper using a Fixed Pole Expansion Technique (FPET within the Volterra model structure. The FPET approach employs orthonormal basis functions derived from fixed (real or complex pole locations to expand the Volterra kernels and reduce the number of estimated parameters. That the performance of FPET can considerably reduce the number of estimated parameters is demonstrated by a digital satellite channel example in which we use the proposed method to identify the channel dynamics. Furthermore, a gradient-descent procedure that adaptively selects the pole locations in the FPET structure is developed in the paper.

  18. Deciphering the complexity of acute inflammation using mathematical models.

    Science.gov (United States)

    Vodovotz, Yoram

    2006-01-01

    Various stresses elicit an acute, complex inflammatory response, leading to healing but sometimes also to organ dysfunction and death. We constructed both equation-based models (EBM) and agent-based models (ABM) of various degrees of granularity--which encompass the dynamics of relevant cells, cytokines, and the resulting global tissue dysfunction--in order to begin to unravel these inflammatory interactions. The EBMs describe and predict various features of septic shock and trauma/hemorrhage (including the response to anthrax, preconditioning phenomena, and irreversible hemorrhage) and were used to simulate anti-inflammatory strategies in clinical trials. The ABMs that describe the interrelationship between inflammation and wound healing yielded insights into intestinal healing in necrotizing enterocolitis, vocal fold healing during phonotrauma, and skin healing in the setting of diabetic foot ulcers. Modeling may help in understanding the complex interactions among the components of inflammation and response to stress, and therefore aid in the development of novel therapies and diagnostics.

  19. Nonlinear model of epidemic spreading in a complex social network.

    Science.gov (United States)

    Kosiński, Robert A; Grabowski, A

    2007-10-01

    The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.

  20. Elastic Network Model of a Nuclear Transport Complex

    Science.gov (United States)

    Ryan, Patrick; Liu, Wing K.; Lee, Dockjin; Seo, Sangjae; Kim, Young-Jin; Kim, Moon K.

    2010-05-01

    The structure of Kap95p was obtained from the Protein Data Bank (www.pdb.org) and analyzed RanGTP plays an important role in both nuclear protein import and export cycles. In the nucleus, RanGTP releases macromolecular cargoes from importins and conversely facilitates cargo binding to exportins. Although the crystal structure of the nuclear import complex formed by importin Kap95p and RanGTP was recently identified, its molecular mechanism still remains unclear. To understand the relationship between structure and function of a nuclear transport complex, a structure-based mechanical model of Kap95p:RanGTP complex is introduced. In this model, a protein structure is simply modeled as an elastic network in which a set of coarse-grained point masses are connected by linear springs representing biochemical interactions at atomic level. Harmonic normal mode analysis (NMA) and anharmonic elastic network interpolation (ENI) are performed to predict the modes of vibrations and a feasible pathway between locked and unlocked conformations of Kap95p, respectively. Simulation results imply that the binding of RanGTP to Kap95p induces the release of the cargo in the nucleus as well as prevents any new cargo from attaching to the Kap95p:RanGTP complex.

  1. Entropy, complexity, and Markov diagrams for random walk cancer models.

    Science.gov (United States)

    Newton, Paul K; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-19

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  2. BlenX-based compositional modeling of complex reaction mechanisms

    Directory of Open Access Journals (Sweden)

    Judit Zámborszky

    2010-02-01

    Full Text Available Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model building in stochastic process algebras are discussed. A biological example on circadian clock is presented as a case study of BlenX compositionality.

  3. Multiscale modeling of complex materials phenomenological, theoretical and computational aspects

    CERN Document Server

    Trovalusci, Patrizia

    2014-01-01

    The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.

  4. Synthesis, Spectral, Thermogravimetric, XRD, Molecular Modelling and Potential Antibacterial Studies of Dimeric Complexes with Bis Bidentate ON–NO Donor Azo Dye Ligands

    Directory of Open Access Journals (Sweden)

    Bipin Bihari Mahapatra

    2013-01-01

    Full Text Available The dimeric complexes of Co(II, Ni(II, Cu(II, Zn(II, Cd(II, and Hg(II with two new symmetrical ON–NO donor bis bidentate (tetradentate azo dye ligands, LH2 = 4,4′-bis(4′-hydroxyquinolinolinylazodiphenylsulphone, and L′H2 = 4,4′-bis(acetoacetanilideazodiphenylsulphone have been synthesized. The metal complexes have been characterised by elemental analytical, conductance, magnetic susceptibility, IR, electronic spectra, ESR, NMR, thermogravimetry, X-ray diffraction (powder pattern spectra, and molecular modelling studies. The Co(II and Ni(II complexes are found to be octahedral, Cu(II complexes are distorted octahedral, and a tetrahedral stereochemistry has been assigned to Zn(II, Cd(II, and Hg(II complexes. The thermogravimetric study indicates that compounds are quite stable. The energy optimized structures are proposed using the semiempirical ZINDO/1 quantum mechanical calculations. The potential antibacterial study of the ligands and some metal complexes has been made with one gram positive bacteria Staphylococcus aureus and one gram negative bacteria E. coli which gives encouraging results. Both the Co(II complexes are found to possess monoclinic crystal system.

  5. Building Better Ecological Machines: Complexity Theory and Alternative Economic Models

    Directory of Open Access Journals (Sweden)

    Jess Bier

    2016-12-01

    Full Text Available Computer models of the economy are regularly used to predict economic phenomena and set financial policy. However, the conventional macroeconomic models are currently being reimagined after they failed to foresee the current economic crisis, the outlines of which began to be understood only in 2007-2008. In this article we analyze the most prominent of this reimagining: Agent-Based models (ABMs. ABMs are an influential alternative to standard economic models, and they are one focus of complexity theory, a discipline that is a more open successor to the conventional chaos and fractal modeling of the 1990s. The modelers who create ABMs claim that their models depict markets as ecologies, and that they are more responsive than conventional models that depict markets as machines. We challenge this presentation, arguing instead that recent modeling efforts amount to the creation of models as ecological machines. Our paper aims to contribute to an understanding of the organizing metaphors of macroeconomic models, which we argue is relevant conceptually and politically, e.g., when models are used for regulatory purposes.

  6. Modelling and simulation of gas explosions in complex geometries

    Energy Technology Data Exchange (ETDEWEB)

    Saeter, Olav

    1998-12-31

    This thesis presents a three-dimensional Computational Fluid Dynamics (CFD) code (EXSIM94) for modelling and simulation of gas explosions in complex geometries. It gives the theory and validates the following sub-models : (1) the flow resistance and turbulence generation model for densely packed regions, (2) the flow resistance and turbulence generation model for single objects, and (3) the quasi-laminar combustion model. It is found that a simple model for flow resistance and turbulence generation in densely packed beds is able to reproduce the medium and large scale MERGE explosion experiments of the Commission of European Communities (CEC) within a band of factor 2. The model for a single representation is found to predict explosion pressure in better agreement with the experiments with a modified k-{epsilon} model. This modification also gives a slightly improved grid independence for realistic gas explosion approaches. One laminar model is found unsuitable for gas explosion modelling because of strong grid dependence. Another laminar model is found to be relatively grid independent and to work well in harmony with the turbulent combustion model. The code is validated against 40 realistic gas explosion experiments. It is relatively grid independent in predicting explosion pressure in different offshore geometries. It can predict the influence of ignition point location, vent arrangements, different geometries, scaling effects and gas reactivity. The validation study concludes with statistical and uncertainty analyses of the code performance. 98 refs., 96 figs, 12 tabs.

  7. Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling

    Directory of Open Access Journals (Sweden)

    Samar Hayat Khan Tareen

    2015-07-01

    Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model

  8. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems.

    Science.gov (United States)

    Transtrum, Mark K; Qiu, Peng

    2016-05-01

    The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior.

  9. Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity

    Science.gov (United States)

    Sevgi, Fatih; Bagkesici, Ugur; Kursunlu, Ahmed Nuri; Guler, Ersin

    2018-02-01

    Zinc (II), copper (II), nickel (II), cobalt (II) and iron (III) complexes of Schiff bases (LG, LP) derived from 2-hydroxynaphthaldehyde with glycine and phenylalanine were reported and characterized by 1H NMR, 13C NMR, elemental analyses, melting point, FT-IR, magnetic susceptibility and thermal analyses (TGA). TGA data show that iron and cobalt include to the coordinated water and metal:ligand ratio is 1:2 while the complex stoichiometry for Ni (II), Cu (II) and Zn (II) complexes is 1:1. As expected, Ni (II) and Zn (II) complexes are diamagnetic; Cu (II), Co (II) and Fe (III) complexes are paramagnetic character due to a strong ligand of LG and LP. The LG, LP and their metal complexes were screened for their antimicrobial activities against five Gram-positive (Staphylococcus aureus, Methicillin resistant Staphylococcus aureus (MRSA), Bacillus cereus, Streptococcus mutans and Enterococcus faecalis) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and one fungi (Candida albicans) by using broth microdilution techniques. The activity data show that ligands and their metal complexes exhibited moderate to good activity against Gram-positive bacteria and fungi.

  10. Mathematical modelling of complex contagion on clustered networks

    Science.gov (United States)

    O'sullivan, David J.; O'Keeffe, Gary; Fennell, Peter; Gleeson, James

    2015-09-01

    The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010), adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010), to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  11. Mathematical modelling of complex contagion on clustered networks

    Directory of Open Access Journals (Sweden)

    David J. P. O'Sullivan

    2015-09-01

    Full Text Available The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010, adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the complex contagion effects of social reinforcement are important in such diffusion, in contrast to simple contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010, to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  12. The semiotics of control and modeling relations in complex systems.

    Science.gov (United States)

    Joslyn, C

    2001-01-01

    We provide a conceptual analysis of ideas and principles from the systems theory discourse which underlie Pattee's semantic or semiotic closure, which is itself foundational for a school of theoretical biology derived from systems theory and cybernetics, and is now being related to biological semiotics and explicated in the relational biological school of Rashevsky and Rosen. Atomic control systems and models are described as the canonical forms of semiotic organization, sharing measurement relations, but differing topologically in that control systems are circularly and models linearly related to their environments. Computation in control systems is introduced, motivating hierarchical decomposition, hybrid modeling and control systems, and anticipatory or model-based control. The semiotic relations in complex control systems are described in terms of relational constraints, and rules and laws are distinguished as contingent and necessary functional entailments, respectively. Finally, selection as a meta-level of constraint is introduced as the necessary condition for semantic relations in control systems and models.

  13. Predicting the future completing models of observed complex systems

    CERN Document Server

    Abarbanel, Henry

    2013-01-01

    Predicting the Future: Completing Models of Observed Complex Systems provides a general framework for the discussion of model building and validation across a broad spectrum of disciplines. This is accomplished through the development of an exact path integral for use in transferring information from observations to a model of the observed system. Through many illustrative examples drawn from models in neuroscience, fluid dynamics, geosciences, and nonlinear electrical circuits, the concepts are exemplified in detail. Practical numerical methods for approximate evaluations of the path integral are explored, and their use in designing experiments and determining a model's consistency with observations is investigated. Using highly instructive examples, the problems of data assimilation and the means to treat them are clearly illustrated. This book will be useful for students and practitioners of physics, neuroscience, regulatory networks, meteorology and climate science, network dynamics, fluid dynamics, and o...

  14. Thermodynamics and kinetics insight into reaction mechanism of Cu{sub 2}ZnSnSe{sub 4} nanoink based on binary metal-amine complexes in polyetheramine-synthesized process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chi-Jie [Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Shei, Shih-Chang, E-mail: scshei@mail.nutn.edu.tw [Department of Electrical Engineering, National University of Tainan, 700, Taiwan, ROC (China); Chang, Shoou-Jinn [Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2016-08-15

    This paper reports on the reaction mechanism of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) nanoink via a solvent-thermal reflux method using copper (Cu), zinc (Zn), tin (Sn), and selenium (Se) powders as precursors and polyetheramine as a reaction solvent. The formation of CZTSe nanoparticles in polyetheramine began with the formation of binary phase CuSe and CuSe{sub 2} due to the strong catalysis provided by polyetheramine. Finally, ternary crystals of Cu{sub 2}SnSe{sub 3} transformed into well-dispersed nanocrystals of Cu{sub 2}ZnSnSe{sub 4}. The size of the crystals was shown to decrease with reaction time due to the emulsification effect of the polyetheramine epoxy group. The PH value-reaction time curves for single Cu, Zn elements and CZTSe from all participants elements reacted together have a relationship just reversed each other and both multistage feature were observed, which indicates that the CZTSe reaction was dominated by copper and zinc elements. The PH-temperature mechanism demonstrates that the reaction was controlled by the formation of metal-amine complexes, especially, after heating the PH-time variation manner is the same for pure element and all four elements reacted together. To the best of our knowledge, this is the first study on the mechanism underlying CZTSe formation based on the reactivity and stability of reaction species. - Highlights: • Reaction mechanism of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) nanoink via a solvent-thermal reflux method using polyetheramine was developed. • PH effect on thermal dynamics and characteristics of reagents and solvents in the CZTSe nanoink has been realized. • PH-temperature mechanism demonstrates that the reaction controlled by the formation of metal-amine complexes.

  15. Thermodynamic assessment of the Pr-Zn binary system

    International Nuclear Information System (INIS)

    Huang, X.M.; Liu, L.B.; Zhang, L.G.; Jia, B.R.; Jin, Z.P.; Zheng, F.

