WorldWideScience

Sample records for zirconium phosphate modified

  1. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    Science.gov (United States)

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  2. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite.

    Science.gov (United States)

    Lin, Jianwei; Zhang, Zhe; Zhan, Yanhui

    2017-05-01

    A zirconium-modified zeolite (ZrMZ) was prepared, and then, humic acid (HA) was immobilized on the ZrMZ surface to prepare HA-loaded ZrMZ (HA-ZrMZ). The obtained ZrMZ and HA-ZrMZ were characterized by energy dispersive X-ray spectroscopy, elemental analyzer, N 2 adsorption/desorption isotherms, pH at the point of zero charge, and X-ray photoelectron spectroscopy. The adsorption characteristics of phosphate on ZrMZ and HA-ZrMZ were comparatively investigated in batch mode. The adsorption mechanism of phosphate on ZrMZ and HA-ZrMZ was investigated by ionic strength effect and 31 P nuclear magnetic resonance. The mechanism for phosphate adsorption onto ZrMZ was the formation of inner-sphere phosphate complexes at the solid/solution interface. The preloading of HA on ZrMZ reduced the phosphate adsorption capacity, and the more the HA loading amount, the lower the phosphate adsorption capacity. However, the preloading of HA on ZrMZ did not change the phosphate adsorption mechanism; i.e., the formation of inner-sphere phosphate surface complexes was still responsible for the adsorption of phosphate on HA-ZrMZ. The decreased phosphate adsorption capacity for ZrMZ after HA coating could be attributed to the fact that the coating of HA on ZrMZ reduced the amount of binding active sites available for phosphate adsorption, changed the adsorbent surface charges, and reduced the specific surface areas and pore volumes of ZrMZ.

  3. Hyaluronic acid-modified zirconium phosphate nanoparticles for potential lung cancer therapy.

    Science.gov (United States)

    Li, Ranwei; Liu, Tiecheng; Wang, Ke

    2017-02-01

    Novel tumor-targeting zirconium phosphate (ZP) nanoparticles modified with hyaluronic acid (HA) were developed (HA-ZP), with the aim of combining the drug-loading property of ZP and the tumor-targeting ability of HA to construct a tumor-targeting paclitaxel (PTX) delivery system for potential lung cancer therapy. The experimental results indicated that PTX loading into the HA-ZP nanoparticles was as high as 20.36%±4.37%, which is favorable for cancer therapy. PTX-loaded HA-ZP nanoparticles increased the accumulation of PTX in A549 lung cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity in vitro. In vivo anticancer efficacy assay revealed that HA-ZP nanoparticles possessed preferable anticancer abilities, which exhibited minimized toxic side effects of PTX and strong tumor-suppression potential in clinical application.

  4. Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA.

    Science.gov (United States)

    Zhao, Dandan; Yu, Yang; Chen, J Paul

    2016-09-15

    Lead contamination is one of the most serious problems in drinking water facing humans. In this study, a novel zirconium phosphate modified polyvinyl alcohol (PVA)-PVDF membrane was developed for lead removal. The zirconium ions and PVA were firstly coated onto a PVDF membrane through crosslinking reactions with glutaraldehyde, which was then modified by phosphate. The adsorption kinetics study showed that most of ultimate uptake occurred in 5 h. The adsorption increased with an increase in pH; the optimal adsorption was achieved at pH 5.5. The experimental data were better described by Langmuir equation than Freundlich equation; the maximum adsorption capacity was 121.2 mg-Pb/g at pH 5.5, much higher than other reported adsorptive membranes. The membrane exhibited a higher selectivity for lead over zinc with a relative selectivity coefficient (Pb(2+)/Zn(2+)) of 9.92. The filtration study showed that the membrane with an area of 12.56 cm(2) could treat 13.9 L (equivalent to 73,000 bed volumes) of lead containing wastewater with an influent concentration of 224.5 μ g/L to meet the maximum contaminant level of 15 μ g/L. It was demonstrated that the membrane did well in the removal of lead in both simulated wastewater and lead-spiked reservoir water and had a good reusability in its applications. The XPS studies revealed that the lead uptake was mainly due to cation exchange between hydrogen ions and lead ions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. ZIRCONIUM PHOSPHATE ADSORPTION METHOD

    Science.gov (United States)

    Russell, E.R.; Adamson, A.S.; Schubert, J.; Boyd, G.E.

    1958-11-01

    A method is presented for separating plutonium values from fission product values in aqueous acidic solution. This is accomplished by flowing the solutlon containing such values through a bed of zirconium orthophosphate. Any fission products adsorbed can subsequently be eluted by washing the column with a solution of 2N HNO/sub 3/ and O.lN H/sub 3/PO/sub 4/. Plutonium values may subsequently be desorbed by contacting the column with a solution of 7N HNO/sub 3/ .

  6. Zirconium Phosphate Supported MOF Nanoplatelets.

    Science.gov (United States)

    Kan, Yuwei; Clearfield, Abraham

    2016-06-06

    We report a rare example of the preparation of HKUST-1 metal-organic framework nanoplatelets through a step-by-step seeding procedure. Sodium ion exchanged zirconium phosphate, NaZrP, nanoplatelets were judiciously selected as support for layer-by-layer (LBL) assembly of Cu(II) and benzene-1,3,5-tricarboxylic acid (H3BTC) linkers. The first layer of Cu(II) is attached to the surface of zirconium phosphate through covalent interaction. The successive LBL growth of HKUST-1 film is then realized by soaking the NaZrP nanoplatelets in ethanolic solutions of cupric acetate and H3BTC, respectively. The amount of assembled HKUST-1 can be readily controlled by varying the number of growth cycles, which was characterized by powder X-ray diffraction and gas adsorption analyses. The successful construction of HKUST-1 on NaZrP was also supported by its catalytic performance for the oxidation of cyclohexene.

  7. Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism.

    Science.gov (United States)

    Xiong, Weiping; Tong, Jing; Yang, Zhaohui; Zeng, Guangming; Zhou, Yaoyu; Wang, Dongbo; Song, Peipei; Xu, Rui; Zhang, Chen; Cheng, Min

    2017-05-01

    Phosphate (P) removal is significant for the prevention of eutrophication in natural waters. In this paper, a novel adsorbent for the removal of P from aqueous solution was synthesized by loading zirconium oxide and iron oxide onto activated carbon nanofiber (ACF-ZrFe) simultaneously. The adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that P adsorption was highly pH dependent and the optimum pH was found to be 4.0. The isotherm of adsorption could be well described by the Langmuir model and the maximum P adsorption capacity was estimated to be 26.3mgP/g at 25°C. The kinetic data were well fitted to the pseudo-second-order equation, indicating that chemical sorption was the rate-limiting step. Moreover, co-existing ions including sulfate (SO 4 2- ), chloride (Cl - ), nitrate (NO 3 - ) and fluoride (F - ) exhibited a distinct effect on P adsorption with the order of F - >NO 3 - >Cl - >SO 4 2- . Further investigations by FT-IR spectroscopy and pH variations associated with the adsorption process revealed that ligands exchange and electrostatic interactions were the dominant mechanisms for P adsorption. The findings reported in this work highlight the potential of using ACF-ZrFe as an effective adsorbent for the removal of P in natural waters. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A modified {sup 99} Mo- {sup 99} Tc generator on Zirconium molybdo- phosphate-{sup 99} Mo gel. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Kolaly, M T; Talaat, H [Labelled Compounds Department, Cairo (Egypt); Botros, N [Radioistspe and Generator Department, Radioisotope Production and Sealed Source Division, Hot Laboratories Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    A modified {sup 99} Mo - {sup 99} Tc gel generator is described. The new generator is based on the use of zirconium molybdophosphate - {sup 99} Mo gel in which {sup 99} Mo chemically combined in the gel structure, where {sup 99m}Tc can be easily eluted with distilled water or saline. The gel was prepared via chemical reaction between zirconyl chloride and molybdophosphate - {sup 99} Mo solution. The PH of the reaction mixture was adjusted with NaOH. Different gels have been prepared by varying the molar ratio of Mo:Zr:p. The PH and time of digeston on complete gel formation was also investigated in order to optimize the condition of gel preparation. Molybdophosphate {sup 32} P solution was used to determine the phosphorous content in the gel and in the {sup 99m}Tc eluate. The temperature and time of drying of the gel and their effect on {sup 99m}Tc elution efficiency were also studied. From the data obtained, the optimum conditions for routine production of {sup 99} Mo - {sup 99m}Tc generator are presented and discussed. 2 figs., 6 tabs.

  9. Study on the antibacterial mechanism of copper ion- and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity.

    Science.gov (United States)

    Cai, Xiang; Zhang, Bin; Liang, Yuanyuan; Zhang, Jinglin; Yan, Yinghui; Chen, Xiaoyin; Wu, Zhimin; Liu, Hongxi; Wen, Shuiping; Tan, Shaozao; Wu, Ting

    2015-08-01

    To improve the antibacterial activity of Cu(2+), a series of Cu(2+) and/or Nd(3+)-modified layered α-zirconium phosphate (ZrP) was prepared and characterized, and the antibacterial activities of the prepared Cu(2+) and/or Nd(3+)-modified ZrP on Gram-negative Escherichia coli were investigated. The results showed that the basal spacing of ZrP was not obviously affected by the incorporation of Cu(2+), but the basal spacing of the modified ZrP changed into an amorphous state with increasing additions of Nd(3+). An antibacterial mechanism showed that Cu(2+) and Nd(3+) could enter into E. coli cells, leading to changes in ion concentrations and leakage of DNA, RNA and protein. The Cu(2+)- and Nd(3+)-modified ZrP, combining the advantages of Cu(2+) and Nd(3+), displayed excellent additive antibacterial activity and lower cytotoxicity, suggesting the great potential application as an antibacterial powder for microbial control. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  10. Immobilization of transition metal ions on zirconium phosphate monolayers

    International Nuclear Information System (INIS)

    Melezhik, A.V.; Brej, V.V.

    1998-01-01

    It is shown that ions of transition metals (copper, iron, vanadyl, titanium) are adsorbed on zirconium phosphate monolayers. The zirconium phosphate threshold capacity corresponds to substitution of all protons of hydroxyphosphate groups by equivalent amounts of copper, iron or vanadyl. Adsorption of polynuclear ions is possible in case of titanium. The layered substance with specific surface up to 300 m 2 /g, wherein ultradispersed titanium dioxide particles are intercalirated between zirconium-phosphate layers, is synthesized

  11. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon Saengmee-anupharb; Toemsak Srikhirin; Boonyanit Thaweboon; Sroisiri Thaweboon; Taweechai Amornsakchai; Surachai Dechkunakorn; Theeralaksna Suddhasthira

    2013-01-01

    Objective: To evaluate the antimicrobial activities of silver inorganic materials, including silver zeolite (AgZ), silver zirconium phosphate silicate (AgZrPSi) and silver zirconium phosphate (AgZrP), against oral microorganisms. In line with this objective, the morphology and structure of each type of silver based powders were also investigated. Methods: The antimicrobial activities of AgZ, AgZrPSi and AgZrP were tested against Streptococcus mutans, Lactobacillus casei, Candidaalbicans and Staphylococcus aureus using disk diffusion assay as a screening test. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the modified membrane method. Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials. Results: All forms of silver inorganic materials could inhibit the growth of all test microorganisms. The MIC of AgZ, AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L. In terms of morphology and structure, AgZrPSi and AgZrP had smaller sized particles (1.5-3.0 µm) and more uniformly shaped than AgZ. Conclusions: Silver inorganic materials in the form of AgZ, AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers. These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  12. Study of some properties of zirconium phosphate

    International Nuclear Information System (INIS)

    Prospert, J.

    1963-05-01

    Zirconium phosphate has been studied with a view to using it as an ion exchanger: the first objective was to develop a method of preparation easy to apply and also reproducible. To this end, several tests were carried out varying the molar ratios of phosphorus and of zirconium. Some physical properties such as the diffraction of X-rays were examined. The work then involved certain chemical properties, particularly the percentages of free water and structural water given by the loss on calcination, the Karl-Fisher method and the weight losses by thermogravimetry. Finally an attempts was made to apply the exchanger to the separation of alkaline ions. The static tests showed that the order of fixation of these ions was Cs + > Rb + >> K + > Na + . Tests with columns showed that Na + and K + were easily separable, as was the Rb + -Cs + mixture, this last pair being fairly difficult to dissociate. (author) [fr

  13. Radiochemical studies on amorphous zirconium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, A; Moores, G E [Salford Univ. (UK). Dept. of Chemistry and Applied Chemistry

    1981-01-01

    Amorphous zirconium phosphate (ZrP) is used in some hemodialysis machines for the regeneration of dialysate. Its function is to adsorb ammonium ions formed by the pretreatment of urea by urease. It also adsorbs Ca, Mg and K ions but leaches phosphate ions which are then removed (along with F/sup -/ ions) by a bed of hydrous zirconium oxide. The sodium form of ZrP is used although other forms have been suggested for use. The work reported here describes some preliminary radiochemical studies on the mechanism of release of phosphate ions and its possible relationship to sodium ion-exchange. /sup 32/P labelled material (HHZrP) was used for elution experiments with deionized water and buffer solutions having the pH's 4.2, 7.0 and 9.2. Buffer solutions used were as supplied by BDH. Elution was at four different temperatures in the range 293 to 363/sup 0/C. In the second series of experiments HHZrP was suspended in a NaCl solution labelled with /sup 22/Na. From this, /sup 22/Na labelled ZrP (NaHZrP) was prepared and eluted in the same way as the HHZrP. Results are given and discussed.

  14. Sorption of cesium on titanium and zirconium phosphates

    International Nuclear Information System (INIS)

    Lebedev, V.N.; Mel'nik, N.A.; Rudenko, A.V.

    2003-01-01

    Titanium and zirconium phosphates were prepared from mineral raw materials of the Kola Peninsula. Their capability to recover cesium cations from the model solutions and liquid radioactive waste (LRW) was studied. Titanium phosphate prepared from solutions formed by titanite breakdown demonstrates greater distribution coefficients of cesium as compared to zirconium phosphate. Titanium phosphate as a cheaper agent featuring greater sorption capacity was recommended for treatment of LRW to remove cesium [ru

  15. Diglycolic acid modified zirconium phosphate and studies on the extraction of Am(III) and Eu(III) from dilute nitric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Selvan, B. Robert; Suneesh, A.S.; Venkatesan, K.A.; Antony, M.P. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Fuel Chemistry Division; Dasthaiah, K.; Gardas, R.L. [Indian Institute of Technology - Madras, Chennai (India). Dept. of Chemistry

    2017-06-01

    Diglycolic acid modified zirconium phosphate (ZrP-DGA) was prepared and studied for the extraction of Am(III) and Eu(III) from dilute nitric acid medium. The distribution coefficient (K{sub d}, mL.g{sup -1}) of Am(III) and Eu(III) was measured as a function of time, pH and concentration of Eu(III) ion etc. The K{sub d} of Am(III) and Eu(III) increased with increase of pH, reached a maximum value of distribution coefficient at pH 1.5 - 2, followed by decrease in K{sub d} values. Rapid extraction of Am(III) and Eu(III) in ZrP-DGA was observed followed by the establishment of equilibrium occurred in 100 min. Kinetics of extraction was fitted in to pseudo second order rate equation. The amount of Eu(III) loaded in ZrP-DGA increased with increase in the concentration of Eu(III) ion in aqueous phase and the isotherm was fitted in to Langmuir and Freundlich adsorption models. The extraction of Am(III) in ZrP-DGA was higher as compared to Eu(III) and the interference of Eu(III) on the extraction of Am(III) was studied. The distribution coefficient of some lanthanides in ZrP-DGA was measured and the K{sub d} of lanthanides increased across the lanthanide series. The extracted trivalent metal ions were recovered in three contacts of loaded ZrP-DGA with 0.5 M nitric acid.

  16. Lamellar zirconium phosphates to host metals for catalytic purposes.

    Science.gov (United States)

    Ballesteros-Plata, Daniel; Infantes-Molina, Antonia; Rodríguez-Aguado, Elena; Braos-García, Pilar; Rodríguez-Castellón, Enrique

    2018-02-27

    In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals. Textural and structural characterization of PPH-noble metal materials was carried out in order to elucidate the location and dispersion of the metallic particles and the properties of the resulting material to be used in catalytic processes. In the present paper, their activity in the catalytic hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) was evaluated. X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) evidenced that the structure of the pillared zirconium phosphate material was not modified by the incorporation of Pt and Pd. Moreover, transmission electron microscopy (TEM) showed a different dispersion of the noble metal. The acidity of the resulting PPH-noble metal materials also changed, although in all cases the acidity was of weak nature, and the incorporation of noble metals affected Brønsted acid sites as observed from 31 P NMR spectra. In general, the textural, structural and acidic properties of the resulting materials suggest that PPH can be considered a good candidate to be used as a catalytic support. Thus, the catalytic results of the PPH-noble metal samples indicated that the Pd sample showed a stable behavior probably ascribed to a high dispersion of the active phase. However, the Pt sample suffered from fast deactivation. The selectivity to the reaction products was strongly dependent on the noble metal employed.

  17. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    Science.gov (United States)

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Study of some properties of zirconium phosphate; Etude de quelques proprietes du phosphate de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Prospert, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-05-01

    Zirconium phosphate has been studied with a view to using it as an ion exchanger: the first objective was to develop a method of preparation easy to apply and also reproducible. To this end, several tests were carried out varying the molar ratios of phosphorus and of zirconium. Some physical properties such as the diffraction of X-rays were examined. The work then involved certain chemical properties, particularly the percentages of free water and structural water given by the loss on calcination, the Karl-Fisher method and the weight losses by thermogravimetry. Finally an attempts was made to apply the exchanger to the separation of alkaline ions. The static tests showed that the order of fixation of these ions was Cs{sup +} > Rb{sup +} >> K{sup +} > Na{sup +}. Tests with columns showed that Na{sup +} and K{sup +} were easily separable, as was the Rb{sup +}-Cs{sup +} mixture, this last pair being fairly difficult to dissociate. (author) [French] Le phosphate de zirconium a ete etudie en vue de son utilisation comme echangeur d'ions: le premier but a atteindre a ete de mettre au point une preparation pouvant se reveler facilement utilisable ainsi qu'aisement reproductible. A cet effet, plusieurs essais ont ete effectues en faisant varier les rapports molaires du phosphore et du zirconium. Quelques proprietes physiques, telle la diffraction des rayons X, ont ete abordees. Ensuite, l'etude a porte sur certaines proprietes chimiques, particulierement les pourcentages d'eau libre et d'eau de structure par des pertes au feu, utilisation de la methode de Karl-Fisher, ainsi que des pertes de poids a la thenmobalance. Enfin, on a tente d'utiliser l'echangeur a la separation des ions alcalins. Les etudes statiques ont permis de constater que l'ordre de fixation de ces ions etait Cs{sup +} > Rb{sup +} >> K{sup +} > Na{sup +}. Les essais effectues en colonne ont montre que Na{sup +} et K{sup +} etaient aisement separables entre eux, ainsi que du couple Rb{sup +}-Cs{sup +}, ce

  19. On the mechanism of ion exchange in zirconium phosphates

    International Nuclear Information System (INIS)

    Clearfield, A.; Kalnins, J.M.

    1978-01-01

    The exchange of transition metal (M 2+ ) ions from manganese through cobalt, nickel, copper to zinc with γ-zirconium phosphate was examined. By using acetate salts the hydrogen ion concentration is kept low enough to achieve high loadings. The fully loaded solids have the composition ZrM(PO 4 ) 2 .4H 2 O. Near quantitative uptakes are achieved at 100 0 C. The interlayer spacings change very little with loading indicating that γ-zirconium phosphate is able to accommodate cations and water molecules without appreciable increase in volume. The copper exchanged phase readily forms an acetylacetonate when shaken with 2,4-pentanedione. (author)

  20. Antimicrobial effects of silver zeolite,silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon; Saengmee-anupharb; Toemsak; Srikhirin; Boonyanit; Thaweboon; Sroisiri; Thaweboon; Taweechai; Amornsakchai; Surachai; Dechkunakorn; Theeralaksna; Suddhasthira

    2013-01-01

    Objective:To evaluate the antimicrobial activities of silver inorganic materials,including silver zeolite(AgZ),silver zirconium phosphate silicate(AgZrPSi)and silver zirconium phosphate(AgZrp),against oral microorganisms.In line with this objective,the morphology and structure of each type of silver based powders were also investigated.Methods:The antimicrobial activities of AgZ,AgZrPSi and AgZrP were tested against Streptococcus mutans,Lactobacillus casei,Candida albicans and Staphylococcus aureus using disk diffusion assay as a screening test.The minimum inhibitory concentration(MIC)and minimum lethal concentration(MLC)were determined using the modified membrane method.Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials.Results:All forms of silver inorganic materials could inhibit the growth of all test microorganisms.The MIC of AgZ,AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L.In terms of morphology and structure.AgZrPSi and AgZrP had smaller sized particles(1.5-3.0μm)and more uniformly shaped than AgZ.Conclusions:Silver inorganic materials in the form of AgZ,AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers.These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  1. Silica intercalated crystalline zirconium phosphate-type materials

    NARCIS (Netherlands)

    1988-01-01

    The present invention relates to intercalated crystalline zirconium phosphate-types compositions wherein the interlayers of said composition have been intercalated with three-dimensional silicon oxide pillars whereby the pillars comprise at least two silicon atom layers parallel to the clay

  2. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    Science.gov (United States)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-05-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  3. On the mechanism of ion exchange in zirconium phosphates

    International Nuclear Information System (INIS)

    Kullberg, L.; Clearfield, A.

    1981-01-01

    An equilibrium study of the Na + -Cs + -H + exchange on crystalline α-zirconium phosphate has been carried out. Isotherms for the ion exchange have been determined and phases formed during the exchange have been identified. The surface groups of the exchanger were found to greatly prefer cesium to sodium. For exchange in the interior, cesium was found to be preferred to sodium for 0 to 50% of exchange, while sodium is slightly preferred to cesium for the second half of exchange. The influence of surface equilibria on the total exchange mechanism is discussed. (author)

  4. Characterization of composite high density polyethylene and layered zirconium phosphate

    International Nuclear Information System (INIS)

    Lino, Adan S.; Silva, Daniela F.; Mendes, Luis C.

    2011-01-01

    Zirconium phosphate (ZrP) (2 w%), synthesized by direct precipitation method, was used in the preparation of composite with high density polyethylene (HDPE), through extrusion processing in the molten state. Wide angle x-ray diffraction (WAXD), stress-strain mechanical analysis and scanning electron microscopy (SEM) techniques were used for ZrP, neat polymer and composite mechanical and morphologic characterization. Although there was a slight increase in the Young modulus, WAXD and SEM analysis showed that the intercalation of the HDPE matrix in the filler galleries did not occur, probably due to the insufficient lamellae spacing to intercalate the polymer chains. Then, a microcomposite was achieved. (author)

  5. Zirconium phosphate coating on aluminium foams by electrophoretic deposition for acidic catalysis

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    The electrophoretic deposition method has been applied for the formation of an amorphous zirconium phosphate layer on the surface of open-cell aluminum foam. The aluminum foam was fully and uniformly covered by the zirconium phosphate layer with a good mechanical adherence to the support. The

  6. Conductivity variations in composites of. alpha. -zirconium phosphate and alumina

    Energy Technology Data Exchange (ETDEWEB)

    Slade, R.C.T.; Knowles, J.A. (Dept. of Chemistry, Exeter Univ. (UK))

    Composite proton-conducting solid electrolytes have been formed from {alpha}-zirconium hydrogen phosphate ({alpha}-Zr(HPO{sub 4}){sub 2}.H{sub 2}O, {alpha}-ZrP) and aluminas (Al{sub 2}O{sub 3}) in varying mole ratios. Conductivity variations as a function of temperature have been characterised and compared to that for a delaminated {alpha}-ZrP (no alumina). There are no appreciable conductivity enhancements on composite formation, but conductivity for materials ca. 50 mole% in alumina can be comparable to the delaminated materials. Differential scanning calorimetry shows the composites to have different thermal properties to simple admixtures. High resolution {sup 31}P NMR studies show reaction to form aluminium phosphate at the interface between components. (orig.).

  7. On the mechanism of ion exchange in zirconium phosphates

    International Nuclear Information System (INIS)

    Clearfield, A.; Frianeza, T.N.

    1978-01-01

    α-titanium phosphate, Ti(HPO 4 ) 2 .H 2 O, was found to form two sodium ion exchanged phases. A half exchanged phase of ideal composition TiNaH(PO 4 ) 2 .4H 2 O formed first. However, before all of the titanium phosphate was converted to this phase a second phase of higher Na + content formed. Thus, a three phase solid existed until sufficient sodium ion uptake (approximately 5.5 meq/g) produced only the two exchanged phases. Finally, the half exchanged phase was converted to the more highly loaded one and this latter phase existed from 6 to 8 meq/g of Na + uptake. Severe disordering of the crystal lattice during exchange is proposed to explain this unusual exchange behavior. A broad range of titanium phosphate-zirconium phosphate solid solutions was found to form. Their behavior towards Na + -H + exchange was determined and interpreted on the basis of the known behavior of the pure phases. Mixed Ti-Zr solid solutions of their pyrophosphates were obtained at elevated temperatures. (author)

  8. Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.

    Science.gov (United States)

    Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2017-08-24

    Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Uranium (Vi) sorption onto zirconium diphosphate chemically modified

    International Nuclear Information System (INIS)

    Garcia G, N.; Ordonez R, E.

    2010-10-01

    This work deals with the uranium (Vi) speciation after sorption onto zirconium diphosphate (ZrP 2 O 7 ) surface, hydrated and in a surface modified with organic acids. Oxalic and citric acids were chosen to modify the ZrP 2 O 7 surface because they have poly carboxylic groups and they mimic the organic matter in nature. Thus the interest of this work is to evaluate the uranium (Vi) sorption edge at different s ph values in natural and modified surfaces. The luminescence technique (fluorescence and phosphorescence, respectively) was used for the quantification and speciation of uranyl sorbed at the zirconium diphosphate interface. The fluorescence experiment, showed that adsorption of uranyl on surface of zirconium diphosphate tends to 100%. The speciation shows that there are different complexes in surface which were formed between zirconium diphosphate and uranyl, since it is produced a displacement of wavelength in fluorescence spectra of each system. (Author)

  10. Gadolinium-hydrogen ion exchange of zirconium phosphate

    Science.gov (United States)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  11. Cation mobility in H+/Na+ ion exchange products of acid tantalum and zirconium phosphates

    International Nuclear Information System (INIS)

    Tarnopol'skij, V.A.; Yaroslavtsev, A.B.

    2000-01-01

    Ionic conductivity of Na + /H + exchange products on acid zirconium phosphate with different substitution degree and on acid tantalum phosphate, where ion exchange occurs via formation of a continuous series of solid solutions, was studied by the method of conductometry. It was ascertained that ionic conductivity decreases monotonously with growth in substitution degree of H + for Na + in acid tantalum phosphate. Anomalous increase in ionic conductivity of ion exchange products on acid zirconium phosphate with a low substitution degree has been detected for the first time. Formation of a double electric layer with a high concentration of cationic defects on the interface surface is the reason for increase in ionic conductivity [ru

  12. Zirconium phosphate waste forms for low-temperature stabilization of cesium-137-containing waste streams

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Tlustochowicz.

    1996-04-01

    Novel chemically bonded phosphate ceramics are being developed and fabricated for low-temperature stabilization and solidification of waste streams that are not amenable to conventional high-temperature stabilization processes because volatiles are present in the wastes. A composite of zirconium-magnesium phosphate has been developed and shown to stabilize ash waste contaminated with a radioactive surrogate of 137 Cs. Excellent retainment of cesium in the phosphate matrix system was observed in Toxicity Characteristic Leaching Procedure tests. This was attributed to the capture of cesium in the layered zirconium phosphate structure by intercalation ion-exchange reaction. But because zirconium phosphate has low strength, a novel zirconium/magnesium phosphate composite waste form system was developed. The performance of these final waste forms, as indicated by compression strength and durability in aqueous environments, satisfy the regulatory criteria. Test results indicate that zirconium-magnesium-phosphate-based final waste forms present a viable technology for treatment and solidification of cesium-contaminated wastes

  13. The antimicrobial activity of as-prepared silver-loaded phosphate glasses and zirconium phosphate

    International Nuclear Information System (INIS)

    Jing, Wang; Jiang, Ji Zhi; Yang, Yang; Yan, Zhao Chun; Yan, Wang Xiao; He, Shui Zhong

    2016-01-01

    The antimicrobial activities of silver-loaded zirconium phosphate (JDG) and silver-loaded phosphate glasses (ZZB) against Escherichia coli were studied. Although the silver content in JDG was higher than that in ZZB, ZZB suspensions showed better antimicrobial property than JDG suspensions, especially at low concentrations. The antimicrobial activity was analyzed using minimum inhibitory concentrations, bacterial inhibition ring tests, and detection of silver ions in the suspensions. Furthermore, the amounts of silver ions in suspensions with/without bacterial cells were analyzed. Results revealed that only a portion of released silver ions could be adsorbed by E. coli cells, which are critical to cell death. The damaged microstructures of E. coli cells observed by transmission electron microscopy may further prove that the adsorbed silver ions play an important role in the antimicrobial process.

  14. In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst

    Science.gov (United States)

    Zhang, Qiulin; Fan, Jie; Ning, Ping; Song, Zhongxian; Liu, Xin; Wang, Lanying; Wang, Jing; Wang, Huimin; Long, Kaixian

    2018-03-01

    A series of ceria modified zirconium phosphate catalysts were synthesized for selective catalytic reduction of NO with ammonia (NH3-SCR). Over 98% NOx conversion and 98% N2 selectivity were obtained by the CeO2/ZrP catalyst with 20 wt.% CeO2 loading at 250-425 °C. The interaction between CeO2 and zirconium phosphate enhanced the redox abilities and surface acidities of the catalysts, resulting in the improvement of NH3-SCR activity. The in situ DRIFTS results indicated that the NH3-SCR reaction over the catalysts followed both Eley-Rideal and Langmuir-Hinshelwood mechanisms. The amide (sbnd NH2) groups and the NH4+ bonded to Brønsted acid sites were the important intermediates of Eley-Rideal mechanism.

  15. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    Science.gov (United States)

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells.

  16. Solidification technique of radioactive elements. Research using zirconium phosphates

    International Nuclear Information System (INIS)

    Nakayama, Susumu; Ito, Katsuhiko

    2005-01-01

    Proton type zirconium phosphates HZr 2 (PO 4 ) 3 , NASICON type three-dimensional net work structure, is used for solidification of Cs in the high level radioactive waste. Two kinds of solidification methods such as the dry method and autoclave method are explained. Cs ion entered into 0.6nm space of HZr 2 (PO 4 ) 3 , and formed ionic bonding, which made the difficult situation to remove. When mixture of HZr 2 (PO 4 ) 3 and 23 kinds of M(NO 3 )n (M= Li, Na, K, Pb, Sr, Bi, Y, Mg, Ca, Sc, Mn, Fe, Co, Ni, Cu, Zn, Ag, Cd, Ba, La, Ce, Tl, and Pb; n=1,2 or 3) was treated at 400-700degC by dry method, solidification of the subject metals was succeeded. Amount of solidification of Cs by autoclave at 250degC is almost same as the dry method and its leachability resistance increased 40 times than that of dry method after heat treatment in atmosphere at 700degC. (S.Y.)

  17. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  18. Development of zirconium/magnesium phosphate composites for immobilization of fission products

    International Nuclear Information System (INIS)

    Singh, D.; Tlustochowicz, M.; Wagh, A.S.

    1999-01-01

    Novel chemically bonded phosphate ceramics have been investigated for the capture and stabilization of volatile fission-product radionuclides. The authors have used low-temperature processing to fabricate zirconium phosphate and zirconium/magnesium phosphate composites. A zirconium/magnesium phosphate composite has been developed and shown to stabilize ash waste that has been contaminated with a radioactive surrogate of the 137 Cs and 90 Sr species. Excellent retention of cesium in the phosphate matrix system was observed in both short- and long-term leaching tests. The retention factor determined by the USEPA Toxicity Characteristic Leaching Procedure was one order of magnitude better for cesium that for strontium. The effective diffusivity, at room temperature, for cesium and strontium in the waste forms was estimated to be as low as 2.4 x 10 -13 and 1.2 x 10 -11 m 2 /s, respectively. This behavior was attributed to the capture of cesium in the layered zirconium phosphate structure via an intercalation ion-exchange reaction, followed by microencapsulation. However, strontium is believed to be precipitated out in its phosphate form and subsequently microencapsulated in the phosphate ceramic. The performance of these final waste forms, as indicated by the compression strength and the durability in aqueous environments, satisfies the regulatory criteria

  19. Nanoencapsulation of Insulin into Zirconium Phosphate for Oral Delivery Applications

    Science.gov (United States)

    Díaz, Agustín; David, Amanda; Pérez, Riviam; González, Millie L.; Báez, Adriana; Wark, Stacey E.; Zhang, Paul; Clearfield, Abraham; Colón, Jorge L.

    2010-01-01

    The encapsulation of insulin into different kinds of materials for non-invasive delivery is an important field of study because of the many drawbacks of painful needle and syringe delivery such as physiological stress, infection, and local hypertrophy, among others.1 A stable, robust, non-toxic, and viable non-invasive carrier for insulin delivery is needed. We present a new approach for protein nanoencapsulation using layered zirconium phosphate (ZrP) nanoparticles produced without any preintercalator present. The use of ZrP without preintercalators produces a highly pure material, without any kinds of contaminants, such as the preintercalator, which can be noxious. Cytotoxicity cell viability in vitro experiments for the ZrP nanoparticles show that ZrP is not toxic, or harmful, in a biological environment, as previously reported for rats.2 Contrary to previous preintercalator-based methods, we show that insulin can be nanoencapsulated in ZrP if a highly hydrate phase of ZrP with an interlayer distance of 10.3 Å (10.3 Å-ZrP or θ-ZrP) is used as precursor. The intercalation of insulin into ZrP produced a new insulin-intercalated ZrP phase with a ca. 27 Å interlayer distance, as determined by X-ray powder diffraction, demonstrating a successful nanoencapsulation of the hormone. The in vitro release profile of the hormone after the intercalation was determined and circular dichroism was used to study the hormone stability upon intercalation and release. The insulin remains stable in the layered material, at room temperature, for a considerable amount of time, improving the shell life of the peptidic hormone. This type of materials represents a strong candidate to develop a non-invasive insulin carrier for the treatment of diabetes mellitus. PMID:20707305

  20. Sodium isotopic exchange rate between crystalline zirconium phosphate and molten NaNO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Yamada, Y [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1975-12-01

    The isotopic exchange rate of sodium ion between crystalline zirconium phosphate and molten NaNO/sub 3/ has been measured at 312/sup 0/C and 362/sup 0/C by batch method. The equilibrium was reached within 20 minutes at either temperature, and the rate was very rapid as compared with that of sodium-potassium ion exchange.

  1. The selectivity of zirconium phosphate for caesium in electrochemical ion exchange

    International Nuclear Information System (INIS)

    Lain, M.J.

    1988-11-01

    The properties of amorphous zirconium phosphate are investigated as an inorganic ion exchanger for use in liquid waste treatment by electrochemical ion exchange. Experiments to determine and increase the selectivity for caesium exchange over sodium are discussed, including various pulsed waveforms and studies with rotating membranes. Automation of a sampling system with pH and atomic absorption measurements is described. (author)

  2. The separation of plutonium from uranium and fission products on zirconium phosphate columns

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I; Ruvarac, A [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    In recent years special attention has been given to the ion-exchange properties of zirconium phosphate and similar compounds in aqueous solutions. These inorganic cation exchangers are stable in oxidizing media and at elevated temperatures. Their resistance to ionizing radiation makes them particularly suitable for work with radioactive solutions. On account of this we considered ir worthwhile to investigate the separation of plutonium from uranium and fission products on zirconium phosphate columns. We were interested in nitric and solutions containing macro-amounts of uranium (a few grams per litre), and micro-amounts of plutonium and long-lived fission products. To obtain a better insight into the ion-exchange behaviour of the different ionic species towards zirconium phosphate, we first determined the dependence of the distribution coefficients of uranium, plutonium and fission product cations on the aqueous nitric acid concentration. Then, taking the distribution data as a guide, we separated plutonium on small glass columns filled with zirconium phosphate and calculated the decontamination factors (author)

  3. Zirconium phosphate containing membranes for the methanol fuel cell; Zirkoniumphosphathaltige Membranen fuer die Methanol-Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Dugaro, M.

