WorldWideScience

Sample records for zn cu pb

  1. Effects of Cu, Zn and Pb Combined Pollution on Soil Hydrolase Activities

    Directory of Open Access Journals (Sweden)

    FENG Dan

    2015-08-01

    Full Text Available To study the relations between soil enzyme activities and heavy metal pollution, the combined effects of Cu, Zn and Pb on the three hydrolase activities, including invertase(IN, urease(Uand alkaline phosphatase(ALPwere investigated via an orthogonal experiment. Results showed as the following: When the concentration of Cu was 400 mg·kg-1, the U and ALP activities were decreased 51% and 44%, separately; When Zn was at 500 mg·kg-1, IN and ALP activities were only decreased 3% and 9%, while U activity was increased; When Pb was at 500 mg·kg-1, IN and U activities were increased, while ALP activity was decreased 13%. As a whole, Cu was considered as the most remarkable influence factor for IN, U and ALP activity regardless of interactions among the heavy metals, Zn came second, and Pb mainly showed activation. Considering interactions, Cu×Zn could significantly influence U activity(P<0.05, effects of Cu×Pb and Cu×Zn on ALP activity were remarkable(95% confidence interval. The response of ALP activity was more sensitive than the other two enzymes. Soil ALP activity might be a sensitive tool for assessing the pollution degree of Cu.

  2. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    Science.gov (United States)

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  3. Adsorption of Pb, Cd, Zn, Cu and Hg ions on Formaldehyde and ...

    African Journals Online (AJOL)

    Adsorption of Pb(II), Cd(II), Zn(II), Cu(II) and Hg(II) ions on formaldehyde and Pyridine modified bean husks were determined. The adsorption capacity of formaldehyde modified bean husks (mg/g) was: Pb2+, 5.01; Cd2+, 3.63; Zn2+, 2.18; Hg2+, 1.82; Cu2+, 1.58 and that of pyridine modified bean husk was: Hg2+, 6.92; Cd2+ ...

  4. Adsorption of Cu, As, Pb and Zn by Banana Trunk

    International Nuclear Information System (INIS)

    Nurzulaifa Shaheera Erne Mohd Yasim; Zitty Sarah Ismail; Suhanom Mohd Zaki; Mohd Fahmi Abd Azis

    2016-01-01

    The purpose of this study is to investigate the effectiveness of banana trunk as an adsorbent in removal of heavy metals in aqueous solution. Functional groups of adsorbent were determined using Fourier Transform Infrared spectroscopy (FTIR). Batch experiments were conducted to determine the adsorption percentage of heavy metals (Cu, As, Pb and Zn). The optimum adsorption using banana trunk was based on pH difference, contact time and dosage. Adsorption percentage was found to be proportional to pH, contact time and dosage. Maximum adsorption percentage of Cu, As, Pb and Zn at pH 6, 100 minutes and 8 gram of dosage are 95.80 %, 75.40 %, 99.36 % and 97.24 %, respectively. Langmuir and Freundlich isotherms were used to determine the equilibrium state for heavy metals ion adsorption experiments. All equilibrium heavy metals were well explained by the Freundlich isotherm model with R"2= 0.9441, R"2= 0.8671, R"2= 0.9489 and R"2= 0.9375 for Cu, As, Pb and Zn respectively. It is concluded that banana trunk has considerable potential for the removal of heavy metals from aqueous solution. (author)

  5. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    Directory of Open Access Journals (Sweden)

    Longbin Huang

    Full Text Available Elevated inorganic phosphate (Pi concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu-lead (Pb-zinc (Zn mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7, the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5, EHM-TD (fresh Cu-stream, high magnetite content and local soil (weathered shale and schist, respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed, oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2, ankerite (Ca(Fe Mg(CO32 and siderite (FeCO3, as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,FeS, ZnS, (Zn,CdS may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  6. Genesis of the Bangbule Pb-Zn-Cu polymetallic deposit in Tibet, western China: Evidence from zircon U-Pb geochronology and S-Pb isotopes

    Science.gov (United States)

    Kan, Tian; Zheng, Youye; Gao, Shunbao

    2016-04-01

    The Banbule Pb-Zn-Cu skarn deposit is located in the Longger-Gongbujiangda volcanic magma arc in the Gangdese-Nyainqentanglha Plate. It is the only lead-zinc polymetallic deposit discovered in the westernmost Nyainqentanglha metallogenic belt. The measured and indicated resources include 0.9 Mt of Pb+Zn (4.77% Pb and 4.74% Zn, respectively), 6499 t of Cu, and 178 t of Ag (18.75g/t Ag). The orebodies mainly occur as lenses, veins and irregular shapes in the contact zone between the quartz-porphyry and limestone of the Upper Permian Xiala Formation, or in the boundaries between limestone and sandstone. Pb-Zn-Cu mineralization in the Banbule deposit is closely associated with skarns. The ore minerals are dominated by galena, sphalerite, chalcopyrite, bornite, and magnetite, with subordinate pyrite, malachite, and azurite. The gangue minerals are mainly garnet, actinolite, diopside, quartz, and calcite. The ore-related quartz-porphyry displays LA-ICP-MS zircon U-Pb age of 77.31±0.74 Ma. The δ34S values of sulfides define a narrow range of -0.8 to 4.7‰ indicating a magmatic source for the ore-forming materials. Lead isotopic systematics yield 206Pb/204Pb of 18.698 to 18.752, 207Pb/204Pb of 15.696 to 15.760, and 208Pb/204Pb of 39.097 to 39.320. The data points are constrained around the growth curves of upper crust and orogenic belt according to the tectonic discrimination diagrams. The calculated Δβ - Δγ values plot within the magmatic field according to the discrimination diagram of Zhu et al. (1995). The S-Pb isotopic data suggest that Bangbule is a typical skarn deposit, and the Pb-Zn-Cu mineralization is genetically related to the quartz-porphyry in the mining district. The discovery of the Bangbule deposit indicates that there is metallogenic potential in the westernmost Nyainqentanglha belt, which is of great importance for the exploration work in this area.

  7. Bioaccessibility of Ba, Cu, Pb, and Zn in urban garden and orchard soils

    International Nuclear Information System (INIS)

    Cai, Meifang; McBride, Murray B.; Li, Kaiming

    2016-01-01

    Exposure of young children to toxic metals in urban environments is largely due to soil and dust ingestion. Soil particle size distribution and concentrations of toxic metals in different particle sizes are important risk factors in addition to bioaccessibility of these metals in the particles. Analysis of particle size distribution and metals concentrations for 13 soils, 12 sampled from urban gardens and 1 from orchard found that fine particles (<105 μm) comprised from 22 to 66% by weight of the tested soils, with Ba, Cu, Pb and Zn generally at higher concentrations in the finer particles. However, metal bioaccessibility was generally lower in finer particles, a trend most pronounced for Ba and Pb. Gastric was higher than gastrointestinal bioaccessibility for all metals except Cu. The lower bioaccessibility of Pb in urban garden soils compared to orchard soil is attributable to the higher organic matter content of the garden soils. - Highlights: • The bioaccessibility of metals in urban garden and orchard soils was measured. • Ba, Cu, Pb, Zn were concentrated in fine particles of the soils. • Bioaccessibilities of Ba and Pb were generally lower in fine particles of soils. • Pb bioaccessibility was generally lower in soils with higher organic matter content. • Pb bioaccessibility was lower in urban garden soils than in an orchard soil. - Pb and other trace metals (Ba, Cu, Zn) were concentrated in fine particles of urban and orchard soils, but the bioaccessibility of Ba and Pb was generally lower in finer particles.

  8. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  9. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  10. Determination of toxicity limiting values of Zn, Cu, and Pb for oat and red clover

    Energy Technology Data Exchange (ETDEWEB)

    Hodenberg, A V; Finck, A

    1975-01-01

    Toxicity limiting values of Zn, Cu and Pb are determined in order to investigate the causes of growth damages in certain fields. Since the true toxicity limit is difficult to estimate, a somewhat higher content is called the toxicity limiting value resulting after the subtraction of a significant yield difference. The pot experiments with increasing fertilization of Zn, Cu and Pb in soil cultures gave the following results. For Zn, the toxicity limit is 410 ppm in oats at the beginning of tilling. In red clover six weeks of age, it is only 290 ppm of Zn and therefore much lower. For Cu, the toxicity limit is 20 ppm in oats at the beginning of tilling and 18 ppm in six weeks old red clover. For Pb, a toxic effect could be observed above 50 ppm, but this does not seem to be the true limit because of disturbing salt effects.

  11. Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon.

    Science.gov (United States)

    Loganathan, Paripurnanda; Shim, Wang Geun; Sounthararajah, Danious Pratheep; Kalaruban, Mahatheva; Nur, Tanjina; Vigneswaran, Saravanamuthu

    2018-03-30

    Elevated concentrations of heavy metals in water can be toxic to humans, animals, and aquatic organisms. A study was conducted on the removal of Cu, Pb, and Zn by a commonly used water treatment adsorbent, granular activated carbon (GAC), from three single, three binary (Cu-Pb, Cu-Zn, Pb-Zn), and one ternary (Cu-Pb-Zn) combination of metals. It also investigated seven mathematical models on their suitability to predict the metals adsorption capacities. Adsorption of Cu, Pb, and Zn increased with pH with an abrupt increase in adsorption at around pH 5.5, 4.5, and 6.0, respectively. At all pHs tested (2.5-7.0), the adsorption capacity followed the order Pb > Cu > Zn. The Langmuir and Sips models fitted better than the Freundlich model to the data in the single-metal system at pH 5. The Langmuir maximum adsorption capacities of Pb, Cu, and Zn (mmol/g) obtained from the model's fits were 0.142, 0.094, and 0.058, respectively. The adsorption capacities (mmol/g) for these metals at 0.01 mmol/L equilibrium liquid concentration were 0.130, 0.085, and 0.040, respectively. Ideal Adsorbed Solution (IAS)-Langmuir and IAS-Sips models fitted well to the binary and ternary metals adsorption data, whereas the Extended Langmuir and Extended Sips models' fits to the data were poor. The selectivity of adsorption followed the same order as the metals' capacities and affinities of adsorption in the single-metal systems.

  12. Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete.

    Science.gov (United States)

    Solpuker, U; Sheets, J; Kim, Y; Schwartz, F W

    2014-06-01

    This paper investigates the leaching potential of pervious concrete and its capacity for immobilizing Cu, Pb and Zn, which are common contaminants in urban runoff. Batch experiments showed that the leachability of Cu, Pb and Zn increased when pHconcrete might function to attenuate contaminant migration. A porous concrete block was sprayed with low pH water (pH=4.3±0.1) for 190 h. The effluent was highly alkaline (pH~10 to 12). In the first 50 h, specific conductance and trace-metal were high but declined towards steady state values. PHREEQC modeling showed that mixing of interstitial alkaline matrix waters with capillary pore water was required in order to produce the observed water chemistry. The interstitial pore solutions seem responsible for the high pH values and relatively high concentrations of trace metals and major cations in the early stages of the experiment. Finally, pervious concrete was sprayed with a synthetic contaminated urban runoff (10 ppb Cu, Pb and Zn) with a pH of 4.3±0.1 for 135 h. It was found that Pb immobilization was greater than either Cu or Zn. Zn is the most mobile among three and also has the highest variation in the observed degree of immobilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes.

    Science.gov (United States)

    Romero-Hernández, Jorge Alberto; Amaya-Chávez, Araceli; Balderas-Hernández, Patricia; Roa-Morales, Gabriela; González-Rivas, Nelly; Balderas-Plata, Miguel Ángel

    2017-03-04

    In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu +2 , Hg +2 , Pb +2 , and Zn +2 ). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.

  14. Influence of mechanical activation on the leaching of non-ferrous metals from a CuPbZn complex concentrate

    Directory of Open Access Journals (Sweden)

    Godoèíková Erika

    2000-09-01

    Full Text Available The aim of study was to research the procedures of copper, lead and zinc leaching from CuPbZn complex sulphide concentrate during the intervention of mechanical activation.Mechanical activation belongs to innovative procedures, which intensifies technological processes by means of creation of new surfaces and making defective structure of solid phase. Mechanical impact on the solid phase is a suitable procedure to ensure the mobility of its structure elements and to accumulate the mechanical energy that is later used in following processes of leaching.This paper deals with the intensification of the chloride and thiourea leaching of copper, lead and zinc from a CuPbZn complex concentrate of Hodruša-Hámre (Slovak deposit by using the mechanical activation in an attritor. Ferric chloride and thiourea were used as leaching reagents. The leaching of the concentrate with ferric chloride solution afforded 23 % recovery of Cu, 99 % of Pb and 28 % of Zn. 9 % recovery of Cu, 17 % of Pb and 3 % of Zn were achieved by the leaching with thiourea. Thus results showed that the extraction of Cu, Zn and also Pb in the case of thiourea leaching was low. The use of milling in the attritor as an innovation method of pretreatment leads to the structural degradation and increasing the surface area of the investigated concentrate from the original value of 0.18 m2g-1 to the maximum value of 4.67 m2g-1. This fact manifested itself in the subsequent process of extraction of Cu, Pb and Zn into the chloride and thiourea solutions. Our results indicate more effective leaching of pretreated concentrate in the chloride medium with recoveries of 84 % Zn and 100 % Pb. In thiourea, the recoveries for Zn and Pb were low, however 99 % Cu can be recovered. In regard to the economy, the extraction of Cu, Pb and Zn was studied in this work with the aspect of minimal energy consumption during milling. The maximum recoveries of non-ferrous metals in the solutions of ferric chloride

  15. Bioremediation of Zn, Cu, Mg and Pb in Fresh Domestic Sewage by Brevibacterium sp

    International Nuclear Information System (INIS)

    Ojoawo, S. O.; Rao, C. V.; Goveas, L. C.

    2016-01-01

    The study applied an isolated Brevibacterium sp. (MTCC 10313) for bioremediation of Zn, Cu, Mg and Pb in domestic sewage. Batch culture experiments were performed on both the fresh and stale sewage samples with glucose supplementation of 1-8g/l. Nutrient broth medium was prepared, sterilized and p H adjusted to 6.5-6.8. 1% of the Brevibacteria sp. stock was inoculated into the broth and maintained at 370C for 24 hours in shaker incubator at 120 rpm. Another 1% of fresh grown sub-culture of broth was inoculated into supplemented and sterilized samples. Optical Density was taken at 600nm, growth monitored over 12 days, cultured samples denatured with TCA and centrifuged, supernatants filtered and analyzed with AAS, Settled pellets oven dried, subjected to SEM analysis for morphology and constituents determination. Fresh sewage samples permitted bacterial growth and facilitated bioremediation of Zn, Cu and Mg through metal uptake and bioabsoption by Brevibacteria sp. This effectively reduced concentration of heavy metals, with treatment efficiency order Cu>Zn>Mg, and respective removal percentages of 77, 63 and 55. The optimum glucose concentration for effective bioremediation found as 2g/l for Zn and Cu, and 8g/l for Mg. Pb was resistant to bioremediation with Brevibacteria sp. Stale sewage produced inhibitory substances preventing adequate growth of bacterium with no bioremediation. Bioremediation with Brevibacteria sp. is found effective in removal of micro-units of Zn, Cu and Mg from domestic sewage. As a readily available low-cost agent, it is recommended for large- scale application on those metals while Pb should be further subjected to advanced treatments.

  16. Atmospheric Deposition of Pb, Zn, Cu, and Cd in Amman, Jordan

    International Nuclear Information System (INIS)

    Momani, K.A.; Jiries, A.G.; Jaradat, Q.M.

    1999-01-01

    Atmospheric samples were collected by high-volume air sampler and dust fall containers during the summer of 1995 at different sites in Amman City, Jordan. Heavy metal contents in settle able (dust fall) as well as in air particulates (suspended) were analyzed by graphite furnace atomic absorption spectrophotometry. The atmospheric concentrations of Zn, Cu, Pb, and Cd were 344, 170, 291, and 3.8 ng/m 3 , respectively. On the other hand, the levels of these elements in dust fall deposition were 505, 94, 74, and 3.1 μg/g, respectively. The fluxes and dry deposition velocities of these heavy metals were determined and compared with the findings of other investigators worldwide. Significant enrichment coefficients of heavy metals in dust fall were observed. The enrichment coefficients were 12.1, 6.1, 11.7, and 1.1 for Zn, Cu, Pb, and Cd, respectively

  17. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    Science.gov (United States)

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-09-01

    Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb

  18. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens - a field case

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fayuan [Agricultural College, Henan University of Science and Technology, 70 Tianjin Road, Luoyang, Henan Province 471003 (China) and Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China)]. E-mail: wfy1975@163.com; Lin Xiangui [Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China); Yin Rui [Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008 (China)

    2007-05-15

    A field experiment was carried out to study the effect of microbial inoculation on heavy metal phytoextraction by Elsholtzia splendens and whether chitosan could have a synergistic effect with the microbial inocula. The microbial inocula consisted of a consortium of arbuscular mycorrhizal fungi and two Penicillium fungi. Three treatments were included: the control, inoculation with microbial inocula, and the inoculation combined with chitosan. Microbial inoculation increased plant biomass especially shoot dry weight, enhanced shoot Cu, Zn and Pb concentrations but did not affect Cd, leading to higher shoot Cu, Zn, Pb and Cd uptake. Compared with microbial inoculation alone, chitosan application did not affect plant growth but increased shoot Zn, Pb and Cd concentrations except Cu, which led to higher phytoextraction efficiencies and partitioning to shoots of Zn, Pb and Cd. These results indicated synergistic effects between microbial inocula and chitosan on Zn, Pb and Cd phytoextraction. - Co-application of microbial inocula and chitosan enhanced heavy metal phytoextraction by E. splendens.

  19. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens - a field case

    International Nuclear Information System (INIS)

    Wang Fayuan; Lin Xiangui; Yin Rui

    2007-01-01

    A field experiment was carried out to study the effect of microbial inoculation on heavy metal phytoextraction by Elsholtzia splendens and whether chitosan could have a synergistic effect with the microbial inocula. The microbial inocula consisted of a consortium of arbuscular mycorrhizal fungi and two Penicillium fungi. Three treatments were included: the control, inoculation with microbial inocula, and the inoculation combined with chitosan. Microbial inoculation increased plant biomass especially shoot dry weight, enhanced shoot Cu, Zn and Pb concentrations but did not affect Cd, leading to higher shoot Cu, Zn, Pb and Cd uptake. Compared with microbial inoculation alone, chitosan application did not affect plant growth but increased shoot Zn, Pb and Cd concentrations except Cu, which led to higher phytoextraction efficiencies and partitioning to shoots of Zn, Pb and Cd. These results indicated synergistic effects between microbial inocula and chitosan on Zn, Pb and Cd phytoextraction. - Co-application of microbial inocula and chitosan enhanced heavy metal phytoextraction by E. splendens

  20. Assessment of the Bioavailability of Cu, Pb, and Zn through Petunia axillaris in Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Lydia Bondareva

    2014-01-01

    Full Text Available Heavy metals are potentially toxic to human life and the environment. Metal toxicity depends on chemical associations in soils. For this reason, determining the chemical form of a metal in soils is important to evaluate its mobility and the potential accumulation. The aim of this examination is to evaluate the accumulation potential of Petunia x hybrida as a flower crop for three metals, namely, copper (Cu, lead (Pb, and nickel (Ni. Trace metals (Zn, Cu, and Pb in the soils were partitioned by a sequential extraction procedure into H2O extractable (F1, 1 M CH3COONa extractable (F2. Chemical fractionation showed that F1 and F2 fraction of the metals were near 1% and residue was the dominant form for Zn, Cu, and Pb in all samples. Using fluorescence method allowed us to estimate condition of the plants by adding metals. As result of plant and soil analysis, we can conclude that Petunia has Cu, Zn, and Ni tolerance and accumulation. Therefore, Petunia has the potential to serve as a model species for developing herbaceous, ornamental plants for phytoremediation.

  1. Assessment of Pb, Zn, Cu, Ni and Cr in vegetables grown around Zanjan

    Directory of Open Access Journals (Sweden)

    A. Afshari

    2017-05-01

    Full Text Available This study was conducted aimed to assess the potential risk of heavy metals on human health resulting from consumption of vegetables. To this end, the vegetables grown around town and industrial center of Zanjan were sampled randomly. Plant samples were digested using hydrochloric acid (HCL 2 M and concentration of elements (Pb, Zn, Cu, Ni and Cr were recorded by atomic absorption. Obtained means of heavy metals in all vegetables (N= 32 for Zn, Pb, Cu, Ni and Cr is 98.8, 31.9, 19.3, 4.4 and 2.3 mg/kg, respectively. The highest amount of metal pollution index (MPI in the basil and the lowest was observed in the garden cress (respectively 16.46 and 4.88. Daily intake (EDI for zinc, copper and chromium in all age groups was lower than the provisional tolerable daily intake (PTDI. This amount for nickel was 2, 1.6 and 1.3 %, and for Pb 28.1, 22 and 19 % higher than PTDI in children, adults and seniors, respectively. The potential risk (THQ was calculated in all age groups as Pb>>Cu>Zn>Ni>Cr. The potential risks (THQ of chromium, nickel and zinc were calculated lower than 1, for copper a bit more of 1 and for lead much higher than 1. Health index (HI for children, adults and the elderly was estimated 31.331, 24.58 and 21.14, respectively, with the largest contribution of the lead (89.7%.

  2. Graphite furnace analysis of a series of metals (Cu, Mn, Pb, Zn and Cd) in ox kidney

    International Nuclear Information System (INIS)

    Souza, Vivianne L.B. de; Nascimento, Rizia K. do; Paiva, Ana Claudia de; Silva, Josenilda M. da; Melo, Jessica V. de

    2013-01-01

    The aim of this study was to create a methodology for animal tissue analysis, with the use of flame atomic absorption spectrophotometry techniques and graphite furnace analysis to determining metal concentrations in ox kidney. The organ of this animal can be considered a great nutritional food, due to the high protein and micronutrient content beyond the ability to absorb and concentrate important metals such as Zn, Fe, Mn and Se. On the other hand, there is a risk when eating this food owing to the capacity to accumulate toxic metals such as Pb and Cd. In accordance with the laboratory analysis, Zn can be analyzed by flame atomic absorption spectrophotometry, but other metals such as Cu, Mn, Pb and Cd, could only be detected by graphite furnace analysis. The results showed that there is more Zn and Cu than other metals. Such metals follows an order reported by the literature (Zn > Cu > Cd > Pb > Mn). The results showed that kidney is actually a rich source of Zn and Cu. The Cd levels in the ox kidney did not exceed the values which cause toxic effects. The adequacy of the results indicates that the proposed methodology can be used for animal tissue analysis.(author)

  3. Graphite furnace analysis of a series of metals (Cu, Mn, Pb, Zn and Cd) in ox kidney

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Nascimento, Rizia K. do; Paiva, Ana Claudia de; Silva, Josenilda M. da, E-mail: vlsouza@cnen.gov.br, E-mail: riziakelia@hotmail.com, E-mail: acpaiva@cnen.gov.br, E-mail: jmnilda@hotmail.com [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Melo, Jessica V. de, E-mail: Jessica_clorofila@hotmail.com [Universidade de Pernambuco, Recife, PE (Brazil)

    2013-07-01

    The aim of this study was to create a methodology for animal tissue analysis, with the use of flame atomic absorption spectrophotometry techniques and graphite furnace analysis to determining metal concentrations in ox kidney. The organ of this animal can be considered a great nutritional food, due to the high protein and micronutrient content beyond the ability to absorb and concentrate important metals such as Zn, Fe, Mn and Se. On the other hand, there is a risk when eating this food owing to the capacity to accumulate toxic metals such as Pb and Cd. In accordance with the laboratory analysis, Zn can be analyzed by flame atomic absorption spectrophotometry, but other metals such as Cu, Mn, Pb and Cd, could only be detected by graphite furnace analysis. The results showed that there is more Zn and Cu than other metals. Such metals follows an order reported by the literature (Zn > Cu > Cd > Pb > Mn). The results showed that kidney is actually a rich source of Zn and Cu. The Cd levels in the ox kidney did not exceed the values which cause toxic effects. The adequacy of the results indicates that the proposed methodology can be used for animal tissue analysis.(author)

  4. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    Science.gov (United States)

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4. Copyright © 2015. Published by Elsevier B.V.

  5. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils

    International Nuclear Information System (INIS)

    Lamb, Dane T.; Ming Hui; Megharaj, Mallavarapu; Naidu, Ravi

    2009-01-01

    We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl 2 ) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg -1 , 10.3 to 95 mg kg -1 Zn, 0.1 to 1.8 mg Cd kg -1 and 5.2 to 183 mg kg -1 Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg -1 , 312 to 39,000 mg kg -1 Zn, 6 to 302 mg Cd kg -1 and 609 to 12,000 mg kg -1 Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K d ) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.

  6. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Dane T.; Ming Hui; Megharaj, Mallavarapu [Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), P.O. Box 486, Salisbury, SA 5106 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), P.O. Box 486, Salisbury, SA 5106 (Australia)

    2009-11-15

    We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl{sub 2}) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg{sup -1}, 10.3 to 95 mg kg{sup -1} Zn, 0.1 to 1.8 mg Cd kg{sup -1} and 5.2 to 183 mg kg{sup -1} Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg{sup -1}, 312 to 39,000 mg kg{sup -1} Zn, 6 to 302 mg Cd kg{sup -1} and 609 to 12,000 mg kg{sup -1} Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K{sub d}) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.

  7. Relation Between pH and Desorption of Cu, Cr, Zn, and Pb from Industrially Polluted Soils

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Jensen, Pernille Erland

    2009-01-01

    Desorption of Cu, Cr, Pb, and Zn from industrially polluted soils as a result of acidification is in focus. The eight soils of the investigation vary greatly in composition and heavy metal concentration/combination. Three soils had elevated concentrations of Cu, Pb, and Zn; regardless of pollution...... level, pollution origin, and soil type, the order for desorption as pH decreased was Zn > Cu > Pb. Turning to a single heavy metal in different soils, there was a huge difference in the pH at which the major desorption started. The variation was most significant for Pb where, e.g., less than 10......% was desorbed at pH 2.5 from one soil, whereas in another soil 60% Pb was desorbed at this pH. Sequential extraction was made and the soils in which a high percentage of Pb was found in the residual phase (adsorbed strongest) was also the soils where less Pb was desorbed at low pH in the desorption experiments...

  8. Content of Cr, Cu, Pb, and Zn on Pacific white shrimp cultured in modern farm at BLUPPB, Karawang, West Java

    Science.gov (United States)

    Takarina, N. D.; Rahman, A.; Siswanting, T.; Pin, T. J.

    2018-03-01

    Heavy metal is one of the hazardous substances which often found in shrimp farm. Since this shrimp become mostly favorable food, it is necessary to determine the content of metal in this shrimps. This research was aimed to determine the content of Cr, Cu, Pb, and Zn on Pacific white shrimp cultured on the modern farm at BLUPPB, Karawang, West Java. Samples were taken from five farms. During transport, samples were kept in a more relaxed box. Farms used were designed using black plastic as the bottom layer to separate contact with soil. Heavy metal of Cr, Cu, Pb, and Zn on shrimp meat was analyzed using Atomic Absorption Spectrophotometry method. The content of Cr was ranged from 0.06 – 0.38 ppm and Pb were 0.02 – 0.05 ppm. The content of Cu was ranged from 1.89 – 15.25 ppm and Zn were 2.16 – 3.92 ppm. According to government rules and literature, those content were below a threshold which was 0.4 ppm for Cu, 0.5 ppm for Pb, 20 ppm for Cu and 0.2 ppm for Zn.

  9. Biological diversity of Salix taxa in Cu, Pb and Zn phytoextraction from soil.

    Science.gov (United States)

    Mleczek, Mirosław; Rutkowski, Paweł; Goliński, Piotr; Kaczmarek, Zygmunt; Szentner, Kinga; Waliszewska, Bogusława; Stolarski, Mariusz; Szczukowski, Stefan

    2017-02-01

    The aim of the study was to estimate the efficiency of copper (Cu), lead (Pb) and zinc (Zn) phytoextraction by 145 Salix taxa cultivated in an area affected by industrial activity. Survivability and biomass of plants were also analyzed. The highest Cu, Pb and Zn content in shoots was 33.38 ± 2.91 (S. purpurea × viminalis 8), 24.64 ± 1.97 (S. fragilis 1) and 58.99 ± 4.30 (S. eriocephala 7) mg kg -1 dry weight, respectively. In the case of unwashed leaves, the highest content of these metals was 135.06 ± 8.14 (S. purpurea 26), 67.98 ± 5.27 (S. purpurea 45) and 142.56 ± 12.69 (S. alba × triandra 2) mg kg -1 dw, while in washed leaves it was 106.02 ± 11.12 (S. purpurea 45), 55.06 ± 5.75 (S. purpurea 45) and 122.87 ± 12.33 (S. alba × triandra 2) mg kg -1 dw, respectively. The differences between the highest and lowest values for Cu, Pb and Zn were 545%, 20500% and 535% in shoots; 2692%, 2560% and 7500% in unwashed leaves; and 3286%, 2221% and 6950% in washed leaves, respectively. S. acutifolia was able to effectively accumulate all three metals jointly, producing shoots that were well developed in both length and diameter when compared with the other tested willows-an ability that would suggest its high suitability for practical application.

  10. A review of Pb-Sb(As-S, Cu(Ag-Fe(Zn-Sb(As-S, Ag(Pb-Bi(Sb-S and Pb-Bi-S(Te sulfosalt systems from the Boranja orefield, West Serbia

    Directory of Open Access Journals (Sweden)

    Radosavljević Slobodan A.

    2016-01-01

    Full Text Available Recent mineralogical, chemical, physical, and crystallographic investigations of the Boranja orefield showed very complex mineral associations and assemblages where sulfosalts have significant role. The sulfosalts of the Boranja orefield can be divided in four main groups: (i Pb-Sb(As-S system with ±Fe and ±Cu; (ii Cu(Ag-Fe(Zn-Sb(As-S system; (iii Ag(Pb-Bi(Sb-S; (iv and Pb-Bi-S(Te system. Spatially, these sulfosalts are widely spread, however, they are the most abundant in the following polymetallic deposits and ore zones: Cu(Bi-FeS Kram-Mlakva; Pb(Ag-Zn-FeS2 Veliki Majdan (Kolarica-Centralni revir-Kojići; Sb-Zn-Pb-As Rujevac; and Pb-Zn-FeS2-BaSO4 Bobija. The multi stage formation of minerals, from skarnhydrothermal to complex hydrothermal with various stages and sub-stages has been determined. All hydrothermal stages and sub-stages of various polymetallic deposits and ore zones within the Boranja orefield are followed by a variety of sulfosalts. [Projekat Ministarstva nauke Republike Srbije, br. OI-176016: Magmatism and geodynamics of the Balkan Peninsula from Mesozoic to present day: Significance for the formation of metallic and non-metallic mineral deposits

  11. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Nascentes, Clesia C.; Kamogawa, Marcos Y.; Fernandes, Kelly G.; Arruda, Marco A.Z.; Nogueira, Ana Rita A.; Nobrega, Joaquim A.

    2005-01-01

    In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min -1 using 0.14 mol l -1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l -1 , respectively. The relative standard deviations varied from 2.7% to 7.3% (n=8) for solutions containing the analytes in the 25-50 μg l -1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0-155 μg l -1 ; Mn: 110-348 μg l -1 , Pb: 13.0-32.9 μg l -1 , and Zn: 52.7-226 μg l -1 . Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery

  12. Mass change calculations of hydrothermal alterations within the volcanogenic metasediments hosted Cu-Pb (-Zn) mineralization at Halilar area, NW Turkey

    Science.gov (United States)

    Kiran Yildirim, Demet; Abdelnasser, Amr; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Halilar Cu-Pb (-Zn) mineralization that is formed in the volcanogenic metasediments of Bagcagiz Formation at Balikesir province, NW Turkey, represents locally vein-type deposit as well as restricted to fault gouge zone directed NE-SW along with the lower boundary of Bagcagiz Formation and Duztarla granitic intrusion in the study area. Furthermore, This granite is traversed by numerous mineralized sheeted vein systems, which locally transgress into the surrounding metasediments. Therefore, this mineralization closely associated with intense hydrothermal alteration within brecciation, and quartz stockwork veining. The ore mineral assemblage includes chalcopyrite, galena, and some sphalerite with covellite and goethite formed during three phases of mineralization (pre-ore, main ore, and supergene) within an abundant gangue of quartz and calcite. The geologic and field relationships, petrographic and mineralogical studies reveal two alteration zones occurred with the Cu-Pb (-Zn) mineralization along the contact between the Bagcagiz Formation and Duztarla granite; pervasive phyllic alteration (quartz, sericite, and pyrite), and selective propylitic alteration (albite, calcite, epidote, sericite and/or chlorite). This work, by using the mass balance calculations, reports the mass/volume changes (gain and loss) of the chemical components of the hydrothermal alteration zones associated with Halilar Cu-Pb (-Zn) mineralization at Balikesir area (Turkey). It revealed that the phyllic alteration has enrichments of Si, Fe, K, Ba, and LOI with depletion of Mg, Ca, and Na reflect sericitization of alkali feldspar and destruction of ferromagnesian minerals. This zone has high Cu and Pb with Zn contents represents the main mineralized zone. On the other hand, the propylitic zone is characterized by addition of Ca, Na, K, Ti, P, and Ba with LOI and Cu (lower content) referring to the replacement of plagioclase and ferromagnesian minerals by albite, calcite, epidote, and sericite

  13. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba.

    Science.gov (United States)

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O

    2015-11-15

    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Application of atomic absorption spectrophotometry to determine Cd, Cu, Pb, Zn,...in vegetable samples in Dalat

    Energy Technology Data Exchange (ETDEWEB)

    Giang, Nguyen; Tam, Nguyen Thanh; Ngoc Trinh, Le Thi; Mai, Truong Phuong; Minh, Nguyen Van [Nuclear Research Institute, Dalat (Viet Nam)

    2004-08-01

    Nowadays atomic absorption spectrometry has become valuable method for trace element analysis because high specificity; low detection litmus, easy to use; easy sample preparation, low investment and running costs... atomic absorption spectrometry is generally accepted as one the most suitable method for single - element analysis of trace elements in various kinds of materiel. In 2003, we applied flame - atomic absorption spectrometry for analyzing Ca, Cd, Cu, Pb, Zn...in vegetables and their extracted juices were collected form 11 locations of Dalat, including two kinds of vegetables (goods and safety) in both the summer and winter. Average concentration of Ca = 240 mg/kg wet, Cd = 0.035 mg/kg wet, Cu = 0.67 mg/kg wet, Mg = 131 mg/kg wet, Fe = 8.1/kg wet, Mn = 3.1/kg wet, Na = 3266 mg/kg wet, Pb = 0.345 mg/kg wet and Zn = 3.3 mg wet. In their extracted juices: Ca = 89 mg/kg wet, Cd = 0.008 mg/kg wet, Cu = 0.19 mg/kg wet, Mg = 43 mg/kg wet, Fe = 2.3 mg/kg wet, Mn = 0.61 mg/kg wet, Na = 971 mg/kg wet, Pb = 0.107 mg/kg wet and Zn = 0.65 mg/kg wet. (author)

  15. Application of atomic absorption spectrophotometry to determine Cd, Cu, Pb, Zn,...in vegetable samples in Dalat

    International Nuclear Information System (INIS)

    Nguyen Giang; Nguyen Thanh Tam; Le Thi Ngoc Trinh; Truong Phuong Mai; Nguyen Van Minh

    2004-01-01

    Nowadays atomic absorption spectrometry has become valuable method for trace element analysis because high specificity; low detection litmus, easy to use; easy sample preparation, low investment and running costs... atomic absorption spectrometry is generally accepted as one the most suitable method for single - element analysis of trace elements in various kinds of materiel. In 2003, we applied flame - atomic absorption spectrometry for analyzing Ca, Cd, Cu, Pb, Zn...in vegetables and their extracted juices were collected form 11 locations of Dalat, including two kinds of vegetables (goods and safety) in both the summer and winter. Average concentration of Ca = 240 mg/kg wet, Cd = 0.035 mg/kg wet, Cu = 0.67 mg/kg wet, Mg = 131 mg/kg wet, Fe = 8.1/kg wet, Mn = 3.1/kg wet, Na = 3266 mg/kg wet, Pb = 0.345 mg/kg wet and Zn = 3.3 mg wet. In their extracted juices: Ca = 89 mg/kg wet, Cd = 0.008 mg/kg wet, Cu = 0.19 mg/kg wet, Mg = 43 mg/kg wet, Fe = 2.3 mg/kg wet, Mn = 0.61 mg/kg wet, Na = 971 mg/kg wet, Pb = 0.107 mg/kg wet and Zn = 0.65 mg/kg wet. (author)

  16. Enriquecimiento, disponibilidad y contaminación de metales traza (Cd, Cu, Pb y Zn) en sedimentos de lagunas urbanas de Concepción-Chile Enrichment, availability and contamination of trace metals (Cd, Cu, Pb and Zn) in sediments of urban lagoons in Concepción, Chile

    OpenAIRE

    Elizabeth González Sepúlveda; María Retamal Cifuentes; Valentina Medina Pedreros; Ramón Ahumada Bermúdez; José Neira Hinojosa

    2009-01-01

    Trace metals (Cd, Cu, Pb and Zn) enrichment, availability and contamination in superficial sediments of three interconnected urban lagoons localized in Concepción-Chile, were evaluated. According to the results of geochemical fracctionation analysis, Cu and Pb are rather associated with oxi-hydroxides, Cd is associated with exchangeable and carbonates fraction, while Zn is mainly associated with organic, oxi-hydroxides and residual fraction. The estimation of the availability percentages indi...

  17. Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil.

    Science.gov (United States)

    Lafond, Stéphanie; Blais, Jean-François; Mercier, Guy; Martel, Richard

    2013-01-01

    This research explores the performance of a counter-current leaching process (CCLP) for Cu, Pb, Sb and Zn extraction in a polluted shooting range soil. The initial metal concentrations in the soil were 1790 mg Cu/kg, 48,300 mg Pb/kg, 840 mg Sb/kg and 368 mg Zn/kg. The leaching process consisted of five one-hour acid leaching steps, which used 1 M H2SO4 + 4 M NaCl (20 degrees C, soil suspension = 100 g/L) followed by two water rinsing steps. Ten counter-current remediation cycles were completed and the average metal removal yields were 98.3 +/- 0.3% of Cu, 99.5 +/- 0.1% of Pb, 75.5 +/- 5.1% of Sb and 29.1 +/- 27.2% of Zn. The quality of metal leaching did not deteriorate throughout the 10 remediation cycles completed for this study. The CCLP reduced acid and salt use by approximately 68% and reduced water consumption by approximately 60%, exceeding reductions achieved by a standard acid leaching process.

  18. Disponibilidade e fracionamento de Cd, Pb, Cu e Zn em função do pH e tempo de incubação com o solo Availability and fractionation of Cd, Pb, Cu, AND Zn in soil as a function of incubation time and pH

    Directory of Open Access Journals (Sweden)

    Évio Eduardo Chaves de Melo

    2008-06-01

    Full Text Available O pH e o tempo de contato influenciam a distribuição dos metais entre frações do solo e a eficiência da fitoextração. Objetivou-se, neste trabalho estudar a disponibilidade dos metais Cd, Pb, Cu e Zn para a fitoextração, bem como suas redistribuições no solo, em função do tempo de incubação em solo com e sem calagem. O solo recebeu Cd, Pb, Cu e Zn nas doses 20, 150, 100 e 150 mg kg-1, respectivamente, na forma de sal solúvel. As amostras foram incubadas por 210, 180, 150, 120, 90, 60, 30 e 0,5 dia. Terminada a incubação, mucuna preta (Stizolobium aterrimum Piper & Tracy foi cultivada por 30 dias. EDTA (10 mmol kg-1 foi aplicado sete dias, antes da coleta das plantas. As amostras de solo foram submetidas à extração química e fracionada. A concentração de metais pesados e a calagem afetaram a produção de matéria seca da parte aérea e da raiz. Em solos sem calagem, o aumento da solubilidade dos metais aumentou a fitoextração de Cd e Zn, mesmo sem aplicação do EDTA. A aplicação do EDTA ao solo com calagem mostrou-se eficiente para a fitoextração de Pb e Cu. A calagem reduziu os teores disponíveis de Cd, Pb, Cu e Zn. A calagem provocou redução nos teores de Cd, Pb, Cu e Zn trocáveis e aumento nas frações matéria orgânica, óxidos de ferro amorfo e cristalino.It is known that pH and incubation time influence the distribution of metals into soil fractions and therefore affect phytoextraction. Taking this in account, the aim of this work was to study the fractionation and availability of heavy metals for phytoextraction, as a function of incubation period in soils with or without liming. The soil samples were applied to Cd, Pb, Cu, and Zn at concentrations of 20, 150, 100, and 150 mg kg-1, respectively, in the form of soluble salt. The samples were kept incubated for high incubation periods: 210, 180, 150, 120, 90, 60, 30, and 0,5 day. After that, velvetbean (Stizolobium aterrimum Piper & Tracy was cultivated

  19. Heavy metals (Cd, Pb, Cu, Zn) in mudfish and sediments from three ...

    African Journals Online (AJOL)

    driniev

    2004-04-02

    Apr 2, 2004 ... and analysed for Cd and Pb by electro-thermal AAS, and for Cu and Zn by flame AAS. ... measurements and the dolomitic hard water and high pH of the Mooi River water .... Copper and zinc were determined by flame analysis at 324.8 nm ... were placed separately in clean 20 ml glass vials and one ml de-.

  20. Highly enhanced photocurrent of novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films for photoelectrochemical applications

    International Nuclear Information System (INIS)

    Gohel, Jignasa V.; Jana, A.K.; Singh, Mohit

    2017-01-01

    A novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films synthesized by low-cost process. The properties of ZnO are also enhanced by doping and co-doping. It is also compared with quantum-dot co-sensitization. Optical properties, crystal structure, morphology, and photocurrent are characterized by UV-Vis spectroscopy, XRD, SEM, and solar simulator, respectively. The bandgap is interestingly reduced highly to 2.6 eV for Ag co-doped Cu:ZnO. It is unprecedentedly reduced to 2.1 eV and even 1.97 eV for CdS and PbS-Hg QD-sensitized thin films, respectively. An exceptionally enhanced photocurrent of 17.1 mA/cm"2 is achieved with PbS-Hg-co-sensitized CdS-sensitized Cu:ZnO thin film. This is an excellent achievement, which highly supports the potential of low-cost solar conversion. (orig.)

  1. Highly enhanced photocurrent of novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films for photoelectrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gohel, Jignasa V.; Jana, A.K.; Singh, Mohit [Sardar Vallabhbhai National Institute of Technology, Chemical Engineering Department, Surat, Gujarat (India)

    2017-08-15

    A novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films synthesized by low-cost process. The properties of ZnO are also enhanced by doping and co-doping. It is also compared with quantum-dot co-sensitization. Optical properties, crystal structure, morphology, and photocurrent are characterized by UV-Vis spectroscopy, XRD, SEM, and solar simulator, respectively. The bandgap is interestingly reduced highly to 2.6 eV for Ag co-doped Cu:ZnO. It is unprecedentedly reduced to 2.1 eV and even 1.97 eV for CdS and PbS-Hg QD-sensitized thin films, respectively. An exceptionally enhanced photocurrent of 17.1 mA/cm{sup 2} is achieved with PbS-Hg-co-sensitized CdS-sensitized Cu:ZnO thin film. This is an excellent achievement, which highly supports the potential of low-cost solar conversion. (orig.)

  2. Factors affecting the partitioning of Cu, Zn and Pb in boulder coatings and stream sediments in the vicinity of a polymetallic sulfide deposit

    Science.gov (United States)

    Filipek, L.H.; Chao, T.T.; Carpenter, R.H.

    1981-01-01

    A sequential extraction scheme is utilized to determine the geochemical partitioning of Cu, Zn and Pb among hydrous Mn- and Fe-oxides, organics and residual crystalline silicates and oxides in the minus-80-mesh ( Fe-oxides > Mn-oxides; Zn, Mn-oxides {reversed tilde equals} organics > Fe-oxides; Pb, Fe-oxides > organics > Mn-oxides. In the sediments, organics are the most efficient scavengers of all three ore metals. These results emphasize the importance of organics as sinks for the ore metals, even in environments with high concentrations of Mn- and Fe-oxides. Of the ore metals, Zn appears to be the most mobile, and is partitioned most strongly into the coatings. However, anomaly contrast for hydromorphic Zn, normalized to the MnFe-oxide or organic content, is similar in sediments and coatings. Cu shows the highest anomaly on the boulder coatings, probably due to precipitation of a secondary Cu mineral. In contrast, detrital Pb in the pan concentrates shows a better anomaly than any hydromorphic Pb component. ?? 1981.

  3. The CdS/CdSe/ZnS Photoanode Cosensitized Solar Cells Basedon Pt, CuS, Cu2S, and PbS Counter Electrodes

    Directory of Open Access Journals (Sweden)

    Tung Ha Thanh

    2014-01-01

    Full Text Available Highly ordered mesoporous TiO2 modified by CdS, CdSe, and ZnS quantum dots (QDs was fabricated by successive ionic layer adsorption and reaction (SILAR method. The quantity of material deposition seems to be affected not only by the employed deposition method but also and mainly by the nature of the underlying layer. The CdS, CdSe, and ZnS QDs modification expands the photoresponse range of mesoporous TiO2 from ultraviolet region to visible range, as confirmed by UV-Vis spectrum. Optimized anode electrodes led to solar cells producing high current densities. Pt, CuS, PbS, and Cu2S have been used as electrocatalysts on counter electrodes. The maximum solar conversion efficiency reached in this work was 1.52% and was obtained by using Pt electrocatalyst. CuS, PbS, and Cu2S gave high currents and this was in line with the low charge transfer resistances recorded in their case.

  4. Study of the Cu, Mn, Pb and Zn dynamics in soil, plants and bee pollen from the region of Teresina (PI, Brazil

    Directory of Open Access Journals (Sweden)

    Aline S. Silva

    2012-12-01

    Full Text Available The purpose of this study is to characterize native bee plants regarding their capacity to extract and accumulate trace elements from the soil and its consequences to the sanity of the produced pollen. The trace elements Cu, Mn, Pb and Zn were analyzed in soil, plants and bee pollen from Teresina region (PI, Brazil, by flame atomic absorption spectrophotometer. Considering the studied plant species, Cu and Pb metals presented in the highest levels in the roots of B. platypetala with 47.35 and 32.71 μg.mL-1 and H. suaveolens with 39.69 and 17.06 μg.mL-1, respectively, while in the aerial parts Mn and Zn metals presented the highest levels in S. verticillata with 199.18 and 85.73 μg.mL-1. In the pollen, the levels of Cu, Mn, Pb and Zn vary from 5.44 to 11.75 μg.mL-1; 34.31 to 85.75 μg.mL-1; 13.98 to 18.19 μg.mL-1 and 50.19 to 90.35 μg.mL-1, respectively. These results indicate that in the apicultural pasture the translocation (from soil to pollen of Mn and Zn was more effective than in case of Cu and Pb, therefore, the bee pollen can be used as food supplement without causing risks to human health.O objetivo deste estudo é caracterizar plantas apícolas nativas, quanto a sua capacidade de extrair e acumular elementos-traço do solo e suas conseqüências na sanidade do pólen produzido. Os elementos-traço Cu, Mn, Pb e Zn foram analisados em solo, planta e pólen apícolas em Teresina (PI, Brasil, por espectrofotometria de absorção atômica com atomização em chama. Considerando as espécies de plantas estudadas, os metais Cu e Pb apresentaram nas raízes maiores teores de B. platypetala com 47,35 e 32,71 µg.mL-1 e H. suaveolens com 39,69 e 17,06 µg.mL-1, respectivamente, enquanto na parte aérea os metais Mn e Zn apresentaram os maiores teores, em S. verticillata com 199,18 e 85, 73 µg.mL-1. No pólen os teores de Cu, Mn, Pb e Zn varia de 5,44 a 11,75 µg.mL-1; 34,31 a 85,75 µg.mL-1; 13,98 a 18,19 µg.mL-1 e 50,19 a 90,35 µg.mL-1

  5. Enriquecimiento, disponibilidad y contaminación de metales traza (Cd, Cu, Pb y Zn en sedimentos de lagunas urbanas de Concepción-Chile Enrichment, availability and contamination of trace metals (Cd, Cu, Pb and Zn in sediments of urban lagoons in Concepción, Chile

    Directory of Open Access Journals (Sweden)

    Elizabeth González Sepúlveda

    2009-01-01

    Full Text Available Trace metals (Cd, Cu, Pb and Zn enrichment, availability and contamination in superficial sediments of three interconnected urban lagoons localized in Concepción-Chile, were evaluated. According to the results of geochemical fracctionation analysis, Cu and Pb are rather associated with oxi-hydroxides, Cd is associated with exchangeable and carbonates fraction, while Zn is mainly associated with organic, oxi-hydroxides and residual fraction. The estimation of the availability percentages indicate that Cu is the most mobile metal and the less mobile is the Cd. An evaluation of the geo-accumulation index and urban industrial pollution allowed to classify the studied zone as moderately to highly contaminated.

  6. Trace Elements (Pb, Zn, Cu in Blood of Mute Swan (Cygnus olor from the Isonzo River Nature Reserve (Italy

    Directory of Open Access Journals (Sweden)

    G Isani*, M Cipone, G Andreani, E Carpenè, E Ferlizza, K Kravos1 and F Perco1

    2013-11-01

    Full Text Available Lead concentrations in blood of 45 specimens of mute swan from the molting area of the Isonzo River Mouth Nature Reserve (Italy were determined in two consecutive years (2006-2007, some birds were neck ringed to identify their homing behavior. The second sampling included whole body X-ray radiography and Cu and Zn plasma analyses to investigate the health impact of putative Pb exposure. X-ray images of all investigated specimens did not show any radiopacity due to the ingestion of metal bodies. Lead levels (0.08-0.44 g/ml were in the range of those reported for swans living in unpolluted or slightly polluted environments and excluded acute intoxication, as confirmed by clinical investigation. Zinc concentrations ranged between 2.93 and 7.59 g/ml and were one order of magnitude higher than Cu concentrations (0.21-0.42 g/ml. The negative correlation between Pb and Zn concentrations could be indicative of adverse health effects caused by chronic lead exposure. To our knowledge this is the first study reporting Pb, Zn and Cu blood levels, X-ray radiographies and data on the origin of swan populations.

  7. Study of the Cu, Mn, Pb and Zn dynamics in soil, plants and bee pollen from the region of Teresina (PI), Brazil.

    Science.gov (United States)

    Silva, Aline S; Araújo, Sebastião B; Souza, Darcet C; Silva, Fábio A Santos e

    2012-12-01

    The purpose of this study is to characterize native bee plants regarding their capacity to extract and accumulate trace elements from the soil and its consequences to the sanity of the produced pollen. The trace elements Cu, Mn, Pb and Zn were analyzed in soil, plants and bee pollen from Teresina region (PI), Brazil, by flame atomic absorption spectrophotometer. Considering the studied plant species, Cu and Pb metals presented in the highest levels in the roots of B. platypetala with 47.35 and 32.71 μg.mL(-1) and H. suaveolens with 39.69 and 17.06 μg.mL(-1), respectively, while in the aerial parts Mn and Zn metals presented the highest levels in S. verticillata with 199.18 and 85.73 μg.mL(-1). In the pollen, the levels of Cu, Mn, Pb and Zn vary from 5.44 to 11.75 μg.mL(-1); 34.31 to 85.75 μg.mL(-1); 13.98 to 18.19 μg.mL(-1) and 50.19 to 90.35 μg.mL(-1), respectively. These results indicate that in the apicultural pasture the translocation (from soil to pollen) of Mn and Zn was more effective than in case of Cu and Pb, therefore, the bee pollen can be used as food supplement without causing risks to human health.

  8. The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey.

    Science.gov (United States)

    Sasmaz, Merve; Arslan Topal, Emine Işıl; Obek, Erdal; Sasmaz, Ahmet

    2015-11-01

    This study was designed to investigate removal efficiencies of Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey by Lemna gibba L. and Lemna minor L. These plants were placed in the gallery water of Keban Pb-Zn ore deposits and adapted individually fed to the reactors. During the study period (8 days), the plant and water samples were collected daily and the temperature, pH, and electric conductivity of the gallery water were measured daily. The plants were washed, dried, and burned at 300 °C for 24 h in a drying oven. These ash and water samples were analyzed by ICP-MS to determine the amounts of Cu, Pb, Zn, and As. The Cu, Pb, Zn and As concentrations in the gallery water of the study area detected 67, 7.5, 7230, and 96 μg L(-1), respectively. According to the results, the obtained efficiencies in L. minor L. and L. gibba L. are: 87% at day 2 and 36% at day 3 for Cu; 1259% at day 2 and 1015% at day 2 for Pb; 628% at day 3 and 382% at day 3 for Zn; and 7070% at day 3 and 19,709% at day 2 for As, respectively. The present study revealed that both L. minor L. and L. gibba L. had very high potential to remove Cu, Pb, Zn, and As in gallery water contaminated by different ores. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. The Effect of Salinity on the Release of Copper (Cu, Lead (Pb And Zinc (Zn from Tailing

    Directory of Open Access Journals (Sweden)

    Apriani Sulu Parubak

    2010-06-01

    Full Text Available The effects of salinity on the release of copper (Cu, lead (Pb and zinc (Zn in tailing sediment have been studied by stripping voltammetry. The purpose of the research is to know the effect of salinity on the release of metals with certain pH, conductivity and variety of metals. Simultaneous determination of copper, lead and zinc in tailing was done by Differential Pulse Anodic Stripping Voltammetry (DPASV onto hanging mercury drop electrode (HMDE and nitric acid 65% as support electrolyte. The limit of detection for this method 0.60 µg/L, 0.150 µg/L and 0.238 µg/L for copper, lead and iMc respectively. The stripping solution of 300/00 salinity with pH= 7.85, conductivity= 46.62 mS/cm gives the amounts of released metals as follows :14.867 µg/L Cu, 0.976 µg/L Pb and 6.224 µg/L Zn. These results are higher as compared with the results from 15 0/00 salinity with pH= 7.66, conductivity= 23.22 mS/cm that give released metals of Cu= 7.988 µg/L, Pb= 0.311 µg/L and Zn= 4.699 µg/L. the results from ANOVA suggest that this is due to different in salinity of the solution. It also found that the conductivity does not give any effect. It can be concluded that the higher salinity will that give higher concentration or released metals.

  10. Determination of field-based sorption isotherms for Cd, Cu, Pb and Zn in Dutch soils

    NARCIS (Netherlands)

    Otte JG; Grinsven JJM van; Peijnenburg WJGM; Tiktak A; LBG; ECO

    1999-01-01

    Sorption isotherms for metals in soil obtained in the laboratory generally underpredict the observed metal content in the solid phase in the field. Isotherms based on in-situ data are therefore required. The aim of this study is to obtain field-based sorption isotherms for Cd, Cu, Pb and Zn as input

  11. Formation and stability of Pb-, Zn- and Cu-PO4 phases at low temperatures: Implications for heavy metal fixation in polar environments

    International Nuclear Information System (INIS)

    White, Duanne A.; Hafsteinsdóttir, Erla G.; Gore, Damian B.; Thorogood, Gordon; Stark, Scott C.

    2012-01-01

    Low temperatures and frequent soil freeze–thaw in polar environments present challenges for the immobilisation of metals. To address these challenges we investigated the chemical forms of Pb, Zn and Cu in an Antarctic landfill, examined in vitro reaction kinetics of these metals and orthophosphate at 2 and 22 °C for up to 185 days, and subjected the products to freeze–thaw. Reaction products at both temperatures were similar, but the rate of production varied, with Cu-PO 4 phases forming faster, and the Zn- and Pb-PO 4 phases slower at 2 °C. All metal-orthophosphate phases produced were stable during a 2.5 h freeze–thaw cycle to −30 °C. Metal immobilisation using orthophosphate can be successful in polar regions, but treatments will need to consider differing mineral stabilities and reaction rates at low temperatures. - Highlights: ► We identify Cu, Pb and Zn species in an Antarctic Landfill. ► We identify the products and rates of reactions between metals and PO 4 3− at 2 and 22 °C. ► We test the stability of metal-orthophosphate species during freeze–thaw. ► We conclude that orthophosphate may immobilize metals in freezing ground. - Pb, Cu and Zn react with PO 4 3− at low temperatures (2 °C) to form low solubility metal-PO 4 phases at rates that may enable the in-situ remediation of metal contaminated soils in polar areas.

  12. Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions

    Science.gov (United States)

    Wang, Yu-Ying; Liu, Yu-Xue; Lu, Hao-Hao; Yang, Rui-Qin; Yang, Sheng-Mao

    2018-05-01

    A hydroxyapatite-biochar nanocomposite (HAP-BC) was successfully fabricated and its physicochemical properties characterized. The analyses showed that HAP nanoparticles were successfully loaded on the biochar surface. The adsorption of Pb(II), Cu(II), and Zn(II) by HAP-BC was systematically studied in single and ternary metal systems. The results demonstrated that pH affects the adsorption of heavy metals onto HAP-BC. Regarding the adsorption kinetics, the pseudo-second-order model showed the best fit for all three heavy metal ions on HAP-BC. In both single and ternary metal ion systems, the adsorption isotherm of Pb(II) by HAP-BC followed Langmuir model, while those of Cu(II) and Zn(II) fitted well with Freundlich model. The maximum adsorption capacity for each tested metal by HAP-BC was higher than that of pristine rice straw biochar (especially for Pb(II)) or those of other reported adsorbents. Therefore, HAP-BC could explore as a new material for future application in heavy metal removal.

  13. Geochemistry of Hydrothermal Alteration Associated with Cenozoic Intrusion-Hosted Cu-Pb-Zn Mineralization at Tavşanlı Area, Kütahya, NW Turkey

    Directory of Open Access Journals (Sweden)

    Mustafa Kumral

    2016-02-01

    Full Text Available The Miocene magmatic intrusion in the Tavşanlı zone of the Kütahya-Bolkardağ Belt (KBB in the northwestern region of Turkey is represented by the Eğrigöz granitoids. This paper studies the petrology and geochemistry of hydrothermal alterations associated with the vein-type Cu-Pb-Zn mineralization hosted by this pluton, focusing on the determination of the mass gains and losses of chemical components, which reflect the chemical exchanges between the host rocks and hydrothermal fluids. Vein-type Cu-Pb-Zn mineralization is closely associated with intense hydrothermal alterations within the brecciation, quartz stockwork veining, and brittle fracture zones that are controlled by NW-SE trending faults cutting through the Eğrigöz granitoids. Paragenetic relationships reveal three stages of mineralization: pre-ore, ore, and supergene. The ore mineralogy typically includes hypogene chalcopyrite, sphalerite, galena, and pyrite, with locally supergene covellite, malachite, and azurite. Wall-rock hypogene hydrothermal alterations include pervasive silicification, sulfidation, sericitization, and selective carbonatization and albitization. These are distributed in three main alteration zones (zone 1: silicified/iron carbonatized alterations ± albite, zone 2: argillic-silicic alterations, and zone 3: phyllic alterations. Based on the gains and losses of mass and volume (calculated by the GEOISO-Windows™ program, zone 1 has a higher mass and volume gain than zones 2 and 3. Non-systematic zonal distributions of alterations are observed in which the silicic-carbonate alterations +/− albitization appeared in zone 1 in the center and the phyllic-argillic alterations appeared in zones 2 and 3, with an increase in base metals (Cu-Pb-Zn in the zone from Cu, Cu-Pb, to Cu-Pb-Zn moving outwards.

  14. Influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on development and efficacy of vesicular-arbuscular mycorrhiza in tropical and subtropical plants. Einfluss von Al und den Schwermetallen Fe, Mn, Zn, Cu, Pb und Cd auf die Effizienz der VA-Mykorrhiza bei tropischen und subtropischen Pflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Fabig, B.

    1982-07-08

    In greenhouse experiments the influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on the efficacy of VA-mycorrhizal fungi was tested with special regard to several soil pH levels and soil water regimes in different combinations. The most important results were: The inoculation led to a significantly better growth of all test plants in the presence of Al, Fe, Mn, Zn, Cu, Pb, and Cd up to a specific amount of the soil-applied element; beyond this specific limit the efficacy of the mycorrhiza was more or less inhibited depending on the element. In correlation with the growth, the nearly always better P uptake of the inoculated plants was impaired only by the highest toxic amounts of the elements. In comparison with the uninoculated plants, all the inoculated plants showed higher P and Pb concentrations. The mycorrhizal plants generally had significantly higher concentrations of the elements Al, Mn, Zn, Cu, and Cd in the roots than the uninoculated plants. Generally even toxic levels of Fe in the soil did not lead to higher Fe concentrations in the plants. Even the highest amounts of Al, Fe, Mn, Zn, and Cu did not cause microscopically visible injuries to the development of the mycorrhiza and did not impede the infection. Only the toxic levels of Pb led to a decrease of the infection rate of about 50%. Pb and Cd were the reason for morphological changes of the different developmental phases of the fungus. High amounts of Pb induced an increased formation of vesicles. The highest amounts of Cd were accompanied by the crowded occurrence of arbuscules.

  15. Mobility of Pb, Cu, and Zn in the phosphorus-amended contaminated soils under simulated landfill and rainfall conditions.

    Science.gov (United States)

    Cao, Xinde; Liang, Yuan; Zhao, Ling; Le, Huangying

    2013-09-01

    Phosphorus-bearing materials have been widely applied in immobilization of heavy metals in contaminated soils. However, the study on the stability of the initially P-induced immobilized metals in the contaminated soils is far limited. This work was conducted to evaluate the mobility of Pb, Cu, and Zn in two contrasting contaminated soils amended with phosphate rock tailing (PR) and triple superphosphate fertilizer (TSP), and their combination (P + T) under simulated landfill and rainfall conditions. The main objective was to determine the stability of heavy metals in the P-treated contaminated soils in response to the changing environment conditions. The soils were amended with the P-bearing materials at a 2:1 molar ratio of P to metals. After equilibrated for 2 weeks, the soils were evaluated with the leaching procedures. The batch-based toxicity characteristic leaching procedure (TCLP) was conducted to determine the leachability of heavy metals from both untreated and P-treated soils under simulated landfill condition. The column-based synthetic precipitation leaching procedure (SPLP) were undertaken to measure the downward migration of metals from untreated and P-treated soils under simulated rainfall condition. Leachability of Pb, Cu, and Zn in the TCLP extract followed the order of Zn > Cu > Pb in both soils, with the organic-C- and clay-poor soil showing higher metal leachability than the organic-C- and clay-rich soil. All three P treatments reduced leachability of Pb, Cu, and Zn by up to 89.2, 24.4, and 34.3 %, respectively, compared to the untreated soil, and TSP revealed more effectiveness followed by P + T and then PR. The column experiments showed that Zn had the highest downward migration upon 10 pore volumes of SPLP leaching, followed by Pb and then Cu in both soils. However, migration of Pb and Zn to subsoil and leachate were inhibited in the P-treated soil, while Cu in the leachate was enhanced by P treatment in the organic

  16. Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France

    Energy Technology Data Exchange (ETDEWEB)

    Chopin, E.I.B. [GEGENA EA 3795, University of Reims Champagne-Ardenne, 2 esplanade Roland Garros, 51100 Reims (France)], E-mail: edithchopin@softhome.net; Marin, B.; Mkoungafoko, R.; Rigaux, A. [GEGENA EA 3795, University of Reims Champagne-Ardenne, 2 esplanade Roland Garros, 51100 Reims (France); Hopgood, M.J. [Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, RG6 6DW (United Kingdom); Delannoy, E.; Cances, B.; Laurain, M. [GEGENA EA 3795, University of Reims Champagne-Ardenne, 2 esplanade Roland Garros, 51100 Reims (France)

    2008-12-15

    Soil and Vitis vinifera L. (coarse and fine roots, leaves, berries) concentration and geochemical partitioning of Cu, Pb and Zn were determined in a contaminated calcareous Champagne plot to assess their mobility and transfer. Accumulation ratios in roots remained low (0.1-0.4 for Cu and Zn, <0.05 for Pb). Differences between elements resulted from vegetation uptake strategy and soil partitioning. Copper, significantly associated with the oxidisable fraction (27.8%), and Zn with the acid soluble fraction (33.3%), could be mobilised by rhizosphere acidification and oxidisation, unlike Pb, essentially contained in the reducible fraction (72.4%). Roots should not be considered as a whole since the more reactive fine roots showed higher accumulation ratios than coarse ones. More sensitive response of fine roots, lack of correlation between chemical extraction results and vegetation concentrations, and very limited translocation to aerial parts showed that fine root concentrations should be used when assessing bioavailability. - Soil Cu, Pb and Zn concentration and partitioning were combined to accumulation ratio to study the transfer of trace element from soil to Vitis vinifera L. roots and aerial parts in a contaminated vineyard plot.

  17. Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France

    International Nuclear Information System (INIS)

    Chopin, E.I.B.; Marin, B.; Mkoungafoko, R.; Rigaux, A.; Hopgood, M.J.; Delannoy, E.; Cances, B.; Laurain, M.

    2008-01-01

    Soil and Vitis vinifera L. (coarse and fine roots, leaves, berries) concentration and geochemical partitioning of Cu, Pb and Zn were determined in a contaminated calcareous Champagne plot to assess their mobility and transfer. Accumulation ratios in roots remained low (0.1-0.4 for Cu and Zn, <0.05 for Pb). Differences between elements resulted from vegetation uptake strategy and soil partitioning. Copper, significantly associated with the oxidisable fraction (27.8%), and Zn with the acid soluble fraction (33.3%), could be mobilised by rhizosphere acidification and oxidisation, unlike Pb, essentially contained in the reducible fraction (72.4%). Roots should not be considered as a whole since the more reactive fine roots showed higher accumulation ratios than coarse ones. More sensitive response of fine roots, lack of correlation between chemical extraction results and vegetation concentrations, and very limited translocation to aerial parts showed that fine root concentrations should be used when assessing bioavailability. - Soil Cu, Pb and Zn concentration and partitioning were combined to accumulation ratio to study the transfer of trace element from soil to Vitis vinifera L. roots and aerial parts in a contaminated vineyard plot

  18. Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): Speciation modeling of metal-citric acid complexes

    International Nuclear Information System (INIS)

    Kabra, Kavita; Chaudhary, Rubina; Sawhney, R.L.

    2008-01-01

    The present study is targeted on solar photocatalytic removal of metal ions from wastewater. Photoreductive deposition and dark adsorption of metal ions Cu(II), Ni(II), Pb(II) and Zn(II), using solar energy irradiated TiO 2 , has been investigated. Citric acid has been used as a hole scavenger. Modeling of metal species has been performed and speciation is used as a tool for discussing the photodeposition trends. Ninety-seven percent reductive deposition was obtained for copper. The deposition values of other metals were significantly low [nickel (36.4%), zinc (22.2%) and lead (41.4%)], indicating that the photocatalytic treatment process, using solar energy, was more suitable for wastewater containing Cu(II) ions. In absence of citric acid, the decreasing order deposition was Cu(II) > Ni(II) > Pb(II) > Zn(II), which proves the theoretical thermodynamic predictions about the metals

  19. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils

    International Nuclear Information System (INIS)

    Sizmur, Tom; Palumbo-Roe, Barbara; Watts, Michael J.; Hodson, Mark E.