    2008-01-01

    On the basis of available experimental data of phase diagram and thermodynamic properties, the Pr-Zn binary system has been optimized using the CALPHAD approach. The phases, including liquid and bcc A 2(βPr) were treated as substitutional solutions, while the intermetallic compounds, including PrZn, PrZn 2 , PrZn 3 , Pr 3 Zn 11 , Pr 13 Zn 58 , Pr 3 Zn 22 , Pr 2 Zn 17 and PrZn 11 were modeled as stoichiometric compounds. As the result of optimization, a set of self-consistent thermodynamic parameters has been obtained, which can be used to reproduce the reported experimental data

  16. An Ontology for Modeling Complex Inter-relational Organizations

    Science.gov (United States)

    Wautelet, Yves; Neysen, Nicolas; Kolp, Manuel

    This paper presents an ontology for organizational modeling through multiple complementary aspects. The primary goal of the ontology is to dispose of an adequate set of related concepts for studying complex organizations involved in a lot of relationships at the same time. In this paper, we define complex organizations as networked organizations involved in a market eco-system that are playing several roles simultaneously. In such a context, traditional approaches focus on the macro analytic level of transactions; this is supplemented here with a micro analytic study of the actors' rationale. At first, the paper overviews enterprise ontologies literature to position our proposal and exposes its contributions and limitations. The ontology is then brought to an advanced level of formalization: a meta-model in the form of a UML class diagram allows to overview the ontology concepts and their relationships which are formally defined. Finally, the paper presents the case study on which the ontology has been validated.

  17. A photochemical proposal for the preparation of ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films from β-diketonate complex precursors

    Energy Technology Data Exchange (ETDEWEB)

    Cabello, G., E-mail: gerardocabelloguzman@hotmail.com [Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán (Chile); Lillo, L.; Caro, C.; Seguel, M.; Sandoval, C. [Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán (Chile); Buono-Core, G.E. [Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso (Chile); Chornik, B.; Flores, M. [Deparamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370415 (Chile)

    2016-05-15

    Highlights: • ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films were prepared by photo-chemical method. • The Zn(II), Mg(II) and Al(III) β-diketonate complexes were used as precursors. • The photochemical reaction was monitored by UV–vis and FT-IR spectroscopy. • The results reveal spinel oxide formation and the generation of intermediate products. - Abstract: ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films were grown on Si(100) and quartz plate substrates using a photochemical method in the solid phase with thin films of β-diketonate complexes as the precursors. The films were deposited by spin-coating and subsequently photolyzed at room temperature using 254 nm UV light. The photolysis of these films results in the deposition of metal oxide thin films and fragmentation of the ligands from the coordination sphere of the complexes. The obtained samples were post-annealed at different temperatures (350–1100 °C) for 2 h and characterized by FT-Infrared spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force miscroscopy (AFM), and UV–vis spectroscopy. The results indicate the formation of spinel-type structures and other phases. These characteristics determined the quality of the films, which were obtained from the photodeposition of ternary metal oxides.

  18. A computational framework for modeling targets as complex adaptive systems

    Science.gov (United States)

    Santos, Eugene; Santos, Eunice E.; Korah, John; Murugappan, Vairavan; Subramanian, Suresh

    2017-05-01

    Modeling large military targets is a challenge as they can be complex systems encompassing myriad combinations of human, technological, and social elements that interact, leading to complex behaviors. Moreover, such targets have multiple components and structures, extending across multiple spatial and temporal scales, and are in a state of change, either in response to events in the environment or changes within the system. Complex adaptive system (CAS) theory can help in capturing the dynamism, interactions, and more importantly various emergent behaviors, displayed by the targets. However, a key stumbling block is incorporating information from various intelligence, surveillance and reconnaissance (ISR) sources, while dealing with the inherent uncertainty, incompleteness and time criticality of real world information. To overcome these challenges, we present a probabilistic reasoning network based framework called complex adaptive Bayesian Knowledge Base (caBKB). caBKB is a rigorous, overarching and axiomatic framework that models two key processes, namely information aggregation and information composition. While information aggregation deals with the union, merger and concatenation of information and takes into account issues such as source reliability and information inconsistencies, information composition focuses on combining information components where such components may have well defined operations. Since caBKBs can explicitly model the relationships between information pieces at various scales, it provides unique capabilities such as the ability to de-aggregate and de-compose information for detailed analysis. Using a scenario from the Network Centric Operations (NCO) domain, we will describe how our framework can be used for modeling targets with a focus on methodologies for quantifying NCO performance metrics.

  19. Fundamentals of complex networks models, structures and dynamics

    CERN Document Server

    Chen, Guanrong; Li, Xiang

    2014-01-01

    Complex networks such as the Internet, WWW, transportationnetworks, power grids, biological neural networks, and scientificcooperation networks of all kinds provide challenges for futuretechnological development. In particular, advanced societies havebecome dependent on large infrastructural networks to an extentbeyond our capability to plan (modeling) and to operate (control).The recent spate of collapses in power grids and ongoing virusattacks on the Internet illustrate the need for knowledge aboutmodeling, analysis of behaviors, optimized planning and performancecontrol in such networks. F

  20. Model Complexities of Shallow Networks Representing Highly Varying Functions

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra; Sanguineti, M.

    2016-01-01

    Roč. 171, 1 January (2016), s. 598-604 ISSN 0925-2312 R&D Projects: GA MŠk(CZ) LD13002 Grant - others:grant for Visiting Professors(IT) GNAMPA-INdAM Institutional support: RVO:67985807 Keywords : shallow networks * model complexity * highly varying functions * Chernoff bound * perceptrons * Gaussian kernel units Subject RIV: IN - Informatics, Computer Science Impact factor: 3.317, year: 2016

  1. Modelling the growth of ZnO thin films by PVD methods and the effects of post-annealing.

    Science.gov (United States)

    Blackwell, Sabrina; Smith, Roger; Kenny, Steven D; Walls, John M; Sanz-Navarro, Carlos F

    2013-04-03

    Results are presented for modelling of the evaporation and magnetron sputter deposition of Zn(x)O(y) onto an O-terminated ZnO (0001¯) wurtzite surface. Growth was simulated through a combination of molecular dynamics (MD) and an on-the-fly kinetic Monte Carlo (otf-KMC) method, which finds diffusion pathways and barriers without prior knowledge of transitions. We examine the effects of varying experimental parameters, such as substrate bias, distribution of the deposition species and annealing temperature. It was found when comparing evaporation and sputtering growth that the latter process results in a denser and more crystalline structure, due to the higher deposition energy of the arriving species. The evaporation growth also exhibits more stacking faults than the sputtered growth. Post-annealing at 770 K did not allow complete recrystallization, resulting in films which still had stacking faults where monolayers formed in the zinc blende phase, whereas annealing at 920 K enabled the complete recrystallization of some films to the wurtzite structure. At the latter temperature atoms could also sometimes be locked in the zinc blende phase after annealing. When full recrystallization did not take place, both wurtzite and zinc blende phases were seen in the same layer, resulting in a phase boundary. Investigation of the various distributions of deposition species showed that, during evaporation, the best quality film resulted from a stoichiometric distribution where only ZnO clusters were deposited. During sputtering, however, the best quality film resulted from a slightly O rich distribution. Two stoichiometric distributions, one involving mainly ZnO clusters and the other involving mainly single species, showed that the distribution of deposition species makes a huge impact on the grown film. The deposition of predominantly single species causes many more O atoms at the surface to be sputtered or reflected, resulting in an O deficiency of up to 18% in the

  2. A two-cavity reactor for solar chemical processes: heat transfer model and application to carbothermic reduction of ZnO

    International Nuclear Information System (INIS)

    Wieckert, Christian; Palumbo, Robert; Frommherz, Ulrich

    2004-01-01

    A 5 kW two-cavity beam down reactor for the solar thermal decomposition of ZnO with solid carbon has been developed and tested in a solar furnace. Initial exploratory experiments show that it operates with a solar to chemical energy conversion efficiency of about 15% when the solar flux entering the reactor is 1300 kW/m 2 , resulting in a reaction chamber temperature of about 1500 K. The solid products have a purity of nearly 100% Zn. Furthermore, the reactor has been described by a numerical model that combines radiant and conduction heat transfer with the decomposition kinetics of the ZnO-carbon reaction. The model is based on the radiosity exchange method. For a given solar input, the model estimates cavity temperatures, Zn production rates, and the solar to chemical energy conversion efficiency. The model currently makes use of two parameters which are determined from the experimental results: conduction heat transfer through the reactor walls enters the model as a lumped term that reflects the conduction loss during the experiments, and the rate of the chemical reaction includes an experimentally determined term that reflects the effective amount of ZnO and CO participating in the reactor. The model output matches well the experimentally determined cavity temperatures. It suggests that reactors built with this two-cavity concept already on this small scale can reach efficiencies exceeding 25%, if operated with a higher solar flux or if one can reduce conduction heat losses through better insulation and if one can maintain or improve the effective amount of ZnO and CO that participates in the reaction

  3. Complexity and agent-based modelling in urban research

    DEFF Research Database (Denmark)

    Fertner, Christian

    influence on the bigger system. Traditional scientific methods or theories often tried to simplify, not accounting complex relations of actors and decision-making. The introduction of computers in simulation made new approaches in modelling, as for example agent-based modelling (ABM), possible, dealing......Urbanisation processes are results of a broad variety of actors or actor groups and their behaviour and decisions based on different experiences, knowledge, resources, values etc. The decisions done are often on a micro/individual level but resulting in macro/collective behaviour. In urban research...

  4. Methodology and Results of Mathematical Modelling of Complex Technological Processes

    Science.gov (United States)

    Mokrova, Nataliya V.

    2018-03-01

    The methodology of system analysis allows us to draw a mathematical model of the complex technological process. The mathematical description of the plasma-chemical process was proposed. The importance the quenching rate and initial temperature decrease time was confirmed for producing the maximum amount of the target product. The results of numerical integration of the system of differential equations can be used to describe reagent concentrations, plasma jet rate and temperature in order to achieve optimal mode of hardening. Such models are applicable both for solving control problems and predicting future states of sophisticated technological systems.

  5. The complex sine-Gordon model on a half line

    International Nuclear Information System (INIS)

    Tzamtzis, Georgios

    2003-01-01

    In this thesis, we study the complex sine-Gordon model on a half line. The model in the bulk is an integrable (1+1) dimensional field theory which is U(1) gauge invariant and comprises a generalisation of the sine-Gordon theory. It accepts soliton and breather solutions. By introducing suitably selected boundary conditions we may consider the model on a half line. Through such conditions the model can be shown to remain integrable and various aspects of the boundary theory can be examined. The first chapter serves as a brief introduction to some basic concepts of integrability and soliton solutions. As an example of an integrable system with soliton solutions, the sine-Gordon model is presented both in the bulk and on a half line. These results will serve as a useful guide for the model at hand. The introduction finishes with a brief overview of the two methods that will be used on the fourth chapter in order to obtain the quantum spectrum of the boundary complex sine-Gordon model. In the second chapter the model is properly introduced along with a brief literature review. Different realisations of the model and their connexions are discussed. The vacuum of the theory is investigated. Soliton solutions are given and a discussion on the existence of breathers follows. Finally the collapse of breather solutions to single solitons is demonstrated and the chapter concludes with a different approach to the breather problem. In the third chapter, we construct the lowest conserved currents and through them we find suitable boundary conditions that allow for their conservation in the presence of a boundary. The boundary term is added to the Lagrangian and the vacuum is reexamined in the half line case. The reflection process of solitons from the boundary is studied and the time-delay is calculated. Finally we address the existence of boundary-bound states. In the fourth chapter we study the quantum complex sine-Gordon model. We begin with a brief overview of the theory in

  6. Electrospray ionization mass spectrometric investigations of the complexation behavior of macrocyclic thiacrown ethers with bivalent transitional metals (Cu, Co, Ni and Zn).

    Science.gov (United States)

    Tsybizova, Alexandra; Tarábek, Ján; Buchta, Michal; Holý, Petr; Schröder, Detlef

    2012-10-15

    Heavy metals are both a problem for the environment and an important resource for industry. Their selective extraction by means of organic ligands therefore is an attractive topic. The coordination of three thiacrown ethers to late 3d-metal ions was investigated by a combination of electrospray ionization mass spectrometry (ESI-MS) and electron paramagnetic resonance (EPR). The mass spectrometric experiments were carried out in an ion trap mass spectrometer with an ESI source. Absolute binding constants were estimated by comparison with data for 18-crown-6/Na(+). EPR spectroscopy was used as a complementary method for investigating the Cu(I) /Cu(II) redox couple. The study found that thiacrown ethers preferentially bind traces of copper even at an excess of other metal ions (Co(II), Ni(II), and Zn(II)). The absolute association constants of the Cu(I) complexes were about 10(8) M(-1), and about two orders of magnitude lower for the other 3d-metal cations. The EPR spectra demonstrated that the reduction from Cu(II) to Cu(I) upon formation of the [(thiacrown)Cu](+) species takes place in solution. ESI-MS demonstrated that the three thiacrown ligands examined had high binding constants as well as good selectivities for copper(I) at low concentrations, and in the presence of other metal ions. By a combination of ESI-MS and EPR spectrometry it was shown that the reduction from Cu(II) to Cu(I) occurred in solution. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Extending a configuration model to find communities in complex networks

    International Nuclear Information System (INIS)

    Jin, Di; Hu, Qinghua; He, Dongxiao; Yang, Bo; Baquero, Carlos

    2013-01-01

    Discovery of communities in complex networks is a fundamental data analysis task in various domains. Generative models are a promising class of techniques for identifying modular properties from networks, which has been actively discussed recently. However, most of them cannot preserve the degree sequence of networks, which will distort the community detection results. Rather than using a blockmodel as most current works do, here we generalize a configuration model, namely, a null model of modularity, to solve this problem. Towards decomposing and combining sub-graphs according to the soft community memberships, our model incorporates the ability to describe community structures, something the original model does not have. Also, it has the property, as with the original model, that it fixes the expected degree sequence to be the same as that of the observed network. We combine both the community property and degree sequence preserving into a single unified model, which gives better community results compared with other models. Thereafter, we learn the model using a technique of nonnegative matrix factorization and determine the number of communities by applying consensus clustering. We test this approach both on synthetic benchmarks and on real-world networks, and compare it with two similar methods. The experimental results demonstrate the superior performance of our method over competing methods in detecting both disjoint and overlapping communities. (paper)

  8. Densification and volumetric change during supersolidus liquid phase sintering of prealloyed brass Cu28Zn powder: Modeling and optimization

    Directory of Open Access Journals (Sweden)

    Mohammadzadeh A.