    2004-07-01

    Successful applications of the direct methanol fuel cell depend on the development of suitable membranes for separating gas spaces. Suitable polymers must be found as membrane matrix materials. The polymermatrix must be modified for achieving optimum pervaporation characteristics and sufficient conductivity. Doping with colloidal particles with good proton conductivity is an interesting option. Protonated zirconium phosphate was selected because of its high proton conductivity and was doped additionally with bivalent, trivalent and tetravalent ions. The electrokinetic mobility, surface charge density, particle size and particle size distribution were measured as well as the swelling characteristics. Dispersions prepared in aqueous solvents did not yield useful membranes. Better results, and even quite good results in some cases, were achieved with water-free dispersions in DMF. Initially, zirconium hydrogen phosphates were modified with Ti4+ and Ti3+. Y3+ doped membranes were not sufficiently stable, so that bleaching chloride was used. Results were better with this modification, so that a combination of lead and titanium doping (Ti4+, Ti3+) was tried. No further improvement was possible. The best results were obtained with combinations of lead and aerosil. [German] Ein erfolgreicher Einsatz der Direkt-Methanol-Brennstoffzelle ist an die Entwicklung geeigneter Membranen gebunden, die die Gasraeume voneinander trennen. Ohne geeignete Membranen ist ein dauerhafter Einsatz unmoeglich. Probleme bereitet einmal die Auswahl geeigneter Polymere als Matrix der Membran. Um das richtige Pervaporationsverhalten und eine ausreichende Leitfaehigkeit zu erhalten, muss die Polymermatrix modifiziert werden. Eine der aussichtsreichen Moeglichkeiten ist der Einbau kolloidaler Teilchen, die eine Protonenleitfaehigkeit aufweisen. Ausgewaehlt wurde Zirkoniumphosphat in der protonierten Form, da diese Schichtverbindung eine beachtliche Protonenleitfaehigkeit besitzt. Um die

  4. Structural investigations on zirconium phosphate-phosphite and on its n-butylamine intercalate

    International Nuclear Information System (INIS)

    Rajeh, A.O.; Szirtes, L.

    1995-01-01

    Zirconium phosphate-phosphite have various structure belonging to the drying heat of the sample. While sample dried above sat. NaCl solution had interlayer distance of 1.30 nm (result from d 1 =0.74 nm and d 2 =0.56 nm for phosphite layer), the sample dried under IR lamp on air having interlayer spacing d=0.74 nm charactderistic for α-Zr(HPO 4 ) 2 H 2 O containing little amount of phosphite groups. The compositions of the first sample can be characterized by chemical formula, as Zr(HPO 4 ) 0 .7 (HPO 3 ) 1.3 0.5H 2 O. The X-ray powder diffraction data of n-butylamine intercalate suggest that in the process take place only the phosphate ,region of zirconium phosphate-phosphite (ZrPP). (author). 13 refs., 5 figs

  5. Mechanism of ion exchange in zirconium phosphates. 17. Dehydration behavior of lithium ion exchanged phases

    Energy Technology Data Exchange (ETDEWEB)

    Clearfield, A; Pack, S P; Troup, J M [Ohio Univ., Athens (USA). Dept. of Chemistry

    1977-01-01

    The phases formed by the dehydration of lithium exchanged ..cap alpha..-zirconium phosphate, Zr(HP0/sub 4/).H/sub 2/0, were determined by a combination of X-ray, TGA and DTA studies. Samples containing 10, 20, 30 ..... 100% of theoretical lithium ion capacity were examined. The data are summarized in a phase diagram which however is not an equilibrium diagram because of the slowness of approach to equilibrium. The numerous phases obtained and the ease with which they rearrange indicates a high mobility for the incorporated cations. This suggested that ..cap alpha..-zirconium phosphate may behave as a solid electrolyte and indeed this was demonstrated by having it serve in that capacity in a small sodium sulfur battery.

  6. Linear low density polyethylene (LLDPE) and lamellar zirconium phosphate (Zr P) composites: morphology and mechanical properties

    International Nuclear Information System (INIS)

    Silva, Daniela F.; Mandes, Luis C.; Lino, Adan S.

    2011-01-01

    Composites of linear low density polyethylene (LLDPE) and zirconium phosphate (ZrP) were prepared by extrusion in the molten state, containing 2 (w%) of the lamellar filler. The filler was previously synthesized by direct precipitation method and characterized. After processing, the composite and the pure virgin polymer were molded by compression in order to obtain films of 1 mm thick which were characterized by X-ray diffraction at high angle (WAXD), stress-strain mechanical analysis and scanning electron microscopy (SEM). The WAXD and SEM analysis showed that there was no intercalation of LLDPE in zirconium phosphate, possibly due to the fact that the layers do not have spacing enough to allow the intercalation of polymer chains in the galleries of the filler and thus allow the exfoliation. (author)

  7. A mediator-free glucose biosensor based on glucose oxidase/chitosan/α-zirconium phosphate ternary biocomposite.

    Science.gov (United States)

    Liu, Li-Min; Wen, Jiwu; Liu, Lijun; He, Deyong; Kuang, Ren-yun; Shi, Taqing

    2014-01-15

    A novel glucose oxidase/chitosan/α-zirconium phosphate (GOD/chitosan/α-ZrP) ternary biocomposite was prepared by co-intercalating glucose oxidase (GOD) and chitosan into the interlayers of α-zirconium phosphate (α-ZrP) via a delamination-reassembly procedure. The results of X-ray diffraction, infrared spectroscopy, circular dichroism, and ultraviolet spectrum characterizations indicated not only the layered and hybrid structure of the GOD/chitosan/α-ZrP ternary biocomposite but also the recovered activity of the intercalated GOD improved by the co-intercalated chitosan. By depositing the GOD/chitosan/α-ZrP biocomposite film onto a glassy carbon electrode, the direct electrochemistry of the intercalated GOD was achieved with a fast electron transfer rate constant, k(s), of 7.48±3.52 s(-1). Moreover, this GOD/chitosan/α-ZrP biocomposite modified electrode exhibited a sensitive response to glucose in the linear range of 0.25-8.0 mM (R=0.9994, n=14), with a determination limit of 0.076 mM. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Sonochemically synthesized biocompatible zirconium phosphate nanoparticles for pH sensitive drug delivery application

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, Himani, E-mail: hkalita74@gmail.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Prashanth Kumar, B.N., E-mail: prasanthkumar999@gmail.com [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Konar, Suraj, E-mail: suraj.konar@gmail.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Tantubay, Sangeeta, E-mail: sang.chem2@gmail.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Mahto, Madhusudan Kr., E-mail: mahtomk0@gmail.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Mandal, Mahitosh, E-mail: mahitosh@smst.iitkgp.ernet.in [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Pathak, Amita, E-mail: ami@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India)

    2016-03-01

    The present work reports the synthesis of biocompatible zirconium phosphate (ZP) nanoparticles as nanocarrier for drug delivery application. The ZP nanoparticles were synthesized via a simple sonochemical method in the presence of cetyltrimethylammonium bromide and their efficacy for the delivery of drugs has been tested through various in-vitro experiments. The particle size and BET surface area of the nanoparticles were found to be ~ 48 nm and 206.51 m{sup 2}/g respectively. The conventional MTT assay and cellular localization studies of the particles, performed on MDA-MB-231 cell lines, demonstrate their excellent biocompatibility and cellular internalization behavior. The loading of curcumin, an antitumor drug, onto the ZP nanoparticles shows the rapid drug uptake ability of the particles, while the drug release study, performed at two different pH values (at 7.4 and 5) depicts pH sensitive release-profile. The MTT assay and cellular localization studies revealed higher cellular inhibition and better bioavailability of the nanoformulated curcumin compared to free curcumin. - Highlights: • Biocompatible zirconium phosphate nanoparticles were synthesized by a simple sonochemical approach. • Curcumin was rapidly loaded onto the particles by the aid by hydrogen bond formation. • The curcumin loaded zirconium phosphate nanoparticles depict pH triggered drug release phenomenon. • The nanoformulated curcumin showed enhanced anti-tumor activity as compared to the native curcumin.

  9. Sonochemically synthesized biocompatible zirconium phosphate nanoparticles for pH sensitive drug delivery application

    International Nuclear Information System (INIS)

    Kalita, Himani; Prashanth Kumar, B.N.; Konar, Suraj; Tantubay, Sangeeta; Mahto, Madhusudan Kr.; Mandal, Mahitosh; Pathak, Amita

    2016-01-01

    The present work reports the synthesis of biocompatible zirconium phosphate (ZP) nanoparticles as nanocarrier for drug delivery application. The ZP nanoparticles were synthesized via a simple sonochemical method in the presence of cetyltrimethylammonium bromide and their efficacy for the delivery of drugs has been tested through various in-vitro experiments. The particle size and BET surface area of the nanoparticles were found to be ~ 48 nm and 206.51 m"2/g respectively. The conventional MTT assay and cellular localization studies of the particles, performed on MDA-MB-231 cell lines, demonstrate their excellent biocompatibility and cellular internalization behavior. The loading of curcumin, an antitumor drug, onto the ZP nanoparticles shows the rapid drug uptake ability of the particles, while the drug release study, performed at two different pH values (at 7.4 and 5) depicts pH sensitive release-profile. The MTT assay and cellular localization studies revealed higher cellular inhibition and better bioavailability of the nanoformulated curcumin compared to free curcumin. - Highlights: • Biocompatible zirconium phosphate nanoparticles were synthesized by a simple sonochemical approach. • Curcumin was rapidly loaded onto the particles by the aid by hydrogen bond formation. • The curcumin loaded zirconium phosphate nanoparticles depict pH triggered drug release phenomenon. • The nanoformulated curcumin showed enhanced anti-tumor activity as compared to the native curcumin.

  10. Modified zirconium-eriochrome cyanine R determination of fluoride

    Science.gov (United States)

    Thatcher, L.L.

    1957-01-01

    The Eriochrome Cyanine R method for determining fluoride in natural water has been modified to provide a single, stable reagent solution, eliminate interference from oxidizing agents, extend the concentration range to 3 p.p.m., and extend the phosphate tolerance. Temperature effect was minimized; sulfate error was eliminated by precipitation. The procedure is sufficiently tolerant to interferences found in natural and polluted waters to permit the elimination of prior distillation for most samples. The method has been applied to 500 samples.

  11. Direct intercalation of cisplatin into zirconium phosphate nanoplatelets for potential cancer nanotherapy

    Science.gov (United States)

    Díaz, Agustín; González, Millie L.; Pérez, Riviam J.; David, Amanda; Mukherjee, Atashi; Báez, Adriana; Clearfield, Abraham

    2014-01-01

    We report the use of zirconium phosphate nanoplatelets (ZrP) for the encapsulation of the anticancer drug cisplatin and its delivery to tumor cells. Cisplatin was intercalated into ZrP by direct-ion exchange and was tested in-vitro for cytotoxicity in the human breast cancer (MCF-7) cell line. The structural characterization of the intercalated cisplatin in ZrP suggests that during the intercalation process, the chloride ligands of the cisplatin complex were substituted by phosphate groups within the layers. Consequently, a new phosphate phase with the platinum complex directly bound to ZrP (cisPt@ZrP) is produced with an interlayer distance of 9.3 Å. The in-vitro release profile of the intercalated drug by pH stimulus shows that at low pH under lysosomal conditions the platinum complex is released with simultaneous hydrolysis of the zirconium phosphate material, while at higher pH the complex is not released. Experiments with the MCF-7 cell line show that cisPt@ZrP reduced the cell viability up to 40%. The cisPt@ZrP intercalation product is envisioned as a future nanotherapy agent for cancer. Taking advantage of the shape and sizes of the ZrP particles and controlled release of the drug at low pH, it is intended to exploit the enhanced permeability and retention effect of tumors, as well as their intrinsic acidity, for the destruction of malignant cells. PMID:24072038

  12. Arsenic removal from aqueous solutions by sorption onto zirconium- and titanium-modified sorbents

    Directory of Open Access Journals (Sweden)

    Ignjatović Ljubiša

    2011-01-01

    Full Text Available Arsenic reduction in drinking water can include treatment by adsorption, switching to alternative water sources, or blending with water that has a lower arsenic concentration. Commercial sorbents MTM, Greensand and BIRM (Clack Corporation were modified with zirconium and titanium after activation. The modifications were performed with titanium tetrachloride and zirconium tetrachloride. The modified sorbents were dried at different temperatures. The sorption of arsenate and arsenite dissolved in drinking water (200μg L-1 onto the sorbents were tested using a batch procedure. After removal of the sorbent, the concentration of arsenic was determined by HG-AAS. Zirconium-modified BIRM showed the best performance for the removal of both arsenite and arsenate. Modification of the greensand did not affect arsenic sorption ability. Zirconium-modified BIRM diminished the concentration of total As to below 5 μg L-1.

  13. Production and characterization of amorphous and crystalline zirconium phosphate for using as ion exchanger

    International Nuclear Information System (INIS)

    Medeiros, F.F.P.; Serafim, M.J.S.

    1996-01-01

    This work presents and discusses the results obtained from the development of sintered zirconium phosphates in their amorphous and crystalline structures aimed to be used as ionic exchanger. Such materials, prepared with suitable stoichiometric formula, were obtained from zirconila chloride originated from brazilian zirconite. We have used chemical analysis along with thermogravimetric, differential thermogravimetric, and X-ray diffraction techniques to determine the synthesis parameters obtained from on techniques to determine the synthesis parameters obtained from the suitable powders. The physical characteristics of the samples were available from the analysis of surface area, size and shape of the particles and agglomerates and also from the porosity of the powders. (author)

  14. Physico-chemical properties of zirconium phosphates. II. Kinetic of isopropanol dehydration to propene

    International Nuclear Information System (INIS)

    Hamzaoui, H.; Batis, H.

    1992-01-01

    Zirconium Phosphates are active and selective in the dehydration of isopropanol reaction to propene. Catalytic activity is dependent of solid crystallinity. Sample which is crystallized in Zr(HPO 4 ) 2 phase, is active, while crystallized in Zr(HPO 4 ) 2 +ZrP 2 O 7 shows the lowest catalytic activity of the three catalysts studied, the greatest values of the activation energy and of the adsorption heat of isopropanol. The condensation of P-OH groups into P-O-P leads to a decrease in catalytic activity as well as total acidity measured by NH 4 + exchange. This decrease is more important as the solid is initially less crystallized

  15. Osteogenic potential of laser modified and conditioned titanium zirconium surfaces

    Directory of Open Access Journals (Sweden)

    P David Charles

    2016-01-01

    Full Text Available Statement of Problem: The osseointegration of dental implant is related to their composition and surface treatment. Titanium zirconium (TiZr has been introduced as an alternative to the commercially pure titanium and its alloys as dental implant material, which is attributed to its superior mechanical and biological properties. Surface treatments of TiZr have been introduced to enhance their osseointegration ability; however, reliable, easy to use surface modification technique has not been established. Purpose: The purpose of this study was to evaluate and compare the effect of neodymium-doped yttrium aluminum garnet (Nd-YAG laser surface treatment of TiZr implant alloy on their osteogenic potential. Materials and Methods: Twenty disc-shaped samples of 5 mm diameter and 2 mm height were milled from the TiZr alloy ingot. The polished discs were ultrasonically cleaned in distilled water. Ten samples each were randomly selected as Group A control samples and Group B consisted of Nd-YAG laser surface etched and conditioned test samples. These were evaluated for cellular response. Cellular adhesion and proliferation were quantified, and the results were statistically analyzed using nonparametric analysis. Cellular morphology was observed using electron and epiflurosence microscopy. Results: Nd-YAG laser surface modified and conditioned TiZr samples increased the osteogenic potential. Conclusion: Nd-YAG laser surface modification of TiZr, improves the cellular activity, surface roughness, and wettability, thereby increasing the osteogenic potential.

  16. Zirconium

    Science.gov (United States)

    Bedinger, G.M.

    2013-01-01

    Zirconium is the 20th most abundant element in the Earth’s crust. It occurs in a variety of rock types and geologic environments but most often in igneous rocks in the form of zircon (ZrSiO4). Zircon is recovered as a coproduct of the mining and processing of heavy mineral sands for the titanium minerals ilmenite and rutile. The sands are formed by the weathering and erosion of rock containing zircon and titanium heavy minerals and their subsequent concentration in sedimentary systems, particularly in coastal environments. A small quantity of zirconium, less than 10 kt/a (11,000 stpy), compared with total world production of 1.4 Mt (1.5 million st) in 2012, was derived from the mineral baddeleyite (ZrO2), produced from a single source in Kovdor, Russia.

  17. Fabrication of a Biomass-Based Hydrous Zirconium Oxide Nanocomposite for Preferable Phosphate Removal and Recovery.

    Science.gov (United States)

    Qiu, Hui; Liang, Chen; Zhang, Xiaolin; Chen, Mindong; Zhao, Yunxia; Tao, Tao; Xu, Zhengwen; Liu, Gang

    2015-09-23

    Advanced removal of phosphate by low-cost adsorbents from municipal wastewater or industrial effluents is an effective and economic way to prevent the occurrence of eutrophication. Here, we proposed a novel method to immobilize hydrous zirconium oxide nanoparticle within quaternary-aminated wheat straw, and obtained an inexpensive, eco-friendly nanocomposite Ws-N-Zr. The biomass-based Ws-N-Zr exhibited higher preference toward phosphate than commercial anion exchanger IRA-900 when competing sulfate ions coexisted at relatively high levels. Such excellent performance of Ws-N-Zr resulted from its specific hybrid structure, the quaternary ammonium groups bonded on the host favor the preconcentration of phosphate ions inside the wheat straw based on Donnan effect, and the encapsulated HZO nanoparticle exhibits preferable sequestration of phosphate ions through specific interaction, as further demonstrated by FTIR and X-ray photoelectron spectroscopy. Cycle adsorption and regeneration experiments demonstrated that Ws-N-Zr could be employed for repeated use without significant capacity loss, when the binary NaOH-NaCl solution was employed as the regenerant. The influence of solution pH and contact time was also examined. The results suggested that Ws-N-Zr has a great potential in efficient removal of phosphate in contaminated waters.

  18. Synthesis and structural characterisation using Rietveld and pair distribution function analysis of layered mixed titanium-zirconium phosphates

    International Nuclear Information System (INIS)

    Burnell, Victoria A.; Readman, Jennifer E.; Tang, Chiu C.; Parker, Julia E.; Thompson, Stephen P.; Hriljac, Joseph A.

    2010-01-01

    Crystalline metal (IV) phosphates with variable zirconium-to-titanium molar ratios of general formula (Ti 1-x Zr x )(HPO 4 ) 2 .H 2 O have been prepared by precipitation of soluble salts of the metals with phosphoric acid and heating the amorphous solids in 12 M H 3 PO 4 in an autoclave. The new materials are structurally characterised by Rietveld analysis of synchrotron X-ray powder diffraction data and pair distribution function (PDF) analysis of high energy synchrotron X-ray total scattering data. A broad range of zirconium-titanium phosphate solid solutions were formed showing isomorphous substitution of titanium by zirconium in the α-titanium phosphate lattice and vice versa for titanium substitution into the α-zirconium phosphate lattice. In both cases the solubility is partial with the coexistence of two substituted phases observed in samples with nominal compositions between the solubility limits. - Graphical abstract: Layered phosphates of general formula (Ti 1-x Zr x )(HPO 4 ).H 2 O have been prepared by the hydrothermal treatment of amorphous gels in phosphoric acid and characterised by Rietveld analysis of high resolution synchrotron X-ray powder diffraction data and pair distribution function analysis of high energy synchrotron X-ray total scattering data.

  19. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability

    International Nuclear Information System (INIS)

    Chen, Liang; Zhao, Xin; Pan, Bingcai; Zhang, Weixian; Hua, Ming; Lv, Lu; Zhang, Weiming

    2015-01-01

    Highlights: • The nanocomposite HZO-201 was stable under varying solution chemistry. • HZO-201 exhibited preferable phosphate removal over other ubiquitous anions. • Selective sorption mechanism was probed and discussed. • HZO-201 could be regenerated for cyclic use with constant efficiency. - Abstract: In this study, we employed a new nanocomposite adsorbent HZO-201, which featured high stability under varying solution chemistry, for preferable removal of phosphate from synthetic solution and a real effluent. An anion exchange resin (D-201) was employed as the host of HZO-201, where nano-hydrous zirconium oxide (HZO) was encapsulated as the active species. D-201 binds phosphate through nonspecific electrostatic affinity, whereas the loaded HZO nanoparticles capture phosphate through formation of the inner-sphere complexes. Quantitative contribution of both species to phosphate adsorption was predicted based on the double-Langmuir model. Preferable removal of phosphate by HZO-201 was observed in the presence of the competing anions at higher levels (Cl − , NO 3 − , SO 4 2− , HCO 3 − ). Fixed-bed adsorption indicated that the effective volume capacity of a synthetic water (2.0 mg P-PO 4 3− /L) by using HZO-201 was ∼1600 BV in the first run (<0.5 mg P-PO 4 3− /L), comparable to Fe(III)-based nanocomposite HFO-201 (∼1500 BV) and much larger than D-201 (<250 BV). The exhausted HZO-201 can be in situ regenerated by using a binary NaOH–NaCl solution for cyclic runs, whether fed with the synthetic solution or real effluent. In general, HZO-201 is a promising alternative to Fe(III)-based adsorbents for trace phosphate removal from effluent particularly at acidic pH

  20. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution

    International Nuclear Information System (INIS)

    Zhang, Chang; Li, Yongqiu; Wang, Fenghua; Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Ma, Chi; Li, Zihao; Xu, ZiYi; Zeng, Guangming

    2017-01-01

    Highlights: • Magnetic zirconium-iron oxide nanoparticle (MZION) was successfully synthesized. • The removal of phosphate could be effectively fulfilled using MZION. • MZION could be conveniently separated by magnet after adsorption. • The Fe/Zr molar ratios played a key role in adsorption capacity and magnetic separation. - Abstract: In this study, magnetic zirconium-iron oxide nanoparticles (MZION) of different Fe/Zr molar ratios were successfully prepared using the co-precipitation method, and their performance for phosphate removal was systematically evaluated. The as-obtained adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential analyzer, Fourier transform infrared spectroscopy (FT-IR) and Brunauer Emmett Teller (BET) specific surface area analysis. The effects of pH, ionic strength, and co-existing ions (including Cl − , SO 4 2− , NO 3 − and HCO 3 − ) were measured to evaluate the adsorption performance in batch experiments. The results showed that decreasing the Fe/Zr molar ratios increased the specific surface area that was propitious to adsorption process, but the adsorption capacity enhanced with the decrease of Fe/Zr molar ratios. Phosphate adsorption on MZION could be well described by the Freundlich equilibrium model and pseudo-second-order kinetics. The adsorption of phosphate was highly pH dependent and decreased with increasing pH from 1.5 to 10.0. The adsorption was slightly affected by ionic strength. With the exception of HCO 3 − , co-existing anions showed minimum or no effect on their adsorption performance. After adsorption, phosphate on these MZION could be easily desorbed by 0.1 M NaOH solution. The phosphate adsorption mechanism of MZION followed the inner-sphere complexing mechanism, and the surface −OH groups played a significant role in the phosphate adsorption. Additionally, the main advantages of MZION consisted in its

  1. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chang, E-mail: zhangchang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Yongqiu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Wang, Fenghua, E-mail: 952157786@qq.com [Institute of Physical Education, Xinjiang Normal University, Urumqi 830054 (China); Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Ma, Chi; Li, Zihao; Xu, ZiYi; Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-02-28

    Highlights: • Magnetic zirconium-iron oxide nanoparticle (MZION) was successfully synthesized. • The removal of phosphate could be effectively fulfilled using MZION. • MZION could be conveniently separated by magnet after adsorption. • The Fe/Zr molar ratios played a key role in adsorption capacity and magnetic separation. - Abstract: In this study, magnetic zirconium-iron oxide nanoparticles (MZION) of different Fe/Zr molar ratios were successfully prepared using the co-precipitation method, and their performance for phosphate removal was systematically evaluated. The as-obtained adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential analyzer, Fourier transform infrared spectroscopy (FT-IR) and Brunauer Emmett Teller (BET) specific surface area analysis. The effects of pH, ionic strength, and co-existing ions (including Cl{sup −}, SO{sub 4}{sup 2−}, NO{sub 3}{sup −} and HCO{sub 3}{sup −}) were measured to evaluate the adsorption performance in batch experiments. The results showed that decreasing the Fe/Zr molar ratios increased the specific surface area that was propitious to adsorption process, but the adsorption capacity enhanced with the decrease of Fe/Zr molar ratios. Phosphate adsorption on MZION could be well described by the Freundlich equilibrium model and pseudo-second-order kinetics. The adsorption of phosphate was highly pH dependent and decreased with increasing pH from 1.5 to 10.0. The adsorption was slightly affected by ionic strength. With the exception of HCO{sub 3}{sup −}, co-existing anions showed minimum or no effect on their adsorption performance. After adsorption, phosphate on these MZION could be easily desorbed by 0.1 M NaOH solution. The phosphate adsorption mechanism of MZION followed the inner-sphere complexing mechanism, and the surface −OH groups played a significant role in the phosphate adsorption. Additionally, the main

  2. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability.

    Science.gov (United States)

    Chen, Liang; Zhao, Xin; Pan, Bingcai; Zhang, Weixian; Hua, Ming; Lv, Lu; Zhang, Weiming

    2015-03-02

    In this study, we employed a new nanocomposite adsorbent HZO-201, which featured high stability under varying solution chemistry, for preferable removal of phosphate from synthetic solution and a real effluent. An anion exchange resin (D-201) was employed as the host of HZO-201, where nano-hydrous zirconium oxide (HZO) was encapsulated as the active species. D-201 binds phosphate through nonspecific electrostatic affinity, whereas the loaded HZO nanoparticles capture phosphate through formation of the inner-sphere complexes. Quantitative contribution of both species to phosphate adsorption was predicted based on the double-Langmuir model. Preferable removal of phosphate by HZO-201 was observed in the presence of the competing anions at higher levels (Cl(-), NO3(-), SO4(2-), HCO3(-)). Fixed-bed adsorption indicated that the effective volume capacity of a synthetic water (2.0 mg P-PO4(3-)/L) by using HZO-201 was ∼1600 BV in the first run (<0.5mg P-PO4(3-)/L), comparable to Fe(III)-based nanocomposite HFO-201 (∼1500 BV) and much larger than D-201 (<250 BV). The exhausted HZO-201 can be in situ regenerated by using a binary NaOH-NaCl solution for cyclic runs, whether fed with the synthetic solution or real effluent. In general, HZO-201 is a promising alternative to Fe(III)-based adsorbents for trace phosphate removal from effluent particularly at acidic pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Difference in surface reactions between titanium and zirconium in Hanks' solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization

    International Nuclear Information System (INIS)

    Tsutsumi, Y.; Nishimura, D.; Doi, H.; Nomura, N.; Hanawa, T.

    2009-01-01

    Titanium and zirconium were immersed in Hanks' solution with and without calcium and phosphate ions, and the surfaces were characterized with X-ray photoelectron spectroscopy (XPS) to determine the mechanism of calcium phosphate formation on titanium in simulated body fluids and in a living body. In addition, they were cathodically polarized in the above solutions. XPS characterization and cathodic polarization revealed differences in the surface properties in the ability of calcium phosphate formation between titanium and zirconium. The surface oxide film on titanium is not completely oxidized and is relatively reactive; that on zirconium is more passive and protective than that on titanium. Neither calcium nor phosphate stably exists alone on titanium, and calcium phosphate is naturally formed on it; calcium phosphate formed on titanium is stable and protective. On the other hand, calcium is never incorporated on zirconium, while zirconium phosphate, which is easily formed on zirconium, is highly stable and protective. Our study presents new information regarding the surface property of titanium and demonstrates that the characteristics of titanium and zirconium may be applied to various medical devices and new surface modification techniques.

  4. Thermal expansion of NZP-family alkali-metal (Na, K) zirconium phosphates

    International Nuclear Information System (INIS)

    Orlova, A.I.; Kemenov, D.V.; Pet'kov, V.I.; Samojlov, S.G.; Kazantsev, G.N.

    2000-01-01

    By means of high-temperature X-ray diffraction one investigated into thermal expansion of alkali-zirconium phosphates crystallizing in NaZr 2 (PO 4 ) 3 structure type within 20-700 deg C temperature range. One synthesized phosphates of A x Zr 2.25-0.25x (PO 4 ) 3 type two series where A-Na (x = 0.5; 1.0; 2.0; 3.0; 4.0; 5.0) and K (x = 1.0; 3.0; 5.0). One calculated for them a and c parameters of the elementary cells and α a and α c linear expansion temperature coefficients. Anisotropy of thermal expansion the maximum one for AZr 2 (PO 4 ) 3 and Na 5 Zr(PO 4 ) 3 phosphates was determined. K 5 Zr(PO 4 ) 3 compound was characterized by the minimum thermal expansion at the near-zero anisotropy of Na 5 Zr(PO 4 ) 3 [ru

  5. Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kun-Yi Andrew, E-mail: linky@nchu.edu.tw [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan (China); Chen, Shen-Yi [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan (China); Jochems, Andrew P. [New Mexico Bureau of Geology & Mineral Resources and New Mexico Institute of Mining & Technology, Socorro, NM (United States)

    2015-06-15

    Phosphate is one of the most concerning compounds in wastewater streams and a main nutrient that causes eutrophication. To eliminate the phosphate pollution, Metal Organic Frameworks (MOFs) are proposed in this study as adsorbents to remove phosphate from water. The zirconium-based MOF, UiO-66, was selected as representative MOF given its exceptional stability in water. To investigate the effect of an amine functional group, UiO-66-NH2 was also prepared using an amine-substituted ligand. The adsorption kinetics and isotherm reveal that UiO-66-NH2 exhibited higher adsorption capacities than UiO-66 possibly due to the amine group. However, the interaction between phosphate and zirconium sites of UiO MOFs might be the primary factor accounting for the phosphate adsorption to UiO MOFs. UiO MOFs also exhibited a high selectivity towards phosphate over other anions such as bromate, nitrite and nitrate. Furthermore, UiO MOFs were found to adsorb phosphate and to completely remove diluted phosphate in urine. We also found that UiO MOFs could be easily regenerated and re-used for phosphate adsorption. These findings suggest that UiO MOFs can be effective and selective adsorbents to remove phosphate from water as well as urine. - Highlights: • UiO-66 as the first type of MOFs was used to remove phosphate from water and urine. • The amine group in UiO MOFs was found to enhance the phosphate adsorption. • UiO-66 exhibited a high adsorption selectivity towards phosphate over other anions. • UiO-66 could be easily regenerated and re-used with 85% regeneration efficiency.

  6. Structure investigations on zirconium phosphate preparates by means of DTA, ETA, and TG

    International Nuclear Information System (INIS)

    Herbell, J.D.; Specht, S.; Born, H.J.

    1976-01-01

    The simultanous DTA, ETA and TG inorganic ion exchanger based on zirconium phosphate enables the clear interpretation of the effects occuring. In particular it can be seen that the fast transition in amorphous preparates at high temperature of a badly defined form of pyrophosphate into the cubic crystalline substances, however a measurable energy release by means of DTA is not observed due to the slight mobility of the atoms in the crystal lattice. This effect on the other hand may be seen using ETA. In addition, an exothermal reaction occuring in some preparates, especially in cation charged ones, was traced back to the forming of part-crystalline structures which could be especially fast and sensitively characterized using DTA. (orig.) [de

  7. Synthesis and Exfoliation of Discotic Zirconium Phosphates to Obtain Colloidal Liquid Crystals

    Science.gov (United States)

    Yu, Yi-Hsien; Wang, Xuezhen; Shinde, Abhijeet; Cheng, Zhengdong

    2016-01-01

    Due to their abundance in natural clay and potential applications in advanced materials, discotic nanoparticles are of interest to scientists and engineers. Growth of such anisotropic nanocrystals through a simple chemical method is a challenging task. In this study, we fabricate discotic nanodisks of zirconium phosphate [Zr(HPO4)2·H2O] as a model material using hydrothermal, reflux and microwave-assisted methods. Growth of crystals is controlled by duration time, temperature, and concentration of reacting species. The novelty of the adopted methods is that discotic crystals of size ranging from hundred nanometers to few micrometers can be obtained while keeping the polydispersity well within control. The layered discotic crystals are converted to monolayers by exfoliation with tetra-(n)-butyl ammonium hydroxide [(C4H9)4NOH, TBAOH]. Exfoliated disks show isotropic and nematic liquid crystal phases. Size and polydispersity of disk suspensions is highly important in deciding their phase behavior. PMID:27284765

  8. Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: A review

    International Nuclear Information System (INIS)

    Scheetz, B.E.; Agrawal, D.K.; Breval, E.; Roy, R.

    1994-01-01

    Sodium zirconium phosphate [NZP] structural family, of which NaZr 2 P 3 O 12 is the parent composition, has been reviewed as a host ceramic waste form for nuclear waste immobilization. NZP compounds are characterized for their ionic conductivity, low thermal expansion and structural flexibility to accommodate a large number of multivalent ions. This latter property of the [NZP] structure allows the incorporation of almost all 42 nuclides present in a typical commercial nuclear waste. The leach studies of simulated waste forms based on NZP have shown reasonable resistance for the release of its constituents. The calculation of dissolution rates of NZP structure has demonstrated that it would take 20,000 times longer to dissolved NZP than quartz

  9. Separation of uranium, plutonium and fission products on zirconium phosphate, Part 1 - Adsorption equilibria and kinetics

    International Nuclear Information System (INIS)

    Gal, I.; Ruvarac, A.

    1963-01-01

    The distribution coefficients of UO 2 ++ , PuO 2 ++ , Pu 3+ , Pu 4+ , Fe 3+ , 137 Cs + , 90 Sr ++ , 95 Zr + + 95 Nb 5+ , 106 Ru and 144 Ce 3+ were determined in the system zirconium phosphate-aqueous solution of HNO 3 . As for the exchange reation Cs + /H + and Sr ++ /2H + , it has been shown that the mass action law can be applied. For these reactions the corresponding equilibrium constants were calculated. The rates of adsorption of Cs + , Sr ++ , Fe 3+ and Pu 4+ from solutions of a fixed HNO 3 concentration were studied, and empirical rate equations were derived. The experimental data confirm that UO 2 ++ can be separated from Pu 4+ . Among the fission products, 90 Sr, 106 Ru and 144 Ce mainly follow the fraction of uranium, while 137 Cs, 95 Zr and 95 Nb follow the plutonium fraction. Separations within the fractions are possible (author)

  10. Effects of synthesis conditions on ion exchange properties of α-zirconium phosphate for Eu and Am

    Energy Technology Data Exchange (ETDEWEB)

    Wiikinkoski, Elmo W.; Harjula, Risto O.; Lehto, Jukka K.; Koivula, Risto T. [Helsinki Univ. (Finland). Lab. of Radiochemistry; Kemell, Marianna L. [Helsinki Univ. (Finland). Lab. of Inorganic Chemistry

    2017-07-01

    Three zirconium phosphate products A, B and C, made through different synthesis routes, were investigated for their europium and americium ion exchange properties utilizing radiotracers {sup 152}Eu{sup 3+} and {sup 241}Am{sup 3+}. Aim of this investigation was to see how material properties change based on different synthesis, and how does the changes effect on trivalent Eu and Am uptake and affinities on the materials. Ultimate goal of an ongoing research is to create inorganic exchanger suitable for separation of trivalent actinides and lanthanides. Powder X-ray diffraction showed that all three products had same α-zirconium phosphate crystal structure. The P:Zr ratio determined by microscope X-ray microanalysis was also the same for all products: 2.43±0.05. However, infrared absorbance, material acidity, particle morphology, and Eu and Am distribution coefficients differed significantly between products. The intensities of the strong IR absorption at approximately 960 cm{sup -1}, attributed to vibrations of the orthophosphate group, were in descending order B>C>A. Material acidity showed the same descending order B>C>A. First acidity constants pK{sub a1} were 2.3 for product B, 3.1 for C and 3.5 for A. Unit cell volumes increased in the reverse order: BC>B for both Eu and Am. Separation factors, defined as K{sub D}(Eu): K{sub D}(Am), were from 4 to 41 for product A, from 5 to 15 for B, and from 3 to 7 for C. Selectivity coefficients (k{sub M/H}, M=Eu, Am) and sorption strength decreased along with increasing ZrP product acidity. Metal binding coefficients (k{sub M}) had high values, up to 10{sup 9}, especially in ZrP C and A, while the selectivity coefficients were low, 10{sup -5} to 10{sup -1}, because they relate to the third power of the low pK{sub a1}. It was observed that for ZrPs there are strong

  11. Separation of U, Pu and FP on zirconium phosphate; part II, Separation columns; Odvajanje U, Pu i FP na cirkonijum fosfatu, Deo II, Odvajanje na kolonama

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I; Ruvarac, A; Avramovic, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za hemiju visoke aktivnosti, Vinca, Beograd (Serbia and Montenegro)

    1963-02-15

    Separation of uranium, plutonium and fission products is done by cat-ion exchanger zirconium phosphate. This report describes the properties of ion exchanger and the experiments concerned with equilibrium and kinetics of the process.