    2011-01-01

    To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota. - Research highlights: → Earthworms increase the mobility and availability of metals and metalloids in soils. → We incubated L. terrestris in three soils contaminated with As, Cu, Pb and Zn. → Earthworms increased the mobility of As, Cu, Pb and Zn in their casts. → The mechanisms for this could be explained by changes in pH or organic carbon. - Lumbricus terrestris change the partitioning of metal(loid)s between soil constituents and increase the mobility of metal(loid)s in casts and pore water.

  20. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Sizmur, Tom, E-mail: t.p.sizmur@reading.ac.uk [Soil Research Centre, Department of Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6DW (United Kingdom); Palumbo-Roe, Barbara; Watts, Michael J. [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Hodson, Mark E. [Soil Research Centre, Department of Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6DW (United Kingdom)

    2011-03-15

    To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota. - Research highlights: > Earthworms increase the mobility and availability of metals and metalloids in soils. > We incubated L. terrestris in three soils contaminated with As, Cu, Pb and Zn. > Earthworms increased the mobility of As, Cu, Pb and Zn in their casts. > The mechanisms for this could be explained by changes in pH or organic carbon. - Lumbricus terrestris change the partitioning of metal(loid)s between soil constituents and increase the mobility of metal(loid)s in casts and pore water.

  1. Geology and Characteristics of Pb-Zn-Cu-Ag Skarn Deposit at Ruwai, Lamandau Regency, Central Kalimantan

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i4.126This study is dealing with geology and characteristics of mineralogy, geochemistry, and physicochemical conditions of hydrothermal fluid responsible for the formation of skarn Pb-Zn-Cu-Ag deposit at Ruwai, Lamandau Regency, Central Kalimantan. The formation of Ruwai skarn is genetically associated with calcareous rocks consisting of limestone and siltstone (derived from marl? controlled by NNE-SSW-trending strike slip faults. It is localized along N 70° E-trending thrust fault, which also acts as the contact zone between sedimentary and volcanic rocks in the area. The Ruwai skarn is mineralogically characterized by prograde alteration comprising garnet (andradite and clino-pyroxene (wollastonite, and retrograde alteration composed of epidote, chlorite, calcite, and sericite. Ore mineralization is typified by sphalerite, galena, and chalcopyrite, formed at early retrograde stage. Galena is typically enriched in silver up to 0.45 wt % and bismuth of about 1 wt %. No Ag-sulphides are identified within the ore body. Geochemically, SiO is enriched and CaO is depleted in limestone, consistent with silicic alteration (quartz and calc-silicate and decarbonatization of the wallrock. The measured resources of the deposit are 2,297,185 tonnes at average grades of 14.98 % Zn, 6.44% Pb, 2.49 % Cu, and 370.87 g/t Ag. Ruwai skarn orebody was originated at moderate temperatures of 250 - 266 °C and low salinity of 0.3 - 0.5 wt.% NaCl eq. The late retrograde stage was formed at low temperature of 190 - 220 °C and low salinity of ~0.35 wt.% NaCl eq., which was influenced by meteoric water incursion at the late stage of the Ruwai Pb-Zn-Cu-Ag skarn formation.

  2. Cu-Zn-Pb multi isotopic characterization of a small watershed (Loire river basin, France)

    Science.gov (United States)

    Desaulty, A. M.; Millot, R.; Perret, S.; Bourrain, X.

    2015-12-01

    Combating metal pollution in surface water is a major environmental, public health and economic issue. Knowledge of the behavior of metals, such as copper (Cu), zinc (Zn) and lead (Pb) in sediments and dissolved load, is a key factor to improve the management of rivers. Recent advances in mass spectrometry related to the development of MC-ICPMS allow to analyze the isotopic composition of these elements, and previous studies show the effectiveness of isotopic analyses to determine the anthropogenic sources of pollution in environment. The goal of this study is to use the Cu-Zn-Pb multi-isotopic signature to track the pollutions in surface water, and to understand the complex processes causing the metals mobilization and transport in environment. More particularly we investigate the mechanisms of distribution between the dissolved load and particulate load, known to play an important role in the transport of metals through river systems. As case study, we chose a small watershed, poorly urbanized in the Loire river basin. Its spring is in a pristine area, while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. First a sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Then to simulate a lot of potential natural and anthropogenic modifications of environmental conditions, we made sequential extraction protocol using various reagents on the sediments. Isotopic analyzes were performed also on the various extracting solutions. Isotopic ratios were measured using a Neptune MC-ICPMS at the BRGM, after a protocol of purification for Zn and Cu. The results showed that, these isotopic systematics reveal important informations about the mechanists of mobilization and transport of metals through river systems. However experiments performed under laboratory conditions will be necessary

  3. Risk assessment for Cd, Cu, Pb and Zn in urban soils: Chemical availability as the central concept

    International Nuclear Information System (INIS)

    Rodrigues, S.M.; Cruz, N.; Coelho, C.; Henriques, B.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, Paul F.A.M.

    2013-01-01

    To assess the geochemical reactivity and oral bioaccessibility of Cd, Cu, Pb and Zn in urban soils from the Porto area, four extractions were performed including Aqua Regia (AR; pseudototal), 0.43 M HNO 3 (reactive), 0.01 M CaCl 2 (available), and 0.4 M glycine at pH = 1.5, SBET method (oral bioaccessible pool). Oral bioaccessibility in urban soils was higher than in samples from rural, industrial and mining areas which is most likely related to sources of metals and parent materials of corresponding soils. The availability and reactivity were described well by non-linear Freundlich-type equations when considering differences in soil properties. The resulting empirical models are able to predict availability and reactivity and can be used to improve the accuracy of risk assessment. Furthermore, a close 1:1 relationship exists between results from the 0.43 M HNO 3 method and the SBET method which substantially facilitates risk assessment procedures and reduces analytical costs. -- Highlights: ► Availability of PTEs in urban soils is described well by non-linear Freundlich-type equations. ► A 1:1 relationship was obtained between the 0.43 M HNO 3 method and the SBET method. ► A single soil extraction indicates reactivity and bioaccessibility of metals in soils. ► The reactive pool is suitable to assess risks of Cd, Cu, Pb and Zn in urban soils. -- A single analysis of the reactive pool by dilute nitric acid is suitable to assess risks of Cd, Cu, Pb and Zn in urban soils related to leaching to (ground)water and exposure to human beings (bioaccessibility)

  4. Population health risk via dietary exposure to trace elements (Cu, Zn, Pb, Cd, Hg, and As) in Qiqihar, Northeastern China.

    Science.gov (United States)

    Luo, Jinming; Meng, Jia; Ye, Yajie; Wang, Yongjie; Bai, Lin

    2018-02-01

    The estimated daily intakes (EDIs) of six trace elements (Cu, Zn, Pb, Cd, Hg, and As) in vegetables (leafy vegetable, i.e., bok choy, fruit vegetables, i.e., cucumber and tomato, and other categories, i.e., mushroom, kidney bean, and potato), cereals (rice and wheat flour), and meats (pork, mutton, and beef) most commonly consumed by adult inhabitants of Qiqihar, Northeastern China, were determined to assess the health status of local people. The average EDIs of Cu, Zn, Pb, Cd, Hg, and As were with 20.77 μg (kg bw) -1 day -1 of Cu, 288 μg (kg bw) -1 day -1 of Zn, 2.01 μg (kg bw) -1 day -1 of Pb, 0.41 μg (kg bw) -1 day -1 of Cd, 0.01 μg (kg bw) -1 day -1 of Hg, and 0.52 μg (kg bw) -1 day -1 of As, respectively, which are below the daily allowance recommended by FAO/WHO. However, the maximum EDIs of Pb and Cd were 4.56 μg (kg bw) -1 day -1 and 1.68 μg (kg bw) -1 day -1 , respectively, which are above the recommended levels [i.e., 3.58 μg (kg bw) -1 day -1 for Pb and 1.0 μg (kg bw) -1 day -1 for Cd] by FAO/WHO. This finding indicates that the potential health risk induced by daily ingestion of Pb and Cd for the local residents should receive a significant concern. Similarly, we detected elevated Pb and Cd concentrations, i.e., with average of 13.58 and 0.60 mg kg -1 dw, respectively, in the adult scalp hairs. Consumption of rice, potato, bok choy, and wheat flour contributed to 75 and 82% of Pb and Cd daily intake from foodstuffs. Nevertheless, human scalp hair is inappropriate biological material for determination of the nutritional status of trace elements in this region.

  5. A New Method of Environmental Assessment and Monitoring of Cu, Zn, As, and Pb Pollution in Surface Soil Using Terricolous Fruticose Lichens

    Directory of Open Access Journals (Sweden)

    Yuri Sueoka

    2016-12-01

    Full Text Available Levels of trace element pollution in surface soil can be estimated using soil analyses and leaching tests. These methods may reveal different results due to the effect of soil properties, such as grain size and mineral composition, on elemental availability. Therefore, this study advocates an alternative method for monitoring and assessment of trace element pollution in surface soil using terricolous fruticose lichens. Lichens growing at abandoned mine sites and unpolluted areas in southwest Japan and their substrata were analyzed using inductively coupled plasma-mass spectrometry and X-ray fluorescence spectrometry to clarify the relationships between Cu, Zn, As, and Pb concentrations in lichens and soils, including their absorption properties. Concentrations of these elements in the lichens were positively correlated with those in the soils regardless of lichen species, location, habitat, or conditions of soils. The analyzed lichens had neither competitive nor antagonistic properties in their elemental absorption, which made them good biomonitors of trace element pollution in surface soil. The distribution maps of average Cu, Zn, As, and Pb concentrations at each sampling region detected almost all of the Cu, Zn, and As pollution of the soils. Therefore, lichens could be used in practical applications to monitor Cu, Zn, and As pollution in surface soils.

  6. Qualitative analysis of As, Ba, Cd, Cr, Zn, Fe, Mn, K, Hg, Pb y Cu, as constituents of Amatitlan Lake sediment by XRF

    International Nuclear Information System (INIS)

    Beltran, P.A.E.; Morales, E.A.

    1987-10-01

    Samples of fifteen sampling points were analyzed. Molybdenum X-ray tube with secondary excitation assembly, SiLi detector and deconvolution software AXIL were employed; self-standardization method based upon incoherent ratio was used for quantitative analysis of some elements. Ca, P, S, Ti, Mn, Fe, Cr, Zn, Cu, Ni, Ga, As, Pb, Ge, Sr and Pb, were found. As, Pb and Cu concentrations lower than 109 mg/lt, 119 mg/lt, and 500mg/lt, respectively, were measured. Hg was not detected. (author)

  7. Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud: a field experiment.

    Science.gov (United States)

    Wang, Yangyang; Li, Fangfang; Song, Jian; Xiao, Ruiyang; Luo, Lin; Yang, Zhihui; Chai, Liyuan

    2018-04-12

    Red mud (RM) was used to remediate heavy metal-contaminated soils. Experiments with two different dosages of RM added to soils were carried out in this study. It was found that soil pH increased 0.3 and 0.5 unit with the dosage of 3 and 5% (wt%), respectively. At the dosage of 5%, the highest stabilization efficiencies for Cd, Pb, Cu and Zn reached 67.95, 64.21, 43.73 and 63.73%, respectively. The addition of RM obviously transferred Cd from the exchangeable fraction to the residual fraction. Meanwhile, in comparison with the control (no RM added), it reduced 24.38, 49.20, 19.42 and 8.89% of Cd, Pb, Cu and Zn in wheat grains at the RM addition dosage of 5%, respectively. At the same time, the yield of wheat grains increased 17.81 and 24.66% at the RM addition dosage of 3 and 5%, respectively. Finally, the addition of RM did not change the soil bacterial community. These results indicate that RM has a great potential in stabilizing heavy metals in calcareous agricultural soils.

  8. Mineralogical and geochemical characterization of supergene Cu-Pb-Zn-V ores in the Oriental High Atlas, Morocco

    Science.gov (United States)

    Verhaert, Michèle; Bernard, Alain; Dekoninck, Augustin; Lafforgue, Ludovic; Saddiqi, Omar; Yans, Johan

    2017-10-01

    In the Moroccan High Atlas, two sulfide deposits hosted by Jurassic dolostones underwent significant weathering. In the Cu deposit of Jbel Klakh, several stages of supergene mineralization are distinguished: (1) the replacement of hypogene sulfides in the protolith (chalcopyrite) by secondary sulfides in the cementation zone (bornite, digenite, chalcocite, covellite), (2) the formation of oxidized minerals in the saprolite (malachite, azurite, brochantite) where the environment becomes more oxidizing and neutral, and (3) the precipitation of late carbonates (calcite) and iron (hydr-)oxides in the laterite. The precipitation of carbonates is related to the dissolution of dolomitic host rocks, which buffers the fluid acidity due to the oxidation of sulfides. In the Jbel Haouanit Pb-Zn deposit, the mineral assemblage is dominated by typical calamine minerals, Cu minerals (chalcocite, covellite, malachite), and a Cu-Pb-Zn vanadate (mottramite). Galena is successively weathered in anglesite and cerussite. Sphalerite is weathered in smithsonite, which is rapidly replaced by hydrozincite. Late iron (hydr-)oxides are mainly found at the top of both deposits (laterite). Both deposits are thus characterized by specific mineral zoning, from laterite to protolith, related to variations in the mineralogy and ore grades and probably caused by varying Eh-pH conditions.

  9. Assessment Of Heavy Metal Contamination Of Water Sources From Enyigba Pb-Zn District South Eastern Nigeria

    Directory of Open Access Journals (Sweden)

    Nnabo Paulinus N

    2015-08-01

    Full Text Available Abstract A total of thirty 30 water samples were collected from the Enyigba PbZn mining district to assess the contamination of the water sources as a result of mining of lead and zinc minerals in the area. This comprises of 12 samples of surface water 14 from mine ponds and 4 from underground borehole water. The samples were acidified to stabilize the metals for periods more than four days without the use of refrigeration. The acidified water samples were analysed by a commercial laboratory at Projects Development Institute PRODA Enugu using Atomic Absorption Spectroscopy AAS. The elements determined by this method are lead Pb zinc Zn copper Cu arsenic As cadmium Cd nickel Ni manganese Mn and cobalt Co. The result and analysis of contamination factor showed that in surface water Cd had the highest concentration followed by As and Pb while Ni had the lowest. In mine ponds Cd also had the highest concentration and followed by Pb and As and Ni the lowest. In borehole water Cd has the highest concentration followed by Pb and As while Ni had the lowest concentration. Compared to WHO permissible limits the contamination of the heavy metals in all water sources are in order CdAsPbNiZnCu. In surface water the order is CdAsPbNiZnCu in mine ponds it is CdPbAsNiZnCu and in borehole water the order is CdAsPbZnNiCu. The calculated contamination factors show very high contamination status for Cd Pb and As. These levels of contamination and values indicate that under the prevailing conditions and environmental regulations in Nigeria the mining district would face major and hazardous discharges of these metals to the water sources.

  10. Risk assessment for Cd, Cu, Pb, and Zn in urban soils: chemical availability as the central concept

    NARCIS (Netherlands)

    Rodrigues, S.R.; Cruz, N.; Coelho, C.; Henriques, B.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, P.F.A.M.

    2013-01-01

    To assess the geochemical reactivity and oral bioaccessibility of Cd, Cu, Pb and Zn in urban soils from the Porto area, four extractions were performed including Aqua Regia (AR; pseudototal), 0.43 M HNO(3) (reactive), 0.01 M CaCl(2) (available), and 0.4 M glycine at pH = 1.5, SBET method (oral

  11. Retention and distribution of Cu, Pb, Cr, and Zn in a full-scale hybrid constructed wetland receiving municipal sewage

    NARCIS (Netherlands)

    Xiao, H.W.; Zhang, S.L.; Zhai, J.; He, Q.; Mels, A.R.; Ning, K.J.; Liu, J.

    2013-01-01

    This study was conducted to investigate the retention and distribution of Cu, Pb, Cr, and Zn in a hybrid constructed wetland (CW) that consists of both vertical baffled flow wetlands (VBFWs) and horizontal subsurface flow wetlands (HSSFs) with unique flow regimes and oxygen distribution. The heavy

  12. Copperton - Areachap Cu-Zn mineralization

    International Nuclear Information System (INIS)

    Theart, H.F.J.

    1985-05-01

    Stratiform massive sulfide deposit at the Prieska Cu-Zn and Areachap mines are situated close to the eastern margin of the Namaqua Province, South Africa, within the Copperton and Jannelsepan Formations. The investigation of the petrology and geochemistry of the Prieska Cu-Zn deposits forms the basis of this study. Borehole core and surface samples were investigated petrographically. Knowledge gained during this investigation was used to select suitable samples for geochemical analysis. Suites of samples were analysed for their major element and some trace element concentrations by wavelength-dispersive X-ray fluorescence spectrometry. Concentrations of some elements in the lanthanide group were determined using the inductively coupled plasma emission spectrometer. Samples were also submitted for analysis by instrumental neutron activation analysis. Determinations of concentrations of U and Pb and isotopic compositions of Pb were done for both whole rock samples and sulfide mineral separates. Major and trace element abundances within different rock types of the Copperton Formation are discussed and compared with those of the Jannelsepan and Hartebeest Pan Formations. The petrogenetic implications of these, the U-Pb isotope systematics and S isotope ratios are used to reconstruct the geological environment of mineralization. 187 refs., 106 figs., 68 tabs

  13. Biosynthesis of lipids in Chlorella vulgaris Beijer. under the action of Mn2+, Zn2+, Cu2+, and Pb2+

    International Nuclear Information System (INIS)

    Gorda, A.Yi.; Grubyinko, V.V.

    2011-01-01

    We study the influence of Mn 2+ , Zn 2+ , Cu 2+ , and Pb 2+ on the intensity of biosynthesis of lipids in unicellular algae Chlorella vulgaris Beijer. In all cases, there is a general tendency to the accumulation of triacylglycerols, dyacylglycerols, and nonesterified fatty acids, which participate in protecting the cages of algae from an unfavorable action, and to a decrease of the content of phospholipids. For the actions of Zn 2+ , Cu 2+ , and Pb 2+ , 14 C-acetate is maximally included in phospholipids, for the actions of Mn 2+ - in dyacylglycerols, and the synthesis of other classes of lipids is inhibited. The content of chlorophylls a and b grows substantially for the actions of ions of zinc and lead and diminishes for the actions of ions of copper and manganese. We discuss the regulatory role and the toxic influence of ions of metals on the lipid metabolism in chlorella.

  14. Study of the analytic quality in the determinations of Cr, Fe, Mn, Cu, Zn, Pb and Hg through conventional and nuclear analytical techniques in mosses of the MATV; Estudio de la calidad analitica en las determinaciones de Cr, Fe, Mn, Cu, Zn, Pb y Hg a traves de tecnicas analiticas nucleares y convencionales en musgos de la ZMVT

    Energy Technology Data Exchange (ETDEWEB)

    Caballero S, B.

    2013-07-01

    To evaluate the environmental risks of air pollution and to facilitate the decision-making for control, is necessary to have the capacity to generate data with analytical quality. A comparison between nuclear (Neutron activation analysis and total reflection X-ray fluorescence spectrometry) and no nuclear analytical techniques (atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry) for simultaneous determination of metal content (Cr, Cu, Fe, Hg, Mn, Pb and Zn) in mosses from Metropolitan Area of the Toluca Valley (MATV) was performed. Epiphytic mosses (Fabriona ciliaris and Leskea angustata) were sampled in two campaigns, 16 sites (urban, transition and natural) and were prepared for each technique. The biological certified reference materials were used for the quality control and to evaluate accuracy, precision, linearity, detection and quantification limits. Results show that nuclear analytical techniques and no nuclear applied in chemical analysis of Cr, Cu, Fe, Hg, Mn, Pb and Zn in moss from MATV are comparable and therefore all of these can potentially be used for this purpose. However, if its considered both, the performance parameters and economic/operational characteristics is widely recommended inductively coupled plasma optical emission spectrometry, conventional analytical technique, which showed the highest analytical grade quality. Also were observed spatial and temporal variations in the concentrations of Cr, Cu, Fe, Hg, Mn, Pb and Zn in mosses from MATV and was discussed its potential origin. The urban sites had the highest concentration of anthropogenic elements as Cr, Cu, Fe, Hg, Pb and Zn because are strongly impacted by roads with high vehicle traffic. (Author)

  15. Anthropogenic impacts in North Poland over the last 1300 years - A record of Pb, Zn, Cu, Ni and S in an ombrotrophic peat bog

    International Nuclear Information System (INIS)

    De Vleeschouwer, Francois; Fagel, Nathalie; Cheburkin, Andriy; Pazdur, Anna; Sikorski, Jaroslaw; Mattielli, Nadine; Renson, Virginie; Fialkiewicz, Barbara; Piotrowska, Natalia; Le Roux, Gael

    2009-01-01

    Lead pollution history over Northern Poland was reconstructed for the last ca. 1300 years using the elemental and Pb isotope geochemistry of a dated Polish peat bog. The data show that Polish Pb-Zn ores and coal were the main sources of Pb, other heavy metals and S over Northern Poland up until the industrial revolution. After review of the potential mobility of each element, most of the historical interpretation was based on Pb and Pb isotopes, the other chemical elements (Zn, Cu, Ni, S) being considered secondary indicators of pollution. During the last century, leaded gasoline also contributed to anthropogenic Pb pollution over Poland. Coal and Pb-Zn ores, however, remained important sources of pollution in Eastern European countries during the last 50 years, as demonstrated by a high 206 Pb/ 207 Pb ratio (1.153) relative to that of Western Europe (ca. 1.10). The Pb data for the last century were also in good agreement with modelled Pb inventories over Poland and the Baltic region.

  16. A test of the stability of Cd, Cu, Hg, Pb and Zn profiles over two decades in lake sediments near the Flin Flon Smelter, Manitoba, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Percival, J.B.; Outridge, P.M., E-mail: outridge@nrcan.gc.ca

    2013-06-01

    Lake sediments are valuable archives of atmospheric metal deposition, but the stability of some element profiles may possibly be affected by diagenetic changes over time. In this extensive case study, the stability of sedimentary Cd, Cu, Hg, Pb and Zn profiles was assessed in dated sediment cores that were collected in 2004 from four smelter-affected lakes near Flin Flon, Manitoba, which had previously been cored in 1985. Metal profiles determined in 1985 were in most cases clearly reproduced in the corresponding sediment layers in 2004, although small-scale spatial heterogeneity in metal distribution complicated the temporal comparisons. Pre-smelter (i.e. pre-1930) increases in metal profiles were likely the result of long-range atmospheric metal pollution, coupled with particle mixing at the 1930s sediment surface. However, the close agreement between key inflection points in the metal profiles sampled two decades apart suggests that metals in most of the lakes, and Hg and Zn in the most contaminated lake (Meridian), were stable once the sediments were buried below the surface mixed layer. Cadmium, Cu and Pb profiles in Meridian Lake did not agree as well between studies, showing evidence of upward remobilization over time. Profiles of redox-indicator elements (Fe, Mn, Mo and U) suggested that the rate of Mn oxyhydroxide recycling within sediment was more rapid in Meridian Lake, which may have caused the Cd, Cu and Pb redistribution. - Highlights: • Sedimentary Cd, Cu, Hg, Pb and Zn profiles in four lakes were mostly unchanged over 19 years. • In one lake, Cd, Cu and Pb profiles were offset relative to the originals. • The offset could indicate diagenetic upcore dispersal of these metals.

  17. Determination of Cd, Pb, Zn and Cu in Sediment Compartments by Sequential Extraction and Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (ID-ICP-MS

    Directory of Open Access Journals (Sweden)

    Gardolinski Paulo C. F. C.

    2002-01-01

    Full Text Available Trace concentrations of Cd, Cu, Pb and Zn in four different sediment fractions extracted in sequence were determined by isotope dilution inductively coupled mass spectrometry (IDICPMS. The metals from each fraction were extracted following the sequential extraction procedure recommended by the Bureau Commun de Référence (BCR of the Commission of the European Communities. As an alternative to external calibration, the elements were quantified by spiking the extracted solutions with 112Cd, 63Cu, 208Pb and 66Zn and application of isotope dilution. The proposed approach was applied to a sample collected from a lake and two standard reference materials, NIST2704 river sediment from the National Institute of Standards & Technology and the BCR-277 estuarine sediment. Detection limits, for each extracted solution, varied from 0.31 to 0.53 mug L¹ for Cd, 0.92 to 2.9 mug L¹ for Cu, 0.22 to 1.1 mug L¹ for Pb and 1.3 to 7.6 mug L¹ for Zn. The sum of the metals concentration in the different fractions was compatible with 95% confidence level found amounts obtained with complete digestion of the samples and with the certified values of the standard reference materials.

  18. Evaluation of the heavy metals Cr, Mn, Fe, Cu, Zn and Pb in water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma River, Mexico; Evaluacion de los metales pesados Cr, Mn, Fe, Cu, Zn y Pb en sombrerillo de agua (Hydrocotyle ranunculoides) del curso alto del Rio Lerma, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Zarazua, G.; Avila P, P.; Tejeda, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Valdivia B, M.; Macedo M, G. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Zepeda G, C., E-mail: graciela.zarazua@inin.gob.mx [Universidad Autonoma del Estado de Mexico, Cerro de Coatepec s/n, Ciudad Universitaria, 50100 Toluca, Estado de Mexico (Mexico)

    2013-07-01

    The Lerma river is one of the most polluted water bodies in Mexico, it presents low biodiversity and lets grow up aquatic plants resistant to the pollution. The aim of this work was to evaluate the concentration and bioaccumulation factors of Cr, Mn, Fe, Cu, Zn and Pb in aerial and submerged structures of water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma river. Inductively coupled plasma-optical emission spectrometry was used to determine the concentration of heavy metals in water and H. ranunculoides. Results show that the bioaccumulation factors of Fe and Zn were higher than those of Cu, Mn, Cr and Pb; with the exception of Zn, bioaccumulation factors were higher in the submerged structures of the plant, which shows low mobility of analyzed metals. As a result of this study H. ranunculoides can be considered as good indicator of metal pollution in water bodies. (Author)

  19. Dynamic adsorption of mixtures of Rhodamine B, Pb (II), Cu (II) and Zn(II) ions on composites chitosan-silica-polyethylene glycol membrane

    Science.gov (United States)

    Mahatmanti, F. W.; Rengga, W. D. P.; Kusumastuti, E.; Nuryono

    2018-04-01

    The adsorption of a solution mixture of Rhodamine B, Pb (II), Cu (II) and Zn(II) was studied using dynamic methods employing chitosan-silica-polyethylene glycol (Ch/Si/P) composite membrane as an adsorptive membrane. The composite Ch/Si/P membrane was prepared by mixing a chitosan-based membrane with silica isolated from rice husk ash (ASP) and polyethylene glycol (PEG) as a plasticizer. The resultant composite membrane was a stronger and more flexible membrane than the original chitosan-based membrane as indicated by the maximum percentage of elongation (20.5 %) and minimum Young’s Modulus (80.5 MPa). The composite membrane also showed increased mechanical and hydrophilic properties compared to the chitosan membranes. The membrane was used as adsorption membrane for Pb (II), Cu (II), Cd (II) ions and Rhodamine B dyes in a dynamic system where the permeation and selectivity were determined. The permeation of the components was observed to be in the following order: Rhodamine B > Cd (II) > Pb (II) > Cu (II) whereas the selectivity was shown to decrease the order of Cu (II) > Pb (II) > Cd (II) > Rhodamine B.

  20. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils.

    Science.gov (United States)

    Wang, Wenfeng; Deng, Zujun; Tan, Hongming; Cao, Lixiang

    2013-01-01

    To survey the effects of endophytic Enterobacter sp. CBSB1 and Rhodotorula sp. CBSB79 resistant to Cd2+, Pb2+, Zn2+, and Cu2+ on the growth and phytoextraction of Brassica, the endophytes were isolated by surface- sterilized methods and characterized. The CBSB1 significantly increased 44.2% of the dry weight of Brassica napus in the multimetal contaminated soil (P Rhodotorula sp CBSB79 showed higher potentials to improve extraction efficacy of Cd, Pb, Zn, and Cu by Brassica seedlings in the field.

  1. Cumulation of Cu, Zn, Cd, and Mn in Plants of Gardno Lake

    Directory of Open Access Journals (Sweden)

    Trojanowski J.

    2013-04-01

    Full Text Available In the present paper there have been shown the results of research on yhe content of Zn, Cd, Cu, Mn and Pb in chosen plants of Lake Gardno.The biggest concentration of those metals has been observed in Potamogton natans and Elodea canadensis, on average Zn – 34.9, Pb -2.77, Cd – 0.62, Cu – 3.24 and Mn – 257.4 μg g-1. It has been found that the over-ground parts of the plants under analysis cumulate several times less of heavy metals than their roots. The determined enrichment factors enabled the researchers to state that Cu in the examined plants is of natural origin while Mn, Cd and Zn – of anthropogenic origin.

  2. Voltametrické stanovení Cu, Pb, Cd, Zn a Tl pomocí stříbrné pevné amalgamové elektrody

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Novotný, Ladislav

    2002-01-01

    Roč. 96, č. 9 (2002), s. 756-760 ISSN 0009-2770 Institutional research plan: CEZ:AV0Z4040901 Keywords : silver solid amalgam electrodes * voltammetry * Cu, Pb, Cd, Zn, Tl Subject RIV: CG - Electrochemistry Impact factor: 0.336, year: 2002

  3. Levels of Cd (II, Mn (II, Pb (II, Cu (II, and Zn (II in Common Buzzard (Buteo buteo from Sicily (Italy by Derivative Stripping Potentiometry

    Directory of Open Access Journals (Sweden)

    P. Licata

    2010-01-01

    Full Text Available The purpose of this study was to determine the concentrations of heavy metals (Cd, Pb, Cu, Mn, and Zn in different organs (liver, kidney, muscle, lung, skin, and feathers of buzzards (Buteo buteo, utilized as a “biological indicator” for environmental contamination, from different areas of Sicily and to investigate the relationships between birds sex, age, and weight and metal levels in these samples. All samples of common buzzards were collected at the “Recovery Center of Wild Fauna” of Palermo, through the Zooprophilactic Institute. Potentiometric stripping analysis (PSA was used to determine the content of Cd(II, Cu(II, Mn(II, Pb(II, and Zn(II in bird tissues. For toxic metals, the highest levels of Pb were in liver and those of Cd in lung; Zn levels were higher than Cu and Mn in all tissues analyzed. The concentrations in liver, lung, kidney, and muscle could be considered as an indicative of chronic exposure to metals while the presence of metals in skin could be consequential to storing and elimination processes. The found concentrations of metals in the studied matrices required a highly sensitive method for their determination and a simple sample preparation procedure, and the proposed method was well suited for this purpose.

  4. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China

    International Nuclear Information System (INIS)

    Yang, Silin; Zhou, Dequn; Yu, Huayong; Wei, Rong; Pan, Bo

    2013-01-01

    The distribution and chemical speciation of typical metals (Cu, Zn, Cd and Pb) in agricultural and non-agricultural soils were investigated in the area of Nanpan River, upstream of the Pearl River. The investigated four metals showed higher concentrations in agricultural soils than in non-agricultural soils, and the site located in factory district contained metals much higher than the other sampling sites. These observations suggested that human activities, such as water irrigation, fertilizer and pesticide applications might have a major impact on the distribution of metals. Metal speciation analysis presented that Cu, Zn and Cd were dominated by the residual fraction, while Pb was dominated by the reducible fraction. Because of the low mobility of the metals in the investigated area, no remarkable difference could be observed between upstream and downstream separated by the factory site. -- Highlights: ► Agricultural soils contain higher metal concentrations than non-agricultural soils. ► The site located in the factory district has the highest metal concentration. ► Cu, Zn and Cd are dominated by residual fraction, and Pb by reducible fraction. ► Cd pollution should not be overlooked in soils upstream of Pearl River. -- The mobility of four investigated metals is low but Cd pollution should not be overlooked in soils upstream of Pearl River

  5. Heavy metal (Pb, Cu, Zn and Cd content in wine produced from grape cultivar Mavrud, grown in an industrially polluted region

    Directory of Open Access Journals (Sweden)

    Violina Angelova

    1999-09-01

    Full Text Available The investigation was carried out in the period 1991-1993 with cv. Mavrud, grown in the region with a major industrial pollutant the Non-Ferrous-Metal Works (NFMW and a region with no industrial pollutants (as a control. The heavy metal content in soil, grapes and wine was determined. Most of the heavy metals in the grapes precipitate during fermentation into the sediments, which is the reason for their significantly lower content in the wine. Water washing of grape before processing leads to about 2 time decrease in the Pb, Cu, Zn and Cd contents of wine. The pre-washing of grapes does not lead to any quality deterioration in the wine produced. The amounts of Cu, Zn and Cd in the wine from cv. Mavrud, grown in the region of the NFMW-Plovdiv, are lower than the maximum admissible levels, while the Pb content exceeds them about two times.

  6. Bioavailability and Variability of Cd, Pb, Zn, and Cu Pollution in Soft Tissues and Shell of Saccostrea cucullata Collected from the Coast of Qeshm Island, Persian Gulf, Iran

    Directory of Open Access Journals (Sweden)

    Ali Kazemi

    2016-07-01

    Full Text Available Background: Marine pollution is a global environmental problem that its monitoring by ideal biomonitors is of great importance. Marine organisms, especially mussels, have the ability to accumulate metals from the environment; they can be considered as a biomonitoring agent. Methods: In this study, concentrations of heavy metals were measured in Saccostrea cucullata collected from seven sites on Qeshm Island's Coast. To achieve a digesting sample, each soft tissue was obtained and each of the shell homogeneous powders, 0.8 g and 1 g, respectively, were mixed with 10 mL HNO3 (69% and poured into a PTFE digestion vessel. The prepared samples were evaluated for Cd, Cu, and Zn by using a flame AAS Model 67OG and for Pb by using a graphite furnace AAS. Results: The distributions of metals between soft tissues and shells were compared in each sampling site. For seven sites, Cd, Zn, and Cu levels in soft tissues were higher than in the shells, but Pb level was higher in the shells than in the soft tissues. In addition, the results indicated the coefficient of variation (CV in the soft tissues was lower than the shells for Cd, and in the shells lower than the soft tissues for Pb, whereas the CV values were different in both the soft tissues and shells for Zn and Cu. Conclusion: The results of this study support using these materials in S. cucullata for biomonitoring. Shells are appropriate for monitoring Pb contamination, and the soft tissues are more apt for monitoring Cd, Zn, and Cu contamination.

  7. Study of the analytic quality in the determinations of Cr, Fe, Mn, Cu, Zn, Pb and Hg through conventional and nuclear analytical techniques in mosses of the MATV

    International Nuclear Information System (INIS)

    Caballero S, B.

    2013-01-01

    To evaluate the environmental risks of air pollution and to facilitate the decision-making for control, is necessary to have the capacity to generate data with analytical quality. A comparison between nuclear (Neutron activation analysis and total reflection X-ray fluorescence spectrometry) and no nuclear analytical techniques (atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry) for simultaneous determination of metal content (Cr, Cu, Fe, Hg, Mn, Pb and Zn) in mosses from Metropolitan Area of the Toluca Valley (MATV) was performed. Epiphytic mosses (Fabriona ciliaris and Leskea angustata) were sampled in two campaigns, 16 sites (urban, transition and natural) and were prepared for each technique. The biological certified reference materials were used for the quality control and to evaluate accuracy, precision, linearity, detection and quantification limits. Results show that nuclear analytical techniques and no nuclear applied in chemical analysis of Cr, Cu, Fe, Hg, Mn, Pb and Zn in moss from MATV are comparable and therefore all of these can potentially be used for this purpose. However, if its considered both, the performance parameters and economic/operational characteristics is widely recommended inductively coupled plasma optical emission spectrometry, conventional analytical technique, which showed the highest analytical grade quality. Also were observed spatial and temporal variations in the concentrations of Cr, Cu, Fe, Hg, Mn, Pb and Zn in mosses from MATV and was discussed its potential origin. The urban sites had the highest concentration of anthropogenic elements as Cr, Cu, Fe, Hg, Pb and Zn because are strongly impacted by roads with high vehicle traffic. (Author)

  8. Silver-bearing minerals in the Xinhua hydrothermal vein-type Pb-Zn deposit, South China

    Science.gov (United States)

    Wang, Minfang; Zhang, Xubo; Guo, Xiaonan; Pi, Daohui; Yang, Meijun

    2018-02-01

    Electron probe microanalysis (EPMA) results are reported for newly identified silver-bearing minerals from the Xinhua deposit, Yunkaidashan area, South China. The Xinhua deposit is a hydrothermal vein-type Pb-Zn deposit and is hosted in the Pubei Complex, which consists of a cordierite-biotite granite with a U-Pb zircon age of 244.3 ± 1.8-251.9 ± 2.2 Ma. The mineralization process is subdivided into four mineralization stages, characterized by the following mineral associations: mineralization stage I with quartz, pyrite, and sphalerite; mineralization stage II with siderite, galena, and tetrahedrite; mineralization stage III with quartz and galena; and mineralization stage IV with quartz, calcite, and baryte. Tetrahedrite series minerals, such as freibergite, argentotetrahedrite, and tennantite are the main Ag-bearing minerals in the Xinhua deposit. The greatest concentration of silver occurs in phases from mineralization stage II. Microscopic observations reveal close relationship between galena and tetrahedrite series minerals that mostly occur as irregular inclusions within galena. The negative correlation between Cu and Ag in the lattices of tetrahedrite series minerals suggests that Cu sites are occupied by Ag atoms. Zn substitution for Fe in argentotetrahedrite and Cd substitution for Pb in tetrahedrite are also observed. Micro-thermometric data reveal that both homogenization temperatures and calculated salinities of hydrothermal fluids decrease progressively from the early to the later mineralization stages. The metal ions, such as Ag+, Cu+, Pb2+, and Zn2+, are transported as chlorine complex ions in the early mineralization stage and as bisulfide complex ions in the late mineralization stage, caused by changes in oxygen fugacity, temperature, and pH of the hydrothermal fluids. Because of the varying solubility of different metal ions, Pb2+, Zn2+, and Cu2+ ions are initially precipitated as galena, sphalerite, and chalcopyrite, respectively. With

  9. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables

    International Nuclear Information System (INIS)

    Alexander, P.D.; Alloway, B.J.; Dourado, A.M.

    2006-01-01

    Metal contaminants in garden and allotment soils could possibly affect human health through a variety of pathways. This study focused on the potential pathway of consumption of vegetables grown on contaminated soil. Five cultivars each of six common vegetables were grown in a control and in a soil spiked with Cd, Cu, Pb and Zn. Highly significant differences in metal content were evident between cultivars of a number of vegetables for several of the contaminants. Carrot and pea cultivars exhibited significant differences in accumulated concentrations of Cd and Cu with carrot cultivars also exhibiting significant differences in Zn. Distinctive differences were also identified when comparing one vegetable to another, legumes (Leguminosae) tending to be low accumulators, root vegetables (Umbelliferae and Liliaceae) tending to be moderate accumulators and leafy vegetables (Compositae and Chenopodiaceae) being high accumulators. - Genotypic differences between cultivars of vegetable species can be important in determining the extent of accumulation of metals from contaminated soil

  10. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    Science.gov (United States)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho

  11. Pb, Cd, Cu and Zn biogeochemical behaviour and biological transfer processes in the Northwestern Mediterranean

    International Nuclear Information System (INIS)

    Nicolas, E.; Marty, J.C.; Miquel, J.C.; Fowler, S.W.

    1999-01-01

    Cd, Pb, Cu and Zn concentrations were determined in planktonic organisms (Salps, copepods), their associated faecal pellets and in particles collected at 200 and 2000 m depth in sediment traps moored in the Ligurian Sea. Al and P were also measured and taken as tracers of lithogenic and biogenic components, respectively. The aim of this work was to determine the fluxes of trace metals in the Ligurian Sea and their variations with depth, and to to assess the biogeochemical behaviour of elements having, for some of them, an anthropogenic origin, by the study of biologically-mediated uptake and removal processes

  12. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the Phragmites australis Artificial Floating Wetlands

    Directory of Open Access Journals (Sweden)

    Xiaofeng Huang

    2017-01-01

    Full Text Available Contamination of heavy metals would threaten the water and soil resources; phytoremediation can be potentially used to remediate metal contaminated sites. We constructed the Phragmites australis artificial floating wetlands outside the Qingcaosha Reservoir in the Yangtze Estuary. Water characteristic variables were measured in situ by using YSI Professional Pro Meter. Four heavy metals (copper, zinc, lead, and chromium in both water and plant tissues were determined. Four heavy metals in estuary water were as follows: 0.03 mg/Kg, 0.016 mg/Kg, 0.0015 mg/Kg, and 0.004 mg/Kg. These heavy metals were largely retained in the belowground tissues of P. australis. The bioaccumulation (BAF and translation factor (TF value of four heavy metals were affected by the salinity, temperature, and dissolved oxygen. The highest BAF of each metal calculated was as follows: Cr (0.091 in winter > Cu (0.054 in autumn > Pb (0.016 in summer > Zn (0.011 in summer. Highest root-rhizome TF values were recorded for four metals: 6.450 for Cu in autumn, 2.895 for Zn in summer, 7.031 for Pb in autumn, and 2.012 for Cr in autumn. This indicates that the P. australis AFW has potential to be used to protect the water of Qingcaosha Reservoir from heavy metal contamination.

  13. Genesis of Pb-Zn-Cu-Ag Deposits within Permian Carboniferous-Carbonate Rocks in Madina Regency, North Sumatra

    Directory of Open Access Journals (Sweden)

    Bhakti Hamonangan Harahap

    2015-09-01

    Full Text Available DOI:10.17014/ijog.2.3.167-184Strong mineralized carbonate rock-bearing Pb-Zn-Cu-Ag-(Au ores are well exposed on the Latong River area, Madina Regency, North Sumatra Province. The ore deposit is hosted within the carbonate rocks of the Permian to Carboniferous Tapanuli Group. It is mainly accumulated in hollows replacing limestone in the forms of lensoidal, colloform, veins, veinlets, cavity filling, breccia, and dissemination. The ores dominantly consist of galena (126 000 ppm Pb and sphalerite (2347 ppm Zn. The other minerals are silver, azurite, covellite, pyrite, marcasite, and chalcopyrite. This deposit was formed by at least three phases of mineralization, i.e. pyrite and then galena replaced pyrite, sphalerite replaced galena, and pyrite. The last phase is the deposition of chalcopyrite that replaced sphalerite. The Latong sulfide ore deposits posses Pb isotope ratio of 206Pb/204Pb = 19.16 - 20.72, 207Pb/204Pb = 16.16 - 17.29, and 208Pb/204Pb = 42.92 - 40.78. The characteristic feature of the deposit indicates that it is formed by a sedimentary process rather than an igneous activity in origin. This leads to an interpretation that the Latong deposit belongs to the Sedimentary Hosted Massive Sulfide (SHMS of Mississippi Valley-Type (MVT. The presence of SHMS in the island arc such as Sumatra has become controversial. For a long time, ore deposits in the Indonesian Island Arc are always identical with the porphyry and hydrothermal processes related to arc magmatism. This paper is dealing with the geology of Latong and its base metal deposits. This work is also to interpret their genesis as well as general relationship to the regional geology and tectonic setting of Sumatra.

  14. Transformation of technogenic compounds of Ni, Cu, Zn and Pb in different soil types in model experiment

    International Nuclear Information System (INIS)

    Ladonin, D.V.; Smirnova, M.S.; Karpukhin, M.M.; Plyaskina, O.V.

    2008-01-01

    In model experiment fractional distribution of Ni, Cu, Zn and Pb in soils artificially polluted with readily and sparingly soluble compounds (nitrates and oxides respectively) of these heavy metals was investigated. It is shown that heavy metals fractional distribution may strongly vary depending on the form in which the metal deposits in the soil. Transformation of heavy metals oxides is controlled by two main factors: solubility of an oxide and characteristics of reactions between dissolution products and the soil components

  15. Levels determination of heavy elements (Fe, Cu, Zn, Pb and Hg) in sword fish caught from the bay of Ghazaouet

    International Nuclear Information System (INIS)

    Chalabi, A.; Malek, M.; Ghomari, M.; Benamar, M.A.; Tchantchane, A.; Azbouche, A.; Toumert, I.; Benouali, N.; Tobbeche, S. , Algiers; Algeria)

    1993-04-01

    The nuclear technics 'PIXE' and 'XRF', were used for heavy metals analysis (Fe, Cu, Zn, Pb, and Hg), in sword fish (xiphias Gladius) caught in Ghazaouet bay. Muscles, liver and gonads were analysed. The methods gave similar results. A bioaccumulation phenomenon was observed except for Hg. The high amount of concentrations found liver, especially in the case of confirms that liver is a storage organ. The high levels of Zn seem to be due to the industrial wastes from the electrolyte plant in the region. All values were lower than the admissible norms

  16. CORRELATION OF THE PARTITIONING OF DISSOLVED ORGANIC MATTER FRACTIONS WITH THE DESORPTION OF CD, CU, NI, PB AND ZN FROM 18 DUTCH SOILS

    Science.gov (United States)

    Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was also concentrated onto a macroreticular resin and fractionation into three operationally defined fract...

  17. Influence of hydrology on heavy metal speciation and mobility in a Pb-Zn mine tailing

    International Nuclear Information System (INIS)

    Kovacs, Elza; Dubbin, William E.; Tamas, Janos

    2006-01-01

    Among the inorganic toxicants of greatest concern in mine tailings, Pb, Zn, Cu, Cd and As figure prominently due to their abundance and potential toxicity. Here we report on their biolability and solid-phase speciation in two sediment cores subject to variable hydrological regimes at an abandoned pyritic mine tailing. The oxic conditions of well-drained sediments induced pyrite oxidation and the subsequent liberation of H + , SO 4 2- and considerable quantities of Fe(III), which precipitated as goethite. Solubility of Pb, Zn, Cu and Cd was closely coupled to pH and goethite presence. Metal lability was particularly low in zones of neutralization, formed by the accumulation of calcite, first carried then deposited by percolating waters in both saturated and unsaturated cores. We conclude that differential hydrology induces variable heavy metal speciation and biolability in Pb-Zn mine tailings, and suggest that site-specific risk assessments must account for past and present hydrological regimes. - Variable hydrology influences heavy metal speciation and mobility, and the formation of neutralization zones, in a Pb-Zn mine tailing

  18. Differences in the mobility of Cd, Cu, Pb and Zn during composting of two types of household bio-waste collected in four seasons.

    Science.gov (United States)

    Hanc, Ales; Szakova, Jirina; Ochecova, Pavla

    2014-09-01

    The objective of this study was to evaluate the mobility of Cd, Cu, Pb and Zn during 3 different compost aeration rates of household bio-waste, originating in urban settlement (U-bio-waste) and family house buildings (F-bio-waste). The first two weeks, when the thermophilic composting phase became, the highest decline of exchangeable content was recorded. After 12 weeks of composting, lower exchangeable content was found in the case of U-bio-waste composts than F-bio-waste composts, despite higher loss of fresh mass. The order of fractions in both final composts was as follows: residual>oxidizable>reducible>exchangeable. The exchangeable portion of total content in final composts decreased in this order: Zn (17%), Cd (11%), Pb (4%) and Cu (3%). Regarding the low exchangeable content of heavy metals and high-quality organic matter, these types of composts could be used not only as fertilizer, but for remediation of metals contaminated land. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Sub-cellular partitioning of Zn, Cu, Cd and Pb in the digestive gland of native Octopus vulgaris exposed to different metal concentrations (Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Raimundo, J. [National Institute for Agronomy and Fisheries Research - IPIMAR, Av. Brasilia, 1449-006 Lisbon (Portugal)], E-mail: jraimundo@ipimar.pt; Vale, C. [National Institute for Agronomy and Fisheries Research - IPIMAR, Av. Brasilia, 1449-006 Lisbon (Portugal); Duarte, R.; Moura, I. [REQUIMTE - CQFB, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, Qta Torre, 2829-516 Monte da Caparica (Portugal)

    2008-02-15

    Concentrations of Zn, Cu, Cd and Pb and their sub-cellular distributions were determined in composite samples of digestive glands of the common octopus, Octopus vulgaris caught from two areas of the Portuguese coast characterised by contrasting metal contamination. Minor contents of Zn (1%), Cu (2%), Cd (6%) and Pb (7%) were found in the insoluble fraction, consisting of nuclei, mitochondria, lysosomes and microsome operationally separated from the whole digestive gland through a sequential centrifugation. A tendency for linear relationships between metal concentrations in nuclei, mitochondria, lysosomes and whole digestive gland was observed. These relationships suggest that despite low metal content organelles responded to the increasing accumulated metals, which means that detoxifying mechanism in cytosol was incomplete. Poorer correlations between microsome and whole digestive gland did not point to metal toxicity in the analysed compartments. However, the high accumulated Cd indicated that O. vulgaris is an important vehicle of this element to its predators in the coastal environment.

  20. Sub-cellular partitioning of Zn, Cu, Cd and Pb in the digestive gland of native Octopus vulgaris exposed to different metal concentrations (Portugal)

    International Nuclear Information System (INIS)

    Raimundo, J.; Vale, C.; Duarte, R.; Moura, I.

    2008-01-01

    Concentrations of Zn, Cu, Cd and Pb and their sub-cellular distributions were determined in composite samples of digestive glands of the common octopus, Octopus vulgaris caught from two areas of the Portuguese coast characterised by contrasting metal contamination. Minor contents of Zn (1%), Cu (2%), Cd (6%) and Pb (7%) were found in the insoluble fraction, consisting of nuclei, mitochondria, lysosomes and microsome operationally separated from the whole digestive gland through a sequential centrifugation. A tendency for linear relationships between metal concentrations in nuclei, mitochondria, lysosomes and whole digestive gland was observed. These relationships suggest that despite low metal content organelles responded to the increasing accumulated metals, which means that detoxifying mechanism in cytosol was incomplete. Poorer correlations between microsome and whole digestive gland did not point to metal toxicity in the analysed compartments. However, the high accumulated Cd indicated that O. vulgaris is an important vehicle of this element to its predators in the coastal environment

  1. Evaluation of the heavy metals Cr, Mn, Fe, Cu, Zn and Pb in water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma River, Mexico

    International Nuclear Information System (INIS)

    Zarazua, G.; Avila P, P.; Tejeda, S.; Valdivia B, M.; Macedo M, G.; Zepeda G, C.

    2013-01-01

    The Lerma river is one of the most polluted water bodies in Mexico, it presents low biodiversity and lets grow up aquatic plants resistant to the pollution. The aim of this work was to evaluate the concentration and bioaccumulation factors of Cr, Mn, Fe, Cu, Zn and Pb in aerial and submerged structures of water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma river. Inductively coupled plasma-optical emission spectrometry was used to determine the concentration of heavy metals in water and H. ranunculoides. Results show that the bioaccumulation factors of Fe and Zn were higher than those of Cu, Mn, Cr and Pb; with the exception of Zn, bioaccumulation factors were higher in the submerged structures of the plant, which shows low mobility of analyzed metals. As a result of this study H. ranunculoides can be considered as good indicator of metal pollution in water bodies. (Author)

  2. Determination of Mn, Fe, Ni, Cu, Zn and Pb contents in samples in samples of apple trees by radionuclide X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Bumbalova, A.; Havranek, E.; Harangozo, M.

    1982-01-01

    The applicability of the radionuclide X-ray fluorescence analysis (RXFA) for qualitative and quantitative evaluation of environmental plant samples is discussed and examples of determination of Mn, Fe, Ni, Cu, Zn, Pb in samples of apple trees are given. The instrumentation, the standard and sample preparation are also presented. (author)

  3. Laser soldering of Sn-Ag-Cu and Sn-Zn-Bi lead-free solder pastes

    Science.gov (United States)

    Takahashi, Junichi; Nakahara, Sumio; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2004-10-01

    It has reported that a waste of an electronics substrate including lead and its compound such as 63Sn-37Pb has polluted the environment with acid rain. For that environment problem the development of lead-free solder alloys has been promoted in order to find out the substitute for Sn-Pb solders in the United States, Europe, and Japan. In a present electronics industry, typical alloys have narrowed down to Sn-Ag-Cu and Sn-Zn lead-free solder. In this study, solderability of Pb-free solder that are Sn-Ag-Cu and Sn-Zn-Bi alloy was studied on soldering using YAG (yttrium aluminum garnet) laser and diode laser. Experiments were peformed in order to determine the range of soldering parameters for obtaining an appropriate wettability based on a visual inspection. Joining strength of surface mounting chip components soldered on PCB (printed circuit board) was tested on application thickness of solder paste (0.2, 0.3, and 0.4 mm). In addition, joining strength characteristics of eutectic Sn-Pb alloy and under different power density were examined. As a result, solderability of Sn-Ag-Cu (Pb-free) solder paste are equivalent to that of coventional Sn-Pb solder paste, and are superior to that of Sn-Zn-Bi solder paste in the laser soldering method.

  4. Determination of Cu{sup 2+}, Zn{sup 2+} and Pb{sup 2+} in biological and food samples by FAAS after preconcentration with hydroxyapatite nanorods originated from eggshell

    Energy Technology Data Exchange (ETDEWEB)

    Mortada, Wael I., E-mail: w.mortada@yahoo.com [Urology and Nephrology Center, Mansoura University, Mansoura 35516 (Egypt); Kenawy, Ibrahim M.M. [Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Abdelghany, Amr M. [Spectroscopy Department, Physics Division, National Research Center, Cairo 12311 (Egypt); Ismail, Amani M.; Donia, Ahmed F.; Nabieh, Kareem A. [Urology and Nephrology Center, Mansoura University, Mansoura 35516 (Egypt)

    2015-07-01

    Hydroxyapatite nanorods (HAPNRs) were prepared from recycled eggshell by using precipitation method. The structure of the HAPNRs was physicochemically and morphologically characterized by X-ray diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy. The resulting HAPNRs were used for solid phase extractive preconcentration of Cu{sup 2+}, Zn{sup 2+} and Pb{sup 2+} prior to its determination by flame atomic absorption spectrometry. Experimental variables that influence the quantitative extraction of metal ions were optimized by both batch and column methods. The analytes were quantitatively sorbed on the matrix between pHs 6 and 9. The maximum sorption capacity of the HAPNRs has been found to be 2.43, 2.37 and 2.53 mmol g{sup −1} for Cu{sup 2+}, Zn{sup 2+} and Pb{sup 2+}, respectively, with the preconcentration factor of 250. The 3σ detection limit and 10σ quantification limit for Cu{sup 2+}, Zn{sup 2+} and Pb{sup 2+} were found to be 0.72, 0.55 and 5.12 μg L{sup −1} and 2.40, 1.83 and 17.06 μg L{sup −1}, respectively. The calibration curves were linear up to 250 μg L{sup −1} for Cu{sup 2+}, 300 μg L{sup −1} for Zn{sup 2+} and 400 μg L{sup −1} for Pb{sup 2+}. Accuracy of the proposed method was verified using certified reference materials (NCS ZC85006 Tomato, Seronorm Trace Elements Whole Blood L-1, Seronorm Trace Elements Whole Blood L-3 and Seronorm Trace Elements Urine). The present method was successfully applied to the analysis of these metal ions in sea water, biological and food samples. - Highlights: • Hydroxyapatite nanorods were prepared from egg shell. • The prepared nanoparticles showed fast adsorption with high adsorption capacities of the metal ions. • The nanostructures were used for solid phase extraction of copper, zinc and lead ions prior to determination by FAAS. • Accuracy of the method was validated by analyses of certified reference materials.

  5. Soil solution dynamics of Cu and Zn in a Cu- and Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction.

    Science.gov (United States)

    Luo, Y M; Yan, W D; Christie, P

    2001-01-01

    A pot experiment was conducted to study soil solution dynamics of Cu and Zn in a Cu/Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction. A slightly acid sandy loam was amended with Cu and Zn (as nitrates) either singly or in combination (100 mg Cu and 150 mg Zn kg(-1) soil) and was then gamma-irradiated (10 kGy). Unamended and unirradiated controls were included, and spring barley (Hordeum vulgare L. cv. Forrester) was grown for 50 days. Soil solution samples obtained using soil moisture samplers immediately before transplantation and every ten days thereafter were used directly for determination of Cu, Zn, pH and absorbance at 360 nm (A360). Cu and Zn concentrations in the solution of metal-polluted soil changed with time and were affected by gamma-irradiation and metal interaction. gamma-Irradiation raised soil solution Cu substantially but generally decreased soil solution Zn. These trends were consistent with increased dissolved organic matter (A360) and solution pH after gamma-irradiation. Combined addition of Cu and Zn usually gave higher soil solution concentrations of Cu or Zn compared with single addition of Cu or Zn in gamma-irradiated and non-irradiated soils, indicating an interaction between Cu and Zn. Cu would have been organically complexed and consequently maintained a relatively high concentration in the soil solution under higher pH conditions. Zn tends to occur mainly as free ion forms in the soil solution and is therefore sensitive to changes in pH. The extent to which gamma-irradiation and metal interaction affected solubility and bioavailability of Cu and Zn was a function of time during plant growth. Studies on soil solution metal dynamics provide very useful information for understanding metal mobility and bioavailability.

  6. Analysis Of Non-Volatile Toxic Heavy Metals (Cd, Pb, Cu,Cr And Zn In ALLIUM SATIVUM (Garlic And Soil Samples ,Collected From Different Locations Of Punjab, Pakistan By Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ata S.

    2013-04-01

    Full Text Available Garlic is one of the most widely used medicinal plants. The monitoring of toxic metals such as lead, Cadmium, Chromium, Copper and Zinc in garlic and the soil of garlic fields collected from ten different cities of Punjab is critical for preventing public health against the hazards of metal toxicity. The levels of toxic heavy metals in garlic and soil samples were investigated using Atomic absorption spectrometer. The metal content in garlic samples was found to be in increasing order as Cr> Pb> Cd> Cu> Zn. Infield metal content in the soil also followed the same trend. In garlic samples, Pb, Cd, Cr, Zn and Cu ranged from 0.039mg/L to 0.757mg/L, N.D to 1.211mg/L, 0.03mg/L to 0.451mg/L, 0.02mg/Lto0.42mg/L and 0.451mg/L to 0.893mg/L respectively. In soil samples, Pb, Cd, Cr, Zn and Cu were ranged from 0.459mg/L to 0.797mg/L, 0.205mg/L to1.062mg/L, 0.074mg/L to 2.598mg/L, 0.124mg/L to 0.276mg/L and 0.494mg/L to 0.921mg/L respectively. In our study, the Pb and Cd was found more in garlic from Gujranwala and Jaranwala, Cu and Zn were more in samples from Kasur while Cr was predominant in sample from Sheikhupura. Heavy metal content in soil and garlic samples was within the permissible limits proposed by World Health Organization (WHO.

  7. Geochemistry of the Patricia Zn-Pb-Ag Deposit (paguanta, NE Chile)

    Science.gov (United States)

    Chinchilla Benavides, D.; Merinero Palomares, R.; Piña García, R.; Ortega Menor, L.; Lunar Hernández, R.

    2013-12-01

    The Patricia Zn-Pb-Ag ore deposit is located within the Paguanta mining project, situated at the northern end of the Andean Oligocene Porphyry Copper Belt of Chile. The sulfide mineralization occurs as W-E oriented veins hosted in volcanic rocks, mainly andesite (pyroclastic, ash and lavas), of Upper Cretaceous to Middle Tertiary age. The ore mineralogy (obtained by EMPA analyses) comprises in order of abundance, pyrite, sphalerite (5.5 - 10.89 wt % Fe, 9.8-19 % molar FeS and 0.52 wt % Cd), galena, arsenopyrite, chalcopyrite and Ag-bearing sulfosalts. The veins show a zoned and banded internal structure with pyrite at the edges and sphalerite in the center. The Ag occurs mostly as Ag-Cu-Sb sulfosalts, in order of abundance: series freibergite - argentotennantite -polybasite and stephanite. Other minor Ag phases such as argentite, pyrargirite and diaphorite were also identified. These Ag phases are typically associated with the base-metal sulfides. Freibergite occurs filling voids within sphalerite, chalcopyrite and at the contact between sphalerite and galena. Polybasite, stephanite, pyrargirite and argentite are mostly in close association with freibergite. In the case of diaphorite, it commonly occurs filling voids between galena crystals or as inclusions within galena. Some minor Ag-bearing sulfosalts are also identified between pyrite crystals. The alteration minerals are dominated by chlorite, illite and kaolinite. The gangue minerals consist of quartz and carbonates identified by XRD as kutnahorite. We obtained linear correlation statistically significant only for Ag, As Au, Cd, Cu, Pb, Sb and Zn and therefore we generated an enhanced scatter plot matrix of these elements. Bulk rock analyses (ICP/MS and XRF) of drill cores show that Ag is strongly and positively correlated with Pb and As, moderately with Cd, Sb, Au and Zn and weakly with Cu, while Au is moderately and positively correlated with Ag, As, Cd, Sb and Zn and weakly with Cu and Pb. These results

  8. Removal of Pb, Cu, Cd, and Zn Present in Aqueous Solution Using Coupled Electrocoagulation-Phytoremediation Treatment

    Directory of Open Access Journals (Sweden)

    Francisco Ferniza-García

    2017-01-01

    Full Text Available This study presents the results of a coupled electrocoagulation-phytoremediation treatment for the reduction of copper, cadmium, lead, and zinc, present in aqueous solution. The electrocoagulation was carried out in a batch reactor using aluminum electrodes in parallel arrangement; the optimal conditions were current density of 8 mA/cm2 and operating time of 180 minutes. For phytoremediation the macrophytes, Typha latifolia L., were used during seven days of treatment. The results indicated that the coupled treatment reduced metal concentrations by 99.2% Cu, 81.3% Cd, and 99.4% Pb, while Zn increased due to the natural concentrations of the plant used.

  9. Metal and metalloid contamination in roadside soil and wild rats around a Pb-Zn mine in Kabwe, Zambia

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Shouta M.M.; Ikenaka, Yoshinori; Hamada, Kyohei [Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818 (Japan); Muzandu, Kaampwe; Choongo, Kennedy [Department of Biomedical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka (Zambia); Teraoka, Hiroki; Mizuno, Naoharu [Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); Ishizuka, Mayumi, E-mail: ishizum@vetmed.hokudai.ac.j [Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818 (Japan)

    2011-01-15

    Metal (Cr, Co, Cu, Zn, Cd, Pb, Ni) and metalloid (As) accumulation was studied in roadside soil and wild rat (Rattus sp.) samples from near a Pb-Zn mine (Kabwe, Zambia) and the capital city of Zambia (Lusaka). The concentrations of the seven metals and As in the soil samples and Pb in the rat tissue samples were quantified using atomic absorption spectroscopy. The concentrations of Pb, Zn, Cu, Cd, and As in Kabwe soil were much higher than benchmark values. Geographic Information System analysis indicated the source of metal pollution was mining and smelting activity. Interestingly, the area south of the mine was more highly contaminated even though the prevailing wind flow was westward. Wild rats from Kabwe had much higher tissue concentrations of Pb than those from Lusaka. Their body weight and renal Pb levels were negatively correlated, which suggests that mining activity might affect terrestrial animals in Kabwe. - The area around Kabwe, Zambia is highly polluted with metals and As. Wild rats from this area had high tissue concentrations of Pb and decreased body weight.

  10. Distribution of Cd, Ck, Pb and Zn in Soil and Vegetation Compartments in Stands of Five Boreal Tree Species in N.E. Sweden

    International Nuclear Information System (INIS)

    Alriksson, A.; Eriksson, H. M.

    2001-01-01

    Concentrations and total quantity of cadmium (Cd), cupper (Cu),lead (Pb) and zink (Zn) were determined in biomass and soil compartments in a replicated tree species experiment with 27-yr-old stands growing on former farmland in N.E. Sweden. Sequential extractions of soil samples were performed in order to estimate the exchangeable and an organically bound fraction of each element. The tree species included were Picea abies (L.)H. Karst., Pinus sylvestris L., Pinus contorta Dougl., Larix sibirica Ledeb., and Betula pendula Roth.Tree species influenced the rate of removal of Cu, Pb and Zn in case of stemwood harvesting, and of Cd, Cu and Zn in the case of whole-tree harvesting. B. pendula and P. abies had higher quantities and average concentrations of Zn in the biomass. For all species, >50% of the Zn in the stems was found in the bark. P. abies and L. sibirica had higher quantities of Cu in the biomass than the other species.P. abies and P. contorta had high quantities of Cd in the biomass in relation to the other species. Branches and stembark contained high concentrations of Cd and Pb in relation to foliage and stemwood. Dead branches had especially high concentrations of Pb. The high accumulation rate of Zn in the biomass of B. pendula was related to a low exchangeable amount of Zn in the A horizon. In the superficial centimeters of the A horizon, a depletion similar to that found for Zn was detected for Cu, whereas for Cd and Pb, no correlations were found between quantities of elements in the trees and element pools in the soil

  11. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model.

    Science.gov (United States)

    González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F

    2017-09-01

    The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between

  12. Study of Zn-Pb ore tailings and their potential in cement technology

    Science.gov (United States)

    Nouairi, J.; Hajjaji, W.; Costa, C. S.; Senff, L.; Patinha, C.; Ferreira da Silva, E.; Labrincha, J. A.; Rocha, F.; Medhioub, M.

    2018-03-01

    This paper describes the synthesis of sulfobelite clinkers incorporating mining rejects. The targeted Zn-Pb tailing wastes generated in the diapiric zone (NW Tunisia) were tested in clinker/cement compositions to ensure the inertization of existing hazardous heavy metals. Mineralogical composition of the two selected samples revealed calcite, dolomite, quartz, kaolinite, galena, pyrite and gypsum as crystalline phases. Vertical distributions of dominant heavy metals (Pb, Zn and Cu) in soil profiles show enrichment in the surface layers and decrease towards the depth. In sintered clinkers powders, the presence of the targeted crystalline phases (trialuminate sulphate (C4A3Š), belite (C2S), and ferrite (C4AF)) are in the predicted desirable amounts. Heat flow generated during the hydration of different cement pastes showed a slower reaction for clinkers with higher amounts of C4A3Š or constituted by coarser particles. After 28 days curing, the best mechanical resistance (24.34 MPa under compression) was obtained for the clinker calcined at 1350 °C and showing a suitable particle size distribution. Concerning heavy metals, immobilisation of 75-85% of Pb, Zn and Cu was assessed in the mortars formulated with the produced clinker/cement, posing no hazardous risks to the environment.

  13. Radionuclide X-ray fluorescence determination of Mn, Fe, Cu, Zn and Pb in wastewaters and sludges from wastewater treatment plants in Bratislava (SR)

    International Nuclear Information System (INIS)

    Harangozo, M.; Toelgyessy, J.

    1997-01-01

    Radiometric X-ray fluorescence analysis was used for the determination of Mn, Fe, Cu, Zn and Pb in wastewater and sludges from three wastewater treatment plants in Bratislava (SR). Metals were determined in wastewaters after preconcentration by 8-hydroxyquinoline and in sludges by drying and pressing to pellets. 238 Pu and 109 Cd was used for excitation of fluorescence radiation. (author)

  14. Comparison of trace element contamination levels (Cu, Zn, Fe, Cd ...

    African Journals Online (AJOL)

    Comparison of trace element contamination levels (Cu, Zn, Fe, Cd and Pb) in the soft tissues of the gastropods Tympanotonus fuscatus fuscatus and Tf radula collected in the Ebrié Lagoon (Côte d'Ivoire): Evidence of the risks linked to linked to lead and.