    2014-01-01

    Full Text Available An investigation has been made to use response surface methodology and central composite rotatable design for modeling and optimizing the effect of sintering variables on densification of prealloyed Cu28Zn brass powder during supersolidus liquid phase sintering. The mathematical equations were derived to predict sintered density, densification parameter, porosity percentage and volumetric change of samples using second order regression analysis. As well as the adequacy of models was evaluated by analysis of variance technique at 95% confidence level. Finally, the influence and interaction of sintering variables, on achieving any desired properties was demonstrated graphically in contour and three dimensional plots. In order to better analyze the samples, microstructure evaluation was carried out. It was concluded that response surface methodology based on central composite rotatable design, is an economical way to obtain arbitrary information with performing the fewest number of experiments in a short period of time.

  9. A drain current model for amorphous InGaZnO thin film transistors considering temperature effects

    Science.gov (United States)

    Cai, M. X.; Yao, R. H.

    2018-03-01

    Temperature dependent electrical characteristics of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) are investigated considering the percolation and multiple trapping and release (MTR) conduction mechanisms. Carrier-density and temperature dependent carrier mobility in a-IGZO is derived with the Boltzmann transport equation, which is affected by potential barriers above the conduction band edge with Gaussian-like distributions. The free and trapped charge densities in the channel are calculated with Fermi-Dirac statistics, and the field effective mobility of a-IGZO TFTs is then deduced based on the MTR theory. Temperature dependent drain current model for a-IGZO TFTs is finally derived with the obtained low field mobility and free charge density, which is applicable to both non-degenerate and degenerate conductions. This physical-based model is verified by available experiment results at various temperatures.

  10. Synthesis, characterization and biological studies of 2-(4-nitrophenylamino-carbonyl)benzoic acid and its complexes with Cr(III), Co(II), Ni(II), Cu(II) and Zn(II)

    International Nuclear Information System (INIS)

    Imran, M; Nazir, S.; Latif, S.; Mahmood, Z.

    2010-01-01

    Cr(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of 2-(4-Nitrophenyl aminocarbonyl)benzoic acid were synthesized and characterized on the basis of physical, analytical and spectroscopic data. The ligands, as well as its metal complexes were checked for their in-vitro antimicrobial activity against three bacterial strains, Mycobacterium smegmatis, Escherichia coli, Pseudomonas aeuroginosa, and three fungal strains, Nigrospora oryzae, Aspergillus niger and Candida albicans. Disc diffusion method and Tube diffusion test were used for antibacterial and antifungal activities, respectively. The synthesized complexes only show significant antifungal activity but inactive for antibacterial, however, in general, the metal complexes were found to be more active against antimicrobial activities as compared to their un complexed ligand. (author)

  11. Effect of Zn addition on structural, magnetic properties, antistructural modeling of Co1-xZnxFe2O4 nano ferrite

    Science.gov (United States)

    Raghuvanshi, S.; Kane, S. N.; Tatarchuk, T. R.; Mazaleyrat, F.

    2018-05-01

    Effect of Zn addition on cationic distribution, structural properties, magnetic properties, antistructural modeling of nanocrystalline Co1-xZnxFe2O4 (0.08 ≤ x ≤ 0.56) ferrite is reported. XRD confirms the formation of single phase cubic spinel nano ferrites with average grain diameter ranging between 41.2 - 54.9 nm. Coercivity (Hc), anisotropy constant (K1) decreases with Zn addition, but experimental, theoretical saturation magnetization (Ms, Ms(t)) increases upto x = 0.32, then decreases, attributed to the breaking of collinear ferrimagnetic phase. Variation of magnetic properties is correlated with cationic distribution. A new antistructural modeling for describing active surface centers is discussed to explain change in concentration of donor's active centers Zn'B, Co'B, acceptor's active centers Fe*A are explained.

  12. Semiotic aspects of control and modeling relations in complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, C.

    1996-08-01

    A conceptual analysis of the semiotic nature of control is provided with the goal of elucidating its nature in complex systems. Control is identified as a canonical form of semiotic relation of a system to its environment. As a form of constraint between a system and its environment, its necessary and sufficient conditions are established, and the stabilities resulting from control are distinguished from other forms of stability. These result from the presence of semantic coding relations, and thus the class of control systems is hypothesized to be equivalent to that of semiotic systems. Control systems are contrasted with models, which, while they have the same measurement functions as control systems, do not necessarily require semantic relations because of the lack of the requirement of an interpreter. A hybrid construction of models in control systems is detailed. Towards the goal of considering the nature of control in complex systems, the possible relations among collections of control systems are considered. Powers arguments on conflict among control systems and the possible nature of control in social systems are reviewed, and reconsidered based on our observations about hierarchical control. Finally, we discuss the necessary semantic functions which must be present in complex systems for control in this sense to be present at all.

  13. Stability of rotor systems: A complex modelling approach

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob

    1998-01-01

    The dynamics of a large class of rotor systems can be modelled by a linearized complex matrix differential equation of second order, Mz + (D + iG)(z) over dot + (K + iN)z = 0, where the system matrices M, D, G, K and N are real symmetric. Moreover M and K are assumed to be positive definite and D...... approach applying bounds of appropriate Rayleigh quotients. The rotor systems tested are: a simple Laval rotor, a Laval rotor with additional elasticity and damping in the bearings, and a number of rotor systems with complex symmetric 4 x 4 randomly generated matrices.......The dynamics of a large class of rotor systems can be modelled by a linearized complex matrix differential equation of second order, Mz + (D + iG)(z) over dot + (K + iN)z = 0, where the system matrices M, D, G, K and N are real symmetric. Moreover M and K are assumed to be positive definite and D...

  14. Aminoacid N-substituted 1,4,7-triazacyclononane and 1,4,7,10-tetraazacyclododecane Zn2+, Cd2+ and Cu2+ complexes. A preparative, potentiometric titration and NMR spectroscopic study.

    Science.gov (United States)

    Plush, Sally E; Lincoln, Stephen F; Wainwright, Kevin P

    2004-05-07

    The pK(a)s and Zn2+, Cd2+ and Cu2+ complexation constants (K) for 1,4,7-tris[(2''S)-acetamido-2''-(methyl-3''-phenylpropionate)]-1,4,7-triazacyclononane, 1, 1,4,7-tris[(2''S)-acetamido-2''-(1''-carboxy-3''-phenylpropane)]-1,4,7-triazacyclononane, H(3)2, 1,4,7-tris[(2''S)-acetamido-2''-(methyl-3''-(1H-3-indolyl)propionate)]-1,4,7-triazacyclononane, 3, and 1,4,7,10-tetrakis[(2''S)-acetamido-2''-(methyl-3''-phenylpropionate)]-1,4,7,10-tetraazacyclododecane, 4, 1,4,7,10-tetrakis[(2''S)-acetamido-2''-(1''-carboxy-3''-phenylpropane)]-1,4,7,10-tetraazacyclododecane, H(4)5, in 20 : 80 v/v water-methanol solution are reported. The pK(a)s within the potentiometric detection range for H(3)1(3+) = 8.69 and 3.59, for H(6)2(3+) = 9.06, 6.13, 4.93 and 4.52, H(3)3(3+) = 8.79 and 3.67, H(4)4(4+) = 8.50, 5.62 and 3.77 and for H(8)5(4+) = 9.89, 7.06, 5.53, 5.46, 4.44 and 4.26 where each tertiary amine nitrogen is protonated. The complexes of 1: [Zn(1)]2+(9.00), [Cd(1)]2+ (6.49), [Cd(H1)]3+ (4.54) and [Cu(1)]2+ (10.01) are characterized by the log(K/dm3 mol(-1)) values shown in parentheses. Analogous complexes are formed by 3 and 4: [Zn(3)]2+ (10.19), [Cd(3)]2+ (8.54), [Cu(3)]2+ (10.77), [Zn(4)]2+ (11.41) [Cd(4)]2+ (9.16), [Cd(H4)]3+ (6.16) and [Cu(4)]2+ (11.71). The tricarboxylic acid H(3)2 generates a greater variety of complexes as exemplified by: [Zn(2)-] (10.68) [Zn(H2)] (6.60) [Zn(H(2)2)+] (5.15), [Cd(2)](-) (4.99), [Cd(H2)] (4.64), [Cd(H2(2))]+ (3.99), [Cd(H(3)2)]2+ (3.55), [Cu(2)](-) (12.55) [Cu(H2)] (7.66), [Cu(H(2)2)]+ (5.54) and [Cu(2)2](4-) (3.23). The complexes of H(4)5 were insufficiently soluble to study in this way. The 1H and 13C NMR spectra of the ligands are consistent with formation of a predominant Zn2+ and Cd2+ Delta or Lambda diastereomer. The preparations of the new pendant arm macrocycles H(3)2, 3, 4 and H(4)5 are reported.

  15. Modelling of the quenching process in complex superconducting magnet systems

    International Nuclear Information System (INIS)

    Hagedorn, D.; Rodriguez-Mateos, F.

    1992-01-01

    This paper reports that the superconducting twin bore dipole magnet for the proposed Large Hadron Collider (LHC) at CERN shows a complex winding structure consisting of eight compact layers each of them electromagnetically and thermally coupled with the others. This magnet is only one part of an electrical circuit; test and operation conditions are characterized by different circuits. In order to study the quenching process in this complex system, design adequate protection schemes, and provide a basis for the dimensioning of protection devices such as heaters, current breakers and dump resistors, a general simulation tool called QUABER has been developed using the analog system analysis program SABER. A complete set of electro-thermal models has been crated for the propagation of normal regions. Any network extension or modification is easy to implement without rewriting the whole set of differential equations

  16. Carbon doped ZnO: Synthesis, characterization and interpretation

    International Nuclear Information System (INIS)

    Mishra, D.K.; Mohapatra, J.; Sharma, M.K.; Chattarjee, R.; Singh, S.K.; Varma, Shikha; Behera, S.N.; Nayak, Sanjeev K.; Entel, P.

    2013-01-01

    A novel thermal plasma in-flight technique has been adopted to synthesize nanocrystalline ZnO and carbon doped nanocrystalline ZnO matrix. Transmission electron microscopy (TEM) studies on these samples show the average particle sizes to be around 32 nm for ZnO and for carbon doped ZnO. An enhancement of saturation magnetization in nanosized carbon doped ZnO matrix by a factor of 3.8 has been found in comparison to ZnO nanoparticles at room temperature. Raman measurement clearly indicates the presence of Zn–C complexes surrounded by ZnO matrix in carbon doped ZnO. This indicates that the ferromagnetic signature in carbon doped ZnO arises from the creation of defects or the development of oxy-carbon clusters, in the carbon doped ZnO system. Theoretical studies based on density functional theory also support the experimental analyses. - Highlights: ► Synthesis of nanocrystalline ZnO and carbon doped ZnO matrix by inflight thermal plasma reactor. ► Enhancement of ferromagnetism in nanosized carbon doped ZnO in comparison to ZnO nanoparticles. ► Raman measurement indicates the presence of Zn–C complexes surrounded by ZnO matrix. ► Ferromagnetic signature in carbon doped ZnO arises from the development of oxy-carbon clusters. ► DFT supports experimental evidence of ferromagnetism in C doped ZnO nanoparticles.

  17. A Primer for Model Selection: The Decisive Role of Model Complexity

    Science.gov (United States)

    Höge, Marvin; Wöhling, Thomas; Nowak, Wolfgang

    2018-03-01

    Selecting a "best" model among several competing candidate models poses an often encountered problem in water resources modeling (and other disciplines which employ models). For a modeler, the best model fulfills a certain purpose best (e.g., flood prediction), which is typically assessed by comparing model simulations to data (e.g., stream flow). Model selection methods find the "best" trade-off between good fit with data and model complexity. In this context, the interpretations of model complexity implied by different model selection methods are crucial, because they represent different underlying goals of modeling. Over the last decades, numerous model selection criteria have been proposed, but modelers who primarily want to apply a model selection criterion often face a lack of guidance for choosing the right criterion that matches their goal. We propose a classification scheme for model selection criteria that helps to find the right criterion for a specific goal, i.e., which employs the correct complexity interpretation. We identify four model selection classes which seek to achieve high predictive density, low predictive error, high model probability, or shortest compression of data. These goals can be achieved by following either nonconsistent or consistent model selection and by either incorporating a Bayesian parameter prior or not. We allocate commonly used criteria to these four classes, analyze how they represent model complexity and what this means for the model selection task. Finally, we provide guidance on choosing the right type of criteria for specific model selection tasks. (A quick guide through all key points is given at the end of the introduction.)

  18. Spectroscopic studies of molybdenum complexes as models for nitrogenase

    International Nuclear Information System (INIS)

    Walker, T.P.