  12. Structural studies of calcium phosphate doped with titanium and zirconium obtained by high-energy mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C C; Sombra, A S B [Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Physics Department, Federal University of Ceara, Campus do Pii, Postal Code 6030, 60455-760, Fortaleza-Ceara (Brazil)], E-mail: sombra@fisica.ufc.br

    2009-12-15

    In this paper, we present a new variation of the solid-state procedure on the synthesis of bioceramics with titanium (CapTi) and zirconium (CapZr), considering that zirconium (ZrO{sub 2}) and titanium oxide (TiO{sub 2}) are strengthening agents, due to their superb force and fracture toughness. The high efficiency of the calcination process opens a new way of producing commercial amounts of nanocrystalline bioceramics. In this work, a new variation of the solid-state procedure method was used to produce nanocrystalline powders of titanium and zirconium, using two different experimental chemical routes: CapTi: Ca(H{sub 2}PO{sub 4}){sub 2}+TiO{sub 2} and CapZr: Ca(H{sub 2}PO{sub 4}){sub 2}+ZrO{sub 2}. The powders were submitted to calcination processes (CapTic and CapZrc) at 800, 900 and 1000 deg. C. The calcium titanium phosphate phase, CaTi{sub 4}P{sub 6}O{sub 24}, was obtained in the CapTic reaction and the calcium zirconium phosphate, CaZr{sub 4}P{sub 6}O{sub 24}, was obtained in the CapZrc reaction. The obtained ceramics were characterized by x-ray powder diffraction (XRD), infrared (IR) spectroscopy, Raman scattering spectroscopy (RSS) and scanning electron microscopy (SEM) analysis. This method was compared with the milling process (CapTim and CapZrm), where in the last process the melting is not necessary and the powder obtained is nanocrystalline. The calcium titanium phosphate phase, CaTi{sub 4}P{sub 6}O{sub 24}, was obtained in the reaction CapTim, but in CapZrm the formation of any calcium phosphate phase even after 15 h of dry mechanical alloying was not observed.

  13. Phosphate removal from digested sludge supernatant using modified fly ash.

    Science.gov (United States)

    Xu, Ke; Deng, Tong; Liu, Juntan; Peng, Weigong

    2012-05-01

    The removal of phosphate in digested sludge supernatant by modified coal fly ash was investigated in this study. Modification of the fly ash by the addition of sulfuric acid could significantly enhance its immobilization ability. The experimental results also showed that adsorption of phosphate by the modified fly ash was rapid with the removal percentage of phosphate reaching an equilibrium of 98.62% in less than 5 minutes. The optimum pH for phosphate removal was 9 and the removal percentage increased with increasing adsorbent dosage. The effect of temperature on phosphate removal efficiency was not significant from 20 to 40 degrees C. X-ray diffraction and scanning electron microscope analyses showed that phosphate formed an amorphous precipitate with water-soluble calcium, aluminum, and iron ions in the modified fly ash.

  14. Fracture behavior of α-zirconium phosphate-based epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sue, H.-J.; Gam, K.T.; Bestaoui, N.; Clearfield, A.; Miyamoto, M.; Miyatake, N.

    2004-01-01

    The fracture behaviors of α-zirconium phosphate (α-ZrP) based epoxy nanocomposites, with and without core-shell rubber (CSR) toughening, were investigated. The state of exfoliation and dispersion of α-ZrP nanofiller in epoxy were characterized using X-ray scattering and various microscopy tools. The level of enhancement in storage moduli of epoxy nanocomposite against neat epoxy is found to depend on the state of exfoliation of α-ZrP as well as the damping characteristics of the epoxy matrix. The fracture process in epoxy nanocomposite is dominated by preferred crack propagation along the weak intercalated α-ZrP interfaces, and the presence of α-ZrP does not alter the fracture toughness of the epoxy matrix. However, the toughening using CSR can significantly improve the fracture toughness of the nanocomposite. The fracture mechanisms responsible for such a toughening effect in CSR-toughened epoxy nanocomposite are rubber particle cavitation, followed by shear banding of epoxy matrix. The ductility and toughenability of epoxy do not appear to be affected by the incorporation of α-ZrP. Approaches for producing toughened high performance polymer nanocomposites are discussed

  15. Ion beam irradiation effects in strontium zirconium phosphate with NZP-structure type

    International Nuclear Information System (INIS)

    Gregg, Daniel J.; Karatchevtseva, Inna; Thorogood, Gordon J.; Davis, Joel; Bell, Benjamin D.C.; Jackson, Matthew; Dayal, Pranesh; Ionescu, Mihail; Triani, Gerry; Short, Ken; Lumpkin, Gregory R.; Vance, Eric R.

    2014-01-01

    Ceramics with the sodium zirconium phosphate or NZP type structure have potential as nuclear waste form and inert matrix materials. For both applications the material will be subjected to self-radiation damage from α-decay of the incorporated actinides. In this study, ion-beam irradiation using Au- and He-ions has been used to simulate the consequences of α-decay and the effects of irradiation on the structural and macroscopic properties (density and hardness) have been investigated. Irradiation by Au-ions resulted in a significant volume contraction of ∼7%, a reduction in hardness of ∼30% and a loss in long-range order at fluences above 10 14 Au-ions/cm 2 . In contrast, little effect on the material properties was noted for samples irradiated with He-ions up to a fluence of 10 17 ions/cm 2 . Thermal annealing was investigated for the highest fluence Au-ion irradiated sample and significant decomposition was observed

  16. Sonochemically synthesized biocompatible zirconium phosphate nanoparticles for pH sensitive drug delivery application.

    Science.gov (United States)

    Kalita, Himani; Prashanth Kumar, B N; Konar, Suraj; Tantubay, Sangeeta; Kr Mahto, Madhusudan; Mandal, Mahitosh; Pathak, Amita

    2016-03-01

    The present work reports the synthesis of biocompatible zirconium phosphate (ZP) nanoparticles as nanocarrier for drug delivery application. The ZP nanoparticles were synthesized via a simple sonochemical method in the presence of cetyltrimethylammonium bromide and their efficacy for the delivery of drugs has been tested through various in-vitro experiments. The particle size and BET surface area of the nanoparticles were found to be ~48 nm and 206.51 m(2)/g respectively. The conventional MTT assay and cellular localization studies of the particles, performed on MDA-MB-231 cell lines, demonstrate their excellent biocompatibility and cellular internalization behavior. The loading of curcumin, an antitumor drug, onto the ZP nanoparticles shows the rapid drug uptake ability of the particles, while the drug release study, performed at two different pH values (at 7.4 and 5) depicts pH sensitive release-profile. The MTT assay and cellular localization studies revealed higher cellular inhibition and better bioavailability of the nanoformulated curcumin compared to free curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Evaluation of Zirconium Silico phosphate Material for the Removal of Copper Ions from Waste Water

    International Nuclear Information System (INIS)

    Abd El-Mohsen, E.S.; El-Naggar, M.R.; EI-Naggar, I.M.; El-Shahhat, M.F.

    2014-01-01

    Zirconium silico phosphate/polyacrylamide (ZrSP/PAA) nano composite was synthesized. Synthesis process was based on the intercalation polymerization technique. The obtained nano product was characterized using XRF, XRD, FTIR, TG-DTA, SEM and TEM techniques. The physicochemical properties indicated that the synthesized material was semicrystalline in nature with a particle size in the nan orange (45 nm). FTIR analysis suggested that the intercalation polymerization was achieved via hydrogen bonding. The kinetics of copper retention at different temperatures were analyzed using pseudo first-order, pseudo second-order and Helfferich kinetic models. Kinetic modeling of the experimentally obtained data indicated that the intra-particle diffusion was the controlled mechanism of the sorption process. Various parameters such as effective diffusion coefficient and activation energy were evaluated. The mean free energy was in the range corresponding to the ion exchange type of sorption. Results indicated that synthetic ZrSP/PAA nano composite can be used as an efficient ion exchange material for the removal of cupper ions from waste water

  18. Thermodynamics of H+/Cs+ exchange on amorphous zirconium phosphate in mixed solvents

    International Nuclear Information System (INIS)

    Misak, N.Z.; Mikhail, E.M.

    1983-01-01

    In aqueous, 30% isopropanol and acetone, and up to 90% methanol, the H + /Cs + exchange on zirconium phosphate is entropy directed, while in 60% isopropanol and acetone it is enthalpy directed and a selectivity reversal occurs. ΔF 0 decreases in all cases with increasing addition of the organic solvent. ΔH 0 becomes appreciably negative (ΔH 0 = 0 in aqueous medium) and ΔS 0 decreases appreciably on addition of 30% organic solvent, but they increase with further addition. In presence of methanol, ion-solvent interaction effects are counteracted by effects of solid phase interactions but the former effects predominate and lead to decrease of ΔF 0 . On going from 30 to 90 % methanol, positive enthalpy and entropy changes occur due to solid phase interactions involving probably the dehydration of the ingoing Cs + . In presence of up to 60% acetone, ΔF 0 (or selectively constant) changes mainly due to ion-solvent interactions and can be theoretically calculated from the value in the aqueous medium by use of transfer thermodynamics data. This is probably due to a limited imbibition of acetone. (author)

  19. Separation of uranium, plutonium and fission products on zirconium phosphate, Part 1 - Adsorption equilibria and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I; Ruvarac, A [Institute of Nuclear Sciences Boris Kidric, Laboratorija za hemiju visoke aktivnosti, Vinca, Beograd (Serbia and Montenegro)

    1963-02-15

    The distribution coefficients of UO{sub 2}{sup ++}, PuO{sub 2}{sup ++}, Pu{sup 3+}, Pu{sup 4+}, Fe{sup 3+}, {sup 137}Cs{sup +}, {sup 90}Sr{sup ++}, {sup 95}Zr{sup +}+{sup 95}Nb{sup 5+}, {sup 106}Ru and {sup 144}Ce{sup 3+} were determined in the system zirconium phosphate-aqueous solution of HNO{sub 3}. As for the exchange reation Cs{sup +}/H{sup +} and Sr{sup ++}/2H{sup +}, it has been shown that the mass action law can be applied. For these reactions the corresponding equilibrium constants were calculated. The rates of adsorption of Cs{sup +}, Sr{sup ++}, Fe{sup 3+} and Pu{sup 4+} from solutions of a fixed HNO{sub 3} concentration were studied, and empirical rate equations were derived. The experimental data confirm that UO{sub 2}{sup ++} can be separated from Pu{sup 4+}. Among the fission products, {sup 90}Sr, {sup 106}Ru and {sup 144}Ce mainly follow the fraction of uranium, while {sup 137}Cs, {sup 95}Zr and {sup 95}Nb follow the plutonium fraction. Separations within the fractions are possible (author)

  20. Thermally Induced Lateral Motion of α-Zirconium Phosphate Layers Intercalated with Hexadecylamines

    Science.gov (United States)

    Char, Kookheon

    2005-03-01

    Well-defined intercalated structure, either interdigitated layers or bilayers, of hexadecylamines (HDAs) in a confined space of a highly-functionalized layered material, α- zirconium phosphate (α-ZrP), was prepared and these two distinct intercalated structures can serve as model systems to investigate the interaction of the two monolayers whose amphiphilic tails are adjacent to each other. Acidic functional groups (-POH) on the α-ZrP are in well-ordered array and the number of functional group is quite high (i.e., cationic exchange capacity (CEC) = 664 mmole/100 g, area per one charge site = 0.24 nm^2) enough to realize the bilayers (i.e., discrete two monolayers) of HDAs within the α-ZrP interlayer. We employed the two-step intercalation mechanism for the preparation of well- ordered interdigitated layers as well as the bilayers of alkyl chains attached to both sides of the α-ZrP intergallery. An intriguing lateral motion of the α-ZrP sheets was observed with in-situ SAXS measurements for the interdigitated layer during heating and cooling cycle and verified with TEM. This lateral motion is believed to be due to the transition from the tilted to the untilted conformation of the interdigitated HDA chains and this transition is found to be thermally reversible.

  1. Phosphate adsorption using modified iron oxide-based sorbents

    Science.gov (United States)

    Phosphate RemovalThis dataset is associated with the following publication:Lalley , J., C. Han , G. RamMohan , T. Speth , J. Garland , M. Nadagouda , and D. Dionysiou. Phosphate Removal using Modified Bayoxide®E33 Adsorption Media. WATER RESEARCH. Elsevier Science Ltd, New York, NY, USA, issue}: 96-107, (2015).

  2. Preparation and characterization of sugar cane bagasse fiber modified with nanoparticles of zirconium oxide

    International Nuclear Information System (INIS)

    Carvalho, K.C.C. de; Mulinari, D.R.; Voorwald, H.C.J.; Cioffi, M.O.H.

    2010-01-01

    The sugar cane bagasse fiber are renewable materials and have great application potential when used as reinforcement in a polymer matrix to give rise to composite materials and as supports for adsorption of heavy metals. This paper therefore describes the preparation and characterization of bleached and hydrated zirconium oxide modified sugar cane bagasse fiber by conventional precipitation method. Through the technique of electron microscopy we observed the presence of oxide nanoparticles on the fiber surface, proving the efficiency of the conventional precipitation method. With the X-ray diffraction analysis it was determined a decrease of 6.2% in the crystallinity index of modified fibers when compared to the bleached fibers showing the deposition of amorphous zirconium oxide on the fiber surface. (author)

  3. Accumulation of zirconium phosphate by a Serratia sp.: a benign system for the removal of radionuclides from aqueous flows.

    Science.gov (United States)

    Mennan, Claire; Paterson-Beedle, Marion; Macaskie, Lynne E

    2010-10-01

    Metal phosphate deposited enzymatically on Serratia sp. has been used successfully for the removal of radionuclides from aqueous flows. Previous studies using biogenic hydrogen uranyl phosphate (HUP) on Serratia sp. biofilm showed removal of 100% of (90)Sr, (137)Cs, and (60)Co via their intercalation into biogenic HUP crystals. Zirconium phosphates (ZrP) offer a potential non-toxic and non-radioactive alternative to HUP for water decontamination. A method was developed for biomanufacturing ZrP. Biogenic ZrP removed ca. 100% of Sr(2+) and Co(2+) (0.5 mM) from solutions to a molar ratio at saturation of ca. 1:0.6 for both Zr:Sr and Zr:Co. The potential for drinking water decontamination via bio-ZrP is discussed with respect to bio-HUP and also other commercially available materials.

  4. Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer

    Science.gov (United States)

    Saxena, Vipin; Diaz, Agustin; Clearfield, Abraham; Batteas, James D.; Hussain, Muhammad Delwar

    2013-02-01

    The objective of this study was to evaluate the biocompatibility of zirconium phosphate (ZrP) nanoplatelets (NPs), and their use in drug delivery. ZrP and doxorubicin-intercalated ZrP (DOX:ZrP) NPs were characterized by using X-Ray Powder Diffraction (XRPD), Thermogravimetric Analysis (TGA), Transmission Electron Micrography (TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Biocompatibility of ZrP NPs was evaluated in human embryonic kidney (HEK-293), breast cancer (MCF-7), metastatic breast cancer (MDA-MB-231), ovarian cancer (OVCAR-3), resistant cancer (NCI-RES/ADR) cells and mouse macrophage (RAW 264.7) cell lines. Hemocompatibility of ZrP NPs was evaluated with human red blood cells. Simulated body fluid (SBF) of pH 7.4 was used to determine the in vitro release of doxorubicin from DOX:ZrP NPs. Cellular uptake and in vitro cytotoxicity studies of DOX:ZrP NPs were determined in MDA-MB-231. The ZrP nanomaterial can be prepared in the 100-200 nm size range with a platelet-like shape. The ZrP NPs themselves are biocompatible, hemocompatible and showed no toxicity to the macrophage cells. ZrP NPs can intercalate high loads (35% w/w) of doxorubicin between their layers. The release of DOX was sustained for about 2 weeks. DOX:ZrP NPs showed higher cellular uptake and increased cytotoxicity than free DOX in MDA-MB-231 cells. ZrP NPs are highly biocompatible, can intercalate large amounts of drugs and sustain the release of drugs. ZrP NPs improved the cellular uptake and cytotoxicity of DOX to MDA-MB-231 cells. ZrP NPs are promising nanocarriers for drug delivery in cancer therapy.The objective of this study was to evaluate the biocompatibility of zirconium phosphate (ZrP) nanoplatelets (NPs), and their use in drug delivery. ZrP and doxorubicin-intercalated ZrP (DOX:ZrP) NPs were characterized by using X-Ray Powder Diffraction (XRPD), Thermogravimetric Analysis (TGA), Transmission Electron Micrography (TEM), Scanning Electron Microscopy (SEM

  5. Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism.

    Science.gov (United States)

    Pan, Bingcai; Zhang, Qingrui; Du, Wei; Zhang, Weiming; Pan, Bingjun; Zhang, Qingjian; Xu, Zhengwen; Zhang, Quanxing

    2007-07-01

    Selective removal of heavy metals from water has been of considerable concern for several decades. In the present study, the amorphous zirconium phosphate (ZrP) was synthesized and characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron micrography (SEM), thermogravimetric analysis (TGA) as well as pH-titration experiments. Uptake of heavy metals including lead, cadmium, and zinc onto ZrP was studied by using a polystyrene sulfonic-acid exchanger D-001 as a reference sorbent and Ca(2+) as a competing cation due to its ubiquity in natural or industrial waters. The results indicated that the uptake of heavy metals onto ZrP is essentially an ion-exchange process and dependent upon solution pH. In comparison with D-001, ZrP exhibited more favorable sorption of heavy metals particularly in terms of high selectivity, as indicated by the distribution coefficients of ZrP even several orders higher than D-001 towards heavy metals when calcium ion coexisted at a high level in solution. The Fourier transform-infrared (FT-IR) spectroscopic investigation indicated that the uptake of calcium, cadmium, and zinc ions onto ZrP is only driven by the electrostatic interaction, while that of lead ion is possibly dependent upon the inner-sphere complex formation with ZrP. XPS results further elucidated that ZrP displays different sorption affinity towards heavy metals in the same order as selectivity sequence of Pb(2+)>Zn(2+) approximately Cd(2+)>Ca(2+), which can be explained by hard and soft acids and bases (HASB) theory. Moreover, uptake of heavy metals onto ZrP approached to equilibrium quickly and the used ZrP could be readily regenerated for reuse by the dilute HCl solution. Thus, all the results suggest that amorphous ZrP has excellent potential as a sorption material for water treatment.

  6. Evaluation of sulfonated polysulfone/zirconium hydrogen phosphate composite membranes for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Ozden, Adnan; Ercelik, Mustafa; Devrim, Yilser; Colpan, C. Ozgur; Hamdullahpur, Feridun

    2017-01-01

    Highlights: •Very thin SPSf/ZrP composite membranes were prepared by solution casting method. •The viability of SPSf/ZrP membranes for DMFCs was investigated for the first time. •Superior proton conductivity over Nafion ® 115 was achieved between 45–80 °C. •Desired membrane characteristics, along with low manufacturing cost were achieved. •Single cell DMFC performance was improved up to 13%. -- Abstract: Direct methanol fuel cell (DMFC) technology has advanced perceivably, but technical challenges remain that must be overcome for further performance improvements. Thus, in this study, sulfonated polysulfone/zirconium hydrogen phosphate (SPSf/ZrP) composite membranes with various sulfonation degrees (20%, 35%, and 42%) and a constant concentration of ZrP (2.5%) were prepared to mitigate the technical challenges associated with the use of conventional Nafion ® membranes in DMFCs. The composite membranes were investigated through Scanning Electron Microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), Thermogravimetric Analysis (TGA), oxidative stability and water uptake measurements, and single cell testing. Comparison was also made with Nafion ® 115. Single cell tests were performed under various methanol concentrations and cell temperatures. Stability characteristics of the DMFCs under charging and discharging conditions were investigated via 1200 min short-term stability tests. The response characteristics of the DMFCs under dynamic conditions were determined at the start-up and shut-down stages. Composite membranes with sulfonation degrees of 35% and 42% were found to be highly promising due to their advanced characteristics with respect to proton conductivity, water uptake, thermal resistance, oxidative stability, and methanol suppression. For the whole range of parameters studied, the maximum power density obtained for SPSf/ZrP-42 (119 mW cm −2 ) was found to be 13% higher than that obtained for Nafion ® 115 (105 mW cm −2 ).

  7. Application of modified multiwall carbon nanotubes as a sorbent for zirconium (IV) adsorption from aqueous solution

    International Nuclear Information System (INIS)

    Yavari, R.; Davarkhah, R.

    2013-01-01

    Modified multiwall carbon nanotubes (MWCNTs) by nitric acid solution were used to investigate the adsorption behavior of zirconium from aqueous solution. Pristine and oxidized MWCNTs were characterized using nitrogen adsorption/desorption isotherm, Boehm's titration method, thermogravimetry analysis, transmission electron microscopy and Fourier transform infrared spectroscopy. The results showed that the surface properties of MWCNTs such as specific surface area, total pore volume, functional groups and the total number of acidic and basic sites were improved after oxidation. These improvements are responsible for their hydrophobic properties and consequently an easy dispersion in water and suitable active sites for more adsorption of zirconium. The adsorption of Zr(IV) as a function of initial concentration of zirconium, contact time, MWCNTs dosage, HCl and HNO 3 concentration and also ionic strength was investigated using a batch technique under ambient conditions. The experimental results indicated that sorption of Zr(IV) was strongly influenced by zirconium concentrations, oxidized MWCNTs content and acid pH values. The calculated correlation coefficient of the linear regressions values showed that Langmuir model fits the adsorption equilibrium data better than the Freundlich model. Kinetic data of sorption indicated that equilibrium was achieved within 60 min and the adsorption process can be described by the pseudo second-order reaction rate model. Based on the experimental results, surface complexation is the major mechanism for adsorption of Zr(IV) onto MWCNTs. Also, Study on the desorption process of zirconium showed that the complete recovery can be obtained using nitric or hydrochloric acids of 4 M. (author)

  8. Phosphate adsorption from wastewater using zirconium (IV) hydroxide: Kinetics, thermodynamics and membrane filtration adsorption hybrid system studies.

    Science.gov (United States)

    Johir, M A H; Pradhan, M; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2016-02-01

    Excessive phosphate in wastewater should be removed to control eutrophication of water bodies. The potential of employing amorphous zirconium (Zr) hydroxide to remove phosphate from synthetic wastewater was studied in batch adsorption experiments and in a submerged membrane filtration adsorption hybrid (MFAH) reactor. The adsorption data satisfactorily fitted to Langmuir, pseudo-first order and pseudo-second order models. Langmuir adsorption maxima at 22 °C and pHs of 4.0, 7.1, and 10.0 were 30.40, 18.50, and 19.60 mg P/g, respectively. At pH 7.1 and temperatures of 40 °C and 60 °C, they were 43.80 and 54.60 mg P/g, respectively. The thermodynamic parameters, ΔG° and ΔS° were negative and ΔH° was positive. FTIR, zeta potential and competitive phosphate, sulphate and nitrate adsorption data showed that the mechanism of phosphate adsorption was inner-sphere complexation. In the submerged MFAH reactor experiment, when Zr hydroxide was added at doses of 1-5 g/L once only at the start of the experiment, the removal of phosphate from 3 L of wastewater containing 10 mg P/L declined after 5 h of operation. However, when Zr hydroxide was repeatedly added at 5 g/L dose every 24 h, satisfactory removal of phosphate was maintained for 3 days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process

    Science.gov (United States)

    Wong, Minhao; Ishige, Ryohei; White, Kevin L.; Li, Peng; Kim, Daehak; Krishnamoorti, Ramanan; Gunther, Robert; Higuchi, Takeshi; Jinnai, Hiroshi; Takahara, Atsushi; Nishimura, Riichi; Sue, Hung-Jue

    2014-04-01

    The large-scale assembly of asymmetric colloidal particles is used in creating high-performance fibres. A similar concept is extended to the manufacturing of thin films of self-assembled two-dimensional crystal-type materials with enhanced and tunable properties. Here we present a spray-coating method to manufacture thin, flexible and transparent epoxy films containing zirconium phosphate nanoplatelets self-assembled into a lamellar arrangement aligned parallel to the substrate. The self-assembled mesophase of zirconium phosphate nanoplatelets is stabilized by epoxy pre-polymer and exhibits rheology favourable towards large-scale manufacturing. The thermally cured film forms a mechanically robust coating and shows excellent gas barrier properties at both low- and high humidity levels as a result of the highly aligned and overlapping arrangement of nanoplatelets. This work shows that the large-scale ordering of high aspect ratio nanoplatelets is easier to achieve than previously thought and may have implications in the technological applications for similar materials.

  10. Modified tricalcium silicate cement formulations with added zirconium oxide.

    Science.gov (United States)

    Li, Xin; Yoshihara, Kumiko; De Munck, Jan; Cokic, Stevan; Pongprueksa, Pong; Putzeys, Eveline; Pedano, Mariano; Chen, Zhi; Van Landuyt, Kirsten; Van Meerbeek, Bart

    2017-04-01

    This study aims to investigate the effect of modifying tricalcium silicate (TCS) cements on three key properties by adding ZrO 2 . TCS powders were prepared by adding ZrO 2 at six different concentrations. The powders were mixed with 1 M CaCl 2 solution at a 3:1 weight ratio. Biodentine (contains 5 wt.% ZrO 2 ) served as control. To evaluate the potential effect on mechanical properties, the mini-fracture toughness (mini-FT) was measured. Regarding bioactivity, Ca release was assessed using ICP-AES. The component distribution within the cement matrix was evaluated by Feg-SEM/EPMA. Cytotoxicity was assessed using an XTT assay. Adding ZrO 2 to TCS did not alter the mini-FT (p = 0.52), which remained in range of that of Biodentine (p = 0.31). Ca release from TSC cements was slightly lower than that from Biodentine at 1 day (p > 0.05). After 1 week, Ca release from TCS 30 and TCS 50 increased to a level that was significantly higher than that from Biodentine (p  0.05). EPMA revealed a more even distribution of ZrO 2 within the TCS cements. Particles with an un-reacted core were surrounded by a hydration zone. The 24-, 48-, and 72-h extracts of TCS 50 were the least cytotoxic. ZrO 2 can be added to TCS without affecting the mini-FT; Ca release was reduced initially, to reach a prolonged release thereafter; adding ZrO 2 made TCS cements more biocompatible. TCS 50 is a promising cement formulation to serve as a biocompatible hydraulic calcium silicate cement.

  11. Microwave - Assisted Intercatation of 1-Alkanols and 1, omega-Alkanediols into alpha-Zirconium Phosphate. Evidence of Conformational Phase Transitions in the Bimolecular Film of Alkyl Chains

    Czech Academy of Sciences Publication Activity Database

    Costantino, U.; Vivani, R.; Zima, Vítězslav; Beneš, Ludvík; Melánová, Klára

    xx, č. 18 (2002), s. 1211-1217 ISSN 0743-7463 R&D Projects: GA ČR GA202/01/0520 Keywords : zirconium phosphate * intercalation * alkanols Subject RIV: CA - Inorganic Chemistry Impact factor: 3.248, year: 2002

  12. Synthesis and Tribological Performance of Different Particle-Sized Nickel-Ion-Exchanged α-Zirconium Phosphates

    Science.gov (United States)

    Zhang, Xiaosheng; Xu, Hong; Dong, Jinxiang

    2018-03-01

    Nickel-ion-exchanged α-zirconium phosphate (Ni-α-ZrP) was synthesized by a mild hydrothermal synthesis method. Different raw material ratios (NaF/H3PO4/Ni(CH3COO)2·4H2O) influence the particle size of the Ni-α-ZrP samples. The grain size could be controlled and distributed from 20 to 600 nm. Ni-α-ZrP was evaluated as an additive in lithium grease in a four-ball test. A 3.0 wt.% addition of Ni-α-ZrP to lithium grease yielded maximum non-seizure load values of 1235 N, and the wear scar diameter on the lower balls is 0.42 mm at 294 N. Compared with smaller particles, the addition of Ni-α-ZrP with a larger particle size to grease yields a better load-carrying capacity.

  13. Preparation and characterization of zirconium phosphate ion exchanger samples with respect to the separation of highly active actinoid elements

    International Nuclear Information System (INIS)

    Treplan, J.

    1972-01-01

    Inorganic ion exchangers are of growing interest in connection with separation processes of α-radiators of high specific activity, or with high gamma doses, because they have a considerably higher radiation resistance at their disposal compared to the commonly used organic ion exchangers. In opposition to their use, however, are the worse properties regarding capacity, chemical resistivity, exchange rate and reproducibility of the ion exchange bed. In the present work, an attempt has been made to influence the properties of a typical representative of this group, zirconium phosphate (ZP), by systematic changing of the preparation parameters in such a manner that a sufficient capacity is obtained regarding tri-valent ions. In addition, information is to be gathered in order to clarify the connection between exchanger property and structure of the ZP. (orig./LH) [de

  14. Hydroformylation of propene and 1-hexene catalysed by a alpha-zirconium phosphate supported rhodium-phosphine complex

    DEFF Research Database (Denmark)

    Karlsson, Magnus; Andersson, C; Hjortkjær, Jes

    2001-01-01

    The reaction of the amphiphilic ligand {4-[bis(diethylaminoethyl)aminomethyl]diphenyl}phosphine with alpha -zirconium phosphate, of intermediate surface area (24m(2) g(-1)), provided a phosphine functionalised support in which electrostatic interaction between ammonium groups on the ligand and de......-protonated surface hydroxyl groups on the support provided the binding force. The X-ray powder diffractogram of the material showed that the binding lowers the crystallinity of the carrier and that the ligand is not intercalated but bound at the outer surface and at the entrances to the interlamellar space. Reaction...... of the phosphine functionalised support with Rh(CO)(2)(acac) led to CO-phosphine exchange and formation of an immobilised complex of the composition LRh(CO)(acac) (L = surface bound phosphine). When applied as catalyst in continuous gas-phase hydroformylation of propene and in liquid phase hydroformylation of 1...

  15. Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite

    International Nuclear Information System (INIS)

    Tomul, Fatma

    2011-01-01

    In this study, the synthesis of zirconium-pillared bentonite modified with cerium was performed via two different methods by the application of conventional and ultrasonic treatments during the intercalation stage. To synthesise copper-impregnated pillared clays by wet impregnation, cerium-modified zirconium-pillared clays were used as supportive materials after being calcined at 300 °C. Ultrasonic treatment significantly decreased the required processing time compared with the conventional treatment of the synthesised pillared bentonites. Chemical analysis confirmed the incorporation of Zr 4+ , Ce 4+ and Cu 2+ species into the pillared bentonites. X-ray diffraction (XRD) patterns of zirconium- and cerium/zirconium-pillared bentonites prepared by conventional treatment show that one large d-spacing above 3.5 nm corresponds to the mesoporous delaminated part, and another small d-spacing above 1.7 nm is indicative of the microporous pillared part. Zirconium- and cerium/zirconium-pillared bentonites prepared via ultrasonic treatment exhibited similar results, with the same high d-spacing but with a second low-intensity d-spacing above 1.9 nm. The delaminated structures of the pillared bentonites synthesised by both methods were conserved after copper impregnation. Nitrogen-adsorption isotherm analysis showed that the textural characteristics of products synthesised by ultrasonic treatment were comparable to those of products synthesised by conventional treatment. Fourier-transform infrared spectroscopy (FTIR) analyses showed the presence of Brønsted- and Lewis-acid sites, and zirconium-pillared clays synthesised by conventional treatment exhibited increased numbers of Brønsted- and Lewis-acid sites after cerium addition and copper impregnation. However, the products synthesised by ultrasonic treatment exhibited an increased number of Brønsted- and Lewis-acid sites after cerium addition, but a decreased number of acid sites after copper impregnation.

  16. Resorption Rate Tunable Bioceramic: Si, Zn-Modified Tricalcium Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiang [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This dissertation is organized in an alternate format. Several manuscripts which have already been published or are to be submitted for publication have been included as separate chapters. Chapter 1 is a general introduction which describes the dissertation organization and introduces the human bone and ceramic materials as bone substitute. Chapter 2 is the background and literature review on dissolution behavior of calcium phosphate, and discussion of motivation for this research. Chapter 3 is a manuscript entitled ''Si,Zn-modified tricalcium phosphate: a phase composition and crystal structure study'', which was published in ''Key Engineering Materials'' [1]. Chapter 4 gives more crystal structure details by neutron powder diffraction, which identifies the position for Si and Zn substitution and explains the stabilization mechanism of the structure. A manuscript entitled ''Crystal structure analysis of Si, Zn-modified Tricalcium phosphate by Neutron Powder Diffraction'' will be submitted to Biomaterials [2]. Chapter 5 is a manuscript, entitled ''Dissolution behavior and cytotoxicity test of Si, Zn-modified tricalcium phosphate'', which is to be submitted to Biomaterials [3]. This paper discusses the additives effect on the dissolution behavior of TCP, and cytotoxicity test result is also included. Chapter 6 is the study of hydrolysis process of {alpha}-tricalcium phosphate in the simulated body fluid, and the phase development during drying process is discussed. A manuscript entitled ''Hydrolysis of {alpha}-tricalcium phosphate in simulated body fluid and phase transformation during drying process'' is to be submitted to Biomaterials [4]. Ozan Ugurlu is included as co-authors in these two papers due to his TEM contributions. Appendix A is the general introduction of the materials synthesis, crystal structure and preliminary dissolution result. A manuscript entitled

  17. Infrared-spectroscopy analysis of zinc phosphate and nickel and manganese modified zinc phosphate coatings on electrogalvanized steel

    International Nuclear Information System (INIS)

    Fernandes, Kirlene Salgado; Alvarenga, Evandro de Azevedo; Lins, Vanessa de Freitas Cunha

    2011-01-01

    Hopeite-type phosphate coatings in which zinc is partially replaced by other metals like manganese and nickel are of great interest for the automotive and home appliance industries. Such industries use phosphate conversion coatings on galvanized steels in association with cataphoretic electro painting. Zinc phosphates modified with manganese and nickel are isomorphic with the hopeite, and the phase identification using X-ray diffraction is difficult. In this paper, the phosphate coatings are identified using the Fourier transform infrared spectroscopy (FTIR). (author)

  18. Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Weiyi [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China); Zhang, Ping [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010 (China); Song, Lei; Wang, Xin [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China)

    2014-01-01

    Graphical abstract: - Highlights: • A transparent intumescent fire protective coating was obtained by UV-cured technology. • OZrP could enhance the thermal stability and anti-oxidation of the coating. • OZrP could reduce the combustion properties of the coatings. - Abstract: Organophilic alpha-zirconium phosphate (OZrP) was used to improve the thermal and fire retardant behaviors of the phenyl di(acryloyloxyethyl)phosphate (PDHA)-triglycidyl isocyanurate acrylate (TGICA)-2-phenoxyethyl acrylate (PHEA) (PDHA-TGICA-PHEA) coating. The morphology of nanocomposite coating was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of OZrP on the flame retardancy, thermal stability, fireproofing time and char formation of the coatings was investigated by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS) and scanning electric microscope (SEM). The results showed that by adding OZrP, the peak heat release rate and total heat of combustion were significantly reduced. The highest improvement was achieved with 0.5 wt% OZrP. XPS analysis indicated that the performance of anti-oxidation of the coating was improved with the addition of OZrP, and SEM images showed that a good synergistic effect was obtained through a ceramic-like layer produced by OZrP covered on the surface of char.

  19. Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating

    International Nuclear Information System (INIS)

    Xing, Weiyi; Zhang, Ping; Song, Lei; Wang, Xin; Hu, Yuan

    2014-01-01

    Graphical abstract: - Highlights: • A transparent intumescent fire protective coating was obtained by UV-cured technology. • OZrP could enhance the thermal stability and anti-oxidation of the coating. • OZrP could reduce the combustion properties of the coatings. - Abstract: Organophilic alpha-zirconium phosphate (OZrP) was used to improve the thermal and fire retardant behaviors of the phenyl di(acryloyloxyethyl)phosphate (PDHA)-triglycidyl isocyanurate acrylate (TGICA)-2-phenoxyethyl acrylate (PHEA) (PDHA-TGICA-PHEA) coating. The morphology of nanocomposite coating was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of OZrP on the flame retardancy, thermal stability, fireproofing time and char formation of the coatings was investigated by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS) and scanning electric microscope (SEM). The results showed that by adding OZrP, the peak heat release rate and total heat of combustion were significantly reduced. The highest improvement was achieved with 0.5 wt% OZrP. XPS analysis indicated that the performance of anti-oxidation of the coating was improved with the addition of OZrP, and SEM images showed that a good synergistic effect was obtained through a ceramic-like layer produced by OZrP covered on the surface of char

  20. Coprecipitation of neptunium and plutonium with iron and zirconium dibutyl phosphates

    International Nuclear Information System (INIS)

    Sokhina, L.P.; Rovnyj, S.I.; Goncharuk, L.V.

    1988-01-01

    Neptunium and plutonium coprecipitation with precipitates of dibutyl phosphates of some elements significant for radiochemical technology is studied. By the ability to coprecipitation of actinides with precipitates of dibutyl phosphates the cations may be arranged in the series Fe > Al > La > ≥ Zr ≥ Th. The composition of neptunium and plutonium mixed precipitates on the basis of iron dibutyl phosphates corresponding to the formula (Me(NO 3 ) 2 Al 2 ) n x · FeA 3 , where Me-neptunium or plutonium, A-anion of dibutyl phosphoric acid, n=1-4, is determined. Solubility of mixed precipitations in nitric acid and carbonate solutions is studied. Mixed precipitations on the basis of iron dibutyl phosphates are found to have the least solubility, their solubility being lower than that of individual compounds of dibutyl phoshates. The mechanism of formation of mixed precipitates is suggested and discussed

  1. Synthesis and characterization of insulin/zirconium phosphate@TiO2 hybrid composites for enhanced oral insulin delivery applications.