  15. Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: The influence of aging and emission source

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Holm, Peter E.; Fantke, Peter

    2015-01-01

    H or soil organic carbon, emission source occasionally has an effect on reactivity of Cd, Co, Cu, Ni, Pb and Zn emitted from various anthropogenic sources followed by aging in the soil from a few years to two centuries. The uncertainties in estimating the age prevent definitive conclusions about...... the influence of aging time on the reactivity of metals from anthropogenic sources in soils. Thus, for calculating comparative toxicity potentials of man-made metal contaminations in soils, we recommend using time-horizon independent accessibility factors derived from source-specific reactive fractions....

  16. Simultaneous determination of Hg, Pb, As, Cu, Zn and Ni in natural waters (with humic material) by energy dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Morales S, E.A.; Zepeda L, E.

    1988-05-01

    Standardization of a method for simultaneous quantification of Hg, Pb, As, Cu, Zn and Ni in natural waters with humic acid contents was carried out. APDC for complexing free ions and silica gel as adsorber of metallic humates and further filtration were employed. X-ray fluorescence analysis was performed on filters. Good results were found for silica-gel as adsorber. Detection limits of 4 nanograms/milliliter were determined. (author)

  17. Mineralogy and REE geochemistry at Gomish-Tappeh Zn-Pb-Cu (Ag deposit, southwest of Zanjan

    Directory of Open Access Journals (Sweden)

    Tooba Salehi

    2010-11-01

    Full Text Available Gomish-Tappeh Zn-Pb-Cu (Ag deposit is located 90 km southwest of Zanjan, in northwestern part of Urumieh-Dokhtar volcano-plutonic zone. Exposed rocks at the area include Oligo-Miocene volcano-sedimentary and sedimentary sequences as well as Pliocene volcano-plutonic sequence (andesite porphyry dykes, dacitic subvolcanic dome and rhyodacitic volcanics. Alteration in the deposit developed as silicic, silicic-sulfidic, sericitic, carbonate, argillic and propylitic. Main mineralization at the Gomish-Tappeh deposit is observed as veins occurring in a steeply-deeping normal fault defined by an NE-SW trend in host rocks such as dacitic crystal litic tuff, dacitic subvolcanic dome, specifically the rhyolitic tuff. Paragenetic minerals in the ore veins consist of pyrite, arsenopyrite, chalcopyrite, bornite, low-Fe sphalerite, galena, tetrahedrite and specularite. Gangue minerals accompanying the ores include quartz, calcite, chlorite, sericite and clay minerals. Based on geochemical data, average grades for samples from the ore veins at the Gomish-Tappeh deposit are: 4% Pb, 6% Zn, 2% Cu and 88 ppm Ag. Moreover, REE distribution patterns for altered samples of the dacitic subvolcanic dome and acidic tuff when compared with fresh samples, show enrichment in LREE, while HREE demonstrate various bahaviours. The negative Eu anomaly in chondrite-normalized REE patterns for these rocks is related to the increase in fluid/rock ratio and destruction of those grains of plagioclase enriched in Eu. REE distribution patterns for the silty tuff (footwall to the ore compared with acidic tuff represent enrichment in all REE as well as positive Eu anomalies. However, the ore samples indicate more enrichment in LREE/HREE ratios and higher Eu contents when compared with wallrock of the ore veins (silty tuff. This is due to the influence of chloric magmatic-hydrothermal fluids that caused alteration along the ore zone, releasing LREE and Eu from the host rocks and finally

  18. Effect of Na, Ca and pH on simultaneous uptake of Cd, Cu, Ni, Pb, and Zn in the water flea Daphnia magna measured using stable isotopes

    International Nuclear Information System (INIS)

    Komjarova, I.; Blust, R.

    2009-01-01

    The present study investigates the effects of Na + , Ca 2+ and pH on the kinetics of Cd, Cu, Ni, Pb, and Zn uptake in Daphnia magna at low exposure concentrations measured using a stable isotope technique. Using experimental data the uptake rate constants were calculated for each metal individually on the basis of total metal concentrations. The copper uptake was not significantly affected by variations in chemical composition of the test medium. Calcium had a suppressing effect on the uptake of Cd, Ni, Pb and Zn. Specifically, Cd and Ni uptake rate constants decreased with increases in calcium concentrations from 0.1 to 2.5 mM. The uptake of Zn and Pb was significantly suppressed only at 2.5 mM Ca. The effect of sodium was less clear. There was no effect of varying sodium concentrations on the Ni uptake rate constants. Cd and Pb showed an increase in uptake rate constants at elevated sodium concentrations (2-8 mM Na + for Cd and 8 mM Na + for Pb). A bell-shaped response on increasing Na + concentrations was observed for Zn with a maximum value of uptake rate constant at the middle value (2 mM Na + ). Variation in pH of the medium affected Cd, Ni and Zn uptake processes. When Daphnia were exposed to acidic conditions (pH 6), the Cd and Ni uptake rate constants were the highest, while similarly low values were observed at neutral and basic conditions. In contrast, the uptake rates of Zn were linearly increasing with increasing pH of the medium.

  19. Mechanical properties of Bi-In-Zn/ Cu solder joint system

    International Nuclear Information System (INIS)

    Ervina Efzan Mohd Noor; Mohammed Noori Ridha; Ahmad Badri Ismail; Nurulakmal Mohd Sharif; Kuan Yew Cheong; Tadashi Ariga; Zuhailawati Hussain

    2009-01-01

    Full text: In recent years, the pollution of environment from lead (Pb) and Pb-containing compounds in microelectronic devices attracts more and more attentions in academia and industry; the lead-free solder alloys begin to replace the lead-based solders in packaging process of some devices and components. In this works, microstructure and mechanical properties of different reflow temperature (80, 100, 120 and 140 degree Celsius) for solder joints on shear strength of Bi-In-Zn lead free solder with low melting temperature of 60 degree Celsius on Cu solder joint has been investigated. This paper will compared the mechanical properties of the Bi-In-Zn lead-free solder alloys with current lead-free solder, Sn-Ag-Cu solder alloy. The fracture surface analyses have been observed by Optical Microscope and were investigated by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX) and proved it by X-ray diffraction (XRD). (author)

  20. The behaviour of the elements Ni, Co, Cu, Pb, Zn, Au, Ag, Mo, Sn, W and U in the magmatic, hydrothermal, sedimentary and weathering environments

    International Nuclear Information System (INIS)

    Anderson, J.R.

    1978-01-01

    In the last two decades much has been published on the behaviour of certain elements in the magmatic, hydrothermal, sedimentary and weathering environments, but the information is scattered throughout the literature. This situation prompted the present study on the elements Ni, Co, Cu, Pb, Zn, Au, Ag, Mo, Sn, W and U. The behaviour of the elements Ni, Cu, Pb, Zn, Au, Sn, W and U has been studied experimentally in some depth. Ag has been moderately studied, but there is very little information about Co and Mo. Studies on the complexes formed by the elements within the hydrothermal and aqueous environment are often inconclusive and controversial, but conclusions are drawn as to the more likely complexes formed. A genetic classification of ore deposits is used as a framework for the discussion. The source of the elements is regarded as being the mantle, and therefore discussion on other possible sources is beyond the scope of this dissertation. The crystal chemistry and geochemistry of the elements are presented and the essay concludes with a discussion on the elements within their depositional environments

  1. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Ge, Fei; Li, Meng-Meng; Ye, Hui; Zhao, Bao-Xiang

    2012-01-01

    We prepared novel Fe 3 O 4 magnetic nanoparticles (MNPs) modified with 3-aminopropyltriethoxysilane (APS) and copolymers of acrylic acid (AA) and crotonic acid (CA). The MNPs were characterized by transmission electron microscopy, X-ray diffraction, infra-red spectra and thermogravimetric analysis. We explored the ability of the MNPs for removing heavy metal ions (Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ ) from aqueous solution. We investigated the adsorption capacity of Fe 3 O 4 -APS-AA-co-CA at different pH in solution and metal ion uptake capacity as a function of contact time and metal ion concentration. Moreover, adsorption isotherms, kinetics and thermodynamics were studied to understand the mechanism of the synthesized MNPs adsorbing metal ions. In addition, we evaluated the effect of background electrolytes on the adsorption. Furthermore, we explored desorption and reuse of MNPs. Fe 3 O 4 -APS-AA-co-CA MNPs are excellent for removal of heavy metal ions such as Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ from aqueous solution. Furthermore, the MNPs could efficiently remove the metal ions with high maximum adsorption capacity at pH 5.5 and could be used as a reusable adsorbent with convenient conditions.

  2. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides.

    Science.gov (United States)

    Jong, Tony; Parry, David L

    2004-07-01

    The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.

  3. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species

    International Nuclear Information System (INIS)

    Canli, Mustafa; Atli, Gueluezar

    2003-01-01

    Significant relationships between metal concentrations and fish size were negative. - Heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) concentrations in the muscle, gill and liver of six fish species (Sparus auratus, Atherina hepsetus, Mugil cephalus, Trigla cuculus, Sardina pilchardus and Scomberesox saurus) from the northeast Mediterranean Sea were measured and the relationships between fish size (length and weight) and metal concentrations in the tissues were investigated by linear regression analysis. Metal concentrations (as μg/g d.w.) were highest in the liver, except for iron in the gill of Scomberesox saurus and lowest in the muscle of all the fish species. Highest concentrations of Cd (4.50), Cr (17.1) and Pb (41.2) were measured in liver tissues of T. cuculus, Sardina pilchardus and A. hepsetus, respectively. The liver of M. cephalus showed strikingly high Cu concentrations (202.8). The gill of Scomberesox saurus was the only tissue that showed highest (885.5) iron concentrations. Results of linear regression analysis showed that, except in a few cases, significant relationships between metal concentrations and fish size were negative. Highly significant (P<0.001) negative relationships were found between fish length and Cr concentrations in the liver of A. hepsetus and M. cephalus, and Cr concentrations in the gill of T. cuculus. Cr and Pb concentrations in the liver and Cu concentrations in all the tissues of Scomberesox saurus also showed very significant (P<0.001) negative relationships. Negative relationships found here were discussed

  4. Cofiring behavior and interfacial structure of NiCuZn ferrite/PMN ferroelectrics composites for multilayer LC filters

    International Nuclear Information System (INIS)

    Miao Chunlin; Zhou Ji; Cui Xuemin; Wang Xiaohui; Yue Zhenxing; Li Longtu

    2006-01-01

    The cofiring behavior, interfacial structure and cofiring migration between NiCuZn ferrite and lead magnesium niobate (PMN)-based relaxor ferroelectric materials were investigated via thermomechanical analyzer (TMA), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Mismatched sintering shrinkage between NiCuZn ferrite and PMN was modified by adding an appropriate amount of sintering aids, Bi 2 O 3 , into NiCuZn ferrite. Pyrochlore phase appeared in the mixture of NiCuZn ferrite and PMN, which is detrimental to the final electric properties of LC filters. EDS results indicated that the interdiffusion at the heterogeneous interfaces in the composites, such as Fe, Pb, Zn, existed which can strengthen combinations between ferrite layers and ferroelectrics layers

  5. Experimental Liquidus Studies of the Pb-Cu-Si-O System in Equilibrium with Metallic Pb-Cu Alloys

    Science.gov (United States)

    Shevchenko, M.; Nicol, S.; Hayes, P. C.; Jak, E.

    2018-03-01

    Phase equilibria of the Pb-Cu-Si-O system have been investigated in the temperature range from 1073 K to 1673 K (800 °C to 1400 °C) for oxide liquid (slag) in equilibrium with solid Cu metal and/or liquid Pb-Cu alloy, and solid oxide phases: (a) quartz or tridymite (SiO2) and (b) cuprite (Cu2O). High-temperature equilibration on silica or copper substrates was performed, followed by quenching, and direct measurement of Pb, Cu, and Si concentrations in the liquid and solid phases using the electron probe X-ray microanalysis has been employed to accurately characterize the system in equilibrium with Cu or Pb-Cu metal. All results are projected onto the PbO-"CuO0.5"-SiO2 plane for presentation purposes. The present study is the first-ever systematic investigation of this system to describe the slag liquidus temperatures in the silica and cuprite primary phase fields.

  6. Initiation of soil formation in weathered sulfidic Cu-Pb-Zn tailings under subtropical and semi-arid climatic conditions.

    Science.gov (United States)

    You, Fang; Dalal, Ram; Huang, Longbin

    2018-08-01

    Field evidence has been scarce about soil (or technosol) formation and direct phytostabilization of base metal mine tailings under field conditions. The present study evaluated key attributes of soil formation in weathered and neutral Cu-Pb-Zn tailings subject to organic amendment (WC: woodchips) and colonization of pioneer native plant species (mixed native woody and grass plant species) in a 2.5-year field trial under subtropical and semi-arid climatic conditions. Key soil indicators of engineered soil formation process were characterized, including organic carbon fractions, aggregation, microbial community and key enzymatic activities. The majority (64-87%) of the OC was stabilized in microaggregate or organo-mineral complexes in the amended tailings. The levels of OC and water soluble OC were elevated by 2-3 folds across the treatments, with the highest level in the treatment of WC and plant colonization (WC+P). Specifically, the WC+P treatment increased the proportion of water stable macroaggregates. Plants further contributed to the N rich organic matter in the tailings, favouring organo-mineral interactions and organic stabilization. Besides, the plants played a major role in boosting microbial biomass and activities in the treated tailings. WC and plants enhanced the contents of organic carbon (OC) associated with aggregates (e.g., physically protected OC), formation of water-stable aggregates (e.g., micro and macroaggregates), chemical buffering capacity (e.g., cation exchange capacity). Microbial community and enzymatic activities were also stimulated in the amended tailings. The present results showed that the formation of functional technosol was initiated in the eco-engineered and weathered Cu-Pb-Zn tailings under field conditions for direct phytostabilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Essential trace (Zn, Cu, Mn and toxic (Cd, Pb, Cr elements in the liver of birds from Eastern Poland

    Directory of Open Access Journals (Sweden)

    Komosa A.

    2012-01-01

    Full Text Available We have focused our study on the concentrations of essential heavy metals (Zn, Cu and Mn and non-essential trace metals (Pb, Cd and Cr in the livers of birds from Eastern Poland. The largest mean amount of Zn - as much as 279 mg/kg dry mass (d.m. - was found in mute swans. However, only in one of the analysed buzzard specimens the concentration of Zn, found to be 664 mg/kg d.m., exceeded the level indicative of poisoning for this element. Birds specializing in catching rodents accumulated Mn in their livers in a very narrow range of concentrations, around 5.0 mg/kg d.m. on average. The range of mean Mn concentrations (around 6.5 mg/kg d.m. was also found to be narrow for piscivorous birds. The highest mean levels of Pb were found in mute swans (2.7 mg/kg d.m., and the highest levels of Cd (2.0 mg/kg d.m. for rooks. Concentrations of total Cr above detection level were found in 22 specimens (53.7%, and concentration values were highest for rooks. Analyses showed that the concentrations of biogenic elements did not exceed the levels indicative of poisoning (except in one specimen. The study demonstrated that lead shots remain a hazard to water ecosystems. Pb, Cd and Cr levels in the livers of omnivorous and piscivorous species indicate the permanent presence of these elements in the environment and may confirm the thesis about the growing role of electronic waste, including metallic e-waste, in the emission of the total amount of contamination with these elements.

  8. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  9. Photoluminescence study of ZnS and ZnS:Pb nanoparticles

    International Nuclear Information System (INIS)

    Virpal,; Hastir, Anita; Kaur, Jasmeet; Singh, Gurpreet; Singh, Ravi Chand

    2015-01-01

    Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered at 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states

  10. Evaluation de la contamination de la chaîne trophique par les éléments traces (Cu, Co, Zn, Pb, Cd, U, V et As dans le bassin de la Lufira supérieure (Katanga/RD Congo

    Directory of Open Access Journals (Sweden)

    Katemo Manda, B.

    2010-01-01

    Full Text Available Evaluation of Contamination of the Food Chain by Trace Elements (Cu, Co, Zn, Pb, Cd, U, V and As in the Basin of the Upper Lufira (Katanga/DR Congo. Seven trace elements (Cu, Co, Zn, Cd, Pb, U, V and As were analyzed using a HR ICP-MS in samples of water, plankton, leaves of Phragmites australis, muscle and gills of three fish species (Oreochromis macrochir, Tilapia rendalli, Clarias gariepinus collected in the basin of the upper Lufira. The results indicate a high copper (70.9 ppm and cobalt (32.3 ppm content in the effluent of complex hydrometallurgical Shituru. If contamination of rivers decreases with distance from the pollution source, the values are very high in lake Tshangalele for plankton and leaves of P. australis. For fish, the results indicate that Pb, U, V, Cu, Co and Cd accumulates preferentially in the gills but Zn accumulates more in the muscles. As accumulates in the same order of magnitude in both organs. These results confirm the pollution of the basin by the effluents from Lufira complex hydrometallurgical Shituru.

  11. Contact angle study on the activation mechanisms of sphalerite with Cu(II) and Pb(II); Estudio de los mecanismos de activacion de la esfalerita con Cu(II) y Pb(II)

    Energy Technology Data Exchange (ETDEWEB)

    Davila Pulido, G. I.; Uribe Salas, A.

    2011-07-01

    This article presents results of an experimental study on the sphalerite activation with Cu(II) and Pb(II), whose main objective was to investigate the activation mechanisms and to evaluate the magnitude of the hydrophobization achieved with both chemical species. The hydrophobicity acquired by the mineral due to the interaction with the activator and collector (sodium isopropyl xanthate) is characterized making use of the contact angle technique. The results show that Cu(II) replaces the Zn of the external layers of the mineral, promoting the sulfide (S{sup 2}-) oxidation to produce a mixture of CuS, Cu{sub 2}S and S{sup o}, of hydrophobic nature. The subsequent interaction with xanthate increases the hydrophobicity of the mineral surface. In turn, Pb(II) activation of sphalerite is due to the formation of a PbS layer that reacts with xanthate to produce hydrophobic species (e.g., PbX{sub 2}). It is also observed that the hydrophobicity of sphalerite activated with Pb(II) is favored under air atmospheres, as compared to that obtained under nitrogen atmospheres. It is concluded that the hydrophobicity achieved by lead activation may be of the same order of magnitude to that deliverately induced by copper activation. (Author) 11 refs.

  12. Removal of Heavy Metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from Aqueous Solutions by using Xanthium Pensylvanicum

    Directory of Open Access Journals (Sweden)

    Jaber SALEHZADEH

    2013-11-01

    Full Text Available The hazardous ill effects of heavy metals on the environment and public health is a matter of serious concern. Biosorption is emerging as a sustainable effective technology. Heavy metals in water resources are one of the most important environmental problems of countries. The intensification of industrial activity and environmental stress greatly contributes to the significant rise of heavy metal pollution in water resources making threats on terrestrial and aquatic life. The toxicity of metal pollution is slow and interminable, as these metal ions are non bio-degradable. The adsorption capacity of Xanthium Pensylvanicum towards metal ions such as Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+, was studied. The adsorption capacity was performed by batch experiments as a function of process parameters (such as sorption time and pH. Experimental results showed that the removal percentages increasing of metal ions at pH=4, initial concentration of metal ions 10 mg/L, and after 90 min of shaking was: Zn2+ < Cd2+ < Cu2+ < Pb2+ < Ni2+ < Fe3+ < Co2+.

  13. Comparison of trace element contamination levels (Cu, Zn, Fe, Cd ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... Chemical analysis of the trace elements in the soft tissues. The trace elements of interest (Cu, Zn, Fe, Pb, Cd) were then determined in the digested solutions, using Thermoelemental type. M6 brand of an atomic absorption Spectrometer equipped with a flame operated atomisation system and a deuterium ...

  14. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China.

    Science.gov (United States)

    Cheng, Xianfeng; Danek, Tomas; Drozdova, Jarmila; Huang, Qianrui; Qi, Wufu; Zou, Liling; Yang, Shuran; Zhao, Xinliang; Xiang, Yungang

    2018-03-07

    The environmental assessment and identification of sources of heavy metals in Zn-Pb ore deposits are important steps for the effective prevention of subsequent contamination and for the development of corrective measures. The concentrations of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in soils from 40 sampling points around the Jinding Zn-Pb mine in Yunnan, China, were analyzed. An environmental quality assessment of the obtained data was performed using five different contamination and pollution indexes. Statistical analyses were performed to identify the relations among the heavy metals and the pH in soils and possible sources of pollution. The concentrations of As, Cd, Pb, and Zn were extremely high, and 23, 95, 25, and 35% of the samples, respectively, exceeded the heavy metal limits set in the Chinese Environmental Quality Standard for Soils (GB15618-1995, grade III). According to the contamination and pollution indexes, environmental risks in the area are high or extremely high. The highest risk is represented by Cd contamination, the median concentration of which exceeds the GB15618-1995 limit. Based on the combination of statistical analyses and geostatistical mapping, we identified three groups of heavy metals that originate from different sources. The main sources of As, Cd, Pb, Zn, and Cu are mining activities, airborne particulates from smelters, and the weathering of tailings. The main sources of Hg are dust fallout and gaseous emissions from smelters and tailing dams. Cr and Ni originate from lithogenic sources.

  15. Electrodeposition and properties of Zn, Cu, and Cu{sub 1−x} Zn{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Özdemir, Rasim [Kilis Vocational High School, Kilis 7 Aralık University, 79000 Kilis (Turkey); Karahan, İsmail Hakkı, E-mail: ihkarahan@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Technology, Mustafa Kemal University, 31040 Hatay (Turkey)

    2014-11-01

    Highlights: • Cu, Zn and Cu–Zn deposits successfully deposited from the non-cyanide sulphate electrolyte. • The effect of alloying element was investigated on the electrical resistivity and the structure of Cu–Zn alloy. • The average crystallite size of the samples varied from 66 to 161 nm and decreased when the Zn and Cu combined in Cu–Zn. • Microstrain has been decreased with increasing crystallite size. • Electrical resistivity of alloy was obtained between the Zn and Cu films. - Abstract: The electrodeposition of Cu, Zn and Cu–Zn deposits from the non-cyanide Zn sulphate and Cu sulphate reduced by citrate at constant stirring speed has been investigated. The composition of the Cu–Zn bath was shown to influence the morphology, electrical resistivity, phase composition, and Cu and Zn content of the Cu–Zn deposits. Their structural and electrical properties have been investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDAX), cyclic voltammeter (CV) and current–voltage measurements against the temperature for electrical resistivity, respectively. XRD shows that Cu–Zn samples are polycrystalline phase. Resistivity results show that the copper film exhibits bigger residual resistivity than both the zinc and the Cu–Zn alloy. Theoretical calculations of the XRD peaks demonstrate that the average crystallite size of the Cu–Zn alloy decreased and microstrain increased when the Cu alloyed with zinc.

  16. Geology and mineralogy of the Au-As (Ag-Pb-Zn-Cu-Sb polymetallic deposit of Valiña-Azúmara (Lugo, NW Spain

    Directory of Open Access Journals (Sweden)

    Martínez-Abad, I.

    2015-12-01

    Full Text Available Valiña-Azúmara is a polymetallic Au-As (Ag-Pb-Zn-Cu-Sb deposit, located in the province of Lugo (NW Spain, that was mined for arsenic at the beginning of the 20th century. The mineralization is hosted in a Variscan thrust fault with a dip direction of N247-261ºE, and N-S and NE-SW Late-Variscan faults. These structures are hosted in black slates, Cambrian in age. To a lesser extent, the mineralization also occurs disseminated within narrow, weakly silicified and sericited selvages. Mineralization is divided into two hypogene stages. The first consists of quartz, calcite, rutile, sericite, arsenopyrite and pyrite. Two types of pyrite (Py-I and Py-II are defined according to their chemical and textural characteristics. Py-II occurs as overgrowth of previous Py-I crystals. Py-II is As-rich (≤1.7 wt.% and often contains traces of Te, Zn, Cu, Bi, Sb and Au. The mineralized drill core sections show a significant correlation between Au and As. This is due to Au occurring as invisible Au within the Py-II grains, with contents of up to 176 ppm. The Au/As ratios of Py-II indicate that Au was deposited as Au1+, as solid solution within the pyrite structure. The second stage of mineralization is enriched in Ag-Pb-Zn-Cu-Sb, replacing the first stage, and consists of quartz, calcite, chlorite, sphalerite, jamesonite, Ag-rich tetrahedrite, freibergite, chalcopyrite, pyrrhotite and galena. Although jamesonite shows traces of Ag, the Cu-Ag sulfosalts are the main carriers of the Ag mineralization in the deposit, with contents that vary from 13.7 to 23.9 wt.% of Ag. In the most superficial levels of the area, secondary Fe oxide and hydroxide, scorodite and anglesite developed due to the oxidation of the ore.Valiña-Azúmara es un yacimiento filoniano de Au-As (Ag-Pb-Zn-Cu-Sb situado en la provincia de Lugo (NO España, que fue explotado por arsénico a principios del siglo XX. La mineralización se encuentra encajada en un cabalgamiento Varisco de direcci

  17. Efeito da adição de fontes de matéria orgânica como amenizantes do efeito tóxico de B, Zn, Cu, Mn e Pb no cultivo de Brassica juncea Effect of sources of organic matter in the alleviation of the toxic effects of B, Zn, Cu, Mn and Pb to Brassica Juncea

    Directory of Open Access Journals (Sweden)

    Glaucia Cecília Grabrielli dos Santos

    2007-08-01

    Full Text Available Atividades humanas como mineração, siderurgia e aplicação de fertilizantes tornam a poluição por metais sério problema ambiental na atualidade. A fitorremediação - uso de plantas e da microbiota, associada ou não a adições de amenizantes de solo, para extrair, seqüestrar e, ou, reduzir a toxicidade dos poluentes - tem sido descrita como uma tecnologia efetiva, não-destrutiva, econômica e socialmente aceita para remediar solos poluídos. O objetivo deste trabalho foi avaliar a eficiência da mostarda na remoção de Zn, Cu, Mn, Pb e B de um solo contaminado e o efeito da adição de materiais orgânicos na redução da disponibilidade de metais pesados e B para essa planta. O trabalho foi realizado em casa de vegetação, com delineamento inteiramente casualizado em esquema fatorial 3 x 5 com quatro repetições, utilizando 0, 7, 14, 21 e 28 g kg-1 de C no solo. Os materiais orgânicos utilizados foram: solomax, turfa e concentrado húmico mineral (CHM. A adição de turfa e concentrado húmico mineral reduziu os teores de Zn, Cu, Pb e B extraíveis do solo e na parte aérea da mostarda; contudo, essa redução não foi suficiente para impedir os efeitos fitotóxicos dos elementos. A adição dos materiais orgânicos promoveu aumento nos teores de Mn no solo, entretanto apenas o solomax proporcionou aumento na concentração do elemento na parte aérea das plantas. Os efeitos da turfa e do CHM sobre a disponibilidade de Zn, Cu, Mn, Pb e B no solo, a concentração na parte aérea e o crescimento das plantas indicaram o potencial desses materiais como agentes amenizantes de toxicidade e do solomax como auxiliar em programas de fitoextração induzida.As a result of anthropogenic activities such as mining, metal industry and agricultural fertilizer application, metal pollution has become one of the most serious environmental problems of today. Phytoremediation denotes the use of plants and micro-biota, together or without soil

  18. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China.

    Science.gov (United States)

    Shen, Feng; Liao, Renmei; Ali, Amjad; Mahar, Amanullah; Guo, Di; Li, Ronghua; Xining, Sun; Awasthi, Mukesh Kumar; Wang, Quan; Zhang, Zengqiang

    2017-05-01

    A large scale survey and a small scale continuous monitoring was conducted to evaluate the impact of Pb/Zn smelting on soil heavy metals (HMs) accumulation and potential ecological risk in Feng County, Shaanxi province of China. Soil parameters including pH, texture, CEC, spatial and temporal distribution of HMs (Cd, Cu, Ni, Pb and Zn), and BCR fractionation were monitored accordingly. The results showed the topsoil in the proximity of smelter, especially the smelter area and county seat, were highly polluted by HMs in contrast to the river basins. Fractionation of Cd and Zn in soil samples revealed higher proportion of mobile fractions than other HMs. The soil Cd and Zn contents decreased vertically, but still exceeded the second level limits of Environmental Quality Standard for Soils of China (EQSS) within 80cm. The dominated soil pollutant (Cd) had higher ecological risk than Cu, Ni, Zn and Pb. The potential ecological risk (PER) factor of Cd were 65.7% and 100% in surrounding county and smelter area, respectively. The long-term smelter dust emission mainly contributed to the HMs pollution and posed serious environment risk to living beings. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Comprehensive risk assessment and source identification of selected heavy metals (Cu, Cd, Pb, Zn, Hg, As) in tidal saltmarsh sediments of Shuangtai Estuary, China.

    Science.gov (United States)

    Liu, Chang-Fa; Li, Bing; Wang, Yi-Ting; Liu, Yuan; Cai, Heng-Jiang; Wei, Hai-Feng; Wu, Jia-Wen; Li, Jin

    2017-10-06

    Heavy metals do not degrade and can remain in the environment for a long time. In this study, we analyzed the effects of Cu, Cd, Pb, Zn, Hg, and As, on environmental quality, pollutant enrichment, ecological hazard, and source identification of elements in sediments using data collected from samples taken from Shuangtai tidal wetland. The comprehensive pollution indices were used to assess environmental quality; fuzzy similarity analysis and geoaccumulation index were used to analyze pollution accumulation; correlation matrix, principal component analysis, and clustering analysis were used to analyze pollution source; environmental risk index and ecological risk index were used to assess ecological risk. The results showed that the environmental quality was either clean or almost clean. Pollutant enrichment analysis showed that the four sub-regions had similar pollution-causing metals to the background values of the soil element of the Liao River Plain, which were ranked according to their similarity. Source identification showed that all the elements were correlated. Ecological hazard analysis showed that the environmental risk index in the study area was less than zero, posing a low ecological risk. Ecological risk of the six elements was as follows: As > Cd > Hg > Cu > Pb > Zn.

  20. Estudio de los mecanismos de activación de la esfalerita con Cu(II y Pb(II

    Directory of Open Access Journals (Sweden)

    Dávila Pulido, G. I.

    2011-08-01

    Full Text Available This article presents results of an experimental study on the sphalerite activation with Cu(II and Pb(II, whose main objective was to investigate the activation mechanisms and to evaluate the magnitude of the hydrophobization achieved with both chemical species. The hydrophobicity acquired by the mineral due to the interaction with the activator and collector (sodium isopropyl xanthate is characterized making use of the contact angle technique. The results show that Cu(II replaces the Zn of the external layers of the mineral, promoting the sulfide (S2– oxidation to produce a mixture of CuS, Cu2S and S°, of hydrophobic nature. The subsequent interaction with xanthate increases the hydrophobicity of the mineral surface. In turn, Pb(II activation of sphalerite is due to the formation of a PbS layer that reacts with xanthate to produce hydrophobic species (e.g., PbX2. It is also observed that the hydrophobicity of sphalerite activated with Pb(II is favored under air atmospheres, as compared to that obtained under nitrogen atmospheres. It is concluded that the hydrophobicity achieved by lead activation may be of the same order of magnitude to that deliverately induced by copper activation.

    Este artículo presenta los resultados de un estudio experimental sobre la activación de esfalerita (ZnS con Cu(II y Pb(II, cuyo objetivo principal consistió en investigar los mecanismos de activación y en evaluar la magnitud relativa de la hidrofobización alcanzada con ambas especies químicas. La hidrofobicidad que la superficie mineral adquiere como resultado de la interacción con los activadores y colectores tipo xantato (ditiocarbonatos alquílicos, R-O-CS2 –, se caracteriza mediante la técnica del ángulo de contacto. Los resultados muestran que el Cu(II es intercambiado por el Zn de las capas exteriores del cristal, promoviendo la oxidación de sulfuro (S2– para producir una mezcla de

  1. Synthesis and characterization of ZnO/ZnSe NWs/PbS QDs solar cell

    Science.gov (United States)

    Kamruzzaman, M.; Zapien, J. A.

    2017-04-01

    The capture of solar energy has gained the attention for the next generation solar cell. ZnO/ZnSe NW arrays were synthesized on an FTO glass substrate using a simple and facile hydrothermal and ion-exchange approaches. The lead sulfide (PbS) QDs was infiltrated into ZnO/ZnSe NWs via SILAR method for making inorganic quantum dot sensitized ZnO/ZnSe/PbS QDs solar cell. The surface morphology, structural, optical, and J-V characteristics have been investigated. The ZnO/ZnSe NW is a core-shell like structure, and the absorption edge shifted from the UV region (ZnO NWs) to the near infrared region for ZnO/ZnSe NWs/PbS QDs. For PbS QDs-sensitized solar cell, the obtained value of η = 1.1%, J sc = 20.60 mA/cm2, V oc = 155 mV, and FF = 34.7%, respectively. The photovoltaic performance of the device in this study is still inferior. However, it is the first report regarding to ZnO/ZnZe NWs/PbS QDs solar cell. The achieving high absorption and large short circuit current density may interest in further improvement of the device performance by suppressing surface defects, optimizing the quality of ZnO/ZnSe NWs and PbS QDs.

  2. Synthesis and characterization of ZnO/ZnSe NWs/PbS QDs solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Kamruzzaman, M, E-mail: kzaman.phy11@gmail.com; Zapien, J A, E-mail: apjazs@cityu.edu.hk [City University of Hong Kong, Department of Physics and Materials Science and Center Of Super-Diamond and Advanced Films (COSDAF) (China)

    2017-04-15

    The capture of solar energy has gained the attention for the next generation solar cell. ZnO/ZnSe NW arrays were synthesized on an FTO glass substrate using a simple and facile hydrothermal and ion-exchange approaches. The lead sulfide (PbS) QDs was infiltrated into ZnO/ZnSe NWs via SILAR method for making inorganic quantum dot sensitized ZnO/ZnSe/PbS QDs solar cell. The surface morphology, structural, optical, and J-V characteristics have been investigated. The ZnO/ZnSe NW is a core–shell like structure, and the absorption edge shifted from the UV region (ZnO NWs) to the near infrared region for ZnO/ZnSe NWs/PbS QDs. For PbS QDs-sensitized solar cell, the obtained value of η = 1.1%, J{sub sc} = 20.60 mA/cm{sup 2}, V{sub oc} = 155 mV, and FF = 34.7%, respectively. The photovoltaic performance of the device in this study is still inferior. However, it is the first report regarding to ZnO/ZnZe NWs/PbS QDs solar cell. The achieving high absorption and large short circuit current density may interest in further improvement of the device performance by suppressing surface defects, optimizing the quality of ZnO/ZnSe NWs and PbS QDs.

  3. Géochimie et métallogénie des veines à Ag-Pb-Zn du bassin de Purcell, Colombie-Britannique

    OpenAIRE

    Paiement, Jean-Philippe

    2010-01-01

    Le bassin du Belt-Purcell est connu pour le gîte de type SEDEX de Sullivan et ses veines à Ag-Pb-Zn. Les veines du bassin de Purcell sont classées en trois types : 1) riches en Pb-Zn composées de sphalérite, galène, pyrrhotite, freibergite et pyrite; 2) riches en Pb-Ag-Cu-Au et composées de galène, pyrite, freibergite et d’or et; 3) veines et remplacements riches en Ag-Pb-Zn et composées de sphalérite, galène, pyrite et freibergite. La datation Ar/Ar de séricite hydrothermale du gîte de Type ...

  4. Soil-plant abstract of heavy metals in Pb-Zn mining sites from Alcudia Valley (South Spain)

    Science.gov (United States)

    López-Berdonces, Miguel; Higueras, Pablo; Esbrí, Jose Maria; González-Corrochano, Beatríz; García-Noguero, Eva Mª; Martínez-Coronado, Alba; Fernandez-Calderón, Sergio; García-Noguero, Carolina

    2013-04-01

    Soil-plant transfer of heavy metals in Pb-Zn mining sites from Alcudia Valley (South Spain). Authors: Miguel A. López-Berdonces¹; Pablo Higueras¹; Jose María Esbrí¹; Beatriz González-Corrochano¹; Eva Mª García- Noguero¹; Alba Martínez Coronado¹; Sergio Fernández-Calderón¹; Carolina García-Noguero¹ ¹Instituto de Geología Aplicada, Universidad Castilla la Mancha, Pza. Manuel Meca, 1. 13400 Almadén, Spain. Alcudia Valley is a vast territory recently declared Natural Park, located in South of Spain. It is an area rich in mineral deposits of Zn and Pb and mining exists since the first millennium BC., having its highest ore production between mid-nineteenth century and the middle of the twentieth. This area has been selected because has more than 120 abandoned mines without remediation actions, with dumps and tailings with high contents of zinc and lead sulfides, and Cu, Ag, Cd, As, Sb in minor concentrations. In this study we determinate the transfer rate of these metals from soils to plants represented by oak leaves (Quercus ilex), because this specie is common within the selected area. To evaluate the soil-plant transfer were studied the correlation of contents, total and extractable, in soil-leaves. Extractable fraction was done by for different methods in water, EPA 1312 sulfuric acid: nitric acid 60:40 v., Ammonium Acetate and EDTA. To establish the correlation between heavy metals from soils to plants is necessary to know the contents of these and bioavailable content in soil. Three areas (S. Quintín, Romanilla, Bombita) were selected, taking 24 samples of soils and leaves. Analyzed leaves by XRF showed that Mn, Pb, Zn and Mo in S.Quintin and Romanilla, Mn, Pb in Bombita, exceeded the toxicity threshold. The same samples analyzed by ICP show us the toxicity threshold is exceeded Pb, Zn and Hg in S.Quintin, and Pb in Romanilla. The heavy metal content in leaves compared between two techniques analytical gives an acceptable correlation Zn - Pb

  5. Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England)

    International Nuclear Information System (INIS)

    Tipping, E.; Rothwell, J.J.; Shotbolt, L.; Lawlor, A.J.

    2010-01-01

    Simulation modelling with CHUM-AM was carried out to investigate the accumulation and release of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in six moorland catchments, five with organic-rich soils, one with calcareous brown earths, in the Pennine chain of northern England. The model considers two soil layers and a third layer of weathering mineral matter, and operates on a yearly timestep, driven by deposition scenarios covering the period 1400-2010. The principal processes controlling heavy metals are competitive solid-solution partitioning of solutes, chemical interactions in solution, and chemical weathering. Agreement between observed and simulated soil metal pools and surface water concentrations for recent years was generally satisfactory, the results confirming that most contemporary soil metal is from atmospheric pollution. Metals in catchments with organic-rich soils show some mobility, especially under more acid conditions, but the calcareous mineral soils have retained nearly all anthropogenic metal inputs. Complexation by dissolved organic matter and co-transport accounts for up to 80% of the Cu in surface waters. - CHUM-AM is applied to six differing moorland catchments to account for the accumulation and leaching of atmospherically-deposited trace metals over the past several centuries.

  6. Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England)

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E., E-mail: et@ceh.ac.u [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Rothwell, J.J. [Upland Environments Research Unit, School of Environment and Development, University of Manchester, Manchester M13 9PL (United Kingdom); Shotbolt, L. [Geography Department, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Lawlor, A.J. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2010-05-15

    Simulation modelling with CHUM-AM was carried out to investigate the accumulation and release of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in six moorland catchments, five with organic-rich soils, one with calcareous brown earths, in the Pennine chain of northern England. The model considers two soil layers and a third layer of weathering mineral matter, and operates on a yearly timestep, driven by deposition scenarios covering the period 1400-2010. The principal processes controlling heavy metals are competitive solid-solution partitioning of solutes, chemical interactions in solution, and chemical weathering. Agreement between observed and simulated soil metal pools and surface water concentrations for recent years was generally satisfactory, the results confirming that most contemporary soil metal is from atmospheric pollution. Metals in catchments with organic-rich soils show some mobility, especially under more acid conditions, but the calcareous mineral soils have retained nearly all anthropogenic metal inputs. Complexation by dissolved organic matter and co-transport accounts for up to 80% of the Cu in surface waters. - CHUM-AM is applied to six differing moorland catchments to account for the accumulation and leaching of atmospherically-deposited trace metals over the past several centuries.

  7. Behavior of Sn-0.7Cu-xZn lead free solder on physical properties and micro structure

    Science.gov (United States)

    Siahaan, Erwin

    2017-09-01

    The issues to substitute Tin-Lead Solders is concerning the health and environmental hazards that is caused by lead, and also legislative actions around the world regarding lead toxicity, which has prompted the research community to attempt to replace solder alloys for the traditional Sn-Pb alloys lead which has been used by industrial worker throughout history because it is easily extracted and refined at a relatively low energy cost and also has a range of useful properties. Traditional industry lead has been used in soldering materials for electronic applications because it has low melting point and a soft, malleable nature, when combined with tin at the eutectic composition which causes the alloy to flow easily in the liquid state and solidifies over a very small range of temperature. One of the potential candidate to replace tin-lead solder is Sn-Cu-Zn eutectic alloy as it has a lower melting temperature. Consequently, it is of interest to determine what reactions can occur in ternary systems derived from the Sn-Cu-Zn eutectic. One such system is Sn-0.7Cu-xZn. The specimen was elaborated on physical properties. The chemical content was analyzed by using Shimadzu XRD and melting point was analyzed by using Differential Scanning Calorimeter ( DSC ). The results has shown that the highest addition of Zinc content (15%Zn) will decrease the melting temperatur to 189°C compared to Sn-Pb at 183°C Increasing the amount of Zn on Sn0.7Cu-xZn alloys will decrease Cu3Sn intermetallic coumpound.

  8. Method for determination of Fe, Co, Ni, Cu, Zn and Pb in sea water using X-ray fluorescence analysis, after concentration step of these elements by coprecipitation with APDC

    International Nuclear Information System (INIS)

    Lam, P.; Estevez Alvarez, J.R.; Pupo Gonzalez, I.; Ramirez, M.; Rivera, N.

    1998-01-01

    In this work an analytical procedure has been applied to the to the determination of Fe, Co, Ni, Cu, Zn y Pb in seawater, that includes a coprecipitation step applied of these metals with APDC. The final analysis is carried out by X-Ray Fluorescence Analysis thin layer absolute method

  9. Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn

    DEFF Research Database (Denmark)

    Cutillas-Barreiro, L.; Ansias-Manso, L.; Fernandez Calviño, David

    2014-01-01

    to the added concentrations, with Pb always showing the lowest levels. Stirred flow chamber experiments showed strong hysteresis for Pb and Cu, sorption being mostly irreversible. The differences affecting the studied heavy metals are mainly due to different affinity for the adsorption sites. Pine bark can......The objective of this work was to determine the retention of five metals on pine bark using stirred flow and batch-type experiments. Resulting from batch-type kinetic experiments, adsorption was rapid, with no significant differences for the various contact times. Adsorption was between 98 and 99...

  10. Immobilisation of Cu, Pb and Zn in Scrap Metal Yard Soil Using Selected Waste Materials.

    Science.gov (United States)

    Kamari, A; Putra, W P; Yusoff, S N M; Ishak, C F; Hashim, N; Mohamed, A; Isa, I M; Bakar, S A

    2015-12-01

    Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land.

  11. Obtención y caracterización del polvo de bronce Cu88Sn6,5Zn4Pb1,5 para aplicaciones en cojinetes

    Directory of Open Access Journals (Sweden)

    Krivij, Natalia

    2000-12-01

    Full Text Available The aim of this work is the development of alloyed bronze powder Cu88Sn6,5Zn4Pb1,5 to substitute the material used in the manufacture of bearings with antifriction properties. The physical and chemical characterization of the powder has been carried out and an experimental 23 design to determine the optimal parameters of the technological process of powder sintering has been used in the specific case of sealed bearing manufacture of the subset shaft-seal of the open cooling compressor.

    El trabajo tiene como objetivo el desarrollo del polvo de bronce aleado Cu88Sn6,5Zn4Pb1,5 para sustituir el material originalmente utilizado en la fabricación de cojinetes con propiedades antifricción. Se realizó la caracterización física y química del polvo, y se empleó un diseño experimental 23 con vistas a determinar los parámetros óptimos del proceso tecnológico de sinterización del polvo, para el caso específico de la fabricación del cojinete de sellaje del subconjunto eje-sello del compresor abierto de refrigeración.

  12. Hume-Rothery electron concentration rule across a whole solid solution range in a series of gamma-brasses in Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga, Ni-Zn and Co-Zn alloy systems

    Science.gov (United States)

    Mizutani, U.; Noritake, T.; Ohsuna, T.; Takeuchi, T.

    2010-05-01

    The aim of the present work is to examine if the Hume-Rothery stabilisation mechanism holds across whole solid solution ranges in a series of gamma-brasses with especial attention to the role of vacancies introduced into the large unit cell. The concentration dependence of the number of atoms in the unit cell, N, for gamma-brasses in the Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga, Ni-Zn and Co-Zn alloy systems was determined by measuring the density and lattice constants at room temperature. The number of itinerant electrons in the unit cell, e/uc, is evaluated by taking a product of N and the number of itinerant electrons per atom, e/a, for the transition metal element deduced earlier from the full-potential linearised augmented plane wave (FLAPW)-Fourier analysis. The results are discussed within the rigid-band model using as a host the density of states (DOS) derived earlier from the FLAPW band calculations for the stoichiometric gamma-brasses Cu5Zn8, Cu9Al4 and TM2Zn11 (TM = Co and Ni). A solid solution range of gamma-brasses in Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga and Ni-Zn alloy systems is found to fall inside the existing pseudogap at the Fermi level. This is taken as confirmation of the validity of the Hume-Rothery stability mechanism for a whole solute concentration range of these gamma-brasses. An exception to this behaviour was found in the Co-Zn gamma-brasses, where orbital hybridisation effects are claimed to play a crucial role in stabilisation.

  13. EVALUATION OF CONTAMINATION OF Zn-Pb INDUSTRY DEGRADED AREAS USING SPATIAL INFORMATION

    Directory of Open Access Journals (Sweden)

    Rafał Rozpondek

    2017-06-01

    Full Text Available The aim of this study was to evaluate soil contamination by heavy metals of selected area in the vicinity of the Zinc Smelter „Miasteczko Śląskie” (surface area: 147 ha, 1050 x 1400 meters for purpose of future reclamation, remediation and monitoring. The study used GIS. Network of 29 measuring points was planned, with particular emphasis on the area with the least amount of pure vegetation. In March 2016, two samples of soil were taken from the top layer of soil 0 - 20cm. Samples were analyzed in terms of pH, soil organic matter and total heavy metal content (As, Ba, Cd, Cu, Ni, Pb i Zn. Values of pH maintained in range of 3,7 - 7,9, organic matter 0,8 – 47,1% of solid content, As 0 – 32,5mg/kg, Ba 14 – 804mg/kg, Cd 0 – 19mg/kg, Cu 3 – 58mg/kg, Pb 22 – 1893mg/kg, Zn 36 – 1377mg/kg. In collected samples Ni was not detected. Spatial distributions of results were created. A significant data range and spatial differentiation was noted. On the base of the Regulation of the Minister of the Environment from September 1st, 2016 on the method of conducting the assessment of contamination of surface of the earth, areas contaminated with heavy metals were selected. Two different concentration limits were adopted: first in accordance with the actual method of land use (permissible values for group III - woodland and second relating to the possible undertaking of measures targeted at changing the land use (limit values for Group I - residential areas, recreational areas. On the basis of generated models, the area of the surface size that contains values higher than allowed in the quoted regulation were determined and calculated. In case of group III the values were exceeded for: Zn (surface area 0,9ha, Pb (46ha i Cd (27,8ha. For group I: As (0,3ha, Ba (10,2ha, Cd (53,9ha, Pb (120,8ha i Zn (20,2ha. The concentrations of Ni and Cu were lower than the limit value. The paper also determined zones with the highest contents of heavy metals. In

  14. Usage of a statistical method of designing factorial experiments in the mechanical activation of a complex CuPbZn sulphide concentrate

    Directory of Open Access Journals (Sweden)

    BalហPeter

    2003-09-01

    Full Text Available Mechanical activation belongs to innovative procedures which intensify technological processes by creating new surfaces and making a defective structure of solid phase. Mechanical impact on the solid phase is a suitable procedure to ensure the mobility of its structure elements and to accumulate the mechanical energy that is later used in the processes of leaching.The aim of this study was to realize the mechanical activation of a complex CuPbZn sulphide concentrate (Slovak deposit in an attritor by using of statistical methods for the design of factorial experiments and to determine the conditions for preparing the optimum mechanically activated sample of studied concentrate.The following parameters of the attritor were studied as variables:the weight of sample/steel balls (degree of mill filling, the number of revolutions of the milling shaft and the time of mechanical activation. Interpretation of the chosen variables inducing the mechanical activation of the complex CuPbZn concentrate was also carried out by using statistical methods of factorial design experiments. The presented linear model (23 factorial experiment does not support directly the optimum search, therefore this model was extended to the nonlinear model by the utilization of second order ortogonal polynom. This nonlinear model does not describe adequately the process of new surface formation by the mechanical activation of the studied concentrate. It would be necessary to extend the presented nonlinear model to the nonlinear model of the third order or choose another model. In regard to the economy with the aspect of minimal energy input consumption, the sample with the value of 524 kWht-1 and with the maximum value of specific surface area 8.59 m2g-1 (as a response of the factorial experiment was chosen as the optimum mechanically activated sample of the studied concentrate. The optimum mechanically activated sample of the complex CuPbZn sulphide concentrate was prepared

  15. The Enrichment and Transfer of Heavy Metals for Two Ferns in Pb-Zn Tailing

    Directory of Open Access Journals (Sweden)

    Mai Jiajie

    2017-01-01

    Full Text Available The enrichment and transfer of 8 heavy metals of Equisetum ramosissimum and Pteris vittata growing naturally close to edge of the sewage pool in Bencun Pb-Zn Tailing, Eastern Guangdong were investigated. The results indicated that the pollution of Cd, Pb, Hg, Zn was very severe in this tailing, followed by Cu and Mn. The potential ecological risk of heavy metals was assessed to be very strong based on soil background values of Guangdong Province and at high risk according to criteria of the second grade State Soil Environmental Quality Standard, and Cd, Hg, Pb were the main factors leading to potential ecological risk. The content of 8 heavy metals in the two ferns did not reach critical content of hyperaccumulator, so neither of them was typical hyperaccumulator, but both had a certain tolerance to these heavy metal pollution. Underground parts of Pteris vittata had an enrichment coefficient above 1 and that of Equisetum ramosissimum had a value near 1, therefore the two ferns could be utilized as potential enrichment plants. The two ferns have strong adaptability to the tailing habitat and can be used as pioneers in ecological restoration of Pb-Zn tailings.

  16. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils

    International Nuclear Information System (INIS)

    Spurgeon, David J.; Rowland, Philip; Ainsworth, Gillian; Rothery, Peter; Long, Sara; Black, Helaina I.J.

    2008-01-01

    Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated. - Metal distributions and risks explained by balance of sources and soil property effects on fate

  17. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils.

    Science.gov (United States)

    Spurgeon, David J; Rowland, Philip; Ainsworth, Gillian; Rothery, Peter; Long, Sara; Black, Helaina I J

    2008-05-01

    Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated.

  18. Study On Nanohardness Of Phases Occurring In ZnAl22Cu3 And ZnAl40Cu3 Alloys

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2015-06-01

    Full Text Available Zn-Al alloys are mainly used due to their high tribological and damping properties. A very important issue is determination of the hardness of the phases present in the Zn-Al-Cu alloys. Unfortunately, in literature there is lack of studies on the hardness of the phases present in the alloys Zn-Al-Cu. The aim of this research was to determine the hardness of the phases present in the ZnAl22Cu3Si and ZnAl40Cu3Si alloys. The scope of the research included examination of the structure, chemical composition of selected micro-regions and hardness of phases present in the examined alloys. The research carried out has shown, that CuZn4 phase is characterized by a similar hardness as the hardness of the interdendritic areas. The phases present in the structure of ZnAl40Cu3 and ZnAl22Cu3 alloys after soaking at the temperature of 185 °C are characterized by lower hardness than the phase present in the structure of the as-cast alloys.

  19. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.

    Science.gov (United States)

    Lu, Kouping; Yang, Xing; Gielen, Gerty; Bolan, Nanthi; Ok, Yong Sik; Niazi, Nabeel Khan; Xu, Song; Yuan, Guodong; Chen, Xin; Zhang, Xiaokai; Liu, Dan; Song, Zhaoliang; Liu, Xingyuan; Wang, Hailong

    2017-01-15

    Biochar has emerged as an efficient tool to affect bioavailability of heavy metals in contaminated soils. Although partially understood, a carefully designed incubation experiment was performed to examine the effect of biochar on mobility and redistribution of Cd, Cu, Pb and Zn in a sandy loam soil collected from the surroundings of a copper smelter. Bamboo and rice straw biochars with different mesh sizes (Heavy metal concentrations in pore water were determined after extraction with 0.01 M CaCl 2 . Phytoavailable metals were extracted using DTPA/TEA (pH 7.3). The European Union Bureau of Reference (EUBCR) sequential extraction procedure was adopted to determine metal partitioning and redistribution of heavy metals. Results showed that CaCl 2 -and DTPA-extractable Cd, Cu, Pb and Zn concentrations were significantly (p soils, especially at 5% application rate, than those in the unamended soil. Soil pH values were significantly correlated with CaCl 2 -extractable metal concentrations (p metal fractions, and the effect was more pronounced with increasing biochar application rate. The effect of biochar particle size on extractable metal concentrations was not consistent. The 5% rice straw biochar treatment reduced the DTPA-extractable metal concentrations in the order of Cd metals were mainly bound in the soil organic matter fraction. The results demonstrated that the rice straw biochar can effectively immobilize heavy metals, thereby reducing their mobility and bioavailability in contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Removal of heavy metals from aqueous solutions using Fe{sub 3}O{sub 4}, ZnO, and CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Shahriar, E-mail: smahdaviha@yahoo.com; Jalali, Mohsen, E-mail: jalali@basu.ac.ir [College of Agriculture, Bu-Ali Sina University, Department of Soil Science (Iran, Islamic Republic of); Afkhami, Abbas, E-mail: afkhami@basu.ac.ir [College of Chemistry, Bu-Ali Sina University, Department of Analytical Chemistry (Iran, Islamic Republic of)

    2012-08-15

    This study investigated the removal of Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Pb{sup 2+} from aqueous solutions with novel nanoparticle sorbents (Fe{sub 3}O{sub 4}, ZnO, and CuO) using a range of experimental approaches, including, pH, competing ions, sorbent masses, contact time, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The images showed that Fe{sub 3}O{sub 4}, ZnO, and CuO particles had mean diameters of about 50 nm (spheroid), 25 nm (rod shape), and 75 nm (spheroid), respectively. Tests were performed under batch conditions to determine the adsorption rate and uptake at equilibrium from single and multiple component solutions. The maximum uptake values (sum of four metals) in multiple component solutions were 360.6, 114.5, and 73.0 mg g{sup -1}, for ZnO, CuO, and Fe{sub 3}O{sub 4}, respectively. Based on the average metal removal by the three nanoparticles, the following order was determined for single component solutions: Cd{sup 2+} > Pb{sup 2+} > Cu{sup 2+} > Ni{sup 2+}, while the following order was determined in multiple component solutions: Pb{sup 2+} > Cu{sup 2+} > Cd{sup 2+} > Ni{sup 2+}. Sorption equilibrium isotherms could be described using the Freundlich model in some cases, whereas other isotherms did not follow this model. Furthermore, a pseudo-second order kinetic model was found to correctly describe the experimental data for all nanoparticles. Scanning electron microscopy, energy dispersive X-ray before and after metal sorption, and soil solution saturation indices showed that the main mechanism of sorption for Cd{sup 2+} and Pb{sup 2+} was adsorption, whereas both Cu{sup 2+} and Ni{sup 2+} sorption were due to adsorption and precipitation. These nanoparticles have potential for use as efficient sorbents for the removal of heavy metals from aqueous solutions and ZnO nanoparticles were identified as the most promising sorbent due to their high metal uptake.

  1. Heavy metals (Cd, Cu, Ni and Pb) content in two fish species of ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... Water pollution and fish physiology. CRC press. Florida, USA, p. 245. Kalay M, Canli M (2000). Elimination of essential (Cu, Zn) and nonessential (Cd, Pb) metals from tissue of a freshwater fish Tilapia zillii following and uptake protocol. Turk. J. Zool. 24: 429-436. Karadede H, Ünlü E (2000). Concentrations ...

  2. Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic.

    Science.gov (United States)

    Drahota, Petr; Raus, Karel; Rychlíková, Eva; Rohovec, Jan

    2017-06-15

    Historical mining activities in the village of Kaňk (in the northern part of the Kutná Hora ore district, Czech Republic) produced large amounts of mine wastes which contain significant amounts of metal(loid) contaminants such as As, Cu, Pb, and Zn. Given the proximity of residential communities to these mining residues, we investigated samples of mine waste (n = 5), urban soil (n = 6), and road dust (n = 5) with a special focus on the solid speciation of As, Cu, Pb, and Zn using a combination of methods (XRD, SEM/EDS, oxalate extractions), as well as on in vitro bioaccessibility in simulated gastric and lung fluids to assess the potential exposure risks for humans. Bulk chemical analyses indicated that As is the most important contaminant in the mine wastes (~1.15 wt%), urban soils (~2900 mg/kg) and road dusts (~440 mg/kg). Bioaccessible fractions of As were quite low (4-13%) in both the simulated gastric and lung fluids, while the bioaccessibility of metals ranged between waste materials and highly contaminated urban soil. Based on the risk assessment, arsenic was found to be the element posing the greatest risk.

  3. Atomic absorption spectrophotometric determination of microgram levels of Co, Ni, Cu, Pb, and Zn in soil and sediment extracts containing large amounts of Mn and Fe

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1973-01-01

    An atomic absorption spectrophotometric method has been developed for the determination of seven metal ions in the hydroxylamine extract of soils and sediments. Mn, Fe, and Zn are directly determined in the aqueous extract upon dilution. Co, Ni, Cu, and Pb in a separate aliquot of the extract are chelated with APDC (ammonium pyrrolidine dithiocarbamate) and extracted into MIBK (methyl isobutyl ketone) before determination. Data are presented to show the quantitative recovery of microgram levels of Co, Ni, Cu, and Pb by APDC-MIBK chelation-extraction from synthetic solutions containing as much as 2,000 ug/ml (micrograms per milliliter) Mn or 50 ug/ml Fe. Recovery of known amounts of the metal ions from sample solutions is equally satisfactory. Reproducible results are obtained by replicate analyses of two sediment samples for the seven metals.

  4. Measurements of labile Cd, Cu, Ni, Pb, and Zn levels at a northeastern Brazilian coastal area under the influence of oil production with diffusive gradients in thin films technique (DGT).

    Science.gov (United States)

    de Souza, João M; Menegário, Amauri A; de Araújo Júnior, Marcus A G; Francioni, Eleine

    2014-12-01

    In this work, the ability of the diffusive gradients in thin films technique (DGT) was evaluated for monitoring the concentrations, and estimating the availability, of metals at a northeastern Brazilian coastal area under the influence of oil production. Three sites with an average distance between 0m (EM-1), 100 m (EM-2), and 1,000 m (EM-3) of a submarine outfall-I (Guamaré-RN, Brazil) and another site (GA-1) with an average distance of 12,000 m east of Outfall I, near the city of Galinhos, were studied. DGT units were deployed at the same sites in three campaigns from July, 2010 to June, 2011. Effects on the accuracy of analytical results regarding the deployment time, gel porosity, and thickness were evaluated. There was no difference between the measurements obtained with two sets of DGT devices, those assembled with open or restrictive pore gel, respectively, showing that organic metallic species are not present near the submarine outlet. After 21 day deployments in a region (near Submarine Outfall I) that receives produced waters that have been treated, there was evidence of biofilm formation on DGT membranes. However, it was demonstrated that the biofilm interference with DGT measurements was negligible. Data found in this work show that total concentrations of Cd, Cu, Pb, Ni, and Zn in seawater samples collected at sites GA-1 and EM-1 in two campaigns were below 0.33, 1.67, 0.47, 0.70, 2.86 ng mL(-1) respectively. For the first time, labile levels of Cd, Cu, Pb, Ni, and Zn in an area under the influence of oil production were determined. DGT measurements allowed the verification of the effects of temporal variation on levels of Zn and Ni. There were no effects of spatial variations on levels of Cd, Cu, Ni, Pb, and Zn at the four studied sites, suggesting no contamination of these metals at the northeastern Brazilian coastal area investigated in this work. Copyright © 2014. Published by Elsevier B.V.

  5. Determination of Cr, Cu, Fe, Ni, Pb and Zn by ICP-OES in mushroom samples from Sakarya, Turkey

    Directory of Open Access Journals (Sweden)

    Esra Altıntığ

    2017-06-01

    Full Text Available Russula cyanoxantha, Russula delica, Lactarius salmonicolor, Lactarius deliciosus, Pleurotus eryngii, Pleurotus ostreatus, Agaricus bisporus, Suillus luteus, Pleurotus spp and Boletus edulis were collected from Sakarya-Turkey respectively. Also canned food in the form of the Pleurotus eryngii, Pleurotus ostreatus, and Lactarius salmonicolor mushrooms were used for the examination. Trace metal concentrations found in these mushrooms were determined inductively using coupled plasma optic emission spectrometry microwave processes. The results were obtained for (Cr 0.3-26.65, (Cu 17.38-132.75, (Fe 26.3-225.40, (Ni 2.57-39.28, (Pb 11.52-185.20, and (Zn 22.86-126.84 mg/kg. The accuracy of the method was checked by the standard reference material; tea leaves (INCY-TL-1 and tomato leaves (1573a.

  6. Determination of mobile form contents of Zn, Cd, Pb and Cu in soil extracts by combined stripping voltammetry

    International Nuclear Information System (INIS)

    Nedeltcheva, T.; Atanassova, M.; Dimitrov, J.; Stanislavova, L.

    2005-01-01

    The amount of mobile forms of Zn, Pb, Cd and Cu in extracts obtained by treating soil samples with ammonium nitrate were determined by an appropriate combination of anodic and cathodic stripping voltammetry with hanging mercury drop electrode. Every analysis required three mercury drops: on the first one, zinc was determined; on the second, cadmium and lead; on the third, copper was determined. Zinc, lead and cadmium were determined by conventional differential-pulse anodic stripping voltammetry. For copper determination, adsorptive differential-pulse cathodic stripping voltammetry with amalgamation using chloride ions as a complexing agent was applied. The standard deviation of the results was from 1 to 10% depending on the metal content in the sample. Voltammetric results were in good agreement with the AAS analysis. No microwave digestion of soil extracts was necessary

  7. Determination of mobile form contents of Zn, Cd, Pb and Cu in soil extracts by combined stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Nedeltcheva, T. [Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 8 Kl. Ohridsi Blvd., 1756 Sofia (Bulgaria)]. E-mail: nedel@uctm.edu; Atanassova, M. [Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 8 Kl. Ohridsi Blvd., 1756 Sofia (Bulgaria); Dimitrov, J. [N. Pushkarov Institute of Soil Science and Agroecology, 7 Shosse Bankya St., 1080 Sofia (Bulgaria); Stanislavova, L. [N. Pushkarov Institute of Soil Science and Agroecology, 7 Shosse Bankya St., 1080 Sofia (Bulgaria)

    2005-01-10

    The amount of mobile forms of Zn, Pb, Cd and Cu in extracts obtained by treating soil samples with ammonium nitrate were determined by an appropriate combination of anodic and cathodic stripping voltammetry with hanging mercury drop electrode. Every analysis required three mercury drops: on the first one, zinc was determined; on the second, cadmium and lead; on the third, copper was determined. Zinc, lead and cadmium were determined by conventional differential-pulse anodic stripping voltammetry. For copper determination, adsorptive differential-pulse cathodic stripping voltammetry with amalgamation using chloride ions as a complexing agent was applied. The standard deviation of the results was from 1 to 10% depending on the metal content in the sample. Voltammetric results were in good agreement with the AAS analysis. No microwave digestion of soil extracts was necessary.

  8. Solidified structure of Al-Pb-Cu alloys

    International Nuclear Information System (INIS)

    Ikeda, Tetsuyuki; Nishi, Seiki; Kumeuchi, Hiroyuki; Tatsuta, Yoshinori.

    1986-01-01

    Al-Pb-Cu alloys were cast into bars or plates in different two metal mold casting processes in order to suppress gravity segregation of Pb and to achieve homogeneous dispersion of Pb phase in the alloys. Solidified structures were analyzed by a video-pattern-analyzer. Plate castings 15 to 20 mm in thickness of Al-Pb-1 % Cu alloy containing Pb up to 5 % in which Pb phase particles up to 10 μm disperse are achieved through water cooled metal mold casting. The plates up to 5 mm in thickness containing Pb as much as 8 to 10 % cast in this process have dispersed Pb particles up to 5 μm in diameter in the surface layer. Al-8 % Pb-1 % Cu alloy bars 40 mm in diameter and 180 mm in height in which gravity segregation of Pb is prevented can be cast by movable and water sprayed metal mold casting at casting temperature 920 deg C and mold moving speed 1.0 mm/s. Pb phase particles 10 μm in mean size are dispersed in the bars. (author)

  9. Origin and tectonic implications of the Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya: evidence from structures, Re-Os-Pb-S isotopes, and fluid inclusions

    Science.gov (United States)

    Zhou, Qing; Li, Wenchang; Qing, Chengshi; Lai, Yang; Li, Yingxu; Liao, Zhenwen; Wu, Jianyang; Wang, Shengwei; Dong, Lei; Tian, Enyuan

    2018-04-01

    The Zhaxikang Pb-Zn-Sb-Ag-(Au) deposits, located in the eastern part of northern Himalaya, totally contain more than 1.146 million tonnes (Mt) of Pb, 1.407 Mt of Zn, 0.345 Mt of Sb, and 3 kilotonnes (kt) of Ag. Our field observations suggest that these deposits are controlled by N-S trending and west- and steep-dipping normal faults, suggesting a hydrothermal rather than a syngenetic sedimentary origin. The Pb-Zn-Sb-Ag-(Cu-Au) mineralization formed in the Eocene as indicated by a Re-Os isochron age of 43.1 ± 2.5 Ma. Sulfide minerals have varying initial Pb isotopic compositions, with (206Pb/204Pb)i of 19.04-19.68, (207Pb/204Pb)i of 15.75-15.88, and (208Pb/204Pb)i of 39.66-40.31. Sulfur isotopic values display a narrow δ34S interval of +7.8-+12.2‰. These Pb-S isotopic data suggest that the Zhaxikang sources of Pb and S should be mainly from the coeval felsic magmas and partly from the surrounding Mesozoic strata including metasedimentary rocks and layered felsic volcanic rocks. Fluid inclusion studies indicate that the hydrothermal fluids have medium temperatures (200-336 °C) but varying salinities (1.40-18.25 wt.% NaCl equiv.) with densities of 0.75-0.95 g/cm3, possibly suggesting an evolution mixing between a high salinity fluid, perhaps of magmatic origin, with meteoric water.