    1981-05-01

    Because biological nitrogen fixation requires Mo, there is an interest in inorganic Mo complexes which mimic the reactions of nitrogen-fixing enzymes. Two such complexes are the dimer Mo 2 O 4 (cysteine) 2 2- and trans-Mo(N 2 ) 2 (dppe) 2 (dppe = 1,2-bis(diphenylphosphino)ethane). The H 1 and C 13 NMR of solutions of Mo 2 O 4 (cys) 2 2- are described. It is shown that in aqueous solution the cysteine ligands assume at least three distinct configurations. A step-wise dissociation of the cysteine ligand is proposed to explain the data. The Extended X-ray Absorption Fine Structure (EXAFS) of trans-Mo(N 2 ) 2 (dppe) 2 is described and compared to the EXAFS of MoH 4 (dppe) 2 . The spectra are fitted to amplitude and phase parameters developed at Bell Laboratories. On the basis of this analysis, one can determine (1) that the dinitrogen complex contains nitrogen and the hydride complex does not and (2) the correct Mo-N distance. This is significant because the Mo inn both complexes is coordinated by four P atoms which dominate the EXAFS. A similar sort of interference is present in nitrogenase due to S coordination of the Mo in the enzyme. This model experiment indicates that, given adequate signal to noise ratios, the presence or absence of dinitrogen coordination to Mo in the enzyme may be determined by EXAFS using existing data analysis techniques. A new reaction between Mo 2 O 4 (cys) 2 2- and acetylene is described to the extent it is presently understood. A strong EPR signal is observed, suggesting the production of stable Mo(V) monomers. EXAFS studies support this suggestion. The Mo K-edge is described. The edge data suggests Mo(VI) is also produced in the reaction. Ultraviolet spectra suggest that cysteine is released in the course of the reaction

  19. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II, Co(II, Ni(II, Cu(II, and Zn(II] metals

    Directory of Open Access Journals (Sweden)

    Nahid Nishat

    2016-09-01

    Full Text Available A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II, Co(II, Ni(II, Cu(II and Zn(II. All the polymeric compounds were characterized by (FT-IR spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA and antibacterial activities. Polymer complexes of Mn(II, Co(II and Ni(II show octahedral geometry, while polymer complexes of Cu(II and Zn(II show square planar and tetrahedral geometry, respectively. The TGA revealed that all the polymer metal complexes are more thermally stable than their parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM-D-5338-93 standards of biodegradable polymers by CO2 evolution method which says that coordination decreases biodegradability. The antibacterial activity was screened with the agar well diffusion method against some selected microorganisms. Among all the complexes, the antibacterial activity of the Cu(II polymer–metal complex showed the highest zone of inhibition because of its higher stability constant.

  20. Diffusion in higher dimensional SYK model with complex fermions

    Science.gov (United States)

    Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong

    2018-01-01

    We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.

  1. 3D model of amphioxus steroid receptor complexed with estradiol

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Michael E., E-mail: mbaker@ucsd.edu [Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693 (United States); Chang, David J. [Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693 (United States)

    2009-08-28

    The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen-binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ER{alpha} are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ER{alpha} in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid-binding to nuclear receptors.

  2. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    International Nuclear Information System (INIS)

    Bonten, Luc T.C.; Groenenberg, Jan E.; Meesenburg, Henning; Vries, Wim de

    2011-01-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: → Surface complexation models can be well applied in field studies. → Soil chemistry under a forest site is adequately modelled using generic parameters. → The model is easily extended with extra elements within the existing framework. → Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  3. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bonten, Luc T.C., E-mail: luc.bonten@wur.nl [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Groenenberg, Jan E. [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Meesenburg, Henning [Northwest German Forest Research Station, Abt. Umweltkontrolle, Sachgebiet Intensives Umweltmonitoring, Goettingen (Germany); Vries, Wim de [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2011-10-15

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: > Surface complexation models can be well applied in field studies. > Soil chemistry under a forest site is adequately modelled using generic parameters. > The model is easily extended with extra elements within the existing framework. > Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  4. Biodynamic modelling of the bioaccumulation of trace metals (Ag, As and Zn) by an infaunal estuarine invertebrate, the clam Scrobicularia plana

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, J., E-mail: judit.kalman@uca.es [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Smith, B.D. [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Bury, N.R. [Division of Diabetes and Nutritional Science, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Rainbow, P.S. [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom)

    2014-09-15

    Highlights: • Biodynamic modelling is used to predict accumulation of Ag, As and Zn in S. plana. • Dissolved and sediment-associated metals contribute to total metal bioaccumulation. • Relative importance varies with water and sediment concentrations and geochemistries. - Abstract: Biodynamic modelling was used to investigate the uptake and accumulation of three trace metals (Ag, As, Zn) by the deposit feeding estuarine bivalve mollusc Scrobicularia plana. Radioactive labelling techniques were used to quantify the rates of trace metal uptake (and subsequent elimination) from water and sediment diet. The uptake rate constant from solution (±SE) was greatest for Ag (3.954 ± 0.375 l g{sup −1} d{sup −1}) followed by As (0.807 ± 0.129 l g{sup −1} d{sup −1}) and Zn (0.103 ± 0.016 l g{sup −1} d{sup −1}). Assimilation efficiencies from ingested sediment were 40.2 ± 1.3% (Ag), 31.7 ± 1.0% (Zn) and 25.3 ± 0.9% (As). Efflux rate constants after exposure to metals in the solution or sediment fell in the range of 0.014–0.060 d{sup −1}. By incorporating these physiological parameters into biodynamic models, our results showed that dissolved metal is the predominant source of accumulated Ag, As and Zn in S. plana, accounting for 66–99%, 50–97% and 52–98% of total accumulation of Ag, As and Zn, respectively, under different field exposure conditions. In general, model-predicted steady state concentrations of Ag, As and Zn matched well with those observed in clams collected in SW England estuaries. Our findings highlight the potential of biodynamic modelling to predict Ag, As and Zn accumulation in S. plana, taking into account specific dissolved and sediment concentrations of the metals at a particular field site, together with local water and sediment geochemistries.

  5. Multiagent model and mean field theory of complex auction dynamics

    Science.gov (United States)

    Chen, Qinghua; Huang, Zi-Gang; Wang, Yougui; Lai, Ying-Cheng

    2015-09-01

    Recent years have witnessed a growing interest in analyzing a variety of socio-economic phenomena using methods from statistical and nonlinear physics. We study a class of complex systems arising from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a general feature of the bid price distribution: an inverted J-shaped function with exponential decay in the large bid price region. To account for the distribution, we propose a multi-agent model in which each agent bids stochastically in the field of winner’s attractiveness, and develop a theoretical framework to obtain analytic solutions of the model based on mean field analysis. The theory produces bid-price distributions that are in excellent agreement with those from the real data. Our model and theory capture the essential features of human behaviors in the competitive environment as exemplified by LUBA, and may provide significant quantitative insights into complex socio-economic phenomena.

  6. Multiagent model and mean field theory of complex auction dynamics

    International Nuclear Information System (INIS)

    Chen, Qinghua; Wang, Yougui; Huang, Zi-Gang; Lai, Ying-Cheng

    2015-01-01

    Recent years have witnessed a growing interest in analyzing a variety of socio-economic phenomena using methods from statistical and nonlinear physics. We study a class of complex systems arising from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a general feature of the bid price distribution: an inverted J-shaped function with exponential decay in the large bid price region. To account for the distribution, we propose a multi-agent model in which each agent bids stochastically in the field of winner’s attractiveness, and develop a theoretical framework to obtain analytic solutions of the model based on mean field analysis. The theory produces bid-price distributions that are in excellent agreement with those from the real data. Our model and theory capture the essential features of human behaviors in the competitive environment as exemplified by LUBA, and may provide significant quantitative insights into complex socio-economic phenomena. (paper)

  7. Complex Coronary Hemodynamics - Simple Analog Modelling as an Educational Tool.

    Science.gov (United States)

    Parikh, Gaurav R; Peter, Elvis; Kakouros, Nikolaos

    2017-01-01

    Invasive coronary angiography remains the cornerstone for evaluation of coronary stenoses despite there being a poor correlation between luminal loss assessment by coronary luminography and myocardial ischemia. This is especially true for coronary lesions deemed moderate by visual assessment. Coronary pressure-derived fractional flow reserve (FFR) has emerged as the gold standard for the evaluation of hemodynamic significance of coronary artery stenosis, which is cost effective and leads to improved patient outcomes. There are, however, several limitations to the use of FFR including the evaluation of serial stenoses. In this article, we discuss the electronic-hydraulic analogy and the utility of simple electrical modelling to mimic the coronary circulation and coronary stenoses. We exemplify the effect of tandem coronary lesions on the FFR by modelling of a patient with sequential disease segments and complex anatomy. We believe that such computational modelling can serve as a powerful educational tool to help clinicians better understand the complexity of coronary hemodynamics and improve patient care.

  8. Are more complex physiological models of forest ecosystems better choices for plot and regional predictions?

    Science.gov (United States)

    Wenchi Jin; Hong S. He; Frank R. Thompson

    2016-01-01

    Process-based forest ecosystem models vary from simple physiological, complex physiological, to hybrid empirical-physiological models. Previous studies indicate that complex models provide the best prediction at plot scale with a temporal extent of less than 10 years, however, it is largely untested as to whether complex models outperform the other two types of models...

  9. Modelling study of sea breezes in a complex coastal environment

    Science.gov (United States)

    Cai, X.-M.; Steyn, D. G.

    This study investigates a mesoscale modelling of sea breezes blowing from a narrow strait into the lower Fraser valley (LFV), British Columbia, Canada, during the period of 17-20 July, 1985. Without a nudging scheme in the inner grid, the CSU-RAMS model produces satisfactory wind and temperature fields during the daytime. In comparison with observation, the agreement indices for surface wind and temperature during daytime reach about 0.6 and 0.95, respectively, while the agreement indices drop to 0.4 at night. In the vertical, profiles of modelled wind and temperature generally agree with tethersonde data collected on 17 and 19 July. The study demonstrates that in late afternoon, the model does not capture the advection of an elevated warm layer which originated from land surfaces outside of the inner grid. Mixed layer depth (MLD) is calculated from model output of turbulent kinetic energy field. Comparison of MLD results with observation shows that the method generates a reliable MLD during the daytime, and that accurate estimates of MLD near the coast require the correct simulation of wind conditions over the sea. The study has shown that for a complex coast environment like the LFV, a reliable modelling study depends not only on local surface fluxes but also on elevated layers transported from remote land surfaces. This dependence is especially important when local forcings are weak, for example, during late afternoon and at night.

  10. Physical modelling of flow and dispersion over complex terrain

    Science.gov (United States)

    Cermak, J. E.

    1984-09-01

    Atmospheric motion and dispersion over topography characterized by irregular (or regular) hill-valley or mountain-valley distributions are strongly dependent upon three general sets of variables. These are variables that describe topographic geometry, synoptic-scale winds and surface-air temperature distributions. In addition, pollutant concentration distributions also depend upon location and physical characteristics of the pollutant source. Overall fluid-flow complexity and variability from site to site have stimulated the development and use of physical modelling for determination of flow and dispersion in many wind-engineering applications. Models with length scales as small as 1:12,000 have been placed in boundary-layer wind tunnels to study flows in which forced convection by synoptic winds is of primary significance. Flows driven primarily by forces arising from temperature differences (gravitational or free convection) have been investigated by small-scale physical models placed in an isolated space (gravitational convection chamber). Similarity criteria and facilities for both forced and gravitational-convection flow studies are discussed. Forced-convection modelling is illustrated by application to dispersion of air pollutants by unstable flow near a paper mill in the state of Maryland and by stable flow over Point Arguello, California. Gravitational-convection modelling is demonstrated by a study of drainage flow and pollutant transport from a proposed mining operation in the Rocky Mountains of Colorado. Other studies in which field data are available for comparison with model data are reviewed.

  11. Modeling the Propagation of Mobile Phone Virus under Complex Network

    Science.gov (United States)

    Yang, Wei; Wei, Xi-liang; Guo, Hao; An, Gang; Guo, Lei

    2014-01-01

    Mobile phone virus is a rogue program written to propagate from one phone to another, which can take control of a mobile device by exploiting its vulnerabilities. In this paper the propagation model of mobile phone virus is tackled to understand how particular factors can affect its propagation and design effective containment strategies to suppress mobile phone virus. Two different propagation models of mobile phone viruses under the complex network are proposed in this paper. One is intended to describe the propagation of user-tricking virus, and the other is to describe the propagation of the vulnerability-exploiting virus. Based on the traditional epidemic models, the characteristics of mobile phone viruses and the network topology structure are incorporated into our models. A detailed analysis is conducted to analyze the propagation models. Through analysis, the stable infection-free equilibrium point and the stability condition are derived. Finally, considering the network topology, the numerical and simulation experiments are carried out. Results indicate that both models are correct and suitable for describing the spread of two different mobile phone viruses, respectively. PMID:25133209

  12. Animal Models of Lymphangioleiomyomatosis (LAM) and Tuberous Sclerosis Complex (TSC)

    Science.gov (United States)

    2010-01-01

    Abstract Animal models of lymphangioleiomyomatosis (LAM) and tuberous sclerosis complex (TSC) are highly desired to enable detailed investigation of the pathogenesis of these diseases. Multiple rats and mice have been generated in which a mutation similar to that occurring in TSC patients is present in an allele of Tsc1 or Tsc2. Unfortunately, these mice do not develop pathologic lesions that match those seen in LAM or TSC. However, these Tsc rodent models have been useful in confirming the two-hit model of tumor development in TSC, and in providing systems in which therapeutic trials (e.g., rapamycin) can be performed. In addition, conditional alleles of both Tsc1 and Tsc2 have provided the opportunity to target loss of these genes to specific tissues and organs, to probe the in vivo function of these genes, and attempt to generate better models. Efforts to generate an authentic LAM model are impeded by a lack of understanding of the cell of origin of this process. However, ongoing studies provide hope that such a model will be generated in the coming years. PMID:20235887

  13. Complex Data Modeling and Computationally Intensive Statistical Methods

    CERN Document Server

    Mantovan, Pietro

    2010-01-01

    The last years have seen the advent and development of many devices able to record and store an always increasing amount of complex and high dimensional data; 3D images generated by medical scanners or satellite remote sensing, DNA microarrays, real time financial data, system control datasets. The analysis of this data poses new challenging problems and requires the development of novel statistical models and computational methods, fueling many fascinating and fast growing research areas of modern statistics. The book offers a wide variety of statistical methods and is addressed to statistici

  14. Complex Dynamics of an Adnascent-Type Game Model

    Directory of Open Access Journals (Sweden)

    Baogui Xin

    2008-01-01

    Full Text Available The paper presents a nonlinear discrete game model for two oligopolistic firms whose products are adnascent. (In biology, the term adnascent has only one sense, “growing to or on something else,” e.g., “moss is an adnascent plant.” See Webster's Revised Unabridged Dictionary published in 1913 by C. & G. Merriam Co., edited by Noah Porter. The bifurcation of its Nash equilibrium is analyzed with Schwarzian derivative and normal form theory. Its complex dynamics is demonstrated by means of the largest Lyapunov exponents, fractal dimensions, bifurcation diagrams, and phase portraits. At last, bifurcation and chaos anticontrol of this system are studied.