    Science.gov (United States)

    Safari, Mostafa; Kamari, Younes; Ghiaci, Mehran; Sadeghi-Aliabadi, Hojjat; Mirian, Mina

    2017-05-01

    In this work, a series of composites of insulin (Ins)/zirconium phosphate (ZrP) were synthesized by intercalation method, then, these composites were coated with TiO 2 by sol-gel method to prepare Ins/ZrP@TiO 2 hybrid composites and the drug release of the composites was investigated by using UV-Vis spectroscopy. Ins/ZrP (10, 30, 60 wt%) composites were prepared by intercalation of insulin into the ZrP layers in water. Then Ins/ZrP composites were coated with different amounts of TiO 2 (30, 50, 100 wt %) by using titanium tetra n-butoxide, as precursor. Formation of intercalated Ins/ZrP and Ins/ZrP@TiO 2 hybrid composites was characterized by FT-IR, FE-SEM, BET and XRD analysis. Zeta potential of the optimized Ins/ZrP@TiO 2 hybrid composite was determined -27.2 mV. Cytotoxic effects of the optimized Ins/ZrP@TiO 2 hybrid composite against HeLa and Hek293T cell lines were evaluated using MTT assay and the results showed that designed drug delivery system was not toxic in biological environment. Compared to the Ins/ZrP composites, incorporation of TiO 2 coating enhanced the drug entrapment considerably, and reduced the drug release. The Ins/ZrP composites without TiO 2 coating released the whole drug after 30 min in pH 7.4 (phosphate buffer solution) while the TiO 2 -coated composites released the entrapped drug after 20 h. In addition to increasing the shelf life of hormone, this nanoencapsulation and nanocoating method can convert the insulin utilization from injection to oral and present a painless and more comfortable treatment for diabetics.

  2. Facile Separation of 5-O-Galloylquinic Acid from Chinese Green Tea Extract using Mesoporous Zirconium Phosphate.

    Science.gov (United States)

    Ma, Yilong; Shang, Yafang; Zhu, Danye; Wang, Caihong; Zhong, Zhifeng; Xu, Ziyang

    2016-05-01

    5-O-Galloylquinic acid from green tea and other plants is attracting increasing attention for its antioxidant and antileishmanial bioactivities. It is always isolated using a silica column, a Sephadex column and high-performance liquid chromatography (HPLC) methods, which are either laborious or instrument dependent. To develop a new method to easily separate 5-O-galloylquinic acid. Mesoporous zirconium phosphate (m-ZrP) was prepared to conveniently separate 5-O-galloylquinic acid from Chinese green tea extract, and the target compound was easily obtained by simple steps of adsorption, washing and desorption. The effects of the green tea extraction conditions, extract concentrations, and m-ZrP adsorption/desorption dynamics on the 5-O-galloylquinic acid separation were evaluated. 5-O-Galloylquinic acid that was separated from a 70% ethanol extract of green tea was of moderate HPLC purity (92%) and recovery (88%), and an increased non-specific binding of epigallocatechin gallate (EGCG) on m-ZrP was observed in the diluted tea extract. The times for maximal adsorption of 5-O-galloylquinic acid in 70% ethanol extract and maximal desorption of 5-O-galloylquinic acid in 0.4% phosphoric acid solution were confirmed as 7 h and 5 h, respectively. A facile method to separate 5-O-galloylquinic acid from Chinese green tea extract using m-ZrP was established. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Flame retardancy of polyamide 6 hybrid fibers: Combined effects of α-zirconium phosphate and ammonium sulfamate

    Directory of Open Access Journals (Sweden)

    Hengxue Xiang

    2017-06-01

    Full Text Available Synergistic effect between α-zirconium phosphate (α-ZrP and ammonium sulfamate (AS for enhanced flame retardant properties of Polyamide 6 (PA6 was investigated by using oxygen index instrument, cone calorimeter, thermogravimetric analyzer (TGA, Instron universal test machine and scanning electron microscopy (SEM. PA6/AS/α-ZrP ternary hybrid materials with various contents of α-ZrP and AS were fabricated by melt-mixing method. The result from flammability indicated that the Limiting oxygen index (LOI and Underwriters Laboratories-94 (UL-94 rating of PA6/AS/α-ZrP were significantly accelerated under the coordinating function of α-ZrP and AS. Moreover, the thermal stability for PA6/AS/α-ZrP studied by TGA also demonstrated this synergistic effect between α-ZrP and AS on the heat resistance. The effects of the usage amount of α-ZrP and AS on mechanical properties were analyzed by using uniaxial tensile test. It was found that the addition of AS provided negative effects on the tensile strength of PA6/AS/α-ZrP, however, the adverse trends that mentioned above could be overcome by using the well dispersed α-ZrP.

  4. Ion exchange studies with ferrocyanide molybdate and zirconium phosphate in mixed solvent media. Part 1: Synthesis of the exchangers

    International Nuclear Information System (INIS)

    Ramaswamy, M.; Sunder Rajan, N.S.

    1979-01-01

    The present research forms the first part of the series on the investigation of the ion exchange behaviour of ferrocyanide molybdate(FeMo) and zirconium phosphate(ZrP) in water-alcohol and water-dioxane media. Since the above exchangers are not available indigenously, they were synthesized following published methods. That the reported methods of synthesis yield products with reproducible characteristics, were checked. pH titration of these two preparations in aqueous media showed that FeMo is a stronger acid than ZrP, the former, moreover, in its Cs + and Na + forms commence dissolving at pH values close to 5 and 2 respectively, and are completely dissolved at pH values 7.5 and 2.85 respectively. Titration curves with ZrP further indicated that as the pH increases, there occurs a reversal in the order of arrangement of Na + and Cs + curves, which reversal is attributed to a corresponding reversal of selectivity. Finally, both the chemical analysis and pH titration of FeMo confirm the existence of 4 replaceable H + ions corresponding to H 4 Fe(CN) 6 , a constituent of ferrocyanide molybdate, while those of ZrP are consistent with the empirical formula Zr(HPO 4 ) 2 .4.5 H 2 O, having two replaceable H + ions. (auth.)

  5. Zirconium-titanium-phosphate nanoparticles. Triton X-100 based size modification, characterization and application in radiochemical separation

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, R.; Sen, B.; Chattopadhyay, P. [Burdwan Univ. (India). Dept. of Chemistry

    2014-07-01

    Zirconium-titanium-phosphate nanoparticles (ZTP) of different sizes were synthesized using tritron X-100 (polyethylene glycol-p-isooctylphenyl ether) surfactant. The materials were characterized by FTIR and powdered X-ray diffraction (XRD). The structural and morphological details of the material were obtained by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM study was followed by energy dispersive spectroscopic analysis (EDS) for elemental analysis of the sample. The important peaks of the XRD spectra were analyzed to determine the probable composition of the material. The particle sizes were determined by dynamic light scattering (DLS) method. Ion exchange capacity was measured for different metal ions with sizes of the ZTP nanoparticles and size-dependent ion exchange property of the material was investigated thoroughly. The nanomaterial of the smallest size of around 5 nm was employed to separate carrier-free {sup 137m}Ba from {sup 137}Cs in column chromatographic technique using 1.0 M HNO{sub 3} as eluting agent at pH = 5. (orig.)

  6. Structure and short time degradation studies of sodium zirconium phosphate ceramics loaded with simulated fast breeder (FBR) waste

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayanan, A., E-mail: arvinda@barc.gov.in [Process Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ambashta, R.D., E-mail: aritu@barc.gov.in [Process Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ajithkumar, T. [Applied Catalysis Unit, National Chemical Laboratory, Pune 411008 (India); Sen, D.; Mazumder, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Wattal, P.K. [Process Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-04-15

    Sodium zirconium phosphate (NZP) ceramics have been prepared using conventional sintering and hot isostatic pressing (HIP) routes. The structure of NZP ceramics, prepared using the HIP route, has been compared with conventionally sintered NZP using a combination of X-ray diffraction (XRD) and ({sup 31}P and {sup 23}Na) nuclear magnetic resonance (NMR) spectroscopy techniques. It is observed that NZP with no waste loading is aggressive toward the steel HIP-can during hot isostatic compaction and significant fraction of cations from the steel enter the ceramic material. Waste loaded NZP samples (10 wt% simulated FBR waste) show significantly low can-interaction and primary NZP phase is evident in this material. Upon exposure of can-interacted and waste loaded NZP to boiling water and steam, {sup 31}P NMR does not detect any major modifications in the network structure. However, the {sup 23}Na NMR spectra indicate migration of Na{sup +} ions from the surface and possible re-crystallization. This is corroborated by Small-Angle Neutron Scattering (SANS) data and Scanning Electron Microscopy (SEM) measurements carried out on these samples.

  7. Determination of the stability of the uranyl ion sipped in τ-hydrogen phosphate of zirconium in sodic form

    International Nuclear Information System (INIS)

    Ordonez R, E.; Fernandez V, S.M.; Drot, R.; Simoni, E.

    2005-01-01

    The stability of the uranyl sipped in the zirconium τ-hydrogen phosphate in sodic form (τ-NaZrP), was carried out characterizing the complexes formed by Laser spectroscopy in the visible region and by X-ray photoelectron spectroscopy. The material was prepared by a new synthesis technique working in nitrogen atmosphere and to low temperatures. The sorption of the uranyl ion was made in acid media with concentrations of 10 -4 and 10 -5 of uranyl nitrate and with ion forces of 0.1 and 0.5 M of NaClO 4 . The spectra of induced fluorescence with laser (TRLFS) show that the uranyl is fixed in very acid media in three well differentiated species, to pH less acid, the specie of long half life disappears and are only those of short half life. The results of the binding energy obtained by XPS indicate that the binding energy of the uranyl confer it a stable character to the complex formed in the τ-NaZP, that makes to this material appropriate to retain to the uranyl in solution to high ion forces and in acid media. (Author)

  8. Mechanism of the Topotactic Formation of gamma-Zirconium Phosphate Covalently Pillared with Diphosphonate Groups.

    Science.gov (United States)

    Alberti, G.; Giontella, E.; Murcia-Mascarós, S.; Vivani, R.

    1998-09-07

    The topotactic reaction of gamma-ZrPO(4)[O(2)P(OH)(2)].2H(2)O (gamma-ZrP) with benzenediphosphonic acid was examined in water and in acetone-water mixtures. This reaction was found to take place in water only on the external surface of the microcrystals, and pillared compounds were never obtained, even after very long reaction times. On the contrary, covalently pillared compounds were quickly obtained in acetone-water mixtures. The mechanism of the latter topotactic reaction was investigated by determining the rate of the phosphate groups released and the rate of the benzenediphosphonates taken up by gamma-ZrP over a long time (50 days). These data showed that pillared derivatives of gamma-ZrP can be obtained because colloidal dispersions of exfoliated lamellae are formed in acetone-water mixtures. The diphosphonate group acts initially as a monovalent species, replacing only one dihydrogen phosphate group on the surface of the exfoliated gamma-lamellae. The colloidal and partially derivatized lamellae thus formed can interact with each other by forming polylamellar pillared systems. When the number of pillared lamellae exceeds a given value (usually 5-6), flocculation of the colloidal gamma-ZrP takes place. Topotactic reactions between packets of pillared lamellae may also continue in the flocculated system. Therefore, the average number of the pillared lamellae slowly increases over time.

  9. Construction of organic–inorganic hybrid nano-coatings containing α-zirconium phosphate with high efficiency for reducing fire hazards of flexible polyurethane foam

    International Nuclear Information System (INIS)

    Pan, Ying; Pan, Haifeng; Yuan, Bihe; Hong, Ningning; Zhan, Jing; Wang, Bibo; Song, Lei; Hu, Yuan

    2015-01-01

    Nano-architecture on the flexible polyurethane foam (FPUF) was built by layer by layer (LbL) self-assembling of α-zirconium phosphate (α-ZrP) and two biopolymers. Through electrostatic attraction and hydrogen bonding between α-ZrP, chitosan and alginate, the nano-coatings were successfully deposited on the substrate. The LbL self-assembly coatings were characterized by X-ray diffraction, UV–vis absorption spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy and scanning electron microscopy. This loaded nano-coating endowed FPUF with excellent flame retardancy. Compared with pure FPUF, the reduction in the peak heat release rate of the modified foam with 12.3 wt% weight gain was achieved 71%, and the melt-dripping during combustion disappeared. Meanwhile, the thermal degradation of coated FPUF under nitrogen atmosphere was obviously retarded compared with pure FPUF. Additionally, the mechanical properties of the treated FPUFs were investigated. After loaded with 12.3 wt% nano-coating, the tensile and tear strength were enhanced by 13% and 54%, respectively. These investigations indicated that the study has great potential to add new dimensions in the fire retardancy modification of FPUF. - Highlights: • The nano-coatings containing α-ZrP and two biopolymers were successfully loaded on the FPUF by LbL self-assembly method. • The hybrid nano-coatings exhibited marked reduction in the peak heat release rate of the foam. • The coating resulted in enhanced tensile and tear strength of the foam

  10. Construction of organic–inorganic hybrid nano-coatings containing α-zirconium phosphate with high efficiency for reducing fire hazards of flexible polyurethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ying [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Pan, Haifeng; Yuan, Bihe [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu 215123 (China); Hong, Ningning; Zhan, Jing; Wang, Bibo [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Song, Lei, E-mail: leisong@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu 215123 (China)

    2015-08-01

    Nano-architecture on the flexible polyurethane foam (FPUF) was built by layer by layer (LbL) self-assembling of α-zirconium phosphate (α-ZrP) and two biopolymers. Through electrostatic attraction and hydrogen bonding between α-ZrP, chitosan and alginate, the nano-coatings were successfully deposited on the substrate. The LbL self-assembly coatings were characterized by X-ray diffraction, UV–vis absorption spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy and scanning electron microscopy. This loaded nano-coating endowed FPUF with excellent flame retardancy. Compared with pure FPUF, the reduction in the peak heat release rate of the modified foam with 12.3 wt% weight gain was achieved 71%, and the melt-dripping during combustion disappeared. Meanwhile, the thermal degradation of coated FPUF under nitrogen atmosphere was obviously retarded compared with pure FPUF. Additionally, the mechanical properties of the treated FPUFs were investigated. After loaded with 12.3 wt% nano-coating, the tensile and tear strength were enhanced by 13% and 54%, respectively. These investigations indicated that the study has great potential to add new dimensions in the fire retardancy modification of FPUF. - Highlights: • The nano-coatings containing α-ZrP and two biopolymers were successfully loaded on the FPUF by LbL self-assembly method. • The hybrid nano-coatings exhibited marked reduction in the peak heat release rate of the foam. • The coating resulted in enhanced tensile and tear strength of the foam.

  11. Silica-gel modified with zirconium oxide as a novel 99Mo adsorbent 99mTc generators

    International Nuclear Information System (INIS)

    Salehi, H.; Mollarazi, E.; Abbasi, H.

    2010-01-01

    A new 99 Mo adsorbent has been prepared with modified silica gel with zirconium oxide (SiO 2 /ZrO 2 :Na 2 MoO 4 ) and used in technetium-99m generator. The adsorption behaviors of 99 Mo in the form of molybdate and 99m Tc in the form of pertechnetate on the new adsorbent was investigated showed that the adsorption capacity of molybdate on this generator was considerably higher than the usual generator with alumina column. Coating zirconium oxide on the surface of silica gel resulted in higher 99 Mo adsorption of this compound. 99m Tc is eluted with 0.9% NaCl, and the radionuclidic, radiochemical and chemical purities of the eluate were checked. This generator has a great potential as compared to the traditional alumina generators.

  12. Preparation of novel polysulfone capsules containing zirconium phosphate and their properties for Pb{sup 2+} removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ma Xiaojie [College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, College of Resources and Environment, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Li Yanfeng, E-mail: liyf@lzu.edu.cn [College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, College of Resources and Environment, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Li Xiaoli; Yang Liuqing [College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, College of Resources and Environment, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Wang Xueyan [Yantai Professional School of Automobile Engineering, Yantai 265500 (China)

    2011-04-15

    Zirconium phosphate (ZrP) was immobilized by microencapsulation process of polysulfone (PSF) to form the polysulfone capsules containing ZrP (PSF-ZrP capsules) successfully by using phase inversion precipitation technique, and the PSF-ZrP was employed as capsules adsorbents to remove Pb{sup 2+} presented in aqueous solution. The result shows that an encapsulation capacity of 50% (mass ratio, PSF: ZrP = 1:1) should be the optimal proportion of ZrP encapsulated with PSF. The characterization of the macroscopical and microcosmic physical properties of the resulting PSF-ZrP capsules was carried out by the DTA-TG, XRD, BET and SEM. Meanwhile, the adsorption properties of the PSF-ZrP capsules for Pb{sup 2+} were investigated by batch methods. It was found that the adsorption of the PSF-ZrP capsules for Pb{sup 2+} would be pH dependent due to the ion-exchange mechanism, and the uptake of Pb{sup 2+} was slightly influenced with the concentration of coexisting cations (Na{sup +}, K{sup +}) in a low range. Furthermore, the calculated thermodynamics parameters exhibit that the nature of the adsorption process is spontaneous and exothermic. After six times of adsorption-regeneration cycles, no significant loss of adsorption capacity was observed, indicating the good stability of the PSF-ZrP capsules. Consequently, the PSF-ZrP capsules in this work can provide a potential application for treatment process of Pb{sup 2+}-containing wastewater.

  13. Properties of calcium silicate-monobasic calcium phosphate materials for endodontics containing tantalum pentoxide and zirconium oxide.

    Science.gov (United States)

    Zamparini, Fausto; Siboni, Francesco; Prati, Carlo; Taddei, Paola; Gandolfi, Maria Giovanna

    2018-05-08

    The aim of the study was to evaluate chemical-physical properties and apatite-forming ability of three premixed calcium silicate materials containing monobasic calcium phosphate (CaH 4 P 2 O 8 ) bioceramic, tantalum pentoxide and zirconium oxide, recently marketed for endodontics (TotalFill BC-Sealer, BC-RRM-Paste, BC-RRM-Putty). Microchemical and micromorphological analyses, radiopacity, initial and final setting times, calcium release and alkalising activity were tested. The nucleation of calcium phosphates (CaPs) and/or apatite after 28 days ageing was evaluated by ESEM-EDX and micro-Raman spectroscopy. BC-Sealer and BC-RRM-Paste showed similar initial (23 h), prolonged final (52 h) setting times and good radiopacity (> 7 mm Al); BC-RRM-Putty showed fast initial (2 h) and final setting times (27 h) and excellent radiopacity (> 9 mm Al). All materials induced a marked alkalisation (pH 11-12) up to 28 days and showed the release of calcium ions throughout the entire test period (cumulative calcium release 641-806 ppm). After 28 days ageing, a well-distributed mineral layer was present on all samples surface; EDX demonstrated relevant calcium and phosphorous peaks. B-type carbonated apatite and calcite deposits were identified by micro-Raman spectroscopy on all the 28-day-aged samples; the deposit thickness was higher on BC-RRM-Paste and BC-RRM-Putty, in agreement with calcium release data. These materials met the required chemical and physical standards and released biologically relevant ions. The CaSi-CaH 4 P 2 O 8 system present in the materials provided Ca and OH ions release with marked abilities to nucleate a layer of B-type carbonated apatite favoured/accelerated by the bioceramic presence. The ability to nucleate apatite may lead many clinical advantages: In orthograde endodontics, it may improve the sealing ability by the deposition of CaPs at the material-root dentine interface, and in endodontic surgery, it could promote bone and

  14. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    Science.gov (United States)

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  15. Use of a La(III)-modified bentonite for effective phosphate removal from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, Vivian; Bosco, Giulianna E. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André CEP 09210-170, SP (Brazil); Fadini, Pedro S.; Mozeto, Antonio A. [Laboratório de Biogeoquímica Ambiental, Núcleo de Estudos, Diagnósticos e Intervenções Ambientais, Departamento de Química, Universidade Federal de São Carlos, Cx. Postal 676, São Carlos CEP 13565-905, SP (Brazil); Cestari, Antonio R. [Department of Chemistry/CCET, Universidade Federal de Sergipe, São Cristóvão CEP 49100-000, SE (Brazil); Carvalho, Wagner A., E-mail: wagner.carvalho@ufabc.edu.br [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André CEP 09210-170, SP (Brazil)

    2014-06-01

    Highlights: • A phosphate adsorbent was prepared from unpurified natural bentonite. • Physisorption was found to the main phosphate interaction mechanism. • The retention has reached 95% of the phosphate present in solution at room temperature. • The rate sorption was about 4 times faster than commercial phosphate adsorbents. - Abstract: A bentonite from the Northeast Brazilian region was modified with lanthanum (NT-25La) using an ion exchange process. Lanthanum incorporation in the natural clay, as well as the properties of the clay materials, were confirmed by X-ray diffraction, X-ray fluorescence, specific surface area and scanning electron microscopy (SEM/EDX). Phosphate adsorption equilibrium and kinetic tests were performed at different temperatures. The adsorption data have shown that NT-25La reaches equilibrium between modified clay and phosphate solution within 60 min of contact. The phosphate retention at room temperature reached 95%, when initial phosphate concentration in solution was 5 mg L{sup −1}. A kinetic-order variable model provided satisfactory fitting of the kinetic data. Adsorption of phosphate was best described by a Langmuir isotherm, with maximum phosphate sorption capacity of 14.0 mg g{sup −1}. Two distinct adsorption mechanisms were observed that may influence the adsorption processes. The investigation pointed out that the phosphate adsorption occurs via physisorption processes and that the use of NT-25La provides a maximum phosphate sorption capacity higher than many commercial adsorbents.

  16. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion.

    Science.gov (United States)

    Pan, B C; Zhang, Q R; Zhang, W M; Pan, B J; Du, W; Lv, L; Zhang, Q J; Xu, Z W; Zhang, Q X

    2007-06-01

    Zirconium phosphate (ZrP) has recently been demonstrated as an excellent sorbent for heavy metals due to its high selectivity, high thermal stability, and absolute insolubility in water. However, it cannot be readily adopted in fixed beds or any other flowthrough system due to the excessive pressure drop and poor mechanical strength resulting from its fine submicrometer particle sizes. In the present study a hybrid sorbent, i.e., polymer-supported ZrP, was prepared by dispersing ZrP within a strongly acidic cation exchanger D-001 and used for enhanced lead removal from contaminated waters. D-001 was selected as a host material for sorbent preparation mainly because of the Donnan membrane effect resulting from the nondiffusible negatively charged sulfonic acid group on the exchanger surface, which would enhance permeation of the targeted metal ions. The hybrid sorbent (hereafter denoted ZrP-001) was characterized using a nitrogen adsorption technique, scanning electron microscope (SEM), and X-ray diffraction (XRD). Lead sorption onto ZrP-001 was found to be pH dependent due to the ion-exchange mechanism, and its sorption kinetics onto ZrP-001 followed the pseudo-first-order model. Compared to D-001, ZrP-001 exhibited more favorable lead sorption particularly in terms of high selectivity, as indicated by its substantially larger distribution coefficients when other competing cations Na(+), Ca(2+), and Mg(2+) coexisted at a high level in solution. Fixed-bed column runs showed that lead sorption on ZrP-001 resulted in a conspicuous decrease of this toxic metal from 40 mg/L to below 0.05 mg/L. By comparison with D-001 and ZrP-CP (ZrP dispersion within a neutrally charged polymer CP), enhanced removal efficiency of ZrP-001 resulted from the Donnan membrane effect of the host material D-001. Moreover, its feasible regeneration by diluted acid solution and negligible ZrP loss during operation also helps ZrP-001 to be a potential candidate for lead removal from water. Thus

  17. Preparation and performance of lipophilic α-zirconium phosphate with high thermal stability and its application in thermal-plastic polymers

    Directory of Open Access Journals (Sweden)

    Ya Du

    2015-10-01

    Full Text Available To prepare lipophilic α-zirconium phosphate with high grafting ratio and thermal stability (OZrP-HT and explore its potential application in thermal-plastic polymers, a novel method was developed by surface lipophilicity enhancement strategy. The commercial α-zirconium phosphate (α-ZrP was pre-intercalated by n-propylamine (PA and grafted by silane coupling agents. Then the pre-intercalated PA was removed by heat-treatment, and the obtained OZrP-HT was utilized to fabricate the phosphorous-containing polyester (P-co-PET/OZrP-HT nanocomposites by melt-blending method. The prepared OZrP-HT and P-co-PET/OZrP-HT nanocomposites were characterized by Wide Angle X-ray Diffraction (WAXD, Fourier Transform Infrared Spectroscopy (FTIR, Thermogravimetric Analysis (TGA, Transmission Electron Microscope (TEM, etc. The results show that OZrP-HT with high grafting ratio (13.78 wt% and thermal stability (Tonset=368 °C was successfully prepared via this novel method and was uniformly intercalated by P-co-PET molecular chains. OZrP-HT had no significant effect on the fiber processability of P-co-PET polymer, and flame retardant properties of (P-co-PET/OZrP-HT nanocomposites were improved. This method may be suitable for organic modification of general inorganic layered compounds and could extend the potential applications in thermo-plastic polymers.

  18. Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite

    International Nuclear Information System (INIS)

    Huo, Hanxin; Lin, Hai; Dong, Yingbo; Cheng, Huang; Wang, Han; Cao, Lixia

    2012-01-01

    Highlights: ► The salt and thermally modified clinoptilolite can effectively sorb NH 3 -N and phosphates. ► The phosphorus and nitrogen removal was consistent with Langmuir isotherm model. ► The modified clinoptilolite possesses rapid adsorption and slow balance characteristics. ► The adsorption is more in line with the Elovich adsorption dynamics equation. ► The entropy effect plays the role of the main driving force in the adsorption. - Abstract: This paper presents the investigation of the ammonia-nitrogen and phosphates sorption from simulated reclaimed wastewater by modified clinoptilolite. The results showed that the modified clinoptilolite has a high sorption efficiency and removal performance. The ammonia-nitrogen and phosphates removal rate of the modified clinoptilolite reached to 98.46% and 99.80%, respectively. The surface of modified clinoptilolite became loose and some pores appeared, which enlarged the specific surface area; the contents of Na and Fe increased, and the contents of Ca and Mg decreased. The modified clinoptilolite possesses rapid sorption and slow balance characteristics and ammonia-nitrogen and phosphates sorption is more consistent with the Langmuir isotherm model. The adsorption kinetics of ammonia-nitrogen and phosphates follows the Elovich adsorption dynamics equation, which describes the sorption of ammonia-nitrogen and phosphates in aqueous solution as mainly a chemical sorption. Results from the thermodynamics experiment involving ammonia-nitrogen and phosphates sorption reveal that the process is a spontaneous and endothermic process, and is mainly driven by entropy effect.

  19. Copper scandium zirconium phosphate

    DEFF Research Database (Denmark)

    Bond, Andrew David; Warner, Terence Edwin

    2013-01-01

    The title compound, with nominal formula Cu(2)ScZr(PO(4))(3), has a beige coloration and displays fast Cu(+) cation conduction at elevated temperatures. It adopts a NASICON-type structure in the space group R3c. The examined crystal was an obverse-reverse twin with approximately equal twin compon...

  20. Modified method for zirconium or hafnium gravimetric determination with glycolic acid derivatives

    International Nuclear Information System (INIS)

    Barbieri, R.S.; Rocha, J.C.; Terra, V.R.; Marques Neto, A.

    1989-01-01

    The conditions for gravimetric determination of zirconium or hafnium by glicolic acid derivatives were studied by thermogravimetric analysis. The method utilized shown that after precipitation, washing and drying of precipitates at 150 0 C, the resulting solid was weighed in the form of [M{RCH(OH)COO} 4 ] (M = Zr,Hf;R = C 6 H 5 , β-C 10 H 7 ,p-BrC 6 H 4 ). (author) [pt

  1. Phosphate adsorption using modified iron oxide-based sorbents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Phosphate Removal. This dataset is associated with the following publication: Lalley , J., C. Han , G. RamMohan , T. Speth , J. Garland , M. Nadagouda , and D....

  2. Uptake of some lanthanides on γ-zirconium phosphate-phosphite and its 1,10-phenanthroline and 2,2-bipyridyl intercalated products

    International Nuclear Information System (INIS)

    Shakshooki, S.K.; El Hanash, H.B.; El-Mehdawi, R.M.; El-Mellah, M.A.; Arafa, E.A.; Bejey, A.M.

    1999-01-01

    γ-zirconium phosphate-phosphite, γ-Zr x PO 4 x H 2 PO 3 x 2H 2 O, (γ-ZrPP), was prepared and characterized. Direct treatment of γ-zirconium phosphate-phosphite with an ethanol solution of 0.1M 1,10-phenanthrolin and 2,2'-bipyridyl gave the well defined composites, γ-Zr x PO 4 x H 2 PO 3 (phen) 0.15 x H 2 O and γ-Zr x PO 4 x H 2 PO 3 (bipy) 0.18 x 0.6H 2 O respectively. K d values of a mixture of lanthanide ions: La 3+ , Sm 3+ , Eu 3+ and Yb 3+ for the intercalated products and for γ-ZrPP in HNO 3 solution at room temperature and at pH 2 and 4 were determined by a radiotracer technique. 140 La, 152m Eu, 153 Sm and 175 Yb radioisotopes were used for the equilibration experiment using 500 μl (4.0 x 10 -5 mmole) each of the solutions of the tracers as a mixture in 7.5 M HNO 3 solution at the desired pH with 0.1 g of γ-ZrPP and of the intercalated products. The selectivity order was found to be dependent on the nature of the ligand and on the pH. The 2,2'-bipyridyl product possesses, at pH 2 in general, a high K d value, specially for Sm 3+ (9815.9) compared to that of the 1,10-phenanthrolin product (3375.5) and to γ-ZrPP (419.8). This could be attributed to partial deintercalation of the 2,2' -bipyridyl at pH 2 and increasing of ionogenic groups. (author)

  3. Phosphate Removal using Modified Bayoxide®E33 Adsorption Media

    Science.gov (United States)

    The adsorption of phosphate onto modified Bayoxide® E33 (E33) and underlying mechanisms were comparatively investigated by batch kinetics, sorption isotherms, rapid small scale column tests, and material characterization. Synthesis of modified E33 was conducted by the addition of...

  4. Phosphate Remediation and Recovery from Lake Water using Modified Iron Oxide-based Adsorbents

    Science.gov (United States)

    Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese and nanoparticles. Characterization was done by X-ray diffract...

  5. Porous Silicates Modified with Zirconium Oxide and Sulfate Ions for Alcohol Dehydration Reactions

    Directory of Open Access Journals (Sweden)

    Heriberto Esteban Benito

    2015-01-01

    Full Text Available Porous silicates were synthesized by a nonhydrothermal method, using sodium silicate as a source of silica and cetyltrimethylammonium bromide as a template agent. Catalysts were characterized using thermogravimetric analysis, N2 physisorption, X-ray diffraction, FTIR spectroscopy, pyridine adsorption, potentiometric titration with n-butylamine, scanning electronic microscopy, and transmission electronic microscopy. The surface area of the materials synthesized was greater than 800 m2/g. The introduction of zirconium atoms within the porous silicates increased their acid strength from −42 to 115 mV, while the addition of sulfate ions raised this value to 470 mV. The catalytic activity for the dehydration of alcohols yields conversions of up to 70% for ethanol and 30% for methanol.

  6. Biomimetic synthesis of modified calcium phosphate fine powders and their in vitro studies

    Energy Technology Data Exchange (ETDEWEB)

    Gergulova, R., E-mail: rumigg@yahoo.com; Tepavitcharova, S., E-mail: rumigg@yahoo.com; Rabadjieva, D., E-mail: rumigg@yahoo.com; Sezanova, K., E-mail: rumigg@yahoo.com; Ilieva, R., E-mail: rumigg@yahoo.com [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 11, 1113 Sofia (Bulgaria); Alexandrova, R.; Andonova-Lilova, B. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, BAS, Acad. G. Bonchev Str., Bl. 25, Sofia (Bulgaria)

    2013-12-16

    Biomimetic approach and subsequent high-temperature treatment were used to synthesize ion modified calcium phosphate fine powders. Thus, using Simulated Body Fluid (SBF) as an ion modifier, a bi-phase mixture of ion modified β-tricalcium phosphate and hydroxyapatite (β-TCP + HA) was prepared. The use of SBF electrolyte solution enriched with Mg{sup 2+} or Zn{sup 2+} yielded monophase β-tricalcium phosphate additionally modified with Mg{sup 2+} or Zn{sup 2+} (Mg-β-TCP or Zn-β-TCP). The in vitro behavior of the prepared powders on cell viability and proliferation of murine BALB/c 3T3 fibroblasts and of human Lep 3 cells was studied by MTT test assays and Mosmann method after 72 h incubation. The relative cell viability was calculated.

  7. Modification in band gap of zirconium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S. [Department of Physics, ISLE, IPS Academy, Indore (M.P.) (India); Mishra, A. [School of Physics, Devi Ahilya Vishwavidyalaya, Indore (M.P.) (India); Shrivastava, B. D. [Govt. P. G. College, Biora (M.P.) (India)

    2016-05-06

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  8. Flame retardancy and thermal properties of epoxy acrylate resin/alpha-zirconium phosphate nanocomposites used for UV-curing flame retardant films

    International Nuclear Information System (INIS)

    Xing Weiyi; Jie Ganxin; Song Lei; Wang Xin; Lv Xiaoqi; Hu Yuan

    2011-01-01

    This paper reported the UV-curing flame retardant film, which consisted of epoxy acrylate resin (EA) used as an oligomer, tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA) used as flame retardant (FR). The flame retardancy and thermal properties of films were reinforced by using alpha-zirconium phosphate (α-Zr (HPO 4 ) 2 H 2 O, α-ZrP). The morphology of nanocomposite film was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the organophilic α-ZrP (OZrP) layers were dispersed well in epoxy acrylate resin. Microscale Combustion Calorimeter (MCC), thermogravimetric analysis (TGA) and thermogravimetric analysis/infrared spectrometry (TGA-IR) were used to characterize the flame retardant property and thermal stability. It was found that the incorporation of TAEP and TGICA can reduce the flammability of EA. Moreover, further reductions were observed due to the addition of OZrP. The char residue for systems with or without OZrP was also explored by scanning electron microscopy (SEM).

  9. Calcium and zirconium as texture modifiers during rolling and annealing of magnesium–zinc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bohlen, Jan, E-mail: jan.bohlen@hzg.de; Wendt, Joachim; Nienaber, Maria; Kainer, Karl Ulrich; Stutz, Lennart; Letzig, Dietmar

    2015-03-15

    Rolling experiments were carried out on a ternary Mg–Zn–Ca alloy and its modification with zirconium. Short time annealing of as-rolled sheets is used to reveal the microstructure and texture development. The texture of the as-rolled sheets can be characterised by basal pole figures with split peak towards the rolling direction (RD) and a broad transverse angular spread of basal planes towards the transverse direction (TD). During annealing the RD split peaks as well as orientations in the sheet plane vanish whereas the distribution of orientations tilted towards the TD remains. It is shown in EBSD measurements that during rolling bands of twin containing structures form. During subsequent annealing basal orientations close to the sheet plane vanish based on a grain nucleation and growth mechanism of recrystallisation. Orientations with tilt towards the TD remain in grains that do not undergo such a mechanism. The addition of Zr delays texture weakening. - Highlights: • Ca in Mg–Zn-alloys contributes to a significant texture weakening during rolling and annealing. • Grain nucleation and growth in structures consisting of twins explain a texture randomisation during annealing. • Grains with transverse tilt of basal planes preferentially do not undergo a grain nucleation and growth mechanism. • Zr delays the microstructure and texture development.

  10. The ion exchange properties and equilibrium constants of Li+, Na+ and K+ on zirconium phosphate highly dispersed on a cellulose acetate fibers surface

    Directory of Open Access Journals (Sweden)

    Borgo Claudemir Adriano

    2004-01-01

    Full Text Available Highly dispersed zirconium phosphate was prepared by reacting celullose acetate/ZrO2 (ZrO2 = 11 wt%, 1.0 mmol g-1 of zirconium atom per gram of the material with phosphoric acid. High power decoupling magic angle spinning (HPDEC-MAS 31P NMR and X-ray photoelectron spectroscopy data indicated that HPO4(2- is the species present on the membrane surface. The specific concentration of acidic centers, determined by ammonia gas adsorption, is 0.60 mmol g-1. The ion exchange capacities for Li+, Na+ and K+ ions were determined from ion exchange isotherms at 298 K and showed the following values (in mmol g-1: Li+= 0.05, Na+= 0.38 and K+= 0.57. Due to the strong cooperative effect, the H+/Na+ and H+/K+ ion exchange is of non ideal nature. These ion exchange equilibria were treated with the use of models of fixed tridentate centers, which consider the surface of the sorbent as polyfunctional sorption centers. Both the observed ion exchange capacities with respect to the alkaline metal ions and the equilibrium constants are discussed by taking into consideration the sequence of the ionic hydration radii for Li+, Na+ and K+. The matrix affinity for the ions decreases with increasing the cations hydration radii from K+ to Li+. The high values of the separation factors S Na+/Li+ and S K+/Li+ (up to several hundreds support the application of this material for the quantitative separation of Na+ and K+ from Li+ from a mixture containing these three ions.