  10. Effect of ZnO and PbO/ZnO on structural and thermal properties of tellurite glasses

    International Nuclear Information System (INIS)

    Ramamoorthy, Raj Kumar; Bhatnagar, Anil K

    2015-01-01

    Highlights: • Structural units/linkages variation of TeO 2 -ZnO and TeO 2 -ZnO-PbO glasses was studied. • Structural arrangements of TeO 2 -ZnO glasses are rich in Te-O-Te network. • A mixture of Te-O-Te and Te-O-Pb networks is identified in TeO 2 -ZnO-PbO glasses. • Changes in thermal parameters T g and T o are correlated with the structural variations. • 15PbO and 20PbO samples of TeO 2 -ZnO-PbO glasses show large thermal stability. - Abstract: Two series of glasses, (100 − x)TeO 2 -xZnO (x = 20, 25, 30, 35) and 70TeO 2 -(30 − y)ZnO-yPbO (y = 5, 10, 15, 20), referred as TZ and TZP, respectively, were prepared by a melt quenching technique and characterized by X-ray diffraction (XRD), density, refractive index, Raman scattering and differential scanning calorimetry (DSC) to observe the changes in their properties as a function of ZnO and PbO/ZnO. Variations in individual structural units/linkages in these glasses are derived from the de-convoluted Raman spectra. The glass transition (T g ) and onset of crystallization (T o ) temperatures are determined from DSC isothermal scans. It is observed that the thermal stability (ΔT = T o − T g ) decreases for TZ glasses with increase in x, while it increases for TZP glasses with increase in y. Changes in thermal parameters of these glasses are correlated with the structural variation as a function of ZnO and PbO/ZnO ratio to determine the effect of substitution/addition of metal oxide, ZnO and PbO, to TeO 2 and TeO 2 -ZnO glasses

  11. Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria

    Science.gov (United States)

    Obiora, Smart C.; Chukwu, Anthony; Davies, Theophilus C.

    2016-04-01

    This study determined the heavy metals concentration in arable soils and associated food crops around the Pb-Zn mines in Enyigba, Nigeria, and metal transfer factors were calculated. Air-dried samples of the soils and food crops were analyzed for 8 known nutritional and toxic heavy metals by Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) method. Eighty seven percent of all the 20 sampled soils contain Pb in excess of the maximum allowable concentration (MAC) set by Canadian Environmental Quality Guideline (CCME) and European Union (EU) Standard, while Zn in thirty-one percent of the samples exceeded the CCME for MAC of 200 mg/kg. All the food crops, with the exception of yam tuber, contain Pb which exceeded the 0.43 mg/kg and 0.3 mg/kg MAC standards of EU and WHO/FAO respectively, with the leafy vegetables accumulating more Pb than the tubers. The metal transfer factors in the tubers and the leafy vegetables were in the order: Mo > Cu > Zn > Mn > As > Cd > Cr > Ni > Pb and Cd > Cu > Zn > Mn > Mo > As > Ni > Pb > Cr, respectively. Risk assessment studies revealed no health risk in surrounding populations for most of the heavy metals. However, Pb had a high health risk index (HRI) of 1.1 and 1.3, in adults and children, respectively for cassava tuber; Pb had HRI > 1 in lemon grass while Mn also had HRI > 1 in all the leafy vegetables for both adult and children. This high level of HRI for Pb and Mn is an indication that consumers of the food crops contaminated by these metals are at risk of health problems such as Alzheimers' disease and Manganism, associated with excessive intake of these metals. Further systematic monitoring of heavy metal fluxes in cultivable soils around the area of these mines is recommended.

  12. Adsorpsi Pb2+ dan Zn2+ pada Biomassa Imperata cylindrica

    Directory of Open Access Journals (Sweden)

    Noer Komari

    2017-03-01

    Full Text Available Metode alternatif untuk mengatasi pencemaran logam berat adalah biosorpsi menggunakan biomassa sebagai adsorben. Telah dilakukan penelitian kajian adsorpsi campuran Pb2+ dan Zn2+ pada biomassa Imperata cylindrica sebagai adsorben. Tujuan penelitian adalah mengetahui kemampuan biomassa mengadsorpsi Pb2+ dan Zn2+. Preparasi biomassa dilakukan dengan aktivasi menggunakan asam nitrat dan amonium hidroksida. Adsorpsi dilakukan dengan sistem batch. Parameter yang diukur adalah pH optimum, waktu kontak optimum, kapasitas adsorpsi dan recovery ion logam. Analisis kadar logam dilakukan dengan menggunakan Spektrofotometer Serapan Atom (AAS. Hasil penelitian menunjukkan pH optimum adsorpsi Pb2+ dan Zn2+ masing-masing pada pH 5 dan pH 6. Waktu kontak optimum adsorpsi Pb2+ dan Zn2+ masing masing pada 40 menit dan 30 pertama. Kapasitas adsorpsi Pb2+ dan Zn2+ pada konsentrasi awal 10 ppm masing-masing adalah 90,95% dan 43,60%. Recovery Pb2+ dan Zn2+ masing-masing 84,45% dan 57,13%.

  13. Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Dell'Aglio, Marcella; Gaudiuso, Rosalba; Senesi, Giorgio S; De Giacomo, Alessandro; Zaccone, Claudio; Miano, Teodoro M; De Pascale, Olga

    2011-05-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a fast and multi-elemental analytical technique particularly suitable for the qualitative and quantitative analysis of heavy metals in solid samples, including environmental ones. Although LIBS is often recognised in the literature as a well-established analytical technique, results about quantitative analysis of elements in chemically complex matrices such as soils are quite contrasting. In this work, soil samples of various origins have been analyzed by LIBS and data compared to those obtained by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). The emission intensities of one selected line for each of the five analytes (i.e., Cr, Cu, Pb, V, and Zn) were normalized to the background signal, and plotted as a function of the concentration values previously determined by ICP-OES. Data showed a good linearity for all calibration lines drawn, and the correlation between ICP-OES and LIBS was confirmed by the satisfactory agreement obtained between the corresponding values. Consequently, LIBS method can be used at least for metal monitoring in soils. In this respect, a simple method for the estimation of the soil pollution degree by heavy metals, based on the determination of an anthropogenic index, was proposed and determined for Cr and Zn.

  14. Associations between standardized school performance tests and mixtures of Pb, Zn, Cd, Ni, Mn, Cu, Cr, Co, and V in community soils of New Orleans

    International Nuclear Information System (INIS)

    Zahran, Sammy; Mielke, Howard W.; Weiler, Stephan; Hempel, Lynn; Berry, Kenneth J.; Gonzales, Christopher R.

    2012-01-01

    In New Orleans a strong inverse association was previously identified between community soil lead and 4th grade school performance. This study extends the association to zinc, cadmium, nickel, manganese, copper, chromium, cobalt, and vanadium in community soil and their comparative effects on 4th grade school performance. Adjusting for poverty, food security, racial composition, and teacher-student ratios, regression results show that soil metals variously reduce and compress student scores. Soil metals account for 22%–24% while food insecurity accounts for 29%–37% of variation in school performance. The impact on grade point averages were Ni > Co > Mn > Cu ∼Cr ∼ Cd > Zn > Pb, but metals are mixtures in soils. The quantities of soil metal mixtures vary widely across the city with the largest totals in the inner city and smallest totals in the outer city. School grade point averages are lowest where the soil metal mixtures and food insecurity are highest. - Highlights: ► Mixtures of metals vary; largest totals in the inner city and lowest in the outer city. ► An inverse association between soil Pb and 4th grade school performance is known. ► Assuming the same exposure pathway, multiple metals are compared to performance. ► Soil metals account for 22%–24% of variation in school test performance. ► Soil metal plus food insecurity accounts for 54% of explained variance. - Controlling for potential confounding variables, the accumulation of metals (Pb, Zn, Cd, Ni, Mn, Cu, Cr, and Co) in neighborhood soils is significantly negatively associated with 4th grade school performance on standardized tests in New Orleans.

  15. Dissolved and labile concentrations of Cd, Cu, Pb, and Zn in the South Fork Coeur d'Alene River, Idaho: Comparisons among chemical equilibrium models and implications for biotic ligand models

    Science.gov (United States)

    Balistrieri, L.S.; Blank, R.G.

    2008-01-01

    In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.

  16. Simultaneous adsorption and degradation of Zn(2+) and Cu (2+) from wastewaters using nanoscale zero-valent iron impregnated with clays.

    Science.gov (United States)

    Shi, Li-Na; Zhou, Yan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2013-06-01

    Clays such as kaolin, bentonite and zeolite were evaluated as support material for nanoscale zero-valent iron (nZVI) to simultaneously remove Cu(2+) and Zn(2+) from aqueous solution. Of the three supported nZVIs, bentonite-supported nZVI (B-nZVI) was most effective in the simultaneous removal of Cu(2+) and Zn(2+) from a aqueous solution containing a 100 mg/l of Cu(2+) and Zn(2+), where 92.9 % Cu(2+) and 58.3 % Zn(2+) were removed. Scanning electronic microscope (SEM) revealed that the aggregation of nZVI decreased as the proportion of bentonite increased due to the good dispersion of nZVI, while energy dispersive spectroscopy (EDS) demonstrated the deposition of copper and zinc on B-nZVI after B-nZVI reacted with Cu(2+) and Zn(2+). A kinetics study indicated that removing Cu(2+) and Zn(2+) with B-nZVI accorded with the pseudo first-order model. These suggest that simultaneous adsorption of Cu(2+)and Zn(2+) on bentonite and the degradation of Cu(2+)and Zn(2+) by nZVI on the bentonite. However, Cu(2+) removal by B-nZVI was reduced rather than adsorption, while Zn(2+) removal was main adsorption. Finally, Cu(2+), Zn(2+), Ni(2+), Pb(2+) and total Cr from various wastewaters were removed by B-nZVI, and reusability of B-nZVI with different treatment was tested, which demonstrates that B-nZVI is a potential material for the removal of heavy metals from wastewaters.

  17. Aided phytoextraction of Cu, Pb, Zn, and As in copper-contaminated soils with tobacco and sunflower in crop rotation: Mobility and phytoavailability assessment.

    Science.gov (United States)

    Hattab-Hambli, Nour; Motelica-Heino, Mikael; Mench, Michel

    2016-02-01

    Copper-contaminated soils were managed with aided phytoextraction in 31 field plots at a former wood preservation site, using a single incorporation of compost (OM) and dolomitic limestone (DL) followed by a crop rotation with tobacco and sunflower. Six amended plots, with increasing total soil Cu, and one unamended plot were selected together with a control uncontaminated plot. The mobility and phytoavailability of Cu, Zn, Cr and As were investigated after 2 and 3 years in soil samples collected in these eight plots. Total Cu, Zn, Cr and As concentrations were determined in the soil pore water (SPW) and available soil Cu and Zn fractions by DGT. The Cu, Zn, Cr and As phytoavailability was characterized by growing dwarf beans on potted soils and determining the biomass of their plant parts and their foliar ionome. Total Cu concentrations in the SPW increased with total soil Cu. Total Cu, Zn, Cr and As concentrations in the SPW decreased in year 3 as compared to year 2, likely due to annual shoot removals by the plants and the lixiviation. Available soil Cu and Zn fractions also declined in year 3. The Cu, Zn, Cr and As phytoavailability, assessed by their concentration and mineral mass in the primary leaves of beans, was reduced in year 3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Solvent extraction of Ca2+, Ba2+, Cu2+, Zn2+, Cd2+, Pb2+, UO22+, Mn2+, Co2+ and Ni2+ into nitrobenzene using strontium dicarbol-lylcobaltate and tetra-tert-butyl p-tert-butylcalix[4]arene tetraacetate

    Directory of Open Access Journals (Sweden)

    E. MAKRLÍK

    2008-12-01

    Full Text Available The exchange extraction constants corresponding to the general equilibrium M2+(aq + SrL2+(nb D ML2+ (nb + Sr2+ (aq occurring in the two-phase water–nitrobenzene system (M2+ = Ca2+, Ba2+, Cu2+, Zn2+, Cd2+, Pb2+, UO22+, Mn2+, Co2+ or Ni2+; L = tetra-tert-butyl p-tert-butylcalix[4]arene tetraacetate; aq = aqueous phase; nb = nitrobenzene phase were evaluated from extraction experiments and -activity measurements. Furthermore, the stability constants of the ML2+ complexes in water saturated nitrobenzene were calculated; they were found to increase in the cation order Ba2+ < Mn2+ < Pb2+, Co2+ < Cu2+, Zn2+ < Cd2+, Ni2+ < UO22+ < Ca2+.

  19. ADSORPSI LOGAM SENG (Zn DAN TIMBAL (Pb PADA LIMBAH CAIR INDUSTRI KERAMIK OLEH TANAH LIAT

    Directory of Open Access Journals (Sweden)

    Cindy Rianti Priadi

    2014-05-01

    Full Text Available ADSORPTION OF ZINC AND LEAD FROM CERAMIC WASTEWATER USING CLAY. Ceramic industry generates glaze wastewater and clay waste. Glaze wastewater contains heavy metal from ceramic painting process which can potentially cause severe pollution problem. Glaze wastewater from PT.X typically contains Cd (0.013 mg/L; Cu (0.033 mg/L; Pb (1.20 mg/L; and Zn (7.00 mg/L. Clay waste used as adsorbent to reduce heavy metal amount in glaze wastewater. The present study investigates in bench scale and uses batch adsorption method to determine effective  adsorbent amount and contact time in removing heavy metals in glaze wastewater in order to fulfill the discharge requirement based on regulation of Minister of Environment No.16/2008concerning effluent water standard for ceramic industries. The results showed that the effective adsorbent amount and contact time respectively are 5 g/L and 15 minutes with pH 8 and stirring speed of 150 rpm. Concentration of heavy metal adsorbed are 0,614 mg/L and 2,07 mg/L for lead (Pb and zinc (Zn with removal efficiency up to 61.0% for Pb and 9.8% for Zn.From this study clay waste could be potentially used as an adsorbent to reduce heavy metal amount in glaze wastewater. Keywords: adsorption, clay waste, heavy metals Abstrak Industri keramik menghasilkan limbah glasir dan limbah tanah liat. Limbah glasir mengandung logam berat yang berasal dari proses pewarnaan keramik dan berpotensi mencemari lingkungan. Kandungan logam berat pada limbah glasir PT.X yaitu Cd (0,013 mg/L; Cu (0,033 mg/L; Pb (1,20 mg/L; dan Zn (7,00 mg/L. Limbah tanah liat digunakan sebagai adsorben yang berguna mengurangi kadar logam berat pada limbah glasir.Penelitian ini dilakukan dalam skala laboratorium menggunakan metode batch adsorpsi untuk menentukan dosis adsorben dan waktu kontak yang efektif dalam mengolah limbah glasir agar memenuhi persyaratan Peraturan Menteri Negara Lingkungan Hidup Nomor 16 Tahun 2008 tentang baku mutu air limbah bagi usaha dan

  20. Trace analysis of Cd, Cu, Pb and Zn in various materials using differential pulse anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Ahmed, R.; Viqar-un-Nisa; Tanwir, R.

    1988-09-01

    Sampling and sample preparation methods have been described. Digestion methods for different types of materials and acid purification systems have been developed. For trace analysis purposes cleaning methods for glassware etc. have been described. Differential pulse anodic stripping voltametric (DPASV) method has been worked out for the trace analysis of zn, cd, pb and Cu in different types of materials. Linearity of the method has been checked by drawing concentration versus currents (peak height) curves. Precision of the method has been checked by analysing a number of actual samples. of the method has been verified by analysing standards of U.S.A. Comparative studies have been done between Differential pulse anodic stripping voltammetric method and Atomic Absorption spectroscopic method. Problems of contamination and systematic errors during trace and ultra-trace analysis have been discussed. A variety of samples including soil, spinach, wheat flour, rice flour, dry milk, coriander, kidney stones, bladder stones etc. have been analysed and preliminary results have been reported. (author)

  1. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Chakrabarti, P., E-mail: pchakrabarti.ece@iitbhu.ac.in [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-08-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  2. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    International Nuclear Information System (INIS)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta; Chakrabarti, P.

    2016-01-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  3. Study of environmental contamination in growth tree rings of Copaifera Langsdorfii by SR-TXRF: evaluation of Cr, Ni, Cu, Zn and Pb

    International Nuclear Information System (INIS)

    Faria, Bruna Fernanda; Moreira, Silvana; Vives, Ana Elisa S. de

    2009-01-01

    Some arboreal species present annual cycles of growth and sleeping, registered in the log by different anatomical structures - the growth rings. With the objective of verifying the industrial activity in the city of Bauru, SP samples were submitted to a quantitative analysis in order to verify the bio-accumulation of metals. For that Synchrotron Radiation Total Reflection X-Ray Fluorescence was used. Samples of Copaifera Langsdorfii (Copaiba) were collected close to Municipal Forest of Bauru, SP located at 200m of distance of a disabled company of energy accumulators (batteries) known by receiving several penalties of CETESB due disagreement with the environmental legislation. Through the quantification of the elements Cr, Ni, Cu, Zn and Pb in the annual growth rings were possible to verify the influence of the battery industry in the local pollution. The temporal variation of Pb showed that after the interdiction of the battery industry the concentrations are close to the reference value, but in the periods previous to the industry interdiction the Pb concentrations were above the reference value. For Cr, 46% of the samples presented superior concentration to the reference value. Zinc presented larger concentration in the period from 1996 to 1998, reaching 1383 μg g -1 . For Cu the concentrations were higher than the reference value in almost all periods analyzed, that is, from 1969 to 2004. On the other hand Ni presented great oscillation in its concentration, and the highest values were observed in the period from 1969 to 1971 and from 1999 to 2001, reaching 87 μg g -1 . (author)

  4. Study of environmental contamination in growth tree rings of Copaifera Langsdorfii by SR-TXRF: evaluation of Cr, Ni, Cu, Zn and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Bruna Fernanda; Moreira, Silvana, E-mail: bffaria@yahoo.com.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Saneamento e Ambiente; Vives, Ana Elisa S. de, E-mail: aesvives@unimep.b [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo

    2009-07-01

    Some arboreal species present annual cycles of growth and sleeping, registered in the log by different anatomical structures - the growth rings. With the objective of verifying the industrial activity in the city of Bauru, SP samples were submitted to a quantitative analysis in order to verify the bio-accumulation of metals. For that Synchrotron Radiation Total Reflection X-Ray Fluorescence was used. Samples of Copaifera Langsdorfii (Copaiba) were collected close to Municipal Forest of Bauru, SP located at 200m of distance of a disabled company of energy accumulators (batteries) known by receiving several penalties of CETESB due disagreement with the environmental legislation. Through the quantification of the elements Cr, Ni, Cu, Zn and Pb in the annual growth rings were possible to verify the influence of the battery industry in the local pollution. The temporal variation of Pb showed that after the interdiction of the battery industry the concentrations are close to the reference value, but in the periods previous to the industry interdiction the Pb concentrations were above the reference value. For Cr, 46% of the samples presented superior concentration to the reference value. Zinc presented larger concentration in the period from 1996 to 1998, reaching 1383 mug g{sup -1}. For Cu the concentrations were higher than the reference value in almost all periods analyzed, that is, from 1969 to 2004. On the other hand Ni presented great oscillation in its concentration, and the highest values were observed in the period from 1969 to 1971 and from 1999 to 2001, reaching 87 mug g{sup -1}. (author)

  5. Complete transformation of ZnO and CuO nanoparticles in ...

    Science.gov (United States)

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO4- exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO4 was added. Likewise, Cu XANES spectra for CuO and CuSO4-exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticulates is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles. Although a number of studies have discussed the transformation of nanoparticles during

  6. HYDROTALSIT Zn-Al-EDTA SEBAGAI ADSORBEN UNTUK POLUTAN ION Pb(II DI LINGKUNGAN Zn-Al-EDTA Hydrotalcite as Adsorbent for Pb(II Ion Pollutant in The Environment

    Directory of Open Access Journals (Sweden)

    Roto Roto

    2015-07-01

    Full Text Available ABSTRAK Polusi ion Pb(II di dalam lingkungan perairan cenderung naik seiring peningkatan jumlah industri smelter dan daur ulang aki bekas. Penelitian ini bertujuan untuk menguji kemampuan hidrotalsit Zn-Al-EDTA sebagai adsorben ion Pb(II dalam air secara mendalam. Hidrotalsit Zn-Al-NO3 disintesis dengan metode kopresipitasi dan hidrotermal pada temperatur 100 °C selama 15 jam. Hidrotalsit Zn-Al-EDTA diperoleh dengan penukaran ion. Keasaman larutan, kinetika dan kapasitas adsorpsi diteliti. Hidrotalsit Zn-Al-EDTA memiliki d003 sebesar 14,52 Å sementara Zn-Al-NO3 sebesar 8,90 Å. Spektra FTIR menunjukkan keberadaan serapan gugus C=O pada bilangan gelombang 1684,77 cm-1. Kondisi optimum adsorpsi ion Pb(II terjadi pada pH 4, waktu kontak 60 menit dan kapasitas adsorpsi diperoleh 2,07 mg/g pada konsentrasi awal 10 mg/L dengan berat adsorben 0,100 g. Adsorpsi ion Pb(II oleh hidrotalsit Zn-Al-EDTA mengikuti reaksi pseudo orde dua dengan tetapan laju adsorpsi sebesar 8,90 g mmol-1min-1. Adsorpsi ion Pb(II oleh Zn-Al-EDTA terjadi karena  pembentukan khelat Pb-EDTA di dalam struktur hidrotalsit. Hasil ini diharapkan mampu memberikan kontribusi yang lebih luas di dalam pengendalian konsentrasi Pb(II di lingkungan. ABSTRACT Polution by Pb(II ion in the water environment tends to increase due the increase in the number of lead smelter and lead acid battery recycling industries. This work aims at studying in details the ability of Zn-Al-EDTA hydrotalcite as adsorbent for Pb(II ion in the environment. The Zn-Al-NO3 hydrotalcite was synthesized first by coprecipitation method followed by hydrothermal treatment at 100 °C for 15 h. The Zn-Al-EDTA hydrotalcite was later obtained by ion exchange process. The solution pH, kinetics and adsorption capacity were studied. The XRD data showed that Zn-Al-EDTA and Zn-Al-NO3 hydrotalcites have d003 of 14.52 and 8.90 Å, respectively. The FTIR spectra suggested that C=O group was observed with absorption band at 1684

  7. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China

    Science.gov (United States)

    Zhai, Degao; Liu, Jiajun; Cook, Nigel J.; Wang, Xilong; Yang, Yongqiang; Zhang, Anli; Jiao, Yingchun

    2018-04-01

    The Bianjiadayuan Ag-Pb-Zn deposit (4.81 Mt. @157.4 g/t Ag and 3.94% Pb + Zn) is located in the Great Hinggan Range Pb-Zn-Ag-Cu-Mo-Sn-Fe polymetallic metallogenic belt, NE China. Vein type Pb-Zn-Ag ore bodies are primarily hosted by slate, adjacent to a Sn ± Cu ± Mo mineralized porphyry intrusion. The deposit is characterized by silver-rich ores with Ag grades up to 3000 g/t. Four primary paragenetic sequences are recognized: (I) arsenopyrite + pyrite + quartz, (II) main sulfide + quartz, (III) silver-bearing sulfosalt + quartz, and (IV) boulangerite + calcite. A subsequent supergene oxidation stage has also been identified. Hydrothermal alteration consists of an early episode of silicification, two intermediate episodes (propylitic and phyllic), and a late argillic episode. Silver mineralization primarily belongs to the late paragenetic sequence III. Freibergite is the dominant and most important Ag-mineral in the deposit. Detailed ore mineralogy of Bianjiadayuan freibergite reveals evidence of chemical heterogeneity down to the microscale. Silver-rich sulfosalts in the late paragenetic sequence III are largely derived from a series of retrograde and solid-state reactions that redistribute Ag via decomposition and exsolution during cooling, illustrating that documentation of post-mineralization processes is essential for understanding silver ore formation. Sulfur and lead isotope compositions of sulfides, and comparison with those of local various geological units, indicate that the ore-forming fluids, lead, and other metals have a magmatic origin, suggesting a close genetic association between the studied Ag-Pb-Zn veins and the local granitic intrusion. Fluid cooling coupled with decreases in fO2 and fS2 are the factors inferred to have led to a decrease of silver solubility in the hydrothermal fluid, and successively promoted extensive Ag deposition.

  8. One-step synthesis of PbSe-ZnSe composite thin film

    Directory of Open Access Journals (Sweden)

    Abe Seishi

    2011-01-01

    Full Text Available Abstract This study investigates the preparation of PbSe-ZnSe composite thin films by simultaneous hot-wall deposition (HWD from multiple resources. The XRD result reveals that the solubility limit of Pb in ZnSe is quite narrow, less than 1 mol%, with obvious phase-separation in the composite thin films. A nanoscale elemental mapping of the film containing 5 mol% PbSe indicates that isolated PbSe nanocrystals are dispersed in the ZnSe matrix. The optical absorption edge of the composite thin films shifts toward the low-photon-energy region as the PbSe content increases. The use of a phase-separating PbSe-ZnSe system and HWD techniques enables simple production of the composite package.

  9. Studying Selective Transparency in ZnS/ Cu/ ZnS Thin Films

    International Nuclear Information System (INIS)

    Ksibe, A.; Howari, H.; Diab, M.

    2009-01-01

    Dielectric/ Metal/ Dielectric (DMD) thin films deposited on glass offer of significant energy saving in buildings and can find other applications of advanced materials design. In an effort to reduce the complexity and cost production of DMD films, physical vapor deposition was used for the laboratory manufacture of ZnS/ Cu/ ZnS films on glass. ZnS was used because of its high refractive index, ease of deposition and low cost; Cu was used because of its low absorption in the visible spectrum and its thermal stability. The films produced were of good quality, with transmittance as high as 85%. The ZnS layers were found not only to antireflect the Ag layer, but also to stabilize the ZnS/ Cu/ ZnS films, improve its adherence on glass and increase the film thermal resistance up to 240 C. The influence of annealing on the optical properties was investigated. The experimental results show that the properties of the multilayers are improved with annealing in air. the change of maximum transmission indicates that, with the increase of annealing temperature, maximum transmittance was change. Multilayer films annealed at after 200 C, show a decrease in the maximum transmittance witch might be due to the diffused Cu atoms onto ZnS layer. (author)

  10. Distribution and accumulation of Cd, Cu, Hg, Pb and Zn in the surface sediments of El Tobari Lagoon, central-East Gulf of California: An ecosystem associated with agriculture and aquaculture activities.

    Science.gov (United States)

    Jara-Marini, M E; Tapia-Alcaraz, J N; Dumer-Gutiérrez, J A; García-Rico, L; García-Hernández, J; Páez-Osuna, F

    2013-01-01

    The purpose of this research is to provide a comprehensive assessment of the concentration levels and spatial variability of cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb) and zinc (Zn) in El Tobari Lagoon in surface sediments during two seasons for several geochemical variables that could explain the observed heavy metal variability. Seventy-two surface sediments samples were collected in 12 different sites of the El Tobari Lagoon. Sediment samples were dried and subjected to acid extraction using a microwave system and five metals (Cd, Cu, Hg, Pb and Zn) were measured using atomic adsorption spectrometry. A certificate sediment material and blanks were used as quality control purposes. The enrichment factor (EF) and the index of geoaccumulation (Igeo) were calculated as index of metals contamination for the sediments, using aluminum as the conservative element. The five metals examined in sediments from El Tobari Lagoon exhibited a linear correlation with Al as result of the large specific surface areas of these sediment components and the chemical affinities between them. The metals contents in sites of the El Tobari Lagoon were variable, and Cd, Cu and Hg presented a seasonal behavior. The enrichment factor and index of geoaccumulation analysis indicated that Cd and Hg exhibited a certain extent (EF for Cd ranged from 4.10 to 10.29; EF for Hg ranged from 2.77 to 12.89) of anthropogenic pollution, while Cu showed sporadic (EF ranged from 0.43 to 2.54) anthropogenic contamination. The highest concentrations of Cd, Cu and Hg were found in the sites that regularly received discharge effluents from agriculture and aquaculture.

  11. Genotoxicity and cytotoxicity response to environmentally relevant complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd) accumulated in Atlantic salmon (Salmo salar). Part I: importance of exposure time and tissue dependence.

    Science.gov (United States)

    Stankevičiūtė, Milda; Sauliutė, Gintarė; Svecevičius, Gintaras; Kazlauskienė, Nijolė; Baršienė, Janina

    2017-10-01

    Health impact of metal mixture at environment realistic concentrations are difficult to predict especially for long-term effects where cause-and-effect relationships may not be directly obvious. This study was aimed to evaluate metal mixture (Zn-0.1, Cu-0.01, Ni-0.01, Cr-0.01, Pb-0.005 and Cd-0.005 mg/L, respectively for 1, 2, 4, 7, 14 and 28 days at concentrations accepted for the inland waters in EU) genotoxicity (micronuclei, nuclear buds, nuclear buds on filament), cytotoxicity (8-shaped nuclei, fragmented-apoptotic erythrocytes), bioaccumulation, steady-state and the reference level of geno-cytotoxicity in hatchery-reared Atlantic salmon tissues. Metals accumulated mostly in gills and kidneys, to the lesser extent in the muscle. Uptake of metals from an entire mixture in the fish for 14 days is sufficient to reach steady-state Cr, Pb concentrations in all tissues; Zn, Cu-in kidneys and muscle, Ni-in liver, kidneys, muscle and Cd-in muscle. Treatment with metal mixture significantly increased summed genotoxicity levels at 7 days of exposure in peripheral blood and liver erythrocytes, at 14 days of exposure in gills and kidney erythrocytes. Significant elevation of cytotoxicity was detected after 2 and 14 days of exposure in gills erythrocytes and after 28 days-in peripheral blood erythrocytes. The amount of Cu, Cr, Pb and Cd accumulated in tissues was dependent upon duration of exposure; nuclear buds, 8-shaped nuclei frequencies also were dependent upon duration of exposure. This study indicates that metals at low levels when existing in mixture causes significant geno-cytotoxicity responses and metals bioaccumulation in salmon.

  12. Determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline by inductively coupled plasma mass spectrometry after sample clean up with hollow fiber solid phase microextraction system

    International Nuclear Information System (INIS)

    Nomngongo, Philiswa N.; Ngila, J. Catherine

    2014-01-01

    This study reports a simple and efficient method for the determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline samples by inductively coupled plasma mass spectrometry after matrix removal and analyte pre-concentration using hollow fiber-solid phase microextraction (HF–SPME). The optimization of HF-SPME procedure was carried out using two-level full factorial and central composite designs. Four factors (variables), that are, sample solution pH, acceptor phase amount, extraction time and eluent concentration were optimized. Under the optimized experimental conditions, the precision was ≤ 3% (C = 10 μg L −1 , n = 15), limits of detection and quantification ranged from 0.1 to 0.3 μg L −1 and 0.3–0.9 μg L −1 , respectively, and the maximum preconcentration factor was 30. The HF-SPME method was applied for the determination of trace metals in real gasoline and diesel samples. - Highlights: • Hollow fiber solid phase microextraction of metal ions in diesel and gasoline • Use of hollow fiber-supported sol–gel combined with cation exchange resin • Optimization of HF-SPME using multivariate techniques • Determination of Cd, Cu, Fe, Pb and Zn using ICP–MS • Relatively low LOD and LOQ

  13. Determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline by inductively coupled plasma mass spectrometry after sample clean up with hollow fiber solid phase microextraction system

    Energy Technology Data Exchange (ETDEWEB)

    Nomngongo, Philiswa N.; Ngila, J. Catherine, E-mail: jcngila@uj.ac.za

    2014-08-01

    This study reports a simple and efficient method for the determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline samples by inductively coupled plasma mass spectrometry after matrix removal and analyte pre-concentration using hollow fiber-solid phase microextraction (HF–SPME). The optimization of HF-SPME procedure was carried out using two-level full factorial and central composite designs. Four factors (variables), that are, sample solution pH, acceptor phase amount, extraction time and eluent concentration were optimized. Under the optimized experimental conditions, the precision was ≤ 3% (C = 10 μg L{sup −1}, n = 15), limits of detection and quantification ranged from 0.1 to 0.3 μg L{sup −1} and 0.3–0.9 μg L{sup −1}, respectively, and the maximum preconcentration factor was 30. The HF-SPME method was applied for the determination of trace metals in real gasoline and diesel samples. - Highlights: • Hollow fiber solid phase microextraction of metal ions in diesel and gasoline • Use of hollow fiber-supported sol–gel combined with cation exchange resin • Optimization of HF-SPME using multivariate techniques • Determination of Cd, Cu, Fe, Pb and Zn using ICP–MS • Relatively low LOD and LOQ.

  14. Optimization of Cu-Zn Massive Sulphide Flotation by Selective Reagents

    Science.gov (United States)

    Soltani, F.; Koleini, S. M. J.; Abdollahy, M.

    2014-10-01

    Selective floatation of base metal sulphide minerals can be achieved by using selective reagents. Sequential floatation of chalcopyrite-sphalerite from Taknar (Iran) massive sulphide ore with 3.5 % Zn and 1.26 % Cu was studied. D-optimal design of response surface methodology was used. Four mixed collector types (Aer238 + SIPX, Aero3477 + SIPX, TC1000 + SIPX and X231 + SIPX), two depressant systems (CuCN-ZnSO4 and dextrin-ZnSO4), pH and ZnSO4 dosage were considered as operational factors in the first stage of flotation. Different conditions of pH, CuSO4 dosage and SIPX dosage were studied for sphalerite flotation from first stage tailings. Aero238 + SIPX induced better selectivity for chalcopyrite against pyrite and sphalerite. Dextrin-ZnSO4 was as effective as CuCN-ZnSO4 in sphalerite-pyrite depression. Under optimum conditions, Cu recovery, Zn recovery and pyrite content in Cu concentrate were 88.99, 33.49 and 1.34 % by using Aero238 + SIPX as mixed collector, CuCN-ZnSO4 as depressant system, at ZnSO4 dosage of 200 g/t and pH 10.54. When CuCN was used at the first stage, CuSO4 consumption increased and Zn recovery decreased during the second stage. Maximum Zn recovery was 72.19 % by using 343.66 g/t of CuSO4, 22.22 g/t of SIPX and pH 9.99 at the second stage.

  15. Assessment of some physicochemical properties and levels of Pb ...

    African Journals Online (AJOL)

    ... properties and levels of Pb, Cu and Zn in soils of selected dumpsites in Kano Metropolis, ... International Journal of Biological and Chemical Sciences ... Cu and Zn in soil samples collected from particular dumpsites within Kano Metropolis ...

  16. Genesis of the Assif El Mal Zn-Pb (Cu, Ag) vein deposit. An extension-related Mesozoic vein system in the High Atlas of Morocco. Structural, mineralogical, and geochemical evidence

    Science.gov (United States)

    Bouabdellah, M.; Beaudoin, G.; Leach, D.L.; Grandia, F.; Cardellach, E.

    2009-01-01

    The Assif El Mal Zn-Pb (Cu-Ag) vein system, located in the northern flank of the High Atlas of Marrakech (Morocco), is hosted in a Cambro-Ordovician volcaniclastic and metasedimentary sequence composed of graywacke, siltstone, pelite, and shale interlayered with minor tuff and mudstone. Intrusion of synorogenic to postorogenic Late Hercynian peraluminous granitoids has contact metamorphosed the host rocks giving rise to a metamorphic assemblage of quartz, plagioclase, biotite, muscovite, chlorite, amphibole, chloritoid, and garnet. The Assif El Mal Zn-Pb (Cu-Ag) mineralization forms subvertical veins with ribbon, fault breccia, cockade, comb, and crack and seal textures. Two-phase liquid-vapor fluid inclusions that were trapped during several stages occur in quartz and sphalerite. Primary inclusion fluids exhibit Th mean values ranging from 104??C to 198??C. Final ice-melting temperatures range from -8.1??C to -12.8??C, corresponding to salinities of ???15 wt.% NaCl equiv. Halogen data suggest that the salinity of the ore fluids was largely due to evaporation of seawater. Late secondary fluid inclusions have either Ca-rich, saline (26 wt.% NaCl equiv.), or very dilute (3.5 wt.% NaCl equiv.) compositions and homogenization temperatures ranging from 75??C to 150??C. The ??18O and ??D fluid values suggest an isotopically heterogeneous fluid source involving mixing between connate seawater and black-shale-derived organic waters. Low ??13CVPDB values ranging from -7.5??? to -7.7??? indicate a homogeneous carbon source, possibly organic matter disseminated in black shale hosting the Zn-Pb (Cu-Ag) veins. The calculated ??34SH2S values for reduced sulfur (22.5??? to 24.3???) are most likely from reduction of SO42- in trapped seawater sulfate or evaporite in the host rocks. Reduction of sulfate probably occurred through thermochemical sulfate reduction in which organic matter was oxidized to produce CO2 which ultimately led to precipitation of saddle dolomite with

  17. Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction

    Science.gov (United States)

    Kotadia, H. R.; Panneerselvam, A.; Mokhtari, O.; Green, M. A.; Mannan, S. H.

    2012-04-01

    The interfacial intermetallic compound (IMC) formation between Cu substrate and Sn-3.8Ag-0.7Cu-X (wt.%) solder alloys has been studied, where X consists of 0-5% Zn or 0-2% Al. The study has focused on the effect of solder volume as well as the Zn or Al concentration. With low solder volume, when the Zn and Al concentrations in the solder are also low, the initial Cu-Zn and Al-Cu IMC layers, which form at the solder/substrate interface, are not stable and spall off, displaced by a Cu6Sn5 IMC layer. As the total Zn or Al content in the system increases by increasing solder volume, stable CuZn or Al2Cu IMCs form on the substrate and are not displaced. Increasing concentration of Zn has a similar effect of stabilizing the Cu-Zn IMC layer and also of forming a stable Cu5Zn8 layer, but increasing Al concentration alone does not prevent spalling of Al2Cu. These results are explained using a combination of thermodynamic- and kinetics-based arguments.

  18. A two-step leaching method designed based on chemical fraction distribution of the heavy metals for selective leaching of Cd, Zn, Cu, and Pb from metallurgical sludge.

    Science.gov (United States)

    Wang, Fen; Yu, Junxia; Xiong, Wanli; Xu, Yuanlai; Chi, Ru-An

    2018-01-01

    For selective leaching and highly effective recovery of heavy metals from a metallurgical sludge, a two-step leaching method was designed based on the distribution analysis of the chemical fractions of the loaded heavy metal. Hydrochloric acid (HCl) was used as a leaching agent in the first step to leach the relatively labile heavy metals and then ethylenediamine tetraacetic acid (EDTA) was applied to leach the residual metals according to their different fractional distribution. Using the two-step leaching method, 82.89% of Cd, 55.73% of Zn, 10.85% of Cu, and 0.25% of Pb were leached in the first step by 0.7 M HCl at a contact time of 240 min, and the leaching efficiencies for Cd, Zn, Cu, and Pb were elevated up to 99.76, 91.41, 71.85, and 94.06%, by subsequent treatment with 0.2 M EDTA at 480 min, respectively. Furthermore, HCl leaching induced fractional redistribution, which might increase the mobility of the remaining metals and then facilitate the following metal removal by EDTA. The facilitation was further confirmed by the comparison to the one-step leaching method with single HCl or single EDTA, respectively. These results suggested that the designed two-step leaching method by HCl and EDTA could be used for selective leaching and effective recovery of heavy metals from the metallurgical sludge or heavy metal-contaminated solid media.

  19. Concentración por tratamiento térmico de metales no férreos (Cu, Pb, Zn... contenidos en algunos residuos metalúrgicos

    Directory of Open Access Journals (Sweden)

    Menad, N.

    1996-06-01

    Full Text Available The main purpose of this paper is to describe the results of different thermal treatments of metallurgical wastes, under controlled atmospheres, in order to concentrate their valuable metals. All the results show the metallic concentration yield obtained for the different treatments.

    Se describen los resultados de diferentes tratamientos térmicos bajo atmósferas controladas, de tres residuos procedentes de la metalurgia no férrea, con el fin de concentrar los valores metálicos que contienen (Cu, Pb, Zn,.... Los valores metálicos, así como sus rendimientos de concentración en los residuos de tratamiento, se consignan en todos los casos.

  20. UV N{sub 2} laser ablation of a Cu-Sn-Zn-Pb alloy: Microstructure and topography studied by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Zupanic, Franc [University of Maribor, Faculty of Mechanical Engineering, University Centre for Electron Microscopy, Smetanova 17, SI-2000 Maribor (Slovenia)], E-mail: franc.zupanic@uni-mb.si; Boncina, Tonica [University of Maribor, Faculty of Mechanical Engineering, University Centre for Electron Microscopy, Smetanova 17, SI-2000 Maribor (Slovenia); Pipic, Davor; Henc-Bartolic, Visnja [University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Applied Physics, Unska 3, 10000 Zagreb (Croatia)

    2008-10-06

    A Cu-Sn-Zn-Pb alloy was irradiated by ultraviolet nitrogen laser pulses (N{sub 2} laser, wavelength 337 nm, pulse duration 6 ns, frequency 1 Hz, power 0.5 MW and average power density 0.67 GW/m{sup 2}). The surface topography and microstructure were mainly studied by scanning electron microscopy, and a focused ion beam. The non-homogenized spatial beam profile resulted in the activation of several ablative mechanisms, the main being phase explosion and hydrodynamic instability. They caused a crater to be formed, surrounded by a raised rim and wavelike structure in a halo. FIB cross-sectioning and imaging showed a shallow (few micrometers) molten and resolidified surface layer. Streaks were observed in the heat-affected zone beneath the molten layer, indicating partial recrystallization of initially cold-worked material.

  1. Organic/inorganic nanocomposites of ZnO/CuO/chitosan with improved properties

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xingfa, E-mail: xingfamazju@aliyun.com [School of Environmental and Material Engineering, Center of Advanced Functional Materials, Yantai University, Yantai, 264005 (China); State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 (China); Zhang, Bo; Cong, Qin; He, Xiaochun; Gao, Mingjun [School of Environmental and Material Engineering, Center of Advanced Functional Materials, Yantai University, Yantai, 264005 (China); Li, Guang [National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou, 310027 (China)

    2016-08-01

    To extend the visible light response of ZnO, ZnO/CuO heterostructured nanocomposite was synthesized by a hydrothermal approach. At the same time, chitosan (Ch) is considered as a very promising natural polymer. It holds not only abundant resource and low cost, but also has excellent adsorption properties to a broad range of organic pollutants and some heavy metal ions. To improve the adsorption properties of ZnO/CuO nanocomposite, ZnO/CuO/chitosan organic-inorganic composites were prepared with precipitation method. The as-prepared nanocomposites were characterized by TEM (Transmission electron microscopy), SAED pattern (Selected Area Electron Diffraction), SEM (scanning electron microscopy), UV–Vis (Ultraviolet–visible spectroscopy), PL (Photoluminescence), XRD (X-ray diffraction), TGA (Thermo Gravimetric Analyzer), Fourier transform infrared spectroscopy spectra (FTIR) et al. To examine the surface and interface properties of nanocomposites, chemical prototype sensor arrays were constructed based on ZnO, ZnO/CuO, ZnO/Cu{sub 2}O, ZnO/CuO/chitosan, ZnO/Cu{sub 2}O/chitosan nanocomposites and QCM (quartz crystal microbalance) arrays devices. The adsorption response behaviors of the sensor arrays to some typical volatile compounds were examined under similar conditions. The results indicated that with comparison to ZnO nanostructure, the ZnO/CuO nanocomposite exhibited enhanced adsorption properties to some typical volatile compounds greatly, and the adsorption properties of ZnO/CuO/chitosan are much better than that of ZnO/CuO nanocomposite. The adsorption of ZnO/CuO system is super to that of ZnO/Cu{sub 2}O. Therefore, ZnO/CuO/chitosan nanocomposite not only showed broadening visible light response, but also possessed of excellent adsorption properties, and has good potential applications in photocatalysts, chemical sensors, biosensors, self-cleaning coating fields et al. - Highlights: • ZnO/CuO nanocomposites exhibited good response in near whole visible

  2. Temporal Variation and Ecological Risk Assessment of Metals in Soil Nearby a Pb⁻Zn Mine in Southern China.

    Science.gov (United States)

    Cao, Congcong; Wang, Li; Li, Hairong; Wei, Binggan; Yang, Linsheng

    2018-05-09

    Metal contamination in soil from tailings induces risks for the ecosystem and for humans. In this study, the concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil contaminated by a tailing from Yangshuo (YS) lead and zinc (Pb⁻Zn) mine, which collapsed for more than 40 years, were determined in 2015. The mean concentrations of Zn, Pb, Cu, and Cd were 1301.79, 768.41, 82.60, and 4.82 mg/kg, respectively, which, with years of remediation activities, decreased by 66.9%, 61.7%, 65.4%, and 65.3% since 1986, but still exceed the national standards. From 1986 to 2015, soil pH increased significantly, with available concentrations of Zn, Pb, Cu and Cd decreasing by 13%, 81%, 77%, and 67%, respectively, and potential ecological risk indexes ( E r ) of the determined metals decreasing by more than 60%. Horizontally, total contents and percentages of available concentrations of Zn, Pb, Cu, and Cd decreased with the distance from the tailing heap in SD village, while pH values showed the reverse pattern. Vertically, Zn and Cd, Pb, and Cu showed similar vertical distribution patterns in the soil profiles. There was a slight downward migration for the determined metals in soil of M and H area and the mobility was in the order of Cd > Zn > Pb > Cu. It can be concluded that although concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil decreased significantly, SD village is still a high risk area, and the priority pollutant is Cd.

  3. Certification of trace element contents (As, Cd, Co, Cu, Fe, Mn, Hg, Na, Pb and Zn) in a fly ash obtained from the combustion of pulverised coal

    International Nuclear Information System (INIS)

    Griepink, B.; Colinet, E.; Guzzi, G.; Haemers, L.; Muntau, H.

    1983-01-01

    The element contents of As, Cd, Co, Cu, Fe, Mn, Hg, Na, Pb and Zn of a fly ash from pulverised coal are certified. The procedures and their results for the homogenisation, the contamination and homogeneity checks and the analytical campaign are reported. The certified mass fractions and indicative values for Cr, Ni, Th, V and water soluble sulphate are given. The work was carried out within the framework of the activities of the Community Bureau of Reference (BCR) of the Commission of the European Communities. (orig.) [de

  4. [Stabilization Treatment of Pb and Zn in Contaminated Soils and Mechanism Studies].

    Science.gov (United States)

    Xie, Wei-qiang; Li, Xiao-mingi; Chen, Can; Chen, Xun-feng; Zhong, Yu; Zhong, Zhen-yu; Wan, Yong; Wang, Yan

    2015-12-01

    In the present work, the combined application of potassium dihydrogen phosphate, quick lime and potassium chloride was used to immobilize the Pb and Zn in contaminated soils. The efficiency of the process was evaluated through leaching tests and Tessier sequential extraction procedure. The mechanism of stabilization was analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to reveal the mechanism of stabilization. The results showed that the stabilizing efficiency of Pb contaminated soils was above 80% and the leaching concentrations of Pb, Zn were far below the threshold when the ratio of exogenous P and soil (mol · mol⁻¹) was 2:1-4: 1, the dosing ratio of CaO was 0.1%-0.5% ( mass fraction) and the dosage of potassium chloride was 0.02-0. 04 mol. Meanwhile, Pb and Zn in soil were transformed from the exchangeable fraction into residual fraction, which implied that the migration of Pb, Zn in soil could be confined by the stabilization treatment. XRD and SEM analysis revealed that Ca-P-Pb precipitation, lead orthophosphate [PbHP0₄, Pb₃ (PO₄)₂], pyromorphite (Pb-PO₄-Cl/OH) and mixed heavy metal deposits (Fe-PO₄- Ca-Pb-Zn-OH) could be formed after solidification/stabilization in which Pb and Zn could be wrapped up to form a solidified composition and to prevent leaching.

  5. Phytoextraction of 55-year-old wastewater-irrigated soil in a Zn-Pb mine district: effect of plant species and chelators.

    Science.gov (United States)

    Tai, YiPing; Yang, YuFen; Li, ZhiAn; Yang, Yang; Wang, JiaXi; Zhuang, Ping; Zou, Bi

    2017-07-16

    Untreated water from mining sites spreads heavy metal contamination. The present study assessed the phytoextraction performance of heavy metal-accumulating plants and the effects of chemical chelators on cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) removal from paddy fields that have been continuously irrigated with mining wastewater from mines for 55 years. Outdoor pot experiments showed that the total Pb, Zn, and Cd content was lower in the rhizosphere soil of Amaranthus hypochondriacus than in that of Sedum alfredii, Solanum nigrum, and Sorghum bicolor. The aboveground biomass (dry weight) and relative growth rate of A. hypochondriacus were significantly higher than that of the other three species (P phytoextraction effect.

  6. Preparation and characterization of water-soluble ZnSe:Cu/ZnS core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Cao, Lixin, E-mail: caolixin@ouc.edu.cn; Su, Ge; Liu, Wei; Xia, Chenghui; Zhou, Huajian

    2013-09-01

    The synthesis and luminescent properties of water-soluble ZnSe:Cu/ZnS core/shell quantum dots (QDs) with different shell thickness are reported in this paper. X-ray powder diffraction (XRD) studies present that the ZnSe:Cu/ZnS core/shell QDs with different shell thickness have a cubic zinc-blende structure. The tests of transmission electron microscope (TEM) pictures exhibit that the QDs obtained are spherical-shaped particles and the average grain size increased from 2.7 to 3.8 nm with the growth of ZnS shell. The emission peak position of QDs has a small redshift from 461 to 475 nm with the growth of ZnS shell within the blue spectral window. The photoluminescence (PL) emission intensity and stability of the ZnSe:Cu core d-dots are both enhanced by coating ZnS shell on the surface of core d-dots. The largest PL intensity of the core/shell QDs is almost 3 times larger than that of Cu doped ZnSe quantum dots (ZnSe:Cu d-dots). The redshift of core/shell QDs compared with the core QDs are observed in both the absorption and the photoluminescence excitation spectra.

  7. Competition from Cu(II), Zn(II) and Cd(II) in Pb(II) binding to Suwannee River Fulvic Acid

    NARCIS (Netherlands)

    Chakraborty, P.; Chakrabarti, C.L.

    2008-01-01

    This is a study of trace metal competition in the complexation of Pb(II) by well-characterized humic substances, namely Suwannee River Fulvic Acid (SRFA) in model solutions. It was found that Cu(II) seems to compete with Pb(II) for strong binding sites of SRFA when present at the same concentration

  8. Room temperature ferromagnetism in Cu doped ZnO

    Science.gov (United States)

    Ali, Nasir; Singh, Budhi; Khan, Zaheer Ahmed; Ghosh, Subhasis

    2018-05-01

    We report the room temperature ferromagnetism in 2% Cu doped ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. X-ray photoelectron spectroscopy was used to ascertain the oxidation states of Cu in ZnO. The presence of defects within Cu-doped ZnO films can be revealed by electron paramagnetic resonance. It has been observed that saturated magnetic moment increase as we increase the zinc vacancies during deposition.

  9. Metallogeny of the Paramillos de Uspallata Pb-Zn-Ag vein deposit in the Cuyo Rift Basin, Argentina

    Science.gov (United States)

    Rubinstein, Nora A.; Carrasquero, Silvia I.; Gómez, Anabel L. R.; Ricchetti, Ana P. Orellano; D'Annunzio, María C.

    2018-05-01

    The Paramillos de Uspallata deposit, previously considered as genetically linked to a Miocene porphyry deposit, is located in the Mesozoic Cuyo Basin, which was formed during the beginning of the break-up of Gondwana. In the present study, both previous information and new geological, mineralogical, and isotopic data allowed outlining a new descriptive model for this deposit. Stratigraphic and structural controls allowed considering this deposit as contemporaneous with the Mesozoic rifting, with the mineralization resulting from a Pb-Zn stage followed by an Ag-Cu-Pb stage. The hydrothermal fluids were found to have low temperature and low to moderate salinity, and to result from the mixing between metamorphic and meteoric fluids, with the lead sourced by the igneous Paleozoic basement and the sulfur partly derived from a magmatic source. These characteristics allow describing Paramillos de Uspallata as Pb-Zn-Ag veins hosted in clastic sedimentary sequences genetically linked to a rift basin and redefining it as detachment-related mineralization.

  10. Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, Grazyna [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Babczynska, Agnieszka [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Augustyniak, Maria [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Migula, Pawel [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland)]. E-mail: migula@us.edu.pl

    2004-12-01

    We studied the relations between glutathione-dependent detoxifying enzymes and heavy metal burdens in the web-building spider Agelena labyrinthica (Agelenidae) and the wolf spider Pardosa lugubris (Lycosidae) from five meadow sites along a heavy metal pollution gradient. We assayed the activity of glutathione-S-transferase (GST) and glutathione peroxidases (GPOX, GSTPx), and glutathione (GSH) levels in both sexes. Except for GSH vs Pb content, we found significant correlations between GPOX and GSTPx activity and metal concentrations in females of A. labyrinthica. The highest activity of these enzymes measured in the web-building spiders was found in the individuals from the most polluted sites. In P. lugubris males significant correlations were found between GST and Pb and Zn concentrations, and between GPOX and GSTPx and the concentration of Cu. GST activity was higher in males collected from less polluted areas. Thus, detoxifying strategies against pollutants seemed to be sex-dependent. Actively hunting spiders had higher metal concentrations, maintaining lower activity of detoxifying enzymes and a lower glutathione level. - Capsule: Glutathione-linked enzyme activity in spiders from polluted areas depends on hunting strategy and sex.

  11. Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient

    International Nuclear Information System (INIS)

    Wilczek, Grazyna; Babczynska, Agnieszka; Augustyniak, Maria; Migula, Pawel

    2004-01-01

    We studied the relations between glutathione-dependent detoxifying enzymes and heavy metal burdens in the web-building spider Agelena labyrinthica (Agelenidae) and the wolf spider Pardosa lugubris (Lycosidae) from five meadow sites along a heavy metal pollution gradient. We assayed the activity of glutathione-S-transferase (GST) and glutathione peroxidases (GPOX, GSTPx), and glutathione (GSH) levels in both sexes. Except for GSH vs Pb content, we found significant correlations between GPOX and GSTPx activity and metal concentrations in females of A. labyrinthica. The highest activity of these enzymes measured in the web-building spiders was found in the individuals from the most polluted sites. In P. lugubris males significant correlations were found between GST and Pb and Zn concentrations, and between GPOX and GSTPx and the concentration of Cu. GST activity was higher in males collected from less polluted areas. Thus, detoxifying strategies against pollutants seemed to be sex-dependent. Actively hunting spiders had higher metal concentrations, maintaining lower activity of detoxifying enzymes and a lower glutathione level. - Capsule: Glutathione-linked enzyme activity in spiders from polluted areas depends on hunting strategy and sex

  12. Proximity effect of Pb on CeCu6 and La0.05Ce0.95Cu6

    International Nuclear Information System (INIS)

    Chen, T.P.; Tipparachi, U.; Yang, H.D.; Wang, J.T.; Chen, B.; Chen, J.C.J.

    1999-01-01

    Heavy fermion materials have attracted a great deal of attention since 1979. These materials which contain a rare earth (U, or Ce, etc.) element exhibit unusual behavior at low temperature. The effective mass m* of the Landau quasiparticles is found to be orders of magnitude higher than that of a bare electron. Some of the Heavy Fermion materials become superconductors at low temperature. The pairing of electrons in these superconductors may not be of s symmetry like those in BCS type superconductors. The mismatch in electronic mass and the difference in pairing state between the light conventional superconducting electrons and the heavy fermion electrons have brought the coupling between light electrons (BCS type) and the heavy fermion electrons into question. Proximity effect of Pb on CeCu 6 , Pb on La 0.05 Ce 0.95 Cu 6 , and Pb on Cu was used to investigate the coupling between the conventional superconducting electrons of Pb and the heavy electrons in CeCu 6 or La 0.05 Ce 0.95 Cu 6 . In this experiment proximity effect was found between Pb and CeCu 6 , as well as between Pb and La 0.05 Ce 0.95 Cu 6 . However, the proximity effect is small when compared with that between Pb and Cu. This indicates a much shorter extrapolation length in the heavy fermion materials than in Cu. Such a phenomenon can be explained by the mismatch in effective mass between the superconducting Pb electrons and the heavy fermion electrons

  13. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression

    OpenAIRE

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E.; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-01-01

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s−1 (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hystere...

  14. Interactions of core–shell quantum dots with metal resistant bacterium Cupriavidus metallidurans: Consequences for Cu and Pb removal

    Energy Technology Data Exchange (ETDEWEB)

    Slaveykova, Vera I., E-mail: vera.slaveykova@unige.ch [Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environment Science, Faculty of Sciences, University of Geneva, 10, route de Suisse, 1290 Versoix (Switzerland); Pinheiro, José Paulo [IBB/CBME, Department of Chemistry and Biochemistry, University of the Algarve, Gambelas Campus, 8005-139 Faro (Portugal); Floriani, Magali [IRSN/DEI/SECRE/LRE CEA Cadarache, 13115 Saint-Paul-Lez-Durance (France); Garcia, Miguel [School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Station 15, CH-1015 Lausanne (Switzerland)

    2013-10-15

    Highlights: • QDs associate with C. metallidurans in time and concentration dependent manner. • 12.9 nm size QDs adhere to the bacterial surface and enter the periplasmic space. • QDs bound significantly Cu and Pb. • QDs increase Cu and Pb content in C. metallidurans during short term exposure. -- Abstract: In the present study we address the interactions of carboxyl-CdSe/ZnS core/shell quantum dots (QDs), as a model of water dispersible engineered nanoparticles, and metal resistant bacteria Cupriavidus metallidurans, largely used in metal decontamination. The results demonstrate that QDs with average hydrodynamic size of 12.9 nm adhere to C. metallidurans. The percentage of bacterial cells displaying QD-fluorescence increased proportionally with contact time and QD concentration in bacterial medium demonstrating the association of QDs with the metal resistant bacteria. No evidence of QD internalization into bacterial cytoplasm was found by transmission electron microscopy with energy dispersive X-ray spectrometry, however QD clusters of sizes between 20 and 50 nm were observed on the bacterial surface and in the bacterial periplasmic compartment; observations consistent with the losses of membrane integrity induced by QDs. The presence of 20 nM QDs induced about 2-fold increase in Cu and Pb uptake fluxes by C. metallidurans exposed to 500 nM Pb or Cu, respectively. Overall, the results of this work suggest that when present in mixture with Cu and Pb, low levels of QDs originating from possible incidental release or QD disposal could increase metal accumulation in metal resistant bacterium.

  15. ZnCuInS/ZnSe/ZnS Quantum Dot-Based Downconversion Light-Emitting Diodes and Their Thermal Effect

    Directory of Open Access Journals (Sweden)

    Wenyan Liu

    2015-01-01

    Full Text Available The quantum dot-based light-emitting diodes (QD-LEDs were fabricated using blue GaN chips and red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. The power efficiencies were measured as 14.0 lm/W for red, 47.1 lm/W for yellow, and 62.4 lm/W for green LEDs at 2.6 V. The temperature effect of ZnCuInS/ZnSe/ZnS QDs on these LEDs was investigated using CIE chromaticity coordinates, spectral wavelength, full width at half maximum (FWHM, and power efficiency (PE. The thermal quenching induced by the increased surface temperature of the device was confirmed to be one of the important factors to decrease power efficiencies while the CIE chromaticity coordinates changed little due to the low emission temperature coefficients of 0.022, 0.050, and 0.068 nm/°C for red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. These indicate that ZnCuInS/ZnSe/ZnS QDs are more suitable for downconversion LEDs compared to CdSe QDs.

  16. Molecular characterization of two CuZn-superoxide dismutases in a sea anemone.

    Science.gov (United States)

    Plantivaux, Amandine; Furla, Paola; Zoccola, Didier; Garello, Ginette; Forcioli, Didier; Richier, Sophie; Merle, Pierre-Laurent; Tambutté, Eric; Tambutté, Sylvie; Allemand, Denis

    2004-10-15

    Cnidarians living in symbiosis with photosynthetic cells--called zooxanthellae--are submitted to high oxygen levels generated by photosynthesis. To cope with this hyperoxic state, symbiotic cnidarians present a high diversity of superoxide dismutases (SOD) isoforms. To understand better the mechanism of resistance of cnidarian hosts to hyperoxia, we studied copper- and zinc-containing SOD (CuZnSOD) from Anemonia viridis, a temperate symbiotic sea anemone. We cloned two CuZnSOD genes that we call AvCuZnSODa and AvCuZnSODb. Their molecular analysis suggests that the AvCuZnSODa transcript encodes an extracellular form of CuZnSOD, whereas the AvCuZnSODb transcript encodes an intracellular form. Using in situ hybridization, we showed that both AvCuZnSODa and AvCuZnSODb transcripts are expressed in the endodermal and ectodermal cells of the sea anemone, but not in the zooxanthellae. The genomic flanking sequences of AvCuZnSODa and AvCuZnSODb revealed different putative binding sites for transcription factors, suggesting different modes of regulation for the two genes. This study represents a first step in the understanding of the molecular mechanisms of host animal resistance to permanent hyperoxia status resulting from the photosynthetic symbiosis. Moreover, AvCuZnSODa and AvCuZnSODb are the first SODs cloned from a diploblastic animal, contributing to the evolutionary understanding of SODs.

  17. The giant Upper Yangtze Pb-Zn province in SW China: Reviews, new advances and a new genetic model

    Science.gov (United States)

    Zhou, Jia-Xi; Xiang, Zhen-Zhong; Zhou, Mei-Fu; Feng, Yue-Xing; Luo, Kai; Huang, Zhi-Long; Wu, Tao

    2018-04-01

    western Yangtze Block. The change of tectonic regimes from extension to compression after eruption of basalts of the ELIP, and then to extension during Early Mesozoic, facilitated extraction, migration, and excretion of ore-forming metals and associated fluids. Mixing of fluids and reduction geochemical barrier activated TSR, causing cyclical carbonate dissolution, CO2 degassing and recrystallization (namely carbonate buffer). All these processes triggered continuous precipitation of huge amounts of hydrothermal minerals. Underplating and eruption of ELIP basalts provided heat flow, fluids and volatiles, whereas the basalts acted as an impermeable and protective layer, and even as ore-hosting rocks. These Pb-Zn deposits have spatial and genetic association with igneous activities of the ELIP, and are characterized by high ore grades (>10 wt% Pb + Zn), high concentrations of associated metals (e.g. Cu, Ag, Ge, and Cd), and medium-low temperatures (usually Yangtze metallogenic province representing to a new type of Pb-Zn deposits that are hosted in platform carbonate sequences and formed within compressional zones of passive margin tectonic settings.

  18. Cyclotron production of {sup 61}Cu using natural Zn and enriched {sup 64}Zn targets

    Energy Technology Data Exchange (ETDEWEB)

    Asad, A. H.; Smith, S. V.; Chan, S.; Jeffery, C. M.; Morandeau, L.; Price, R. I. [RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia, Imaging and Applied Physics, Curtin University, Perth, Australia, and Center of Excellence in Anti-matter Matter Studies, Australian National University, Can (Australia); Brookhaven National Laboratory, Upton, NY (United States) and Center of Excellence in Anti-matter Matter Studies, Australian National University, Canberra (Australia); RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth (Australia); RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth (Australia); Center of Excellence in Anti-matter Matter Studies, Australian National University, Canberra, Australia, and Chemistry, University of Western Australia, Pe (Australia); RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth (Australia); RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia and Physics, University of Western Australia, Perth (Australia)

    2012-12-19

    Copper-61 ({sup 61}Cu) shares with {sup 64}Cu certain advantages for PET diagnostic imaging, but has a shorter half-life (3.4hr vs. 12.7hr) and a greater probability of positron production per disintegration (61% vs. 17.9%). One important application is for in vivo imaging of hypoxic tissue. In this study {sup 61}Cu was produced using the {sup 64}Zn(p,{alpha}){sup 61}Cu reaction on natural Zn or enriched {sup 64}Zn targets. The enriched {sup 64}Zn (99.82%) was electroplated onto high purity gold or silver foils or onto thin Al discs. A typical target bombardment used 30{mu}A; at 11.7, 14.5 or 17.6MeV over 30-60min. The {sup 61}Cu (radiochemical purity of >95%) was separated using a combination of cation and anion exchange columns. The {sup 64}Zn target material was recovered after each run, for re-use. In a direct comparison with enriched {sup 64}Zn-target results, {sup 61}Cu production using the cheaper {sup nat}Zn target proved to be an effective alternative.

  19. Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria.

    Science.gov (United States)

    Wang, Jia; Huang, Qifei; Li, Ting; Xin, Baoping; Chen, Shi; Guo, Xingming; Liu, Changhao; Li, Yuping

    2015-08-15

    A few studies have focused on release of valuable/toxic metals from Pb/Zn smelting slag by heterotrophic bioleaching using expensive yeast extract as an energy source. The high leaching cost greatly limits the practical potential of the method. In this work, autotrophic bioleaching using cheap sulfur or/and pyrite as energy matter was firstly applied to tackle the smelting slag and the bioleaching mechanisms were explained. The results indicated autotrophic bioleaching can solubilize valuable/toxic metals from slag, yielding maximum extraction efficiencies of 90% for Zn, 86% for Cd and 71% for In, although the extraction efficiencies of Pb, As and Ag were poor. The bioleaching performance of Zn, Cd and Pb was independent of leaching system, and leaching mechanism was acid dissolution. A maximum efficiency of 25% for As was achieved by acid dissolution in sulfursulfur oxidizing bacteria (S-SOB), but the formation of FeAsO4 reduced extraction efficiency in mixed energy source - mixed culture (MS-MC). Combined works of acid dissolution and Fe(3+) oxidation in MS-MC was responsible for the highest extraction efficiency of 71% for In. Ag was present in the slag as refractory AgPb4(AsO4)3 and AgFe2S3, so extraction did not occur. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Activation of a Cu/ZnO catalyst for methanol synthesis

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Rasmussen, F.B.; Helveg, S.

    2006-01-01

    The structural changes during activation by temperature-programmed reduction of a Cu/ZnO catalyst for methanol synthesis have been studied by several in situ techniques. The catalyst is prepared by coprecipitation and contains 4.76 wt% Cu, which forms a substitutional solid solution with Zn......O as determined by resonant X-ray diffraction. In situ resonant X-ray diffraction reveals that the Cu atoms are extracted from the solid solution by the reduction procedure, forming metallic Cu crystallites. Cu is redispersed in bulk or surface Zn lattice sites upon oxidation by heating in air. The results...... is highly dispersed and in intimate contact with the surface of the host ZnO particles. The possibility of re-forming the (Zn,Cu)O solid solution by oxidation may provide a means of redispersing Cu in a deactivated catalyst....

  1. Ostwald ripening of Pb nanocrystalline phase in mechanically milled Al-Pb alloys and the influence of Cu additive

    International Nuclear Information System (INIS)

    Wu, Z.F.; Zeng, M.Q.; Ouyang, L.Z.; Zhang, X.P.; Zhu, M.

    2005-01-01

    The coarsening behavior of nanosized Pb phase in both Al-10%Pb and Al-10%Pb-4.5%Cu alloys has been studied by X-ray diffraction and transmission electron microscopy analysis. The coarsening of Pb nanophase in Al-Pb alloys still follows the classical ripening theory (the LSW theory) and the addition of Cu decreases the coarsening rate of Pb nanophase

  2. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils.

    Science.gov (United States)

    Hussain Lahori, Altaf; Zhang, Zengqiang; Guo, Zhanyu; Mahar, Amanullah; Li, Ronghua; Kumar Awasthi, Mukesh; Ali Sial, Tanveer; Kumbhar, Farhana; Wang, Ping; Shen, Feng; Zhao, Junchao; Huang, Hui

    2017-11-01

    This explorative study was aimed to assess the efficiency of lime alone and in combined with additives to immobilize Pb, Cd, Cu and Zn in soil and reduce their phytoavailability for plant. A greenhouse pot experiment was performed by using low and heavily contaminated top soils viz. Tongguan contaminated (TG-C); Fengxian heavily contaminated (FX-HC) and Fengxian low contaminated (FX-LC). The contaminated soils were treated with lime (L) alone and in combined with Ca-bentonite (CB), Tobacco biochar (TB) and Zeolite (Z) at 1% and cultivated by Chinese cabbage (Brassica campestris L). Results revealed that all amendments (plime alone and in combined with additives were drastically decreased the dry biomass yield of Brassica campestris L. as compared with control. Thus, these feasible amendments potentially maximum reduced the uptake by plant shoots upto Pb 53.47 and Zn 67.93% with L+Z and L+TB in FX-LC soil, while Cd 68.58 and Cu 60.29% with L+TB, L+CB in TG-C soil but Cu uptake in plant shoot was observed 27.26% and 30.17% amended with L+TB and L+Z in FX-HC and FX-LC soils. On the other hand, these amendments were effectively reduced the potentially toxic metals (PTMs) in roots upto Pb77.77% L alone in FX-HC, Cd 96.76% with L+TB in TG-C, while, Cu 66.70 and Zn 60.18% with L+Z in FX-LC. Meanwhile, all amendments were responsible for increasing soil pH and CEC but decreased soils EC level. Based on this result, these feasible soil amendments were recommended for long term-study under field condition to see the response of another hyper accumulator crop. Copyright © 2017. Published by Elsevier Inc.