  15. Preparation of Schiff s base complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) and their spectroscopic, magnetic, thermal, and antifungal studies

    International Nuclear Information System (INIS)

    Parekh, H.M.; Patel, M.N.

    2006-01-01

    The potassium salt of salicylidene-DL-alanine (KHL), bis(benzylidene)ethylenediamine (A 1 ), thiophene-o-carboxaldene-p-toluidine (A 2 ), and its metal complexes of the formula [(M II (L)(A)(H 2 O)] (M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II); A = A 1 or A 2 ) are prepared. They are characterized by elemental analysis, magnetic susceptibility measurements, thermogravimetric analysis, and infrared and electronic spectral studies. The electronic spectral and magnetic moment data suggest an octahedral geometry for the complexes. All of these complexes, metal nitrates, fungicides (bavistin and emcarb), and ligands are screened for their antifungal activity against Aspergillus niger, Fusarium oxysporum, and Aspergillus flavus using a plate poison technique. The complexes show higher activity than those of the free ligands, metal nitrate, and the control (DMSO) and moderate activity against bavistin and emcarb [ru

  16. Socio-Environmental Resilience and Complex Urban Systems Modeling

    Science.gov (United States)

    Deal, Brian; Petri, Aaron; Pan, Haozhi; Goldenberg, Romain; Kalantari, Zahra; Cvetkovic, Vladimir

    2017-04-01

    The increasing pressure of climate change has inspired two normative agendas; socio-technical transitions and socio-ecological resilience, both sharing a complex-systems epistemology (Gillard et al. 2016). Socio-technical solutions include a continuous, massive data gathering exercise now underway in urban places under the guise of developing a 'smart'(er) city. This has led to the creation of data-rich environments where large data sets have become central to monitoring and forming a response to anomalies. Some have argued that these kinds of data sets can help in planning for resilient cities (Norberg and Cumming 2008; Batty 2013). In this paper, we focus on a more nuanced, ecologically based, socio-environmental perspective of resilience planning that is often given less consideration. Here, we broadly discuss (and model) the tightly linked, mutually influenced, social and biophysical subsystems that are critical for understanding urban resilience. We argue for the need to incorporate these sub system linkages into the resilience planning lexicon through the integration of systems models and planning support systems. We make our case by first providing a context for urban resilience from a socio-ecological and planning perspective. We highlight the data needs for this type of resilient planning and compare it to currently collected data streams in various smart city efforts. This helps to define an approach for operationalizing socio-environmental resilience planning using robust systems models and planning support systems. For this, we draw from our experiences in coupling a spatio-temporal land use model (the Landuse Evolution and impact Assessment Model (LEAM)) with water quality and quantity models in Stockholm Sweden. We describe the coupling of these systems models using a robust Planning Support System (PSS) structural framework. We use the coupled model simulations and PSS to analyze the connection between urban land use transformation (social) and water

  17. Description of vibrational properties of random alloy ZnTe1-xSex within the percolation model

    International Nuclear Information System (INIS)

    Souhabi, Jihane; Chafi, Allal; Kassem, Mohammed; Nassour, Ayoub; Gleize, Jerome; Postnikov, A.V.; Hugel, J.; Pages, Olivier

    2009-01-01

    We discuss the classification of the phonon type behavior of semiconductor alloys as apparent in the Raman and infrared spectra, i.e. in terms of types (i) 1-bond→1-mode and (ii) 2-bond→1-mode (both covered by the Modified Random Element Isodisplacement model, operating at the macroscopic scale), and also (iii) the modified 2-mode type (exceptional), in the framework of the recent 1-bond→2-mode percolation model based on a description of the alloy disorder at the mesoscopic scale. The leading systems of types (i) and (iii), i.e., InGaAs and InGaP, respectively, were earlier shown to obey the percolation model. The aim of this work is to investigate whether the percolation model further extends to the leading system of the last type (ii), i.e. ZnTeSe. With this end in view, we perform a careful re-examination of the Raman and infrared spectra of this alloy, as available in the literature. Special attention is awarded to the discussion and modeling of the puzzling multi-mode infrared reflectivity spectra. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. a Range Based Method for Complex Facade Modeling

    Science.gov (United States)

    Adami, A.; Fregonese, L.; Taffurelli, L.

    2011-09-01

    3d modelling of Architectural Heritage does not follow a very well-defined way, but it goes through different algorithms and digital form according to the shape complexity of the object, to the main goal of the representation and to the starting data. Even if the process starts from the same data, such as a pointcloud acquired by laser scanner, there are different possibilities to realize a digital model. In particular we can choose between two different attitudes: the mesh and the solid model. In the first case the complexity of architecture is represented by a dense net of triangular surfaces which approximates the real surface of the object. In the other -opposite- case the 3d digital model can be realized by the use of simple geometrical shapes, by the use of sweeping algorithm and the Boolean operations. Obviously these two models are not the same and each one is characterized by some peculiarities concerning the way of modelling (the choice of a particular triangulation algorithm or the quasi-automatic modelling by known shapes) and the final results (a more detailed and complex mesh versus an approximate and more simple solid model). Usually the expected final representation and the possibility of publishing lead to one way or the other. In this paper we want to suggest a semiautomatic process to build 3d digital models of the facades of complex architecture to be used for example in city models or in other large scale representations. This way of modelling guarantees also to obtain small files to be published on the web or to be transmitted. The modelling procedure starts from laser scanner data which can be processed in the well known way. Usually more than one scan is necessary to describe a complex architecture and to avoid some shadows on the facades. These have to be registered in a single reference system by the use of targets which are surveyed by topography and then to be filtered in order to obtain a well controlled and homogeneous point cloud of

  19. A RANGE BASED METHOD FOR COMPLEX FACADE MODELING

    Directory of Open Access Journals (Sweden)

    A. Adami

    2012-09-01

    Full Text Available 3d modelling of Architectural Heritage does not follow a very well-defined way, but it goes through different algorithms and digital form according to the shape complexity of the object, to the main goal of the representation and to the starting data. Even if the process starts from the same data, such as a pointcloud acquired by laser scanner, there are different possibilities to realize a digital model. In particular we can choose between two different attitudes: the mesh and the solid model. In the first case the complexity of architecture is represented by a dense net of triangular surfaces which approximates the real surface of the object. In the other -opposite- case the 3d digital model can be realized by the use of simple geometrical shapes, by the use of sweeping algorithm and the Boolean operations. Obviously these two models are not the same and each one is characterized by some peculiarities concerning the way of modelling (the choice of a particular triangulation algorithm or the quasi-automatic modelling by known shapes and the final results (a more detailed and complex mesh versus an approximate and more simple solid model. Usually the expected final representation and the possibility of publishing lead to one way or the other. In this paper we want to suggest a semiautomatic process to build 3d digital models of the facades of complex architecture to be used for example in city models or in other large scale representations. This way of modelling guarantees also to obtain small files to be published on the web or to be transmitted. The modelling procedure starts from laser scanner data which can be processed in the well known way. Usually more than one scan is necessary to describe a complex architecture and to avoid some shadows on the facades. These have to be registered in a single reference system by the use of targets which are surveyed by topography and then to be filtered in order to obtain a well controlled and

  20. A subsurface model of the beaver meadow complex

    Science.gov (United States)

    Nash, C.; Grant, G.; Flinchum, B. A.; Lancaster, J.; Holbrook, W. S.; Davis, L. G.; Lewis, S.

    2015-12-01

    Wet meadows are a vital component of arid and semi-arid environments. These valley spanning, seasonally inundated wetlands provide critical habitat and refugia for wildlife, and may potentially mediate catchment-scale hydrology in otherwise "water challenged" landscapes. In the last 150 years, these meadows have begun incising rapidly, causing the wetlands to drain and much of the ecological benefit to be lost. The mechanisms driving this incision are poorly understood, with proposed means ranging from cattle grazing to climate change, to the removal of beaver. There is considerable interest in identifying cost-effective strategies to restore the hydrologic and ecological conditions of these meadows at a meaningful scale, but effective process based restoration first requires a thorough understanding of the constructional history of these ubiquitous features. There is emerging evidence to suggest that the North American beaver may have had a considerable role in shaping this landscape through the building of dams. This "beaver meadow complex hypothesis" posits that as beaver dams filled with fine-grained sediments, they became large wet meadows on which new dams, and new complexes, were formed, thereby aggrading valley bottoms. A pioneering study done in Yellowstone indicated that 32-50% of the alluvial sediment was deposited in ponded environments. The observed aggradation rates were highly heterogeneous, suggesting spatial variability in the depositional process - all consistent with the beaver meadow complex hypothesis (Polvi and Wohl, 2012). To expand on this initial work, we have probed deeper into these meadow complexes using a combination of geophysical techniques, coring methods and numerical modeling to create a 3-dimensional representation of the subsurface environments. This imaging has given us a unique view into the patterns and processes responsible for the landforms, and may shed further light on the role of beaver in shaping these landscapes.

  1. Simple models for studying complex spatiotemporal patterns of animal behavior

    Science.gov (United States)

    Tyutyunov, Yuri V.; Titova, Lyudmila I.

    2017-06-01

    Minimal mathematical models able to explain complex patterns of animal behavior are essential parts of simulation systems describing large-scale spatiotemporal dynamics of trophic communities, particularly those with wide-ranging species, such as occur in pelagic environments. We present results obtained with three different modelling approaches: (i) an individual-based model of animal spatial behavior; (ii) a continuous taxis-diffusion-reaction system of partial-difference equations; (iii) a 'hybrid' approach combining the individual-based algorithm of organism movements with explicit description of decay and diffusion of the movement stimuli. Though the models are based on extremely simple rules, they all allow description of spatial movements of animals in a predator-prey system within a closed habitat, reproducing some typical patterns of the pursuit-evasion behavior observed in natural populations. In all three models, at each spatial position the animal movements are determined by local conditions only, so the pattern of collective behavior emerges due to self-organization. The movement velocities of animals are proportional to the density gradients of specific cues emitted by individuals of the antagonistic species (pheromones, exometabolites or mechanical waves of the media, e.g., sound). These cues play a role of taxis stimuli: prey attract predators, while predators repel prey. Depending on the nature and the properties of the movement stimulus we propose using either a simplified individual-based model, a continuous taxis pursuit-evasion system, or a little more detailed 'hybrid' approach that combines simulation of the individual movements with the continuous model describing diffusion and decay of the stimuli in an explicit way. These can be used to improve movement models for many species, including large marine predators.

  2. Sparse Estimation Using Bayesian Hierarchical Prior Modeling for Real and Complex Linear Models

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand; Manchón, Carles Navarro; Badiu, Mihai Alin

    2015-01-01

    In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex-valued m......In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex...... error, and robustness in low and medium signal-to-noise ratio regimes....

  3. Automated sensitivity analysis: New tools for modeling complex dynamic systems

    International Nuclear Information System (INIS)

    Pin, F.G.

    1987-01-01

    Sensitivity analysis is an established methodology used by researchers in almost every field to gain essential insight in design and modeling studies and in performance assessments of complex systems. Conventional sensitivity analysis methodologies, however, have not enjoyed the widespread use they deserve considering the wealth of information they can provide, partly because of their prohibitive cost or the large initial analytical investment they require. Automated systems have recently been developed at ORNL to eliminate these drawbacks. Compilers such as GRESS and EXAP now allow automatic and cost effective calculation of sensitivities in FORTRAN computer codes. In this paper, these and other related tools are described and their impact and applicability in the general areas of modeling, performance assessment and decision making for radioactive waste isolation problems are discussed

  4. Complex system modelling and control through intelligent soft computations

    CERN Document Server

    Azar, Ahmad

    2015-01-01

    The book offers a snapshot of the theories and applications of soft computing in the area of complex systems modeling and control. It presents the most important findings discussed during the 5th International Conference on Modelling, Identification and Control, held in Cairo, from August 31-September 2, 2013. The book consists of twenty-nine selected contributions, which have been thoroughly reviewed and extended before their inclusion in the volume. The different chapters, written by active researchers in the field, report on both current theories and important applications of soft-computing. Besides providing the readers with soft-computing fundamentals, and soft-computing based inductive methodologies/algorithms, the book also discusses key industrial soft-computing applications, as well as multidisciplinary solutions developed for a variety of purposes, like windup control, waste management, security issues, biomedical applications and many others. It is a perfect reference guide for graduate students, r...