  11. Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application.

    Science.gov (United States)

    Bhowmick, Arundhati; Pramanik, Nilkamal; Jana, Piyali; Mitra, Tapas; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2017-02-01

    Here, zirconium oxide nanoparticles (ZrO 2 NPs) were incorporated for the first time in organic-inorganic hybrid composites containing chitosan, poly(ethylene glycol) and nano-hydroxypatite (CS-PEG-HA) to develop bone-like nanocomposites for bone tissue engineering application. These nanocomposites were characterized by FT-IR, XRD, TEM combined with SAED. SEM images and porosity measurements revealed highly porous structure having pore size of less than 1μm to 10μm. Enhanced water absorption capacity and mechanical strengths were obtained compared to previously reported CS-PEG-HA composite after addition of 0.1-0.3wt% of ZrO 2 NPs into these nanocomposites. The mechanical strengths and porosities were similar to that of human spongy bone. Strong antimicrobial effects against gram-negative and gram-positive bacterial strains were also observed. Along with getting low alkalinity pH (7.4) values, similar to the pH of human plasma, hemocompatibility and cytocompatibility with osteoblastic MG-63 cells were also established for these nanocomposites. Addition of 15wt% HA-ZrO 2 (having 0.3wt% ZrO 2 NPs) into CS-PEG (55:30wt%) composite resulted in greatest mechanical strength, porosity, antimicrobial property and cytocompatibility along with suitable water absorption capacity and compatibility with human pH and blood. Thus, this nanocomposite could serve as a potential candidate to be used for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Microwave assisted low temperature synthesis of sodium zirconium phosphate (NZP) and the leachability of some selected fission products incorporated in its structure

    International Nuclear Information System (INIS)

    Dharwadkar, S.R.

    2008-01-01

    Full text: Microwave assisted procedure for low temperature solid state synthesis of sodium zirconium phosphate (NZP), a material with the potential for immobilization and disposal of high level nuclear waste, was developed. Four selected fission products, namely cesium, strontium, tellurium and ruthenium were introduced (substituted) in the NZP matrix during its synthesis at 450 deg C. More than 85% of these elements incorporated at this temperature could be retained in the NZP compacts, sintered in air at 1000 deg C to nearly 90% of the theoretical density of pure sodium zirconium phosphate. Leaching studies were carried out on the fission product substituted sintered NZP compacts in pure de-ionized water and 80% saturated brine solution at the ambient temperatures of 30 deg C and 90 deg C for four weeks. The major part of leaching in all the cases was observed in the first week. The maximum amount of the substituted element leached in the liquid media after four weeks, however did not exceed 12% of the total amount originally present in the sample before leaching. No significant leaching was observed for any of the dopant elements after four weeks. Among the substituted elements maximum leaching was observed for tellurium followed by cesium and strontium. Ruthenium showed virtually no leaching under the conditions employed. Leaching was found to decrease considerably in multiple element substituted NZP. The effect of temperature on the leaching rate was marginal but substantial difference was observed when the leachant was changed from pure de-ionized water to brine solution. Tellurium and strontium exhibited three and two fold decrease in the leaching rate respectively on changing the leachant from pure de-ionized water to 80% saturated brine solution. The leach rate of Cs however remained virtually unaffected by this change. The SEM and EDX analysis of the surfaces of the leached pellets showed virtual absence of the dopants introduced in the NZP matrix

  13. A model for phosphate glass topology considering the modifying ion sub-network

    DEFF Research Database (Denmark)

    Hermansen, Christian; Mauro, J.C.; Yue, Yuanzheng

    2014-01-01

    In the present paper we establish a temperature dependent constraint model of alkali phosphate glasses considering the structural and topological role of the modifying ion sub-network constituted by alkali ions and their non-bonding oxygen coordination spheres. The model is consistent with availa......In the present paper we establish a temperature dependent constraint model of alkali phosphate glasses considering the structural and topological role of the modifying ion sub-network constituted by alkali ions and their non-bonding oxygen coordination spheres. The model is consistent...... with available structural data by NMR and molecular dynamics simulation and dynamic data such glass transition temperature (Tg) and liquid fragility (m). Alkali phosphate glasses are exemplary systems for developing constraint model since the modifying cation network plays an important role besides the primary...... phosphate network. The proposed topological model predicts the changing trend of the Tg and m with increasing alkali oxide content for alkali phosphate glasses, including an anomalous minimum at around 20 mol% alkali oxide content. We find that the minimum in Tg and m is caused by increased connectivity...

  14. Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers.

    Science.gov (United States)

    Drenkova-Tuhtan, Asya; Mandel, Karl; Paulus, Anja; Meyer, Carsten; Hutter, Frank; Gellermann, Carsten; Sextl, Gerhard; Franzreb, Matthias; Steinmetz, Heidrun

    2013-10-01

    An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate. Based upon the preliminary screening of different LDH ion exchanger modifications for phosphate selectivity and uptake capacity, MgFe-Zr LDH coated magnetic particles were chosen for further characterization and application. The adsorption kinetics of phosphate from municipal wastewater was studied in dependence with particle concentration, contact time and pH. Adsorption isotherms were then determined for the selected particle system. Recovery of phosphate and regeneration of the particles was examined via testing a variety of desorption solutions. Reusability of the particles was demonstrated for 15 adsorption/desorption cycles. Adsorption in the range of 75-97% was achieved in each cycle after 1 h contact time. Phosphate recovery and enrichment was possible through repetitive application of the desorption solution. Finally, a pilot scale experiment was carried out by treating 125 L of wastewater with the particles in five subsequent 25 L batches. Solid-liquid separation on this scale was carried out with a high-gradient magnetic filter (HGMF). Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Zirconium and cast zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Krone, K

    1977-04-01

    A survey is given on the occurence of zirconium, production of Zr sponge and semi-finished products, on physical and mechanical properties, production of Zr cast, composition of the commercial grades and reactor grades qualities, metal cutting, welding, corrosion behavior and use.

  16. Research on preparation of phosphate-modified animal glue binder for foundry use

    Science.gov (United States)

    Wang, Tian-Shu; Liu, Wei-Hua; Li, Ying-Min

    2018-03-01

    In this paper, three phosphates were used as modifiers to modify animal glue binder. The structural characteristics and thermal properties of animal glue binder treated with phosphates were studied by Fourier transform-infrared spectroscopy, gel permeation chromatography and derivative thermogravimetric analysis. The results showed that the modified animal glue binder had better sand tensile strength and lower viscosity than untreated animal glue binder. The best modification process was as follows: the optimal amount of sodium carbonate was 4 wt% to animal glue; the optimal weight ratio of the modifiers was sodium pyrophosphate : sodium tripolyphosphate : sodium hexametaphosphate : animal glue = 3 : 3 : 4 : 100, and the optimal reaction should be performed at 80°C for a reaction time of 120 min. A final tensile strength of approximately 3.20 MPa was achieved and the viscosity value was approximately 880 mPa s.

  17. Interaction of surfactant-modified zeolites and phosphate accumulating bacteria

    International Nuclear Information System (INIS)

    Hrenovic, J.; Rozic, M.; Sekovanic, L.; Anic-Vucinic, A.

    2008-01-01

    The aim of this study was to determine the interaction of surfactant-modified zeolites (SMZ) and orthophosphate (P)-accumulating bacteria in the process of P removal from wastewater. The SMZ were prepared from the natural zeolite (NZ) of size fractions <0.122 mm and 0.25-0.5 mm. The hexadecyltrimethylammonium (HDTMA) bromide was used to modify the NZ surface from partial monolayer to the bilayer coverage. The surface modification of NZ resulted in the change of zeta potential of particles from negative to positive and great enhancement of the P-adsorption capacity. Only in reactors containing <0.122 mm fraction of partial monolayer coverage of the SMZ, the P was efficiently removed from wastewater by combined adsorption onto the SMZ and bacterial uptake in the biomass. The SMZ with bilayer or patchy bilayer coverage showed the bactericidal effect. To enhance the P removal from wastewater in the aerated biological system, the SMZ can be used, but the special attention should be given to the configuration of sorbed HDTMA molecules and its potential desorption

  18. Mechanism of the Formation of Organic Derivatives of gamma-Zirconium Phosphate by Topotactic Reactions with Phosphonic Acids in Water and Water-Acetone Media.

    Science.gov (United States)

    Alberti, G.; Giontella, E.; Murcia-Mascarós, S.

    1997-06-18

    The rates of the topotactic reactions between gamma-zirconium phosphate and phenylphosphonic acid in water and water-acetone mixtures at various temperatures were investigated. The slow rates of the process in aqueous medium or in water-acetone mixtures at temperatures lower than 50 degrees C were attributed to a slow interdiffusion of O(2)P(OH)(2)(-) and O(2)P(OH)(C(6)H(5))(-) groups in the interlayer region of gamma-ZrP. Similar to ion-exchange processes, the replacement begins in the external part of the interlayer region and progresses toward the central region with the formation of an advancing phase boundary. In water-acetone mixtures at temperatures higher than 60 degrees C an exfoliation of gamma-ZrP was found. Thus, the initial process is very fast since the substitution can take place directly on the surface of the exfoliated gamma-lamellae. However, after a certain degree of substitution, a flocculation of the colloidal dispersion, which slows down the rate of the further topotactic substitution, was observed. Some considerations on the topotactic substitution occurring on the surface of the exfoliated lamellae and on the mechanism of the diffusion of the exchanging species in the interlayer region are also reported.

  19. Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application.

    Science.gov (United States)

    Kalita, Himani; Pal, Pallabi; Dhara, Santanu; Pathak, Amita

    2017-02-01

    Nanocomposite films of polyvinyl alcohol (PVA) and zirconium phosphate (ZrP)/doped ZrP (doped with Ca, Mg, Ti) nanoparticles have been developed by solvent casting method to assess their potential as matrix material in scaffold-guided tissue engineering application. The prepared ZrP and doped ZrP nanoparticles as well as the nanocomposite films were characterized by various spectroscopic and microscopic techniques. Nanoindentation studies revealed improved nanomechanical properties in the PVA/doped ZrP nanocomposite films (highest for PVA/Ti doped ZrP: hardness=262.4MPa; elastic modulus=5800MPa) as compared to the PVA/ZrP and neat PVA films. In-vitro cell culture experiments carried out to access the cellular viability, attachment, proliferation, and migration on the substrates, using mouse fibroblast (3T3) cell lines, inferred enhanced bioactivity in the PVA/doped ZrP nanocomposite films (highest for PVA/Ca doped ZrP) in contrast to PVA/ZrP and neat PVA films. Controlled biodegradability as well as swelling behavior, superior bioactivity and improved mechanical properties of the PVA/doped ZrP nanocomposite films make them promising matrix materials for scaffold-guided tissue engineering application. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Kinetics Modeling and Isotherms for Adsorption of Phosphate from Aqueous Solution by Modified Clinoptilolit

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2012-01-01

    Full Text Available The Phosphorous discharge into the surface water led to excessive growth of algae and eutrophication in lakes and rivers. Therefore the phosphorus removal is important due to negative effect on water resources. The aim of this study was to investigat the modification of clinoptilolite and application of modified clinoptilolite for phosphorous adsorption from aqueous solution and isotherms and kinetics modeling. Hexadecyl Trimethyl Ammonium bromide (HDTMA-Br, Hexadecyl trimethyl Ammonium Chloride (HDTMA-Cl, Sodium Decyl Sulphate (SDS and Cetrimide-C were used for modification of clinoptilolite. Experiments were conducted using jar apparatus and batch system. The effect of pH, adsorbent doses, contact time, phosphate initial concentration and particle size were studied surveyed on phosphate adsorption by modified clinoptilolite. The most common isotherms and the kinetics adsorption equations were used for determination of adsorption rate and dynamic reaction. The results showed that maximum phosphate adsorption was obtained in the pH of 7 and contact time 90min. Also it was found with the increasing of phosphate initial concentration, phosphate removal efficiency decreased significantly. Langmuir No 2 showed a good correlation compared to other isotherms (R2=0.997. Maximum adsorption capacity was obtained in 20g/L adsorbent dose (22.73mg/g. Also Interaparticle diffusion kinetics well fits with experimental data (R2=0.999 with constant rate of 3.84mg/g min0.5. The result showed that modified clinoptilolite can be used successfully as low cost and effective absorbent for phosphate removal.

  1. Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Joshua K.; Arcibar-Orozco, Javier A.; Bandosz, Teresa J., E-mail: tbandosz@ccny.cuny.edu

    2016-12-30

    Highlights: • Microporous zirconium-cerium (hydr) oxides were synthetized. • Ce presence narrowed the band gap of the materials. • The samples showed a high efficiency for removal of CEES vapors. • 1,2-Bis (ethyl thio) ethane and ethyl vinyl sulfide were the main reaction products. • 5% (Ce/Zr mol) addition of cerium oxide results in the best performing material. - Abstract: Highly porous cerium oxide modified Zr(OH){sub 4} samples were synthesized using a simple one stage urea precipitation method. The amorphicity level of zirconium hydroxide did not change upon addition of cerium oxide particles. A unique aspect of the cerium oxide-modified materials is the presence of both the oxide (CeO{sub 2}) and hydroxide (Zr(OH){sub 4}) phases resulting in a unique microporous structure of the final material. Extensive characterization using various chemical and physical methods revealed significant differences in the surface features. All synthesized materials were microporous and small additions of cerium oxide affected the surface chemistry. These samples were found as effective catalysts for a decontamination of mustard gas surrogate, 2-chloroethyl ethyl sulfide (CEES). Cerium oxide addition significantly decreased the band gap of zirconium hydroxide. Ethyl vinyl sulfide and 1,2-bis (Ethyl thio) ethane were identified as surface reaction products.

  2. Synthesis and structural characterization of a new chiral porous hybrid organic–inorganic material based on γ-zirconium phosphates and L-(+)-phosphoserine

    Energy Technology Data Exchange (ETDEWEB)

    Alhendawi, Hussein M.H., E-mail: hussein.alhendawi@yahoo.com [Department of Chemistry, Faculty of Science, Al-Azhar University of Gaza, 1277 Gaza, Palestine (Country Unknown)

    2013-05-01

    In the present work, a chiral layered derivative of γ-zirconium phosphate (γ-ZrP) containing L-(+)-phosphoserine (γ-ZrP-PS*) covalently attached to inorganic layers has been prepared by means of topotactic exchange reaction. This organic–inorganic derivative is characterized by X-ray diffractometry, Solid {sup 13}C–NMR and FT-IR spectrophotometries and thermal analyses. A maximum level of topotactic replacement of 20% is achieved. Under both the acidic environment of the interlayer region of γ-ZrP and the acidic synthesis conditions, the hydrolysis of the ester bond of PS* is expected to take place to some extent. For this reason, it was impossible to exceed the recent percentage, which in turn reflects the relative moderate stability of the above mentioned bond under these conditions. In order to be more certain with regard to an expected further hydrolysis for this bond after separation, a sample of γ-ZrP-PS* was stored in a desiccator over a saturated solution of BaCl{sub 2} (90% relative humidity) for three months, and then the sample re-analyzed once again. Surprisingly, the results show that the sample still keeps almost the same level of exchange (i.e., 20%). Second, it is revealed that the sample almost gives the same spectroscopic and thermal behavior. This could be attributed to the less acidic character of the partially exchanged inorganic layers of the sample in comparison with that of the precursor γ-ZrP. Therefore, the PS* molecules persist and stay there into the interlayer gallery without further hydrolysis. - Graphical abstract: • Red: oxygen • White: zirconium • Cyan: carbon • Yellow: phosphorus • Blue: nitrogen. Highlights: • L-(+)-Phosphoserine (PS*) is exchanged with γ-ZrP by means of topotactic exchange. • The maximum exchange level is 20%. • γ-ZrP is functionalized with chiral amino acid group. • γ-ZrP-PS* has large chiral space for huge guest molecules to be intercalated.

  3. Synthesis and structural characterization of a new chiral porous hybrid organic–inorganic material based on γ-zirconium phosphates and L-(+)-phosphoserine

    International Nuclear Information System (INIS)

    Alhendawi, Hussein M.H.

    2013-01-01

    In the present work, a chiral layered derivative of γ-zirconium phosphate (γ-ZrP) containing L-(+)-phosphoserine (γ-ZrP-PS*) covalently attached to inorganic layers has been prepared by means of topotactic exchange reaction. This organic–inorganic derivative is characterized by X-ray diffractometry, Solid 13 C–NMR and FT-IR spectrophotometries and thermal analyses. A maximum level of topotactic replacement of 20% is achieved. Under both the acidic environment of the interlayer region of γ-ZrP and the acidic synthesis conditions, the hydrolysis of the ester bond of PS* is expected to take place to some extent. For this reason, it was impossible to exceed the recent percentage, which in turn reflects the relative moderate stability of the above mentioned bond under these conditions. In order to be more certain with regard to an expected further hydrolysis for this bond after separation, a sample of γ-ZrP-PS* was stored in a desiccator over a saturated solution of BaCl 2 (90% relative humidity) for three months, and then the sample re-analyzed once again. Surprisingly, the results show that the sample still keeps almost the same level of exchange (i.e., 20%). Second, it is revealed that the sample almost gives the same spectroscopic and thermal behavior. This could be attributed to the less acidic character of the partially exchanged inorganic layers of the sample in comparison with that of the precursor γ-ZrP. Therefore, the PS* molecules persist and stay there into the interlayer gallery without further hydrolysis. - Graphical abstract: • Red: oxygen • White: zirconium • Cyan: carbon • Yellow: phosphorus • Blue: nitrogen. Highlights: ► L-(+)-Phosphoserine (PS*) is exchanged with γ-ZrP by means of topotactic exchange. ► The maximum exchange level is 20%. ► γ-ZrP is functionalized with chiral amino acid group. ► γ-ZrP-PS* has large chiral space for huge guest molecules to be intercalated

  4. A study of the fixing of phosphoric ions by zirconium-montmorillonite; Etude de la fixation d'ions phosphoriques par la montmorillonite-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Bittel, R; Boursat, C; Platzer, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    In connection with the research carried out on the purification of nuclear reactor water, we have undertaken a study of the ion-exchange properties of acid montmorillonite. In a previous paper, we described the preparation of zirconium-montmorillonite small plate. The present article aims to study some of the properties of the clay obtained. We have observed that zirconium-montmorillonite fixes very strongly the phosphorus from solutions of phosphoric acid or of phosphates: on 1 g of clay it is possible to fix 1,2 milli-atoms-gram of zirconium and the zirconium montmorillonite itself fixes 2,1 milli-atoms-gram of phosphorus. An explanation of these experimental results, which is as much chemical as mineralogical, is the hypothesis that the fixing of phosphoric ions modifies the distribution of the ions between the platelets and precipitates a very slightly soluble product of the type diphospho-zirconic acid. (author) [French] En rapport avec des recherches sur I'epuration de l'eau des reacteurs nucleaires nous avons entrepris une etude sur les proprietes d'echangeur d'ions de la montmorillonite-acide. Dans une precedente publication, nous avons decrit la preparation des plaquettes de montmorillonite-zirconium. La presente communication a pour but d'etudier quelques proprietes de l'argile obtenue. Nous avons constate que la montmorilionite-zirconium fixe le phosphore de solutions d'acide phosphorique ou de phosphate avec une grande intensite: sur 1 g d'argile, on peut fixer 1,2 atomes-gramme de zirconium, et la montmorillonite-zirconium fixe a son tour 2,1 milli-atomesgramme de phosphore. Une explication des resultats experimentaux, tant d'ordre chimique que d'ordre mineralogique, consiste en l'hypothese suivant laquelle la fixation d'ions phosphoriques modifierait la repartition des ions entre les feuillets avec precipitation du compose tres peu soluble (type: acide diphosphozirconique). (auteur)

  5. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture.

    Science.gov (United States)

    Wang, Zhe; Lin, Yan; Wu, Deyi; Kong, Hainan

    2016-02-01

    A simple method to functionalize diatomite with hydrous iron oxide was attempted and its performance as a new active filtration material to remove and recover phosphate from water was investigated under varying solution conditions. The Langmuir phosphate adsorption capacity increased from 0.6 mgP/g for raw diatomite to 4.89, 14.71, 25.02 mgP/g for hydrous iron oxide modified diatomite (HIOMD), depending on the amount of iron loaded. Loading of hydrous iron oxide caused the increase in true and bulk density and a decline in filtration rate, but to a lesser extent. It was shown that the HIOMD product with suitable iron content could retain a good filtration performance with a greatly increased adsorption capacity for phosphate. The phosphate adsorption increased by decreasing pH and by increasing ionic strength at high pH levels. The adsorption process was interpreted by ligand exchange. Coexisting oxyanions of sulfate, nitrate, citrate, carbonate, silicate and humic acid showed different effects on phosphate fixation but it was presumed that their influence at their concentrations and pH levels commonly encountered in effluent or natural waters was limited, i.e., HIOMD had a reasonably good selectivity. Results in repeated adsorption, desorption and regeneration experiment showed that the adsorbed phosphate could be recovered and the material could be reused after regeneration. The column test showed that HIOMD could be potentially utilized as an adsorption filtration medium for phosphate removal and recovery from water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Biomimetic fabrication of calcium phosphate/chitosan nanohybrid composite in modified simulated body fluids

    Directory of Open Access Journals (Sweden)

    K. H. Park

    2017-01-01

    Full Text Available In this study, nucleation and growth of bone-like hydroxyapatite (HAp mineral in modified simulated body fluids (m-SBF were induced on chitosan (CS substrates, which were prepared by spin coating of chitosan on Ti substrate. The m-SBF showed a two fold increase in the concentrations of calcium and phosphate ions compared to SBF, and the post-NaOH treatment provided stabilization of the coatings. The calcium phosphate/chitosan composite prepared in m-SBF showed homogeneous distribution of approximately 350 nm-sized spherical clusters composed of octacalcium phosphate (OCP; Ca8H2(PO46·5H2O crystalline structure. Chitosan provided a control over the size of calcium phosphate prepared by immersion in m-SBF, and post-NaOH treatment supported the binding of calcium phosphate compound on the Ti surface. Post-NaOH treatment increased hydrophilicity and crystallinity of carbonate apatite, which increased its potential for biomedical application.

  7. Comparison of surface modified zirconia implants with commercially available zirconium and titanium implants: a histological study in pigs.

    Science.gov (United States)

    Gredes, Tomasz; Kubasiewicz-Ross, Pawel; Gedrange, Tomasz; Dominiak, Marzena; Kunert-Keil, Christiane

    2014-08-01

    New biomaterials and their various surface modifications should undergo in vitro and in vivo evaluation before clinical trials. The objective of our in vivo study was to evaluate the biocompatibility of newly created zirconium implant surfaces after implantation in the lower jaw of pigs and compare the osseointegration of these dental implants with commercially available zirconium and titanium implants. After a healing period of 12 weeks, a histological analysis of the soft and hard tissues and a histomorphometric analysis of the bone-implant contact (BIC) were performed. The implant surfaces showed an intimate connection to the adjacent bone for all tested implants. The 3 newly created zirconium implant surfaces achieved a BIC of 45% on average in comparison with a BIC of 56% from the reference zirconium implants and 35% from titanium implants. Furthermore, the new zirconium implants had a better attachment to gingival and bone tissues in the range of implant necks as compared with the reference implants. The results suggest that the new implants comparably osseointegrate within the healing period, and they have a good in vivo biocompatibility.

  8. Synthesis and structural characterization of a new chiral porous hybrid organic-inorganic material based on γ-zirconium phosphates and L-(+)-phosphoserine

    Science.gov (United States)

    Alhendawi, Hussein M. H.

    2013-05-01

    In the present work, a chiral layered derivative of γ-zirconium phosphate (γ-ZrP) containing L-(+)-phosphoserine (γ-ZrP-PS*) covalently attached to inorganic layers has been prepared by means of topotactic exchange reaction. This organic-inorganic derivative is characterized by X-ray diffractometry, Solid 13C-NMR and FT-IR spectrophotometries and thermal analyses. A maximum level of topotactic replacement of 20% is achieved. Under both the acidic environment of the interlayer region of γ-ZrP and the acidic synthesis conditions, the hydrolysis of the ester bond of PS* is expected to take place to some extent. For this reason, it was impossible to exceed the recent percentage, which in turn reflects the relative moderate stability of the above mentioned bond under these conditions. In order to be more certain with regard to an expected further hydrolysis for this bond after separation, a sample of γ-ZrP-PS* was stored in a desiccator over a saturated solution of BaCl2 (90% relative humidity) for three months, and then the sample re-analyzed once again. Surprisingly, the results show that the sample still keeps almost the same level of exchange (i.e., 20%). Second, it is revealed that the sample almost gives the same spectroscopic and thermal behavior. This could be attributed to the less acidic character of the partially exchanged inorganic layers of the sample in comparison with that of the precursor γ-ZrP. Therefore, the PS* molecules persist and stay there into the interlayer gallery without further hydrolysis.

  9. Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application

    International Nuclear Information System (INIS)

    Kalita, Himani; Pal, Pallabi; Dhara, Santanu; Pathak, Amita

    2017-01-01

    Nanocomposite films of polyvinyl alcohol (PVA) and zirconium phosphate (ZrP)/doped ZrP (doped with Ca, Mg, Ti) nanoparticles have been developed by solvent casting method to assess their potential as matrix material in scaffold-guided tissue engineering application. The prepared ZrP and doped ZrP nanoparticles as well as the nanocomposite films were characterized by various spectroscopic and microscopic techniques. Nanoindentation studies revealed improved nanomechanical properties in the PVA/doped ZrP nanocomposite films (highest for PVA/Ti doped ZrP: hardness = 262.4 MPa; elastic modulus = 5800 MPa) as compared to the PVA/ZrP and neat PVA films. In-vitro cell culture experiments carried out to access the cellular viability, attachment, proliferation, and migration on the substrates, using mouse fibroblast (3T3) cell lines, inferred enhanced bioactivity in the PVA/doped ZrP nanocomposite films (highest for PVA/Ca doped ZrP) in contrast to PVA/ZrP and neat PVA films. Controlled biodegradability as well as swelling behavior, superior bioactivity and improved mechanical properties of the PVA/doped ZrP nanocomposite films make them promising matrix materials for scaffold-guided tissue engineering application. - Highlights: • PVA/ZrP (undoped/doped with Ca, Mg and Ti) nanocomposite scaffolds were developed. • The nanocomposites were prepared via solvent casting method. • PVA/doped ZrP films exhibited enhanced mechanical properties than PVA/undoped ZrP. • Excellent bioactivity was observed in the PVA/doped ZrP films than PVA/undoped ZrP.

  10. Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, Himani [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Pal, Pallabi; Dhara, Santanu [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Pathak, Amita, E-mail: ami@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India)

    2017-02-01

    Nanocomposite films of polyvinyl alcohol (PVA) and zirconium phosphate (ZrP)/doped ZrP (doped with Ca, Mg, Ti) nanoparticles have been developed by solvent casting method to assess their potential as matrix material in scaffold-guided tissue engineering application. The prepared ZrP and doped ZrP nanoparticles as well as the nanocomposite films were characterized by various spectroscopic and microscopic techniques. Nanoindentation studies revealed improved nanomechanical properties in the PVA/doped ZrP nanocomposite films (highest for PVA/Ti doped ZrP: hardness = 262.4 MPa; elastic modulus = 5800 MPa) as compared to the PVA/ZrP and neat PVA films. In-vitro cell culture experiments carried out to access the cellular viability, attachment, proliferation, and migration on the substrates, using mouse fibroblast (3T3) cell lines, inferred enhanced bioactivity in the PVA/doped ZrP nanocomposite films (highest for PVA/Ca doped ZrP) in contrast to PVA/ZrP and neat PVA films. Controlled biodegradability as well as swelling behavior, superior bioactivity and improved mechanical properties of the PVA/doped ZrP nanocomposite films make them promising matrix materials for scaffold-guided tissue engineering application. - Highlights: • PVA/ZrP (undoped/doped with Ca, Mg and Ti) nanocomposite scaffolds were developed. • The nanocomposites were prepared via solvent casting method. • PVA/doped ZrP films exhibited enhanced mechanical properties than PVA/undoped ZrP. • Excellent bioactivity was observed in the PVA/doped ZrP films than PVA/undoped ZrP.

  11. Piezoelectric sensor for sensitive determination of metal ions based on the phosphate-modified dendrimer

    Science.gov (United States)

    Wang, S. H.; Shen, C. Y.; Lin, Y. M.; Du, J. C.

    2016-08-01

    Heavy metal ions arising from human activities are retained strongly in water; therefore public water supplies must be monitored regularly to ensure the timely detection of potential problems. A phosphate-modified dendrimer film was investigated on a quartz crystal microbalance (QCM) for sensing metal ions in water at room temperature in this study. The chemical structures and sensing properties were characterized by Fourier transform infrared spectroscopy and QCM measurement, respectively. This phosphate-modified dendrimer sensor can directly detect metal ions in aqueous solutions. This novel sensor was evaluated for its capacity to sense various metal ions. The sensor exhibited a higher sensitivity level and shorter response time to copper(II) ions than other sensors. The linear detection range of the prepared QCM based on the phosphate-modified dendrimer was 0.0001 ∼ 1 μM Cu(II) ions (R2 = 0.98). The detection properties, including sensitivity, response time, selectivity, reusability, maximum adsorption capacity, and adsorption equilibrium constants, were also investigated.

  12. Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study

    International Nuclear Information System (INIS)

    Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Pham, T.Q.; Li, F.M.; Nguyen, T.V.; Bui, X.T.

    2015-01-01

    This study explores the potential of removing phosphorus from aqueous solutions and sewage by Zr(IV)-loaded okara (ZLO) in the fixed-bed column. Soybean residue (okara) was impregnated with 0.25 M Zr(IV) solution to prepare active binding sites for phosphate. The effect of several factors, including flow rate, bed height, initial phosphorus concentration, pH and adsorbent particle size on the performance of ZLO was examined. The maximum dynamic adsorption capacity of ZLO for phosphorus was estimated to be 16.43 mg/g. Breakthrough curve modeling indicated that Adams–Bohart model and Thomas model fitted the experimental data better than Yoon–Nelson model. After treatment with ZLO packed bed column, the effluent could meet the discharge standard for phosphorus in Australia. Successful desorption and regeneration were achieved with 0.2 NaOH and 0.1 HCl, respectively. The results prove that ZLO can be used as a promising phosphorus adsorbent in the dynamic adsorption system. - Highlights: • Dynamic adsorption of P from water and wastewater by Zr(IV)-loaded okara was tested. • Effects of column design parameters on the adsorption performance were investigated. • The dynamic adsorption capacity of Zr(IV)-loaded okara for P was reasonably high. • The spent column was effectively regenerated with 0.2 M NaOH followed by 0.1 M HCl. • Zr(IV)-loaded okara column was efficient in eliminating P from municipal sewage

  13. Is the Freeze Drying Method Effect on the Phase Transition Temperature ofβ/β́́ Lithium Zirconium Phosphate?

    Directory of Open Access Journals (Sweden)

    S. M. Seyedahmadian

    2014-07-01

    Full Text Available Spherical granules of the superionic conductor β/β́ LiZr2(PO43 in the range of sub 100 nm sizewere synthesizedvia freeze drying methodand fully reviewed in all aspects. Samples were characterized by the X-ray diffractometry (XRD, the Thermal analysis (TG, DSC, theFourier Transform Infra-Red Spectroscopy (FTIR and the Scanning Electron Microscopy (SEM.Their structuredepends largely on the method of synthesis, thermaltreatment, and conditions of storing samples. Degree of Crystallinity and phase purity in different annealing time were tested. The synthesize temperature does not exceed 873 K in any step of the synthesis.The low temperature phases (β with the Pbna space group and β́ with the P21/n space group were preparedat optimum condition. By the Differential Scanning Calorimetry it was shown the phase transition from β↔β́ occurred at about 567-597 K. The temperature of annealing the phosphate and calcination time is not very effective to phase transition temperature.

  14. Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T.A.H. [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Ngo, H.H., E-mail: ngohuuhao121@gmail.com [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Guo, W.S. [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Pham, T.Q. [Faculty of Geography, University of Science, Vietnam National University, Hanoi (Viet Nam); Li, F.M. [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Nguyen, T.V. [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Bui, X.T. [Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology-Vietnam National University, Ho Chi Minh City (Viet Nam)

    2015-08-01

    This study explores the potential of removing phosphorus from aqueous solutions and sewage by Zr(IV)-loaded okara (ZLO) in the fixed-bed column. Soybean residue (okara) was impregnated with 0.25 M Zr(IV) solution to prepare active binding sites for phosphate. The effect of several factors, including flow rate, bed height, initial phosphorus concentration, pH and adsorbent particle size on the performance of ZLO was examined. The maximum dynamic adsorption capacity of ZLO for phosphorus was estimated to be 16.43 mg/g. Breakthrough curve modeling indicated that Adams–Bohart model and Thomas model fitted the experimental data better than Yoon–Nelson model. After treatment with ZLO packed bed column, the effluent could meet the discharge standard for phosphorus in Australia. Successful desorption and regeneration were achieved with 0.2 NaOH and 0.1 HCl, respectively. The results prove that ZLO can be used as a promising phosphorus adsorbent in the dynamic adsorption system. - Highlights: • Dynamic adsorption of P from water and wastewater by Zr(IV)-loaded okara was tested. • Effects of column design parameters on the adsorption performance were investigated. • The dynamic adsorption capacity of Zr(IV)-loaded okara for P was reasonably high. • The spent column was effectively regenerated with 0.2 M NaOH followed by 0.1 M HCl. • Zr(IV)-loaded okara column was efficient in eliminating P from municipal sewage.

  15. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.

    Science.gov (United States)

    Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu

    2017-08-22

    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.

  16. Adsorption of some heavy metals on sulphate and phosphate modified kaolinite clay

    International Nuclear Information System (INIS)

    Adebowale, K.O.; Unuabonah, I.E.; Olu-Owolabi, B.I.

    2003-12-01

    Kaolinite clay, in bright white lumps collected from from Ubulu-Ukwu, Delta State, Nigeria, was modified with 200μ.ml -1 of phosphate and sulphate anion and thereafter used to adsorb some heavy metals viz. lead (Pb), Cadmium (Cd), Zinc (Zn) and Copper (Cu) from aqueous solution of the metals. The metal ions showed the greatest affinity for the P-modified (P-mod) sorbents. The order of adsorption of P-mod follows the order: P-mod Pb > P-mod Cu > P-mod Zn > P-mod Cd . Desorption studies showed that the P-modified sorbents exhibited a very strong ability to specifically adsorb lead, copper and zinc and are therefore poorly desorbed. All the metals were easily desorbed from the unmodified sorbent. The potential of the modified sorbents are enumerated. (author)

  17. Synthesis and characterization of the aluminium phosphates modified with ammonium, calcium and molybdenum by hydrothermal method

    Directory of Open Access Journals (Sweden)

    Łuczka Kinga

    2016-06-01

    Full Text Available Synthesis and characterization of the aluminum phosphates modified with ammonium, calcium and molybdenum were conducted. The influence of process parameters (reactive pressure and molar ratios in the reaction mixture were studied. The contents of the individual components in the products were in the range of: 10.97–17.31 wt% Al, 2.65–13.32 wt% Ca, 0.70–3.11 wt% Mo, 4.36–8.38 wt% NH3, and 35.12–50.54 wt% P2O5. The materials obtained in the experiments were characterized by various physicochemical parameters. The absorption oil number was in the range from 67 to 89 of oil/100 g of product, the surface area was within the range of 4–76 m2/g, whereas the average particle size of products reached 282–370 nm. The Tafel tests revealed comparable anticorrosive properties of aluminum phosphates modified with ammonium, calcium, molybdenum in comparison with commercial phosphate.

  18. Zirconium/polyvinyl alcohol modified flat-sheet polyvinyldene fluoride membrane for decontamination of arsenic: Material design and optimization, study of mechanisms, and application prospects.