  3. Photoluminescence characteristics of Pb-doped, molecular-beam-epitaxy grown ZnSe crystal layers

    International Nuclear Information System (INIS)

    Mita, Yoh; Kuronuma, Ryoichi; Inoue, Masanori; Sasaki, Shoichiro; Miyamoto, Yoshinobu

    2004-01-01

    The characteristic green photoluminescence emission and related phenomena in Pb-doped, molecular-beam-epitaxy (MBE)-grown ZnSe crystal layers were investigated to explore the nature of the center responsible for the green emission. The intensity of the green emission showed a distinct nonlinear dependence on excitation intensity. Pb-diffused polycrystalline ZnSe was similarly examined for comparison. The characteristic green emission has been observed only in MBE-grown ZnSe crystal layers with moderate Pb doping. The results of the investigations on the growth conditions, luminescence, and related properties of the ZnSe crystal layers suggest that the green emission is due to isolated Pb replacing Zn and surrounded with regular ZnSe lattice with a high perfection

  4. Heavy metals pollution and pb isotopic signatures in surface sediments collected from Bohai Bay, North China.

    Science.gov (United States)

    Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke

    2014-01-01

    To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as "the unpolluted" level, while Ni, Cu, and Pb were ranked as "unpolluted to moderately polluted" level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for (206)Pb/(207)Pb and from 2.456 to 2.482 for (208)Pb/(207)Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources.

  5. ZnO/Cu/ZnO multilayer films: Structure optimization and investigation on photoelectric properties

    International Nuclear Information System (INIS)

    Liu Xiaoyu; Li Yingai; Liu Shi; Wu Honglin; Cui Haining

    2012-01-01

    A series of ZnO/Cu/ZnO multilayer films has been fabricated from zinc and copper metallic targets by simultaneous RF and DC magnetron sputtering. Numerical simulation of the optical properties of the multilayer films has been carried out in order to guide the experimental work. The influences of the ZnO and Cu layer thicknesses, and of O 2 /Ar ratio on the photoelectric and structural properties of the films were investigated. The optical and electrical properties of the multilayers were studied by optical spectrometry and four point probe measurements, respectively. The structural properties were investigated using X-ray diffraction. The performance of the multilayers as transparent conducting coatings was compared using a figure of merit. In experiments, the thickness of the ZnO layers was varied between 4 and 70 nm and those of Cu were between 8 and 37 nm. The O 2 /Ar ratios range from 1:5 to 2:1. Low sheet resistance and high transmittance were obtained when the film was prepared using an O 2 /Ar ratio of 1:4 and a thickness of ZnO (60 nm)/Cu (15 nm)/ZnO (60 nm). - Highlights: ► ZnO/Cu/ZnO films were fabricated from zinc and copper targets by sputtering. ► Transmittance reaches maximum when top and bottom ZnO thicknesses are nearly equal. ► Sheet resistance increases with increasing ZnO layer thickness. ► Variation in sheet resistance with oxygen/argon ratio is due to interface effect.

  6. Dynamic Behavior of CuZn Nanoparticles under Oxidizing and Reducing Conditions

    DEFF Research Database (Denmark)

    Holse, Christian; Elkjær, Christian Fink; Nierhoff, Anders Ulrik Fregerslev

    2015-01-01

    migrate to the Cu surface forming a Cu–Zn surface alloy. The oxidation and reduction dynamics of the CuZn nanoparticles is of great importance to industrial methanol synthesis for which the direct interaction of Cu and ZnO nanocrystals synergistically boosts the catalytic activity. Thus, the present......The oxidation and reduction of CuZn nanoparticles was studied using X-ray photoelectron spectroscopy (XPS) and in situ transmission electron microscopy (TEM). CuZn nanoparticles with a narrow size distribution were produced with a gas-aggregation cluster source in conjunction with mass......-filtration. A direct comparison between the spatially averaged XPS information and the local TEM observations was thus made possible. Upon oxidation in O2, the as-deposited metal clusters transform into a polycrystalline cluster consisting of separate CuO and ZnO nanocrystals. Specifically, the CuO is observed...

  7. Investigations of structural, morphological and optical properties of Cu:ZnO/TiO2/ZnO and Cu:TiO2/ZnO/TiO2 thin films prepared by spray pyrolysis technique

    Directory of Open Access Journals (Sweden)

    M.I. Khan

    Full Text Available The aim of this research work is presented a comparison study of Cu:ZnO/TiO2/ZnO (Cu:ZTZ and Cu:TiO2/ZnO/TiO2 (Cu:TZT thin films deposited by spray pyrolysis technique on FTO substrates. After deposition, these films are annealed at 500 °C. XRD confirms the anatase phase of TiO2 and Hexagonal wurtzite phase of ZnO. SEM shows that Cu:TZT has more porous surface than Cu:ZTZ and also the root mean square (RMS roughness of Cu:TZT film is 48.96 and Cu:ZTZ film is 32.69. The calculated optical band gaps of Cu:TZT and Cu:ZTZ thin films are 2.65 eV and 2.6 eV respectively, measured by UV–Vis spectrophotometer. This work provides an environment friendly and low cost use of an abundant material for highly efficient dye sensitized solar cells (DSSCs. Keywords: Multilayer films, ZnO, TiO2, Cu

  8. Spatial and Temporal Distribution of Trace Metals (Cd, Cu, Ni, Pb, and Zn in Coastal Waters off the West Coast of Taiwan

    Directory of Open Access Journals (Sweden)

    Kuo-Tung Jiann

    2014-01-01

    Full Text Available Surface water samples were collected along the west coast of Taiwan during two expedition cruises which represent periods of different regional climatic patterns. Information on hydrochemical parameters such as salinity, nutrients, suspended particulate matter (SPM, and Chlorophyll a concentrations were obtained, and dissolved and particulate trace metal (Cd, Cu, Ni, Pb, and Zn concentrations were determined. Spatial variations were observed and the differences were attributed to (1 influence of varying extents of terrestrial inputs from the mountainous rivers of Taiwan to the coast, and (2 urbanization and industrialization in different parts of the island. Geochemical processes such as desorption (Cd and adsorption to sinking particles (Pb also contributed to the variability of trace metal distributions in coastal waters. Results showed temporal variations in chemical characteristics in coastal waters as a consequence of prevailing monsoons. During the wet season when river discharges were higher, the transport of particulate metals was elevated due to increased sediment loads. During the dry season, lower river discharges resulted in a lesser extent of estuarine dilution effect for chemicals of anthropogenic sources, indicated by higher dissolved concentrations present in coastal waters associated with slightly higher salinity.

  9. The Content of Heavy Metals (Cu, Zn, Cr, Ni, Pb in The Soil Near The Arterial Roads in Wroclaw (Poland

    Directory of Open Access Journals (Sweden)

    Sobczyk Karolina

    2017-01-01

    Full Text Available The concentrations of heavy metals in soils along the motorway bypass of Wroclaw (AOW and the Eastern Ring Road of Wroclaw (WOW, Poland, have been determined. The soil samples were collected from the levels of 0-25 cm within 2 m from the edge of the road. The mineralizates were prepared in HNO3, 60%, using the Microwave Digestion System. The content of Cu, Zn, Cr, Ni and Pb in soils were determined using FAAS method. The physicochemical parameters, the conductivity and pH of the soil solutions were measured to evaluate the salinity of the soils and their active and exchangeable acidity. The pollution indexes (WN showing the enrichment of soils in metals have been determined. Excess of metal concentrations in soils compared to the geochemical background in uncontaminated soils of Poland has been observed. Permissible concentrations of heavy metals relative to the standard for soils, according to the Polish Ministry of Environment Regulation from September 1st, 2016, have not been exceeded.

  10. Photoemission studies of zinc-noble metal alloys: Zn--Cu, Zn--Ag, and Zn--Au films on Ru(001)

    International Nuclear Information System (INIS)

    Rodriguez, J.A.; Hrbek, J.

    1993-01-01

    Zn and the noble metals alloy when coadsorbed on Ru(001). The properties of Zn--Cu, Zn--Ag, and Zn--Au alloys have been studied using core- and valence-level photoemission and temperature programmed desorption. Alloy formation induces only small shifts (-0.2 to -0.3 eV) in the position of the Zn 2p, 3s, and 3d levels. In contrast, the core and valence levels of the noble metals show large shifts toward higher binding energy. For small amounts of Cu, Ag, and Au dissolved in Zn multilayers, the shifts in the core levels of the nobel metals follow the sequence: Cu(2p 3/2 ), 0.8 eV∼Ag(3d 5/2 ), 0.8 eV 7/2 ), 1.4 eV. The magnitude of the shift increases as the Pauling electronegativity of the noble metal increases. However, the sign of the shifts for the Cu(2p 3/2 ), Ag(3d 5/2 ), or Au(4f 7/2 ) levels is not directly determined by the direction of charge transfer within the corresponding Zn-noble metal bond

  11. Physical characterization of Cu{sub 2}ZnGeSe{sub 4} thin films from annealing of Cu-Zn-Ge precursor layers

    Energy Technology Data Exchange (ETDEWEB)

    Buffière, M., E-mail: buffiere@imec.be [Imec—Partner in Solliance, Leuven (Belgium); Department of Electrical Engineering (ESAT), KU Leuven, Heverlee (Belgium); ElAnzeery, H. [Imec—Partner in Solliance, Leuven (Belgium); KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Microelectronics System Design department, Nile University, Cairo (Egypt); Oueslati, S.; Ben Messaoud, K. [Imec—Partner in Solliance, Leuven (Belgium); KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Department of Physics, Faculty of Sciences of Tunis, El Manar (Tunisia); Brammertz, G.; Meuris, M. [Imec Division IMOMEC — Partner in Solliance, Diepenbeek (Belgium); Institute for Material Research (IMO) Hasselt University, Diepenbeek (Belgium); Poortmans, J. [Imec—Partner in Solliance, Leuven (Belgium); Department of Electrical Engineering (ESAT), KU Leuven, Heverlee (Belgium)

    2015-05-01

    Cu{sub 2}ZnGeSe{sub 4} (CZGeSe) can be considered as a potential alternative for wide band gap thin film devices. In this work, CZGeSe thin films were deposited on Mo-coated soda lime glass substrates by sequential deposition of sputtered Cu, Zn and e-beam evaporated Ge layers from elemental targets followed by annealing at high temperature using H{sub 2}Se gas. We report on the effect of the precursor stack order and composition and the impact of the annealing temperature on the physical properties of CZGeSe thin films. The optimal layer morphology was obtained when using a Mo/Cu/Zn/Ge precursor stack annealed at 460 °C. We have observed that the formation of secondary phases such as ZnSe can be prevented by tuning the initial composition of the stack, the stack order and the annealing conditions. This synthesis process allows synthesizing CZGeSe absorber with an optical band gap of 1.5 eV. - Highlights: • Cu{sub 2}ZnGeSe{sub 4} (CZGeSe) thin films were deposited using a two-step process. • CZGeSe dense layers were obtained using a Mo/Cu/Zn/Ge precursor annealed at 460 °C. • Formation of ZnSe can be avoided by tuning the composition and order of the initial stack. • P-type CZGeSe absorber with an optical band gap of 1.5 eV was obtained.

  12. Compositional ratio effect on the surface characteristics of CuZn thin films

    Science.gov (United States)

    Choi, Ahrom; Park, Juyun; Kang, Yujin; Lee, Seokhee; Kang, Yong-Cheol

    2018-05-01

    CuZn thin films were fabricated by RF co-sputtering method on p-type Si(100) wafer with various RF powers applied on metallic Cu and Zn targets. This paper aimed to determine the morphological, chemical, and electrical properties of the deposited CuZn thin films by utilizing a surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), UV photoelectron spectroscopy (UPS), and a 4-point probe. The thickness of the thin films was fixed at 200 ± 8 nm and the roughness of the thin films containing Cu was smaller than pure Zn thin films. XRD studies confirmed that the preferred phase changed, and this tendency is dependent on the ratio of Cu to Zn. AES spectra indicate that the obtained thin films consisted of Cu and Zn. The high resolution XPS spectra indicate that as the content of Cu increased, the intensities of Zn2+ decreased. The work function of CuZn thin films increased from 4.87 to 5.36 eV. The conductivity of CuZn alloy thin films was higher than pure metallic thin films.

  13. Build-up and wash-off dynamics of atmospherically derived Cu, Pb, Zn and TSS in stormwater runoff as a function of meteorological characteristics.

    Science.gov (United States)

    Murphy, Louise U; Cochrane, Thomas A; O'Sullivan, Aisling

    2015-03-01

    Atmospheric pollutants deposited on impermeable surfaces can be an important source of pollutants to stormwater runoff; however, modelling atmospheric pollutant loads in runoff has rarely been done, because of the challenges and uncertainties in monitoring their contribution. To overcome this, impermeable concrete boards (≈ 1m(2)) were deployed for 11 months in different locations within an urban area (industrial, residential and airside) throughout Christchurch, New Zealand, to capture spatially distributed atmospheric deposition loads in runoff over varying meteorological conditions. Runoff was analysed for total and dissolved Cu, Zn, Pb, and total suspended solids (TSS). Mixed-effect regression models were developed to simulate atmospheric pollutant loads in stormwater runoff. In addition, the models were used to explain the influence of different meteorological characteristics (e.g. antecedent dry days and rain depth) on pollutant build-up and wash-off dynamics. The models predicted approximately 53% to 69% of the variation in pollutant loads and were successful in predicting pollutant-load trends over time which can be useful for general stormwater planning processes. Results from the models illustrated the importance of antecedent dry days on pollutant build-up. Furthermore, results indicated that peak rainfall intensity and rain duration had a significant relationship with TSS and total Pb, whereas, rain depth had a significant relationship with total Cu and total Zn. This suggested that the pollutant speciation phase plays an important role in surface wash-off. Rain intensity and duration had a greater influence when the pollutants were predominantly in their particulate phase. Conversely, rain depth exerted a greater influence when a high fraction of the pollutants were predominantly in their dissolved phase. For all pollutants, the models were represented by a log-arctan relationship for pollutant build-up and a log-log relationship for pollutant wash

  14. One-pot synthesis of Cu/ZnO/ZnAl2O4 catalysts and their catalytic performance in glycerol hydrogenolysis

    KAUST Repository

    Tan, Hua

    2013-01-01

    In this work, a series of Cu/ZnO/ZnAl2O4 catalysts with different metal molar fractions (Cu:Zn:Al) were successfully prepared using a one-pot method via the evaporation-induced self-assembly (EISA) of Pluronic P123 and the corresponding metal precursors. The catalysts were characterized using N2 adsorption, H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectra (XPS). The catalytic properties of the resulting Cu/ZnO/ZnAl2O4 with different molar fractions of metals were investigated for the selective hydrogenolysis of glycerol to 1,2-propanediol (1,2-PDO). It was observed that the ZnAl2O 4 support exerts a strong positive effect on the catalytic activity of the copper-based catalysts, and the presence of ZnO further improves the catalytic activity of the Cu/ZnAl2O4 catalysts. The Cu/ZnO/ZnAl2O4 catalyst (Cu10Zn 30Al60, Cu/Zn/Al molar ratio is 10:30:60), which was the best catalyst, exhibited the highest yield (79%) of 1,2-PDO with 85.8% glycerol conversion and 92.1% 1,2-PDO selectivity at 180 °C reaction temperature in 80 wt% glycerol aqueous solution over 10 h reaction time. The high catalytic activity was attributed to the presence of the ZnAl2O4 support, the strong interaction between ZnO and Cu nanoparticles and the small particle size of ZnO and Cu. Moreover, the Cu/ZnO/ZnAl2O4 catalysts exhibited higher stability than Cu/ZnO and Cu/ZnO/Al2O 3 catalysts prepared by a co-precipitation method during consecutive cycling experiments, which is due to the high chemical and thermal stability of crystalline ZnAl2O4 under harsh reaction conditions. This journal is © The Royal Society of Chemistry.

  15. Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn.

    Science.gov (United States)

    Zhang, Chengjun; Sale, Peter W G; Clark, Gary J; Liu, Wuxing; Doronila, Augustine I; Kolev, Spas D; Tang, Caixian

    2015-12-01

    Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6-26.6 mg plant(-1) day(-1)) and highest tolerance index (78-93%), whilst Sedum "Autumn Joy" had the lowest relative growth rate (8.3-13.6 mg plant(-1) day(-1)), and Crassula multicava showed the lowest tolerance indices (phytoextraction of these heavy metals than other species. These findings suggest that Carpobrotus rossii is a promising candidate for phytoextraction of multiple heavy metals, and the aquatic or semiterrestrial Crassula helmsii is suitable for phytoextraction of Cd and Zn from polluted waters or wetlands.

  16. Electrodeposition of Zn and Cu–Zn alloy from ZnO/CuO precursors in deep eutectic solvent

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xueliang [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zou, Xingli, E-mail: xinglizou@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Xionggang, E-mail: luxg@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Changyuan; Cheng, Hongwei; Xu, Qian [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhou, Zhongfu [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom)

    2016-11-01

    Graphical abstract: Micro/nanostructured Zn and Cu–Zn alloy films have been electrodeposited directly from ZnO/CuO precursors in ChCl/urea-based DES, the typical nucleation-growth mechanism and the micro/nanostructures-formation process are determined. Display Omitted - Highlights: • Micro/nanostructured Zn films have been electrodeposited directly from ZnO precursor in deep eutectic solvent (DES). • The morphology of the Zn electrodeposits depends on the cathodic potential and temperature. • The electrodeposited Zn films exhibit homogeneous morphologies with controllable particle sizes and improved corrosion resistance. • Cu–Zn alloy films have also been electrodeposited directly from their metal oxides precursors in DES. - Abstract: The electrodeposition of Zn and Cu–Zn alloy has been investigated in choline chloride (ChCl)/urea (1:2 molar ratio) based deep eutectic solvent (DES). Cyclic voltammetry study demonstrates that the reduction of Zn(II) to Zn is a diffusion-controlled quasi-reversible, one-step, two electrons transfer process. Chronoamperometric investigation indicates that the electrodeposition of Zn on a Cu electrode typically involves three-dimensional instantaneous nucleation with diffusion-controlled growth process. Micro/nanostructured Zn films can be obtained by controlling the electrodeposition potential and temperature. The electrodeposited Zn crystals preferentially orient parallel to the (101) plane. The Zn films electrodeposited under more positive potentials and low temperatures exhibit improved corrosion resistance in 3 wt% NaCl solution. In addition, Cu–Zn alloy films have also been electrodeposited directly from CuO–ZnO precursors in ChCl/urea-based DES. The XRD analysis indicates that the phase composition of the electrodeposited Cu–Zn alloy depends on the electrodeposition potential.

  17. CHEMICAL DETERMINATION OF HEAVY METALS IN PB AND ZN CONCENTRATES OF TREPÇA (KOSOVO AND CORRELATIONS COEFFI CIENTS STUDY BETWEEN CHEMICAL DATA

    Directory of Open Access Journals (Sweden)

    Fatbardh Gashi

    2017-03-01

    Full Text Available Kosovo ore deposits are located in the Trepça belt which extends for over 80 km. The concentrate produced by the flotation process of the Trepça metallurgical corporation contains a considerable quantity of valuable metals, such as Pb, Zn, Fe and minor accompanying metals such as Cd, Cu, As, Sb, Bi, Ag, Au, etc. The subject of this work was to assess the concentration of major and minor metals in lead and zinc concentrates of Trepça and to study the correlation coefficients between metals. Chemical determination of concentrates was performed by using atomic absorption spectroscopy (AAS. In the content on lead concentrate samples, the following were found: Pb>Fe>Zn> Ag> As>Sb>Cd. In the content of zinc concentrate, the following were found: Zn>Fe>Pb>Ag>As>Cd. The program “Statistica ver. 6.0” has been used for calculations of basic statistical parameters, relationships between data and cluster analysis of R-mode. R-mode cluster analysis on lead concentrate samples showed that Pb has the closest linkages with Fe and they form one branch of the dendogram. On the zinc concentrate samples, Zn has the closest linkages with Fe and they form one branch of the dendogram.

  18. Phase relations in the quasi-binary Cu{sub 2}GeS{sub 3}-ZnS and quasi-ternary Cu{sub 2}S-Zn(Cd)S-GeS{sub 2} systems and crystal structure of Cu{sub 2}ZnGeS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Parasyuk, O.V. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine)]. E-mail: oleg@lab.univer.lutsk.ua; Piskach, L.V. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine); Romanyuk, Y.E. [Advanced Photonics Laboratory, Institute of Imaging and Applied Optics, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Olekseyuk, I.D. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine); Zaremba, V.I. [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya Str., 79005 L' viv (Ukraine); Pekhnyo, V.I. [V.I. Vernadskii Institute of General and Inorganic Chemistry, Ukrainian National Academy of Sciences, Palladina Ave 32-34, 03680 Kiev (Ukraine)

    2005-07-19

    The isothermal section of the Cu{sub 2}S-Zn(Cd)S-GeS{sub 2} systems at 670K was constructed using X-ray diffraction analysis. At this temperature, two quaternary intermediate phases, Cu{sub 2}CdGeS{sub 4} and {approx}Cu{sub 8}CdGeS{sub 7}, exist in the Cu{sub 2}S-CdS-GeS{sub 2} system, and only one phase, Cu{sub 2}ZnGeS{sub 4}, exists in the Cu{sub 2}S-ZnS-GeS{sub 2} system. The phase diagram of the Cu{sub 2}GeS{sub 3}-ZnS system was constructed using differential-thermal analysis and X-ray diffraction, and the existence of Cu{sub 2}ZnGeS{sub 4} has been confirmed. It forms incongruently at 1359K. Powder X-ray diffraction was used to refine the crystal structure of Cu{sub 2}ZnGeS{sub 4}, which crystallizes in the tetragonal stannite-type structure at 670K (space group I4-bar 2m, a=0.534127(9)nm, c=1.05090(2)nm, R{sub I}=0.0477). The possibility of the formation of quaternary compounds in the quasi-ternary systems A{sup I}{sub 2}X-B{sup II}X-C{sup IV}X{sub 2}, where A{sup I}-Cu, Ag; B{sup II}-Zn, Cd, Hg; C{sup IV}-Si, Ge, Sn and X-S, Se, Te is discussed.

  19. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    International Nuclear Information System (INIS)

    Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R.; Voss, T.; Schulze, J.; Kirbs, A.; Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Koetschau, I.; Schock, H.-W.

    2009-01-01

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu 2 ZnSnS 4 based thin film solar cells. A kesterite based solar cell (size 0.5 cm 2 ) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu 2 SnS 3 and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu 3 Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu 6 Sn 5 and Sn phases were detected. The formation mechanism of Cu 2 SnS 3 involves the binary sulphides Cu 2-x S and SnS 2 in the absence of the binary precursor phase Cu 6 Sn 5 . The presence of Cu 6 Sn 5 leads to a preferred formation of Cu 2 SnS 3 via the reaction educts Cu 2-x S and SnS 2 in the presence of a SnS 2 (Cu 4 SnS 6 ) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase

  20. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    International Nuclear Information System (INIS)

    Wang, Hua-Jie; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying

    2013-01-01

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug

  1. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua-Jie, E-mail: wanghuajie972001@163.com; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying, E-mail: caoying1130@sina.com [Henan Normal University, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, College of Chemistry and Chemical Engineering (China)

    2013-11-15

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug.

  2. Contribuição à Gênese do Depósito Primário Polimetálico (Sn, W±, Zn, Cu, Pb) Correas, Ribeirão Branco (SP)

    OpenAIRE

    Cláudio Luiz Goraieb

    2001-01-01

    O depósito primário polimetálico (Sn, W, Zn, Cu, Pb) Correas, situa-se em terrenos pré-cambrianos da Faixa Ribeira, na porção sul do Estado de São Paulo. Dados geológicos obtidos em etapas de mapeamento e sondagem, juntamente com estudos petrográficos, geoquímicos, isotópicos e de inclusões fluidas, apontam para a relação espacial e genética de mineralização com rochas graníticas muito fracionadas (topázio-muscovita-albita granitos) do Maciço Correas. Essas rochas, ligeiramente peraluminossas...

  3. Distribution of POC, PON and particulate Al, Cd, Cr, Cu, Pb, Ti, Zn and δ13C in the English Channel and adjacent areas

    International Nuclear Information System (INIS)

    Dauby, P.; Frankignoulle, M.; Gobert, S.; Bouquegneau, J.M.

    1994-01-01

    A study of the spatial distribution of the total suspended matter and of its elemental composition (C, N and trace metals) has been performed in the English Channel. The Celtic Sea, and the Southern Bight of the North Sea in June and October 1991. South-west to north-east gradients of suspended matter mass and of lithogenic components (Ti an Al) linked to riverine inputs and to depth shallowing, are observed; organic carbon and nitrogen display an opposite distribution pattern and reach a maximum in the Biscay oceanic waters. Cu, Pb and Zn concentrations are highest near industrialized areas and large estuaries, showing the importance of river inputs. In contrast, Cd, Cu and Cr concentrations are markedly elevated in organic-rich suspended matter from waters in which suspended matter loadings are low, suggesting a significant biological uptake. Finally, 13 C/ 12 C analyses reveal the relative importance of coastal or continental inputs in the north-eastern Channel and in the North Sea. (authors). 56 refs., 12 figs., 3 tabs

  4. Study on accumulation of Fe, Pb, Zn, Ni and Cd in Nerita lineata and Thais bitubercularis from Tanjung Harapan and Teluk Kemang, Malaysia.

    Directory of Open Access Journals (Sweden)

    Tengku

    2017-01-01

    Full Text Available The presence of Cd, Cu, Zn, Ni, Fe, Al, Zn, Mn, Cr, and Sn were attributed to metal industries. Cu contamination was associated with piggery industry. Shipping activities contribute to elevated levels of Pb, Cu and As. Elevated levels of metals in the sediments are attributed to anthropogenic activities. Samples were collected in April 2012 and analysed using inductively coupled plasma mass spectrometry (ICP-MS. Fe is the most abundant metal in the tissue and shell compared to the rest of the metals. The concentrations of heavy metals in the soft tissues of Nerita lineata taken from Tanjung Harapan follow this order: Fe > Zn > Ni > Cu > Cd while in Thais bitubercularis, the metal concentrations were higher following the order of Fe > Zn > Cu > Ni > Cd. The samples taken from Teluk Kemang were higher and exhibited different trend for both organisms. Results from this study are useful for further exploration of Thais bitubercularis as accumulators of Cu, Cd, and Zn. For recommendation, more studies on monitoring the concentration level of heavy metals in marine environment should be done regularly and increase numbers of samples use to biomonitor the heavy metals in marine environment as it is important to have information or data regarding the quality of marine environment in order to control pollution such as water pollution from being contaminated with heavy metals. This is essential as the pollutants emit in the marine environment may affect marine lives as well as human’s health

  5. Long-Lived Termite Queens Exhibit High Cu/Zn-Superoxide Dismutase Activity

    Directory of Open Access Journals (Sweden)

    Eisuke Tasaki

    2018-01-01

    Full Text Available In most organisms, superoxide dismutases (SODs are among the most effective antioxidant enzymes that regulate the reactive oxygen species (ROS generated by oxidative energy metabolism. ROS are considered main proximate causes of aging. However, it remains unclear if SOD activities are associated with organismal longevity. The queens of eusocial insects, such as termites, ants, and honeybees, exhibit extraordinary longevity in comparison with the nonreproductive castes, such as workers. Therefore, the queens are promising candidates to study the underlying mechanisms of aging. Here, we found that queens have higher Cu/Zn-SOD activity than nonreproductive individuals of the termite Reticulitermes speratus. We identified three Cu/Zn-SOD sequences and one Mn-SOD sequence by RNA sequencing in R. speratus. Although the queens showed higher Cu/Zn-SOD activity than the nonreproductive individuals, there were no differences in their expression levels of the Cu/Zn-SOD genes RsSOD1 and RsSOD3A. Copper (Cu2+ and Cu+ is an essential cofactor for Cu/Zn-SOD enzyme activity, and the queens had higher concentrations of copper than the workers. These results suggest that the high Cu/Zn-SOD activity of termite queens is related to their high levels of the cofactor rather than gene expression. This study highlights that Cu/Zn-SOD activity contributes to extraordinary longevity in termites.

  6. Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method

    International Nuclear Information System (INIS)

    Mageshwari, K.; Nataraj, D.; Pal, Tarasankar; Sathyamoorthy, R.; Park, Jinsub

    2015-01-01

    Highlights: • CuO–ZnO nanocomposites were synthesized by reflux condensation method. • Photodegradation of methyl orange and methylene blue dyes was investigated. • Morphological studies show 3D flower-like CuO microspheres adorned with ZnO nanorods. • Optical analysis showed characteristic absorption bands of CuO and ZnO. • CuO–ZnO nanocomposites exhibited superior photocatalytic activity than CuO. - Abstract: Nanostructured CuO–ZnO nanocomposites were successfully synthesized for different Zn 2+ concentrations by reflux condensation method without using any surfactant, and their photocatalytic activity was evaluated using methyl orange and methylene blue dyes under UV light irradiation. XRD revealed the formation of CuO–ZnO nanocomposites, composing of monoclinic CuO and hexagonal ZnO. XPS analysis revealed that CuO–ZnO nanocomposites are made up of Cu(II), Zn(II) and O. FESEM and TEM images showed that pure CuO exhibit 3D flower-like microstructure, while the CuO–ZnO nanocomposites prepared for different Zn 2+ concentrations have 3D flower-like CuO, microstructure adorned with rod-like ZnO particles. UV–Vis DRS showed absorption bands corresponding to CuO and ZnO around 960 nm and 395 nm, respectively. PL spectra of CuO–ZnO nanocomposites exhibited reduced PL emissions compared to pure CuO, indicating the low recombination rate of photogenerated electrons and holes. Photodegradation assay revealed that catalytic activity of CuO–ZnO nanocomposites increased with Zn 2+ concentration, and also effectively degrade methyl orange and methylene blue dyes when compared to pure CuO. The enhanced photocatalytic activity of CuO–ZnO nanocomposites were mainly ascribed to the reduced recombination and efficient separation of photogenerated charge carriers. The possible mechanism for the improved photocatalytic activity of CuO–ZnO nanocomposites was proposed

  7. Punicalagin Green Functionalized Cu/Cu2O/ZnO/CuO Nanocomposite for Potential Electrochemical Transducer and Catalyst

    Science.gov (United States)

    Fuku, X.; Kaviyarasu, K.; Matinise, N.; Maaza, M.

    2016-09-01

    A novel ternary Punica granatum L-Cu/Cu2O/CuO/ZnO nanocomposite was successfully synthesised via green route. In this work, we demonstrate that the green synthesis of metal oxides is more viable and facile compare to other methods, i.e., physical and chemical routes while presenting a potential electrode for energy applications. The prepared nanocomposite was characterised by both microscopic and spectroscopic techniques. High-resolution scanning electron microscopy (HRSEM) and X-ray diffraction (XRD) techniques revealed different transitional phases with an average nanocrystallite size of 29-20 mm. It was observed that the nanocomposites changed from amorphous-slightly crystalline Cu/Cu2O to polycrystalline Cu/Cu2O/CuO/ZnO at different calcination temperatures (room temperature-RT- 600 °C). The Cu/Cu2O/ZnO/CuO metal oxides proved to be highly crystalline and showed irregularly distributed particles with different sizes. Meanwhile, Fourier transform infrared (FTIR) spectroscopy confirmed the purity while together with ultraviolet-visible (UV-Vis) spectroscopy proved the proposed mechanism of the synthesised nanocomposite. UV-Vis showed improved catalytic activity of the prepared metal oxides, evident by narrow band gap energy. The redox and electrochemical properties of the prepared nanocomposite were achieved by cyclic voltammetry (CV), electrochemical impedance (EIS) and galvanostatic charge-discharge (GCD). The maximum specific capacitance ( C s) was calculated to be 241 F g-1 at 50 mV s-1 for Cu/Cu2O/CuO/ZnO nanoplatelets structured electrode. Moreover, all the CuO nanostructures reveal better power performance, excellent rate as well as long term cycling stability. Such a study will encourages a new design for a wide spectrum of materials for smart electronic device applications.

  8. Tolerance of spermatogonia to oxidative stress is due to high levels of Zn and Cu/Zn superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Fritzie T Celino

    Full Text Available BACKGROUND: Spermatogonia are highly tolerant to reactive oxygen species (ROS attack while advanced-stage germ cells such as spermatozoa are much more susceptible, but the precise reason for this variation in ROS tolerance remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using the Japanese eel testicular culture system that enables a complete spermatogenesis in vitro, we report that advanced-stage germ cells undergo intense apoptosis and exhibit strong signal for 8-hydroxy-2'-deoxyguanosine, an oxidative DNA damage marker, upon exposure to hypoxanthine-generated ROS while spermatogonia remain unaltered. Activity assay of antioxidant enzyme, superoxide dismutase (SOD and Western blot analysis using an anti-Copper/Zinc (Cu/Zn SOD antibody showed a high SOD activity and Cu/Zn SOD protein concentration during early spermatogenesis. Immunohistochemistry showed a strong expression for Cu/Zn SOD in spermatogonia but weak expression in advanced-stage germ cells. Zn deficiency reduced activity of the recombinant eel Cu/Zn SOD protein. Cu/Zn SOD siRNA decreased Cu/Zn SOD expression in spermatogonia and led to increased oxidative damage. CONCLUSIONS/SIGNIFICANCE: These data indicate that the presence of high levels of Cu/Zn SOD and Zn render spermatogonia resistant to ROS, and consequently protected from oxidative stress. These findings provide the biochemical basis for the high tolerance of spermatogonia to oxidative stress.

  9. Preparation of highly oriented Al:ZnO and Cu/Al:ZnO thin films by sol-gel method and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaprasath, G.; Murugan, R. [School of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India); Mahalingam, T. [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Hayakawa, Y. [Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8011 (Japan); Ravi, G., E-mail: gravicrc@gmail.com [School of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India)

    2015-11-15

    Highly oriented thin films of Al doped ZnO (Al:ZnO) and Cu co-doped Al:ZnO (Cu/Al:ZnO) thin films were successfully deposited by sol–gel spin coating on glass substrates. The deposited films were characterized using X-ray diffraction analysis and found to exhibit hexagonal wurtzite structure with c-axis orientation. SEM images revealed that hexagonal rod shaped morphologies were grown perpendicular to the substrate surface due to repeated deposition process. High transmittance values were observed for pure ZnO compared to Al:ZnO and Cu/Al:ZnO thin films. The band gap widening is caused by the increase of carrier concentration, which is believed to be due to Burstein-Moss effect due to Al and Cu doping. PL spectra of Cu/Al:ZnO thin films indicate that the UV emission peaks slightly shifted towards lower energy side. XPS study was carried out for Zn{sub 0.80}Al{sub 0.10}Cu{sub 0.10}O thin films to analyze the binding energy of Al, Cu, Zn and O. Magnetic measurement studies exhibited ferromagnetic behavior at room temperature, which may be due to the increase in copper concentration in the doped films. The ferromagnetic behavior can be understood from the exchange coupling between localized ‘d’ spin of Cu ion mediated by free delocalized carriers. - Highlights: • High quality of Al:ZnO and Cu co-doped Al:ZnO thin films were fabricated by sol–gel method. • The XRD analyses revealed that the deposited thin films have hexagonal wurtzite structure. • XPS was carried out for Zn{sub 0.80}Al{sub 0.10}Cu{sub 0.10}O films to analyze the binding energy of Al, Cu, Zn and O. • SEM studies were made for Al:ZnO and Cu/Al:ZnO thin films. • RTFM was observed in Cu co-doped Al:ZnO thin films.

  10. Phytoextraction of Pb and Cu contaminated soil with maize and microencapsulated EDTA.

    Science.gov (United States)

    Xie, Zhiyi; Wu, Longhua; Chen, Nengchang; Liu, Chengshuai; Zheng, Yuji; Xu, Shengguang; Li, Fangbai; Xu, Yanling

    2012-09-01

    Chelate-assisted phytoextraction using agricultural crops has been widely investigated as a remediation technique for soils contaminated with low mobility potentially toxic elements. Here, we report the use of a controlled-release microencapsulated EDTA (Cap-EDTA) by emulsion solvent evaporation to phytoremediate soil contaminated with Pb and Cu. Incubation experiments were carried out to assess the effect of Cap- and non-microencapsulated EDTA (Ncap-EDTA) on the mobility of soil metals. Results showed EDTA effectively increased the mobility of Pb and Cu in the soil solution and Cap-EDTA application provided lower and more constant water-soluble concentrations of Pb and Cu in comparison with. Phytotoxicity may be alleviated and plant uptake of Pb and Cu may be increased after the incorporation of Cap-EDTA. In addition phytoextraction efficiencies of maize after Cap- and Ncap-EDTA application were tested in a pot experiment. Maize shoot concentrations of Pb and Cu were lower with Cap-EDTA application than with Ncap-EDTA. However, shoot dry weight was significantly higher with Cap-EDTA application. Consequently, the Pb and Cu phytoextraction potential of maize significantly increased with Cap-EDTA application compared with the control and Ncap-EDTA application.

  11. Tracing contamination sources in soils with Cu and Zn isotopic ratios

    Energy Technology Data Exchange (ETDEWEB)

    Fekiacova, Z.; Cornu, S. [INRA, UR 1119 Géochimie des Sols et des Eaux, F-13100 Aix en Provence (France); Pichat, S. [Laboratoire de Géologie de Lyon (LGL-TPE), Ecole Normale Supérieure de Lyon, CNRS, UMR 5276, 69007 Lyon (France)

    2015-06-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ{sup 65}Cu values vary from − 0.15 to 0.44‰ and the δ{sup 66}Zn from − 0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from − 0.95 to 0.44‰ for δ{sup 65}Cu and from − 0.53 to 0.64‰ for δ{sup 66}Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. - Highlights: • Pedogenetic processes produce some Cu and Zn isotope fractionation. • Pollution with distinct isotopic signatures can be traced using Cu and Zn isotopes. • Tracing

  12. Tracing contamination sources in soils with Cu and Zn isotopic ratios

    International Nuclear Information System (INIS)

    Fekiacova, Z.; Cornu, S.; Pichat, S.

    2015-01-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ 65 Cu values vary from − 0.15 to 0.44‰ and the δ 66 Zn from − 0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from − 0.95 to 0.44‰ for δ 65 Cu and from − 0.53 to 0.64‰ for δ 66 Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. - Highlights: • Pedogenetic processes produce some Cu and Zn isotope fractionation. • Pollution with distinct isotopic signatures can be traced using Cu and Zn isotopes. • Tracing of the metal

  13. Facile synthesis of Cu/tetrapod-like ZnO whisker compounds with enhanced photocatalytic properties

    Science.gov (United States)

    Liu, Hong; Liu, Huarong; Fan, Ximei

    2017-09-01

    Cu/tetrapod-like ZnO whisker (T-ZnOw) compounds were successfully synthesized using N2H4 \\cdot H2O as a reducing agent by a simple reduction method without any insert gas at room temperature. The crystal phase composition and morphology of the as-prepared samples were investigated by XRD, SEM and FESEM tests. The photocatalytic property of the as-prepared samples was detected by the degradation of methyl orange (MO) aqueous solution under UV irradiation. It can be found that Cu nanoparticles (CuNPs) dispersed on the surface of T-ZnOw increased with the increasing of Cu/Zn molar ratios (Cu/Zn MRs), and an octahedral structure of CuNPs was obtained when the sample was prepared with less than and equal to 7.30% Cu/Zn MR, but tended to a spherical or nanorod structure of CuNPs densely arranged on the surface of T-ZnOw, which is prepared by Cu/Zn MRs up to 22.00%. All the compounds exhibited excellent photocatalytic activity in decomposing of MO than T-ZnOw, the photocatalytic property of the samples increased with the increasing of Cu/Zn MRs up to 7.30%, while it decreases when further increasing the Cu/Zn MRs. The Schottky barrier of the Cu/T-ZnOw compound can effectively capture photoinduced electrons from the interface and enhanced the photocatalytic property of T-ZnOw.

  14. Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1.

    Science.gov (United States)

    Bhunia, Manas K; Hughes, James T; Fettinger, James C; Navrotsky, Alexandra

    2013-06-25

    Metal-organic framework (MOF) porosity relies upon robust metal-organic bonds to retain structural rigidity upon solvent removal. Both the as-synthesized and activated Cu and Zn polymorphs of HKUST-1 were studied by room temperature acid solution calorimetry. Their enthalpies of formation from dense assemblages (metal oxide (ZnO or CuO), trimesic acid (TMA), and N,N-dimethylformamide (DMF)) were calculated from the calorimetric data. The enthalpy of formation (ΔHf) of the as-synthesized Cu-HKUST-H2O ([Cu3TMA2·3H2O]·5DMF) is -52.70 ± 0.34 kJ per mole of Cu. The ΔHf for Zn-HKUST-DMF ([Zn3TMA2·3DMF]·2DMF) is -54.22 ± 0.57 kJ per mole of Zn. The desolvated Cu-HKUST-dg [Cu3TMA2] has a ΔHf of 16.66 ± 0.51 kJ/mol per mole Cu. The ΔHf for Zn-HKUST-amorph [Zn3TMA2·2DMF] is -3.57 ± 0.21 kJ per mole of Zn. Solvent stabilizes the Cu-HKUST-H2O by -69.4 kJ per mole of Cu and Zn-HKUST-DMF by at least -50.7 kJ per mole of Zn. Such strong chemisorption of solvent is similar in magnitude to the strongly exothermic binding at low coverage for chemisorbed H2O on transition metal oxide nanoparticle surfaces. The strongly exothermic solvent-framework interaction suggests that solvent can play a critical role in obtaining a specific secondary building unit (SBU) topology.

  15. Study of Cu and Pb partitioning in mine tailings using the Tessier sequential extraction scheme

    Energy Technology Data Exchange (ETDEWEB)

    Andrei, Mariana Lucia, E-mail: marianaluciaandrei@yahoo.com [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Babes-Bolyai University, Environmental Science and Engineering Faculty, 30 Fantanele, 400294, Cluj-Napoca (Romania); Senila, Marin; Hoaghia, Maria Alexandra; Levei, Erika-Andrea [INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath, 400293, Cluj-Napoca (Romania); Borodi, Gheorghe [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2015-12-23

    The Cu and Pb partitioning in nonferrous mine tailings was investigated using the Tessier sequential extraction scheme. The contents of Cu and Pb found in the five operationally defined fractions were determined by inductively coupled plasma optical emission spectrometry. The results showed different partitioning patterns for Cu and Pb in the studied tailings. The total Cu and Pb contents were higher in tailings from Brazesti than in those from Saliste, while the Cu contents in the first two fractions considered as mobile were comparable and the content of mobile Pb was the highest in Brazesti tailings. In the tailings from Saliste about 30% of Cu and 3% of Pb were found in exchangeable fraction, while in those from Brazesti no metals were found in the exchangeable fraction, but the percent of Cu and Pb found in the bound to carbonate fraction were high (20% and 26%, respectively). The highest Pb content was found in the residual fraction in Saliste tailings and in bound to Fe and Mn oxides fraction in Brazesti tailings, while the highest Cu content was found in the fraction bound to organic matter in Saliste tailings and in the residual fraction in Brazesti tailings. In case of tailings of Brazesti medium environmental risk was found both for Pb and Cu, while in case of Saliste tailings low risk for Pb and high risk for Cu were found.

  16. Study of Cu and Pb partitioning in mine tailings using the Tessier sequential extraction scheme

    International Nuclear Information System (INIS)

    Andrei, Mariana Lucia; Senila, Marin; Hoaghia, Maria Alexandra; Levei, Erika-Andrea; Borodi, Gheorghe

    2015-01-01

    The Cu and Pb partitioning in nonferrous mine tailings was investigated using the Tessier sequential extraction scheme. The contents of Cu and Pb found in the five operationally defined fractions were determined by inductively coupled plasma optical emission spectrometry. The results showed different partitioning patterns for Cu and Pb in the studied tailings. The total Cu and Pb contents were higher in tailings from Brazesti than in those from Saliste, while the Cu contents in the first two fractions considered as mobile were comparable and the content of mobile Pb was the highest in Brazesti tailings. In the tailings from Saliste about 30% of Cu and 3% of Pb were found in exchangeable fraction, while in those from Brazesti no metals were found in the exchangeable fraction, but the percent of Cu and Pb found in the bound to carbonate fraction were high (20% and 26%, respectively). The highest Pb content was found in the residual fraction in Saliste tailings and in bound to Fe and Mn oxides fraction in Brazesti tailings, while the highest Cu content was found in the fraction bound to organic matter in Saliste tailings and in the residual fraction in Brazesti tailings. In case of tailings of Brazesti medium environmental risk was found both for Pb and Cu, while in case of Saliste tailings low risk for Pb and high risk for Cu were found

  17. ZnO/Cu2S/ZnO Multilayer Films: Structure Optimization and Its Detail Data for Applications on Photoelectric and Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Zhenxing Wang

    2017-01-01

    Full Text Available Monolayer Cu2S and ZnO, and three kinds of complex films, Cu2S/ZnO, ZnO/Cu2S, and ZnO/Cu2S/ZnO, were deposited on glass substrates by means of radio frequency (RF magnetron sputtering device. The impact of the thickness of ZnO and Cu2S on the whole transmittance, conductivity, and photocatalysis was investigated. The optical and electrical properties of the multilayer were studied by optical spectrometry and four point probes. Numerical simulation of the optical transmittance of the multilayer films has been carried out in order to guide the experimental work. The comprehensive performances of the multilayers as transparent conductive coatings were compared using the figure of merit. Compared with monolithic Cu2S and ZnO films, both the optical transmission property and photocatalytic performance of complex films such as Cu2S/ZnO and ZnO/Cu2S/ZnO change significantly.

  18. First-principles study of defect formation in a photovoltaic semiconductor Cu2ZnGeSe4

    Science.gov (United States)

    Nishihara, Hironori; Maeda, Tsuyoshi; Wada, Takahiro

    2018-02-01

    The formation energies of neutral Cu, Zn, Ge, and Se vacancies in kesterite-type Cu2ZnGeSe4 were evaluated by first-principles pseudopotential calculations using plane-wave basis functions. The calculations were performed at typical points in Cu-(Zn1/2Ge1/2)-Se and Cu3Se2-ZnSe-GeSe2 pseudoternary phase diagrams for Cu2ZnGeSe4. The results were compared with those for Cu2ZnSnSe4, Cu2ZnGeS4, and Cu2ZnSnS4 calculated using the same version of the CASTEP program code. The results indicate that Cu vacancies are easily formed in Cu2ZnGeSe4 under the Cu-poor condition as in the above compounds and CuInSe2, suggesting that Cu2ZnGeSe4 is also a preferable p-type absorber material for thin-film solar cells. The formation energies of possible antisite defects, such as CuZn and CuGe, and of possible complex defects, such as CuZn+ZnCu, were also calculated and compared within the above materials. The antisite defect of CuZn, which has the smallest formation energy within the possible defects, is concluded to be the most hardly formed in Cu2ZnGeSe4 among the compounds.

  19. Construction and evaluation of multi-component Zn-Al based bearing alloys (Zn-Al-Si, Zn-Al-Cu)

    International Nuclear Information System (INIS)

    Shahmiri, M.; Shahin, K.

    2001-01-01

    Zn-Al based alloys, with excellent mechanical properties, are finding increasing applications in various industries, especially bearing and bushing fields. Observed dimensional instabilities, in their multicomponent systems, (e. g. Zn-Al-Si and, Zn-Al Si-Cu), is believed to be as the result of some kinds of phase transformation, due to the temperature variations, while in service. Profound understanding of the phase transformations due to the temperature variation, requires detailed evaluations of the isothermal sections of the multi-components phase diagrams of Zn-Al-Si and, Zn-Al-Si-Cu alloy systems. In the present article, the isothermal sections of the aforementioned ternary and quaternary systems in the solid state regions have been investigated and observed phase transitions have been critically evaluated

  20. Proficiency test Plant 6 - determination of As, Cd, Cu, Hg, Pb, Se and Zn in dry mushroom powder (Suillus bovinus)

    International Nuclear Information System (INIS)

    Polkowska-Motrenko, H.; Dudek, J.; Chajduk, E.; Sypula, M.; Sadowska-Bratek, M.

    2006-01-01

    Proficiency testing scheme PLANT 6: Determination of As, Cd, Cu, Hg, Pb, Se and Zn in dry mushroom powder (Suillus bovinus) has been described. The proficiency test has been provided by the Institute of Nuclear Chemistry and Technology (Warsaw) with cooperation with POLLAB-CHEM/EURACHEM-PL and REFMAT Society. Wild mushrooms were collected in the forest in north-west Poland, cleaned, i.e. dust, soil and attached mosses were removed. Mushrooms were cut into smaller parts and air dried in a dryer. Dried mushrooms were milled in a centrifugal mill and sieved. Particles of fraction below 1 mm diameter were collected. Analytical samples of 20 g mass were prepared. The material were then characterized by homogeneity testing and determination of assigned values for concentration of elements in question. The testing samples were sent to the laboratories participating in the proficiency test. The results supplied by the participants were statistically evaluated and the calculated values of z-score and En numbers were used for the evaluation of the participating laboratory competency. (author)

  1. Qualitative aspects of biomonitoring: Sphagnum auriculatum response vs. aerosol metal concentrations (Pb, Ca, Cr, Cu, Fe, Mn, Ni and Zn) in the Porto urban atmosphere

    International Nuclear Information System (INIS)

    Teresa, M.; Vasconcelos, S.D.; Tavares Laquipai, H.M.F.

    2000-01-01

    and Zn were also biomonitored and monitored in parallel. For all the heavy metals, the rate of metal uptake by moss was significantly correlated with the metal concentration in atmospheric aerosols. The results indicated that moss bags of S. auriculatum can provide quantitative estimation of the concentration of different heavy metals in urban atmosphere since the present methodology is used. S. auriculatum showed not to be a good quantitative bioindicator for Ca. The mean aerosol metal concentrations found in Porto atmosphere were similar to those observed in other urban atmospheres in different countries. The relative order of the mean metal concentrations was Fe (1.8 μg/m 3 ) > Ca > Zn > Pb > Cu > Cr > Mn > Ni (20 μg/m 3 ). (author)

  2. Accumulation of Trace Metal Elements (Cu, Zn, Cd, and Pb in Surface Sediment via Decomposed Seagrass Leaves: A Mesocosm Experiment Using Zostera marina L.

    Directory of Open Access Journals (Sweden)

    Shinya Hosokawa

    Full Text Available Accumulation of Cu, Zn, Cd, and Pb in the sediment of seagrass ecosystems was examined using mesocosm experiments containing Zostera marina (eelgrass and reference pools. Lead was approximately 20-fold higher in the surface sediment in the eelgrass pool than in eelgrass leaves and epiphytes on the eelgrass leaves, whereas zinc and cadmium were significantly lower in the surface sediment than in the leaves, with intermediate concentrations in epiphytes. Copper concentrations were similar in both the surface sediment and leaves but significantly lower in epiphytes. Carbon and nitrogen contents increased significantly with increasing δ13C in surface sediments of both the eelgrass and reference pools. Copper, Zn, Cd, and Pb also increased significantly with increasing δ13C in the surface sediment in the eelgrass pool but not in the reference pool. By decomposition of eelgrass leaves with epiphytes, which was examined in the eelgrass pool, copper and lead concentrations increased more than 2-fold and approximately a 10-fold, whereas zinc and cadmium concentrations decreased. The high copper and lead concentrations in the surface sediment result from accumulation in decomposed, shed leaves, whereas zinc and cadmium remobilized from decomposed shed leaves but may remain at higher concentrations in the leaves than in the original sediments. The results of our mesocosm study demonstrate that whether the accumulation or remobilization of trace metals during the decomposition of seagrass leaves is trace metal dependent, and that the decomposed seagrass leaves can cause copper and lead accumulation in sediments in seagrass ecosystems.

  3. Chemical bath deposited PbS thin films on ZnO nanowires for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Gertman, Ronen [Dept of Chemistry, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Osherov, Anna; Golan, Yuval [Dept of Materials Engineering, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Visoly-Fisher, Iris, E-mail: irisvf@bgu.ac.il [Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus 84990 (Israel)

    2014-01-01

    Photovoltaic devices usually exploit mid-range band-gap semiconductors which absorb in the visible range of the solar spectrum. However, much energy is lost in the IR and near-IR range. We combined the advantages of small band-gap, bulk-like PbS deposited by facile, cheap and direct chemical bath deposition (CBD), with the good electronic properties of ZnO and the large surface area of nanowires, towards low cost photovoltaic devices utilizing IR and near-IR light. Surprisingly, CBD of PbS on ZnO, and particularly on ZnO nanowires, was not studied hitherto. Therefore, the mechanism of PbS growth by chemical bath deposition on ZnO nanowires was studied in details. A visible proof is shown for a growth mechanism starting from amorphous Pb(OH){sub 2} layer, that evolved into the ‘ion-by-ion’ growth mechanism. The growth mechanism and the resulting morphology at low temperatures were controlled by the thiourea concentration. The grain size affected the magnitude of the band-gap and was controlled by the deposition temperatures. Deposition above 40 °C resulted in bulk-like PbS with an optical band-gap of 0.4 eV. Methods were demonstrated for achieving complete PbS coverage of the complex ZnO NW architecture, a crucial requirement in optoelectronic devices to prevent shorts. Measurements of photocurrents under white and near-IR (784 nm) illumination showed that despite a 200 meV barrier for electron transfer at the PbS/ZnO interface, extraction of photo-electrons from PbS to the ZnO was feasible. The ability to harvest electrons from a narrow band-gap semiconductor deposited on a large surface-area electrode can advance the field towards high efficiency, low cost IR and near-IR sensors and third generation solar cells. - Highlights: • PbS was deposited on ZnO nanowires using chemical bath deposition. • At 50 °C the growth mechanism starts from an amorphous Pb(OH){sub 2} layer. • At 5 °C the growth mechanism of PbS can be controlled by thiourea concentrations

  4. Preparation of Cu{sub 2}ZnSnS{sub 4} thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Hideaki; Kubo, Yuki; Jimbo, Kazuo; Maw, Win Shwe; Katagiri, Hironori; Yamazaki, Makoto; Oishi, Koichiro; Takeuchi, Akiko [Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)

    2009-05-15

    Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films were prepared by sulfurization of electrodeposited Cu-Zn-Sn precursors. The Cu-Zn-Sn precursors were deposited on Mo-coated glass substrates in a one-step process from an electrolyte containing copper (II) sulfate pentahydrate, zinc sulfate heptahydrate, tin (II) chloride dehydrate and tri-sodium citrate dehydrate. The precursors were sulfurized by annealing with sulfur at temperatures of 580 C and 600 C in an N{sub 2} atmosphere. X-ray diffraction peaks attributable to CZTS were detected in the sulfurized films. Photovoltaic cells with the structure glass/Mo/CZTS/ CdS/ZnO:Al/Al were fabricated using the CZTS films by sulfurizing the electrodeposited precursors. The best photovoltaic cell performance was obtained with Zn-rich samples. An open-circuit voltage of 540 mV, a short-circuit current of 12.6 mA/cm{sup 2} and an efficiency of 3.16% were achieved. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Screening and Evaluation of the Bioremediation Potential of Cu/Zn-Resistant, Autochthonous Acinetobacter sp. FQ-44 from Sonchus oleraceus L.

    Science.gov (United States)

    Fang, Qing; Fan, Zhengqiu; Xie, Yujing; Wang, Xiangrong; Li, Kun; Liu, Yafeng

    2016-01-01

    The quest for new, promising and indigenous plant growth-promoting rhizobacteria and a deeper understanding of their relationship with plants are important considerations in the improvement of phytoremediation. This study focuses on the screening of plant beneficial Cu/Zn-resistant strains and assessment of their bioremediation potential (metal solubilization/tolerance/biosorption and effects on growth of Brassica napus seedlings) to identify suitable rhizobacteria and examine their roles in microbes-assisted phytoremediation. Sixty Cu/Zn-resistant rhizobacteria were initially isolated from Sonchus oleraceus grown at a multi-metal-polluted site in Shanghai, China. From these strains, 19 isolates that were all resistant to 300 mg⋅L -1 Cu as well as 300 mg⋅L -1 Zn, and could simultaneously grow on Dworkin-Foster salt minimal medium containing 1-aminocyclopropane-1-carboxylic acid were preliminarily selected. Of those 19 isolates, 10 isolates with superior plant growth-promoting properties (indole-3-acetic acid production, siderophore production, and insoluble phosphate solubilization) were secondly chosen and further evaluated to identify those with the highest bioremediation potential and capacity for bioaugmentation. Strain S44, identified as Acinetobacter sp. FQ-44 based on 16S rDNA sequencing, was specifically chosen as the most favorable strain owing to its strong capabilities to (1) promote the growth of rape seedlings (significantly increased root length, shoot length, and fresh weight by 92.60%, 31.00%, and 41.96%, respectively) under gnotobiotic conditions; (2) tolerate up to 1000 mg⋅L -1 Cu and 800 mg⋅L -1 Zn; (3) mobilize the highest concentrations of water-soluble Cu, Zn, Pb, and Fe (16.99, 0.98, 0.08, and 3.03 mg⋅L -1 , respectively); and (4) adsorb the greatest quantities of Cu and Zn (7.53 and 6.61 mg⋅g -1 dry cell, respectively). Our findings suggest that Acinetobacter sp. FQ-44 could be exploited for bacteria-assisted phytoextraction

  6. Etude d’impact des métaux traces (Hg, Cd, Pb, Cu et Zn) dans les cystes et la biomasse "d’Artemia" exploités dans la saline de Sfax

    OpenAIRE

    Aloui, N.; Amorri, M.; Choub., L.

    2010-01-01

    RESUME La saline de Sfax constitue un site potentiel pour l’exploitation et la production de l’Artemia locale. Des quantités importantes d’Artemia sont exploitées chaque année (60 kg de cystes poids sec) et sont utilisées en alimentation larvaire. Afin de démontrer l’impact de divers rejets industriels, agricoles dans cette saline, nous avons procédé à la détermination de quelques métaux traces toxiques : le mercure (Hg), le cadmium (Cd), le plomb (Pb), le cuivre (Cu) et le zinc (Zn) p...

  7. Energy-dispersive X-ray fluorescence analysis of traces of heavy metals (Mn, Fe, Co, Ni, Cu, Zn, Ta, Pb, U) in mineral waters after separation on the cellulose-exchanger Hyphan

    International Nuclear Information System (INIS)

    Burba, P.; Lieser, K.H.

    1979-01-01

    Trace elements in mineral water are separated in small columns on the cellulose-exchanger Hyphan, eluted by diluted hydrochloric acid, bound on 100 mg of Hyphan by shaking and determined by energy-dispersive X-ray fluorescence. The following heavy metals can be analysed quantitatively if present in water in concentrations >= 1 ppb: Mn, Fe, Co, Ni, Cu, Zn, Ta, Pb and U. Several commercial mineral waters, a sodium chloride spring and seawater were analyzed for trace elements. The results obtained by X-ray fluorescence and by atomic absorption agree within the limits of error. (orig.) [de

  8. Optical studies on Zn-doped lead chalcogenide (PbSe){sub 100−x}Zn{sub x} thin films composed of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, Md. Tanweer [Department of Applied Sciences and Humanities, Jamia Millia Islamia (JMI), New Delhi-25 (India); Salah, Numan A. [Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Rafat, M. [Department of Applied Sciences and Humanities, Jamia Millia Islamia (JMI), New Delhi-25 (India); Zulfequar, M. [Department of Physics, Jamia Millia Islamia, New Delhi-25 (India); Khan, Zishan H., E-mail: zishan_hk@yahoo.co.in [Department of Applied Sciences and Humanities, Jamia Millia Islamia (JMI), New Delhi-25 (India)

    2016-08-01

    The effect of laser-Irradiation on the optical properties of Zn-doped PbSe thin films composed of nanoparticles has been studied. Scanning electron microscope (SEM) investigations suggest the formation of nanoparticles of average size of 50 nm for all the studied Zn compositions. XRD studies show that the as-prepared thin films are polycrystalline in nature. The formation of nanoparticles of Zn-doped PbSe has been confirmed by indexing the crystal planes as observed in the XRD spectra. The addition of Zn in (PbSe){sub 100−x}Zn{sub x} thin films result in the blue shift in photoluminescence spectra, this blue shift is associated with the narrowing of the band gap. Optical absorption measurements reveal a direct band gap for the present samples, which decreases on increasing the Zn content. The same trend has also been observed for the samples irradiated with laser. Further, the calculated values of Urbach energy are found to increase with the increase in Zn contents for the as-prepared as well as laser-irradiated samples. All the above observations agree well with the results of optical band gap and suggest that the decrease in band gap may be due to increase in band tails, defects and particle size. - Highlights: • Nanoparticles of Zn doped (PbSe){sub 100−x}Zn{sub x} lead chalcogenides have been synthesized. • Effect of laser irradiation on optical properties of (PbSe){sub 100−x}Zn{sub x} has been studied. • A blue shift in PL spectra is obtained on Zn incorporation.

  9. Tuning the emission of aqueous Cu:ZnSe quantum dots to yellow light window

    International Nuclear Information System (INIS)

    Wang, Chunlei; Hu, Zhiyang; Xu, Shuhong; Wang, Yanbin; Zhao, Zengxia; Wang, Zhuyuan; Cui, Yiping

    2015-01-01

    Synthesis of internally doped Cu:ZnSe QDs in an aqueous solution still suffers from narrow tunable emissions from the blue to green light window. In this work, we extended the emission window of aqueous Cu:ZnSe QDs to the yellow light window. Our results show that high solution pH, multiple injections of Zn precursors, and nucleation doping strategy are three key factors for preparing yellow emitted Cu:ZnSe QDs. All these factors can depress the reactivity of CuSe nuclei and Zn monomers, promoting ZnSe growth outside CuSe nuclei rather than form ZnSe nuclei separately. With increased ZnSe QD size, the conduction band and nearby trap state energy levels shift to higher energy sites, causing Cu:ZnSe QDs to have a much longer emission. (paper)

  10. Comparison of Cu2+ and Zn2+ thermalcatalyst in treating diazo dye

    Science.gov (United States)

    Lau, Y. Y.; Wong, Y. S.; Ong, S. A.; Lutpi, N. A.; Ho, L. N.

    2018-05-01

    This research demonstrates the comparison between copper (II) sulphate (CuSO4) and zinc oxide (ZnO) as thermalcatalysts in thermolysis process for the treatment of diazo reactive black 5 (RB 5) wastewater. CuSO4 was found to be the most effective thermalcatalyst in comparison to ZnO. The color removal efficiency of RB 5 catalysed by CuSO4 and ZnO were 91.55 % at pH 9.5 and 7.36 % at pH 2, respectively. From the UV-Vis wavelength scan, CuSO4 catalyst is able to cleave the molecular structure bonding more efficiently compared to ZnO. ZnO which only show a slight decay on the main chemical network strands: azo bond, naphthalene and benzene rings whereas CuSO4 catalyst is able to fragment azo bond and naphthalene more effectively. The degradation reactions of CuSO4 and ZnO as thermalcatalysts in thermolysis process were compared.

  11. Biosorption of Cu2+ and Pb2+ using sophora alopecuroides residue

    Science.gov (United States)

    Feng, N.; Fan, W.; Zhu, M.; Zhang, Y.

    2016-08-01

    Sophora alopecuroides residue (SAP), a kind of traditional Chinese herbal medicine residue, was developed in an alternative biosorbent for the removal Cu2+ and Pb2+ in simulated wastewater. The morphology and surface texture of SAP were characterized by scanning electron microscopy, which showed a loose and porous structure. The biosorption experiments of Cu2+ and Pb2+ onto SAP were investigated by using batch techniques. High biosorption percentage appeared at pH values of 4.5-6.0. The experimental data followed the second-order kinetic model well. Equilibrium fit with the Langmuir isotherm model well. The maximum biosorption capacity of an adsorbent at 25 °C was respectively 60.6 mg/g Cu2+ and 128.1 mg/g Pb2+. The findings of the present study show that SAP is an attractive and effective biosorbent for Cu2+ and Pb2+.

  12. Cu-implanted ZnO nanorods array film: An aqueous synthetic approach

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ajaya Kumar, E-mail: ajayaksingh_au@yahoo.co.in [Department of Chemistry, Govt. VYT PG. Autonomous College Durg, Chhattisgarh (India); Thool, Gautam Sheel [Department of Chemistry, Govt. VYT PG. Autonomous College Durg, Chhattisgarh (India); Singh, R.S. [Department of Physics, Govt. D.T. College, Utai, Durg, Chhattisgarh (India); Singh, Surya Prakash, E-mail: spsingh@iict.res.in [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal road, Tarnaka, Hyderabad 500007 (India)

    2015-01-05

    Highlights: • Cu doped ZnO nanorods were synthesized using low temperature aqueous solution method. • We demonstrated the capping action of TEA via theoretical simulation. • Raman analysis revealed the presence of tensile strain in Cu doped ZnO nanorods. • Growth rate was found to be high in Cu doped ZnO nanorods. - Abstract: Pure and Cu doped ZnO nanorods array are synthesized via two step chemical bath deposition method. The seed layer is prepared by successive ionic layer adsorption reaction (SILAR) method. The synthesized materials have been systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectroscopy. SEM pictures show the existence of vertically well aligned hexagonal ZnO nanorods. EDAX spectrum confirms the presence of Cu in ZnO nanorods. High intense peak of (0 0 2) plane and E{sub 2}{sup high} mode for XRD and Raman spectrum respectively, suggest the ZnO nanorods are adopted c-axis orientation perpendicular to substrate. XRD and Raman analysis shows the presence of tensile strain in Cu doped ZnO nanorods. Effect of Cu doping on lattice constants, unit cell volume and Zn–O bond length of ZnO nanorods have also been studied. Room temperature PL measurement exhibits two luminescence bands in the spectra i.e. UV emission centered at 3.215 eV and a broad visible band. Theoretical investigation for capping action of triethanolamine is done by Hartree–Fock (HF) method with 3-21G basis set using Gaussian 09 program package.