  5. Does model performance improve with complexity? A case study with three hydrological models

    Science.gov (United States)

    Orth, Rene; Staudinger, Maria; Seneviratne, Sonia I.; Seibert, Jan; Zappa, Massimiliano

    2015-04-01

    In recent decades considerable progress has been made in climate model development. Following the massive increase in computational power, models became more sophisticated. At the same time also simple conceptual models have advanced. In this study we validate and compare three hydrological models of different complexity to investigate whether their performance varies accordingly. For this purpose we use runoff and also soil moisture measurements, which allow a truly independent validation, from several sites across Switzerland. The models are calibrated in similar ways with the same runoff data. Our results show that the more complex models HBV and PREVAH outperform the simple water balance model (SWBM) in case of runoff but not for soil moisture. Furthermore the most sophisticated PREVAH model shows an added value compared to the HBV model only in case of soil moisture. Focusing on extreme events we find generally improved performance of the SWBM during drought conditions and degraded agreement with observations during wet extremes. For the more complex models we find the opposite behavior, probably because they were primarily developed for prediction of runoff extremes. As expected given their complexity, HBV and PREVAH have more problems with over-fitting. All models show a tendency towards better performance in lower altitudes as opposed to (pre-) alpine sites. The results vary considerably across the investigated sites. In contrast, the different metrics we consider to estimate the agreement between models and observations lead to similar conclusions, indicating that the performance of the considered models is similar at different time scales as well as for anomalies and long-term means. We conclude that added complexity does not necessarily lead to improved performance of hydrological models, and that performance can vary greatly depending on the considered hydrological variable (e.g. runoff vs. soil moisture) or hydrological conditions (floods vs. droughts).

  6. Ternary complexes of Zn(II) and Cu(II) with 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide in the presence of heterocyclic bases as auxiliary ligands: Synthesis, spectroscopic and structural characterization and antibacterial activity

    Science.gov (United States)

    Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim

    2018-03-01

    The new ternary complexes, ZnLL‧ [L = 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide and L‧ = imidazole (1), 2, 2‧-bipyridine (2) and 2-methyimidazole (3)], Zn2L2L‧ [L‧ = 4, 4‧-bipy (4)] and CuLL‧ [L‧ = 2, 2‧-bipy (5)] have been synthesized by the reaction of a metal(II) acetate salt with the thiosemicarbazone and in presence of heterocyclic bases as auxiliary ligands. The synthesized compounds were investigated by elemental analysis and IR, 1H NMR, and 13C NMR spectroscopy and complex 5 was structurally characterized by X-ray crystallography. The results indicate the thiosemicarbazone doubly deprotonated and coordinates to metal through the thiolate sulfur, imine nitrogen and phenolic oxygen atoms. The nitrogen atom(s) of the auxiliary ligand complete the coordination sphere. Complex 4 is binuclear with 4, 4‧-bipy acting as a bridging ligand. The structure of 5 is a distorted square pyramid with one of the bipyridine nitrogen atoms in the apical position. This compound creates an inversion dimer in solid state by intermolecular hydrogen bonds of Nsbnd H⋯S type. The in vitro antibacterial activity of the synthesized compounds were evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and is compared to that of standard antibacterial drugs. All complexes exhibit good inhibitory effects and are significantly more effective than the parent ligand.

  7. Accurate modeling and evaluation of microstructures in complex materials

    Science.gov (United States)

    Tahmasebi, Pejman

    2018-02-01

    Accurate characterization of heterogeneous materials is of great importance for different fields of science and engineering. Such a goal can be achieved through imaging. Acquiring three- or two-dimensional images under different conditions is not, however, always plausible. On the other hand, accurate characterization of complex and multiphase materials requires various digital images (I) under different conditions. An ensemble method is presented that can take one single (or a set of) I(s) and stochastically produce several similar models of the given disordered material. The method is based on a successive calculating of a conditional probability by which the initial stochastic models are produced. Then, a graph formulation is utilized for removing unrealistic structures. A distance transform function for the Is with highly connected microstructure and long-range features is considered which results in a new I that is more informative. Reproduction of the I is also considered through a histogram matching approach in an iterative framework. Such an iterative algorithm avoids reproduction of unrealistic structures. Furthermore, a multiscale approach, based on pyramid representation of the large Is, is presented that can produce materials with millions of pixels in a matter of seconds. Finally, the nonstationary systems—those for which the distribution of data varies spatially—are studied using two different methods. The method is tested on several complex and large examples of microstructures. The produced results are all in excellent agreement with the utilized Is and the similarities are quantified using various correlation functions.

  8. Green IT engineering concepts, models, complex systems architectures

    CERN Document Server

    Kondratenko, Yuriy; Kacprzyk, Janusz

    2017-01-01

    This volume provides a comprehensive state of the art overview of a series of advanced trends and concepts that have recently been proposed in the area of green information technologies engineering as well as of design and development methodologies for models and complex systems architectures and their intelligent components. The contributions included in the volume have their roots in the authors’ presentations, and vivid discussions that have followed the presentations, at a series of workshop and seminars held within the international TEMPUS-project GreenCo project in United Kingdom, Italy, Portugal, Sweden and the Ukraine, during 2013-2015 and at the 1st - 5th Workshops on Green and Safe Computing (GreenSCom) held in Russia, Slovakia and the Ukraine. The book presents a systematic exposition of research on principles, models, components and complex systems and a description of industry- and society-oriented aspects of the green IT engineering. A chapter-oriented structure has been adopted for this book ...

  9. Modeling of catalytically active metal complex species and intermediates in reactions of organic halides electroreduction.

    Science.gov (United States)

    Lytvynenko, Anton S; Kolotilov, Sergey V; Kiskin, Mikhail A; Eremenko, Igor L; Novotortsev, Vladimir M

    2015-02-28

    The results of quantum chemical modeling of organic and metal-containing intermediates that occur in electrocatalytic dehalogenation reactions of organic chlorides are presented. Modeling of processes that take place in successive steps of the electrochemical reduction of representative C1 and C2 chlorides - CHCl3 and Freon R113 (1,1,2-trifluoro-1,2,2-trichloroethane) - was carried out by density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2). It was found that taking solvation into account using an implicit solvent model (conductor-like screening model, COSMO) or considering explicit solvent molecules gave similar results. In addition to modeling of simple non-catalytic dehalogenation, processes with a number of complexes and their reduced forms, some of which were catalytically active, were investigated by DFT. Complexes M(L1)2 (M = Fe, Co, Ni, Cu, Zn, L1H = Schiff base from 2-pyridinecarbaldehyde and the hydrazide of 4-pyridinecarboxylic acid), Ni(L2) (H2L2 is the Schiff base from salicylaldehyde and 1,2-ethylenediamine, known as salen) and Co(L3)2Cl2, representing a fragment of a redox-active coordination polymer [Co(L3)Cl2]n (L3 is the dithioamide of 1,3-benzenedicarboxylic acid), were considered. Gradual changes in electronic structure in a series of compounds M(L1)2 were observed, and correlations between [M(L1)2](0) spin-up and spin-down LUMO energies and the relative energies of the corresponding high-spin and low-spin reduced forms, as well as the shape of the orbitals, were proposed. These results can be helpful for determination of the nature of redox-processes in similar systems by DFT. No specific covalent interactions between [M(L1)2](-) and the R113 molecule (M = Fe, Co, Ni, Zn) were found, which indicates that M(L1)2 electrocatalysts act rather like electron transfer mediators via outer-shell electron transfer. A relaxed surface scan of the adducts {M(L1)2·R113}(-) (M = Ni or Co) versus the distance between the

  10. Modelling methodology for engineering of complex sociotechnical systems

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2014-10-01

    Full Text Available Different systems engineering techniques and approaches are applied to design and develop complex sociotechnical systems for complex problems. In a complex sociotechnical system cognitive and social humans use information technology to make sense...

  11. Interaction of Zn(II) with hematite nanoparticles and microparticles: Part 2. ATR-FTIR and EXAFS study of the aqueous Zn(II)/oxalate/hematite ternary system.

    Science.gov (United States)

    Ha, Juyoung; Trainor, Thomas P; Farges, François; Brown, Gordon E

    2009-05-19

    Sorption of Zn(II) to hematite nanoparticles (HN) (av diam=10.5 nm) and microparticles (HM) (av diam=550 nm) was studied in the presence of oxalate anions (Ox2-(aq)) in aqueous solutions as a function of total Zn(II)(aq) to total Ox2-(aq) concentration ratio (R=[Zn(II)(aq)]tot/[Ox2-(aq)]tot) at pH 5.5. Zn(II) uptake is similar in extent for both the Zn(II)/Ox/HN and Zn(II)/Ox/HM ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)](tot)system than for the Zn(II)/Ox/HM ternary and the Zn(II)/HN and Zn(II)/HM binary systems at [Zn(II)(aq)]tot>4 mM. In contrast, Zn(II) uptake for the Zn(II)/HM binary system is a factor of 2 greater than that for the Zn(II)/Ox/HM and Zn(II)/Ox/HN ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)]totternary system at both R values examined (0.16 and 0.68), attenuated total reflectance Fourier transform infrared (ATR-FTIR) results are consistent with the presence of inner-sphere oxalate complexes and outer-sphere ZnOx(aq) complexes, and/or type A ternary complexes. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopic results suggest that type A ternary surface complexes (i.e., >O2-Zn-Ox) are present. In the Zn(II)/Ox/HN ternary system at R=0.15, ATR-FTIR results indicate the presence of inner-sphere oxalate and outer-sphere ZnOx(aq) complexes; the EXAFS results provide no evidence for inner-sphere Zn(II) complexes or type A ternary complexes. In contrast, ATR-FTIR results for the Zn/Ox/HN sample with R = 0.68 are consistent with a ZnOx(s)-like surface precipitate and possibly type B ternary surface complexes (i.e., >O2-Ox-Zn). EXAFS results are also consistent with the presence of ZnOx(s)-like precipitates. We ascribe the observed increase of Zn(II)(aq) uptake in the Zn(II)/Ox/HN ternary system at [Zn(II)(aq)]tot>or=4 mM relative to the Zn(II)/Ox/HM ternary system to formation of a ZnOx(s)-like precipitate at the hematite nanoparticle/water interface.

  12. Semi-empirical device model for Cu{sub 2}ZnSn(S,Se){sub 4} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gokmen, Tayfun; Gunawan, Oki; Mitzi, David B. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2014-07-21

    We present a device model for the hydrazine processed kesterite Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) solar cell with a world record efficiency of ∼12.6%. Detailed comparison of the simulation results, performed using wxAMPS software, to the measured device parameters shows that our model captures the vast majority of experimental observations, including V{sub OC}, J{sub SC}, FF, and efficiency under normal operating conditions, and temperature vs. V{sub OC}, sun intensity vs. V{sub OC}, and quantum efficiency. Moreover, our model is consistent with material properties derived from various techniques. Interestingly, this model does not have any interface defects/states, suggesting that all the experimentally observed features can be accounted for by the bulk properties of CZTSSe. An electrical (mobility) gap that is smaller than the optical gap is critical to fit the V{sub OC} data. These findings point to the importance of tail states in CZTSSe solar cells.

  13. Study of a scintillation neutron detector of 1OB+ZnS(Ag) as alternative to the 3He detectors: model MCNPX and validation

    International Nuclear Information System (INIS)

    Guzman G, K. A.; Gallego D, E.; Lorente F, A.; Ibanez F, S.; Vega C, H. R.; Mendez V, R.; Gonzalez, J. A.

    2015-10-01

    Using Monte Carlo methods with the code MCNPX, was estimated the response of a scintillation neutron detector of Zn S(Ag) with a mixture of 10 B high enrichment. The detector consists of four plates of Poly (methyl methacrylate) (PMMA) and five layers of ∼0, 017 cm 10 B+ZnS(Ag) in contact with PMMA. The naked detector response was calculated and with different thicknesses of high density polyethylene moderator, for 29 monoenergetic sources and for sources of 241 AmBe and 252 Cf of neutrons. In these calculations the reactions 10 B(n,α) 7 Li and neutron fluence in the sensitive area of detector 10 B+ZnS(Ag) were estimated. Measurements were performed in the Laboratory of Neutron Measurement to quantify detections in counts per second to a neutron source of 252 Cf to 200 cm on the bench, modeling with MCNPX, these measures were compared to validate the model and the Zn S(Ag) efficiency of α detection was estimated. Calculations in the LPN-CIEMAT were realized. Starting from the validation new models were carried out with geometries that improve the detector response, trying reaching the detection of 2, 5 cps-ng of 252 Cf comparable requirement for responding to the installed equipment of 3 He in the radiation portal monitor. This type of detector can be considered an alternative to detectors of 3 He for detecting special nuclear material. (Author)

  14. A modeling process to understand complex system architectures

    Science.gov (United States)

    Robinson, Santiago Balestrini

    2009-12-01

    In recent decades, several tools have been developed by the armed forces, and their contractors, to test the capability of a force. These campaign level analysis tools, often times characterized as constructive simulations are generally expensive to create and execute, and at best they are extremely difficult to verify and validate. This central observation, that the analysts are relying more and more on constructive simulations to predict the performance of future networks of systems, leads to the two central objectives of this thesis: (1) to enable the quantitative comparison of architectures in terms of their ability to satisfy a capability without resorting to constructive simulations, and (2) when constructive simulations must be created, to quantitatively determine how to spend the modeling effort amongst the different system classes. The first objective led to Hypothesis A, the first main hypotheses, which states that by studying the relationships between the entities that compose an architecture, one can infer how well it will perform a given capability. The method used to test the hypothesis is based on two assumptions: (1) the capability can be defined as a cycle of functions, and that it (2) must be possible to estimate the probability that a function-based relationship occurs between any two types of entities. If these two requirements are met, then by creating random functional networks, different architectures can be compared in terms of their ability to satisfy a capability. In order to test this hypothesis, a novel process for creating representative functional networks of large-scale system architectures was developed. The process, named the Digraph Modeling for Architectures (DiMA), was tested by comparing its results to those of complex constructive simulations. Results indicate that if the inputs assigned to DiMA are correct (in the tests they were based on time-averaged data obtained from the ABM), DiMA is able to identify which of any two

  15. Equation-free model reduction for complex dynamical systems

    International Nuclear Information System (INIS)

    Le Maitre, O. P.; Mathelin, L.; Le Maitre, O. P.