    Science.gov (United States)

    Zhao, Dandan; Yu, Yang; Chen, J Paul

    2016-07-01

    Arsenic contamination in industrial wastewater and groundwater has become an important environmental issue. In this study, a novel zirconium/polyvinyl alcohol (PVA) modified polyvinyldene fluoride (PVDF) membrane was developed for arsenate removal from simulated contaminated water. A PVDF flat-sheet membrane was first fabricated; it was then soaked in a zirconium-PVA solution and dried, and finally reacted with a glutaraldehyde solution, by which the zirconium ions were impregnated onto the PVDF surface through the ether and hydroxyl groups according to the cross-linkage mechanism. The fabrication procedure was optimized by the Box-Behnken experimental design approach. The adsorption kinetics study showed that most of uptake occurred in 5 h and the equilibrium was established in 24 h. The acidic condition was beneficial for the arsenate removal and the optimal removal efficiency can be obtained at pH 2.0. The experimental data of the adsorption isotherm was better described by Langmuir equation than Freundlich equation. The maximum adsorption capacity of 128 mg-As/g was achieved at pH 2.0. In the filtration study, the modified membrane with an area of 12.56 cm(2) could treat 15.6 L arsenate solution (equivalent to 75,150 bed volumes) with an influent concentration of 98.6 μg/L to meet the maximum contaminate level of 10 μg/L. Several instrumental studies revealed that the removal was mainly associated with ion exchange between chloride and arsenate ions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Simultaneous phosphate and CODcr removals for landfill leachate using modified honeycomb cinders as an adsorbent

    International Nuclear Information System (INIS)

    Yue Xiu; Li Xiaoming; Wang Dongbo; Shen Tingting; Liu Xian; Yang Qi; Zeng Guangming; Liao Dexiang

    2011-01-01

    In this study, honeycomb cinders were employed to remove phosphate and Chemical Oxygen Demand (COD cr ) simultaneously for landfill leachate treatment. Operating conditions of honeycomb cinders pretreatment, pH, temperature, honeycomb cinders dosage, reaction time, and settling time, were evaluated and optimized. The results revealed that the removal efficiencies of both phosphate and COD cr could be increased up to 99.9% and 66.7% under the optimal conditions, respectively. Moreover, the structures of raw/modified honeycomb cinders and resulting precipitates were detected by Scanning Electron Microscope (SEM), Energy Dispersive Spectrometers (EDS) analysis and X-ray Diffraction (XRD). The results suggested that the adsorption method using honeycomb cinders might be an effective strategy as a pretreatment technology for landfill leachate treatment.

  20. Novel routes in flame retardancy of bisphenol A polycarbonate/impact modifier/aryl phosphate blends

    Energy Technology Data Exchange (ETDEWEB)

    Wawrzyn, Eliza

    2013-07-01

    The massive use of electronic engineering products accompanied by high demands on fire safety has led to increasing interest in environmentally friendly flame retardancy of bisphenol A polycarbonate (PC) based materials. In this work, novel routes for enhancing the flame retardancy of PC/Impact Modifier/Aryl phosphate were studied with respect to pyrolysis (TG, TG-FTIR, ATR-FTIR, NMR), flammability (LOI and UL 94) and fire behavior (cone calorimeter at different irradiations). To improve charring of PC/ABS{sub PTFE}+Aryl phosphate, the exchange of bisphenol A bis(diphenyl phosphate) (BDP) with novel aryl phosphates was proposed. Two novel flame retardants were synthesized: 3,3,5-trimethylcyclohexylbisphenol-bis(diphenyl phosphate) (TMC-BDP) and bisphenol A-bis(diethylphosphate) (BEP). TMC-BDP was more stable than BDP, thus gave a potential to increase the chemical reactions between the components of the PC/ABS{sub PTFE}+Aryl phosphate, whereas more reactive BEP was expected to increase the cross linking activity with the polymer matrix. Nevertheless, the corresponding blends did not enhance the flame retardancy compared to PC/ABS{sub PTFE}+BDP. BEP in PC/ABS{sub PTFE} preferred to cross-link with itself instead of with PC, thus it showed poor fire protection performance. TMC-BDP gave as good results as BDP in PC/ABS PTFE material. The results delivered evidence that BDP possesses a high degree of optimization in PC/ABS{sub PTFE} system. To provide a novel impact modifier improving not only mechanical properties but also the fire retardancy of PC/BDP material, the replacement of highly flammable acrylonitrile-butadiene-styrene (ABS) with silicon acrylate rubber (SiR) with high content of polydimethylsiloxane (PDMS) was studied. In PC/SiR{sub PTFE}/BDP the replacement of ABS is beneficial, but PDMS worsened the BDP gas phase and condensed phase action. PDMS reacted also with PC during combustion. PDMS-PC and PDMS-BDP interactions led to silicon dioxide. In fact, the

  1. Phosphate Adsorption using Modified Iron Oxide-based Sorbents in Lake Water: Kinetics, Equilibrium, and Column Tests

    Science.gov (United States)

    Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese (E33/Mn) and silver (E33/AgI and E33/AgII) nanoparticles. Adso...

  2. Dissolution of uranium dioxide in supercritical carbon dioxide modified with tri-n-butyl phosphate-hydrogen peroxide

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.; Manchanda, V.K.

    2009-01-01

    Direct dissolution of uranium dioxide in supercritical carbon dioxide modified with tri-n-butyl phosphate (TBP) has been attempted. The effects of TBP concentration and pressure on the extraction of uranium have been studied. Addition of hydrogen peroxide in the modifier enhances the dissolution/extraction of uranium. (author)

  3. Application of molybdenum and phosphate modified kaolin in electrochemical treatment of paper mill wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Wang Bo; Wang Ying

    2007-01-01

    Pulp and paper mill wastewater is characterized by very high chemical oxygen demand (COD) values that inhibit the activity of microorganisms during biological oxidations. The electrochemical degradation of pulp and paper mill wastewater catalyzed by molybdenum and phosphate (Mo-P) modified kaolin with graphite as anode and cathode was investigated. The catalyst was characterized by XRD, XPS and SEM spectra and the effects of pH, metal ion and introduction of NaCl on the efficiency of the electrochemical degradation process were also studied. It was found out that the modified kaolin loaded with Fe 3+ had higher electrochemical catalytic activity in the electrochemical degradation of paper mill wastewater at pH 4. A 96% COD removal efficiency was obtained in 40 min of electrochemical treatment of the wastewater at current density 30 mA cm -2 . A possible mechanism for degradation of the mill wastewater constituents was also proposed

  4. Surface Modified Characteristics of the Tetracalcium Phosphate as Light-Cured Composite Resin Fillers

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chen

    2014-01-01

    Full Text Available The objectives of this study are to characterize the properties of light-cured composite resins that are reinforced with whisker surface-modified particles of tetracalcium phosphate (TTCP and to investigate the influence of thermal cycling on the reinforced composites properties. The characteristics of ultimate diametral tensile strength (DTS, moduli, pH values, and fracture surfaces of the samples with different amounts of surface-modified TTCP (30%–60% were determined before and after thermal cycling between 5°C and 55°C in deionized water for 600 cycles. The trends of all groups were ductile prior to thermal cycling and the moduli of all groups increased after thermal cycling. The ductile property of the control group without filler was not significantly affected. Larger amounts of fillers caused the particles to aggregate, subsequently decreasing the resin’s ability to disperse external forces and leading to brittleness after thermal cycling. Therefore, the trend of composite resins with larger amounts of filler would become more brittle and exhibited higher moduli after thermal cycling. This developed composite resin with surface modified-TTCP fillers has the potential to be successful dental restorative materials.

  5. Electrochemical properties of the hexacyanoferrate(II)–ruthenium(III) complex immobilized on silica gel surface chemically modified with zirconium(IV) oxide

    International Nuclear Information System (INIS)

    Panice, Lucimara B.; Oliveira, Elisangela A. de; Filho, Ricardo A.D. Molin; Oliveira, Daniela P. de; Lazarin, Angélica M.; Andreotti, Elza I.S.; Sernaglia, Rosana L.; Gushikem, Yoshitaka

    2014-01-01

    Highlights: • The cyano-bridged mixed valence ruthenium composite material was synthesized. • This newly synthesized compound was incorporated into a carbon paste electrode. • The electrode did not show significant changes in response after six months of use. • The modified electrode is very stable and reproducible. • The electrode sensor was successfully applied for ascorbic acid determination. - Abstract: The chemically modified silica gel with zirconium(IV) oxide was used to immobilize the [Fe(CN) 6 ] 4− complex ion initially. The reaction of this material with [Ru(edta)H 2 O] − complex ion formed the immobilized cyano-bridged mixed valence ruthenium complex, (≡Zr) 5 [(edta)RuNCFe(CN) 5 ]. This material was incorporated into a carbon paste electrode and, its electrochemical properties were investigated. However, for an ascorbic acid solution, an enhancement of the anodic peak current was detected due to electrocatalytic oxidation. The electrode presented the same response for at least 150 successive measurements, with a good repeatability. The modified electrode is very stable and reproducible. The sensor was applied for ascorbic acid determination in pharmaceutical preparation with success

  6. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    Science.gov (United States)

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  7. Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified Portland cement-based experimental endodontic sealers.

    Science.gov (United States)

    Viapiana, R; Flumignan, D L; Guerreiro-Tanomaru, J M; Camilleri, J; Tanomaru-Filho, M

    2014-05-01

    To evaluate the physicochemical and mechanical properties of Portland cement-based experimental sealers (ES) with different radiopacifying agents (zirconium oxide and niobium oxide micro- and nanoparticles) in comparison with the following conventional sealers: AH Plus, MTA Fillapex and Sealapex. The materials were tested for setting time, compressive strength, flow, film thickness, radiopacity, solubility, dimensional stability and formaldehyde release. Data were subjected to anova and Tukey tests (P 0.05) and lower solubility when compared with MTA Fillapex and Sealapex (P Portland cement-based experimental endodontic sealers presented physicochemical properties according to the specifications no 57 ANSI/ADA (ADA Professional Product Review, 2008) and ISO 6876 (Dentistry - Root Canal Sealing Materials, 2012, British Standards Institution, London, UK). The sealers had setting times and flow ability that was adequate for clinical use, satisfactory compressive strength and low solubility. Additional studies should be carried out with the purpose of decreasing the film thickness and to determine the ideal ratio of radiopacifying agents in Portland cement-based root canal sealers. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Lanthanum-modified bentonite: potential for efficient removal of phosphates from fishpond effluents.

    Science.gov (United States)

    Kurzbaum, Eyal; Raizner, Yasmin; Cohen, Oded; Rubinstein, Guy; Bar Shalom, Oded

    2017-06-01

    Adsorption has been suggested as an effective method for removing phosphates from agricultural wastewater effluents that contain relatively high phosphate concentrations. The present study focused on the use of a bentonite-lanthanum clay (Phoslock ® ) for reducing the dissolved phosphate concentration in fishpond effluents. Batch experiments with synthetic phosphate-spiked solutions and with fishpond effluents were performed in order to determine adsorption equilibrium isotherms and kinetics as well as to determine the efficiency of Phoslock ® in removing phosphate from these solutions. In the synthetic phosphate-spiked solution, the mean maximum phosphate adsorption capacity was 92 mg Phoslock ® /mg phosphate removal. A ratio of 50, 100, and 200 mg Phoslock ® /mg phosphate removal was found for complete phosphate removal from the fishpond effluents, where higher doses of Phoslock ® led to a faster removal rate (94% removal within the first 150 min). These results show that bentonite-lanthanum clay can be employed for designing a treatment process for efficient phosphate removal from fishpond effluents.

  9. A spanish mineral of zirconium and hafnium. Separation of the two elements by liquid-liquid extraction, using tributyl phosphate as chelating agent

    International Nuclear Information System (INIS)

    Ruiz Sanchez, F.; Cruz Castillo, F. de la; Fernandez Cellini, R.

    1962-01-01

    The zirconium and Hafnium oxides are obtained from a Spanish mineral of zircon with an average contest of 55% in ZrO 2 -HfO 2 . An alkaline fusion to open the mineral, followed by a purification by crystallization as (Zr O-Hf O)Cl 2 H 2 O or as (Zr-Hf) (SO 4 ) 2 . 4H 2 O, is used. A discussion of the best experimental conditions for opening the mineral and of the purification method is made. (Author) 45 refs

  10. Preparation and characterization of sugar cane bagasse fiber modified with nanoparticles of zirconium oxide; Preparacao e caracterizacao de fibras de bagaco de cana modificadas com nanoparticulas de oxido de zirconio

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, K.C.C. de; Mulinari, D.R.; Voorwald, H.C.J.; Cioffi, M.O.H., E-mail: kcccarvalho@hotmail.com.b [UNESP, Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia(FEG)

    2010-07-01

    The sugar cane bagasse fiber are renewable materials and have great application potential when used as reinforcement in a polymer matrix to give rise to composite materials and as supports for adsorption of heavy metals. This paper therefore describes the preparation and characterization of bleached and hydrated zirconium oxide modified sugar cane bagasse fiber by conventional precipitation method. Through the technique of electron microscopy we observed the presence of oxide nanoparticles on the fiber surface, proving the efficiency of the conventional precipitation method. With the X-ray diffraction analysis it was determined a decrease of 6.2% in the crystallinity index of modified fibers when compared to the bleached fibers showing the deposition of amorphous zirconium oxide on the fiber surface. (author)

  11. Characterization and evaluation of acid-modified starch of Dioscorea oppositifolia (Chinese yam as a binder in chloroquine phosphate tablets

    Directory of Open Access Journals (Sweden)

    Adenike Okunlola

    2013-12-01

    Full Text Available Chinese yam (Dioscorea oppositifolia starch modified by acid hydrolysis was characterized and compared with native starch as a binder in chloroquine phosphate tablet formulations. The physicochemical and compressional properties (using density measurements and the Heckel and Kawakita equations of modified Chinese yam starch were determined, and its quantitative effects as a binder on the mechanical and release properties of chloroquine phosphate were analyzed using a 2³ full factorial design. The nature (X1, concentration of starch (X2 and packing fraction (X3 were taken as independent variables and the crushing strength-friability ratio (CSFR, disintegration time (DT and dissolution time (t80 as dependent variables. Acid-modified Chinese yam starch showed a marked reduction (p<0.05 in amylose content and viscosity but increased swelling and water-binding properties. The modified starch had a faster onset and greater amount of plastic flow. Changing the binder from native to acid-modified form led to significant increases (p<0.05 in CSFR and DT but a decrease in t80. An increase in binder concentration and packing fraction gave similar results for CSFR and DT only. These results suggest that acid-modified Chinese yam starches may be useful as tablet binders when high bond strength and fast dissolution are required.

  12. Role of lead as modifier on the properties of lead iron phosphate nuclear waste glasses

    International Nuclear Information System (INIS)

    Hazra, G.; Mitra, P.; Das, T.

    2011-01-01

    Lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high level defence and high level commercial radioactive waste for long term disposal. Lead iron phosphate glasses have several advantages such as lower aqueous corrosion rate, lower processing temperature etc. (author)

  13. Investigation of high temperature reactions on graphite with Rutherford backscattering spectrometry: interaction of cadmium, lead and silver with a phosphate modifier

    Energy Technology Data Exchange (ETDEWEB)

    Eloi, C.; Robertson, J.D.; Majidi, V. (Kentucky Univ., Lexington, KY (United States))

    1993-03-01

    The depth-dependent concentration profiles of nitrate salts of Pb, Cd and Ag were observed with and without the addition of (NH[sub 4])H[sub 2]PO[sub 4] chemical modifier using Rutherford backscattering spectrometry (RBS). The RBS results demonstrate that the analytes, in all the systems investigated, readily migrate ([>=]3 [mu]m) into the pyrolytic graphite coated graphite substrate at room temperature. The stabilization of Cd and Pb with the phosphate modifier is proposed to be due to the formation of a phosphate glass. Silver did not extensively interact with the phosphate modifier and was, as a result, not stabilized. (author).

  14. Investigation of high temperature reactions on graphite with Rutherford backscattering spectrometry: interaction of cadmium, lead and silver with a phosphate modifier

    International Nuclear Information System (INIS)

    Eloi, C.; Robertson, J.D.; Majidi, V.

    1993-01-01

    The depth-dependent concentration profiles of nitrate salts of Pb, Cd and Ag were observed with and without the addition of (NH 4 )H 2 PO 4 chemical modifier using Rutherford backscattering spectrometry (RBS). The RBS results demonstrate that the analytes, in all the systems investigated, readily migrate (≥3 μm) into the pyrolytic graphite coated graphite substrate at room temperature. The stabilization of Cd and Pb with the phosphate modifier is proposed to be due to the formation of a phosphate glass. Silver did not extensively interact with the phosphate modifier and was, as a result, not stabilized. (author)

  15. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Rajzer, Izabella, E-mail: irajzer@ath.bielsko.pl [University of Bielsko-Biala (ATH), Department of Mechanical Engineering Fundamentals, Division of Materials Engineering, Willowa 2 Street, 43-309 Bielsko-Biała (Poland); Menaszek, Elżbieta [Jagiellonian University (UJ), Collegium Medicum, Department of Cytobiology, Medyczna 9 Street, 30-068 Cracow (Poland); Kwiatkowski, Ryszard [University of Bielsko-Biala (ATH), Faculty of Materials and Environmental Sciences, Institute of Textile Engineering and Polymer Materials, Willowa 2 Street, 43-309 Bielsko-Biała (Poland); Planell, Josep A.; Castano, Oscar [Institute for Bioengineering of Catalonia (IBEC), Biomaterials for Regenerative Therapies, Baldiri Reixac 15-21, 08028 Barcelona (Spain); Polytechnic University of Catalonia (UPC), Diagonal 647, 08028 Barcelona (Spain); CIBER-BBN The Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Barcelona (Spain)

    2014-11-01

    In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix. The composite Gel/SG5/PCL scaffold exhibited more enhanced mechanical properties than individual Gel and Gel/SG5 scaffolds. The presence of SG5 nanoparticles accelerated the nucleation and growth of apatite crystals on the surface of the composite Gel/SG5/PCL scaffold in simulated body fluid (SBF). The osteoblast response in vitro to developed electrospun scaffolds (PCL and Gel/SG5/PCL) was investigated by using normal human primary NHOst cell lines. NHOst cell culture studies showed that higher alkaline phosphatase (ALP) activity and better mineralization were obtained in the case of composite materials than in pure PCL scaffolds. The mechanically strong PCL scaffold served as a skeleton, while the Gel/SG5 fibers facilitated cell spreading and mineralization of the scaffold. - Highlights: • Bi-layer scaffolds were produced by electrospinning method. • The addition of nanoparticles enhanced the bioactivity of scaffold. • Bi-layer scaffold enhanced ALP activity and NHOst cell mineralization.

  16. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study

    OpenAIRE

    Felemban, Nayef H.; Ebrahim, Mohamed I.

    2017-01-01

    Background The purpose of this in-vitro study was to examine the effect of incorporating different concentrations of Zirconium oxide-Titanium dioxide (ZrO2-TiO2) nanoparticles, which can have antibacterial properties, on the mechanical properties of an orthodontic adhesive. Methods ZrO2-TiO2 (Zirconium oxide, HWNANO, Hongwu International Group Ltd, China) -Titanium dioxide, Nanoshell, USA) nanopowder were incorporated into orthodontic adhesive (Transbond XT, 3?M Unitek, Monrovia, USA) with di...

  17. Phosphate Remediation and Recovery from Lake Water using Modified Iron Oxide-based Adsorbents - abstract

    Science.gov (United States)

    As a limiting nutrient in most aquatic ecosystems, increased phosphate (PO43-) concentrations can accelerate eutrophication resulting in the proliferation of potentially toxic harmful algal blooms. In addition to environmental impacts of PO43- pollution, overall reserves of this ...

  18. Zirconium and technetium recovery and partitioning in the presence of actinides in modified Purex process for ATW program. Final report

    International Nuclear Information System (INIS)

    Dzekun, E.G.; Fedorov, Y.S.; Galkin, B.Y.; Lyubtsev, R.I.; Mashkin, A.N.; Mishin, E.N.; Zilberman, B.Y.

    1994-01-01

    The modified Purex process flowsheet is based on combination of all irradiated materials, their joint dissolution and reprocessing as a NPP spent fuel solution with abnormal Pu content after addition of recycled depleted U concentrate. Some groups of long-lived radionuclides could be completely recovered and localized at the stage of extraction reprocessing using 30% TBP. Studies were conducted for 10 y to develop the process for recovery, concentration, and localization of U, Pu, Np, Tc, and Zr within 1st extraction cycle. Actinides are recovered from high-level raffinate of this cycle after evaporation and feed adjustment. Results in this report show that combined deep recovery of several elements from highly irradiated materials by TBP extraction, for further transmutation, is possible. Selective stripping of Zr from solvent phase containing U, Pu, Np, and Tc is quite effective. Development of the modified Purex process is not complete; main problem to be solved should be oxide separation from the loop and permissible storage duration before reprocessing and reuse in the loop

  19. Zirconium and technetium recovery and partitioning in the presence of actinides in modified Purex process for ATW program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dzekun, E.G.; Fedorov, Y.S.; Galkin, B.Y.; Lyubtsev, R.I.; Mashkin, A.N.; Mishin, E.N.; Zilberman, B.Y. [Radievyj Inst., Leningrad (Russian Federation)

    1994-12-31

    The modified Purex process flowsheet is based on combination of all irradiated materials, their joint dissolution and reprocessing as a NPP spent fuel solution with abnormal Pu content after addition of recycled depleted U concentrate. Some groups of long-lived radionuclides could be completely recovered and localized at the stage of extraction reprocessing using 30% TBP. Studies were conducted for 10 y to develop the process for recovery, concentration, and localization of U, Pu, Np, Tc, and Zr within 1st extraction cycle. Actinides are recovered from high-level raffinate of this cycle after evaporation and feed adjustment. Results in this report show that combined deep recovery of several elements from highly irradiated materials by TBP extraction, for further transmutation, is possible. Selective stripping of Zr from solvent phase containing U, Pu, Np, and Tc is quite effective. Development of the modified Purex process is not complete; main problem to be solved should be oxide separation from the loop and permissible storage duration before reprocessing and reuse in the loop.

  20. Pretreatment of Raw Biochar and Phosphate Removal Performance of Modified Granular Iron/Biochar

    Institute of Scientific and Technical Information of China (English)

    Jing Ren; Nan Li; Lin Zhao; Lei Li

    2017-01-01

    Biochar is a potential carrier for nutrients due to its porous nature and abundant functional groups. However, raw biochar has a limited or even negative capacity to adsorb phosphate. To enhance phosphate removal and reduce phos-phate releases, acidic, alkaline, and surfactant pretreatments, followed by granulation and ferric oxide loading, were applied to raw biochar powder (Bp). The alkaline pretreatment proved to be the most effective method and exhibited significant pore expansion and surface oxidation. Bg-OH-FO showed the highest phosphate removal efficiency at 99.2%(initial phos-phate concentration of 20 mg/L) after granulation and ferric oxide loading. Static adsorption results indicated that a pH value of 4 was the most suitable for phosphate adsorption because of the surface properties of Bg-OH-FO and the dis-tribution of P (V) in water. Higher temperatures and a larger initial phosphate concentration led to better adsorption;the adsorption capacity of Bg-OH-FO was 1.91 mg/g at 313 K with an initial phosphate concentration of 50 mg/L. The Bg-OH-FO adsorption process was endothermic in nature. The Freundlich model seemed to be the optimum isotherm model for Bg-OH-FO. Under continuous adsorption, the flow rate and bed depth were changed to optimize the operation con-ditions. The results indicate that a slow flow rate and high bed depth helped increase the removal efficiency (η) of the fixed bed. The breakthrough curves fitted well with the Yoon–Nelson model.

  1. The dissociation of NZP (Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}P{sub 6}O{sub 24}) during plasma spraying[Sodium Zirconium Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Trice, R.W.; Brewer, L.N.; Faber, K.T.

    2000-04-01

    Sodium zirconium phosphate (NaZr{sub 2}P{sub 3}O{sub 12} or NZP) was first systematically evaluated in the early 1980s by Roy and co-workers, who demonstrated its extremely low coefficient of thermal expansion (CTE). It was later shown that other group IA and IIA atoms can be ionically substituted into the NZP crystal structure to adjust the CTE. As a result of their low and tailorable CTEs, NZP's have potential use as a protective coating for silicon-based ceramics and carbon-carbon composites. One technique for the application of ceramic coatings employs plasma-spraying. In this process, powders are injected into a plasma flame, melted, and propelled onto a substrate. The resulting coating microstructure is typically composed of thin lamellae (from each melted particle) stacked on top of one another during each pass of the torch. In the current research, NZP has been plasma-sprayed using the recently patented small particle plasma-spray process. The microstructure was then analyzed using transmission electron microscopy and x-ray diffraction to identify the phases in the complex coating that resulted.

  2. Hydrothermal synthesis of copper zirconium phosphate hydrate [Cu(OH)2Zr(HPO4)2·2H2O] and an investigation of its lubrication properties in grease.

    Science.gov (United States)

    Zhang, Xiaosheng; Xu, Hong; Zuo, Zhijun; Lin, Zhi; Ferdov, Stanislav; Dong, Jinxiang

    2013-08-28

    Copper zirconium phosphate hydrate (Cu(OH)2Zr(HPO4)2·2H2O, hereafter referred to as Cu-α-ZrP) with high crystallinity was directly synthesized in a NaF-CuO-ZrO-P2O5-H2O system under hydrothermal conditions. The copper ion was confirmed to be an exchangeable cation in the Cu-α-ZrP through elemental analysis and a proton ion exchange process. The crystal structure of the Cu-α-ZrP was determined ab initio by using X-ray powder diffraction data. In the structure, the CuO6 octahedron would be located in an exchangeable atom position. Moreover, Cu-α-ZrP was evaluated as an additive in grease in a four ball test. The maximum nonseizure load (PB, representing the load-carrying capacity) of the base grease containing Cu-α-ZrP was increased from 353 to 1235 N. The excellent load-carrying capacity may be explained by the easier adherence of the material to the worn surface forming a tight protective film.

  3. Determination of the stability of the uranyl ion sipped in {tau}-hydrogen phosphate of zirconium in sodic form; Determinacion de la estabilidad del ion uranilo sorbido en {tau}-hidrogenofosfato de zirconio en forma sodica

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E.; Fernandez V, S.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Drot, R.; Simoni, E. [Universite de Paris-Sud-XI, Institut de Physique Nucleaire d' Orsay, Groupe de radiochimie, Bat. 100, 91406 Orsay (France)]. e-mail: edo@nuclear.inin.mx

    2005-07-01

    The stability of the uranyl sipped in the zirconium {tau}-hydrogen phosphate in sodic form ({tau}-NaZrP), was carried out characterizing the complexes formed by Laser spectroscopy in the visible region and by X-ray photoelectron spectroscopy. The material was prepared by a new synthesis technique working in nitrogen atmosphere and to low temperatures. The sorption of the uranyl ion was made in acid media with concentrations of 10{sup -4} and 10{sup -5} of uranyl nitrate and with ion forces of 0.1 and 0.5 M of NaClO{sub 4}. The spectra of induced fluorescence with laser (TRLFS) show that the uranyl is fixed in very acid media in three well differentiated species, to pH less acid, the specie of long half life disappears and are only those of short half life. The results of the binding energy obtained by XPS indicate that the binding energy of the uranyl confer it a stable character to the complex formed in the {tau}-NaZP, that makes to this material appropriate to retain to the uranyl in solution to high ion forces and in acid media. (Author)

  4. Experimental studies of relevance on zirconium nitrate raffinate sludge for its disposal as well as zirconium recovery

    International Nuclear Information System (INIS)

    Brahmananda Reddy, G.; Narasimha Murty, B.; Ravindra, H.R.

    2013-01-01

    One of the many routes of production of nuclear grade zirconium dioxide involve separation of zirconium and hafnium by solvent extraction of zirconium nitrate using tri-n-butyl phosphate followed by precipitation of zirconium with ammonia and finally calcination of the so obtained hydrated zirconia at elevated temperature. The zirconium feed solution as is generated from digestion of zirconium washed dried frit (produced by the caustic fusion of zircon sand which is one of the beach sand heavy minerals) in nitric acid contain considerable amount of sludge material and after solvent extraction this whole sludge material rests with raffinate. This sludge material has a scope to contain considerable amounts of zirconium along with other metal ions such as hafnium, aluminium, iron, etc. besides nitric acid and it constitutes one of the important solid wastes that needs to be disposed suitably. One of the disposal means of this sludge material is to use it as a land fill for which two important criteria are to be viz the pH of 10% solid waste solution should be near to neutral pH and the loss on ignition at 550℃ on dry basis of the sludge to be below 20%. In order to study the implications of presence of varying amounts of zirconium nitrate in the sludge on the pH of 10% solution of the sludge various synthetic zirconium nitrate solid waste were prepared using the sludge material generated at the laboratory during the analysis of zirconium washed dried frit. Presence of zirconium in the sludge is expected to decrease the overall pH of the 10% solution of the sludge because zirconium is prone to hydrolyze especially locally when zirconium ion comes into contact with water according to the chemical equation Zr 4+ H 2 O → ZrO 2+ + 2H + . From this equation, it is clear that for every one mole of zirconium ions two moles of hydrogen ions are produced. This is verified experimentally using the synthetically prepared sludge materials with varying amounts of zirconium

  5. Penetrate-leach dissolution of zirconium-clad uranium and uranium dioxide fuels

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1975-01-01

    A new decladding-dissolution process was developed for zirconium-clad uranium metal and UO 2 fuels. The proposed penetrate-leach process consists of penetrating the zirconium cladding with Alniflex solution (2M HF--1M HNO 3 --1M Al(NO 3 ) 3 --0.1M K 2 Cr 2 O 7 ) and of leaching the exposed core with 10M HNO 3 . Undissolved cladding pieces are discarded as solid waste. Periodic HF and HNO 3 additions, efficient agitation, and in-line zirconium analyses are required for successful control of ZrF 4 and/or AlF 3 precipitation during the cladding-penetration step. Preliminary solvent extraction studies indicated complete recovery of uranium with 30 vol. percent tributyl phosphate (TBP) from both Alniflex solution and blended Alniflex-HNO 3 leach solutions. With 7.5 vol. percent TBP, high extractant/feed flow ratios and low scrub flows are required for satisfactory uranium recovery from Alniflex solution. Modified waste-handling procedures may be required for Alniflex waste, because it cannot be evaporated before neutralization and large quantities of solids are generated on neutralization. The effect of unstable UZr 3 (epsilon phase of uranium-zirconium system) on the safety of penetrate-leach dissolution was investigated

  6. Calcium phosphate formation from sea urchin - (brissus latecarinatus via modified mechano-chemical (ultrasonic conversion method

    Directory of Open Access Journals (Sweden)

    R. Samur

    2013-07-01

    Full Text Available This study aims to produce apatite structures, such as hydroxyapatite (HA and fluorapatite (FA, from precursor calcium phosphates of biological origin, namely from sea urchin, with mechano-chemical stirring and hot-plating conversion method. The produced materials were heat treated at 800 °C for 4 hours. X-ray diffraction and scanning electron microscopy (SEM studies were conducted. Calcium phosphate phases were developed. The SEM images showed the formation of micro to nano-powders. The experimental results suggest that sea urchin, Brissus latecarinatus skeleton could be an alternative source for the production of various mono or biphasic calcium phosphates with simple and economic mechano-chemical (ultrasonic conversion method.

  7. Dielectric studies on binary mixtures of Tri-n-butyl phosphate (TBP) and long-chain primary alcohols (modifiers)

    International Nuclear Information System (INIS)

    Dash, S.K.; Swain, B.B.

    1993-01-01

    Dielectric constant (ε) of Tri-n-butyl phosphate (TBP), in binary mixtures with five long-chain primary alcohols viz; 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol and 1-octanol has been measured at ν = 455 kHz and at temperature 302 K. The data is used to evaluate mutual correlation factor g ab , excess molar polarization ΔP and excess free energy of mixing ΔF ab by using Winkelmann-Quitzsch eqn. for binary mixtures to assess the suitability of the alcohols as modifiers. The trend of variation of these parameters exhibit marked dependence on chain-length of the alcohols indicating 1-heptanol to be an efficient modifier. (author)

  8. Photometric determination of zirconium in phosphorites by reaction with arsenazo III

    Energy Technology Data Exchange (ETDEWEB)

    Nikol' skaya, I V; Maksimov, A V

    1976-05-01

    The reaction between zirconium and arsenazo III has been studied over a wide range of hydrochloric acid concentration and under different conditions. 6 and 9 M HCl solutions are optimal for determining zirconium; the least effect of phosphate ions and color stability in time are observed in this case. The determination of zirconium should be carried out using 10-fold reagent excess and in 15-20 min after adding the reagent. The interference of phosphate ions has been estimated. A procedure has been developed for photometric determination of zirconium in phosphorites with prior acid separation of soluble impurities.

  9. Electrochemical assessing corrosion inhibiting effects of zinc aluminum polyphosphate (ZAPP) as a modified zinc phosphate pigment

    International Nuclear Information System (INIS)

    Naderi, R.; Attar, M.M.

    2008-01-01

    Undesirable anti-corrosion performance of zinc phosphate pigment, the classical chromate replacement, has led researchers to take modification into account. Polyphosphate-based anti-corrosion pigments as a result of modification of zinc orthophosphate have been found to function much more efficiently. This study aimed to evaluate performance of steel samples immersed in 3.5% NaCl aqueous solution-containing zinc aluminum polyphosphate (ZAPP) pigment extract compared to those involving conventional zinc phosphate (ZP) pigment extract and also no pigment (blank) using electrochemical tests such as electrochemical impedance spectroscopy (EIS) and linear polarization (LP) as well as surface analysis. Impedance spectra and polarization curves revealed two different trends, showing the superiority of ZAPP pigment. Based on the results of scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), presence of a precipitated layer on the surface was confirmed when steel sample was immersed into the solution-containing ZAPP

  10. Influence of zirconium ions on the sorption of carrier-free radiophosphate (32P)

    International Nuclear Information System (INIS)

    Friedmann, Ch.; Schoenfeld, T.

    1975-01-01

    In acid solutions the addition of zirconium ions largely affects the sorption of carrier-free radiophosphate on various materials. With some sorbents, such as diatomeceous earth, clay minerals or activated charcoal, the addition of small quantities of zirconium leads to a substantial increase of 32 P adsorption. On the other hand, important quantities of zirconium cause decrease of sorption. With alumina as an adsorbent, any addition of zirconium leads to reduced adsorption of radiophosphate. These phenomena are due to the formation of soluble zirconium-phosphate complex ions. (author)

  11. Magnesium modifies the association between serum phosphate and the risk of progression to end-stage kidney disease in patients with non-diabetic chronic kidney disease.

    Science.gov (United States)

    Sakaguchi, Yusuke; Iwatani, Hirotsugu; Hamano, Takayuki; Tomida, Kodo; Kawabata, Hiroaki; Kusunoki, Yasuo; Shimomura, Akihiro; Matsui, Isao; Hayashi, Terumasa; Tsubakihara, Yoshiharu; Isaka, Yoshitaka; Rakugi, Hiromi

    2015-10-01

    It is known that magnesium antagonizes phosphate-induced apoptosis of vascular smooth muscle cells and prevents vascular calcification. Here we tested whether magnesium can also counteract other pathological conditions where phosphate toxicity is involved, such as progression of chronic kidney disease (CKD). We explored how the link between the risk of CKD progression and hyperphosphatemia is modified by magnesium status. A post hoc analysis was run in 311 non-diabetic CKD patients who were divided into four groups according to the median values of serum magnesium and phosphate. During a median follow-up of 44 months, 135 patients developed end-stage kidney disease (ESKD). After adjustment for relevant clinical factors, patients in the lower magnesium-higher phosphate group were at a 2.07-fold (95% CI: 1.23-3.48) risk for incident ESKD and had a significantly faster decline in estimated glomerular filtration rate compared with those in the higher magnesium-higher phosphate group. There were no significant differences in the risk of these renal outcomes among the higher magnesium-higher phosphate group and both lower phosphate groups. Incubation of tubular epithelial cells in high phosphate and low magnesium medium in vitro increased apoptosis and the expression levels of profibrotic and proinflammatory cytokine; these changes were significantly suppressed by increasing magnesium concentration. Thus, magnesium may act protectively against phosphate-induced kidney injury.

  12. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces

    International Nuclear Information System (INIS)

    Meininger, M.; Wolf-Brandstetter, C.; Zerweck, J.; Wenninger, F.; Gbureck, U.; Groll, J.; Moseke, C.

    2016-01-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr 2+ ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr 2+ into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr 2+ ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant–bone interface. - Highlights: • Sr-doped struvite coatings have been deposited on titanium by electrochemically assisted deposition. • Sr content can be adjusted by means of process time, current density and pulse mode. • Sr-doped coatings release therapeutically relevant Sr doses in physiological media for several weeks. • During immersion in physiological media Sr-doped struvite coatings transform into a low crystalline calcium phosphate phase.

  13. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Meininger, M. [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany); Wolf-Brandstetter, C. [Max Bergmann Center for Biomaterials, Technical University of Dresden, Budapester Straße 27, D-01069 Dresden (Germany); Zerweck, J.; Wenninger, F.; Gbureck, U.; Groll, J. [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany); Moseke, C., E-mail: claus.moseke@fmz.uni-wuerzburg.de [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany)

    2016-10-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr{sup 2+} ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr{sup 2+} into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr{sup 2+} ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant–bone interface. - Highlights: • Sr-doped struvite coatings have been deposited on titanium by electrochemically assisted deposition. • Sr content can be adjusted by means of process time, current density and pulse mode. • Sr-doped coatings release therapeutically relevant Sr doses in physiological media for several weeks. • During immersion in physiological media Sr-doped struvite coatings transform into a low crystalline calcium phosphate phase.