  13. The crystallisation of Cu{sub 2}ZnSnS{sub 4} thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schurr, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany)], E-mail: schurr@krist.uni-erlangen.de; Hoelzing, A.; Jost, S.; Hock, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany); Voss, T.; Schulze, J.; Kirbs, A. [Atotech Deutschland GmbH, Erasmusstrasse 20, D-10553 Berlin (Germany); Ennaoui, A.; Lux-Steiner, M. [Heterogeneous Material Systems SE II, Hahn-Meitner-Institut, Glienickerstr.100, D-14109 Berlin (Germany); Weber, A.; Koetschau, I.; Schock, H.-W. [Technology SE III, Hahn-Meitner-Institut, Glienickerstr.100, D-14109 Berlin (Germany)

    2009-02-02

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu{sub 2}ZnSnS{sub 4} based thin film solar cells. A kesterite based solar cell (size 0.5 cm{sup 2}) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu{sub 2}SnS{sub 3} and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu{sub 3}Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu{sub 6}Sn{sub 5} and Sn phases were detected. The formation mechanism of Cu{sub 2}SnS{sub 3} involves the binary sulphides Cu{sub 2-x}S and SnS{sub 2} in the absence of the binary precursor phase Cu{sub 6}Sn{sub 5}. The presence of Cu{sub 6}Sn{sub 5} leads to a preferred formation of Cu{sub 2}SnS{sub 3} via the reaction educts Cu{sub 2-x}S and SnS{sub 2} in the presence of a SnS{sub 2}(Cu{sub 4}SnS{sub 6}) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase.

  14. U-Pb, Re-Os and Ar-Ar dating of the Linghou polymetallic deposit, Southeastern China: Implications for metallogenesis of the Qingzhou-Hangzhou metallogenic belt

    Science.gov (United States)

    Tang, Yanwen; Xie, Yuling; Liu, Liang; Lan, Tingguan; Yang, Jianling; Sebastien, Meffre; Yin, Rongchao; Liang, Songsong; Zhou, Limin

    2017-04-01

    The Qingzhou-Hangzhou metallogenic belt (QHMB) in Southeastern China has gained increasingly attention in recent years. However, due to the lack of reliable ages on intrusions and associated deposits in this belt, the tectonic setting and metallogenesis of the QHMB have not been well understood. The Linghou polymetallic deposit in northwestern Zhejiang Province is one of the typical deposits of the QHMB. According to the field relationships, this deposit consists of the early Cu-Au-Ag and the late Pb-Zn-Cu mineralization stages. Molybdenite samples with a mineral assemblage of molybdenite-chalcopyrite-pyrite ± quartz are collected from the copper mining tunnel near the Cu-Au-Ag ore bodies. Six molybdenite samples give the Re-Os model ages varying from 160.3 to 164.1 Ma and yield a mean age of 162.2 ± 1.4 Ma for the Cu-Au-Ag mineralization. Hydrothermal muscovite gives a well-defined Ar-Ar isochron age of 160.2 ± 1.1 Ma for the Pb-Zn-Cu mineralization. Three phases of granodioritic porphyry have been distinguished in this deposit, and LA-ICP-MS zircon U-Pb dating shows that they have formed at 158.8 ± 2.4 Ma, 158.3 ± 1.9 Ma and 160.6 ± 2.1 Ma, comparable to the obtained ages of the Cu-Au-Ag and Pb-Zn-Cu mineralization. Therefore, these intrusive rocks have a close temporal and spatial relationship with the Cu-Au-Ag and Pb-Zn-Cu ore bodies. The presences of skarn minerals (e.g., garnet) and vein-type ores, together with the previous fluid inclusion and H-O-C-S-Pb isotopic data, clearly indicate that the Cu-Au-Ag and Pb-Zn-Cu mineralization are genetically related to these granodiorite porphyries. This conclusion excludes the possibility that this deposit is of ;SEDEX; type and formed in a sag basin of continental rifts setting as previously proposed. Instead, it is proposed that the Linghou polymetallic and other similar deposits in the QHMB, such as the 150-160 Ma Yongping porphyry-skarn Cu-Mo, Dongxiang porphyry? Cu, Shuikoushan/Kangjiawang skarn Pb-Zn

  15. Tracing contamination sources in soils with Cu and Zn isotopic ratios.

    Science.gov (United States)

    Fekiacova, Z; Cornu, S; Pichat, S

    2015-06-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ(65)Cu values vary from -0.15 to 0.44‰ and the δ(66)Zn from -0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from -0.95 to 0.44‰ for δ(65)Cu and from -0.53 to 0.64‰ for δ(66)Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Contamination and Health Risks from Heavy Metals (Cd and Pb and Trace Elements (Cu and Zn in Dairy Products

    Directory of Open Access Journals (Sweden)

    Hamid Reza Ghafari

    2017-08-01

    Conclusion: Considering the serious contamination of some brands of butter and cheese by Cu and Pb, a control of heavy metals and trace elements levels during the whole production processing of dairy products must be applied.

  17. Determination of Cu, Zn, Pb and Cd by Atomic Emission Spectrometry with Inductively Coupled Plasma in Organs of the Specie Gambusia punctata (Poeciliidae)

    International Nuclear Information System (INIS)

    Argota Perez, George; Argota Coello, Humberto; Rodriguez Amado, Jesus; Fernandez Heredia, Angel

    2013-01-01

    The aim of this research was to adequate the ICP-AES method to the quantification of Cu, Zn, Pb and Cd in brain, liver and gills of the specie Gambusia punctata, in order to know the level of exposure of the ecosystems San Juan and File in Santiago de Cuba province. To achieve the fitness for purpose of the method, limits of detection, reproducibility and accuracy were evaluated using reference certificated materials of fishes. The biological samples were classified according the ecosystem, length, sex and organ. It were dried, digested with mix of acids and the metals measured in the spectrometer. The results demonstrated that factors as length and sex have not influence in the bioaccumulation, whereas the gill was the organ where all the elements were bioaccumulated. Finally, due that the smallest concentrations of metals were in the File ecosystem, it could be used as an environmental reference

  18. Band alignment of type I at (100ZnTe/PbSe interface

    Directory of Open Access Journals (Sweden)

    Igor Konovalov

    2016-06-01

    Full Text Available A junction of lattice-matched cubic semiconductors ZnTe and PbSe results in a band alignment of type I so that the narrow band gap of PbSe is completely within the wider band gap of ZnTe. The valence band offset of 0.27 eV was found, representing a minor barrier during injection of holes from PbSe into ZnTe. Simple linear extrapolation of the valence band edge results in a smaller calculated band offset, but a more elaborate square root approximation was used instead, which accounts for parabolic bands. PbSe was electrodeposited at room temperature with and without Cd2+ ions in the electrolyte. Although Cd adsorbs at the surface, the presence of Cd in the electrolyte does not influence the band offset.

  19. Room-temperature ferromagnetic properties of Cu-doped ZnO rod ...

    Indian Academy of Sciences (India)

    We have investigated properties of the Cu-doped ZnO crystalline film synthesized by the hydrothermal method. X-ray diffraction and X-ray ... DMSs are semiconducting alloys whose lattice is made up in part of substitutional magnetic ... investigate Cu-doped ZnO system (Hou et al 2007a, b), as. Cu is a potential magnetic ion ...

  20. The effect of Cu/Zn molar ratio on CO{sub 2} hydrogenation over Cu/ZnO/ZrO{sub 2}/Al{sub 2}O{sub 3} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Shaharun, Salina, E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Shaharun, Maizatul S., E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Taha, Mohd F., E-mail: faisalt@petronas.com.my [Department of Fundamental and Applied Science, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Mohamad, Dasmawati, E-mail: dasmawati@kck.usm.my [School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2014-10-24

    Catalytic hydrogenation of carbon dioxide (CO{sub 2}) to methanol is an attractive way to recycle and utilize CO{sub 2}. A series of Cu/ZnO/Al{sub 2}O{sub 3}/ZrO{sub 2} catalysts (CZAZ) containing different molar ratios of Cu/Zn were prepared by the co-precipitation method and investigated in a stirred slurry autoclave system. The catalysts were characterized by temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX), X-ray diffraction (XRD) and N{sub 2} adsorption-desorption. Higher surface area, SA{sub BET} values (42.6–59.9 m{sup 2}/g) are recorded at low (1) and high (5) Cu/Zn ratios with the minimum value of 35.71 m{sup 2}/g found for a Cu/Zn of 3. The reducibility of the metal oxides formed after calcination of catalyst samples was also affected due to change in metal-support interaction. At a low reaction temperature of 443 K, total gas pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity to methanol decreased as the Cu/Zn molar ratio increased, and the maximum selectivity of 67.73 was achieved at Cu/Zn molar ratio of 1. With a reaction time of 3h, the best performing catalyst was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield of 79.30%.

  1. Thallium transformation and partitioning during Pb-Zn smelting and environmental implications.

    Science.gov (United States)

    Liu, Juan; Wang, Jin; Chen, Yongheng; Xie, Xiaofan; Qi, Jianying; Lippold, Holger; Luo, Dinggui; Wang, Chunlin; Su, Longxiao; He, Lucheng; Wu, Qiwei

    2016-05-01

    Thallium (Tl) is a toxic and non-essential heavy metal. Raw Pb-Zn ores and solid smelting wastes from a large Pb-Zn smelting plant - a typical thallium (Tl) pollution source in South China, were investigated in terms of Tl distribution and fractionation. A modified IRMM (Institute for Reference Materials and Measurement, Europe) sequential extraction scheme was applied on the samples, in order to uncover the geochemical behavior and transformation of Tl during Pb-Zn smelting and to assess the potential environmental risk of Tl arising from this plant. Results showed that the Pb-Zn ore materials were relatively enriched with Tl (15.1-87.7 mg kg(-1)), while even higher accumulation existed in the electrostatic dust (3280-4050 mg kg(-1)) and acidic waste (13,300 mg kg(-1)). A comparison of Tl concentration and fraction distribution in different samples clearly demonstrated the significant role of the ore roasting in Tl transformation and mobilization, probably as a result of alteration/decomposition of related minerals followed by Tl release and subsequent deposition/co-precipitation on fine surface particles of the electrostatic dust and acidic waste. While only 10-30% of total Tl amounts was associated with the exchangeable/acid-extractable fraction of the Pb-Zn ore materials, up to 90% of total Tl was found in this fraction of the electrostatic dust and acidic waste. Taking into account the mobility and bioavailability of this fraction, these waste forms may pose significant environmental risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Glomus mosseae enhances root growth and Cu and Pb acquisition of upland rice (Oryza sativa L.) in contaminated soils.

    Science.gov (United States)

    Lin, Aijun; Zhang, Xuhong; Yang, Xiaojin

    2014-12-01

    A pot culture experiment was carried out to investigate the roles of Glomus mosseae in Cu and Pb acquisition by upland rice (Oryza sativa L.) and the interactions between Cu and Pb. The soil was treated with three Cu levels (0, 100 and 200 mg kg(-1)) and three Pb levels (0, 300, and 600 mg kg(-1)). All treatments were designed with (+M) or without (-M) G. mosseae inoculation in a randomized block design. The addition of Cu and Pb significantly decreased root mycorrhizal colonization. Compared with -M, +M significantly increased root biomass in almost all treatments, and also significantly increased shoot biomass in the Pb(0)Cu(200), Pb(300)Cu(0), and all Pb(600) treatments. AM fungi enhanced plant Cu acquisition, but decreased plant Cu concentrations with all Cu plus Pb treatments, except for shoot in the Cu(200)Pb(600) treatment. Irrespective of Cu and Pb levels, +M plants had higher Pb uptakes than -M plants, but had lower root Pb and higher shoot Pb concentrations than those of -M plants. Another interpretation for the higher shoot Pb concentration in +M plants relied on Cu-Pb interactions. The study provided further evidences for the protective effects of AM fungi on upland rice against Cu and Pb contamination, and uncovered the phenomenon that Cu addition could promote Pb uptake and Pb partitioning to shoot. The possible mechanisms by which AM fungi can alleviate the toxicity induced by Cu and Pb are also discussed.

  3. Molecular distortion and charge transfer effects in ZnPc/Cu(111)

    KAUST Repository

    Amin, B.; Nazir, S.; Schwingenschlö gl, Udo

    2013-01-01

    The adsorption geometry and electronic properties of a zinc-phthalocyanine molecule on a Cu(111) substrate are studied by density functional theory. In agreement with experiment, we find remarkable distortions of the molecule, mainly as the central Zn atom tends towards the substrate to minimize the Zn-Cu distance. As a consequence, the Zn-N chemical bonding and energy levels of the molecule are significantly modified. However, charge transfer induces metallic states on the molecule and therefore is more important for the ZnPc/Cu(111) system than the structural distortions.

  4. Molecular distortion and charge transfer effects in ZnPc/Cu(111)

    KAUST Repository

    Amin, B.

    2013-04-23

    The adsorption geometry and electronic properties of a zinc-phthalocyanine molecule on a Cu(111) substrate are studied by density functional theory. In agreement with experiment, we find remarkable distortions of the molecule, mainly as the central Zn atom tends towards the substrate to minimize the Zn-Cu distance. As a consequence, the Zn-N chemical bonding and energy levels of the molecule are significantly modified. However, charge transfer induces metallic states on the molecule and therefore is more important for the ZnPc/Cu(111) system than the structural distortions.

  5. Cu{sub 2}ZnSn(S,Se){sub 4} from Cu{sub x}SnS{sub y} nanoparticle precursors on ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kavalakkatt, Jaison, E-mail: jai.k@web.de [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universitaet Berlin, Berlin (Germany); Lin, Xianzhong; Kornhuber, Kai [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Kusch, Patryk [Freie Universitaet Berlin, Berlin (Germany); Ennaoui, Ahmed [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Reich, Stephanie [Freie Universitaet Berlin, Berlin (Germany); Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universitaet Berlin, Berlin (Germany)

    2013-05-01

    Solar cells with Cu{sub 2}ZnSnS{sub 4} absorber thin films have a potential for high energy conversion efficiencies with earth-abundant and non-toxic elements. In this work the formation of CZTSSe from Cu{sub x}SnS{sub y} nanoparticles (NPs) deposited on ZnO nanorod (NR) arrays as precursors for zinc is investigated. The NPs are prepared using a chemical route and are dispersed in toluene. The ZnO NRs are grown on fluorine doped SnO{sub 2} coated glass substrates by electro deposition method. A series of samples are annealed at different temperatures between 300 °C and 550 °C in selenium containing argon atmosphere. To investigate the products of the reaction between the precursors the series is analyzed by means of X-ray diffraction (XRD) and Raman spectroscopy. The morphology is recorded by scanning electron microscopy (SEM) images of broken cross sections. The XRD measurements and the SEM images show the disappearing of ZnO NRs with increasing annealing temperature. Simultaneously the XRD and Raman measurements show the formation of CZTSSe. The formation of secondary phases and the optimum conditions for the preparation of CZTSSe is discussed. - Highlights: ► Cu{sub x}SnS{sub y} nanoparticles are deposited on ZnO nanorod arrays. ► Samples are annealed at different temperatures (300–550 °C) in Se/Ar-atmosphere. ► Raman spectroscopy, X-ray diffraction and electron microscopy are performed. ► ZnO disappears with increasing annealing temperature. ► With increasing temperature Cu{sub x}SnS{sub y} and ZnO form Cu{sub 2}ZnSn(S,Se){sub 4}.

  6. Migration behavior of Cu and Zn in landfill with different operation modes

    International Nuclear Information System (INIS)

    Long Yuyang; Shen Dongsheng; Wang Hongtao; Lu Wenjing

    2010-01-01

    Cu and Zn were chosen to study the heavy metal migration behavior and mechanism in three simulated landfills with different operation modes, namely conventional landfill (CL), leachate directly recirculated landfill (RL) and leachate pre-treated bioreactor landfill (BL). It showed that Cu and Zn in refuse experienced periodic migration and retention gradually during decomposition, and the variation of Cu(II) and Zn(II) in leachate correspondingly reflected the releasing behavior of Cu and Zn in landfill refuse at different stabilization stages. Except for their accumulated leaching amounts, Cu(II) and Zn(II) concentrations in leachate from landfills with different operation modes had no significant difference. The accumulated leaching amounts of Cu and Zn from CL showed exponential increase, while those of RL and BL showed exponential decay. The operation of bioreactor landfill with leachate recirculation can obviously attenuate the heavy metal leaching than conventional operation. The introduction of methanogenic reactor (MR) in bioreactor landfill can further promote the immobilization of heavy metal in refuse than leachate recirculation directly.

  7. Modulation-free bismuth-lead cuprate superconductors: BiPbSr1+xL1-xCuO6 and BiPbSr2Y1-xCaxCu2O8

    International Nuclear Information System (INIS)

    Manivannan, V.; Gopalakrishnan, J.; Rao, C.N.R.

    1991-01-01

    Modulation-free BiPbSrLCuO 6 (L=La, Pr, Nd) and BiPbSr 2 YCu 2 O 8 , which are isotypic with the n=1 and 2 members of the Bi 2 Sr 2 Ca n-1 Cu n O 2n+4 family, have been prepared and characterized. These parent compounds are nonsuperconducting, but when doped with holes by substitution chemistry give modulation-free superconducting cuprates of the general formulas BiPbSr 1+xL1-x CuO 6 and BiPbSr 2 Y 1-x Ca x Cu 2 O 8 , exhibiting maximum T c 's of 24 and 85 K, respectively. Significantly, the hole concentration at the maximum T c is 0.12 in the cuprate family with a single Cu-O layer and 0.22 in that with two Cu-O layers

  8. A reconnaissance Rb-Sr, Sm-Nd, U-Pb, and K-Ar study of some host rocks and ore minerals in the West Shasta Cu- Zn district, California ( USA).

    Science.gov (United States)

    Kistler, R.W.; McKee, E.H.; Futa, K.; Peterman, Z.E.; Zartman, R.E.

    1985-01-01

    The Copley Greenstone, Balaklala Rhyolite, and Mule Mountain stock in the West Shasta Cu-Zn district, California, have Rb-Sr, Sm-Nd, U-Pb, and K-Ar systematics that indicate they are a cogenetic suite of ensimatic island-arc rocks about 400 Ma. Pervasive alteration and mineralization of these rocks, for the most part, was syngenetic and the major component of the mineralizing fluid was Devonian seawater. K-Ar ages of quarz-sericite concentrates from ore horizons and Rb-Sr systematics of a few rock and ore specimens record a later thermal and mineralizing event in the district of about 260 Ma. Contamination of some rocks with pelagic sediments is indicated by the Sm-Nd data. -Authors

  9. Stabilization of lead (Pb) and zinc (Zn) in contaminated rice paddy soil using starfish: A preliminary study.

    Science.gov (United States)

    Moon, Deok Hyun; Hwang, Inseong; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Ok, Yong Sik; Ji, Won Hyun; Park, Jeong-Hun

    2018-05-01

    Lead (Pb) and zinc (Zn) contaminated rice paddy soil was stabilized using natural (NSF) and calcined starfish (CSF). Contaminated soil was treated with NSF in the range of 0-10 wt% and CSF in the range of 0-5 wt% and cured for 28 days. Toxicity characteristic leaching procedure (TCLP) test was used to evaluate effectiveness of starfish treatment. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) analyses were conducted to investigate the mechanism responsible for effective immobilization of Pb and Zn. Experimental results suggest that NSF and CSF treatments effectively immobilize Pb and Zn in treated rice paddy soil. TCLP levels for Pb and Zn were reduced with increasing NSF and CSF dosage. Comparison of the two treatment methods reveals that CSF treatment is more effective than NSF treatment. Leachability of the two metals is reduced approximately 58% for Pb and 51% for Zn, upon 10 wt% NSF treatment. More pronounced leachability reductions, 93% for Pb and 76% for Zn, are achieved upon treatment with 5 wt% CSF. Sequential extraction results reveal that NSF and CSF treatments of contaminated soil generated decrease in exchangeable/weak acid Pb and Zn soluble fractions, and increase of residual Pb and Zn fractions. Results for the SEM-EDX sample treated with 5 wt% CSF indicate that effective Pb and Zn immobilization is most probably associated with calcium silicate hydrates (CSHs) and calcium aluminum hydrates (CAHs). Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Metallothionein Zn(2+)- and Cu(2+)-clusters from first-principles calculations

    DEFF Research Database (Denmark)

    Greisen, Per Junior; Jespersen, Jakob Berg; Kepp, Kasper Planeta

    2012-01-01

    Detailed electronic structures of Zn(ii) and Cu(ii) clusters from metallothioneins (MT) have been obtained using density functional theory (DFT), in order to investigate how oxidative stress-caused Cu(ii) intermediates affect Zn-binding to MT and cooperatively lead to Cu(i)MT. The inferred accura...

  11. Synthesis of highly non-stoichiometric Cu{sub 2}ZnSnS{sub 4} nanoparticles with tunable bandgaps

    Energy Technology Data Exchange (ETDEWEB)

    Hamanaka, Yasushi, E-mail: hamanaka@nitech.ac.jp; Oyaizu, Wataru; Kawase, Masanari [Nagoya Institute of Technology, Department of Materials Science and Engineering (Japan); Kuzuya, Toshihiro [Muroran Institute of Technology, College of Design and Manufacturing Technology (Japan)

    2017-01-15

    Non-stoichiometric Cu{sub 2}ZnSnS{sub 4} nanoparticles with average diameters of 4–15 nm and quasi-polyhedral shape were successfully synthesized by a colloidal method. We found that a non-stoichiometric composition of Zn to Cu in Cu{sub 2}ZnSnS{sub 4} nanoparticles yielded a correlation where Zn content increased with a decrease in Cu content, suggesting formation of lattice defects relating to Cu and Zn, such as a Cu vacancy (V{sub Cu}), antisite with Zn replacing Cu (Zn{sub Cu}), and/or defect cluster of V{sub Cu} and Zn{sub Cu}. The bandgap energy of Cu{sub 2}ZnSnS{sub 4} nanoparticles systematically varies between 1.56 and 1.83 eV depending on the composition ratios of Cu and Zn, resulting in a wider bandgap for Cu-deficient Cu{sub 2}ZnSnS{sub 4} nanoparticles. These characteristics can be ascribed to the modification in electronic band structures due to formation of V{sub Cu} and Zn{sub Cu} on the analogy of ternary copper chalcogenide, chalcopyrite CuInSe{sub 2}, in which the top of the valence band shifts downward with decreasing Cu contents, because much like the structure of CuInSe{sub 2}, the top of the valence band is composed of a Cu 3d orbital in Cu{sub 2}ZnSnS{sub 4}.

  12. Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO:Cu films

    International Nuclear Information System (INIS)

    Darma, Yudi; Rusydi, Andrivo; Seng Herng, Tun; Marlina, Resti; Fauziah, Resti; Ding, Jun

    2014-01-01

    We study room temperature optics and electronic structures of ZnO:Cu films as a function of Cu concentration using a combination of spectroscopic ellipsometry, photoluminescence, and ultraviolet-visible absorption spectroscopy. Mid-gap optical states, interband transitions, and excitons are observed and distinguishable. We argue that the mid-gap states are originated from interactions of Cu and oxygen vacancy (Vo). They are located below conduction band (Zn4s) and above valence band (O2p) promoting strong green emission and narrowing optical band gap. Excitonic states are screened and its intensities decrease upon Cu doping. Our results show the importance of Cu and Vo driving the electronic structures and optical transitions in ZnO:Cu films

  13. Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO:Cu films

    Science.gov (United States)

    Darma, Yudi; Seng Herng, Tun; Marlina, Resti; Fauziah, Resti; Ding, Jun; Rusydi, Andrivo

    2014-02-01

    We study room temperature optics and electronic structures of ZnO:Cu films as a function of Cu concentration using a combination of spectroscopic ellipsometry, photoluminescence, and ultraviolet-visible absorption spectroscopy. Mid-gap optical states, interband transitions, and excitons are observed and distinguishable. We argue that the mid-gap states are originated from interactions of Cu and oxygen vacancy (Vo). They are located below conduction band (Zn4s) and above valence band (O2p) promoting strong green emission and narrowing optical band gap. Excitonic states are screened and its intensities decrease upon Cu doping. Our results show the importance of Cu and Vo driving the electronic structures and optical transitions in ZnO:Cu films.

  14. Effects of Crop Straw Returning with Lime on Activity of Cu, Zn, Pb and Cd in Paddy Soil

    Directory of Open Access Journals (Sweden)

    NI Zhong-ying

    2017-05-01

    Full Text Available Crop straw returning is an important measure for increasing soil carbon fixation and soil fertility in China, but it also may result in some risk of raising activity of heavy metals in the soil. In order to understand the effects of different sources of crop straw on heavy metals activity in soil with different pollution levels, and to take appropriate measures to prevent the activation of heavy metals in the soil, both pot and field experiments were carried out to study the effects of crop straw returning with lime on activity of Cu, Zn, Pb and Cd in paddy soil. The experiments were carried out in the soils with both light and heavy pollution of heavy metals. In the pot experiment, three straws, including rice straw with heavy pollution of heavy metals, rice straw with light pollution of heavy metals, and rape straw with light pollution of heavy metals, were tested. Two dosages of lime(0 kg·hm-2 and 750 kg·hm-2were applied. Field experiment had three treatments, ie., control without application of straw and lime, straw returning and straw returning + lime. Soil available heavy metals, accumulation of heavy metals in rice grain, and chemical forms of soil heavy metals were dynamical monitored. The results showed that crop straw returning increased significantly the concentrations of dissolved organic carbon and water soluble heavy metals in paddy soils at the early stage of experiment (in first 20 days. The increase in water soluble heavy metals in the soil with heavy pollution of heavy metals was most obvious as compared with the control treatment. After 60th day of the experiment, the effects of straw returning on the activity of heavy metals in the soil decreased gradually with the time, and became no obvious. The concentrations of water soluble heavy metals in the soil treated with rape straw was generally lower than that of rice straw, while those in the soil treated with heavy pollution of rice straw was higher than low pollution of rice

  15. Forest Soil Pollution with Heavy Metals (Pb, Zn, Cd, and Cu in the Area of the “French Mines” on the Medvednica Mountain, Republic of Croatia

    Directory of Open Access Journals (Sweden)

    Ivan Perković

    2017-01-01

    Full Text Available Background and Purpose: This paper deals with the results of the investigation of the selected heavy metal contents in forest soil in the region of an abandoned mine. The analysis of the forest ecosystem soil on the Medvednica Mountain was conducted in the region of the so-called “French Mines” (FM. The elements selected for analyses were cadmium (Cd, copper (Cu, lead (Pb, and zinc (Zn because of their toxicological characteristics. Material and Methods: In the investigated area - five entrances of the FM - composite topsoil samples (0–5 cm were taken. Those samples were compared to the control samples which were taken outside the area affected by mines. The soil samples were analysed for the following parameters: pH, particle size distribution, organic C content and pseudo-total mass fractions of the selected heavy metals. The heavy metals were determined by atomic emission spectrometry with inductively coupled plasma (ICP-MS. Results and Conclusion: The results reveal that the soil is locally polluted, i.e. the highest mass fraction values of these four heavy metals were found in the area of the FM. Average pseudo-total fraction of Cd in the analysed topsoil samples was in the range of 0.17–4.41 mg·kg−1 (median: 0.97 mg·kg−1. Cu was found in the range of 4.54–1260 mg·kg−1 (median: 45.7 mg·kg−1. In the case of Zn, mass fraction values were found in the range of 36.8–865 mg·kg−1 (median: 137 mg·kg−1. Finally, average values of the pseudo-total fraction of Pb were found in the range of 58.4–12000 mg·kg−1 (median: 238 mg·kg−1. The results reveal that mining activities leave consequences on soil for a long time.

  16. Simultaneous increase in strength and ductility by decreasing interface energy between Zn and Al phases in cast Al-Zn-Cu alloy.

    Science.gov (United States)

    Han, Seung Zeon; Choi, Eun-Ae; Park, Hyun Woong; Lim, Sung Hwan; Lee, Jehyun; Ahn, Jee Hyuk; Hwang, Nong-Moon; Kim, Kwangho

    2017-09-22

    Cast-Al alloys that include a high amount of the second element in their matrix have comparatively high strength but low ductility because of the high volume fraction of strengthening phases or undesirable inclusions. Al-Zn alloys that have more than 30 wt% Zn have a tensile strength below 300 MPa, with elongation under 5% in the as-cast state. However, we found that after substitution of 2% Zn by Cu, the tensile strength of as-cast Al-Zn-Cu alloys was 25% higher and ductility was four times higher than for the corresponding Al-35% Zn alloy. Additionally, for the Al-43% Zn alloy with 2% Cu after 1 h solution treatment at 400 °C and water quenching, the tensile strength unexpectedly reached values close to 600 MPa. For the Al-33% Zn alloy with 2% Cu, the tensile strength was 500 MPa with 8% ductility. The unusual trends of the mechanical properties of Al-Zn alloys with Cu addition observed during processing from casting to the subsequent solution treatment were attributed to the precipitation of Zn in the Al matrix. The interface energy between the Zn particles and the Al matrix decreased when using a solution of Cu in Zn.

  17. Prediction of phase equilibria and thermal analysis in the Bi-Cu-Pb ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Manasijevic, Dragan [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia); Mitovski, Aleksandra, E-mail: amitovski@tf.bor.ac.rs [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia); Minic, Dusko [University of Pristina, Faculty of Technical Sciences, 38220 Kosovska Mitrovica (Serbia); Zivkovic, Dragana; Marjanovic, Sasa [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia); Todorovic, Radisa [Institute of Mining and Metallurgy, Zeleni Bulevar 35, 19210 Bor (Serbia); Balanovic, Ljubisa [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia)

    2010-05-20

    The knowledge about phase diagram of the Bi-Cu-Pb ternary system is of importance in development of copper-lead based bearing materials, soldering and in refining of copper and lead. In this work, the phase diagram of the Bi-Cu-Pb ternary system was calculated by the CALPHAD method using binary thermodynamic parameters included in the COST 531 database. The results include liquidus projection, invariant equilibria and three vertical sections with molar ratio Cu:Pb = 1, Cu:Pb = 1:3 and Bi:Cu = 1. Alloys, with compositions along three predicted vertical sections, were measured using differential scanning calorimetry (DSC). The experimentally determined phase transition temperatures were compared with calculated results and good mutual agreement was noticed.

  18. Prediction of phase equilibria and thermal analysis in the Bi-Cu-Pb ternary system

    International Nuclear Information System (INIS)

    Manasijevic, Dragan; Mitovski, Aleksandra; Minic, Dusko; Zivkovic, Dragana; Marjanovic, Sasa; Todorovic, Radisa; Balanovic, Ljubisa

    2010-01-01

    The knowledge about phase diagram of the Bi-Cu-Pb ternary system is of importance in development of copper-lead based bearing materials, soldering and in refining of copper and lead. In this work, the phase diagram of the Bi-Cu-Pb ternary system was calculated by the CALPHAD method using binary thermodynamic parameters included in the COST 531 database. The results include liquidus projection, invariant equilibria and three vertical sections with molar ratio Cu:Pb = 1, Cu:Pb = 1:3 and Bi:Cu = 1. Alloys, with compositions along three predicted vertical sections, were measured using differential scanning calorimetry (DSC). The experimentally determined phase transition temperatures were compared with calculated results and good mutual agreement was noticed.

  19. RF properties of superconducting Pb electroplated onto Cu

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1988-01-01

    The properties of Pb as a superconducting material for high power rf applications are reviewed. The most common method of producing Pb superconducting resonators, which is by electrodeposition of a thin layer on a Cu substrate, is described, and some suggestions for further development are presented. 56 references, 11 figures, 1 table

  20. Synthesis of Cu and Ce co-doped ZnO nanoparticles: crystallographic, optical, molecular, morphological and magnetic studies

    Directory of Open Access Journals (Sweden)

    Rawat Mohit

    2017-07-01

    Full Text Available In the present research work, crystallographic, optical, molecular, morphological and magnetic properties of Zn1-xCuxO (ZnCu and Zn1-x-yCeyCuxO (ZnCeCu nanoparticles have been investigated. Polyvinyl alcohol (PVA coated ZnCu and ZnCeCu nanoparticles have been synthesized by chemical sol-gel method and thoroughly studied using various characterization techniques. X-ray diffraction pattern indicates the wurtzite structure of the synthesized ZnCu and ZnCeCu particles. Transmission electron microscopy analysis shows that the synthesized ZnCu and ZnCeCu particles are of spherical shape, having average sizes of 27 nm and 23 nm, respectively. The incorporation of Cu and Ce in the ZnO lattice has been confirmed through Fourier transform infrared spectroscopy. Room temperature photoluminescence spectra of the ZnO doped with Cu and co-doped Ce display two emission bands, predominant ultra-violet near-band edge emission at 409.9 nm (3 eV and a weak green-yellow emission at 432.65 nm (2.27 eV. Room temperature magnetic study confirms the diamagnetic behavior of ZnCu and ferromagnetic behavior of ZnCeCu.

  1. Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco.

    Science.gov (United States)

    El Azhari, Abdellah; Rhoujjati, Ali; El Hachimi, Moulay Laârabi; Ambrosi, Jean-Paul

    2017-10-01

    This study discussed the environmental fate and ecological hazards of heavy metals in the soil-plant system and sediment-water column around the former Pb-Zn mining Zeïda district, in Northeastern Morocco. Spatial distribution, pollution indices, and cluster analysis were applied for assessing Pb, Zn, As, Cu and Cd pollution levels and risks. The geo-accumulation index (I geo ) was determined using two different geochemical backgrounds: i) the commonly used upper crust values, ii) local geochemical background calculated with exploratory data analysis. The soils in the vicinity of the tailings, as well as the sediments downstream of the latter, displayed much higher metal concentrations, I geo, and potential ecology risk coefficient values than other sites, classifying these sites as highly contaminated and severely hazardous. The concentrations of Pb in contaminated sediment samples also exceeded the PEC limits and are expected to cause harmful effects on sediment-dwelling organisms. Based on the comparison with the toxicity limits, the most contaminated plant samples were found around the tailings piles. The metal concentrations in both raw and filtrated water samples were overall below the drinking water standards in samples upstream and downstream of the mining center, indicating that heavy metals levels in the Moulouya River surface waters were not affected by the tailings spill. Cluster analysis suggest that: i) Pb and Zn in sediments were derived from the abandoned tailings and are mainly stored and transported as particle-bound to the bedload, ii) Pb, Zn, and Cu in the soil-plant system were related to the dispersion of tailings materials while As and Cd originated primarily from natural geological background in both the soil-plant and the water-sediment systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    LIAO Fei

    2016-12-01

    Full Text Available Structural stabilities, mechanical properties and electronic structures of Al2Cu, Al2CuMg and MgZn2 intermetallics in Al-Zn-Mg-Cu aluminum alloys were determined from the first-principle calculations by VASP based on the density functional theory. The results show that the cohesive energy (Ecoh decreases in the order MgZn2 > Al2CuMg > Al2Cu, whereas the formation enthalpy (ΔH decreases in the order MgZn2 > Al2Cu > Al2CuMg. Al2Cu can act as a strengthening phase for its ductile and high Young's modulus. The Al2CuMg phase exhibits elastic anisotropy and may act as a crack initiation point. MgZn2 has good plasticity and low melting point, which is the main strengthening phase in the Al-Zn-Mg-Cu aluminum alloys. Metallic bonding mode coexists with a fractional ionic interaction in Al2Cu, Al2CuMg and MgZn2, and that improves the structural stability. In order to improve the alloys' performance further, the generation of MgZn2 phase should be promoted by increasing Zn content while Mg and Cu contents are decreased properly.

  3. Photovoltaic properties of Cu-doped CH3NH3PbI3 with perovskite structure

    Science.gov (United States)

    Shirahata, Yasuhiro; Oku, Takeo

    2017-01-01

    Photovoltaic properties of copper (Cu)-doped perovskite (CH3NH3PbCuxI3+x) photovoltaic devices with different Cu content were investigated. The CH3NH3PbCuxI3+x films were polycrystalline with a tetragonal system, and their lattice constants and crystallite size varied with Cu doping. Compared to conversion efficiencies of non-doped CH3NH3PbI3 photovoltaic device, those of CH3NH3PbCuxI3+x photovoltaic devises increased. The improvement of photovoltaic properties was attributed to partial substitution of Cu at the Pb sites.

  4. Use of cattails in treating wastewater from a Pb/Zn mine

    Science.gov (United States)

    Lan, Chongyu; Chen, Guizhu; Li, Liuchun; Wong, M. H.

    1992-01-01

    This article describes the use of a combined treatment system, which includes an aquatic treatment pond with Typha latifolia Linn. (Typhaceae) as the dominant species and a stabilization pond, to treat the wastewater from a Pn/Zn mine at Shaoguan, Guangdong Province, China. In 1983, it was noted that T. latifolia bloomed in areas affected by the wastewater emitted from the mine, hence a combined purification system was subsequently built. The influent contained high levels of total suspended solids (4635 mg/liter), chemical oxygen demand (14.5 mg/liter) as well as Pb (1.6 mg/liter) and Zn (1.9 mg/liter). The results of the effluent after treatment showed that the total suspended solids, chemical oxygen demand, Pb, and Zn had been reduced by 99%, 55%, 95%, and 80% respectively. The results of plant tissue analysis indicled that T. latifolia assimilated significant amounts of Pb and Zn, especially in the root portion. During 1986 several species of algae and fish were present in the pond, usually with a higher density in areas containing lower metal concentrations in the water.

  5. Fate of Heavy Metals Pb and Zn in the West Season at Jeneberang Estuary, Makassar

    Directory of Open Access Journals (Sweden)

    Najamuddin .

    2017-08-01

    Full Text Available The pollutant quantity of heavy metals entering water environment does not give complete answer toward the generated effect and risk, however it needs thoroughly study related to the pollutant dynamic. The aim of this research was to investigate the fate of Pb and Zn in water, such as: distribution, behavior, and reactivity (case study: Jeneberang Estuary, Makassar. Pb and Zn concentrations were determined using Atomic Absorption Spectrophotometry (AAS. The distribution of dissolved Pb and Zn showed a pattern that the lowest concentration was in the fresh water (the river zone, whereas the highest concentration was in the salt water (the marine zone. The distribution pattern of particulate Pb and Zn showed that the highest concentration was in the fresh water (the river zone and the salt water (the marine zone, whereas the lowest concentration was in the estuary zone. The behavior of dissolved Pb and Zn tended to increase the concentration (desorption along the increased salinity gradient. The residual fraction was the dominant component of geochemical fractions in the sediment that indicated the sources of Pb and Zn mainly derived from a natural process and the reactivity was low in the water.   Keywords: distribution, behavior, reactivity, lead, zinc, pollution

  6. Screening and Evaluation of the Bioremediation Potential of Cu/Zn-resistant, Autochthonous Acinetobacter sp. FQ-44 from Sonchus oleraceus L.

    Directory of Open Access Journals (Sweden)

    Qing Fang

    2016-09-01

    Full Text Available The quest for new, promising and indigenous plant growth-promoting rhizobacteria and a deeper understanding of their relationship with plants are important considerations in the improvement of phytoremediation. This study focuses on the screening of plant beneficial Cu/Zn-resistant strains and assessment of their bioremediation potential (metal solubilization/tolerance/biosorption and effects on growth of Brassica napus seedlings to identify suitable rhizobacteria and examine their roles in microbes-assisted phytoremediation. Sixty Cu/Zn-resistant rhizobacteria were initially isolated from Sonchus oleraceus grown at a multi-metal-polluted site in Shanghai, China. From these strains, 19 isolates that were all resistant to 300 mg·L-1 Cu as well as 300 mg·L-1 Zn, and could simultaneously grow on Dworkin-Foster salt minimal medium containing 1-aminocyclopropane-1-carboxylic acid were preliminarily selected. Of those 19 isolates, 10 isolates with superior plant growth-promoting properties (indole-3-acetic acid production, siderophore production and insoluble phosphate solubilization were secondly chosen and further evaluated to identify those with the highest bioremediation potential and capacity for bioaugmentation. Strain S44, identified as Acinetobacter sp. FQ-44 based on 16S rDNA sequencing, was specifically chosen as the most favorable strain owing to its strong capabilities to (1 promote the growth of rape seedlings (significantly increased root length, shoot length and fresh weight by 92.60%, 31.00% and 41.96%, respectively under gnotobiotic conditions; (2 tolerate up to 1000 mg·L-1 Cu and 800 mg·L-1 Zn; (3 mobilize the highest concentrations of water-soluble Cu, Zn, Pb and Fe (16.99, 0.98, 0.08 and 3.03 mg·L-1, respectively; and (4 adsorb the greatest quantities of Cu and Zn (7.53 and 6.61 mg·g-1 dry cell, respectively. Our findings suggest that Acinetobacter sp. FQ-44 could be exploited for bacteria-assisted phytoextraction. Moreover

  7. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure.

    Science.gov (United States)

    Meng, Jun; Tao, Mengming; Wang, Lili; Liu, Xingmei; Xu, Jianming

    2018-08-15

    Biochar has been utilized as a good amendment to immobilize heavy metals in contaminated soils. However, the effectiveness of biochar in metal immobilization depends on biochar properties and metal species. In this study, the biochars produced from co-pyrolysis of rice straw with swine manure at 400°C were investigated to evaluate their effects on bioavailability and chemical speciation of four heavy metals (Cd, Cu, Pb and Zn) in a Pb-Zn contaminated soil through incubation experiment. Results showed that co-pyrolysis process significantly change the yield, ash content, pH, and electrical conductivity (EC) of the blended biochars compared with the single straw/manure biochar. The addition of these biochars significantly increased the soil pH, EC, and dissolved organic carbon (DOC) concentrations. The addition of biochars at a rate of 3% significantly reduced the CaCl 2 -extractable metal concentrations in the order of Pb>Cu>Zn>Cd. The exchangeable heavy metals decreased in all the biochar-amended soils whereas the carbonate-bound metal speciation increased. The increase in soil pH and the decrease in the CaCl 2 extractable metals indicated that these amendments can directly transform the highly availability metal speciation to the stable speciation in soils. In conclusion, biochar derived from co-pyrolysis of rice straw with swine manure at a mass ratio of 3:1 could most effectively immobilize the heavy metals in the soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Abnormal room temperature ferromagnetism in CuO/ZnO nanocomposites via hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ping; Zhou, Wei; Li, Ying; Wang, Jianchun; Wu, Ping, E-mail: pingwu@tju.edu.cn

    2017-03-31

    Highlights: • CuO/ZnO nanocomposites have been synthesized by a one-step hydrothermal method. • The interaction between ZnO and CuO causes a modification of electronic structure. • The abnormal RTFM is discovered at the interface of CuO/ZnO. • The M{sub S} can be tuned by changing the phase ratios of the CuO and ZnO. • The indirect double-exchange model was employed to explain the origin of magnetism. - Abstract: CuO/ZnO nanocomposites have been successfully synthesized by a one-step hydrothermal method with different phase ratios. Field emission scanning electron microscopy and transmission electron microscopy results show that the obtained products of nanosheets are composed of small primary particles with an average size of about 20 nm. With the increasing proportion of CuO phase, nanosheets have significant collapse and the amount of small sheets increases obviously. The abnormal room temperature ferromagnetism was discovered at the interface between diamagnetic ZnO and antiferromagnetic CuO, which can be tuned by changing the phase ratios. Optical spectra indicate that the interaction between ZnO and CuO modifies the electronic structure of nanocomposites. XPS results verify the valence change of Cu ions and the presence of oxygen vacancies, which are ultimately responsible for the observed ferromagnetism. The indirect double-exchange model was employed to explain the origin of magnetism. Our study suggests that magnetically functional interfaces exhibit very appealing properties for novel devices.

  9. Molecular Cloning and Expression Analysis of Cu/Zn SOD Gene from Gynura bicolor DC.

    Directory of Open Access Journals (Sweden)

    Xin Xu

    2017-01-01

    Full Text Available Superoxide dismutase is an important antioxidant enzyme extensively existing in eukaryote, which scavenges reactive oxygen species (ROS and plays an essential role in stress tolerance of higher plants. A full-length cDNA encoding Cu/Zn SOD was cloned from leaves of Gynura bicolor DC. by rapid amplification of cDNA ends (RACE. The full-length cDNA of Cu/Zn SOD is 924 bp and has a 681 bp open reading frame encoding 227 amino acids. Bioinformatics analysis revealed that belonged to the plant SOD super family. Cu/Zn SODs of the Helianthus annuus, Mikania micrantha, and Solidago canadensis var. scabra all have 86% similarity to the G. bicolor Cu/Zn SOD. Analysis of the expression of Cu/Zn SOD under different treatments revealed that Cu/Zn SOD was a stress-responsive gene, especially to 1-MCP. It indicates that the Cu/Zn SOD gene would be an important gene in the resistance to stresses and will be helpful in providing evidence for future research on underlying molecular mechanism and choosing proper postharvest treatments for G. bicolor.

  10. Complex impedance spectra of chip inductor using Li-Zn-Cu-Mn ferrite

    International Nuclear Information System (INIS)

    Nakamura, Tatsuya; Naoe, Masayuki; Yamada, Yoshihiro

    2006-01-01

    A multi-layer chip inductor (MCI) was fabricated using polycrystalline Li-Zn-Cu-Mn ferrite and the green-sheet technique, and its complex impedance spectrum was evaluated with the help of numerical calculations. The complex impedance spectra of the MCI component using Ni-Zn-Cu ferrite, which have been widely used for this application, were very sensitive to the residual stress and deviated much from the calculated values; however, it was found that the complex impedance spectrum of the MCI component using Li-Zn-Cu-Mn ferrite is quite well reproduced by calculation, where the complex permittivity and permeability of the polycrystalline ferrite as well as the MCI dimensions, were used. It implied that the magneto-striction effect was negligible in case of MCI using Li-Zn-Cu-Mn ferrite, and that the difference was related to magneto-strictive coefficient of the polycrystalline ferrite. Consequently, utilization of Li-Zn-Cu-Mn ferrite enabled us to easily design the complex impedance of MCI component

  11. Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: The influence of aging and emission source

    International Nuclear Information System (INIS)

    Owsianiak, Mikołaj; Holm, Peter E.; Fantke, Peter; Christiansen, Karen S.; Borggaard, Ole K.; Hauschild, Michael Z.

    2015-01-01

    Metal exposure to terrestrial organisms is influenced by the reactivity of the solid-phase metal pool. This reactivity is thought to depend on the type of emission source, on aging mechanisms that are active in the soil, and on ambient conditions. Our work shows, that when controlling for soil pH or soil organic carbon, emission source occasionally has an effect on reactivity of Cd, Co, Cu, Ni, Pb and Zn emitted from various anthropogenic sources followed by aging in the soil from a few years to two centuries. The uncertainties in estimating the age prevent definitive conclusions about the influence of aging time on the reactivity of metals from anthropogenic sources in soils. Thus, for calculating comparative toxicity potentials of man-made metal contaminations in soils, we recommend using time-horizon independent accessibility factors derived from source-specific reactive fractions. - Highlights: • We found an effect of source on reactivity of anthropogenic metals in soils. • The influence of aging on reactivity of anthropogenic metals was not consistent. • We recommend including source and disregarding aging in calculation of CTPs values. - Improving current life cycle inventory (LCI) and life cycle impact assessment (LCIA) practice in terrestrial ecotoxicity assessment of metals.

  12. Low Temperature Mechanical Properties of Scandium-Modified Al-Zn-Mg-Cu Alloys

    National Research Council Canada - National Science Library

    Senkov, O

    2002-01-01

    Tensile properties of three wrought alloys, (1) Al-10Zn-3Mg-1.2Cu-0.15Zr, (2) Al-10Zn-3Mg-1.2Cu-0.15Zr-0.39Mn-0.49Sc, and (3) Al-12Zn-3Mg-1.2Cu-0.15Zr-0.39Mn-0.49Sc were studied in T6 and T7 conditions at 298K and 77K...

  13. Dispersive liquid–liquid microextraction using diethyldithiocarbamate as a chelating agent and the dried-spot technique for the determination of Fe, Co, Ni, Cu, Zn, Se and Pb by energy-dispersive X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Kocot, Karina; Zawisza, Beata; Sitko, Rafal

    2012-01-01

    Dispersive liquid–liquid microextraction (DLLME) using sodium diethyldithiocarbamate (DDTC) as a chelating agent was investigated for the simultaneous determination of iron, cobalt, nickel, copper, zinc, selenium and lead ions in water samples. The procedure was performed using 5 mL of the sample, 100 μL of a 0.5% solution of DDTC, 30 μL of carbon tetrachloride (extraction phase) and 500 μL of methanol (disperser solvent). The experiments showed that Fe, Co, Ni, Cu, Zn and Pb can be simultaneously extracted at a pH of 5 and that Se can be extracted at a pH of 2–3. The results were compared with those obtained using ammonium pyrrolidine dithiocarbamate as a chelating agent. For all analytes, a linear range was observed up to 0.4 μg mL −1 . If Fe and Zn are present in concentrations 10 times higher than those of the other analytes, then the linearity is observed up to 0.2 μg mL −1 . In the present study, the organic phase that contained preconcentrated elements was deposited onto a Millipore filter and measured using energy-dispersive X-ray fluorescence spectrometry. The obtained detection limits were 2.9, 1.5, 2.0, 2.3, 2.5, 2.0 and 3.9 ng mL −1 for Fe, Co, Ni, Cu, Zn, Se and Pb, respectively. This combination of DLLME and the dried-spot technique is promising for multielement analyses using other spectroscopy techniques, such as laser ablation‐inductively coupled plasma‐mass spectrometry, laser-induced breakdown spectroscopy or total-reflection X-ray fluorescence spectrometry. - Highlights: ► Multielement trace analysis using dried-spot technique and dispersive liquid–liquid microextraction. ► Possibility of combination of LPME with EDXRF, LIBS or LA-ICP-MS. ► Comparison of APDC and DDTC as chelating agents.

  14. Determination of Ca, Cu, Fe and Pb in sugarcane raw spirits by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Lorenzo, Magdalena; Reyes, Arlyn; Blanco, Idania; Vasallo, Maria C

    2010-01-01

    The determination of Ca, Cu, Fe and Pb in sugarcane raw spirits by atomic absorption spectrophotometry was carried out. For 20 μL injected sample, calibration within the 0,5-25,0 mg. L -1 Ca; 0,25-5,0 mg. L -1 Cu, Pb and Cu intervals were established using the ratios Cu, Ca, Fe and Pb absorbance versus analyte concentration, respectively. Typical linear correlations of r = 0,999 were obtained. The proposed method was applied for the direct determination of Ca, Cu, Fe and Pb in sugar cane spirits, and in samples. The results obtained were in accordance to those obtained at 95% confidence level

  15. Half-metallic ferromagnetism in Cu-doped zinc-blende ZnO from first principles study

    International Nuclear Information System (INIS)

    Li, X.F.; Zhang, J.; Xu, B.; Yao, K.L.

    2012-01-01

    Electronic structures and magnetism of Cu-doped zinc-blende ZnO have been investigated by the first-principle method based on density functional theory (DFT). The results show that Cu can induce stable ferromagnetic ground state. The magnetic moment of supercell including single Cu atom is 1.0 μ B . Electronic structure shows that Cu-doped zinc-blende ZnO is a p-type half-metallic ferromagnet. The half-metal property is mainly attribute to the crystal field splitting of Cu 3d orbital, and the ferromagnetism is dominated by the hole-mediated double exchange mechanism. Therefore, Cu-doped zinc-blende ZnO should be useful in semiconductor spintronics and other applications. - Highlights: → Magnetism of Cu-doped zinc-blende ZnO. → Cu-doped zinc-blende ZnO shows interesting half-metal character. → Total energies calculations reveal that Cu can induce ferromagnetic ground state. → Ferromagnetism dominated by the hole-mediated double exchange mechanism.

  16. Isolation and characterization of Cu/Zn-superoxide dismutase in Fasciola gigantica.

    Science.gov (United States)

    Lalrinkima, H; Raina, O K; Chandra, Dinesh; Jacob, Siju Susan; Bauri, R K; Chandra, Subhash; Yadav, H S; Singh, M N; Rialch, A; Varghese, A; Banerjee, P S; Kaur, Navneet; Sharma, Arvind

    2015-01-01

    A full-length complementary DNA (cDNA) encoding Cu/Zn-superoxide dismutase was isolated from Fasciola gigantica that on nucleotide sequencing showed a close homology (98.9%) with Cu/Zn-superoxide dismutase (SOD) of the temperate liver fluke, F. hepatica. Expression of the gene was found in all the three developmental stages of the parasite viz. adult, newly excysted juvenile and metacercaria at transcriptional level by reverse transcription-polymerase chain reaction (RT-PCR) and at the protein level by Western blotting. F. gigantica Cu/Zn-SOD cDNA was cloned and expressed in Escherichia coli. Enzyme activity of the recombinant protein was determined by nitroblue tetrazolium (NBT)-polyacrylamide gel electrophoresis (PAGE) and this activity was inactivated by hydrogen peroxide but not by sodium azide, indicating that the recombinant protein is Cu/Zn-SOD. The enzyme activity was relatively stable at a broad pH range of pH 4.0-10.0. Native Cu/Zn-superoxide dismutase protein was detected in the somatic extract and excretory-secretory products of the adult F. gigantica by Western blotting. NBT-PAGE showed a single Cu/Zn-SOD present in the somatic extract while three SODs are released ex vivo by the adult parasite. The recombinant superoxide dismutase did not react with the serum from buffaloes infected with F. gigantica. The role of this enzyme in defense by the parasite against the host reactive oxygen species is discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells

    Science.gov (United States)

    Wang, Kejia; Shin, Byungha; Reuter, Kathleen B.; Todorov, Teodor; Mitzi, David B.; Guha, Supratik

    2011-01-01

    We have carried out detailed microstructural studies of phase separation and grain boundary composition in Cu2ZnSnS4 based solar cells. The absorber layer was fabricated by thermal evaporation followed by post high temperature annealing on hot plate. We show that inter-reactions between the bottom molybdenum and the Cu2ZnSnS4, besides triggering the formation of interfacial MoSx, results in the out-diffusion of Cu from the Cu2ZnSnS4 layer. Phase separation of Cu2ZnSnS4 into ZnS and a Cu-Sn-S compound is observed at the molybdenum-Cu2ZnSnS4 interface, perhaps as a result of the compositional out-diffusion. Additionally, grain boundaries within the thermally evaporated absorber layer are found to be either Cu-rich or at the expected bulk composition. Such interfacial compound formation and grain boundary chemistry likely contributes to the lower than expected open circuit voltages observed for the Cu2ZnSnS4 devices.

  18. Pollution of soils (Pb, Cd, Cr, Zn, Cu, Ni) along the ring road of Wrocław (Poland)

    Science.gov (United States)

    Hołtra, Anna; Zamorska-Wojdyła, Dorota

    2017-11-01

    The concentrations of metallic pollution in soils and plants along the ring road of Wrocław, Poland, have been determined. Environmental samples were collected from the surface layer of the profile within 2-3 m from the edge of the road. The analysis of metals (Pb, Cd, Cr, Zn, Cu and Ni) has been carried out through FAAS and GFAAS methods. The mineralizates of soils and plants were prepared in HNO3, 65% supra pure, using the Microwave Digestion System. The pH and conductivity of the soil solutions were measured to evaluate their active and exchangeable acidity and the salinity of the soils. The index of the enrichment of soils in metals (Wn) and the bioaccumulation coefficient (WB) have been determined. Also, histograms of the frequency of the occurrence of metals in the environmental samples and the Pearson's correlation coefficients were presented. The results of metal concentrations in soils were compared to the geochemical background in uncontaminated soils of Poland. The assessment of the results in the soils was also made relative to the standard, according to the Polish Ministry of Environment Regulation from September 1st, 2016. During the assessment of the bioaccumulation coefficients of metals in plants a reference was made to the content of undesirable substances in feed in agreement with the Polish Ministry of Agriculture and Rural Development Regulation from January 23rd, 2007.

  19. Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits

    Science.gov (United States)

    Kucha, H.; Raith, J.

    2009-04-01

    *Kucha H **Raith J *University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Mickiewicza 30, PL-30-059 Krakow, Poland. ** University of Leoben, Department of Applied Geosciences and Geophysics, A-8700 Leoben, Peter Tunner Str. 5, Austria Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits To date evaluation of bacterial processes in the formation of carbonate-hosted Zn-Pb deposits is largely based on sulphur isotope evidence. However, during a past few years, textural criteria, have been established, which support the bacterial origin of many of these deposits. This has received a strong support from micro-, and nano-textures of naturally growing bacterial films in a flooded tunnel within carbonates that host the Piquette Zn-Pb deposit (Druschel et al., 2002). Bacterial textures, micro- and nano textures found in carbonate-hosted Zn-Pb deposits are: i)wavy bacterial films up to a few mm thick to up to a few cm long composed of peloids, ii)semimassive agglomeration of peloids in the carbonate matrix, and iii)solitary peloids dispersed in the carbonate matrix. Peloids are usually composed of a distinct 50-90um core most often made up of Zn-bearing calcite surrounded by 30-60um thick dentate rim composed of ZnS. Etching of Zn-carbonate cores reveals 1 - 2um ZnS filaments, and numerous 15 to 90nm large ZnS nano-spheres (Kucha et al., 2005). In massive ore composite Zn-calcite - sphalerite peloids are entirely replaced by zinc sulphide, and form peloids ghosts within banded sulphide layers. Bacterially derived micro- and nano-textures have been observed in the following carbonate-hosted Zn-Pb deposits: 1)Irish-type Zn-Pb deposits. In the Navan deposit the basic sulphur is isotopically light bacteriogenic S (Fallick at al., 2001). This is corroborated by semimassive agglomerations of composite peloids (Zn-calcite-ZnS corona or ZnS core-melnikovite corona). Etching of Zn-calcite core reveals globular

  20. Research on Cu2ZnSnTe4 crystals and heterojunctions based on such crystals

    Directory of Open Access Journals (Sweden)

    Kovaliuk T. T.

    2015-12-01

    Full Text Available The paper reports on the results of the studies of magnetic, kinetic and optical properties of Cu2ZnSnTe4 crystals. The Cu2ZnSnTe4 crystals showed diamagnetic properties (the magnetic susceptibility almost independent of the magnetic field and temperature. The Cu2ZnSnTe4 crystals possessed p-type of conductivity and the Hall coefficient was independent on temperature. The temperature dependence of the electrical conductivity of the Cu2ZnSnTe4 crystal shows metallic character, i. e. decreases with the increase of temperature, that is caused by the lower charge carrier mobility at higher temperature. Thermoelectric power of the samples ispositive that also indicates on the prevalence of p-type conductivity. Heterojunctions n-TiN/p-Cu2ZnSnTe4, n-TiO2/p-Cu2ZnSnTe4 and n-MoO/p-Cu2ZnSnTe4 were fabricated by the reactive magnetron sputtering of TiN, TiO2 and MoOx thin films, respectively, onto the substrates made of the Cu2ZnSnTe4 crystals. The dominating current transport mechanisms in the n-TiN/p-Cu2ZnSnTe4 and n-TiO2/p-Cu2ZnSnTe4 heterojunctions were established to be the tunnel-recombination mechanism at forward bias and tunneling at reverse bias.

  1. Transparent Cu4O3/ZnO heterojunction photoelectric devices

    Science.gov (United States)

    Kim, Hong-Sik; Yadav, Pankaj; Patel, Malkeshkumar; Kim, Joondong; Pandey, Kavita; Lim, Donggun; Jeong, Chaehwan

    2017-12-01

    The present article reports the development of flexible, self-biased, broadband, high speed and transparent heterojunction photodiode, which is essentially important for the next generation electronic devices. We grow semitransparent p-type Cu4O3 using the reactive sputtering method at room temperature. The structural and optical properties of the Cu4O3 film were investigated by using the X-ray diffraction and UV-visible spectroscopy, respectively. The p-Cu4O3/n-ZnO heterojunction diode under dark condition yields rectification behavior with an extremely low saturation current value of 1.8 × 10-10 A and a zero bias photocurrent under illumination condition. The transparent p-Cu4O3/n-ZnO heterojunction photodetector can be operated without an external bias, due to the light-induced voltage production. The metal oxide heterojunction based on Cu4O3/ZnO would provide a route for the transparent and flexible photoelectric devices, including photodetectors and photovoltaics.

  2. Self-Assembled Formation of Well-Aligned Cu-Te Nano-Rods on Heavily Cu-Doped ZnTe Thin Films

    Science.gov (United States)

    Liang, Jing; Cheng, Man Kit; Lai, Ying Hoi; Wei, Guanglu; Yang, Sean Derman; Wang, Gan; Ho, Sut Kam; Tam, Kam Weng; Sou, Iam Keong

    2016-11-01

    Cu doping of ZnTe, which is an important semiconductor for various optoelectronic applications, has been successfully achieved previously by several techniques. However, besides its electrical transport characteristics, other physical and chemical properties of heavily Cu-doped ZnTe have not been reported. We found an interesting self-assembled formation of crystalline well-aligned Cu-Te nano-rods near the surface of heavily Cu-doped ZnTe thin films grown via the molecular beam epitaxy technique. A phenomenological growth model is presented based on the observed crystallographic morphology and measured chemical composition of the nano-rods using various imaging and chemical analysis techniques. When substitutional doping reaches its limit, the extra Cu atoms favor an up-migration toward the surface, leading to a one-dimensional surface modulation and formation of Cu-Te nano-rods, which explain unusual observations on the reflection high energy electron diffraction patterns and apparent resistivity of these thin films. This study provides an insight into some unexpected chemical reactions involved in the heavily Cu-doped ZnTe thin films, which may be applied to other material systems that contain a dopant having strong reactivity with the host matrix.

  3. Spray pyrolysis deposition of Cu-ZnO and Zn-SnO{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Khelfane, A.; Tarzalt, H.; Sebboua, B.; Zerrouki, H.; Kesri, N., E-mail: kesri5n@gmail.com [Faculty of Physics, University of Science and Technology of Houari Boumediene, Algiers (Algeria)

    2015-12-31

    Large-gap metal oxides, such as titanium, tin, and zinc oxides, have attracted great interest because of their remarkable potential in dye-sensitized solar cells (DSSC) and their low cost and simple preparation procedure. In this work, we investigated several Zn-SnO{sub 2} and Cu-ZnO thin films that were sprayed under different experimental conditions. We varied [Zn/[Sn] and [Cu/[Zn] ratios, calculated on atomic percent in the starting solution. We report some structural results of the films using X-ray diffraction. Optical reflection and transmission spectra investigated by an UV/VIS/NIR spectrophotometer permit the determination of optical constants. The direct band gap was deduced from the photon energy dependence of the absorption coefficient.

  4. Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes

    International Nuclear Information System (INIS)

    Xu Chao; Cao Lixin; Su Ge; Liu Wei; Liu Hui; Yu Yaqin; Qu Xiaofei

    2010-01-01

    ZnO/Cu 2 O compound photocatalysts were prepared by 'soak-deoxidize-air oxidation' with different concentrations of Cu 2+ (0.125, 0.25, 0.5, 1, 1.5 and 2 mol/L). The prepared ZnO/Cu 2 O samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS), UV-vis diffuse reflectance spectrometer, and photochemical reaction instrument. The results show that ZnO was hexagonal wurtzite structure and the crystallinity had no change with the increase of Cu 2+ concentration. Cu 2 O belonged to cubic structure and the crystallinity increased with the increase of Cu 2+ concentration. ZnO were rods and bulks which had diameter of about 300-400 nm, some small round Cu 2 O particles which had a diameter of about 50 nm adhered to these rods and bulks. In the compounds the mole ratio of Cu 2 O to ZnO was 0.017, 0.025, 0.076, 0.137, 0.138, and 0.136, respectively. An absorbance in the visible light region between 400 and 610 nm was seen and the reflection rate became less with the mole ratio of Cu 2 O to ZnO increasing. The photocatalytic activities of ZnO/Cu 2 O compound were evaluated using a basic organic dye, methyl orange (MO). It was found that, compared with pure ZnO, the photocatalytic properties of ZnO/Cu 2 O compound were improved greatly and some compounds were better than pure Cu 2 O.

  5. Re-partitioning of Cu and Zn isotopes by modified protein expression

    Directory of Open Access Journals (Sweden)

    Ragnarsdottir K Vala

    2008-10-01

    Full Text Available Abstract Cu and Zn have naturally occurring non radioactive isotopes, and their isotopic systematics in a biological context are poorly understood. In this study we used double focussing mass spectroscopy to determine the ratios for these isotopes for the first time in mouse brain. The Cu and Zn isotope ratios for four strains of wild-type mice showed no significant difference (δ65Cu -0.12 to -0.78 permil; δ66Zn -0.23 to -0.48 permil. We also looked at how altering the expression of a single copper binding protein, the prion protein (PrP, alters the isotope ratios. Both knockout and overexpression of PrP had no significant effect on the ratio of Cu isotopes. Mice brains expressing mutant PrP lacking the known metal binding domain have δ65Cu isotope values of on average 0.57 permil higher than wild-type mouse brains. This implies that loss of the copper binding domain of PrP increases the level of 65Cu in the brain. δ66Zn isotope values of the transgenic mouse brains are enriched for 66Zn to the wild-type mouse brains. Here we show for the first time that the expression of a single protein can alter the partitioning of metal isotopes in mouse brains. The results imply that the expression of the prion protein can alter cellular Cu isotope content.

  6. Effect of foliar applied (Zn, Fe, Cu and Mn) in citrus production

    International Nuclear Information System (INIS)

    Khurshid, F.; Sarwar, S.; Khattak, R.A.

    2008-01-01

    A study was conducted to evaluate the impact of micronutrients (Zn, Fe, Cu and Mn) on sweet orange (Citrus Sinensis L.), blood red var., on farmer's orchard at Khanpur, district Haripur, NWFP, during 2002-03. Micronutrients were applied in foliar sprays over the canopy of each tree. The main effects and interactions of Zinc sulphate (Zn), iron sulphate (Fe), Copper Sulphate (Cu) and Manganese Sulphate (Mn) were studied in factorial combinations. A basal dose of nitrogen, phosphorus and potassium was applied at the rate 1.5, 1 and 1 kg tree/sup -1/. Zn, Fe, Cu and Mn were applied alone and in various combinations at the rate 0.115, 0.057, 0.05 and 0.13 kg in 100 liters of water. Application of micronutrients significantly increased Zn, Fe, Cu and Mn concentrations in leaves, compared with control. Zn treatments significantly increased the yield, number of fruit and total sugar. Manganese treatments significantly increased the total soluble solids and reduced the acidity of fruit juice. Other quality parameters, including fruit size, percent peel, percent pulp, sugar as well as total soluble solids, were improved with the application of Zn, Fe, Cu and Mn. (author)

  7. Enhancement of ferromagnetic properties in Zn0.98Cu0.02O by additional Co doping

    International Nuclear Information System (INIS)

    Liu, Huilian; Zhang, Xu; Liu, Hongbo; Yang, Jinghai; Liu, Yang; Liu, Xiaoyan; Gao, Ming; Wei, Maobin; Cheng, Xin; Wang, Jian

    2013-01-01

    Highlights: •The samples were synthesized by sol–gel technology to dope up to 3% Co in ZnCuO. •After Co doped into Zn 0.98 Cu 0.02 O sample photoluminescence shows an increase in green emission. •The saturation magnetization increased with Co doping. -- Abstract: Zn 0.98 Cu 0.02 O and Zn 0.95 Cu 0.02 Co 0.03 O powders were synthesized by sol–gel method, and the effects of Co codoping on the structure, optical and magnetic properties of the Zn 0.98 Cu 0.02 O powders were studied in detail. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurement shows the Zn 0.98 Cu 0.02 O and Zn 0.95 Cu 0.02 Co 0.03 O powders were single phase with the ZnO wurtzite structure, and there was no ferromagnetic-related secondary phase in these powders. Moreover, these powders exhibited ferromagnetism at the room temperature investigated by the magnetic measurement, and the ferromagnetism of the Zn 0.98 Cu 0.02 O and Zn 0.95 Cu 0.02 Co 0.03 O samples were originated from the fact that the Cu ions and Co, Cu ions doped into the ZnO lattices, respectively. In addition, the saturation magnetization (Ms) was significantly increased with Co codoping due to the increased density of oxygen vacancies

  8. Properties of ZnO/CuInSe/sub 2/ heterojunctions

    International Nuclear Information System (INIS)

    Qiu, C.X.; Shih, I.