    2010-01-01

    This paper presents a reduced model strategy for simulation of complex physical systems. A classical reduced basis is first constructed relying on proper orthogonal decomposition of the system. Then, unlike the alternative approaches, such as Galerkin projection schemes for instance, an equation-free reduced model is constructed. It consists in the determination of an explicit transformation, or mapping, for the evolution over a coarse time-step of the projection coefficients of the system state on the reduced basis. The mapping is expressed as an explicit polynomial transformation of the projection coefficients and is computed once and for all in a pre-processing stage using the detailed model equation of the system. The reduced system can then be advanced in time by successive applications of the mapping. The CPU cost of the method lies essentially in the mapping approximation which is performed offline, in a parallel fashion, and only once. Subsequent application of the mapping to perform a time-integration is carried out at a low cost thanks to its explicit character. Application of the method is considered for the 2-D flow around a circular cylinder. We investigate the effectiveness of the reduced model in rendering the dynamics for both asymptotic state and transient stages. It is shown that the method leads to a stable and accurate time-integration for only a fraction of the cost of a detailed simulation, provided that the mapping is properly approximated and the reduced basis remains relevant for the dynamics investigated. (authors)

  16. 60Co γ-irradiation effects on electrical properties of a rectifying diode based on a novel macrocyclic Zn octaamide complex

    International Nuclear Information System (INIS)

    Ocak, Y.S.; Kilicoglu, T.; Topal, G.; Baskan, M.H.

    2010-01-01

    C 36 H 28 N 12 O 8 ZnCl 2 .9/2H 2 O, Zn-octaamide (ZnOA) macrocyclic compound was synthesized to be used in the fabrication of electronic and photoelectronic devices. The structure of new compound was identified by using 1 H NMR, 13 C NMR, IR, UV-vis and LC-MS spectroscopic methods. The Sn/ZnOA/n-Si/Au structure was engineered by forming a thin macrocyclic organic compound layer on n-Si inorganic substrate and then by evaporating Sn metal on the organic layer. It was seen that the device had a good rectifying behaviour and showed Schottky diode properties. The diode was irradiated under 60 Co γ-source at room temperature. Characteristic parameters of the diode were determined from its current-voltage (I-V) and capacitance voltage (C-V) measurements before and after irradiation. It was observed that γ-irradiation had clear effects on I-V and C-V properties. Also, it was seen that the barrier height, the ideality factor and the series resistance values decreased after the applied radiation, while the saturation current value increased.

  17. Educational complex of light-colored modeling of urban environment

    Directory of Open Access Journals (Sweden)

    Karpenko Vladimir E.

    2018-01-01

    Full Text Available Mechanisms, methodological tools and structure of a training complex of light-colored modeling of the urban environment are developed in this paper. The following results of the practical work of students are presented: light composition and installation, media facades, lighting of building facades, city streets and embankment. As a result of modeling, the structure of the light form is determined. Light-transmitting materials and causing characteristic optical illusions, light-visual and light-dynamic effects (video-dynamics and photostatics, basic compositional techniques of light form are revealed. The main elements of the light installation are studied, including a light projection, an electronic device, interactivity and relationality of the installation, and the mechanical device which becomes a part of the installation composition. The meaning of modern media facade technology is the transformation of external building structures and their facades into a changing information cover, into a media content translator using LED technology. Light tectonics and the light rhythm of the plastics of the architectural object are built up through point and local illumination, modeling of the urban ensemble assumes the structural interaction of several light building models with special light-composition techniques. When modeling the social and pedestrian environment, the lighting parameters depend on the scale of the chosen space and are adapted taking into account the visual perception of the pedestrian, and the atmospheric effects of comfort and safety of the environment are achieved with the help of special light compositional techniques. With the aim of realizing the tasks of light modeling, a methodology has been created, including the mechanisms of models, variability and complementarity. The perspectives of light modeling in the context of structural elements of the city, neuropsychology, wireless and bioluminescence technologies are proposed

  18. Thermal, spectral, magnetic and biological studies of thiosemicarbazones complexes with metal ions: Cu(II), Co(II), Ni(II), Fe(III), Zn(II), Mn(II) and UO2(VI)

    International Nuclear Information System (INIS)

    Mashaly, M.M.; Seleem, H.S.; El-Behairy, M.A.; Habib, H.A.

    2004-01-01

    Thiosemicarbazones ligands, isatin-3-thiosemicarbazone(HIT) and N-acetylisatin-3-thiosemicarbazone (HAIT), which have tridentate ONN coordinating sites were prepared. The complexes of both ligands with Cu(II), Co(II), Ni(II), Fe(III), Zn(II), Mn(II) and UO 2 (VI) ions were isolated. The ligands and their metal complexes were characterized by elemental analysis, IR, UV-Vis and mass spectra, also by conductance, magnetic moment and TG-DSC measurements. All the transition metal complexes have octahedral configurations, except Cu-complexes which have planar geometry and the UO 2 (VI) complexes which have coordination number 8 and may acquire the distorted dodecahedral geometry. Thermal studies explored the possibility of obtaining new complexes. Inversion from octahedral to square-planar configuration occurred upon heating the parent Ni-HIAT complex to form the corresponding pyrolytic product. The antifungal activity against the tested organisms showed that some metal complexes enhanced the activity with respect to the parent ligands. (author)

  19. Adaptive Surface Modeling of Soil Properties in Complex Landforms

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-06-01

    Full Text Available Abstract: Spatial discontinuity often causes poor accuracy when a single model is used for the surface modeling of soil properties in complex geomorphic areas. Here we present a method for adaptive surface modeling of combined secondary variables to improve prediction accuracy during the interpolation of soil properties (ASM-SP. Using various secondary variables and multiple base interpolation models, ASM-SP was used to interpolate soil K+ in a typical complex geomorphic area (Qinghai Lake Basin, China. Five methods, including inverse distance weighting (IDW, ordinary kriging (OK, and OK combined with different secondary variables (e.g., OK-Landuse, OK-Geology, and OK-Soil, were used to validate the proposed method. The mean error (ME, mean absolute error (MAE, root mean square error (RMSE, mean relative error (MRE, and accuracy (AC were used as evaluation indicators. Results showed that: (1 The OK interpolation result is spatially smooth and has a weak bull's-eye effect, and the IDW has a stronger ‘bull’s-eye’ effect, relatively. They both have obvious deficiencies in depicting spatial variability of soil K+. (2 The methods incorporating combinations of different secondary variables (e.g., ASM-SP, OK-Landuse, OK-Geology, and OK-Soil were associated with lower estimation bias. Compared with IDW, OK, OK-Landuse, OK-Geology, and OK-Soil, the accuracy of ASM-SP increased by 13.63%, 10.85%, 9.98%, 8.32%, and 7.66%, respectively. Furthermore, ASM-SP was more stable, with lower MEs, MAEs, RMSEs, and MREs. (3 ASM-SP presents more details than others in the abrupt boundary, which can render the result consistent with the true secondary variables. In conclusion, ASM-SP can not only consider the nonlinear relationship between secondary variables and soil properties, but can also adaptively combine the advantages of multiple models, which contributes to making the spatial interpolation of soil K+ more reasonable.

  20. Modeling Cu{sup 2+}-Aβ complexes from computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Alí-Torres, Jorge [Departamento de Química, Universidad Nacional de Colombia- Sede Bogotá, 111321 (Colombia); Mirats, Andrea; Maréchal, Jean-Didier; Rodríguez-Santiago, Luis; Sodupe, Mariona, E-mail: Mariona.Sodupe@uab.cat [Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2015-09-15

    Amyloid plaques formation and oxidative stress are two key events in the pathology of the Alzheimer disease (AD), in which metal cations have been shown to play an important role. In particular, the interaction of the redox active Cu{sup 2+} metal cation with Aβ has been found to interfere in amyloid aggregation and to lead to reactive oxygen species (ROS). A detailed knowledge of the electronic and molecular structure of Cu{sup 2+}-Aβ complexes is thus important to get a better understanding of the role of these complexes in the development and progression of the AD disease. The computational treatment of these systems requires a combination of several available computational methodologies, because two fundamental aspects have to be addressed: the metal coordination sphere and the conformation adopted by the peptide upon copper binding. In this paper we review the main computational strategies used to deal with the Cu{sup 2+}-Aβ coordination and build plausible Cu{sup 2+}-Aβ models that will afterwards allow determining physicochemical properties of interest, such as their redox potential.

  1. Modeling and simulation of complex systems a framework for efficient agent-based modeling and simulation

    CERN Document Server

    Siegfried, Robert

    2014-01-01

    Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the "General Reference Model for Agent-based Modeling and Simulation" (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models -from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hard

  2. Wind Tunnel Modeling Of Wind Flow Over Complex Terrain

    Science.gov (United States)

    Banks, D.; Cochran, B.

    2010-12-01

    This presentation will describe the finding of an atmospheric boundary layer (ABL) wind tunnel study conducted as part of the Bolund Experiment. This experiment was sponsored by Risø DTU (National Laboratory for Sustainable Energy, Technical University of Denmark) during the fall of 2009 to enable a blind comparison of various air flow models in an attempt to validate their performance in predicting airflow over complex terrain. Bohlund hill sits 12 m above the water level at the end of a narrow isthmus. The island features a steep escarpment on one side, over which the airflow can be expected to separate. The island was equipped with several anemometer towers, and the approach flow over the water was well characterized. This study was one of only two only physical model studies included in the blind model comparison, the other being a water plume study. The remainder were computational fluid dynamics (CFD) simulations, including both RANS and LES. Physical modeling of air flow over topographical features has been used since the middle of the 20th century, and the methods required are well understood and well documented. Several books have been written describing how to properly perform ABL wind tunnel studies, including ASCE manual of engineering practice 67. Boundary layer wind tunnel tests are the only modelling method deemed acceptable in ASCE 7-10, the most recent edition of the American Society of Civil Engineers standard that provides wind loads for buildings and other structures for buildings codes across the US. Since the 1970’s, most tall structures undergo testing in a boundary layer wind tunnel to accurately determine the wind induced loading. When compared to CFD, the US EPA considers a properly executed wind tunnel study to be equivalent to a CFD model with infinitesimal grid resolution and near infinite memory. One key reason for this widespread acceptance is that properly executed ABL wind tunnel studies will accurately simulate flow separation

  3. The synthesis and characterization of 1,2-dihydroxyimino-3,6-di-aza-8,9-O-iso-butylidene nonane and its complexes with Ni(II), Cu(II), Zn(II) and Cd(II)

    International Nuclear Information System (INIS)

    Canpolat, E.; Kaya, M.; Gorgulu, A.O.

    2002-01-01

    1,2-dihydroxyimino-3,6-di-aza-8,9-O-iso-butylidene nonane (H 2 L) was synthesized starting from 1,2-O-iso-butylidene-4-aza-6-amino hexane (RNH 2 ) and antichloroglyoxime. Ni(II) and Cu(II) complexes of H 2 L have a metal:ligand ratio 1:2 and the ligand coordinates through two N atoms, as do most of the vic-dioximes. However, Zn(II) and Cd(II) complexes of H 2 L have a metal: ligand ratio 1:1 and one chloride ion and one water molecule are also coordinated to the metal ion. Structures of the ligand and its transition-metal complexes are proposed, according to elemental analysis, IR, 13 C and 1 H NMR spectra, magnetic susceptibility measurements and thermogravimetric analyses (TGA). (author)

  4. Toxicological risk assessment of complex mixtures through the Wtox model

    Directory of Open Access Journals (Sweden)

    William Gerson Matias

    2015-01-01

    Full Text Available Mathematical models are important tools for environmental management and risk assessment. Predictions about the toxicity of chemical mixtures must be enhanced due to the complexity of eects that can be caused to the living species. In this work, the environmental risk was accessed addressing the need to study the relationship between the organism and xenobiotics. Therefore, ve toxicological endpoints were applied through the WTox Model, and with this methodology we obtained the risk classication of potentially toxic substances. Acute and chronic toxicity, citotoxicity and genotoxicity were observed in the organisms Daphnia magna, Vibrio scheri and Oreochromis niloticus. A case study was conducted with solid wastes from textile, metal-mechanic and pulp and paper industries. The results have shown that several industrial wastes induced mortality, reproductive eects, micronucleus formation and increases in the rate of lipid peroxidation and DNA methylation of the organisms tested. These results, analyzed together through the WTox Model, allowed the classication of the environmental risk of industrial wastes. The evaluation showed that the toxicological environmental risk of the samples analyzed can be classied as signicant or critical.

  5. Integrated modeling tool for performance engineering of complex computer systems

    Science.gov (United States)

    Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar

    1989-01-01

    This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.

  6. Atmospheric dispersion modelling over complex terrain at small scale

    Science.gov (United States)

    Nosek, S.; Janour, Z.; Kukacka, L.; Jurcakova, K.; Kellnerova, R.; Gulikova, E.

    2014-03-01

    Previous study concerned of qualitative modelling neutrally stratified flow over open-cut coal mine and important surrounding topography at meso-scale (1:9000) revealed an important area for quantitative modelling of atmospheric dispersion at small-scale (1:3300). The selected area includes a necessary part of the coal mine topography with respect to its future expansion and surrounding populated areas. At this small-scale simultaneous measurement of velocity components and concentrations in specified points of vertical and horizontal planes were performed by two-dimensional Laser Doppler Anemometry (LDA) and Fast-Response Flame Ionization Detector (FFID), respectively. The impact of the complex terrain on passive pollutant dispersion with respect to the prevailing wind direction was observed and the prediction of the air quality at populated areas is discussed. The measured data will be used for comparison with another model taking into account the future coal mine transformation. Thus, the impact of coal mine transformation on pollutant dispersion can be observed.