  14. A novel and easy-to-prepare strontium(II) modified calcium phosphate bone cement with enhanced mechanical properties.

    Science.gov (United States)

    Schumacher, M; Henß, A; Rohnke, M; Gelinsky, M

    2013-07-01

    The aim of this study was to evaluate two different approaches to obtaining strontium-modified calcium phosphate bone cements (SrCPCs) without elaborate synthesis of Sr-containing calcium phosphate species as cement precursors that could release biologically effective doses of Sr(2+) and thus could improve the healing of osteoporotic bone defects. Using strontium carbonate as a strontium(II) source, it was introduced into a hydroxyapatite-forming cement either by the addition of SrCO3 to an α-tricalcium phosphate-based cement precursor mixture (A-type) or by substitution of CaCO3 by SrCO3 during precursor composition (S-type). The cements, obtained after setting in a water-saturated atmosphere, contained up to 2.2at.% strontium in different distribution patterns as determined by time-of-flight secondary ion mass spectrometry and energy-dispersive X-ray spectroscopy. The setting time of CPC and A-type cements was in the range of 6.5-7.5min and increased for substitution-type cements (12.5-13.0min). Set cements had an open porosity between 26 and 42%. Compressive strength was found to increase from 29MPa up to 90% in substituted S-type cements (58MPa). SrCPC samples released between 0.45 and 1.53mgg(-1) Sr(2+) within 21days and showed increased radiopacity. Based on these findings, the SrCPC developed in this study could be beneficial for the treatment of defects of systemically impaired (e.g. osteoporotic) bone. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Efficient UV-emitting X-ray phosphors: octahedral Zr(PO4)6 luminescence centers in potassium hafnium-zirconium phosphates K2Hf1-xZrx(PO4)2 and KHf2(1-x)Zr2x(PO4)3

    International Nuclear Information System (INIS)

    Torardi, C.C.; Miao, C.R.; Li, J.

    2003-01-01

    Potassium hafnium-zirconium phosphates, K 2 Hf 1-x Zr x (PO 4 ) 2 and KHf 2(1-x) Zr 2x (PO 4 ) 3 , are broad-band UV-emitting phosphors. At room temperature, they have emission peak maxima at approximately 322 and 305 nm, respectively, under 30 kV peak molybdenum X-ray excitation. Both phosphors demonstrate luminescence efficiencies that make them up to ∼60% as bright as commercially available CaWO 4 Hi-Plus. The solid-state and flux synthesis conditions, and X-ray excited UV luminescence of these two phosphors are discussed. Even though the two compounds have different atomic structures, they contain zirconium in the same active luminescence environment as that found in highly efficient UV-emitting BaHf 1-x Zr x (PO 4 ) 2 . All the three materials have hafnium and zirconium in octahedral coordination via oxygen-atom corner sharing with six separate PO 4 tetrahedra. This octahedral Zr(PO 4 ) 6 moiety appears to be an important structural element for efficient X-ray excited luminescence, as are the edge-sharing octahedral TaO 6 chains for tantalate emission

  16. Nuclear pool of phosphatidylinositol 4 phosphate 5 kinase 1α is modified by polySUMO-2 during apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha; Bhar, Kaushik; Siddhanta, Anirban, E-mail: asiddhanto@yahoo.com

    2013-09-20

    Highlights: •Nuclear pool of PIP5K is SUMOylated. •Enhancement of SUMOylated nuclear PIP5K during apoptosis. •Nuclear PIP5K is modified by polySUMO-1 during apoptosis. •Nuclear PIP5K is modified by polySUMO-2 chain during apoptosis. -- Abstract: Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool of PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis.

  17. Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders

    Energy Technology Data Exchange (ETDEWEB)

    Chavda, Mehul A.; Bernal, Susan A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Apperley, David C. [Solid-State NMR Group, Department of Chemistry, Durham University, Durham DH1 3LE (United Kingdom); Kinoshita, Hajime [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Provis, John L., E-mail: j.provis@sheffield.ac.uk [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-04-15

    The conversion of hexagonal calcium aluminate hydrates to cubic phases in hydrated calcium aluminate cements (CAC) can involve undesirable porosity changes and loss of strength. Modification of CAC by phosphate addition avoids conversion, by altering the nature of the reaction products, yielding a stable amorphous gel instead of the usual crystalline hydrate products. Here, details of the environments of aluminium and phosphorus in this gel were elucidated using solid-state NMR and complementary techniques. Aluminium is identified in both octahedral and tetrahedral coordination states, and phosphorus is present in hydrous environments with varying, but mostly low, degrees of crosslinking. A {sup 31}P/{sup 27}Al rotational echo adiabatic passage double resonance (REAPDOR) experiment showed the existence of aluminium–phosphorus interactions, confirming the formation of a hydrated calcium aluminophosphate gel as a key component of the binding phase. This resolves previous disagreements in the literature regarding the nature of the disordered products forming in this system.

  18. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials

    International Nuclear Information System (INIS)

    Furko, M.; Jiang, Y.; Wilkins, T.A.; Balázsi, C.

    2016-01-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO_3)_2 and NH_4H_2PO_4 components. During the electrochemical deposition Ag"+ and Zn"2"+ ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn"2"+ is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. - Highlights: • Ag and Zn doped calcium phosphate (CaP) layers were electrochemically deposited. • Layer degradation was studied by EIS and potentiodynamic measurements. • The bioceramic coatings became passive after a period of immersion time. • Ag and Zn modified layer shows higher degradation rate compared to pure CaP coating.

  19. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials

    Energy Technology Data Exchange (ETDEWEB)

    Furko, M., E-mail: monika.furko@bayzoltan.hu [Bay Zoltán Nonprofit Ltd. for Applied Research, H-1116 Budapest, Fehérvári u. 130 (Hungary); Jiang, Y.; Wilkins, T.A. [Institute of Particle Science and Engineering, University of Leeds, LS2 9JT (United Kingdom); Balázsi, C. [Bay Zoltán Nonprofit Ltd. for Applied Research, H-1116 Budapest, Fehérvári u. 130 (Hungary)

    2016-05-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO{sub 3}){sub 2} and NH{sub 4}H{sub 2}PO{sub 4} components. During the electrochemical deposition Ag{sup +} and Zn{sup 2+} ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn{sup 2+} is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. - Highlights: • Ag and Zn doped calcium phosphate (CaP) layers were electrochemically deposited. • Layer degradation was studied by EIS and potentiodynamic measurements. • The bioceramic coatings became passive after a period of immersion time. • Ag and Zn modified layer shows higher degradation rate compared to pure CaP coating.

  20. Method of reducing zirconium

    International Nuclear Information System (INIS)

    Megy, J.A.

    1980-01-01

    A method was developed for making nuclear-grade zirconium from a zirconium compound, which ismore economical than previous methods since it uses aluminum as the reductant metal rather than the more expensive magnesium. A fused salt phase containing the zirconium compound to be reduced is first prepared. The fused salt phase is then contacted with a molten metal phase which contains aluminum and zinc. The reduction is effected by mutual displacment. Aluminum is transported from the molten metal phase to the fused salt phase, replacing zirconium in the salt. Zirconium is transported from the fused salt phase to the molten metal phase. The fused salt phase and the molten metal phase are then separated, and the solvent metal and zirconium are separated by distillation or other means. (DN)

  1. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  2. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many pathways to neurodegeneration.

    Science.gov (United States)

    Butterfield, D Allan; Hardas, Sarita S; Lange, Miranda L Bader

    2010-01-01

    Recently, the oxidoreductase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has become a subject of interest as more and more studies reveal a surfeit of diverse GAPDH functions, extending beyond traditional aerobic metabolism of glucose. As a result of multiple isoforms and cellular locales, GAPDH is able to come in contact with a variety of small molecules, proteins, membranes, etc., that play important roles in normal and pathologic cell function. Specifically, GAPDH has been shown to interact with neurodegenerative disease-associated proteins, including the amyloid-beta protein precursor (AbetaPP). Studies from our laboratory have shown significant inhibition of GAPDH dehydrogenase activity in Alzheimer's disease (AD) brain due to oxidative modification. Although oxidative stress and damage is a common phenomenon in the AD brain, it would seem that inhibition of glycolytic enzyme activity is merely one avenue in which AD pathology affects neuronal cell development and survival, as oxidative modification can also impart a toxic gain-of-function to many proteins, including GAPDH. In this review, we examine the many functions of GAPDH with respect to AD brain; in particular, the apparent role(s) of GAPDH in AD-related apoptotic cell death is emphasized.

  3. Interaction Of Calcium Phosphate Nanoparticles With Human Chorionic Gonadotropin Modifies Secondary And Tertiary Protein Structure

    Directory of Open Access Journals (Sweden)

    Al-Hakeim Hussein K

    2015-12-01

    Full Text Available Calcium phosphate nanoparticles (CaPNP have good biocompatibility and bioactivity inside human body. In this study, the interaction between CaPNP and human chorionic gonadotropin (hCG was analyzed to determine the changes in the protein structure in the presence of CaPNP and the quantity of protein adsorbed on the CaPNP surface. The results showed a significant adsorption of hCG on the CaPNP nanoparticle surface. The optimal fit was achieved using the Sips isotherm equation with a maximum adsorption capacity of 68.23 µg/mg. The thermodynamic parameters, including ∆H° and ∆G°, of the adsorption process are positive, whereas ∆S° is negative. The circular dichroism results of the adsorption of hCG on CaPNP showed the changes in its secondary structure; such changes include the decomposition of α-helix strand and the increase in β-pleated sheet and random coil percentages. Fluorescence study indicated minimal changes in the tertiary structure near the microenvironment of the aromatic amino acids such as tyrosine and phenyl alanine caused by the interaction forces between the CaPNP and hCG protein. The desorption process showed that the quantity of the hCG desorbed significantly increases as temperature increases, which indicates the weak forces between hCG and the surface.

  4. Biphasic calcium sulfate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications: in vitro study

    International Nuclear Information System (INIS)

    Vlad, M D; Lopez, J; Torres, R; Barraco, M; Fernandez, E; Valle, L J; Poeata, I

    2010-01-01

    In this study, the cytocompatibility of new 'iron-modified/alpha-tricalcium phosphate (IM/α-TCP) and calcium sulfate dihydrate (CSD)' bone cement (IM/α-TCP/CSD-BC) intended for spinal applications has been approached. The objective was to investigate by direct-contact osteoblast-like cell cultures (from 1 to 14 days) the in vitro cell adhesion, proliferation, morphology and cytoskeleton organization of MG-63 cells seeded onto the new cements. The results were as follows: (a) quantitative MTT-assay and scanning electron microscopy (SEM) showed that cell adhesion, proliferation and viability were not affected with time by the presence of iron in the cements; (b) double immunofluorescent labeling of F-actin and α-tubulin showed a dynamic interaction between the cell and its porous substrates sustaining the locomotion phenomenon on the cements' surface, which favored the colonization, and confirming the biocompatibility of the experimental cements; (c) SEM-cell morphology and cytoskeleton observations also evidenced that MG-63 cells were able to adhere, to spread and to attain normal morphology on the new IM/α-TCP/CSD-BC which offered favorable substratum properties for osteoblast-like cells proliferation and differentiation in vitro. The results showed that these new iron-modified cement-like biomaterials have cytocompatible features of interest not only as possible spinal cancellous bone replacement biomaterial but also as bone tissue engineering scaffolds.

  5. Molybdenum modified phosphate glasses studied by 31P MAS NMR and Raman spectroscopy.

    Science.gov (United States)

    Szumera, Magdalena

    2015-02-25

    Glasses have been synthesized in the system P2O5-SiO2-K2O-MgO-CaO modified by addition of MoO3. Glasses were prepared by conventional fusion method from 40 g batches. The influence of Mo-cations on the analysed glass structure was investigated by means of Raman and (31)P MAS-NMR techniques. It has been found that molybdate units can form Mo[MoO4/MoO6]-O-P and/or Mo[MoO4/MoO6]-O-Si bonds with non-bridging oxygens atoms of Q2 methaphosphate units, resulting in the transformation of chain methaphosphate structure into pyrophosphate and finally into orthophosphate structure. It has been also found that increasing amount of MoO3 in the structure of investigated glasses causes their gradual depolymerization and molybdenum ions in the analysed glass matrix act as modifying cations. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Influence of the temperature in the uranyl sorption in zirconium diphosphate modified with salicylic acid; Influencia de la temperatura en la sorcion de uranilo en difosfato de circonio modificado con acido salicilico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N.; Solis C, D. A. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon y Paseo Tollocan s/n, 50000 Toluca, Estado de Mexico (Mexico); Ordonez R, E., E-mail: nidgg@yahoo.com.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (MX)

    2011-11-15

    In this work the experimental conditions were established to evaluate the uranium (Vi) sorption to 20 and 40 C on the surface of the zirconium diphosphate (ZrP{sub 2}O{sub 7}) modified with a solution of salicylic acid 0.1 M. The modification of the ZrP{sub 2}O{sub 7} was produced during the hydrate process, taking advantage that these are formed complexes between the carboxyl and hydroxyl groups of salicylic acid and amphoteric species of the interface solid/liquid. The method is used by lots to elaborate the isotherms that explain the behavior of this sorption in different ph conditions and temperature, the quantity of the uranium reaction is analyzed with the fluorescence technique. The results indicated that in the temperature increases the uranium sorption on the material and is more efficient to low ph values. (Author)

  7. Functionalization of lambda-zirconium phosphate with ...

    Indian Academy of Sciences (India)

    EDTA is commonly added to food packaging in order to complex metal ions .... Gaza strip in which the natural water suffers from very high degree of hardness. ... exchange reactions proceed very fast and the OHH2O- phase, ZrPO4OHH2O.

  8. Thermofluency in zirconium alloys

    International Nuclear Information System (INIS)

    Orozco M, E.A.

    1976-01-01

    A summary is presented about the theoretical and experimental results obtained at present in thermofluency under radiation in zirconium alloys. The phenomenon of thermofluency is presented in a general form, underlining the thermofluency at high temperature because this phenomenon is similar to the thermofluency under radiation, which ocurrs in zirconium alloys into the operating reactor. (author)

  9. Calcium phosphate coatings modified with zinc- or copper- incorporation on Ti-40Nb alloy

    Science.gov (United States)

    Komarova, E. G.; Sedelnikova, M. B.; Sharkeev, Yu P.; Kazakbaeva, A. A.; Glukhov, I. A.; Khimich, M. A.

    2017-05-01

    The influence of the microarc oxidation parameters and electrolyte composition on the structure, properties and composition of CaP coatings modified with Zn- or Cu- incorporation on the Ti-40mas.%Nb (Ti-40Nb) alloy was investigated. The linear growth of thickness, roughness, and size of structural elements with process voltage increasing has been revealed. It was shown that the CaP coatings have the low contact angles with liquids and, consequently, high free surface energy. This indicates a high hydrophilicity of the coatings. X-ray diffraction analysis showed that the coatings have X-ray amorphous structure. The increase of the process voltage leads to the formation of such crystalline phases as CaHPO4 and β-Ca2P2O7 in the coatings. The maximum Ca/P atomic ratio was equal to 0.4, and Zn or Cu contents was equal to 0.3 or 0.2 at.%, respectively.

  10. Enhancement of Osteoblastic-Like Cell Activity by Glow Discharge Plasma Surface Modified Hydroxyapatite/β-Tricalcium Phosphate Bone Substitute

    Directory of Open Access Journals (Sweden)

    Eisner Salamanca

    2017-11-01

    Full Text Available Glow discharge plasma (GDP treatments of biomaterials, such as hydroxyapatite/β-tricalcium phosphate (HA/β-TCP composites, produce surfaces with fewer contaminants and may facilitate cell attachment and enhance bone regeneration. Thus, in this study we used argon glow discharge plasma (Ar-GDP treatments to modify HA/β-TCP particle surfaces and investigated the physical and chemical properties of the resulting particles (HA/β-TCP + Ar-GDP. The HA/β-TCP particles were treated with GDP for 15 min in argon gas at room temperature under the following conditions: power: 80 W; frequency: 13.56 MHz; pressure: 100 mTorr. Scanning electron microscope (SEM observations showed similar rough surfaces of HA/β-TCP + Ar-GDP HA/β-TCP particles, and energy dispersive spectrometry analyses showed that HA/β-TCP surfaces had more contaminants than HA/β-TCP + Ar-GDP surfaces. Ca/P mole ratios in HA/β-TCP and HA/β-TCP + Ar-GDP were 1.34 and 1.58, respectively. Both biomaterials presented maximal intensities of X-ray diffraction patterns at 27° with 600 a.u. At 25° and 40°, HA/β-TCP + Ar-GDP and HA/β-TCP particles had peaks of 200 a.u., which are similar to XRD intensities of human bone. In subsequent comparisons, MG-63 cell viability and differentiation into osteoblast-like cells were assessed on HA/β-TCP and HA/β-TCP + Ar-GDP surfaces, and Ar-GDP treatments led to improved cell growth and alkaline phosphatase activities. The present data indicate that GDP surface treatment modified HA/β-TCP surfaces by eliminating contaminants, and the resulting graft material enhanced bone regeneration.

  11. In vivo distribution and elimination of hemoglobin modified by intramolecular cross-linking with 2-nor-2-formylpyridoxal 5'-phosphate

    International Nuclear Information System (INIS)

    Bleeker, W.K.; van der Plas, J.; Feitsma, R.I.; Agterberg, J.; Rigter, G.; de Vries-van Rossen, A.; Pauwels, E.K.; Bakker, J.C.

    1989-01-01

    Modified hemoglobin solutions have potential application as plasma expanders with oxygen-transporting capacity. In a previous study it was found that modification of hemoglobin by intramolecular cross-linking with 2-nor-2-formylpyridoxal 5'-phosphate (NFPLP) improves the vascular retention time by a factor of three, and it also improves the oxygen-transporting properties. In the present study we investigated in rats how, after exchange transfusion of a clinically relevant dose, the modified hemoglobin (HbNFPLP) was distributed in the body compared with how the unmodified hemoglobin was distributed. By using a new technetium 99m labeling technique, we found in a scintigraphic study that accumulation of hemoglobin in the kidneys was greatly diminished by the intramolecular cross-linking with NFPLP. These findings were confirmed by light-microscopic observations after diaminobenzidine staining. It was concluded that the impairment of kidney function caused by blockade of the tubuli is not to be expected from HbNFPLP. In the liver and spleen, where the free HbNFPLP is possibly eliminated, some accumulation of 99mTc label was observed, but the major part of the extravascular label was diffusely spread throughout the body. This led to the conclusion that important accumulation of undegraded HbNFPLP does not occur in the liver and spleen. Rapid appearance of both hemoglobin and HbNFPLP in the lymph showed that cross-linking with NFPLP does not prevent the distribution of hemoglobin over the interstitial space in the first hours after administration. However, pharmacokinetic analysis demonstrated that transcapillary transfer contributes only to a limited extent to the disappearance from the circulation. During 24-hour infusions of HbNFPLP, a steady state with a constant plasma concentration was easily reached

  12. Deciphering Phosphate Deficiency-Mediated Temporal Effects on Different Root Traits in Rice Grown in a Modified Hydroponic System

    Science.gov (United States)

    Negi, Manisha; Sanagala, Raghavendrarao; Rai, Vandna; Jain, Ajay

    2016-01-01

    Phosphate (Pi), an essential macronutrient for growth and development of plant, is often limiting in soils. Plants have evolved an array of adaptive strategies including modulation of root system architecture (RSA) for optimal acquisition of Pi. In rice, a major staple food, RSA is complex and comprises embryonically developed primary and seminal roots and post-embryonically developed adventitious and lateral roots. Earlier studies have used variant hydroponic systems for documenting the effects of Pi deficiency largely on primary root growth. Here, we report the temporal effects of Pi deficiency in rice genotype MI48 on 15 ontogenetically distinct root traits by using easy-to-assemble and economically viable modified hydroponic system. Effects of Pi deprivation became evident after 4 days- and 7 days-treatments on two and eight different root traits, respectively. The effects of Pi deprivation for 7 days were also evident on different root traits of rice genotype Nagina 22 (N22). There were genotypic differences in the responses of primary root growth along with lateral roots on it and the number and length of seminal and adventitious roots. Notably though, there were attenuating effects of Pi deficiency on the lateral roots on seminal and adventitious roots and total root length in both these genotypes. The study thus revealed both differential and comparable effects of Pi deficiency on different root traits in these genotypes. Pi deficiency also triggered reduction in Pi content and induction of several Pi starvation-responsive (PSR) genes in roots of MI48. Together, the analyses validated the fidelity of this modified hydroponic system for documenting Pi deficiency-mediated effects not only on different traits of RSA but also on physiological and molecular responses. PMID:27200025

  13. Irradiated uranium reprocessing, Final report I-VI, Part VI - Separation of uranium, plutonium and fission products from HNO3 solution on the zirconium phosphate (part I), Adsorption equilibrium and kinetics

    International Nuclear Information System (INIS)

    Gal, I.; Ruvarac, A.

    1961-12-01

    Separation of uranium, plutonium and long-lived fission products was investigated on a inorganic ion exchanger. Zirconium phospate was chosen for this purpose because its ion exchanger properties were well known. This report deals with the study of equilibrium and kinetics of the adsorption

  14. Samarium-modified vanadium phosphate catalyst for the selective oxidation of n-butane to maleic anhydride

    International Nuclear Information System (INIS)

    Wu, Hua-Yi; Wang, Hai-Bo; Liu, Xin-Hua; Li, Jian-Hui; Yang, Mei-Hua; Huang, Chuan-Jing; Weng, Wei-Zheng; Wan, Hui-Lin

    2015-01-01

    Graphical abstract: The addition of a small amount of Sm into VPO catalyst brought about great changes in its physicochemical properties such as surface area, surface morphology, phase composition and redox property, thus leading to a higher catalytic performance in the selective oxidation of n-butane to maleic anhydride, as compared to the undoped VPO catalyst. - Highlights: • The addition of Sm leads to great changes in the structure of VPO catalyst. • Sm improves performance of VPO for oxidation of n-butane to maleic anhydride. • Catalytic performance is closely related to structure of VPO catalyst. - Abstract: A series of samarium-modified vanadium phosphate catalysts were prepared and studied in selective oxidation of n-butane to maleic anhydride. The catalytic evaluation showed that Sm modification significantly increased the overall n-butane conversion and intrinsic activity. N 2 -adsorption, XRD, SEM, Raman, XPS, EPR and H 2 -TPR techniques were used to investigate the intrinsic difference among these catalysts. The results revealed that the addition of Sm to VPO catalyst can increase the surface area of the catalyst, lead to a significant change in catalyst morphology from plate-like structure into rosette-shape clusters, and largely promote the formation of (VO) 2 P 2 O 7 . All of these were related to the different catalytic performance of Sm-doped and undoped VPO catalysts. The roles of the different VOPO 4 phases and the influence of Sm were also described and discussed

  15. A glassy carbon electrode modified with cerium phosphate nanotubes for the simultaneous determination of hydroquinone, catechol and resorcinol.

    Science.gov (United States)

    Li, Zhen; Yue, Yuhua; Hao, Yanjun; Feng, Shun; Zhou, Xianli

    2018-03-12

    A nafion film containing cerium phosphate nanotubes was pasted onto a glassy carbon electrode (GCE) to obtain a sensor for hydroquinone (HQ). The morphologies and components of the coating were characterized by transmission electron microscopy, scanning electron microscopy and energy-dispersive spectroscopy. Cyclic voltammetry and differential pulse voltammetry (DPV) showed the specific surface of the electrode to be significantly increased and the electron transfer rate to be accelerated. The modified GCE was applied to the determination of hydroquinone (HQ) via DPV. The oxidation current increases linearly in the 0.23 μM to 16 mM HQ concentration range which is as wide as five orders of magnitude. The limit of detection is 0.12 μM (based on a signal-to-noise ratio of 3), and the sensitivity is 1.41 μA·μM -1  cm -2 . The method was further applied to the simultaneous determination of HQ, catechol and resorcinol. The potentials for the three species are well separated (20, 134, and 572 mV vs SCE). Average recoveries from (spiked) real water samples are between 95.2 and 107.0%, with relative standard deviations of 0.9~2.7% (for n = 3) at three spiking levels. The method was validated by independent assays using HPLC. Graphical abstract ᅟ.

  16. In silico peptide prediction for antibody generation to recognize 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in genetically modified organisms.

    Science.gov (United States)

    Marani, Mariela M; Costa, Joana; Mafra, Isabel; Oliveira, Maria Beatriz P P; Camperi, Silvia A; Leite, José Roberto de Souza Almeida

    2015-03-01

    For the prospective immunorecognition of 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) as a biomarker protein expressed by transgenic soybean, an extensive in silico evaluation of the referred protein was performed. The main objective of this study was the selection of a set of peptides that could function as potential immunogens for the production of novel antibodies against CP4-EPSPS protein. For this purpose, the protein was in silico cleaved with trypsin/chymotrypsin and the resultant peptides were extensively analyzed for further selection of the best candidates for antibody production. The analysis enabled the successful proposal of four peptides with potential immunogenicity for their future use as screening biomarkers of genetically modified organisms. To our knowledge, this is the first attempt to select and define potential linear epitopes for the immunization of animals and, subsequently, to generate adequate antibodies for CP4-EPSPS recognition. The present work will be followed by the synthesis of the candidate peptides to be incubated in animals for antibody generation and potential applicability for the development of an immunosensor for CP4-EPSPS detection. © 2015 Wiley Periodicals, Inc.

  17. Metallurgy of zirconium and hafnium

    International Nuclear Information System (INIS)

    Baryshnikov, N.V.; Geger, V.Eh.; Denisova, N.D.; Kazajn, A.A.; Kozhemyakin, V.A.; Nekhamkin, L.G.; Rodyakin, V.V.; Tsylov, Yu.A.

    1979-01-01

    Considered are those properties of zirconium and of hafnium, which are of practical interest for the manufacture of these elements. Systematized are the theoretical and the practical data on the procedures for thermal decomposition of zirconia and for obtaining zirconium dioxide and hafnium dioxide by a thermal decomposition of compounds and on the hydrometallurgical methods for extracting zirconium and hafnium. Zirconium and hafnium fluorides and chlorides production procedures are described. Considered are the iodide and the electrolytic methods of refining zirconium and hafnium

  18. Joint Test Protocol: Environmentally Friendly Zirconium Oxide Pretreatment Demonstration

    Science.gov (United States)

    2013-12-01

    and compliance issues associated with the use of zinc phosphate and chromate/ chrome containing conversion coatings while maintaining military...safety, and occupational health risks associated with the use of zinc phosphate and chromate/ chrome -containing conversion coatings. There is a need to...zirconium-based pretreatment will be shown to be both environmentally acceptable (no hazardous air pollutants or heavy metals such as hexavalent chromium

  19. Separation of zirconium and hafnium using paper distribution chromatography

    International Nuclear Information System (INIS)

    Lebedeva, G.G.; Viktorova, M.E.

    1981-01-01

    A method is suggested of chromatographic separation of zirconium and hafnium in a CCl 4 -tributyl phosphate system (1:9) containing KCl as a salting-out agent in 5 M HNO 3 at 28-30 deg C. Zr and Hf are deterfmined in articiial mixtures under optimal chromatography conditions using visual colorimetry [ru

  20. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study.

    Science.gov (United States)

    Felemban, Nayef H; Ebrahim, Mohamed I

    2017-01-13

    The purpose of this in-vitro study was to examine the effect of incorporating different concentrations of Zirconium oxide-Titanium dioxide (ZrO2-TiO2) nanoparticles, which can have antibacterial properties, on the mechanical properties of an orthodontic adhesive. ZrO2-TiO2 (Zirconium oxide, HWNANO, Hongwu International Group Ltd, China) -Titanium dioxide, Nanoshell, USA) nanopowder were incorporated into orthodontic adhesive (Transbond XT, 3 M Unitek, Monrovia, USA) with different concentrations (0.5% weight nonofiller and 1% weight nanofiller). The size of nanoparticle was 70-80 nm for ZrO2 and less than 50 nm for TiO2. For measuring the shear bond strength of the three groups of orthodontic adhesives [Transbond (control), Transbond mixed with 0.5% weight ZrO2-TiO2, and Transbond mixed with 1% weight ZrO2-TiO2], 30 freshly extracted human first premolars were used and bonded with stainless steel metal brackets (Dentaurum®, Discovery®, Deutschland), using the 3 orthodontic adhesives and 3 M Unitek; Transbond TM Plus Self-Etching Primer (10 samples in each group). The recorded values of compressive strength and tensile strength (measured separately on 10 samples of orthodontic adhesives (add the 3 D size of sample, light cured for 40 s on both sides) of each orthodontic adhesives), as well as the shear bond strength in Mega Pascal unit (MPa) were collected and exposed to one-way analysis of variance (ANOVA) and Tukey's post-hoc tests. orthodontic adhesive with 1% weight ZrO2-TiO2 showed the highest mean compressive (73.42 ± 1.55 MPa, p: 0.003, F: 12.74), tensile strength (8.65 ± 0.74 MPa, p: 0.001, F: 68.20), and shear bond strength (20.05 ± 0.2 MPa, p: 0.001, F: 0.17). Adding ZrO2-TiO2 nanoparticle to orthodontic adhesive increased compressive strength, tensile strength, and shear bond strength in vitro, but in vivo studies and randomized clinical trials are needed to validate the present findings.

  1. X-ray absorption and magnetic studies of trivalent lanthanide ions sorbed on pristine and phosphate-modified boehmite surfaces

    International Nuclear Information System (INIS)

    Yoon, Soh-Joung; Helmke, Philip A.; Amonette, James E.; Bleam, William F.

    2002-01-01

    The feasibility of immobilizing radionuclides on mineral surfaces was examined in the absence and the presence of phosphate anions, using trivalent lanthanide ions (Eu3+, Gd3+, and Dy3+) as chemical analogues of trivalent actinide radionuclides. The amount of the lanthanide ions (Ln3+) sorbed on boehmite (gamma-AlOOH) surfaces dramatically increased on the presence of phosphate below pH 5. The structure of the sorbed lanthanide was determined by X-ray absorption spectroscopy, magnetic susceptibility measurements, and electron paramagnetic resonance spectroscopy. We proved Dy3+ forms precipitates on boehmite surfaces in the presence of phosphate, and Gd3+ both in the presence and absence of phosphate. In the presence of phosphate, however, these rare-earth cations react to from ultrafine particles of LnPO4 surface precipitates on boehmite surfaces

  2. Separation process of zirconium and hafnium

    International Nuclear Information System (INIS)

    Hure, J.; Saint-James, R.

    1955-01-01

    About the separation different processes of zirconium-hafnium, the extraction by solvent in cross-current is the most easily the process usable on an industrial scale. It uses tributyl phosphate as solvent, diluted with white spirit to facilitate the decanting. Some exploratory tests showed that nitric environment seemed the most favorable for extraction; but a lot of other factors intervene in the separation process. We studied the influence of the acidity successively, the NO 3 - ions concentration, the role of the cation coming with NO 3 - , as well as the influence of the concentration of zirconium in the solution on the separation coefficient β = α Zr / α Hf . (M.B.) [fr

  3. SEPARATING HAFNIUM FROM ZIRCONIUM

    Science.gov (United States)

    Lister, B.A.J.; Duncan, J.F.

    1956-08-21

    A dilute aqueous solution of zirconyl chloride which is 1N to 2N in HCl is passed through a column of a cation exchange resin in acid form thereby absorbing both zirconium and associated hafnium impurity in the mesin. The cation exchange material with the absorbate is then eluted with aqueous sulfuric acid of a O.8N to 1.2N strength. The first portion of the eluate contains the zirconium substantially free of hafnium.

  4. Preparation of Oleyl Phosphate-Modified TiO2/Poly(methyl methacrylate Hybrid Thin Films for Investigation of Their Optical Properties

    Directory of Open Access Journals (Sweden)

    Masato Fujita

    2015-01-01

    Full Text Available TiO2 nanoparticles (NPs modified with oleyl phosphate were synthesized through stable Ti–O–P bonds and were utilized to prepare poly(methyl methacrylate- (PMMA- based hybrid thin films via the ex situ route for investigation of their optical properties. After surface modification of TiO2 NPs with oleyl phosphate, IR and 13C CP/MAS NMR spectroscopy showed the presence of oleyl groups. The solid-state 31P MAS NMR spectrum of the product revealed that the signal due to oleyl phosphate (OP shifted upon reaction, indicating formation of covalent Ti–O–P bonds. The modified TiO2 NPs could be homogeneously dispersed in toluene, and the median size was 16.1 nm, which is likely to be sufficient to suppress Rayleigh scattering effectively. The TEM images of TiO2/PMMA hybrid thin films also showed a homogeneous dispersion of TiO2 NPs, and they exhibited excellent optical transparency even though the TiO2 content was 20 vol%. The refractive indices of the OP-modified TiO2/PMMA hybrid thin films changed higher with increases in TiO2 volume fraction, and the hybrid thin film with 20 vol% of TiO2 showed the highest refractive index (n = 1.86.

  5. International strategic minerals inventory summary report; zirconium

    Science.gov (United States)

    Towner, R.R.

    1992-01-01

    Zircon, a zirconium silicate, is currently the most important commercial zirconium-bearing mineral. Baddeleyite, a natural form of zirconia, is less important but has some specific end uses. Both zircon and baddeleyite occur in hard-rock and placer deposits, but at present all zircon production is from placer deposits. Most baddeleyite production is from hard-rock deposits, principally as a byproduct of copper and phosphate-rock mining. World zirconium resources in identified, economically exploitable deposits are about 46 times current production rates. Of these resources, some 71 percent are in South Africa, Australia, and the United States. The principal end uses of zirconium minerals are in ceramic applications and as refractories, abrasives, and mold linings in foundries. A minor amount, mainly of zircon, is used for the production of hafnium-free zirconium metal, which is used principally for sheathing fuel elements in nuclear reactors and in the chemical-processing industry, aerospace engineering, and electronics. Australia and South Africa are the largest zircon producers and account for more than 70 percent of world output; the United States and the Soviet Union account for another 20 percent. South Africa accounts for almost all the world's production of baddeleyite, which is about 2 percent of world production of contained zirconia. Australia and South Africa are the largest exporters of zircon. Unless major new deposits are developed in countries that have not traditionally produced zircon, the pattern of world production is unlikely to change by 2020. The proportions, however, of production that come from existing producing countries may change somewhat.

  6. Osteogenic potential of bone marrow stromal cells on smooth, roughened, and tricalcium phosphate-modified titanium alloy surfaces.

    LENUS (Irish Health Repository)

    Colombo, John S

    2012-09-01

    This study investigated the influence of smooth, roughened, and tricalcium phosphate (TCP)-coated roughened titanium-aluminum-vanadium (Ti-6Al-4V) surfaces on the osteogenic potential of rat bone marrow stromal cells (BMSCs).

  7. Zirconium isotope separation process

    International Nuclear Information System (INIS)

    Peterson, S.H.; Lahoda, E.J.

    1988-01-01

    A process is described for reducing the amount of zirconium 91 isotope in zirconium comprising: forming a first solution of (a) a first solvent, (b) a scavenger, and (c) a zirconium compound which is soluble in the first solvent and reacts with the scavenger when exposed to light of a wavelength of 220 to 600 nm; irradiating the first solution with light at the wavelength for a time sufficient to photoreact a disproportionate amount of the zirconium compound containing the zirconium 91 isotope with the scavenger to form a reaction product in the first solution; contacting the first solution, while effecting the irradiation, with a second solvent which is immiscible with the first solvent, which the second solvent is a preferential solvent for the reaction product relative to the first solvent, such that at least a portion of the reaction product is transferred to the second solvent to form a second solution; and separating the second solution from the first solution after the contacting

  8. ZIRCONIUM-CLADDING OF THORIUM

    Science.gov (United States)

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  9. Purification of zirconium concentrates

    International Nuclear Information System (INIS)

    Brown, A.E.P.