    1986-01-01

    Low resistivity thin films of ZnO have been prepared by an rf sputtering technique with a target containing indium. It was found that the electrical resistivity of the deposited ZnO films was dependent on the indium content in the films. The deposition method was used to form ZnO/CuInSe/sub 2/ heterojunctions on Bridgman-grown monocrystalline CuInSe/sub 2/ samples. Electrical properties of the heterojunctions have been investigated. Spectral photovoltage variation was also measured

  9. Biosolids conditioning and the availability of Cu and Zn for rice Condicionamento de biossólidos e a disponibilidade de Cu e Zn para arroz

    Directory of Open Access Journals (Sweden)

    Adriana Marlene Moreno Pires

    2003-02-01

    Full Text Available Sewage treatment process is a factor to be considered for biosolid use in agriculture. The greatest sewage treatment facility of São Paulo State (Barueri/SP altered in the year 2000 of its sludge treatment. The addition of ferric chloride and calcium oxide was substituted by the addition of polymers. This change can modify heavy metal phytoavailability. A green house experiment, using 2 soils treated with biosolids (three with and one without polymers with and without polymers was performed to evaluate Cu and Zn phytoavailability using rice (Oryza sativa L. as test plant. Three kilograms of two soils (Haphorthox abd Hapludox were placed in pots and the equivalent to 50 Mg ha-1 (dry basis of biosolid was added and incorporated. The statistical design adopted was completely randomized experiment, with five treatments (control plus four different biossolids each soil and four replications. Soil pH before and after harvesting, Cu and Zn concentrations in shoot were evaluated. Tukey (5% was used to compare the results. DTPA, HCl 0.1 mol L-1 and Mehlich 3 were used to estimate soil available Cu and Zn. Amounts extracted were correlated to those presented in rice shoot, to evaluate the efficiency of predicting Cu and Zn phytoavailabilities. Biosolids with polymers presented higher Cu and Zn phytoavailabilities, possibly due to the lower pH of these residues. In this case soil presented lowest values of pH and plant shoot had highest. All extractants were representative of Cu and Zn availability to rice plants.O processo gerador do biossólido é um fator a ser considerado na avaliação do uso agrícola deste resíduo. Em 2000, a adição de cloreto férrico+cal virgem durante o tratamento do esgoto foi substituída pela adição de polieletrólitos na maior Estação de Tratamento de Esgotos de São Paulo (Barueri, o que pode gerar mudanças na fitodisponibilidade dos metais pesados. Um experimento em casa de vegetação, com dois solos (Latossolo

  10. Field evaluation of the effectiveness of three industrial by-products as organic amendments for phytostabilization of a Pb/Zn mine tailings.

    Science.gov (United States)

    Yang, Shengxiang; Cao, Jianbing; Li, Fengmei; Peng, Xizhu; Peng, Qingjing; Yang, Zhihui; Chai, Liyuan

    2016-01-01

    Although the potential of industrial by-products as organic amendments for phytostabilization has long been recognized, most of the previous studies addressing this issue have been laboratory-based. In this study, a field trial was conducted to evaluate the effectiveness of three industrial by-products [sweet sorghum vinasse (SSV), medicinal herb residues (MHR) and spent mushroom compost (SMC)] as organic amendments for phytostabilization of abandoned Pb/Zn mine tailings. Our results showed the following: (i) when compared to the control tailings, the mean concentrations of diethylene-triamine-pentaacetic acid (DTPA)-extractable Cd, Cu, Pb and Zn in SSV, MHR and SMC treatments decreased by 20.8-28.0%, 41.6-49.1%, 17.7-22.7% and 9.5-14.7%, respectively; (ii) the mean values of organic C, ammonium-N and available P in SSV, MHR and SMC treatments increased by 1.7-2.8, 10.8-14.9 and 3.9-5.1 times as compared with the mine tailings; and (iii) the addition of SSV, MHR and SMC significantly enhanced soil respiration and microbial biomass being 1.5-1.8 and 1.3-1.6 fold higher than those in the control tailings. There were no significant differences in soil biochemical properties among the plots amended with these by-products, suggesting that they were almost equally effective in improving the biochemical conditions of the tailings. In addition, the application of these amendments promoted seed germination, seedling growth, and consequently increased the vegetation cover and its biomass. Moreover, concentrations of Cd, Cu, Pb and Zn in above-ground parts of the plants were below the toxicity limit levels for animals. The results obtained in this field study confirmed that the three organic-rich industrial by-products could be used as amendments for phytostabilization of some types of mine tailings.

  11. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.

    Science.gov (United States)

    Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun

    2015-07-01

    In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs.

  12. Modification and inactivation of Cu,Zn-superoxide dismutase by the lipid peroxidation product, acrolein

    Directory of Open Access Journals (Sweden)

    Jung Hoon Kang

    2013-11-01

    Full Text Available Acrolein is the most reactive aldehydic product of lipidperoxidation and is found to be elevated in the brain whenoxidative stress is high. The effects of acrolein on the structureand function of human Cu,Zn-superoxide dismutase (SOD wereexamined. When Cu,Zn-SOD was incubated with acrolein, thecovalent crosslinking of the protein was increased, and the loss ofenzymatic activity was increased in a dose-dependent manner.Reactive oxygen species (ROS scavengers and copper chelatorsinhibited the acrolein-mediated Cu,Zn-SOD modification and theformation of carbonyl compound. The present study shows thatROS may play a critical role in acrolein-induced Cu,Zn-SODmodification and inactivation. When Cu,Zn-SOD that has beenexposed to acrolein was subsequently analyzed by amino acidanalysis, serine, histidine, arginine, threonine and lysine residueswere particularly sensitive. It is suggested that the modificationand inactivation of Cu,Zn-SOD by acrolein could be produced bymore oxidative cell environments. [BMB Reports 2013; 46(11:555-560

  13. Preparation and electrical properties of ZnO/CdS/Cu (In, Zn) Se2 (ZCIS) heterojunctions

    International Nuclear Information System (INIS)

    Ivanov, V.A.; Gremenok, V.F.; Zalesski, V.B.; Kovalevski, V.I.; Bente, K.

    2010-01-01

    Full text : Cu(In,Zn)Se 2 (ZCIS) is one of the most promising materials for commercial photovoltaic applications. This is due to the high absorption coefficient of approximately 105 cm - 1 in a wide spectral region and a band gap that is in principle adjustable between 1.05 eV for CuInSe 2 and 2.60 eV for ZnSe. Therefore they are suggested to be used in thin film solar cells as absorber as well a wide-gap window layers. The Cu/(In+Zn) ratio of the ZCIS layers is the important parameter for the physical properties of the semiconductor material as well for the solar cell applications. The presented results consider the preparation as well as the chemical, structural and physical characterization of the electrical properties of the ZnO/CdS/CuIn0, 94Zn0, 06Se2 thin films hetero junctions. The ZCIS films were prepared by two-step selenization of Cu-In-ZnSe layers under N2 flow by evaporating a solid Se source close to samples. Such technology is especially suited for developments of industrial processing of large area ZCIS films suitable for solar cells. Cu-In-ZnSe layers were deposited onto Mo-coated soda lime glass substrates by thermal evaporation or sputtering. The Zn content in the ZCIS films was controlled by choise of In/ZnSe ratio in the initial alloy. Buffer layers of CdS were deposited onto the ZCIS films in the chemical bath. The ZnO films were deposited onto CdS by thermal evaporation. The ZnO and CdS films were detected to be polycrystalline with thicknesses of 0.4im and 0.06im respectively and revealed n-type conductivity. The ''Leit-C'' conductive glue was used as electrical contacts. The effective area of each cell was about 0.8 cm2. Under non-illuminated conditions, I - V characteristics of the heterojunctions were approximately exponential at low voltages according to the standard diode equation I=Io[exp(eV/nkT)-1], with a slight deviation from this behaviour at high voltages due to a series of resistance effects. The capacitance of the heterojunctions

  14. Characteristic of total suspended particulate (TSP) containing Pb and Zn at solid waste landfill

    Science.gov (United States)

    Budihardjo, M. A.; Noveandra, K.; Samadikun, B. P.

    2018-05-01

    Activities conducted at municipal solid waste landfills (MSWLs) potentially cause air pollution. Heavy vehicles in MSWLs release various pollutants that can have negative impacts for humans. One noticeable pollutant at MSWLs is airborne total suspended particulate (TSP) which may contain heavy metals such as Pb and Zn and can cause disease when inhaled by humans. In this study, TSP from a landfill in Semarang, Indonesia was collected and characterized to quantify the concentration of Pb and Zn. Meteorological factors (i.e. temperature, humidity and wind velocity) and landfill activities were considered as factors affecting pollutant concentrations. TSP was sampled using dust samplers while the concentrations of heavy metals in TSP were analyzed using an Atomic Absorption Spectrophotometer (AAS). Pb concentration ranged from 0.84 to 1.78 µg/m3 while Zn concentration was from 7.87 to 8.76 µg/m3. The levels of Pb were below the threshold specified by the Indonesian Government. Meanwhile, the threshold for Zn has not yet been determined.

  15. Functional Performances of CuZnAl Shape Memory Alloy Open-Cell Foams

    Science.gov (United States)

    Biffi, C. A.; Casati, R.; Bassani, P.; Tuissi, A.

    2018-01-01

    Shape memory alloys (SMAs) with cellular structure offer a unique mixture of thermo-physical-mechanical properties. These characteristics can be tuned by changing the pore size and make the shape memory metallic foams very attractive for developing new devices for structural and functional applications. In this work, CuZnAl SMA foams were produced through the liquid infiltration of space holder method. In comparison, a conventional CuZn brass alloy was foamed trough the same method. Functional performances were studied on both bulk and foamed SMA specimens. Calorimetric response shows similar martensitic transformation (MT) below 0 °C. Compressive response of CuZnAl revealed that mechanical behavior is strongly affected by sample morphology and that damping capacity of metallic foam is increased above the MT temperatures. The shape memory effect was detected in the CuZnAl foams. The conventional brass shows a compressive response similar to that of the martensitic CuZnAl, in which plastic deformation accumulation occurs up to the cellular structure densification after few thermal cycles.

  16. First-principles calculations of vacancy formation in In-free photovoltaic semiconductor Cu2ZnSnSe4

    International Nuclear Information System (INIS)

    Maeda, Tsuyoshi; Nakamura, Satoshi; Wada, Takahiro

    2011-01-01

    To quantitatively evaluate the formation energies of Cu, Zn, Sn, and Se vacancies in kesterite-type Cu 2 ZnSnSe 4 (CZTSe), first-principles pseudopotential calculations using plane-wave basis functions were performed. The formation energies of neutral Cu, Zn, Sn and Se vacancies were calculated as a function of the atomic chemical potentials of constituent elements. The obtained results were as follows: (1) the formation energy of Cu vacancy was generally smaller than those of the other Zn, Sn and Se vacancies, (2) under the Cu-poor and Zn-rich condition, the formation energy of Cu vacancy was particularly low, (3) the formation energy of Zn vacancy greatly depended on the chemical potentials of the constituent elements and under the Zn-poor and Se-rich condition, the formation energy of Zn vacancy was smaller than that of Cu vacancy, and (4) the formation energy of Sn vacancy did not greatly depend on the chemical potentials of the constituent elements and was much larger than those of Cu, Zn, and Se vacancies. These results indicate that Cu vacancy is easily formed under Cu-poor and Zn-rich conditions, but Zn vacancy is easily formed under the Zn-poor and Se-rich conditions.

  17. Cu and Zn Isotopes as New Tracers of Early Solar Nebula and Asteroidal processes

    Science.gov (United States)

    LUCK, J.; BEN OTHMAN, D.; ALBAREDE, F.

    2001-12-01

    Cu and Zn isotopic variations are now identified in extra-terrestrial samples, as has been the case for terrestrial samples (1). The main parameters which may cause these variations are : redox state, temperature, biological activity (Earth), and volatility (extra-terrestrial samples). We report data for meteorites from various groups and classes, including carbonaceous chondrites, ordinary and diffentiated chondrites (iron meteorites, SNC and HED). All analyses have been duplicated (from powder aliquot to final measurement). Values are expressed as relative deviations from NIST and JMC standards for 65Cu/63Cu and 66Zn64Zn, respectively (deltas in permil). Carefull chemistry and MC-ICP-MS measurements allow an overall precision of +/-0.04 permil. I- Carbonaceous Chondrites A very important feature is that each group seems to exhibit a specific isotopic signature : Cu gets isotopically lighter from CI to CM to CO to CV, spanning an overall range of 1.5 permil. Zn shows a reverse order, getting heavier from CI to CM to CO. Zn in CV chondrites (whole rock) seems more variable. This order is the same as that observed for trace elements. Cu and Zn isotopic compositions are generally correlated to trace element content from one group to another, particularly those of similar volatility (e.g. Mn for Cu; Ge for Zn). Cu and Zn isotopic signatures exhibit remarkable relationships with Oxygen isotopes. Each group is well identified. Cu is linearly correlated with Oxygen, whereas Zn-O data display strong curvature : the difference in shape can be related to the nearly constant Cu content in all groups, and by the decreasing Zn content from CI to CO. Since Oxygen variations (from CV to CI) are thought to reflect progressive interaction of liquid water with initial solid (asteroid), Cu isotopic variations may also reflect this progressive alteration process. It may be so for Zn too, although its more volatile character might play a role. II-Allende Progressive leaching

  18. Syntheses, structures, and properties of imidazolate-bridged Cu(II)-Cu(II) and Cu(II)-Zn(II) dinuclear complexes of a single macrocyclic ligand with two hydroxyethyl pendants.

    Science.gov (United States)

    Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia

    2003-09-22

    The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.

  19. Tolerance of Portulaca grandiflora to individual and combined application of Ni, Pb and Zn.

    Science.gov (United States)

    Mihailovic, N; Andrejić, G; Dželetović, Ž

    2015-01-01

    In the present study, metal accumulation capacity and tolerance of Portulaca grandiflora were investigated. Plants were grown under greenhouse conditions in pots on soil amended with Ni, Pb and Zn to the final concentration of 2 mmol kg(-1) for each metal. Results show considerable accumulating capacity and translocation of Ni and Zn, as well as significant accumulation of Pb in roots. A slight decrease of biomass with Zn and of chlorophyll content with Zn and Ni were observed, as well as an increase of proline content with each of the metals. Combinations of metals revealed mutual interference affecting both the uptake and translocation of the metals and their impact on physiological parameters. Results suggest that Portulaca grandiflora, although not a hyperaccumulator, shows a good tolerance and accumulation capacity for Ni, Pb and Zn, but, for the purposes of remediation, interference of the metals must be taken into account.

  20. Assessment of soil contamination by potentially toxic trace elements (PTSD) (As, Cd, Cu, Hg, Pb, Zn) in a lower plain of the Hron River according to Law no. 219/2008 Coll., by geo-accumulation index, anthropogenic factor and Tomlinson index; Zhodnotenie kontaminacie pod potencialne toxickymi stopovymi prvkami (PTSP) (As, Cd, Cu, Hg, Pb, Zn) v dolnej casti nivy Hrona podla zakona c. 219/2008 Z.z., indexu geoakumulacie, antropogenneho faktora a Tomlinsonovho indexu

    Energy Technology Data Exchange (ETDEWEB)

    Hlodak, M [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Ustav laboratorneho vyskumu geomaterialov, 84215 Bratislava (Slovakia)

    2012-04-25

    Soil contamination by different PTSD may have different geogenic and anthropogenic origin and occurs in all countries of the world. The aim of this paper is to evaluate the soils contamination of a lower plain of the Hron River. This paper used the results of the thesis Soil contamination of the Hron River floodplain by trace elements (As, Cd, Cu, Hg, Pb, Zn) [1]. Soil contamination was evaluated by: Act. 219/2008 Coll. on the protection and use of agricultural land, by anthropogenic factor (AF), geo-accumulation index (IgeoE) and Tomlinson index - the index of the pollution load (PLI). (author)

  1. Thermodynamics of Pb(ii) and Zn(ii) binding to MT-3, a neurologically important metallothionein.

    Science.gov (United States)

    Carpenter, M C; Shami Shah, A; DeSilva, S; Gleaton, A; Su, A; Goundie, B; Croteau, M L; Stevenson, M J; Wilcox, D E; Austin, R N

    2016-06-01

    Isothermal titration calorimetry (ITC) was used to quantify the thermodynamics of Pb(2+) and Zn(2+) binding to metallothionein-3 (MT-3). Pb(2+) binds to zinc-replete Zn7MT-3 displacing each zinc ion with a similar change in free energy (ΔG) and enthalpy (ΔH). EDTA chelation measurements of Zn7MT-3 and Pb7MT-3 reveal that both metal ions are extracted in a tri-phasic process, indicating that they bind to the protein in three populations with different binding thermodynamics. Metal binding is entropically favoured, with an enthalpic penalty that reflects the enthalpic cost of cysteine deprotonation accompanying thiolate ligation of the metal ions. These data indicate that Pb(2+) binding to both apo MT-3 and Zn7MT-3 is thermodynamically favourable, and implicate MT-3 in neuronal lead biochemistry.

  2. Cu(II) AND Zn(II)

    African Journals Online (AJOL)

    Preferred Customer

    SYNTHESIS OF 2,2-DIMETHYL-4-PHENYL-[1,3]-DIOXOLANE USING ZEOLITE. ENCAPSULATED Co(II), Cu(II) AND Zn(II) COMPLEXES. B.P. Nethravathi1, K. Rama Krishna Reddy2 and K.N. Mahendra1*. 1Department of Chemistry, Bangalore University, Bangalore-560001, India. 2Department of Chemistry, Government ...

  3. Biocompatibility Assessment of Novel Bioresorbable Alloys Mg-Zn-Se and Mg-Zn-Cu for Endovascular Applications: In- Vitro Studies.

    Science.gov (United States)

    Persaud-Sharma, Dharam; Budiansky, Noah; McGoron, Anthony J

    2013-01-01

    Previous studies have shown that using biodegradable magnesium alloys such as Mg-Zn and Mg-Zn-Al possess the appropriate mechanical properties and biocompatibility to serve in a multitude of biological applications ranging from endovascular to orthopedic and fixation devices. The objective of this study was to evaluate the biocompatibility of novel as-cast magnesium alloys Mg-1Zn-1Cu wt.% and Mg-1Zn-1Se wt.% as potential implantable biomedical materials, and compare their biologically effective properties to a binary Mg-Zn alloy. The cytotoxicity of these experimental alloys was evaluated using a tetrazolium based- MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and a lactate dehydrogenase membrane integrity assay (LDH). The MTS assay was performed on extract solutions obtained from a 30-day period of alloy immersion and agitation in simulated body fluid to evaluate the major degradation products eluted from the alloy materials. Human foreskin fibroblast cell growth on the experimental magnesium alloys was evaluated for a 72 hour period, and cell death was quantified by measuring lactate dehydrogenase concentrations. Both Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. The Mg-Zn-Cu alloy was found to completely degrade within 72 hours, resulting in lower human foreskin fibroblast cell viability. The Mg-Zn-Se alloy was shown to be less cytotoxic than both the Mg-Zn-Cu and Mg-Zn alloys.

  4. Relative Humidity Sensing Properties Of Cu2O Doped ZnO Nanocomposite

    International Nuclear Information System (INIS)

    Pandey, N. K.; Tiwari, K.; Tripathi, A.; Roy, A.; Rai, A.; Awasthi, P.

    2009-01-01

    In this paper we report application of Cu 2 O doped ZnO composite prepared by solid state reaction route as humidity sensor. Pellet samples of ZnO-Cu 2 O nanocrystalline powders with 2, 5 and 10 weight% of Cu 2 O in ZnO have been prepared. Pellets have been annealed at temperatures of 200-500 deg. C and exposed to humidity. It is observed that as relative humidity increases, resistance of the pellet decreases for the humidity from 10% to 90%. Sample with 5% of Cu 2 O doped in ZnO and annealed at 500 deg. C shows best results with sensitivity of 1.50 MΩ/%RH. In this case the hysteresis is low and the reproducibility high, making it the suitable candidate for humidity sensing.

  5. Discovery of Wolitu Pb-Zn deposit through geochemical prospecting under loess cover in Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2017-09-01

    Full Text Available We report the finding of the Wolitu Pb-Zn deposit in Inner Mongolia, China, through a series of geochemical surveys. The Wolitu area, located in the loess-cover area in the Hure Banner, Tongliao City, Inner Mongolia, and neighboring the Horqin Sandy Land to the north, had no previous history of Pb-Zn mining or record of Pb-Zn mineralization. Our study identified a large Pb-Zn anomaly with potential zones of mineralization by stream sediment survey. Random rock sampling reveals limonitization at sporadic outcrops in the gullies. The high concentrations of Pb in the residual debris provided guidelines to fix the position for exploratory trench. Oxidized concealed orebodies were identified by trenching. Blind orebodies in veins hosted within the structural zone between slates and marbles of the upper Carboniferous Shizuizi Formation and the Permian granite were discovered by drilling. It is computed that the ore reserve may reach up to 540,000 tones with Pb grade of 1.27% and Zn of 1.9%. This case study is an excellent example for identifying potential polymetallic deposits in loess covered terrains using geochemical exploration.

  6. Cu2ZnSn(S,Se)4 from CuxSnSy nanoparticle precursors on ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Kavalakkatt, Jaison; Lin, Xianzhong; Kornhuber, Kai; Kusch, Patryk; Ennaoui, Ahmed; Reich, Stephanie; Lux-Steiner, Martha Ch.

    2013-01-01

    Solar cells with Cu 2 ZnSnS 4 absorber thin films have a potential for high energy conversion efficiencies with earth-abundant and non-toxic elements. In this work the formation of CZTSSe from Cu x SnS y nanoparticles (NPs) deposited on ZnO nanorod (NR) arrays as precursors for zinc is investigated. The NPs are prepared using a chemical route and are dispersed in toluene. The ZnO NRs are grown on fluorine doped SnO 2 coated glass substrates by electro deposition method. A series of samples are annealed at different temperatures between 300 °C and 550 °C in selenium containing argon atmosphere. To investigate the products of the reaction between the precursors the series is analyzed by means of X-ray diffraction (XRD) and Raman spectroscopy. The morphology is recorded by scanning electron microscopy (SEM) images of broken cross sections. The XRD measurements and the SEM images show the disappearing of ZnO NRs with increasing annealing temperature. Simultaneously the XRD and Raman measurements show the formation of CZTSSe. The formation of secondary phases and the optimum conditions for the preparation of CZTSSe is discussed. - Highlights: ► Cu x SnS y nanoparticles are deposited on ZnO nanorod arrays. ► Samples are annealed at different temperatures (300–550 °C) in Se/Ar-atmosphere. ► Raman spectroscopy, X-ray diffraction and electron microscopy are performed. ► ZnO disappears with increasing annealing temperature. ► With increasing temperature Cu x SnS y and ZnO form Cu 2 ZnSn(S,Se) 4

  7. The matrix effect study in the spectrographic analysis of rare earth elements. Pt. 1. The influence of Sn, Pb, Sb, Bi, Cu, Ag, Zn and Cd on the spectral lines intensity of Y, La, Ce, Pr, Nd and Sm in the current arc exciting between C-electrodes

    International Nuclear Information System (INIS)

    Wysocka-Lisek, J.; Paszkowska, B.; Mularczyk, K.

    1976-01-01

    In the beginning the influence of Sn, Pb, Sb, Bi, Cu, Ag, Zn and Cd on the light rare earth spectral lines using Ni as the internal standard, during the intermittent current arc excitation between C-electrodes was studied. On the basis of the spectral lines intensity measurements, it was stated that one may apply the addition of Ni as the internal standard by the quantitative determination of Sn, Pb, Sb, Bi, Zn and Cd in the light rare earth mixtures with one of the above. Also a great influence of the presence of the individually studied metal was observed on the spectral line intensity of rare earth elements and nickel. The differences of the thermo-chemical reactions nature between excited elements and the carbon of the electrodes may cause that influence. (author)

  8. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-06-01

    ABSTRACT CuZn Alloy- Based Electrocatalyst for CO2 Reduction Amira Alazmi Carbon dioxide (CO2) is one of the major greenhouse gases and its emission is a significant threat to global economy and sustainability. Efficient CO2 conversion leads to utilization of CO2 as a carbon feedstock, but activating the most stable carbon-based molecule, CO2, is a challenging task. Electrochemical conversion of CO2 is considered to be the beneficial approach to generate carbon-containing fuels directly from CO2, especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys with heat treatments at different temperatures have been evaluated as electrocatalysts for CO2 reduction. It was found that the catalytic activity of these electrodes was strongly dependent on the thermal oxidation temperature before their use for electrochemical measurements. The polycrystalline CuZn electrode without thermal treatment shows the Faradaic efficiency for CO formation of only 30% at applied potential ~−1.0 V vs. RHE with current density of ~−2.55 mA cm−2. In contrast, the reduction of oxide-based CuZn alloy electrode exhibits 65% Faradaic efficiency for CO at lower applied potential about −1.0 V vs. RHE with current density of −2.55 mA cm−2. Furthermore, stable activity was achieved over several hours of the reduction reaction at the modified electrodes. Based on electrokinetic studies, this improvement could be attributed to further stabilization of the CO2•− on the oxide-based Cu-Zn alloy surface.

  9. Thermal analysis and prediction of phase equilibria in ternary Pb-Zn-Ag system

    Directory of Open Access Journals (Sweden)

    Živković D.

    2011-01-01

    Full Text Available Ternary Pb-Zn-Ag system is typical for some physicochemical processes going on in refining phase in the extractive metallurgy of lead. Therefore, investigation of mentioned system is important from both theoretical and practical research of the phenomena occurring during the lead desilverizing process. The results of experimental investigation using differential thermal analysis (DTA and thermodynamic calculation of phase equilibria in Pb-Zn-Ag system according to CALPHAD method, in the sections with Zn:Ag mass ratio equal to 90:10, 70:30 and 50:50, are presented in this paper.

  10. Preparation of carrier-free 67Cu by the 68Zn(γ,p) reaction

    International Nuclear Information System (INIS)

    Yagi, M.; Kondo, K.

    1978-01-01

    The preparation of pure, carrier-free 67 Cu using the 68 Zn(γ, p) reaction with an isotopically enriched 68 Zn(98.97%) target is described. The production rates of 67 Cu and contaminants were determined as a function of the maximum bremsstrahlung energies between 30 and 60 MeV. The chemical separation of the carrier-free 67 Cu and the recovery of the 68 Zn target were also studied. (author)

  11. Evaluation of heavy metals (Cr, Fe, Ni, Cu, Zn, Cd, Pb and Hg) in water, sediments and water lily (Eichornia crassipes) from Jose Antonio Alzate dam; Evaluacion de metales pesados Cr, Fe, Ni, Cu, Zn, Cd, Pb y Hg en agua, sedimento y lirio acuatico (Eichhornia crassipes) de la Presa Jose Antonio Alzate, Estado de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Avila P, P

    1996-12-31

    Water, sediments and water lily (Eichornia crassipes) from the Jose Antonio Alzate Dam were analyzed in order to determine concentrations of chromium, iron, nickel, copper, zinc, cadmium, lead and mercury. Mercury, lead, chromium and iron were found in concentrations above permissible limits in water, and in high concentrations in sediments. Cadmium, nickel, copper and zinc never were found in concentrations above permissible limits in water. The highest concentrations of heavy metals in water lily were found in the root. Accumulation factors decreased in the following order: Zn> Cr> Fe> Ni> Cu> Pb> Hg and Cd. Statistical differences ({alpha} < 0.5) between the collection samples dates was observed. High correlations between metals concentrations in superficial water, sediment and water hyacinth were also observed. These correlations could indicate that the heavy metals studied here, are originated from a natural source such as sediments or from an industrial source. (Author).

  12. Intrinsic point defects in off-stoichiometric Cu2ZnSnSe4: A neutron diffraction study

    Science.gov (United States)

    Gurieva, Galina; Valle Rios, Laura Elisa; Franz, Alexandra; Whitfield, Pamela; Schorr, Susan

    2018-04-01

    This work is an experimental study of intrinsic point defects in off-stoichiometric kesterite type CZTSe by means of neutron powder diffraction. We revealed the existence of copper vacancies (VCu), various cation anti site defects (CuZn, ZnCu, ZnSn, SnZn, and CuZn), as well as interstitials (Cui, Zni) in a wide range of off-stoichiometric polycrystalline powder samples synthesized by the solid state reaction. The results show that the point defects present in off-stoichiometric CZTSe agree with the off-stoichiometry type model, assuming certain cation substitutions accounting for charge balance. In addition to the known off-stoichiometry types A-H, new types (I-L) have been introduced. For the very first time, a correlation between the chemical composition of the CZTSe kesterite type phase and the occurring intrinsic point defects is presented. In addition to the off-stoichiometry type specific defects, the Cu/Zn disorder is always present in the CZTSe phase. In Cu-poor/Zn-rich CZTSe, a composition considered as the one that delivers the best photovoltaic performance, mainly copper vacancies, ZnCu and ZnSn anti sites are present. Also, this compositional region shows the lowest degree of Cu/Zn disorder.

  13. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Javed, E-mail: tariqjan84@gmail.com, E-mail: javed.suggau@iiu.edu.pk; Jan, Tariq, E-mail: tariqjan84@gmail.com, E-mail: javed.suggau@iiu.edu.pk; Ul-Hassan, Sibt; Umair Ali, M.; Abbas, Fazal [Laboratory of Nanoscience and Technology, Department of Physics, International Islamic University, H-10, Islamabad (Pakistan); Ahmed, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Mansoor, Qaisar; Ismail, Muhammad [Institute of Biomedical and Genetic Engineering (IBGE), Islamabad (Pakistan)

    2015-12-15

    Zn{sub x}Cu{sub 1−x}O (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol%) hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD) results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM) analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  14. Dielectric properties investigation of Cu2O/ZnO heterojunction thin films by electrodeposition

    International Nuclear Information System (INIS)

    Li, Qiang; Xu, Mengmeng; Fan, Huiqing; Wang, Hairong; Peng, Biaolin; Long, Changbai; Zhai, Yuchun

    2013-01-01

    Highlights: ► Bottom-up self-assembly Cu 2 O/ZnO heterojunction was fabricated by electrochemical deposition on indium tin oxide (ITO) flexible substrate (polyethylene terephthalate-PET). ► The dielectric response of Cu 2 O/ZnO heterojunction thin films had been investigated. ► The universal dielectric response was used to investigate the hopping behavior in Cu 2 O/ZnO heterojunction. -- Abstract: Structures and morphologies of the Cu 2 O/ZnO heterojunction electrodeposited on indium tin oxide (ITO) flexible substrate (polyethylene terephthalate-PET) were investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), high resolution transmission electron microscopy (HRTEM), respectively. The dielectric response of bottom-up self-assembly Cu 2 O/ZnO heterojunction was investigated. The low frequency dielectric dispersion (LFDD) was observed. The universal dielectric response (UDR) was used to investigate the frequency dependence of dielectric response for Cu 2 O/ZnO heterojunction, which was attributed to the long range and the short range hopping charge carriers at the low frequency and the high frequency region, respectively

  15. Enhanced wetting of Cu on ZnO by migration of subsurface oxygen vacancies

    DEFF Research Database (Denmark)

    Beinik, Igor; Helström, Matti; Jensen, Thomas Nørregaard

    2015-01-01

    is of utmost importance. The Cu/ZnO system is among the most investigated of such systems in model studies, but the presence of subsurface ZnO defects and their important role for adhesion on ZnO have been unappreciated so far. Here we reveal that the surface-directed migration of subsurface defects affects...... the Cu adhesion on polar ZnO(0001) in the technologically interesting temperature range up to 550 K. This leads to enhanced adhesion and ultimately complete wetting of ZnO(0001) by a Cu overlayer. On the basis of our experimental and computational results we demonstrate a mechanism which implies...

  16. Dielectric properties of polycrystalline Cu-Zn ferrites at microwave frequencies

    International Nuclear Information System (INIS)

    Lamani, Ashok R.; Jayanna, H.S.; Parameswara, P.; Somashekar, R.; Ramachander,; Rao, Ramchandra; Prasanna, G.D.

    2011-01-01

    Highlights: → Cu 1-x Zn x Fe 2 O 4 at different concentration are suitable for high frequency applications. → Dielectric properties are related with W-H plot. → The anisotropy due to the crystallite size effect is significant in change of dielectric constant. - Abstract: The real dielectric constant ε' and complex dielectric constant ε'' of Cu 1-x Zn x Fe 2 O 4 have been measured at room temperature in the high frequency range 1 MHz to 1.8 GHz. At low frequencies the dielectric loss is found to be constant up to 1.4 GHz and there is a sudden rise at 1.5 GHz. A qualitative explanation is given for the composition, frequency dependence of the dielectric constant and dielectric loss of Cu 1-x Zn x Fe 2 O 4 . These are correlated with the W-H plot which gives the information about change in the average crystal size and strain of the samples. The micro-morphological features of the samples were obtained by Scanning Electron Microscopy (SEM). The micrograph shows that the increase of the Zn content in Cu ferrite increases the grain size.

  17. In-situ XRD study of alloyed Cu2ZnSnSe4-CuInSe2 thin films for solar cells

    International Nuclear Information System (INIS)

    Hartnauer, Stefan; Wägele, Leonard A.; Jarzembowski, Enrico; Scheer, Roland

    2015-01-01

    We investigate the growth of Cu 2 ZnSnSe 4 -CuInSe 2 (CZTISe) thin films using a 2-stage (Cu-rich/Cu-free) co-evaporation process under simultaneous application of in-situ angle dispersive X-ray diffraction (XRD). In-situ XRD allows monitoring the phase formation during preparation. A variation of the content of indium in CZTISe leads to a change in the lattice constant. Single phase CZTISe is formed in a wide range, while at high In contents a phase separation is detected. Because of different thermal expansion coefficients, the X-ray diffraction peaks of ZnSe and CZTISe can be distinguished at elevated substrate temperatures. The formation of ZnSe appears to be inhibited even for low indium content. In-situ XRD shows no detectable sign for the formation of ZnSe. First solar cells of CZTISe have been prepared and show comparable performance to CZTSe. - Highlights: • In-situ XRD study of two-stage co-evaporated Cu 2 ZnSnSe 4 -CuInSe 2 alloyed thin films. • No detection of ZnSe with in-situ XRD due to Indium incorporation • Comparable efficiency of alloyed solar cells

  18. Electrodeposition and Characterization of Mn-Cu-Zn Alloys for Corrosion Protection Coating

    Science.gov (United States)

    Tsurtsumia, Gigla; Gogoli, David; Koiava, Nana; Kakhniashvili, Izolda; Jokhadze, Nunu; Lezhava, Tinatin; Nioradze, Nikoloz; Tatishvili, Dimitri

    2017-12-01

    Mn-Cu-Zn alloys were electrodeposited from sulphate bath, containing citrate or EDTA and their mixtures as complexing ligands. The influence of bath composition and deposition parameters on alloys composition, cathodic current efficiency and structural and electrochemical properties were studied. At a higher current density (≥ 37.5 A dm-2) a uniform surface deposit of Mn-Cu-Zn was obtained. Optimal pH of electrolyte (0.3 mol/dm3Mn2+ + 0.6 mol/dm3 (NH4)2SO4 +0.1 mol/dm3Zn2++0.005 mol/dm3 Cu2++ 0.05mol/dm3Na3Cit + 0.15mol/dm3 EDTA; t=300C; τ=20 min) for silvery, nonporous coating of Mn-Cu-Zn alloy was within 6.5-7.5; coating composition: 71-83% Mn, 6-7.8% Cu, 11.5-20% Zn, current efficiency up to 40%. XRD patterns revealed BCT (body centred tetragonal) γ-Mn solid phase solution (lattice constants a=2.68 Å c=3.59 Å). Corrosion measurements of deposited alloys were performed in aerated 3.5% NaCl solution. The corrosion current density (icorr) of the electrodeposited alloys on carbon steel was 10 times lower than corrosion rate of pure zinc and manganese coatings. Triple alloy coatings corrosion potential (Ecorr = -1140 mV vs. Ag/AgCl) preserved negative potential value longer (more than three months) compared to carbon steel substrate (Ecorr = -670 mV vs. Ag/AgCl). Tafel polarization curves taken on Mn-Cu-Zn alloy coating in aerated 3.5% NaCl solution did not show a typical passivation behaviour which can be explained by formation oflow solubility of adherent corrosion products on the alloy surface. Corrosion test of Mn-Cu-Zn electrocoating in chlorine environment shows that it is the best cathodic protective coating for a steel product.

  19. Cu,Zn superoxide dismutase: cloning and analysis of the Taenia solium gene and Taenia crassiceps cDNA.

    Science.gov (United States)

    Parra-Unda, Ricardo; Vaca-Paniagua, Felipe; Jiménez, Lucia; Landa, Abraham

    2012-01-01

    Cytosolic Cu,Zn superoxide dismutase (Cu,Zn-SOD) catalyzes the dismutation of superoxide (O(2)(-)) to oxygen and hydrogen peroxide (H(2)O(2)) and plays an important role in the establishment and survival of helminthes in their hosts. In this work, we describe the Taenia solium Cu,Zn-SOD gene (TsCu,Zn-SOD) and a Taenia crassiceps (TcCu,Zn-SOD) cDNA. TsCu,Zn-SOD gene that spans 2.841 kb, and has three exons and two introns; the splicing junctions follow the GT-AG rule. Analysis in silico of the gene revealed that the 5'-flanking region has three putative TATA and CCAAT boxes, and transcription factor binding sites for NF1 and AP1. The transcription start site was a C, located at 22 nucleotides upstream of the translation start codon (ATG). Southern blot analysis showed that TcCu,Zn-SOD and TsCu,Zn-SOD genes are encoded by a single copy. The deduced amino acid sequences of TsCu,Zn-SOD gene and TcCu,Zn-SOD cDNA reveal 98.47% of identity, and the characteristic motives, including the catalytic site and β-barrel structure of the Cu,Zn-SOD. Proteomic and immunohistochemical analysis indicated that Cu,Zn-SOD does not have isoforms, is distributed throughout the bladder wall and is concentrated in the tegument of T. solium and T. crassiceps cysticerci. Expression analysis revealed that TcCu,Zn-SOD mRNA and protein expression levels do not change in cysticerci, even upon exposure to O(2)(-) (0-3.8 nmol/min) and H(2)O(2) (0-2mM), suggesting that this gene is constitutively expressed in these parasites. Published by Elsevier Inc.

  20. Study of Fe, Zn, Cu, Cd, Pb concentrations in liver, kidney and muscle tissue of cow and sheep marketed in Hamedan in 2011

    Directory of Open Access Journals (Sweden)

    S Sobhanardakani

    2012-11-01

    Full Text Available Importance of heavy metals in food safety and detrimental effects of their high concentrations in food stuff is well documented. In this study, concentrations of Fe, Zn, Cu, Cd and Pb in kidney, liver and muscle tissues of cow and sheep at Hamedan retails were evaluated. A total number of 180 samples was assessed for the amount of heavy metals as ppb in wet weight. For this, wet-digestion method was used to determine the concentration of given elements by ICP (Varian ES-710. Results showed that the highest concentration of heavy metals was determined in the liver and kidney samples, while the lowest concentration was found in muscle tissue. Among the heavy metals, Fe in cow’s liver had the highest concentration (25507±879 ppb and Cd in muscle tissue of sheep has the lowest concentration (192±54 ppb. In overall, accumulation of heavy metals in tissues of cows was higher than sheep. Statistical comparison of accumulated metals concentration in various tissues of these two animal groups showed significant difference (P

  1. The Survey and Measurement of Ni, Pb, Cu, Mn, Zn, Cd and V Content in Green Vegetables of South Area of Tehran Refinery

    International Nuclear Information System (INIS)

    Kazemzadeh Khoyi, J.; Noori, A. S.; Pourang, N.; Alizadeh, M.; Ghoreishi, H.; Padash, A.

    2013-01-01

    Oil pollution is one of the most critical soil and water pollutant. Areas which are subjected to oil industry may have this kind of pollution by different ways such as extraction, transformation and refining. The example of these areas is south east of Tehran refinery which is surrounded by agricultural fields and are subjected by pollution via Tehran refinery, oil transforming lines, waste water and industrial activities. Since the crops from this area is providing the needs of neighbor cities like Tehran, to realize their oil pollution, the content of some heavy metals like Ni, V, Cu, Cd, Zn, Pb and Mn has been measured. The results analyzed by analytical method include SPSS and MVSP. Finally the relation between elements and pollution has been recognized. The result of this survey showed the high heavy metal content in most plants which were higher than similar research. Onion had the highest amount of most heavy metals. Ni and Pd content were high in plants which are indicator of oil pollution.

  2. Fatigue crack behavior on a Cu-Zn-Al SMA

    Directory of Open Access Journals (Sweden)

    V. Di Cocco

    2014-10-01

    Full Text Available In recent years, mechanical property of many SMA has improved in order to introduce these alloys in specific field of industry. Main examples of these alloys are the NiTi, Cu-Zn-Al and Cu-Al-Ni which are used in many fields of engineering such as aerospace or mechanical systems. Cu-Zn-Al alloys are characterized by good shape memory properties due to a bcc disordered structure stable at high temperature called β-phase, which is able to change by means of a reversible transition to a B2 structure after appropriate cooling, and reversible transition from B2 secondary to DO3 order, under other types of cooling. In β-Cu-Zn-Al shape memory alloys, the martensitic transformation is not in equilibrium at room temperature. It is therefore often necessary to obtain the martensitic structure, using a thermal treatment at high temperature followed by quenching. The martensitic phases can be either thermally-induced spontaneous transformation, or stressinduced, or cooling, or stressing the β- phase. Direct quenching from high temperatures to the martensite phase is the most effective because of the non-diffusive character of the transformation. The martensite inherits the atomic order from the β-phase. Precipitation of many kinds of intermetallic phases is the main problem of treatment on cu-based shape memory alloy. For instance, a precipitation of α-phase occurs in many low aluminum copper based SMA alloy and presence of α-phase implies a strong degradation of shape recovery. However, Cu-Zn-Al SMA alloys characterized by aluminum contents less than 5% cover a good cold machining and cost is lower than traditional NiTi SMA alloys. In order to improve the SMA performance, it is always necessary to identify the microstructural changing in mechanical and thermal conditions, using X-Ray analyses. In this work a Cu-Zn-Al SMA alloy obtained in laboratory has been microstructurally and metallographically characterized by means of X-Ray diffraction and Light

  3. Averaged cross sections for the reactions 68Zn(n,p)68gCu and 68Zn(n,p)68mCu for a 235U fission neutron spectrum

    International Nuclear Information System (INIS)

    Kestelman, A.J.; Ribeiro Guevara, S.; Arribere, M.A.; Cohen, I.M.

    2007-01-01

    Making use of the method developed in our laboratory for the simultaneous determination of cross sections leading to both the ground and metastable states, we have measured the 68 Zn(n,p) 68g Cu and 68 Zn(n,p) 68m Cu reactions, using Zn enriched to 99.4% in its isotope 68 Zn. The measured cross sections are (15.04±0.35) and (3.69±0.30) μb for the ground and metastable state, respectively. However, a direct determination of the cross section leading to the metastable state gives a value of (4.75±0.38) μb. A possible reason for this discrepancy-which is outside experimental uncertainties-is that some tabulated values used in our calculations for the decay parameters of 68g Cu and 68m Cu, have either larger than quoted, or unknown systematic, uncertainties

  4. Contamination of the soil along the river Zletovska by metals as by products of economic production of Pb-Zn

    OpenAIRE

    Boev, Blazo; Lepitkova, Sonja

    1996-01-01

    This paper shows the results constraining the degree of contamination of soil along the course of the River Zletovska by some mewls. These are by- products of economic production of lead-zinc ores which are common in this area. Contamination of soils by some metals, first of all by Pb, Zn, Cu, Cd, As, Fe, Al, Mn, Na, K is an important issue for the quality of the environment in which we live from several aspects: accumulation of waters under river alluvions; agricultural produ...

  5. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Chevreux, Sylviane; Roudeau, Stephane; Deves, Guillaume; Ortega, Richard [Laboratoire de Chimie Nucleaire Analytique et Bioenvironnementale, CNRS UMR5084, Universite Bordeaux 1, Chemin du Solarium, F-33175 Gradignan cedex (France); Solari, Pier Lorenzo [Synchrotron SOLEIL, L' Orme des Merisiers, BP 48, F-91192 Gif-sur-Yvette cedex, Saint-Aubin (France); Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis, E-mail: ortega@cenbg.in2p3.f [FAME, ESRF, 6 rue Jules Horowitz, BP220, F-38043 Grenoble cedex (France)

    2009-11-15

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  6. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    Science.gov (United States)

    Chevreux, Sylviane; Solari, Pier Lorenzo; Roudeau, Stéphane; Deves, Guillaume; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis; Ortega, Richard

    2009-11-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  7. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    International Nuclear Information System (INIS)

    Chevreux, Sylviane; Roudeau, Stephane; Deves, Guillaume; Ortega, Richard; Solari, Pier Lorenzo; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis

    2009-01-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  8. Application of Zn isotopes in environmental impact assessment of Zn–Pb metallurgical industries: A mini review

    International Nuclear Information System (INIS)

    Yin, Nang-Htay; Sivry, Yann; Benedetti, Marc F.; Lens, Piet N.L.; Hullebusch, Eric D. van

    2016-01-01

    Zn and Pb smelters are the major contributors to Zn and Pb emissions among all anthropogenic sources, thus, it is essential to understand Zn isotopic variations within the context of metallurgical industries, as well as its fractionation in different environments impacted by smelting activities. This mini review outlines the current state of knowledge on Zn isotopic fractionation during the high-temperature roasting process in Zn and Pb refineries; δ"6"6Zn values variations in air emissions, slags and effluents from the smelters in comparison to the geogenic Zn isotopic signature of ores formation and weathering. In order to assess the environmental impact of these smelters, the available and measured δ"6"6Zn values are compiled for smelter impacted natural water bodies (groundwater, stream and river water), sediments (lake and reservoir) and soils (peat bog soil, inland soil). Finally, the discussion is extended to the fractionation induced during numerous physicochemical reactions and transformations, i.e. adsorption, precipitation as well as both inorganic and organic surface complexation. - Highlights: • Zn and Pb smelters are the major contributors to Zn emissions among all anthropogenic sources. • Zn isotopic variations in this context has been widely studied over the last 15 years. • Zn isotopic fractionation during the high-temperature roasting process and electroplating process is summarize. • Subsequent δ"6"6Zn values variations in air emissions, slags and effluents from the smelters are compared to the geogenic one. • The usefulness of δ"6"6Zn values to trace environmental impact of these smelters is discussed.

  9. Formation of ferric flocks for the removal of Zn and Cu from dockyard wastewater

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Arevalo, Edurado; Stichnothe, Heinz

    2006-01-01

    Wastewater from wash down of boat hulls contains typically Cu, Zn and organometallic biocides, e.g. tributyltin (TBT). In some cases this wastewater is led directly into the marine system. In the present paper a cheap flocculation method (iron flocculants) for removal of Cu and Zn from the wastew......Wastewater from wash down of boat hulls contains typically Cu, Zn and organometallic biocides, e.g. tributyltin (TBT). In some cases this wastewater is led directly into the marine system. In the present paper a cheap flocculation method (iron flocculants) for removal of Cu and Zn from...

  10. The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route

    Science.gov (United States)

    Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei

    2012-06-01

    An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.

  11. Effect of Cu-Dopant on the Structural, Magnetic and Electrical Properties of ZnO

    Science.gov (United States)

    Aryanto, D.; Kurniawan, C.; Subhan, A.; Sudiro, T.; Sebayang, P.; Ginting, M.; Siregar, S. M. K.; Nasruddin, M. N.

    2017-05-01

    Zn1- x Cu x O (x = 0, 2, 3, and 4 at.%) was synthesized by using solid-state reaction technique. The ZnO and CuO powders were mixed and then milled by using high-speed shaker mill. The influence of Cu dopants on the structure, magnetic, and electrical properties was investigated by using XRD, VSM, and I-V and C-V measurements. The XRD analysis showed that the Zn1- x Cu x O had hexagonal wurtzite polycrystalline. The diffraction intensity decreased and the peak position shifted directly to a higher 2θ angle with increasing the dopant concentration. Furthermore, the lattice parameters decreased when the ZnO was doped with x = 0.04, which indicated that the crystal structure changed. The increase of Cu dopants was believed to affect the magnetic and electrical properties of ZnO.

  12. Evaluation of heavy metals (Cr, Fe, Ni, Cu, Zn, Cd, Pb and Hg) in water, sediments and water lily (Eichornia crassipes) from Jose Antonio Alzate dam

    International Nuclear Information System (INIS)

    Avila P, P.

    1995-01-01

    Water, sediments and water lily (Eichornia crassipes) from the Jose Antonio Alzate Dam were analyzed in order to determine concentrations of chromium, iron, nickel, copper, zinc, cadmium, lead and mercury. Mercury, lead, chromium and iron were found in concentrations above permissible limits in water, and in high concentrations in sediments. Cadmium, nickel, copper and zinc never were found in concentrations above permissible limits in water. The highest concentrations of heavy metals in water lily were found in the root. Accumulation factors decreased in the following order: Zn> Cr> Fe> Ni> Cu> Pb> Hg and Cd. Statistical differences (α < 0.5) between the collection samples dates was observed. High correlations between metals concentrations in superficial water, sediment and water hyacinth were also observed. These correlations could indicate that the heavy metals studied here, are originated from a natural source such as sediments or from an industrial source. (Author)

  13. Effect of ageing time 200 °C on microstructure behaviour of Al-Zn-Cu-Mg cast alloys

    Directory of Open Access Journals (Sweden)

    Pratiwi Diah Kusuma

    2017-01-01

    Full Text Available Al-Zn-Cu-Mg is heat treatable alloy that can be used in many hightech applications, such as aerospace and military. The main objective of this study is to investigate the influence of ageing process in microstrucure behaviour of Al-9Zn-5Cu-4Mg cast alloy by performing SEM analysis and its correlation with hardness tests of as-cast Al-9Zn-5Cu-4Mg alloy and heat treated Al-9Zn-5Cu-4Mg cast alloy. The results show the deployment of precipitation spread over the dendrite and also the presence of second phases Mg3Zn3Al2 , Cu2FeAl7 , CuAl2, and CuMgAl2 in as-cast Al-9Zn-5Cu-4Mg alloy. The presence of all these second phases are affecting to the toughness of aluminium alloy and the presence of MgZn2 leads the impairment of hardness value of heat-treated Al-9Zn-5Cu-5Mg cast alloy.

  14. Deposition of Cu-doped PbS thin films with low resistivity using DC sputtering

    Science.gov (United States)

    Soetedjo, Hariyadi; Siswanto, Bambang; Aziz, Ihwanul; Sudjatmoko

    2018-03-01

    Investigation of the electrical resistivity of Cu-doped PbS thin films has been carried out. The films were prepared using a DC sputtering technique. The doping was achieved by introducing the Cu dopant plate material directly on the surface of the PbS sputtering target plate. SEM-EDX data shows the Cu concentration in the PbS film to be proportional to the Cu plate diameter. The XRD pattern indicates the film is in crystalline cubic form. The Hall effect measurement shows that Cu doping yields an increase in the carrier concentration to 3.55 × 1019 cm-3 and a significant decrease in electrical resistivity. The lowest resistivity obtained was 0.13 Ωcm for a Cu concentration of 18.5%. Preferential orientation of (1 1 1) and (2 0 0) occurs during deposition.

  15. Adsorption of multi-heavy metals Zn and Cu onto surficial sediments: modeling and adsorption capacity analysis.

    Science.gov (United States)

    Li, Shanshan; Zhang, Chen; Wang, Meng; Li, Yu

    2014-01-01

    Improved multiple regression adsorption models (IMRAMs) was developed to estimate the adsorption capacity of the components [Fe oxides (Fe), Mn oxides (Mn), organic materials (OMs), residuals] in surficial sediments for multi-heavy metal Zn and Cu. IMRAM is an improved version over MRAM, which introduces a computer program in the model developing process. As MRAM, Zn(Cu) IMRAM, and Cu(Zn) IMRAM again confirmed that there is significant interaction effects that control the adsorption of compounded Zn and Cu, which was neglected by additional adsorption model. The verification experiment shows that the relative deviation of the IMRAMs is less than 13%. It is revealed by the IMRAMs that Mn, which has the greatest adsorption capability for compounded Zn and Cu (54.889 and 161.180 mg/l, respectively), follows by interference adsorption capacity of Fe/Mn (-1.072 and -24.591 mg/l respectively). Zn and Cu influence each other through different mechanisms. When Zn is the adsorbate, compounded Cu mainly affects the adsorption capacities of Fe/Mn and Fe/Mn/OMs; while when Cu is the adsorbate, compounded Zn mainly exerts its effect on Mn, Fe/Mn, and Mn/OMs. It also shows that the compounded Zn or Cu weakened the interference adsorption of Fe/Mn, and meanwhile, strengthened the interference adsorption of Mn/OMs.

  16. Synthesis and electrical characterization of vertically-aligned ZnO–CuO hybrid nanowire p–n junctions

    International Nuclear Information System (INIS)

    Pukird, Supakorn; Song, Wooseok; Noothongkaew, Suttinart; Kim, Seong Ku; Min, Bok Ki; Kim, Seong Jun; Kim, Ki Woong; Myung, Sung; An, Ki-Seok

    2015-01-01

    Highlights: • Vertically-aligned ZnO–CuO hybrid nanowire arrays were synthesized by a two-step thermal chemical vapor deposition process. • The diameter of parallel-connected ZnO and CuO NWs were estimated to be 146 ± 12 nm and 55 ± 11 nm, respectively, and the formation of high-quality hexagonal ZnO and monoclinic CuO NWs were observed. • Clear rectifying behavior related with thermionic emission of carriers and the presence of an electrical potential barrier between the ZnO and CuO NWs were observed. - Abstract: In order to form nanowire (NW)-based p–n junctions, vertically-aligned ZnO–CuO hybrid NW arrays were synthesized by a two-step thermal chemical vapor deposition process. The diameter of parallel-connected ZnO and CuO NWs were estimated to be 146 ± 12 nm and 55 ± 11 nm, respectively, as observed by scanning electron microscopy. Chemical and structural characterizations of ZnO–CuO hybrid NW arrays were performed using X-ray photoelectron spectroscopy and X-ray diffraction, resulting in the formation of high-quality hexagonal ZnO and monoclinic CuO NWs. The temperature dependence of I–V curves and impedance spectra suggested that clear rectifying behavior related with thermionic emission of carriers and the presence of an electrical potential barrier between the ZnO and CuO NWs

  17. Whisker and Hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits

    International Nuclear Information System (INIS)

    Boettinger, W.J.; Johnson, C.E.; Bendersky, L.A.; Moon, K.-W.; Williams, M.E.; Stafford, G.R.

    2005-01-01

    High purity bright Sn, Sn-Cu and Sn-Pb layers, 3, 7 and 16 μm thick were electrodeposited on phosphor bronze cantilever beams in a rotating disk apparatus. Beam deflection measurements within 15 min of plating proved that all electrodeposits had in-plane compressive stress. In several days, the surfaces of the Sn-Cu deposits, which have the highest compressive stress, develop 50 μm contorted hillocks and 200 μm whiskers, pure Sn deposits develop 20 μm compact conical hillocks, and Sn-Pb deposits, which have the lowest compressive stress, remain unchanged. The differences between the initial compressive stresses for each alloy and pure Sn is due to the rapid precipitation of Cu 6 Sn 5 or Pb particles, respectively, within supersaturated Sn grains produced by electrodeposition. Over longer time, analysis of beam deflection measurements indicates that the compressive stress is augmented by the formation of Cu 6 Sn 5 on the bronze/Sn interface, while creep of the electrodeposit tends to decrease the compressive stress. Uniform creep occurs for Sn-Pb because it has an equi-axed grain structure. Localized creep in the form of hillocks and whiskers occurs for Sn and Sn-Cu because both have columnar structures. Compact hillocks form for the Sn deposits because the columnar grain boundaries are mobile. Contorted hillocks and whiskers form for the Sn-Cu deposits because the columnar grain boundary motion is impeded

  18. Electron paramagnetic resonance in Cu-doped ZnO

    Science.gov (United States)

    Buchheit, R.; Acosta-Humánez, F.; Almanza, O.

    2016-04-01

    In this work, ZnO and Cu-doped ZnO nanoparticles (Zn1-xCuxO, x = 3%), with a calcination temperature of 500∘C were synthesized using the sol-gel method. The particles were analyzed using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) at X-band, measurement in a temperature range from 90 K to room temperature. AAS confirmed a good correspondence between the experimental doping concentration and the theoretical value. XRD reveals the presence of ZnO phase in hexagonal wurtzite structure and a nanoparticle size for the samples synthesized. EPR spectroscopy shows the presence of point defects in both samples with g-values of g = 1.959 for shallow donors and g = 2.004 for ionized vacancies. It is important when these materials are required have been used as catalysts, as suggested that it is not necessary prepare them at higher temperature. A simulation of the Cu EPR signal using an anisotropic spin Hamiltonian was performed and showed good coincidence with the experimental spectra. It was shown that Cu2+ ions enter interstitial octahedral sites of orthorhombic symmetry in the wurtzite crystal structure. Temperature dependence of the EPR linewidth and signal intensity shows a paramagnetic behavior of the sample in the measurement range. A Néel temperature TN = 78 ± 19 K was determined.

  19. Comparative of Quercus spp. and Salix spp. for phytoremediation of Pb/Zn mine tailings.

    Science.gov (United States)

    Shi, Xiang; Wang, Shufeng; Sun, Haijing; Chen, Yitai; Wang, Dongxue; Pan, Hongwei; Zou, Yazhu; Liu, Jianfeng; Zheng, Linyu; Zhao, Xiulian; Jiang, Zeping

    2017-02-01

    A pot experiment was conducted to evaluate the feasibility of using tree seedlings for the phytoremediation of lead/zinc (Pb/Zn) mine tailings. Seedlings of three Quercus spp. (Q. shumardii, Q. phellos, and Q. virginiana) and rooted cuttings of two Salix spp. (S. matsudana and S. integra) were transplanted into pots containing 50 and 100 % Pb/Zn mine tailings to evaluate their tolerance of heavy metals. The five species showed different tolerance levels to the Pb/Zn tailings treatments. Q. virginiana was highly tolerant to heavy metals and grew normally in the Pb/Zn tailings. The root systems showed marked differences between the Quercus spp. and Salix spp., indicating that different mechanisms operated to confer tolerance of heavy metals. The maximum efficiency of photosystem II photochemistry value of the five species showed no differences among the treatments, except for Q. shumardii. All species showed low metal translocation factors (TFs). However, S. integra had significantly higher TF values for Zn (1.42-2.18) and cadmium (1.03-1.45) than did the other species. In this respect, Q. virginiana showed the highest tolerance and a low TF, implying that it is a candidate for phytostabilization of mine tailings in southern China. S. integra may be useful for phytoextraction of tailings in temperate regions.

  20. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    Science.gov (United States)

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  1. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Vitor J.P. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: vilar@fe.up.pt; Loureiro, Jose M. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: loureiro@fe.up.pt; Botelho, Cidalia M.S. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: cbotelho@fe.up.pt; Boaventura, Rui A.R. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: bventura@fe.up.pt

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO{sub 3} as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  2. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste

    International Nuclear Information System (INIS)

    Vilar, Vitor J.P.; Loureiro, Jose M.; Botelho, Cidalia M.S.; Boaventura, Rui A.R.

    2008-01-01

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO 3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions

  3. The Vein-type Zn-(Pb, Cu, As, Hg) mineralization at Fedj Hassene ore field, North-Western Tunisia: Mineralogy, Trace Elements, Sulfur Isotopes and Fluid Inclusions; Le champ filonien a Zn-(Pb, Cu, As, Hg) du district minier de Fedj Hassene (Nord Ouest de la Tunisie): Mineralogie, Elements en traces, Isotopes du Soufre et Inclusions Fluides

    Energy Technology Data Exchange (ETDEWEB)

    Bejaouil, J.; Bouhlel, S.; Barca, D.; Braham, A.

    2011-07-01

    The Fedj Hassene district is localized at the edge of the Tuniso-Algerian border 10 km of Ghardimaou area. It consists of a Zn-Pb vein type with minor amounts of Cu-As-Hg. The total Zn reserves are about 370.000t. The mineralization occurs within sub parallel fractures to the Ain El Kohla ESE-WNW fault. Host rocks consist of limestones and marly limestones of the Middle Turonian. In the principal lode of Fedj Hassene, the mineralization occurs as vein filling of massive and brecciated brown sphalerite and minor galena ore with gangue. Other trace minerals are pyrite, chalcopyrite, orpiment, realgar, smithsonite and cerussite. LA-ICP-MS analyses in sphalerites show mean contents of 0,84 wt% Fe, 0,14 wt% Cd and 0,02 wt% Mn Ore. Fluid inclusions study in calcite and sphalerite reveals one mineralizing fluid characterized by an average salinity 23% wt NaCl with decreasing homogenisation temperature. In fact the temperature shows decrease from sphalerite to calcite. The fluid density that corresponds to trapping pressure ranges between 1.00 g/cm{sup 3} and 1.11 g/cm{sup 3} and pressure close to 200 bars. Micro thermometric data in fluid inclusion hosted by gangue mineral presented by calcite show an average temperature of formation around 194 degree centigrade. These inclusions homogenized to the liquid phase between 156 degree centigrade and 210 degree centigrade and salinities values ranging from 22 to 28 wt% NaCl and an average around 23% wt NaCl. The {delta}{sup 3}4S (VCDT) values of sphalerite are in the range of + 4,6% to 6,4% (average=5,6%). Thermochemical reduction of Triassic sulfate by reaction with hydro-carbons is the most probable source for the heavy and the narrow range of the d{delta}{sup 3}4S values. Mineralogical, geochemical of trace elements, fluid inclusions and sulfur isotopes studies allow to include the vein-type ore field of Fedj Hassene in the polymetallic (Pb-Zn-As-Hg) vein mineralization of the nappe zone in northern Tunisia and north eastern

  4. Fabrication of p-CuO/n-ZnO heterojunction diode via sol-gel spin coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Rajeev R., E-mail: rajeevrprabhu@gmail.com [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022 (India); Saritha, A.C.; Shijeesh, M.R. [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022 (India); Jayaraj, M.K. [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022 (India); Centre for Advanced Materials, Cochin University of Science and Technology, Kochi 682 022 (India)

    2017-06-15

    Highlights: • Facile all-solution growth of nanostructured p-CuO and n-ZnO TSO films is reported. • Annealing the films in air affects the structural, electrical and optical properties. • p-n heterojunction using these films was fabricated in ITO/n-ZnO/p-CuO/Au structure. • Transparent heterojunction diode performed well with a V{sub on} of 2.5 V and n of 3.15. • Fabricated p-CuO/n-ZnO heterojunction diode can be used for UV detector application. - Abstract: We report a facile all-solution approach for the growth of nanostructured p-CuO and n-ZnO thin films. The influence of annealing temperature on the physical properties of CuO and ZnO thin films was examined. XRD and Raman spectra depict the structural and phase purity of solution grown CuO and ZnO films. The electrical as well as the optical properties of thin films were also studied. The average optical transmission of CuO and ZnO thin films in the visible spectral region was found to be above 80 and 95% respectively. Band gap energy variations on annealing temperature were investigated for CuO as well as ZnO films. Surface morphology analyzed by FESEM shows that the films are very smooth. All solution grown p-n heterojunction using p-CuO and n-ZnO films was fabricated in the structure ITO/n-ZnO/p-CuO/Au which showed rectification behavior with a turn on voltage of 2.5 V and an ideality factor of 3.15.

  5. The influence of precursor Cu content and two-stage processing conditions on the microstructure of Cu{sub 2}ZnSnSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Márquez-Prieto, J., E-mail: jose.prieto@northumbria.ac.uk [Northumbria Photovoltaic Application Centre, Faculty of Engineering and Environment, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom); Ren, Y. [Ångström Solar Center, Solid State Electronics, Uppsala University, Uppsala 751 21 (Sweden); Miles, R.W.; Pearsall, N.; Forbes, I. [Northumbria Photovoltaic Application Centre, Faculty of Engineering and Environment, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom)

    2015-05-01

    This paper reports the influence of processing temperature on the microstructure of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) absorber layers for temperatures between 380 and 550 °C produced using a 2-stage process. X-ray diffraction analysis showed the formation of Cu{sub 2}ZnSnSe{sub 4} over this temperatures range. The Williamson-Hall method was used for microstructural analysis of the CZTSe absorbers, and this showed a progressive decrease of the micro-strain of the CZTSe with increasing selenisation temperature. The influence of precursor Cu content on the microstructure of the CZTSe was also studied. An increase of Cu content in the precursor is correlated to an increase in grain size and a decrease in micro-strain. Raman measurements show an asymmetrical broadening towards lower energies of the main 197 cm{sup −1} mode for Cu-poor compositions. This study provides an insight into the dependency of the crystallinity of CZTSe on composition and synthesis temperature. - Highlights: • We fabricate Cu{sub 2}ZnSnSe{sub 4} thin films by sputtering and post-reactive annealing. • The micro-strain of Cu{sub 2}ZnSnSe{sub 4} increases when Cu content decreases. • The micro-strain of Cu{sub 2}ZnSnSe{sub 4} decreases with increasing processing temperature. • The defect concentration of Cu{sub 2}ZnSnSe{sub 4} increases when Cu content decreases.

  6. Overexpressing the Sedum alfredii Cu/Zn Superoxide Dismutase Increased Resistance to Oxidative Stress in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-06-01

    Full Text Available Superoxide dismutase (SOD is a very important reactive oxygen species (ROS-scavenging enzyme. In this study, the functions of a Cu/Zn SOD gene (SaCu/Zn SOD, from Sedum alfredii, a cadmium (Cd/zinc/lead co-hyperaccumulator of the Crassulaceae, was characterized. The expression of SaCu/Zn SOD was induced by Cd stress. Compared with wild-type (WT plants, overexpression of SaCu/Zn SOD gene in transgenic Arabidopsis plants enhanced the antioxidative defense capacity, including SOD and peroxidase activities. Additionally, it reduced the damage associated with the overproduction of hydrogen peroxide (H2O2 and superoxide radicals (O2•-. The influence of Cd stress on ion flux across the root surface showed that overexpressing SaCu/Zn SOD in transgenic Arabidopsis plants has greater Cd uptake capacity existed in roots. A co-expression network based on microarray data showed possible oxidative regulation in Arabidopsis after Cd-induced oxidative stress, suggesting that SaCu/Zn SOD may participate in this network and enhance ROS-scavenging capability under Cd stress. Taken together, these results suggest that overexpressing SaCu/Zn SOD increased oxidative stress resistance in transgenic Arabidopsis and provide useful information for understanding the role of SaCu/Zn SOD in response to abiotic stress.

  7. Electrochemical synthesis of p-Cu_2O/n-ZnO nanorods hetero-junction for photovoltaic application

    International Nuclear Information System (INIS)

    Rokade, A. V.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-01-01

    Development of high performance visible light responsive solar cell materials has attracted wide interest due to their potential applications in the energy industries. In this work, ZnO nanorods films were successfully prepared on the ITO coated glass substrates via simple three electrode electrochemical deposition route. The Cu_2O nanoparticles were then electrodeposited on the surface of ZnO nanorods to form p-Cu_2O/n-ZnO core-shell hetero-structure. The synthesized ZnO, Cu_2O films and p-Cu_2O/n-ZnO hetero-structure were characterized by low angle x-ray diffraction, scanning electron microscopy, and UV-Visible spectrophotometer. Due to the hierarchical morphologies and core-shell structure, p-Cu_2O/n-ZnO hetero-structure shows a prominent visible-light-driven photocatalytic performance under the low intensity light irradiation. The obtained results suggest that it is possible to synthesize ZnO nanorods, Cu_2O films and p-Cu_2O/n-ZnO core-shell hetero-structure by a simple, cost effective and environment friendly electrodeposition process which can be useful for water splitting and solar cell device fabrication.