  7. Complex accident scenarios modelled and analysed by Stochastic Petri Nets

    International Nuclear Information System (INIS)

    Nývlt, Ondřej; Haugen, Stein; Ferkl, Lukáš

    2015-01-01

    This paper is focused on the usage of Petri nets for an effective modelling and simulation of complicated accident scenarios, where an order of events can vary and some events may occur anywhere in an event chain. These cases are hardly manageable by traditional methods as event trees – e.g. one pivotal event must be often inserted several times into one branch of the tree. Our approach is based on Stochastic Petri Nets with Predicates and Assertions and on an idea, which comes from the area of Programmable Logic Controllers: an accidental scenario is described as a net of interconnected blocks, which represent parts of the scenario. So the scenario is firstly divided into parts, which are then modelled by Petri nets. Every block can be easily interconnected with other blocks by input/output variables to create complex ones. In the presented approach, every event or a part of a scenario is modelled only once, independently on a number of its occurrences in the scenario. The final model is much more transparent then the corresponding event tree. The method is shown in two case studies, where the advanced one contains a dynamic behavior. - Highlights: • Event & Fault trees have problems with scenarios where an order of events can vary. • Paper presents a method for modelling and analysis of dynamic accident scenarios. • The presented method is based on Petri nets. • The proposed method solves mentioned problems of traditional approaches. • The method is shown in two case studies: simple and advanced (with dynamic behavior)

  8. 3D modeling and visualization software for complex geometries

    International Nuclear Information System (INIS)

    Guse, Guenter; Klotzbuecher, Michael; Mohr, Friedrich

    2011-01-01

    The reactor safety depends on reliable nondestructive testing of reactor components. For 100% detection probability of flaws and the determination of their size using ultrasonic methods the ultrasonic waves have to hit the flaws within a specific incidence and squint angle. For complex test geometries like testing of nozzle welds from the outside of the component these angular ranges can only be determined using elaborate mathematical calculations. The authors developed a 3D modeling and visualization software tool that allows to integrate and present ultrasonic measuring data into the 3D geometry. The software package was verified using 1:1 test samples (example: testing of the nozzle edge of the feedwater nozzle of a steam generator from the outside; testing of the reactor pressure vessel nozzle edge from the inside).

  9. The inherent complexity in nonlinear business cycle model in resonance

    International Nuclear Information System (INIS)

    Ma Junhai; Sun Tao; Liu Lixia

    2008-01-01

    Based on Abraham C.-L. Chian's research, we applied nonlinear dynamic system theory to study the first-order and second-order approximate solutions to one category of the nonlinear business cycle model in resonance condition. We have also analyzed the relation between amplitude and phase of second-order approximate solutions as well as the relation between outer excitements' amplitude, frequency approximate solutions, and system bifurcation parameters. Then we studied the system quasi-periodical solutions, annulus periodical solutions and the path leading to system bifurcation and chaotic state with different parameter combinations. Finally, we conducted some numerical simulations for various complicated circumstances. Therefore this research will lay solid foundation for detecting the complexity of business cycles and systems in the future

  10. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    Science.gov (United States)

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  11. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)] metals

    OpenAIRE

    Nahid Nishat; Ashraf Malik

    2016-01-01

    A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). All the polymeric compounds were characterized by (FT-IR) spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA) and antibacterial activities. Polymer complexes of Mn(II), Co(II) and Ni(II) show octahedral geometry, wh...

  12. Synthesis, characterization and biological studies of 2-(4-nitro phenylaminocarbonyl)benzoic acid and its complexes with Cr(III), Co(II), Ni(II), Cu(II) and Zn(II)

    International Nuclear Information System (INIS)

    Aqeel Ashraf, M.; Jamil Maah, M.; Yusuf, I.

    2012-01-01

    Cr(III), Co(II), Ni(II), Cu(II) and Zn(II) salts of 2-(4-nitro phenylaminocarbonyl)benzoic acid were characterized by physical, analytical and spectroscopic studies and checked for their in-vitro antimicrobial activity against three bacterial strains, Mycobacterium smegmatis (Gram +ve), Escherichia coli (Gram -ve), Pseudomonas aeuroginosa (Gram -ve) and three fungal strains, Nigrospora oryzae, Aspergillus niger and Candida albicans. The antimicrobial activities of the metal complexes - were found to be greater than those of 2-(4-nitro phenylaminocarbonyl)benzoic acid alone.

  13. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    Science.gov (United States)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press

  14. Elements of complexity in subsurface modeling, exemplified with three case studies

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bacon, Diana H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freshley, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wellman, Dawn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-03

    There are complexity elements to consider when applying subsurface flow and transport models to support environmental analyses. Modelers balance the benefits and costs of modeling along the spectrum of complexity, taking into account the attributes of more simple models (e.g., lower cost, faster execution, easier to explain, less mechanistic) and the attributes of more complex models (higher cost, slower execution, harder to explain, more mechanistic and technically defensible). In this paper, modeling complexity is examined with respect to considering this balance. The discussion of modeling complexity is organized into three primary elements: 1) modeling approach, 2) description of process, and 3) description of heterogeneity. Three examples are used to examine these complexity elements. Two of the examples use simulations generated from a complex model to develop simpler models for efficient use in model applications. The first example is designed to support performance evaluation of soil vapor extraction remediation in terms of groundwater protection. The second example investigates the importance of simulating different categories of geochemical reactions for carbon sequestration and selecting appropriate simplifications for use in evaluating sequestration scenarios. In the third example, the modeling history for a uranium-contaminated site demonstrates that conservative parameter estimates were inadequate surrogates for complex, critical processes and there is discussion on the selection of more appropriate model complexity for this application. All three examples highlight how complexity considerations are essential to create scientifically defensible models that achieve a balance between model simplification and complexity.

  15. Resistive switching in ZnO/ZnO:In nanocomposite

    Science.gov (United States)

    Khakhulin, D. A.; Vakulov, Z. E.; Smirnov, V. A.; Tominov, R. V.; Yoon, Jong-Gul; Ageev, O. A.

    2017-11-01

    A lot of effort nowadays is put into development of new approaches to processing and storage of information in integrated circuits due to limitations in miniaturisation. Our research is dedicated to one of actively developed concepts - oxide based resistive memory devices. A material that draws interest due to its promising technological properties is ZnO but pure ZnO lacks in performance in comparison with some other transition metal oxides. Thus our work is focused on improvement of resistive switching parameters in ZnO films by creation of complex nanocomposites. In this work we report characterisation of a nanocomposite based on PLD grown ZnO films with inclusions of In. Such solution allows us to achieve improvements of main parameters that are critical for ReRAM device: RHRS/RLRS ratio, endurance and retention.

  16. An artificial intelligence tool for complex age-depth models

    Science.gov (United States)

    Bradley, E.; Anderson, K. A.; de Vesine, L. R.; Lai, V.; Thomas, M.; Nelson, T. H.; Weiss, I.; White, J. W. C.

    2017-12-01

    CSciBox is an integrated software system for age modeling of paleoenvironmental records. It incorporates an array of data-processing and visualization facilities, ranging from 14C calibrations to sophisticated interpolation tools. Using CSciBox's GUI, a scientist can build custom analysis pipelines by composing these built-in components or adding new ones. Alternatively, she can employ CSciBox's automated reasoning engine, Hobbes, which uses AI techniques to perform an in-depth, autonomous exploration of the space of possible age-depth models and presents the results—both the models and the reasoning that was used in constructing and evaluating them—to the user for her inspection. Hobbes accomplishes this using a rulebase that captures the knowledge of expert geoscientists, which was collected over the course of more than 100 hours of interviews. It works by using these rules to generate arguments for and against different age-depth model choices for a given core. Given a marine-sediment record containing uncalibrated 14C dates, for instance, Hobbes tries CALIB-style calibrations using a choice of IntCal curves, with reservoir age correction values chosen from the 14CHRONO database using the lat/long information provided with the core, and finally composes the resulting age points into a full age model using different interpolation methods. It evaluates each model—e.g., looking for outliers or reversals—and uses that information to guide the next steps of its exploration, and presents the results to the user in human-readable form. The most powerful of CSciBox's built-in interpolation methods is BACON, a Bayesian sedimentation-rate algorithm—a powerful but complex tool that can be difficult to use. Hobbes adjusts BACON's many parameters autonomously to match the age model to the expectations of expert geoscientists, as captured in its rulebase. It then checks the model against the data and iteratively re-calculates until it is a good fit to the data.

  17. Synthesis, Spectroscopy, Theoretical, and Electrochemical Studies of Zn(II, Cd(II, and Hg(II Azide and Thiocyanate Complexes of a New Symmetric Schiff-Base Ligand

    Directory of Open Access Journals (Sweden)

    Morteza Montazerozohori

    2013-01-01

    Full Text Available Synthesis of zinc(II/cadmium(II/mercury(II thiocyanate and azide complexes of a new bidentate Schiff-base ligand (L with general formula of MLX2 (M = Zn(II, Cd(II, and Hg(II in ethanol solution at room temperature is reported. The ligand and metal complexes were characterized by using ultraviolet-visible (UV-visible, Fourier transform infrared (FT-IR, 1H- and 13C-NMR spectroscopy and physical characterization, CHN analysis, and molar conductivity. 1H- and 13C-NMR spectra have been studied in DMSO-d6. The reasonable shifts of FT-IR and NMR spectral signals of the complexes with respect to the free ligand confirm well coordination of Schiff-base ligand and anions in an inner sphere coordination space. The conductivity measurements as well as spectral data indicated that the complexes are nonelectrolyte. Theoretical optimization on the structure of ligand and its complexes was performed at the Becke’s three-parameter hybrid functional (B3 with the nonlocal correlation of Lee-Yang-Parr (LYP level of theory with double-zeta valence (LANL2DZ basis set using GAUSSIAN 03 suite of program, and then some theoretical structural parameters such as bond lengths, bond angles, and torsion angles were obtained. Finally, electrochemical behavior of ligand and its complexes was investigated. Cyclic voltammograms of metal complexes showed considerable changes with respect to free ligand.

  18. Dynamics of vortices in complex wakes: Modeling, analysis, and experiments

    Science.gov (United States)

    Basu, Saikat

    The thesis develops singly-periodic mathematical models for complex laminar wakes which are formed behind vortex-shedding bluff bodies. These wake structures exhibit a variety of patterns as the bodies oscillate or are in close proximity of one another. The most well-known formation comprises two counter-rotating vortices in each shedding cycle and is popularly known as the von Karman vortex street. Of the more complex configurations, as a specific example, this thesis investigates one of the most commonly occurring wake arrangements, which consists of two pairs of vortices in each shedding period. The paired vortices are, in general, counter-rotating and belong to a more general definition of the 2P mode, which involves periodic release of four vortices into the flow. The 2P arrangement can, primarily, be sub-classed into two types: one with a symmetric orientation of the two vortex pairs about the streamwise direction in a periodic domain and the other in which the two vortex pairs per period are placed in a staggered geometry about the wake centerline. The thesis explores the governing dynamics of such wakes and characterizes the corresponding relative vortex motion. In general, for both the symmetric as well as the staggered four vortex periodic arrangements, the thesis develops two-dimensional potential flow models (consisting of an integrable Hamiltonian system of point vortices) that consider spatially periodic arrays of four vortices with their strengths being +/-Gamma1 and +/-Gamma2. Vortex formations observed in the experiments inspire the assumed spatial symmetry. The models demonstrate a number of dynamic modes that are classified using a bifurcation analysis of the phase space topology, consisting of level curves of the Hamiltonian. Despite the vortex strengths in each pair being unequal in magnitude, some initial conditions lead to relative equilibrium when the vortex configuration moves with invariant size and shape. The scaled comparisons of the

  19. Are Model Transferability And Complexity Antithetical? Insights From Validation of a Variable-Complexity Empirical Snow Model in Space and Time

    Science.gov (United States)

    Lute, A. C.; Luce, Charles H.

    2017-11-01

    The related challenges of predictions in ungauged basins and predictions in ungauged climates point to the need to develop environmental models that are transferable across both space and time. Hydrologic modeling has historically focused on modelling one or only a few basins using highly parameterized conceptual or physically based models. However, model parameters and structures have been shown to change significantly when calibrated to new basins or time periods, suggesting that model complexity and model transferability may be antithetical. Empirical space-for-time models provide a framework within which to assess model transferability and any tradeoff with model complexity. Using 497 SNOTEL sites in the western U.S., we develop space-for-time models of April 1 SWE and Snow Residence Time based on mean winter temperature and cumulative winter precipitation. The transferability of the models to new conditions (in both space and time) is assessed using non-random cross-validation tests with consideration of the influence of model complexity on transferability. As others have noted, the algorithmic empirical models transfer best when minimal extrapolation in input variables is required. Temporal split-sample validations use pseudoreplicated samples, resulting in the selection of overly complex models, which has implications for the design of hydrologic model validation tests. Finally, we show that low to moderate complexity models transfer most successfully to new conditions in space and time, providing empirical confirmation of the parsimony principal.

  20. Robustness and Optimization of Complex Networks : Reconstructability, Algorithms and Modeling

    NARCIS (Netherlands)

    Liu, D.

    2013-01-01

    The infrastructure networks, including the Internet, telecommunication networks, electrical power grids, transportation networks (road, railway, waterway, and airway networks), gas networks and water networks, are becoming more and more complex. The complex infrastructure networks are crucial to our