  8. Geology, S-Pb isotopes, and 40Ar/39Ar geochronology of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet: implications for multiple mineralization events at Zhaxikang

    Science.gov (United States)

    Sun, Xiang; Zheng, Youye; Pirajno, Franco; McCuaig, T. Campbell; Yu, Miao; Xia, Shenlan; Song, Qingjie; Chang, Huifang

    2018-03-01

    Several Au, Sb, Sb-Au, Pb-Zn, and Sb-Pb-Zn-Ag deposits are present throughout the North Himalaya in southern Tibet, China. The largest Sb-Pb-Zn-Ag deposit is Zhaxikang (18 Mt at 0.6 wt% Sb, 2.0 wt% Pb, 3.5 wt% Zn, and 78 g/t Ag). Zhaxikang veins are hosted within N-S trending faults, which crosscut the Early-Middle Jurassic Ridang Formation consisting of shale interbedded with sandstone and limestone deposited on a passive continental margin. Ore paragenesis indicates that Zhaxikang mineralization occurred in two main phases composed of six total stages. The initial phase was characterized by assemblages of fine-grained Mn-Fe carbonate + arsenopyrite + pyrite + sphalerite (stage 1), followed by relatively coarse-grained Mn-Fe carbonate + Fe-rich sphalerite + galena + pyrite (stage 2). The second phase was marked by assemblages of quartz + pyrite + Fe-poor sphalerite and Ag-rich galena + tetrahedrite + sericite (stage 3), quartz + Sb-Pb sulfosalt minerals mainly composed of boulangerite and jamesonite (stage 4), quartz + stibnite ± cinnabar (stage 5), and quartz ± calcite (stage 6). Sulfides of stage 2 have δ34SV-CDT of 8.4-12.0‰, 206Pb/204Pb ratios of 19.648 to 19.659, 207Pb/204Pb ratios of 15.788 to 15.812, and 208Pb/204Pb ratios of 40.035 to 40.153. Sulfides of stage 3 have similar δ34SV-CDT of 6.1-11.2‰ and relatively more radiogenic lead isotopes (206Pb/204Pb = 19.683-19.792). Stage 4 Sb-Pb sulfosalt minerals have δ34SV-CDT of 5.0-7.2‰ and even more radiogenic lead (206Pb/204Pb = 19.811-19.981). By contrast, stibnite of stage 5 has δ34SV-CDT of 4.5-7.8‰ and less radiogenic lead (206Pb/204Pb = 18.880-18.974). Taken together with the geological observations that the Pb-Zn-bearing Mn-Fe carbonate veins were crosscut by various types of quartz veins, sphalerite and galena of stage 2 underwent dissolution and remobilization, and that Sb-Pb(-Fe) sulfosalts formed at the expense of Pb from stage 2 galena and of Fe from stage 2 sphalerite, we argue that

  9. ZnO/Cu nanocomposite: a platform for direct electrochemistry of enzymes and biosensing applications.

    Science.gov (United States)

    Yang, Chi; Xu, Chunxiang; Wang, Xuemei

    2012-03-06

    Unique structured nanomaterials can facilitate the direct electron transfer between redox proteins and the electrodes. Here, in situ directed growth on an electrode of a ZnO/Cu nanocomposite was prepared by a simple corrosion approach, which enables robust mechanical adhesion and electrical contact between the nanostructured ZnO and the electrodes. This is great help to realize the direct electron transfer between the electrode surface and the redox protein. SEM images demonstrate that the morphology of the ZnO/Cu nanocomposite has a large specific surface area, which is favorable to immobilize the biomolecules and construct biosensors. Using glucose oxidase (GOx) as a model, this ZnO/Cu nanocomposite is employed for immobilization of GOx and the construction of the glucose biosensor. Direct electron transfer of GOx is achieved at ZnO/Cu nanocomposite with a high heterogeneous electron transfer rate constant of 0.67 ± 0.06 s(-1). Such ZnO/Cu nanocomposite provides a good matrix for direct electrochemistry of enzymes and mediator-free enzymatic biosensors.

  10. Effects of Cu(2+) and Zn(2+) on growth and physiological characteristics of green algae, Cladophora.

    Science.gov (United States)

    Cao, De-ju; Xie, Pan-pan; Deng, Juan-wei; Zhang, Hui-min; Ma, Ru-xiao; Liu, Cheng; Liu, Ren-jing; Liang, Yue-gan; Li, Hao; Shi, Xiao-dong

    2015-11-01

    Effects of various concentrations of Cu(2+) and Zn(2+) (0.0, 0.1, 0.25, 0.5, or 1.0 mg/L) on the growth, malondialdehyde (MDA), the intracellular calcium, and physiological characteristics of green algae, Cladophora, were investigated. Low Zn(2+) concentrations accelerated the growth of Cladophora, whereas Zn(2+) concentration increases to 0.25 mg/L inhibited its growth. Cu(2+) greatly influences Cladophora growth. The photosynthesis of Cladophora decreased under Zn(2+) and Cu(2+) stress. Cu(2+) and Zn(2+) treatment affected the content of total soluble sugar in Cladophora and has small increases in its protein content. Zn(2+) induced the intracellular calcium release, and copper induced the intracellular calcium increases in Cladophora. Exposure to Cu(2+) and Zn(2+) induces MDA in Cladophora. The stress concent of Cu(2+) was strictly correlated with the total soluble sugar content, Chla+Chlb, and MDA in Cladophora, and the stress concent of Zn(2+) was strictly correlated with the relative growth rate (RGR) and MDA of Cladophora.

  11. Copper doping of ZnO crystals by transmutation of 64Zn to 65Cu: An electron paramagnetic resonance and gamma spectroscopy study

    Science.gov (United States)

    Recker, M. C.; McClory, J. W.; Holston, M. S.; Golden, E. M.; Giles, N. C.; Halliburton, L. E.

    2014-06-01

    Transmutation of 64Zn to 65Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the 65Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of 64Zn nuclei to 65Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu2+ ions (where 63Cu and 65Cu hyperfine lines are easily resolved). A spectrum from isolated Cu2+ (3d9) ions acquired after the neutron irradiation showed only hyperfine lines from 65Cu nuclei. The absence of 63Cu lines in this Cu2+ spectrum left no doubt that the observed 65Cu signals were due to transmuted 65Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu+-H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu+-H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

  12. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    Directory of Open Access Journals (Sweden)

    Javed Iqbal

    2015-12-01

    Full Text Available ZnxCu1−xO (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol% hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  13. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Aruoja, Villem; Dubourguier, Henri-Charles; Kasemets, Kaja; Kahru, Anne

    2009-02-01

    Toxicities of ZnO, TiO2 and CuO nanoparticles to Pseudokirchneriella subcapitata were determined using OECD 201 algal growth inhibition test taking in account potential shading of light. The results showed that the shading effect by nanoparticles was negligible. ZnO nanoparticles were most toxic followed by nano CuO and nano TiO2. The toxicities of bulk and nano ZnO particles were both similar to that of ZnSO4 (72 h EC50 approximately 0.04 mg Zn/l). Thus, in this low concentration range the toxicity was attributed solely to solubilized Zn2+ ions. Bulk TiO2 (EC50=35.9 mg Ti/l) and bulk CuO (EC50=11.55 mg Cu/l) were less toxic than their nano formulations (EC50=5.83 mg Ti/l and 0.71 mg Cu/l). NOEC (no-observed-effect-concentrations) that may be used for risk assessment purposes for bulk and nano ZnO did not differ (approximately 0.02 mg Zn/l). NOEC for nano CuO was 0.42 mg Cu/l and for bulk CuO 8.03 mg Cu/l. For nano TiO2 the NOEC was 0.98 mg Ti/l and for bulk TiO2 10.1 mg Ti/l. Nano TiO2 formed characteristic aggregates entrapping algal cells that may contribute to the toxic effect of nano TiO2 to algae. At 72 h EC50 values of nano CuO and CuO, 25% of copper from nano CuO was bioavailable and only 0.18% of copper from bulk CuO. Thus, according to recombinant bacterial and yeast Cu-sensors, copper from nano CuO was 141-fold more bioavailable than from bulk CuO. Also, toxic effects of Cu oxides to algae were due to bioavailable copper ions. To our knowledge, this is one of the first systematic studies on effects of metal oxide nanoparticles on algal growth and the first describing toxic effects of nano CuO towards algae.

  14. Synthesis and their enhanced photoelectrochemical performance of ZnO nanoparticle-loaded CuO dandelion heterostructures under solar light

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guanying; Du, Bin; Liu, Lei; Zhang, Weiwei; Liang, Yujie; Shi, Honglong; Wang, Wenzhong, E-mail: wzhwangmuc@163.com

    2017-03-31

    Highlights: • ZnO/CuO nanoparticle/dandelion heterostructures were fabricated for the first time. • ZnO/CuO nanoparticle/dandelion heterostructures show enhanced PEC activity. • ZnO nanoparticle loading contents have significant effect on PEC water splitting. • Interaction, charge transfer and enhanced mechanism of photocatalyst were proposed. • p-n junction drives the photoexcited charges efficient separation. - Abstract: Here we report an easy and large-scale synthesis of three-dimensional (3D) ZnO nanoparticle-loaded CuO dandelion (denoted as n-ZnO/p-CuO nanoparticle/dandelion) heterostructures and their photoelectrochemical (PEC) water splitting under simulated solar light illumination. CuO dandelions were fabricated by a facile and cost-effective chemical strategy, in which the ribbon-like CuO nanoplates were first formed and then assembled into dandelion-like architectures. ZnO nanoparticle-loaded CuO dandelion heterostructures were fabricated by calcining Zn(Ac){sub 2}-loaded CuO dandelions. High resolution transmission electron microscope (HRTEM) studies demonstrate that intimate p-n junction is built between p-CuO and n-ZnO interface. The n-ZnO/p-CuO nanoparticle/dandelion photoelectrodes exhibit significant improvement in PEC water splitting to CuO dandelion photoelectrodes. The correlation between photocurrents and different loading contents of ZnO nanoparticles (NPs) is studied in which the n-ZnO/p-CuO nanoparticle/dandelion heterostructures with loading 4.6 wt% ZnO NPs show higher photocathodic current. The efficient separation of the photogenerated electrons and holes driven by the intimate p-n junction between p-type CuO and n-type ZnO interface is mainly contributed to the enhanced photoanode current. The achieved results in the present study offer a very useful strategy for designing p-n junction photoelectrodes for efficiency and low-cost PEC cells for clean solar hydrogen production.

  15. Analysis of CdS/CdTe devices incorporating a ZnTe:Cu/Ti Contact

    International Nuclear Information System (INIS)

    Gessert, T.A.; Asher, S.; Johnston, S.; Young, M.; Dippo, P.; Corwine, C.

    2007-01-01

    High-performance CdS/CdTe photovoltaic devices can be produced using a ZnTe:Cu/Ti back contact deposited onto the CdTe layer. We observe that prolonged exposure of the ZnTe:Cu and Ti sputtering targets to an oxygen-containing plasma significantly reduces device open-circuit voltage and fill factor. High-resolution compositional analysis of these devices reveals that Cu concentration in the CdTe and CdS layers is lower for devices with poor performance. Capacitance-voltage analysis and related numerical simulations indicate that the net acceptor concentration in the CdTe is also lower for devices with poor performance. Photoluminescence analyses of the junction region reveal that the intensity of a luminescent peak associated with a defect complex involving interstitial Cu (Cu i ) and oxygen on Te (O Te ) is reduced in devices with poor performance. Combined with thermodynamic considerations, these results suggest that oxygen incorporation into the ZnTe:Cu sputtering target reduces the ability of sputtered ZnTe:Cu film to diffuse Cu into the CdTe

  16. Performance evaluation of ZnO–CuO hetero junction solid state room temperature ethanol sensor

    International Nuclear Information System (INIS)

    Yu, Ming-Ru; Suyambrakasam, Gobalakrishnan; Wu, Ren-Jang; Chavali, Murthy

    2012-01-01

    Graphical abstract: Sensor response (resistance) curves of time were changed from 150 ppm to 250 ppm alcohol concentration of ZnO–CuO 1:1. The response and recovery times were measured to be 62 and 83 s, respectively. The sensing material ZnO–CuO is a high potential alcohol sensor which provides a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature. Highlights: ► The main advantages of the ethanol sensor are as followings. ► Novel materials ZnO–CuO ethanol sensor. ► The optimized ZnO–CuO hetero contact system. ► A good sensor response and room working temperature (save energy). -- Abstract: A semiconductor ethanol sensor was developed using ZnO–CuO and its performance was evaluated at room temperature. Hetero-junction sensor was made of ZnO–CuO nanoparticles for sensing alcohol at room temperature. Nanoparticles were prepared by hydrothermal method and optimized with different weight ratios. Sensor characteristics were linear for the concentration range of 150–250 ppm. Composite materials of ZnO–CuO were characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR) and high-resolution transmission electron microscopy (HR-TEM). ZnO–CuO (1:1) material showed maximum sensor response (S = R air /R alcohol ) of 3.32 ± 0.1 toward 200 ppm of alcohol vapor at room temperature. The response and recovery times were measured to be 62 and 83 s, respectively. The linearity R 2 of the sensor response was 0.9026. The sensing materials ZnO–CuO (1:1) provide a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature.

  17. Evaluation of structural, morphological and magnetic properties of CuZnNi (Cu_xZn_0_._5_−_xNi_0_._5Fe_2O_4) nanocrystalline ferrites for core, switching and MLCI’s applications

    International Nuclear Information System (INIS)

    Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M.S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni–Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni–Zn nanoferrites. The nanocrystalline ferrites of Cu substituted Cu_xZn_0_._5_−_xNi_0_._5Fe_2O_4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni–Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu–Zn–Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35–46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M–H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni–Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni–Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI’s due to variety of the soft magnetic characteristics. - Highlights: • Cu substituted

  18. Comment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts"

    DEFF Research Database (Denmark)

    Nakamura, Junji; Fujitani, Tadahiro; Kuld, Sebastian

    2017-01-01

    Kattel et al (Reports, 24 March 2017, p. 1296) report that a zinc on copper (Zn/Cu) surface undergoes oxidation to zinc oxide/copper (ZnO/Cu) during carbon dioxide (CO2) hydrogenation to methanol and conclude that the Cu-ZnO interface is the active site for methanol synthesis. Similar experiments...... conducted two decades ago by Fujitani and Nakamura et al demonstrated that Zn is attached to formate rather than being fully oxidized....

  19. Inkjet?Printed Cu2ZnSn(S, Se)4 Solar Cells

    OpenAIRE

    Lin, Xianzhong; Kavalakkatt, Jaison; Lux?Steiner, Martha Ch.; Ennaoui, Ahmed

    2015-01-01

    Cu2ZnSn(S, Se)4?based solar cells with total area (0.5 cm2) power conversion efficiency of 6.4% are demonstrated from thin film absorbers processed by inkjet printing technology of Cu?Zn?Sn?S precursor ink followed by selenization. The device performance is limited by the low fill factor, which is due to the high series resistance.

  20. Inkjet-Printed Cu2ZnSn(S, Se)4 Solar Cells.

    Science.gov (United States)

    Lin, Xianzhong; Kavalakkatt, Jaison; Lux-Steiner, Martha Ch; Ennaoui, Ahmed

    2015-06-01

    Cu 2 ZnSn(S, Se) 4 -based solar cells with total area (0.5 cm 2 ) power conversion efficiency of 6.4% are demonstrated from thin film absorbers processed by inkjet printing technology of Cu-Zn-Sn-S precursor ink followed by selenization. The device performance is limited by the low fill factor, which is due to the high series resistance.

  1. The accumulation of elements in plants growing spontaneously on small heaps left by the historical Zn-Pb ore mining.

    Science.gov (United States)

    Stefanowicz, Anna M; Stanek, Małgorzata; Woch, Marcin W; Kapusta, Paweł

    2016-04-01

    The study evaluated the levels of nine metals, namely Ca, Cd, Fe, K, Mg, Mn, Pb, Tl, and Zn, in soils and tissues of ten plant species growing spontaneously on heaps left by historical mining for Zn-Pb ores. The concentrations of Cd, Pb, Tl, and Zn in heap soils were much higher than in control soils. Plants growing on heaps accumulated excessive amounts of these elements in tissues, on average 1.3-52 mg Cd kg(-1), 9.4-254 mg Pb kg(-1), 0.06-23 mg Tl kg(-1) and 134-1479 mg Zn kg(-1) in comparison to 0.5-1.1 mg Cd kg(-1), 2.1-11 mg Pb kg(-1), 0.02-0.06 mg Tl kg(-1), and 23-124 mg Zn kg(-1) in control plants. The highest concentrations of Cd, Pb, and Zn were found in the roots of Euphorbia cyparissias, Fragaria vesca, and Potentilla arenaria, and Tl in Plantago lanceolata. Many species growing on heaps were enriched in K and Mg, and depleted in Ca, Fe, and Mn. The concentrations of all elements in plant tissues were dependent on species, organ (root vs. shoot), and species-organ interactions. Average concentrations of Ca, K, and Mg were generally higher in shoots than in roots or similar in the two organs, whereas Cd, Fe, Pb, Tl, and Zn were accumulated predominantly in the roots. Our results imply that heaps left by historical mining for Zn-Pb ores may pose a potential threat to the environment and human health.

  2. Deposition of Cu-doped PbS thin films with low resistivity using DC sputtering

    Directory of Open Access Journals (Sweden)

    Hariyadi Soetedjo

    2018-03-01

    Full Text Available Investigation of the electrical resistivity of Cu-doped PbS thin films has been carried out. The films were prepared using a DC sputtering technique. The doping was achieved by introducing the Cu dopant plate material directly on the surface of the PbS sputtering target plate. SEM-EDX data shows the Cu concentration in the PbS film to be proportional to the Cu plate diameter. The XRD pattern indicates the film is in crystalline cubic form. The Hall effect measurement shows that Cu doping yields an increase in the carrier concentration to 3.55 × 1019 cm−3 and a significant decrease in electrical resistivity. The lowest resistivity obtained was 0.13 Ωcm for a Cu concentration of 18.5%. Preferential orientation of (1 1 1 and (2 0 0 occurs during deposition. Keywords: Thin films, Lead sulfide, Sputtering, Resistivity, Semiconductor, Infrared

  3. Fractal structures in two-metal electrodeposition systems I: Pb and Zn

    International Nuclear Information System (INIS)

    Nakouzi, Elias; Sultan, Rabih

    2011-01-01

    Pattern formation in two-metal electrochemical deposition has been scarcely explored in the chemical literature. In this paper, we report new experiments on zinc-lead fractal co-deposition. Electrodeposits are grown in special cells at a fixed large value of the zinc ion concentration, while that of the lead ion is increased gradually. A very wide diversity of morphologies are obtained and classified. Most of the deposited domains are almost exclusively Pb or Zn. But certain regions originating at the base cathode, ranging from a short grass alley to dense, grown-up bushes or shrubs, manifest a combined Pb-Zn composition. Composition is determined using scanning electron microscopy/energy dispersive x ray measurements as well atomic absorption spectroscopy. Pb domains are characterized by shiny leaf-like and dense deposits as well as flowers with round, balloon-like corollas. The Zn zones display a greater variety of morphologies such as thick trunks and thin and fine branching, in addition to minute ''cigar flower'' structures. The various morphologies are analyzed and classified from the viewpoint of fractal nature, characterized by the box-count fractal dimension. Finally, macroscopic spatial alternation between two different characteristic morphologies is observed under certain conditions.

  4. Exploring the activated state of Cu/ZnO-Zn, a model catalyst for methanol synthesis

    NARCIS (Netherlands)

    Batyrev, E.D.; Shiju, N.R.; Rothenberg, G.

    2012-01-01

    The interaction of Cu clusters with ZnO(0001)-Zn terminated crystal faces is studied after reduction at high temperatures by a combination of scanning tunneling microscopy, scanning tunneling spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy. We find that tiny

  5. X-ray photoemission studies of Zn doped Cu1-xTl xBa2Ca2Cu 3-yZn yO10-δ (y = 0, 2.65) superconductors

    International Nuclear Information System (INIS)

    Khan, Nawazish A.; Mumtaz, M.; Ahadian, M.M.; Iraji-zad, Azam

    2007-01-01

    The X-ray photoemission (XPS) measurements of Cu 1-x Tl x Ba 2 Ca 2 Cu 3-y Zn y O 10-δ (y = 0, 2.65) superconductors have been performed and compared. These studies revealed that the charge state of thallium in the Cu 0.5 Tl 0.5 Ba 2 O 4-δ charge reservoir layer in Zn doped samples is Tl 1+ , while it is a mix of Tl 1+ and Tl 2+ in Zn free samples. The binding energy of Ba atoms in the Zn doped samples is shifted to higher energy, which when considered along with the presence of Tl 1+ suggested that it more efficiently directed the carriers to ZnO 2 and CuO 2 planes. The evidence of improved inter-plane coupling witnessed in X-ray diffraction is also confirmed by XPS measurements of Ca atoms in the Zn doped samples. The shift of the valance band spectrum in these Zn doped samples to higher energies suggested that the electrons at the top edge of the valance band were tied to a higher binding energy (relative to samples without Zn doping), which most likely resulted in a much lower energy state of the system in the superconducting state. The stronger superconducting state arising out of these effects is witnessed in the form of increased T c (R 0), J c and the extent of diamagnetism in the final compound

  6. Defects related room temperature ferromagnetism in Cu-implanted ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Li, D.; Li, D.K.; Wu, H.Z.; Liang, F.; Xie, W.; Zou, C.W.; Shao, L.X.

    2014-01-01

    Highlights: • Room temperature ferromagnetism was observed in Cu-implanted ZnO nanorod arrays. • Cu-implanted ZnO nanorods show a saturation magnetization value of 1.82 μ B /Cu. • The origin of ferromagnetism can be explained by the defects related bound magnetic polarons. -- Abstract: Room temperature ferromagnetism (FM) was observed in Cu-implanted ZnO nanorod arrays. The implantation dose for Cu ions was 1 × 10 16 cm −2 and the implantation energy was 100 keV. The ion implantation induced defects and disorder has been observed by the XRD, PL and TEM experiments. The PL spectrum revealed a dominant luminescence peaks at 390 nm and a broad and strong green emission at 500–700 nm, which is considered to be related to the ionized oxygen vacancy. Cu-implanted ZnO nanorods annealed at 500 °C show a saturation magnetization value of 1.82 μ B /Cu and a positive coercive field of 68 Oe. The carrier concentration is not much improved after annealing and in the order of 10 16 cm −3 , which suggests that FM does not depend upon the presence of a significant carrier concentration. The origin of ferromagnetism behavior can be explained on the basis of electrons and defects that form bound magnetic polarons, which overlap to create a spin-split impurity band

  7. Thermomechanical Treatments on High Strength Al-Zn-Mg(-Cu) Alloys

    National Research Council Canada - National Science Library

    Di Russo, E; Conserva, M; Gatto, F

    1974-01-01

    An investigation was carried out to determine the metallurgical properties of Al-Zn-Mg and Al-Zn-Mg-Cu alloy products processed according to newly developed Final Thermomechanical Treatments (FTMT) of T-AHA type...

  8. Characterization of Aerosols Containing Zn, Pb, and Cl from an Industrial Region of Mexico City

    International Nuclear Information System (INIS)

    Moffet, Ryan C.; Desyaterik, Yury; Hopkins, Rebecca J.; Tivanski, Alexei V.; Gilles, Marry K.; Wang, Yan A.; Shutthanandan, V.; Molina, Luisa T.; Abraham, Rodrigo G.; Johnson, Kirsten S.; Mugica, Violeta; Molina, Mario J.; Laskin, Alexander; Prather, Kimberly A.

    2008-01-01

    During the March, 2006 MILAGRO campaign, measurements in the Northern Mexico City Metropolitan Area revealed the frequent appearance of particles with a characteristically high content of internally mixed Zn, Pb, Cl, and P. A comprehensive study of the chemical and physical properties of these particles was performed using a complementary combination of aerosol measurement techniques. Individual particles were analyzed using Aerosol Time-of-Flight Mass Spectrometry (ATOFMS) and Computer Controlled Scanning Electron Microscopy/Energy Dispersive X-Ray spectroscopy (CCSEM/EDX). Proton Induced X-Ray Emission (PIXE) analysis of bulk aerosol samples provided time-resolved mass concentrations of individual elements. The PIXE measurements indicated that Zn is more strongly correlated with Cl than with any other element and that Zn concentrations are higher than other non-ferrous transition metals. The Zn- and Pb-containing particles have both spherical and non-spherical morphologies. Many metal rich particles had needle-like structures and were found to be composed of ZnO and/or Zn(NO3)2 6H2O as indicated by scanning transmission x-ray microscopy/near edge X-ray absorption spectroscopy (STXM/NEXAFS). The Zn and Pb rich particles were primarily in the submicron size range and internally mixed with elemental carbon. The unique chemical associations most closely match signatures acquired for garbage incineration. This unique combination of complementary analytical techniques has allowed for a comprehensive evaluation of Zn- and Pb- containing particles in a complex urban environment, highlighting unique characteristics that give powerful insight into their origin

  9. Trace amounts of Cu{sup 2+} ions influence ROS production and cytotoxicity of ZnO quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, Hatem [CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville, 54001 Nancy (France); Laboratoire de Biosurveillance de l' Environnement, Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte (Tunisia); Merlin, Christophe [CNRS and Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME), CNRS UMR 7564, 15 Avenue du Charmois, 54500 Vandoeuvre-lès-Nancy (France); Dezanet, Clément [CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville, 54001 Nancy (France); Balan, Lavinia [Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, 15 rue Jean Starcky, 68093 Mulhouse (France); Medjahdi, Ghouti [CNRS and Université de Lorraine, Institut Jean Lamour (IJL), UMR CNRS 7198, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Ben-Attia, Mossadok [Laboratoire de Biosurveillance de l' Environnement, Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte (Tunisia); and others

    2016-03-05

    Highlights: • Chemisorbed Cu{sup 2+} ions on ZnO QDs enhance ROS production. • A mechanism combining excited electrons and holes and Fenton reactions is proposed. • ZnO@APTMS/Cu QDs were found to be the most deleterious to E. coli cells. - Abstract: 3-Aminopropyltrimethoxysilane (APTMS) was used as ligand to prepare ZnO@APTMS, Cu{sup 2+}-doped ZnO (ZnO:Cu@APTMS) and ZnO quantum dots (QDs) with chemisorbed Cu{sup 2+} ions at their surface (ZnO@APTMS/Cu). The dots have a diameter of ca. 5 nm and their crystalline and phase purities and composition were established by X-ray diffraction, transmission electron microscopy, UV-visible and fluorescence spectroscopies and by X-ray photoelectron spectroscopy. The effect of Cu{sup 2+} location on the ability of the QDs to generate reactive oxygen species (ROS) under light irradiation was investigated. Results obtained demonstrate that all dots are able to produce ROS (·OH, O{sub 2}·{sup −}, H{sub 2}O{sub 2} and {sup 1}O{sub 2}) and that ZnO@APTMS/Cu QDs generate more ·OH and O{sub 2}·{sup −} radicals and H{sub 2}O{sub 2} than ZnO@APTMS and ZnO:Cu@APTMS QDs probably via mechanisms associating photo-induced charge carriers and Fenton reactions. In cytotoxicity experiments conducted in the dark or under light exposure, ZnO@APTMS/Cu QDs appeared slightly more deleterious to Escherichia coli cells than the two other QDs, therefore pointing out the importance of the presence of Cu{sup 2+} ions at the periphery of the nanocrystals. On the other hand, with the lack of photo-induced toxicity, it can be inferred that ROS production cannot explain the cytotoxicity associated to the QDs. Our study demonstrates that both the production of ROS from ZnO QDs and their toxicity may be enhanced by chemisorbed Cu{sup 2+} ions, which could be useful for medical or photocatalytic applications.

  10. Copper doping of ZnO crystals by transmutation of 64Zn to 65Cu: An electron paramagnetic resonance and gamma spectroscopy study

    International Nuclear Information System (INIS)

    Recker, M. C.; McClory, J. W.; Holston, M. S.; Golden, E. M.; Giles, N. C.; Halliburton, L. E.

    2014-01-01

    Transmutation of 64 Zn to 65 Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the 65 Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of 64 Zn nuclei to 65 Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu 2+ ions (where 63 Cu and 65 Cu hyperfine lines are easily resolved). A spectrum from isolated Cu 2+ (3d 9 ) ions acquired after the neutron irradiation showed only hyperfine lines from 65 Cu nuclei. The absence of 63 Cu lines in this Cu 2+ spectrum left no doubt that the observed 65 Cu signals were due to transmuted 65 Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu + -H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu + -H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

  11. Effect of electrodeposition and annealing of ZnO on optical and photovoltaic properties of the p-Cu2O/n-ZnO solar cells

    International Nuclear Information System (INIS)

    Hussain, Sajad; Cao Chuanbao; Nabi, Ghulam; Khan, Waheed S.; Usman, Zahid; Mahmood, Tariq

    2011-01-01

    Highlights: → The p-Cu 2 O/n-ZnO heterojunction was fabricated by using electrodeposition and rf sputtering techniques, respectively. → The effect of electrodeposition on optical and photovoltaic properties of the p-Cu 2 O/n-ZnO solar cells has been examined. → The preannealing of ZnO thin films has enhanced the efficiency of solar cells. → The efficiency of the solar cell was measured 0.46%. - Abstract: Cu 2 O/ZnO p-n heterojunction solar cells were fabricated by rf sputtering deposition of n-ZnO layer, followed by electrodeposition of p-Cu 2 O layer. The different electrodeposition potentials were applied to deposit Cu 2 O on ZnO. The particle size, crystal faces, crystallinity of Cu 2 O is important factor which determine the p-n junction interface and consequently their effect on the performance of the heterojunction solar cell. It is observed that at -0.6 V, p-Cu 2 O film generates fewer surface states in the interband region due to the termination of [1 1 0] resulting in higher efficiency (0.24%) with maximum particle size (53 nm). The bandgap of Cu 2 O at this potential is found to be 2.17 eV. Furthermore, annealing of ZnO film was performed to get rid of deteriorating one and two dimensional defects, which always reduce the performance of solar cell significantly. We found that the solar cell performance efficiency is nearly doubled by increasing the annealing temperature of ZnO thin films due to increasing electrical conductance and electron mobility. Doping studies and fine tuning of the junction morphology will be necessary to further improve the performance of Cu 2 O/ZnO heterojunction solar cells.

  12. Overexpression of Cu-Zn SOD in Brucella abortus suppresses bacterial intracellular replication via down-regulation of Sar1 activity

    Science.gov (United States)

    Liu, Xiaofeng; Zhou, Mi; Yang, Yanling; Wu, Jing; Peng, Qisheng

    2018-01-01

    Brucella Cu-Zn superoxide dismutase (Cu-Zn SOD) is a periplasmic protein, and immunization of mice with recombinant Cu-Zn SOD protein confers protection against Brucella abortus infection. However, the role of Cu-Zn SOD during the process of Brucella infection remains unknown. Here, we report that Cu-Zn SOD is secreted into culture medium and is translocated into host cells independent of type IV secretion systems (T4SS). Furthermore, co-immunoprecipitation and immunofluorescence studies reveal that Brucella abortus Cu-Zn SOD interacts with the small GTPase Sar1. Overexpression of Cu-Zn SOD in Brucella abortus inhibits bacterial intracellular growth by abolishing Sar1 activity in a manner independent of reactive oxygen species (ROS) production. PMID:29515756

  13. Cu{sub 2}ZnSnS{sub 4} thin films obtained by sulfurization of evaporated Cu{sub 2}SnS{sub 3} and ZnS layers: Influence of the ternary precursor features

    Energy Technology Data Exchange (ETDEWEB)

    Robles, V.; Guillén, C., E-mail: c.guillen@ciemat.es; Trigo, J.F.; Herrero, J.

    2017-04-01

    Highlights: • Kesterite Cu{sub 2}ZnSnS{sub 4} is got by sulfurization of evaporated Cu{sub 2}SnS{sub 3} and ZnS layers. • Smooth films are obtained by decreasing the growth temperature of Cu{sub 2}SnS{sub 3}. • The lattice strain and the electrical conductivity increase with the Cu-content. • The energy gap diminishes as the Cu-content and/or the surface roughness increase. - Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been grown by sulfurization of Cu{sub 2}SnS{sub 3} (CTS) and ZnS layers evaporated on glass substrates. Four CTS precursor films have been tested, with two different atomic compositions (Cu/Sn = 1.7 and Cu/Sn = 2.1) and substrate temperatures (350 and 450 °C), together with analogous ZnS layers deposited by maintaining the substrate at 200 °C. The sulfurization of the CTS and ZnS stacked layers was performed at 500 °C during 1 h. The evolution of the crystalline structure, morphology, optical and electrical properties from each CTS precursor to the CZTS compound has been studied, especially the influence of the ternary precursor features on the quaternary film characteristics. The kesterite structure has been identified after sulfurization of the various samples, with main (112) orientation and mean crystallite sizes S{sub 112} = 40–56 nm, being higher for the Cu-poor compositions. The CZTS average roughness has varied in a wide interval R{sub a} = 8–66 nm, being directly related to the CTS precursor layer, which becomes rougher for a higher deposition temperature or Cu content. Besides, the band gap energy and the electrical resistivity of the CZTS films have changed in the ranges E{sub g} = 1.54–1.64 eV and ρ = 0.2–40 Ωcm, both decreasing when the Cu content and/or the surface roughness increase.

  14. Facile synthesis of core-shell Cu2O@ ZnO structure with enhanced photocatalytic H2 production

    Science.gov (United States)

    Zhang, Yong-Hui; Jiu, Bei-Bei; Gong, Fei-Long; Lu, Kuan; Jiang, Nan; Zhang, Hao-Li; Chen, Jun-Li

    2018-05-01

    Core-shell Cu2O@ZnO composites were synthesized successfully based on a one-pot hydrothermal method in the presence of dioctyl sulfosuccinate sodium salt (AOT) surfactant. The Cu2O can be converted to rough core-shell Cu2O@ZnO structure by adjusting the amount of zinc powder added. The as-synthesized Cu2O@ZnO composites exhibited excellent photocatalytic activity and the amount of H2 generated using these composites was 4.5-fold more than that produced with Cu2O cubes. A possible photocatalytic mechanism for the Cu2O@ZnO composites with enhanced photocatalytic activity could be the separation by ZnO of the effective charge carriers.

  15. PM2.5 particulates and metallic elements (Ni, Cu, Zn, Cd and Pb) study in a mixed area of summer season in Shalu, Taiwan.

    Science.gov (United States)

    Fang, Guor-Cheng; Xiao, You-Fu; Zhuang, Yuan-Jie; Cho, Meng-Hsien; Huang, Chao-Yang; Tsai, Kai-Hsiang

    2017-08-01

    PM 2.5 has become an important environmental issue in Taiwan during the past few years. Moreover, electricity increased significantly during the summertime and TTPP generated by coal burning base is the main electricity provider in central Taiwan. Therefore, summer season has become the main research target in this study. The ambient air concentrations of particulate matter PM 2.5 and PM 10 collected by using VAPS at a mixed characteristic sampling site were studied in central Taiwan. The results indicated that the average daytime PM 2.5 and PM 10 particulate concentrations were occurred in May and they were 44.75 and 57.77 µg/m 3 in this study. The results also indicated that the average nighttime PM 2.5 and PM 10 particulate concentrations were occurred in June and they were 38.19 and 45.79 µg/m 3 in this study. The average PM 2.5 /PM 10 ratios were 0.7 for daytime, nighttime and 24-h sampling periods in the summer for this study. This value was ranked as the lowest ratios when compared to the other seasons in previous study. Noteworthy, the results further indicated that the metallic element Pb has the mean highest concentrations for 24-h, daytime and nighttime sampling periods when compared to those of the other metallic elements (Ni, Cu, Zn and Cd). The average mean highest metallic Pb concentrations in PM10 were 110.7, 203.0 and 207.2 ng/m 3 for 24-h, daytime and nighttime sampling periods in this study. And there were 59.53, 105.2 and 106.6 ng/m 3 for Pb in PM2.5 for 24-h, daytime and nighttime sampling periods, respectively. Moreover, the results further indicated that mean metallic element Pb concentrations on PM 2.5 and PM 10 were all higher than those of the other elements for 24 h, day and nighttime.

  16. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents

    International Nuclear Information System (INIS)

    Guo, M.X.; Zhang, Y.; Zhang, X.K.; Zhang, J.S.; Zhuang, L.Z.

    2016-01-01

    The non-isothermal precipitation behaviors of Al–Mg–Si–Cu alloys with different Zn contents were investigated by differential scanning calorimetry (DSC) analysis, hardness measurement and high resolution transmission electron microscope characterization. The results show that Zn addition has a significant effect on the GP zone dissolution and precipitation of Al-Mg-Si-Cu alloys. And their activation energies change with the changes of Zn content and aging conditions. Precipitation kinetics can be improved by adding 0.5 wt% or 3.0 wt%Zn, while be suppressed after adding 1.5 wt%Zn. The Mg-Si precipitates (GP zones and β″) are still the main precipitates in the Al-Mg-Si-Cu alloys after heated up to 250 °C, and no Mg-Zn precipitates are observed in the Zn-added alloy due to the occurrence of Mg-Zn precipitates reversion. The measured age-hardening responses of the alloys are corresponding to the predicted results by the established precipitation kinetic equations. Additionally, a double-hump phenomenon of hardness appears in the artificial aging of pre-aged alloy with 3.0 wt% Zn addition, which resulted from the formation of pre-β″ and β″ precipitates. Finally, the precipitation mechanism of Al-Mg-Si-Cu alloys with different Zn contents was proposed based on the microstructure evolution and interaction forces between Mg, Si and Zn atoms.

  17. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  18. Cd, Zn, Ni and Cu in the Indian Ocean

    NARCIS (Netherlands)

    Saager, Paul M.; Baar, Hein J.W. de; Howland, Robin J.

    1992-01-01

    Vertical profiles of dissolved Cd, Zn, Ni and Cu in the Northwest Indian Ocean (Arabian Sea) exhibit a nutrient type distribution also observed in other oceans. The area is characterized by strong seasonal upwelling and a broad oxygen minimum zone in intermediate waters. However, neither Cd, Zn, Ni

  19. The effect of Cu addition and milling contaminations on the microstructure evolution of ball milled Al-Pb alloy during sintering

    International Nuclear Information System (INIS)

    Zhu, M.; Ouyang, L.Z.; Wu, Z.F.; Zeng, M.Q.; Li, Y.Y.; Zou, J.

    2006-01-01

    Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu (x = 0-7.0) bulk alloys were prepared by sintering the mechanically alloyed powders at various temperatures. The microstructure changes of the as consolidated powders in the course of sintering were analyzed by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction analysis and transmission electron microscopy. It has been found that, with respect to the Al-10 wt.%Pb-x wt.%Cu alloy, CuAl 2 and Cu 9 Al 4 phases formed in the milling process, and the amount of CuAl 2 phase increased while the Cu 9 Al 4 phase disappeared gradually in the sintering process. In both Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu alloys, the sintering process results in the coarsening of Pb phase and the growth rate of Pb phase fulfills the Lifshitz-Slyozov-Wagner equation even though the size of the Pb phase was in nanometer range. The Pb particle exhibits cuboctahedral morphology and has a cubic to cubic orientation relationship with the Al matrix. The addition of Cu strongly depressed the growth rate of Pb. Contamination induced by milling has apparent influence on the microstructure of the sintered alloys. Al 7 Cu 2 Fe and aluminium oxide phases were identified in the sintered alloys. The cuboctahedral morphology of Pb particles was broken up by the presence of the oxide phase

  20. Facile synthesis of ZnO/CuInS{sub 2} nanorod arrays for photocatalytic pollutants degradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yawei [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Zhang, Xinyu [Frontier Institute of Science and Technology Jointly with College of Science, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Xing, Yonglei; Yin, Xingtian [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Du, Yaping, E-mail: ypdu2013@mail.xjtu.edu.cn [Frontier Institute of Science and Technology Jointly with College of Science, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-11-05

    Highlights: • Vertically-aligned ZnO nanorod arrays were synthesized by the hydrothermal process. • Monodisperse CuInS{sub 2} QDs were synthesized by the one-pot colloidal chemistry method. • ZnO/CuInS{sub 2} nanorod arrays films were fabricated by the EPD process. • The homogeneous CuInS{sub 2} loading was optimized by EPD duration. • The photoelectrochemical and photocatalytic activities of the ZnO/CuInS{sub 2} nanorod arrays films were discussed. - Abstract: Vertically-aligned ZnO nanorod arrays on a fluorine-doped tin oxide glass substrate were homogeneously coated with visible light active CuInS{sub 2} quantum dots by using a controllable electrophoretic deposition strategy. Compared with the pure ZnO nanorod arrays, the formation of high-quality ZnO/CuInS{sub 2} heterojunction with well-matched band energy alignment expanded the light absorption from ultraviolet to visible region and facilitated efficient charge separation and transportation, thus yielding remarkable enhanced photoelectrochemical performance and photocatalytic activities for methyl orange and 4-chlorophenol degradation. The ZnO/CuInS{sub 2} film with the deposition duration of 80 min showed the highest degradation rate and photocurrent density (0.95 mA/cm{sup 2}), which was almost 6.33 times higher than that of the pure ZnO nanorod arrays film. The CuInS{sub 2} QDs sensitized ZnO nanorod arrays film was proved to be a superior structure for photoelectrochemical and photocatalytic applications due to the optimized CuInS{sub 2} loading and well-maintained one-dimensional nanostructure.

  1. Estudo de metais pesados (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn na Bacia do Tarumã-Açu Manaus (AM Heavy metal (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn study in the Tarumã-Açu Basin Manaus (AM

    Directory of Open Access Journals (Sweden)

    Genilson Pereira Santana

    2007-01-01

    Full Text Available Os resíduos gerados em domicílios incluem diversos produtos, como pesticidas, produtos farmacêuticos, detergentes, óleos de cozinha, metais pesados contidos em baterias e outros utensílios. Esses resíduos são lançados continuamente em aterro sanitário ou lixões em cidades como Manaus. O chorume produzido nesses aterros, quando não tratados, contamina recursos hídricos superficiais e subterrâneos. Neste estudo foi feita uma avaliação das conseqüências da liberação do chorume no sistema hídrico da bacia do Tarumã-Açu. Amostras de água e sedimento foram coletadas nos igarapés Matrinxã, Acará, Bolívia, bacia do Tarumã-Açu e dentro do aterro sanitário (Manaus - Amazonas - Brasil em março 2001. As amostras de água foram filtradas em filtro Milipore (0,45 mm de poro e, em seguida, tratadas com HNO3 concentrado. As amostras de sedimento foram peneiradas em malha de 0,053 mm e digeridas com HCl:HNO3 (1:3 a 150ºC. As concentrações de alguns metais pesados (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn foram determinadas nas amostras de água e sedimento por espectrometria de absorção atômica de chama. Os resultados revelaram que a concentração dos metais pesados é muito acima dos permitidos pela resolução 357/2005 do CONAMA em praticamente todos os locais amostrados, mostrando que o Aterro Sanitário é um dos principais responsáveis pelo impacto ambiental observado nos corpos hídricos estudados. As análises dos componentes principais (PCA e hierárquica de cluster (HCA, revelam que os pontos de coleta localizados dentro do aterro sanitário apresentam características diferentes dos outros locais amostrados. Além disso, o HCA e PCA mostraram que existe uma similaridade entre os pontos de coleta localizados fora do aterro o que permite afirmar que o chorume do aterro se dissolve por todo corpo hídrico estudado.Domestic sewage involves several products, such as pesticides, pharmaceutics products, detergents, soybean oil

  2. MODEL ADSORPSI TIMBAL (PB DAN SENG (ZN DALAM SISTEM AIR-SEDIMEN DI WADUK RIAM KANAN KALIMANTAN SELATAN

    Directory of Open Access Journals (Sweden)

    Chatimatun Nisa

    2013-04-01

    Full Text Available Heavy metals are often considered as main contaminant in water pollution and its highly dangerous for living organisms in the contaminated area. The aim of this research is to predict the movement pattern of Pb and Zn metal ions from water onto sediment in the Riam Kanan Reservoir, Aranio Sub-district, Banjar District. In addition, this study is expected to give information on the initial condition of Riam Kanan reservoir; dynamics; and the fate of Pb and Zn ions from upstream to downstream. The samples were analysed using AAS (Atomic Absorption Spectrophotometer based on the Indonesian National Standard (SNI. Result of laboratory analysis showed that in the water, contents of metal Pb were 0.0494 ppm – 0.2582 ppm, Zn 0.0002 ppm – 0.0370 ppm. In the sediment, contents of Pb were 0.8311 mg/kg – 21.1756 mg/kg and Zn 3.3778 mg/kg – 28.3522 mg/kg. Based on the experimental data, it was found that the displacement of Pb and Zn onto sediment complies with Langmuir adsorption model where the determination coefficient (R2 were 0.8167 and 0.8801 respectively.

  3. Biosorption of Pb2+ and Cu2+ in aqueous solutions using agricultural wastes

    Directory of Open Access Journals (Sweden)

    Nieva Aileen D.

    2017-01-01

    Full Text Available This study aimed to determine and compare the adsorptive capacity of Pb2+ and Cu2+ in simulated wastewater onto three agricultural wastes The adsorption capacities of Pb2+ onto the agricultural wastes can be arranged as Litchi chinensis (4.30 mg of sorbate per g of sorbent (mg g-1, 85.68% adsorption > Bambusa vulgaris (3.83 mg g-1, 76.19% adsorption > Annona squamosa (2.70 mg g-1, 53.66% adsorption while the adsorption capacities of Cu2+ onto the same agricultural wastes can be arranged in the order: Bambusa vulgaris (3.86 mg g-1, 77.17% adsorption > Annona squamosal (3.58 mg g-1, 71.58% adsorption > Litchi chinensis (3.42 mg g-1, 68.32% adsorption. The biosorbents had relatively higher adsorptive capacities with Cu2+ as compared to that of Pb2+ except for Litchi chinensis. Although the results show lower adsorptive capacity as compared to a number of treated agricultural wastes showing 80% up to almost 100% adsorption of Pb2+ and Cu2+, the results show that Annona squamosa, Bamubusa vulgaris, and Litchi chinensis are potential biosorbents and promote sustainable treatment process.

  4. Synthesis and application of a novel Cu/RGO@Pb alloy for lead-acid batteries

    International Nuclear Information System (INIS)

    Wu, Yumeng; Zhao, Ruirui; Zhou, Huawen; Zhang, Dejing; Zhao, Wei; Chen, Hongyu

    2016-01-01

    In this work, a novel Cu/RGO@Pb alloy was prepared successfully and tested in the simulated lead-acid battery environment. In preparing the novel alloy, Cu/RGO composite was firstly synthesized in order to increase the wettability of RGO to Pb, and then the composite was added to the molten lead to obtain the target alloy. Scanning electron microscope, energy dispersive spectrometer, X-ray diffraction as well as electrochemical measurements were employed to evaluate the performance of the obtained composite and alloy. Results show that the prepared Cu/RGO@Pb possessed higher oxygen evolution over-potential and lower hydrogen evolution over-potential than the contrast alloy, indicating this novel alloy was more suitable for using as positive grids in lead acid batteries. Moreover, the RGO additive could inhibit the formation of Pb(II) and Pb(IV) film on the surface of the alloy, which could enhance the deep-charge/discharge performance of the grids and improve the corrosion resistance.

  5. The determination of extinction coefficient of CuInS2, and ZnCuInS3 multinary nanocrystals.

    Science.gov (United States)

    Qin, Lei; Li, Dongze; Zhang, Zhuolei; Wang, Kefei; Ding, Hong; Xie, Renguo; Yang, Wensheng

    2012-10-21

    A pioneering work for determining the extinction coefficient of colloidal semiconductor nanocrystals (NCs) has been cited over 1500 times (W. Yu, W. Guo, X. G. Peng, Chem. Mater., 2003, 15, 2854-2860), indicating the importance of calculating NC concentration for further research and applications. In this study, the size-dependent nature of the molar extinction coefficient of "greener" CuInS(2) and ZnCuInS(3) NCs with emission covering the whole visible to near infrared (NIR) is presented. With the increase of NC size, the resulting quantitative values of the extinction coefficients of ternary CuInS(2) and quaternary ZnCuInS(3) NCs are found to follow a power function with exponents of 2.1 and 2.5, respectively. Obviously, a larger value of extinction coefficient is observed in quaternary NCs for the same size of particles. The difference of the extinction coefficient from both samples is clearly demonstrated due to incorporating ZnS with a much larger extinction coefficient into CuInS(2) NCs.

  6. Bismuth zinc vanadate, BiZn2VO6: New crystal structure type and electronic structure

    International Nuclear Information System (INIS)

    Eliziario Nunes, Sayonara; Wang, Chun-Hai; So, Karwei; Evans, John S.O.; Evans, Ivana Radosavljević

    2015-01-01

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn 2 VO 6 , known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn 2 VO 6 adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO 4 tetrahedra, ZnO 6 octahedra and VO 4 tetrahedra, and Bi 2 O 12 dimers. It is the only known member of the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn 2 VO 6 , calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn 2 VO 6 , a new structure type in the BiM 2 AO 6 (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation

  7. Phytotoxic effects of Cu and Zn on soybeans grown in field-aged soils: their additive and interactive actions.

    Science.gov (United States)

    Kim, Bojeong; McBride, Murray B

    2009-01-01

    A field pot experiment was conducted to investigate the interactive phytotoxicity of soil Cu and Zn on soybean plants [Glycine max (L.) Merr.]. Two soils (Arkport sandy loam [coarse-loamy, mixed, active, mesic Lamellic Hapludalf] and Hudson silty clay loam [fine, illitic, mesic Glossaquic Hapludalf]) spiked with Cu, Zn, and combinations of both to reach the final soil metal range of 0 to 400 mg kg(-1) were tested in a 2-yr bioassay after 1 yr of soil-metal equilibration in the field. The soluble and easily-extractable fraction of soil Zn (or Cu), estimated by dilute CaCl2, increased linearly in response to the total Zn (or Cu) added. This linearity was, however, strongly affected where soils were treated with both metals in combination, most notably for Zn, as approximately 50% more of soil Zn was extracted into solution when the Cu level was high. Consequently, added Zn is less likely to be stabilized by aging than added Cu when both metals are present in field soils. The predictive model relating soil metal extractability to plant Zn concentration also revealed a significant Cu-Zn interaction. By contrast, the interaction between the two metals contributed little to explain plant Cu uptake. The additive action of soil Cu and Zn was of considerable importance in explaining plant biomass reduction. This work clearly demonstrates the critical roles of the properties of the soil, the nature of the metal, and the level of other toxic metals present on the development of differential phytotoxicity due to soil Cu and Zn.

  8. The effect of Cu-rich sub-layer on the increased corrosion resistance of Cu-xZn alloys in chloride containing borate buffer

    International Nuclear Information System (INIS)

    Milosev, Ingrid; Mikic, Tadeja Kosec; Gaberscek, Miran

    2006-01-01

    The electrochemical behaviour of Cu-xZn alloys, as well as their constituent metals, in a borate buffer containing chloride ions in the molar range from 0.01 to 1 M are studied. Characteristics of these materials under anodic polarization are compared and the composition and morphology of the corrosion products formed in the course of polarization experiment are analysed by SEM and EDS. X-ray photoelectron spectroscopy and electrochemical impedance measurements are used for characterization of the surface layers formed on Cu, Zn and Cu-40Zn alloy during 2-h immersion at E oc in a borate buffer containing two different concentrations of chloride ions. New aspects of the behaviour of brass under E oc condition are revealed. The improved corrosion resistance of brass in chloride media, if compared to zinc metal, is attributed to a Cu-rich layer formed by the selective dissolution of zinc. Based on the results, a structural model describing the improved corrosion resistance of Cu-40Zn alloy with respect to Zn metal is proposed

  9. Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II binary complexes of l-methionine in 1,2-propanediol-water mixtures

    Directory of Open Access Journals (Sweden)

    M. Padma Latha

    2007-04-01

    Full Text Available Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II complexes of L-methionine in 0.0-60 % v/v 1,2-propanediol-water mixtures maintaining an ionic strength of 0.16 M at 303 K has been studied pH metrically. The active forms of ligand are LH2+, LH and L-. The predominant species detected are ML, MLH, ML2, ML2H, ML2H2 and MLOH. Models containing different numbers of species were refined by using the computer program MINIQUAD 75. The best-fit chemical models were arrived at based on statistical parameters. The trend in variation of complex stability constants with change in the dielectric constant of the medium is explained on the basis of electrostatic and non-electrostatic forces.

  10. A first-principles study of short range order in Cu-Zn

    International Nuclear Information System (INIS)

    Slutter, M.; Turchi, P.E.A.; Johnson, D.D.; Nicholson, D.M.; Stocks, G.M.; Pinski, F.J.

    1990-01-01

    Recently, measurements of short-range order (SRO) diffuse neutron scattering intensity have been performed on quenched Cu-Zn alloys with 22.4 to 31.1 atomic percent (a/o) Zn, and pair interactions were obtained by inverse Monte Carlo simulation. These results are compared to SRO intensities and effective pair interactions obtained from first-principles electronic structure calculations. The theoretical SRO intensities were calculated with the cluster variation method (CVM) in the tetrahedron-octahedron approximation with first-principles pain interactions as input. More generally, phase stability in the Cu-Zn alloy system is discussed, using ab-initio energetic properties

  11. Thermoelectric properties of chalcogenide based Cu2+xZnSn1−xSe4

    Directory of Open Access Journals (Sweden)

    Ch. Raju

    2013-03-01

    Full Text Available Quaternary chalcogenide compounds Cu2+xZnSn1−xSe4 (0 ≤ x ≤ 0.15 were prepared by solid state synthesis. Rietveld powder X-ray diffraction (XRD refinements combined with Electron Probe Micro Analyses (EPMA, WDS-Wavelength Dispersive Spectroscopy and Raman spectra of all samples confirmed the stannite structure (Cu2FeSnS4-type as the main phase. In addition to the main phase, small amounts of secondary phases like ZnSe, CuSe and SnSe were observed. Transport properties of all samples were measured as a function of temperature in the range from 300 K to 720 K. The electrical resistivity of all samples decreases with an increase in Cu content except for Cu2.1ZnSn0.9Se4, most likely due to a higher content of the ZnSe. All samples showed positive Seebeck coefficients indicating that holes are the majority charge carriers. The thermal conductivity of doped samples was high compared to Cu2ZnSnSe4 and this may be due to the larger electronic contribution and the presence of the ZnSe phase in the doped samples. The maximum zT = 0.3 at 720 K occurs for Cu2.05ZnSn0.95Se4 for which a high-pressure torsion treatment resulted in an enhancement of zT by 30% at 625 K.

  12. Hydrodeoxygenation of furfuryl alcohol over Cu/MgAl and Cu/ZnAl catalysts derived from hydrotalcite-like precursors

    Directory of Open Access Journals (Sweden)

    Natalia Andrea Pino

    2017-01-01

    Full Text Available The aqueous phase hydrodeoxygenation (HDO of furfuryl alcohol over Cu/MgAl and Cu/ZnAl catalysts with different Mg/Al and Zn/Al molar ratios, were investigated. Mg-Al and Zn-Al mixed oxides derived from hydrotalcites precursors were used as supports, which were impregnated with an aqueous solution of copper nitrate by incipient wetness impregnation. The HDO reaction was carried out in a typical batch reactor at 5 MPa of H2 and 200 °C for 4 h. Among the catalysts studied, the Cu/MgAl-0.5 catalyst exhibited the higher furfuryl alcohol conversion (86% and yield of cyclopentanol (35%, which is the reaction product with the highest hydrogen-carbon (H/C ratio. With the Cu/MgAl-3 catalyst a high cyclopentanone yield (67% was achieved. The results obtained, showed that copper supported on mixed oxides catalysts derived from hydrotalcite precursors are a promising alternative to improve the bio-oil quality.

  13. Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca

    International Nuclear Information System (INIS)

    Turner, Andrew; Pollock, Heather; Brown, Murray T.

    2009-01-01

    The marine macroalga, Ulva lactuca, has been exposed to different concentrations of antifouling paint particles (4-200 mg L -1 ) in the presence of a fixed quantity of clean estuarine sediment and its photosynthetic response and accumulation of Cu and Zn monitored over a period of 2 days. An immediate (<2 h) toxic effect was elicited under all experimental conditions that was quantitatively related to the concentration of contaminated particles present. Likewise, the rate of leaching of both Cu and Zn was correlated with the concentration of paint particles added. Copper accumulation by the alga increased linearly with aqueous Cu concentration, largely through adsorption to the cell surface, but significant accumulation of Zn was not observed. Thus, in coastal environments where boat maintenance is practiced, discarded antifouling paint particles are an important source of Cu, but not Zn, to U. lactuca. - The marine macroalga, Ulva lactuca, is able to accumulate Cu but not Zn from discarded antifouling paint particles.

  14. Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew, E-mail: aturner@plymouth.ac.u [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Pollock, Heather [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Brown, Murray T. [School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-08-15

    The marine macroalga, Ulva lactuca, has been exposed to different concentrations of antifouling paint particles (4-200 mg L{sup -1}) in the presence of a fixed quantity of clean estuarine sediment and its photosynthetic response and accumulation of Cu and Zn monitored over a period of 2 days. An immediate (<2 h) toxic effect was elicited under all experimental conditions that was quantitatively related to the concentration of contaminated particles present. Likewise, the rate of leaching of both Cu and Zn was correlated with the concentration of paint particles added. Copper accumulation by the alga increased linearly with aqueous Cu concentration, largely through adsorption to the cell surface, but significant accumulation of Zn was not observed. Thus, in coastal environments where boat maintenance is practiced, discarded antifouling paint particles are an important source of Cu, but not Zn, to U. lactuca. - The marine macroalga, Ulva lactuca, is able to accumulate Cu but not Zn from discarded antifouling paint particles.

  15. Effect of tellurium on machinability and mechanical property of CuAlMnZn shape memory alloy

    International Nuclear Information System (INIS)

    Liu Na; Li Zhou; Xu Genying; Feng Ze; Gong Shu; Zhu Lilong; Liang Shuquan

    2011-01-01

    Highlights: → A novel free-machining Cu-7.5Al-9.7Mn-3.4Zn-0.3Te (wt.%) shape memory alloy has been developed. → The size of dispersed particles with richer Te is 2-5 μm. → The CuAlMnZnTe alloy has good machinability which approached that of BZn15-24-1.5 due to the addition of Te. → Its shape memory property keeps the same as that of CuAlMnZn alloy with free Te. → The CuAlMnZn shape memory alloy with and without Te both have good ductile as annealed at 700 deg. C for 15 min. - Abstract: The microstructure transition, shape memory effect, machinability and mechanical property of the CuAlMnZn alloy with and without Te have been studied using X-ray diffraction analysis, chips observation and scanning electron microscopy (SEM), tensile strength test and differential scanning calorimeter (DSC), and semi-quantitative shape memory effect (SME) test. The particles with richer Te dispersedly distributed in grain interior and boundary with size of 2-5 μm. After the addition of Te, the CuAlMnZnTe alloy machinability has been effectively increased to approach that of BZn15-24-1.5 and its shape memory property remains the same as the one of CuAlMnZn alloy. The CuAlMnZn shape memory alloys with and without Te both have good ductility as annealed at 700 deg. C for 15 min.

  16. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress.

    Directory of Open Access Journals (Sweden)

    Qingjie Guan

    Full Text Available The 636-bp-long cDNA sequence of OsCu/Zn-SOD (AK059841 was cloned from Oryza sativa var. Longjing11 via reverse transcription polymerase chain reaction (RT-PCR. The encoded protein comprised of 211 amino acids is highly homologous to Cu/Zn-SOD proteins from tuscacera rice and millet. Quantitative RT-PCR revealed that in rice, the level of OsCu/Zn-SOD gene expression was lowest in roots and was highest in petals and during the S5 leaf stage. Moreover, the expression level of OsCu/Zn-SOD gene expression decreased during the L5 leaf stage to maturity. The level of OsCu/Zn-SOD gene expression, however, was increased under saline-sodic stress and NaHCO3 stress. Germination tests under 125, 150, and 175 mM NaCl revealed that OsCu/Zn-SOD-overexpressing lines performed better than the non-transgenic (NT Longjing11 lines in terms of germination rate and height. Subjecting seedlings to NaHCO3 and water stress revealed that OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of SOD activity, fresh weight, root length, and height. Under simulated NaHCO3 stress, OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of survival rate (25.19% > 6.67% and yield traits (average grain weight 20.6 > 18.15 g. This study showed that OsCu/Zn-SOD gene overexpression increases the detoxification capacity of reactive oxygen species in O. sativa and reduces salt-induced oxidative damage. We also revealed the regulatory mechanism of OsCu/Zn-SOD enzyme in saline-sodic stress resistance in O. sativa. Moreover, we provided an experimental foundation for studying the mechanism of OsCu/Zn-SOD enzymes in the chloroplast.

  17. Antifriction coating of Cu-Fe-Al-Pb system for plain bearings

    Science.gov (United States)

    Kotenkov, Pavel; Kontsevoi, Yurii; Mejlakh, Anna; Pastukhov, Eduard; Shubin, Alexey; Goyda, Eduard; Sipatov, Ivan

    2017-09-01

    Aluminium, copper and their compounds are used in common as basis for antifriction coatings of plain bearings. Antifriction testing of plain bearings (based on Al and Cu) made by leading automotive manufacturers from Germany, Japan, USA, United Kingdom and Russia were carried out to make judicious selection of basis for development of new antifriction material. Testing was carried out using friction machine. It was defined that materials based on Cu provide better durability and robustness of plain bearings in comparison with Al based ones. The new antifriction composite coatings based on copper were developed taking into account the requirements specified for plain bearings of internal-combustion engine. Pilot samples of plain bearings with antifriction coatings of Cu-Fe-Al-Pb system were produced. The antifriction composite having Cu-5Fe-5Al5Fe2-10Pb (mass %) composition has demonstrated low friction factor and high wear-resistance. Metallographic analysis of pilot samples was carried out by means of optical and scanning electron microscopy.

  18. Effect of Recrystallization and Natural Aging on Mechanical Properties of Al-Zn-Mg-Cu-Sc Alloys

    International Nuclear Information System (INIS)

    Yu, Min Kyu; Hong, Soon Hyung; Kwon, Oh Yeol; Lee, Yong Yeon

    2015-01-01

    In this study, the recrystallization volume fraction of the Al-Zn-Mg-Cu-Sc alloy after solid solution heat treatment varied with different temperatures (445℃ - 465℃). The highest elongation of the Al-Zn-Mg-Cu-Sc alloy was obtained at 465℃. Further, the hardness and strength of the solid solution heat treated Al-Zn-Mg-Cu-Sc alloy increased at room temperature due to G.P zone precipitates. The results confirmed that we can obtain advanced mechanical properties for the Al-Zn-Mg-Cu-Sc alloy from solid solution heat treatment and natural aging.

  19. Kandungan Tembaga (Cu dan Timbal (Pb pada Lamun Enhalus accoroides dari Perairan Batam, Kepulauan Riau, Indonesia

    Directory of Open Access Journals (Sweden)

    Ismarti Ismarti

    2017-02-01

    Full Text Available The objective of the present study was to analyze the metal content of copper and lead in Enhalus accoroides seagrass in Batam Island waters. Samples of seagrass (E. accoroides were collected from six locations along the western region of Batam Island then dried and performed with acid destruction. The measurements of Cu and Pb in the samples were conducted by Atomic Absorption Spectrophotometer. The result showed that there was an increasing of copper and lead contaminant level on sample E accoroides during two periods in a year.  The Cu level ranged from 0.63 to 46.1 mg/kg, meanwhile, lead level ranged from  2.14 to 10.52mg/kg respectively. The highest accumulation of copper and lead were recorded on leaves, it was reached 10.81 mg/kg and 5.98mg/kg, respectively. Penelitian ini bertujuan menganalisis kandungan logam tembaga (Cu dan timbal (Pb pada lamun Enhalus accoroides di sepanjang perairan barat Pulau Batam. Sampel lamun dikumpulkan dari enam lokasi  kemudian dikeringkan dan dilakukan destruksi dengan asam. Penentuan kadar logam tembaga dan timbal dalam sampel dilakukan dengan spektrometri serapan atom. Hasil penelitian menunjukan adanya peningkatan kadar logam Cu dan Pb pada sampel lamun E. accoroides selama 2 periode sampling dalam 1 tahun. Kadar logam Cu dan Pb pada lamun secara berturut berada pada rentang 0.63-46.1 mg/kg dan 2.14-10.52mg/kg. Akumulasi logam Cu dan Pb dalam lamun E. accoroides tertinggi pada bagian daun sebanyak 10.81 mg/kg Cu dan 5.98 mg/kg Pb.

  20. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    International Nuclear Information System (INIS)

    Harish, G.S.; Sreedhara Reddy, P.

    2015-01-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2–3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm −1 ) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping

  1. X-ray fluorescence analysis of Pb, Fe and Zn in kohl

    Directory of Open Access Journals (Sweden)

    Eman Daar

    Full Text Available Kohl, a facial salve used in ancient times as a symbol of affluence, now enjoys more widespread traditional followings, for cosmetic, religious and supposed medicinal purposes. Popularly used by women and men of all ages, particularly those of North African, Middle Eastern, Southern Asia, Japanese and Chinese origins, it is also known to be used on neonates and children from such populations. With small-scale producers of kohl possessing a growing awareness of the adverse market impact of products that contain (lead Pb and other toxicity related elements, some claim their products to be Pb-free, offering an apparent change from the more traditional galena-based (lead sulphide media. Among the published physiological effects of exposure to Pb is that it replaces Ca in bones and teeth, making them weak and fragile, other impacts including nephrotoxicity, also linked with increased Pb blood levels in studies in Oman, Canada, Saudi Arabia, India and Pakistan. Current study involves XRF analysis of Pb, Fe and Zn concentrations in 135 samples of kohl from nine randomly selected suppliers (15 samples of each brand being represented. In pursuit of this, use was made of an in-house assembled facility comprising compact high-performance components, the arrangement offering sufficient sensitivity for the purposes of present study. In most of the samples investigated in the present study observation has been made of concentrations of Pb at elevated levels, quantification of those levels also demonstrating a need to address self-attenuation by the Pb itself. Significant concentration of Fe have also been found in several of the samples. Keywords: X-ray florescence, Pb, Fe and Zn contamination, Kohl

  2. Low-temperature thermoelectric properties of Pb doped Cu2SnSe3

    Science.gov (United States)

    Prasad K, Shyam; Rao, Ashok; Gahtori, Bhasker; Bathula, Sivaiah; Dhar, Ajay; Chang, Chia-Chi; Kuo, Yung-Kang

    2017-09-01

    A series of Cu2Sn1-xPbxSe3 (0 ≤ x ≤ 0.04) compounds was prepared by solid state synthesis technique. The electrical resistivity (ρ) decreased with increase in Pb content up to x = 0.01, thereafter it increased with further increase in x (till x = 0.03). However, the lowest value