    1976-01-01

    A commercial grade ZrO 2 and an ammonium uranate (yellow cake) are obtained from the caldasito ore processing. This ore is found in the Pocos de Caldas Plateau, State of Minas Gerais, Brazil. Caldasito is an uranigerous zirconium ore, a mixture of zircon and baddeleyite and contains 60% ZrO 2 and 0,3% U 3 O 8 . The chemical opening of the ore was made by alkaline fusion with NaOH at controlled temperature. The zirconium-uranium separation took place by a continuous liquid-liquid extraction in TBP-varsol-HNO 3 -H 2 O system. The raffinate containing zirconium + impurities (aluminium, iron and titanium) was purified by an ion exchange operation using a strong cationic resin [pt

  10. Zirconium and hafnium

    Science.gov (United States)

    Jones, James V.; Piatak, Nadine M.; Bedinger, George M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Zirconium and hafnium are corrosion-resistant metals that are widely used in the chemical and nuclear industries. Most zirconium is consumed in the form of the main ore mineral zircon (ZrSiO4, or as zirconium oxide or other zirconium chemicals. Zirconium and hafnium are both refractory lithophile elements that have nearly identical charge, ionic radii, and ionic potentials. As a result, their geochemical behavior is generally similar. Both elements are classified as incompatible because they have physical and crystallochemical properties that exclude them from the crystal lattices of most rock-forming minerals. Zircon and another, less common, ore mineral, baddeleyite (ZrO2), form primarily as accessory minerals in igneous rocks. The presence and abundance of these ore minerals in igneous rocks are largely controlled by the element concentrations in the magma source and by the processes of melt generation and evolution. The world’s largest primary deposits of zirconium and hafnium are associated with alkaline igneous rocks, and, in one locality on the Kola Peninsula of Murmanskaya Oblast, Russia, baddeleyite is recovered as a byproduct of apatite and magnetite mining. Otherwise, there are few primary igneous deposits of zirconium- and hafnium-bearing minerals with economic value at present. The main ore deposits worldwide are heavy-mineral sands produced by the weathering and erosion of preexisting rocks and the concentration of zircon and other economically important heavy minerals, such as ilmenite and rutile (for titanium), chromite (for chromium), and monazite (for rare-earth elements) in sedimentary systems, particularly in coastal environments. In coastal deposits, heavy-mineral enrichment occurs where sediment is repeatedly reworked by wind, waves, currents, and tidal processes. The resulting heavy-mineral-sand deposits, called placers or paleoplacers, preferentially form at relatively low latitudes on passive continental margins and supply 100 percent of

  11. Zirconium Micro-Arc Oxidation as a Method for Producing Heat Insulation Elements in Spacecraft

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2014-01-01

    Full Text Available Application of coatings on the surface of materials as well as their composition and structure control in the near-surface layer enables us to use properties of base material and modified layers in the most rational and profitable way and save expensive and rare metals and alloys.The space telescope of T-170M will be the main tool of the international space observatory "Spektr-UF".It is being understood that the main mirror shade, which is in the outer space and has a considerable height will act as a radiator cooling a unit (cage of the main mirror. Therefore it is necessary to create heat insulation between the shade of the main mirror and the frame of the main mirror unit. From the thermal calculations a detail to provide heat insulation must possess thermal conductivity, at most, 2,5 and a conditional limit of fluidity for compression, at least, 125 MPas to ensure that the shade diaphragms position of the main mirror is stable with respect to the optical system of telescope.Considering that oxide of zirconium possesses one of the lowest thermal conductivities among oxides of metals, it is offered to use zirconium, as a material of base, and to put the MAO-covering (micro-arc oxide on its surface.As a result of studying the features of MAO-coverings on zirconium it is:1 found that the composite material consisting of zirconium and MAO-covering on it, has low thermal conductivity (less than 2 , and thus, because of small oxide layer thickness against the thickness of base material, possesses the mechanical properties which are slightly different from the pure zirconium ones;2 found that the composite material possesses the low gas release, allowing its use in the outer space conditions; the material processed in two electrolytes i.e. phosphate and acid ones has the lowest gas release;3 found that with growing thickness of MAO-covering its porosity decreases, thus the average pore diameter grows thereby leading to increasing thermal

  12. Characterization of phosphate sequestration by a lanthanum modified bentonite clay: A solid-state NMR, EXAFS and PXRD study

    DEFF Research Database (Denmark)

    Dithmer, Line; Lipton, Andrew S; Reitzel, Kasper

    2015-01-01

    Phosphate (Pi) sequestration by a lanthanum (La) exchanged clay mineral (La-Bentonite), which is extensively used in chemical lake restoration, was investigated on the molecular level using a combination of 31P and 139La solid state NMR spectroscopy (SSNMR), extended X-ray absorption spectroscopy...

  13. Separation process of zirconium and hafnium; Procede de separation du zirconium et du hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Hure, J; Saint-James, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    About the separation different processes of zirconium-hafnium, the extraction by solvent in cross-current is the most easily the process usable on an industrial scale. It uses tributyl phosphate as solvent, diluted with white spirit to facilitate the decanting. Some exploratory tests showed that nitric environment seemed the most favorable for extraction; but a lot of other factors intervene in the separation process. We studied the influence of the acidity successively, the NO{sub 3}{sup -} ions concentration, the role of the cation coming with NO{sub 3}{sup -}, as well as the influence of the concentration of zirconium in the solution on the separation coefficient {beta} = {alpha}{sub Zr} / {alpha}{sub Hf}. (M.B.) [French] Des differents procedes de separation zirconium-hafnium, l'extraction par solvant en contre-courant est le procede le plus facilement utilisable a l'echelle industrielle. On utilise comme solvant le phosphate de tributyle, dilue avec du white spirit pour faciliter les decantations. Des essais preliminaires ont montre que le milieu nitrique semblait le plus favorable a l'extraction; mais beaucoup d'autres facteurs interviennent dans le processus de separation. Nous avons etudie successivement l'influence de l'acidite, celle de la concentration en ions NO{sub 3}{sup -}, le role du cation accompagnant NO{sub 3}{sup -}, ainsi que l'influence de la concentration en zirconium de la solution sur le coefficient de separation {beta} = {alpha}{sub Zr} / {alpha}{sub Hf}. (MB)

  14. Solvent extraction of zirconium

    International Nuclear Information System (INIS)

    Kim, S.S.; Yoon, J.H.

    1981-01-01

    The extraction of zirconium(VI) from an aqueous solution of constant ionic strength with versatic acid-10 dissolved in benzen was studied as a function of pH and the concentration of zirconium(VI) and organic acid. The effects of sulphate and chlorine ions on the extraction of the zirconium(VI) were briefly examined. It was revealed that (ZrOR 2 .2RH) is the predominant species of extracted zirconium(VI) in the versatic acid-10. The chemical equation and the apparent equilibrium constants thereof have been determined as follows. (ZrOsup(2+))aq+ 2(R 2 H 2 )sub(org) = (ZrOR 2 .2RH)sub(org)+2(H + )aq Ksub(Zr) = (ZrOR 2 .2RH)sub(org)(H + ) 2 /(ZrOsup(2+))sub(aq)(R 2 H 2 )sup(2)sub(org) = 3.3 x 10 -7 . The synergistic effects of TBP and D2EHPA were also studied. In the mixed solvent with 0.1M TBP, the synergistic effect was observed, while the mixed solvent with D2EHPA showed the antisynergistic effect. (Author)

  15. Titanium and zirconium alloys

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1994-01-01

    Titanium and zirconium pure and base alloys are protected by an oxide film with anionic vacancies which gives a very good resistance to corrosion in oxidizing medium, in some ph ranges. Results of pitting and crevice corrosion are given for Cl - , Br - , I - ions concentration with temperature and ph dependence, also with oxygenated ions effect. (A.B.). 32 refs., 6 figs., 3 tabs

  16. Ligand exchange chromatography of free amino acids and proteins on porous microparticulate zirconium oxide

    International Nuclear Information System (INIS)

    Blackwell, J.A.; Carr, P.W.

    1992-01-01

    The Lewis acid sites present on the underlying zirconium oxide particles are responsible for the unusual elution sequence for amino acids on copper loaded, phosphated zirconium oxide supports reported in an earlier study. To more thoroughly examine the effect of these strong Lewis acid sites in this paper. The authors have studied ligand exchange chromatography on copper loaded zirconium oxide particles. It is shown here that carboxylate functional groups on amino acid solutes strongly interact with surface Lewis acid sites. Addition of competing hard Lewis bases to the eluent attenuates these specific interactions. The result is a chromatographic system with high selectivity which is also suitable for ligand exchange chromatography of proteins

  17. Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite.

    Science.gov (United States)

    Xiong, Wenhui; Peng, Jian; Hu, Yongfeng

    2012-02-15

    This paper presents a novel technique integrating bulk-sensitive and surface-sensitive XANES methods to distinguish between physisorption and chemisorption for phosphate adsorption onto ferrihydrite-modified diatomite (FHMD). XANES P K-edge, L-edge, and Fe M-edge spectra were obtained for reference samples (K(2)HPO(4) and FePO(4)·2H(2)O) and test samples (phosphate adsorbed onto FHMD (FHMD-Ps) and Si-containing ferrihydrite (FHYD-Ps)). A resolvable pre-edge peak in the P K-edge spectra of FHMD-Ps and FHYD-Ps provided direct evidence for the formation of P-O-Fe(III) coordination and the occurrence of chemisorption. The resemblance between the P L-edge spectra of K(2)HPO(4) and FHMD-Ps and the marked difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O indicated the intact existence of the adsorbate and the adsorbent. The similarity between Fe M-edge spectra of FHMD and FHMD-Ps and the difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O confirmed the findings from P L-edge analyses. Therefore, chemisorption and physisorption coexisted during phosphate adsorption onto FHMD. Phosphate chemisorption occurred in the deeper zone of FHMD (from 50 nm to 5 μm); whereas physisorption occurred in the zone of FHMD shallower than 50 nm since the probing depth of XANES P K-edge method is 5 μm and that of P L-edge and Fe M-edge methods is 50 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Electroless deposition process for zirconium and zirconium alloys

    Science.gov (United States)

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  19. Assembly of crosslinked oxo-cyanoruthenate and zirconium oxide bilayers: Application in electrocatalytic films based on organically modified silica with templated pores

    International Nuclear Information System (INIS)

    Rutkowska, Iwona A.; Sek, Jakub P.; Mehdi, B. Layla; Kulesza, Pawel J.; Cox, James A.

    2014-01-01

    Electrochemical deposition of crosslinked oxo-cyanoruthenate, Ru-O/CN-O, from a mixture of RuCl 3 and K 4 Ru(CN) 6 is known to yield a film on glassy carbon that promotes oxidations by a combination of electron and oxygen transfer. Layer-by-layer (LbL) deposition of this species at a film formed by cycling of the electrode potential in a ZrO 2 solution systematically increases the number of catalytically active sites of the Ru-O/CN-O on the electrode. The evaluation of the electrocatalytic activity was by cyclic voltammetric oxidation of cysteine at pH 2. Plots of the anodic peak current vs. the square root of scan rate were indicative of linear diffusion control of this oxidation, even in the absence of ZrO 2 , but the slopes of these linear plots increased with bilayer number, n, of (ZrO 2 | Ru-O/CN-O) n . The latter observation is hypothesized to be due to an increased number of active sites for a given geometric electrode area, but proof requires further study. To optimize utilization of the catalyst and to provide a size-exclusion characteristic to the electrode, the study was extended to LbL deposition of the composite in 50-nm pores of an organically modified silica film deposited by electrochemically assisted sol-gel processing using surface-bound poly(styrene sulfonate) nanospheres as a templating agent

  20. Reduction of the allotropic transition temperature in nanocrystalline zirconium: Predicted by modified equation of state (MEOS) method and molecular dynamics simulation

    Science.gov (United States)

    Salati, Amin; Mokhtari, Esmail; Panjepour, Masoud; Aryanpour, Gholamreza

    2013-04-01

    The temperature at which polymorphic phase transformation occurs in nanocrystalline (NC) materials is different from that of coarse-grained specimens. This anomaly has been related to the role of grain boundary component in these materials and can be predicted by a dilated crystal model. In this study, based on this model, a modified equation of state (MEOS) method (instead of equation of state, EOS, method) is used to calculate the total Gibbs free energy of each phase (β-Zr or α-Zr) in NC Zr. Thereupon, the change in the total Gibbs free energy for β-Zr to α-Zr phase transformation (ΔGβ→α) via the grain size is calculated by this method. Similar to polymorphic transformation in other NC materials (Fe, Nb, Co, TiO2, Al2O3 and ZnS), it is found that the estimated transformation temperature in NC Zr (β→α) is reduced with decreasing grain size. Finally, a molecular dynamics (MD) simulation is employed to confirm the theoretical results.

  1. Zirconium - an imported mineral commodity

    International Nuclear Information System (INIS)

    1983-10-01

    This report examines Canada's position in regard to the principal zirconium materials: zircon; fusion-cast zirconium-bearing refractory products; zirconium-bearing chemicals; and zirconium metal, master alloys, and alloys. None of these is produced in Canada except fused alumina-zirconia and certain magnesium-zirconium alloys and zirconium-bearing steels. Most of the 3 000-4 000 tonnes of the various forms of zircon believed to be consumed in Canada each year is for foundry applications. Other minerals, notably chromite, olivine and silica sand are also used for these purposes and, if necessary, could be substituted for zircon. Zirconium's key role in Canada is in CANDU nuclear power reactors, where zirconium alloys are essential in the cladding for fuel bundles and in capital equipment such as pressure tubes, calandria tubes and reactivity control mechanisms. If zirconium alloys were to become unavailable, the Canadian nuclear power industry would collapse. As a contingency measure, Ontario Hydro maintains at least nine months' stocks of nuclear fuel bundles. Canada's vulnerability to short-term disruptions to supplies of nuclear fuel is diminished further by the availability of more expensive electricity from non-nuclear sources and, given time, from mothballed thermal plants. Zirconium minerals are present in many countries, notably Australia, the Republic of South Africa and the United States. Australia is Canada's principal source of zircon imports; South Africa is its sole source of baddeleyite. At this time, there are no shortages of either material. Canada has untapped zirconium resources in the Athabasca Oil Sands (zircon) and at Strange Lake along the ill-defined border between Quebec and Newfoundland (gittinsite). Adequate metal and alloy production facilities exist in France, Japan and the United States. No action by the federal government in regard to zirconium supplies is called for at this time

  2. Plasma arc melting of zirconium

    International Nuclear Information System (INIS)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-01-01

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  3. Zirconium microstructures: uncharted possibilities

    International Nuclear Information System (INIS)

    Samajdar, I.; Kumar, Gulshan; Singh, Jaiveer; Lodh, Arijit; Srivastava, D.; Tewari, R.; Dey, G.K.; Saibaba, N.

    2015-01-01

    The 'conventional' Zirconium microstructures can be significantly extended with information on: (i) microtexture, (ii) residual stresses and (iii) local mechanical properties. Though these involve different tools, but a consolidated microstructure can be crated. This is the theme of this presentation. Examples of this consolidated picture will be made from deformation twinning, recovery-recrystallization, burst ductility and orientation versus solid solution hardening. (author)

  4. Zirconium elasticity modules

    International Nuclear Information System (INIS)

    Vavra, G.

    1978-01-01

    Considered are the limit and the intermediate values of the Young modulus E, modulus of shear G and of linear modulus of compression K obtainable at various temperatures (4.2 to 1133 K) for single crystals of α-zirconium. Determined and presented are the corrected isotropic elasticity characteristics of E, G, K over the above range of temperatures of textured and non-textured α-Zr

  5. Beryllium and zirconium

    International Nuclear Information System (INIS)

    Salesse, Marc

    1959-01-01

    Pure beryllium and zirconium, both isolated at about the same date but more than a century ago remained practically unused for eighty years. Fifteen years ago they were released from this state of inactivity by atomic energy, which made them into current metal a with an annual production which runs into tens of tons for the one and thousands for the other. The reasons for this promotion promise well for the future of the two metals, which moreover will probably find additional uses in other branches of industry. The attraction of beryllium and zirconium for atomic energy is easily explained. The curve of figure 1 gives the price per gram of uranium-235 as a function of enrichment: this price increases by about a factor of 3 on passing from natural uranium (0, 7 percent 235 U) to almost pure uranium-235. Because of their tow capture cross-section beryllium and zirconium make it possible, or at least easier, to use natural uranium and they thus enjoy an advantage the extent of which must be calculated for each reactor or fuel element project, but which is generally considerable. It will be seen later that this advantage should be based on figures which are even more favourable that would appear from the simple ratio 3 of the price of pure uranium- 235 contained in natural uranium. Reprint of a paper published in 'Industries Atomiques' - n. 1-2, 1959

  6. Modification of zirconium diphosphate with salicylic acid and its effect on the uranium (Vi) sorption

    International Nuclear Information System (INIS)

    Almazan T, M. G.; Garcia G, N.; Simoni, E.

    2014-10-01

    The surface of zirconium diphosphate (ZrP 2 O 7 ) was modified with salicylic acid and its effect was evaluated on the uranium (Vi) sorption. The modified surface of the material was analyzed with different analytical techniques among which are included the atomic force microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. This analysis allowed showing that the salicylic acid is being held on the surface of the zirconium diphosphate. The reactivity of modified zirconium diphosphate compared with uranium (Vi) was investigated using the classical method of batch sorption. The analysis of sorption isotherms shows that the salicylic acid has an important effect in the uranium (Vi) sorption. According to the study conducted, the interaction among the uranium (Vi) and the surface of zirconium diphosphate modified with the salicylic acid most likely leads to the complexes formation of binary (U(Vi)/ZrP 2 O 7 ) and ternary (U(Vi)/salicylate/ZrP 2 O 7 ) surface. (Author)

  7. low dose irradiation growth in zirconium

    International Nuclear Information System (INIS)

    Fortis, A.M.

    1987-01-01

    Low dose neutron irradiation growth in textured and recrystallized zirconium, is studied, at the Candu Reactors Calandria temperature (340 K) and at 77 K. It was necessary to design and build 1: A facility to irradiate at high temperatures, which was installed in the Argentine Atomic Energy Commission's RA1 Reactor; 2: Devices to carry out thermal recoveries, and 3: Devices for 'in situ' measurements of dimensional changes. The first growth kinetics curves were obtained at 365 K and at 77 K in a cryostat under neutron fluxes of similar spectra. Irradiation growth experiments were made in zirconium doped with fissionable material (0,1 at % 235 U). In this way an equivalent dose two orders of magnitude greater than the reactor's fast neutrons dose was obtained, significantly reducing the irradiation time. The specimens used were bimetallic couples, thus obtaining a great accuracy in the measurements. The results allow to determine that the dislocation loops are the main cause of irradiation growth in recrystallized zirconium. Furthermore, it is shown the importance of 'in situ' measurements as a way to avoid the effect that temperature changes have in the final growth measurement; since they can modify the residual stresses and the overconcentrations of defects. (M.E.L.) [es

  8. A Novel Grouping Method for Lithium Iron Phosphate Batteries Based on a Fractional Joint Kalman Filter and a New Modified K-Means Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Xiaoyu Li

    2015-07-01

    Full Text Available This paper presents a novel grouping method for lithium iron phosphate batteries. In this method, a simplified electrochemical impedance spectroscopy (EIS model is utilized to describe the battery characteristics. Dynamic stress test (DST and fractional joint Kalman filter (FJKF are used to extract battery model parameters. In order to realize equal-number grouping of batteries, a new modified K-means clustering algorithm is proposed. Two rules are designed to equalize the numbers of elements in each group and exchange samples among groups. In this paper, the principles of battery model selection, physical meaning and identification method of model parameters, data preprocessing and equal-number clustering method for battery grouping are comprehensively described. Additionally, experiments for battery grouping and method validation are designed. This method is meaningful to application involving the grouping of fresh batteries for electric vehicles (EVs and screening of aged batteries for recycling.

  9. Process for purifying zirconium sponge

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Kimball, L.S.

    1992-01-01

    This patent describes a Kroll reduction process wherein a zirconium sponge contaminated with unreacted magnesium and by-product magnesium chloride is produced as a regulus, a process for purifying the zirconium sponge. It comprises: distilling magnesium and magnesium chloride from: a regulus containing a zirconium sponge and magnesium and magnesium chloride at a temperature above about 800 degrees C and at an absolute pressure less than about 10 mmHg in a distillation vessel to purify the zirconium sponge; condensing the magnesium and the magnesium chloride distilled from the zirconium sponge in a condenser; and then backfilling the vessel containing the zirconium sponge and the condenser containing the magnesium and the magnesium chloride with a gas; recirculating the gas between the vessel and the condenser to cool the zirconium sponge from above about 800 degrees C to below about 300 degrees C; and cooling the recirculating gas in the condenser containing the condensed magnesium and the condensed magnesium chloride as the gas cools the zirconium sponge to below about 300 degrees C

  10. Zirconium determination in rocks by solid-phase spectrophotometry

    International Nuclear Information System (INIS)

    Brykina, G.D.; Lebedeva, G.G.; Agapova, G.F.; AN SSSR, Moscow

    1990-01-01

    A method was developed for determination of zirconium in rocks by solid-phase spectrophotometry using AV-17x8-Cl anion exchanger modified with xylenol orange. Relative standard deviation at the level of (2-4.9)x10 -3 % ZrO 2 was about 0.245

  11. The effect of microwave and conventional heating on a modified sol-gel derived biphasic calcium phosphate

    Science.gov (United States)

    Herradi, S.; Bouhazma, S.; Khaldi, M.; El Hachadi, A.; El Bali, B.; Lachkar, M.

    2018-03-01

    A facile sol-gel method was used to synthesize either hydroxyapatite (HA) or beta-tricalcium phosphate (β-TCP) as the major phase. Herein, we report, on the one hand, the effect of a very low maturation temperature on the final powder composition after drying step, and on the other hand, we compare the effect of calcination of this powder by microwave or electric furnace. It was found that microwave heating has led to the formation of hydroxyapatite phase upon 180°C for 20 minutes, however, XRD patterns show that the powder becomes less crystallized upon 220°C and amorphous upon 230°C. In contrast, furnace heating at 600°C and 700°C converts the as-synthesized powder to β-TCP as the major phase together with HA as the minor phase. This work shows the possibility to obtain the as-prepared BCP at much lower maturation temperature; it also gives an insight into the role, of either microwave or conventional heating, in controlling the ratio between HA and β-TCP in the sintered powder.

  12. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency

    KAUST Repository

    Li, Yanbo

    2013-10-03

    Spurred by the decreased availability of fossil fuels and global warming, the idea of converting solar energy into clean fuels has been widely recognized. Hydrogen produced by photoelectrochemical water splitting using sunlight could provide a carbon dioxide lean fuel as an alternative to fossil fuels. A major challenge in photoelectrochemical water splitting is to develop an efficient photoanode that can stably oxidize water into oxygen. Here we report an efficient and stable photoanode that couples an active barium-doped tantalum nitride nanostructure with a stable cobalt phosphate co-catalyst. The effect of barium doping on the photoelectrochemical activity of the photoanode is investigated. The photoanode yields a maximum solar energy conversion efficiency of 1.5%, which is more than three times higher than that of state-of-the-art single-photon photoanodes. Further, stoichiometric oxygen and hydrogen are stably produced on the photoanode and the counter electrode with Faraday efficiency of almost unity for 100 min. © 2013 Macmillan Publishers Limited. All rights reserved.

  13. International collaborative study of the endogenous reference gene, sucrose phosphate synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice.

    Science.gov (United States)

    Jiang, Lingxi; Yang, Litao; Zhang, Haibo; Guo, Jinchao; Mazzara, Marco; Van den Eede, Guy; Zhang, Dabing

    2009-05-13

    One rice ( Oryza sativa ) gene, sucrose phosphate synthase (SPS), has been proven to be a suitable endogenous reference gene for genetically modified (GM) rice detection in a previous study. Herein are the reported results of an international collaborative ring trial for validation of the SPS gene as an endogenous reference gene and its optimized qualitative and quantitative polymerase chain reaction (PCR) systems. A total of 12 genetically modified organism (GMO) detection laboratories from seven countries participated in the ring trial and returned their results. The validated results confirmed the species specificity of the method through testing 10 plant genomic DNAs, low heterogeneity, and a stable single-copy number of the rice SPS gene among 7 indica varieties and 5 japonica varieties. The SPS qualitative PCR assay was validated with a limit of detection (LOD) of 0.1%, which corresponded to about 230 copies of haploid rice genomic DNA, while the limit of quantification (LOQ) for the quantitative PCR system was about 23 copies of haploid rice genomic DNA, with acceptable PCR efficiency and linearity. Furthermore, the bias between the test and true values of eight blind samples ranged from 5.22 to 26.53%. Thus, we believe that the SPS gene is suitable for use as an endogenous reference gene for the identification and quantification of GM rice and its derivates.

  14. Zirconium for nitric acid solutions

    International Nuclear Information System (INIS)

    Yau, T.L.

    1984-01-01

    The excellent corrosion resistance of zirconium in nitric acid has been known for over 30 years. Recently, there is an increasing interest in using zirconium for nitric acid services. Therefore, an extensive research effort has been carried out to achieve a better understanding of the corrosion properties of zirconium in nitric acid. Particular attention is paid to the effect of concentration, temperature, structure, solution impurities, and stress. Immersion, autoclave, U-bend, and constant strain-rate tests were used in this study. Results of this study indicate that the corrosion resistance of zirconium in nitric acid is little affected by changes in temperature and concentration, and the presence of common impurities such as seawater, sodium chloride, ferric chloride, iron, and stainless steel. Moreover, the presence of seawater, sodium chloride, ferric chloride, and stainless steel has little effect on the stress corrosion craking (SCC) susceptibility of zirconium in 70% nitric acid at room temperatures. However, zirconium could be attacked by fluoride-containing nitric acid and the vapors of chloride-containing nitric acid. Also, high sustained tensile stresses should be avoided when zirconium is used to handle 70% nitric acid at elevated temperatures or > 70% nitric acid

  15. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    Science.gov (United States)

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  16. Zirconium nitride hard coatings

    International Nuclear Information System (INIS)

    Roman, Daiane; Amorim, Cintia Lugnani Gomes de; Soares, Gabriel Vieira; Figueroa, Carlos Alejandro; Baumvol, Israel Jacob Rabin; Basso, Rodrigo Leonardo de Oliveira

    2010-01-01

    Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface crystalline microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The coatings were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN hard coatings. The ZrN films properties and microstructure changes according to the deposition parameters. The corrosion resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN coating deposited by PVD onto titanium substrate can improve the corrosion resistance. (author)

  17. Zirconium-barrier cladding attributes

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.; Rand, R.A.; Tucker, R.P.; Cheng, B.; Adamson, R.B.; Davies, J.H.; Armijo, J.S.; Wisner, S.B.

    1987-01-01

    This metallurgical study of Zr-barrier fuel cladding evaluates the importance of three salient attributes: (1) metallurgical bond between the zirconium liner and the Zircaloy substrate, (2) liner thickness (roughly 10% of the total cladding wall), and (3) softness (purity). The effect that each of these attributes has on the pellet-cladding interaction (PCI) resistance of the Zr-barrier fuel was studied by a combination of analytical model calculations and laboratory experiments using an expanding mandrel technique. Each of the attributes is shown to contribute to PCI resistance. The effect of the zirconium liner on fuel behavior during off-normal events in which steam comes in contact with the zirconium surface was studied experimentally. Simulations of loss-of-coolant accident (LOCA) showed that the behavior of Zr-barrier cladding is virtually indistinguishable from that of conventional Zircaloy cladding. If steam contacts the zirconium liner surface through a cladding perforation and the fuel rod is operated under normal power conditions, the zirconium liner is oxidized more rapidly than is Zircaloy, but the oxidation rate returns to the rate of Zircaloy oxidation when the oxide phase reaches the zirconium-Zircaloy metallurgical bond

  18. A facile route to modify ferrous phosphate and its use as an iron-containing resource for LiFePO4 via a polyol process.

    Science.gov (United States)

    Li, Shaomin; Liu, Xichuan; Mi, Rui; Liu, Hao; Li, Yinchuan; Lau, Woon-min; Mei, Jun

    2014-06-25

    This study introduces an economical and environmentally friendly way of synthesizing LiFePO4/C to be used as cathode material in lithium ion batteries via two processes: (1) the synthesis of LiFePO4/C cathode material using a low cost divalent precursor ferrous phosphate, Fe3 (PO4)2·8H2O, as iron source in a polyol process and (2) the modification of the morphology of this precursor by varying the reaction time in a coprecipitation process. The study examines the effects of different structures and morphologies of the precursor on the structure and electrochemical performance of the as-synthesized LiFePO4/C. The LiFePO4/C shows an excellent rate capability and cycle performance, with initial discharge capacities of 153, 128, and 106 mA h g(-1) at 1 C, 5 C, and 10 C. The capacity retention is respectively 98.7%, 98.2%, and 98.7%, after 10 cycles at the corresponding rates. The capacity retention remains at 97% even after 300 cycles at the rate of 10 C. The outstanding electrochemical performance can be attributed to the improved rate of Li(+) diffusion and the excellent crystallinity of synthesized LiFePO4/C powders through the modified precursor. Therefore, this is an economical and environmentally friendly way of synthesizing LiFePO4/C to be used as cathode material in lithium ion batteries.

  19. Biological characteristic effects of human dental pulp stem cells on poly-ε-caprolactone-biphasic calcium phosphate fabricated scaffolds using modified melt stretching and multilayer deposition.

    Science.gov (United States)

    Wongsupa, Natkrita; Nuntanaranont, Thongchai; Kamolmattayakul, Suttatip; Thuaksuban, Nuttawut

    2017-02-01

    Craniofacial bone defects such as alveolar cleft affect the esthetics and functions that need bone reconstruction. The advanced techniques of biomaterials combined with stem cells have been a challenging role for maxillofacial surgeons and scientists. PCL-coated biphasic calcium phosphate (PCL-BCP) scaffolds were created with the modified melt stretching and multilayer deposition (mMSMD) technique and merged with human dental pulp stem cells (hDPSCs) to fulfill the component of tissue engineering for bone substitution. In the present study, the objective was to test the biocompatibility and biofunctionalities that included cell proliferation, cell viability, alkaline phosphatase activity, osteocalcin, alizarin red staining for mineralization, and histological analysis. The results showed that mMSMD PCL-BCP scaffolds were suitable for hDPSCs viability since the cells attached and spread onto the scaffold. Furthermore, the constructs of induced hDPSCs and scaffolds performed ALP activity and produced osteocalcin and mineralized nodules. The results indicated that mMSMD PCL-BCP scaffolds with hDPSCs showed promise in bone regeneration for treatment of osseous defects.

  20. A study of a production process for hafnium-free zirconium from zircon

    International Nuclear Information System (INIS)

    Ratanalert, N.

    1985-01-01

    The purpose of this experiment was to extract and purify the zirconium from zircon. The effects of time of extraction and stripping of zirconium, concentration of feed solution, concentration of hydrochloric acid in stripping process, equilibrium curve of extraction of zirconium and hafnium and equilibrium curve of stripping zirconium or scrubbing hafnium were studied from standard zirconium and hafnium. The results, subsequently were applied to the extraction procedures for zirconium from zircon. Minus 100 mesh zircon was fused with sodium hydroxide in the ratio of 1 : 6 at 700 degree C for l hour. After fusion the zirconate was leached with water and dissolved in hot concentrated hydrochloric acid. Zirconyl chloride octahydrate crystallized out when the solution was cooled. An agueons solution of zirconyl chloride was used as the feed to the hexone - thiocyanate solvent extraction process. This was prepared by dissolving zirconyl chloride octahydrate crystal in waster. This zirconium feed solution in 1 M HCl and 1 M N H 4 CNS was extracted with 2.7 m N H 4 CNS in hexone and then stripped with 3.6 M HCl the aqueous phase was got rid of thiocyanate ion by extracting with pure hexone, then the zirconium in aqueous phase was precipitated with sulfuric acid and ammonium hydroxide at pH 1.8 - 2.0 and zirconium oxide was obtained by ignition at 700 degree C. The process could be modified to improve the purity of zirconium by using cation exchange resin to get rid of thiocyanate ion after solvent extraction process

  1. Precipitation of γ-zirconium hydride in zirconium

    International Nuclear Information System (INIS)

    Carpenter, G.J.C.

    1978-01-01

    A mechanism for the precipitation of γ-zirconium hydride in zirconium is presented which does not require the diffusion of zirconium. The transformation is completed by shears caused by 1/3 (10 anti 10) Shockley partial dislocations on alternate zirconium basal planes, either by homogeneous nucleation or at lattice imperfections. Homogeneous nucleation is considered least likely in view of the large nucleation barrier involved. Hydrides may form at dislocations by the generation of partials by means of either a pole or ratchet mechanism. The former requires dislocations with a component of Burgers vector along the c-axis, but contrast experiments show that these are not normally observed in annealed zirconium. It is therefore most likely that intragranular hydrides form at the regular 1/3 (11 anti 20) dislocations, possibly by means of a ratchet mechanism. Contrast experiments in the electron microscope show that the precipitates have a shear character consistent with the mechanism suggested. The possibility that the shear dislocations associated with the hydrides are emissary dislocations is considered and a model suggested in which this function is satisfied together with the partial relief of misfit stresses. The large shear strains associated with the precipitation mechanism may play an important role in the preferential orientation of hydrides under stress

  2. Square-wave voltammetric determination of rutin in pharmaceutical formulations using a carbon composite electrode modified with copper (II phosphate immobilized in polyester resin

    Directory of Open Access Journals (Sweden)

    Kellen Heloizy Garcia Freitas

    2012-12-01

    Full Text Available A carbon composite electrode modified with copper (II phosphate immobilized in a polyester resin (Cu3(PO42-Poly for the determination of rutin in pharmaceutical samples by square-wave voltammetry is described herein. The modified electrode allows the determination of rutin at a potential (0.20 V vs. Ag/AgCl (3.0 mol L-1 KCl lower than that observed at an unmodified electrode. The peak current was found to be linear to the rutin concentration in the range from 9.9 × 10-8 to 2.5 × 10-6 mol L-1, with a detection limit of 1.2×10-8 mol L-1. The response of the electrode was stable, with no variation in baseline levels within several hours of continuous operation. The surface morphology of the modified electrode was characterized by scanning electron microscopy (SEM and energy dispersive X-ray (EDX system. The results obtained are precise and accurate. In addition, these results are in agreement with those obtained by the chromatographic method at a 95% confidence level.Descreve-se um eletrodo de carbono modificado com fosfato de cobre (II imobilizado em uma resina de poliéster (Cu3(PO42-Poly para a determinação de rutina em amostras farmacêuticas por voltametria de onda quadrada. O eletrodo modificado permite a determinação de rutina em potencial (0.20 V vs Ag / AgCl (3,0 mol L-1 KCl menor que o observado em um eletrodo não modificado. Verificou-se que a corrente de pico foi linear com a concentração de rutina na faixa de 9,9 × 10-8 a 2,5 × 10-6 mol L-1, com um limite de detecção de 1,2 × 10-8 mol L¹. A resposta do eletrodo foi estável, sem variação significativa dentro de várias horas de operação contínua. A morfologia da superfície do eletrodo modificado foi caracterizada por microscopia eletrônica de varredura (MEV e pelo sistema de energia dispersiva de raios-X (EDX. Os resultados obtidos foram precisos e exatos. Ademais, estes resultados estão de acordo com aqueles obtidos pelo método cromatográfico a um nível de

  3. Fine-grained zirconium-base material

    Science.gov (United States)

    Van Houten, G.R.

    1974-01-01

    A method is described for making zirconium with inhibited grain growth characteristics, by the process of vacuum melting the zirconium, adding 0.3 to 0.5% carbon, stirring, homogenizing, and cooling. (Official Gazette)

  4. Problems of zirconium metal production in Czechoslovakia

    International Nuclear Information System (INIS)

    Vareka, J.; Vaclavik, E.

    1975-01-01

    The problems are summed up of the production and quality control of zirconium sponge. A survey is given of industrial applications of zirconium in form of pure metal or alloys in nuclear power production, ferrous and non-ferrous metallurgy, chemical engineering and electrical engineering. A survey is also presented of the manufacture of zirconium metal in advanced capitalist countries. (J.B.)

  5. Anisotropy of mechanical properties of zirconium and zirconium alloys

    International Nuclear Information System (INIS)

    Medrano, R.E.

    1975-01-01

    In studies of technological applications of zirconium to fuel elements of nuclear reactor, it was found that the use of plasticity equations for isotropic materials is not in agreement with experimental results, because of the strong anisotropy of zirconium. The present review describes recent progress on the knowledge of the influence of anisotropy on mechanical properties, after Douglass' review in 1971. The review was written to be selfconsistent, changing drastically the presentation of some of the referenced papers. It is also suggested some particular experiments to improve developments in this area

  6. Polycarboxylic acids as network modifiers for water durability improvement of inorganic-organic hybrid tin-silico-phosphate low-melting glasses

    International Nuclear Information System (INIS)

    Menaa, Bouzid; Mizuno, Megumi; Takahashi, Masahide; Tokuda, Yomei; Yoko, Toshinobu

    2006-01-01

    We investigated the water durability of the inorganic-organic hybrid tin-silico-phosphate glasses Me 2 SiO-SnO-P 2 O 5 (Me designs the organic methyl group) doped with organic acids (salicylic acid (SA), tartaric acid (TA), citric acid (Canada) and butane tetracarboxylic acid (BTCA)) containing one or more of carboxylic groups per molecule. The structure, thermal properties and durability of the final glasses obtained via a non-aqueous acid-base reaction were discussed owing to the nature and the concentration of the acid added. 29 Si magic angle spinning (MAS) NMR and 31 P MAS NMR spectra, respectively, showed clearly a modification of the network in the host glass matrix of the Me 2 SiO-SnO-P 2 O 5 system. The polycondensation enhancement to form -P-O-Si-O-P- linkages (PSP) and the increase of the Q 2 unit (two bridging oxygens per phosphorus atom) over the Q 3 unit (three bridging oxygens per phosphorus atom) as a function of the acid in the order SA 2 SiO-SnO-P 2 O 5 matrix. In addition, this structural change is accompanied by a decrease of the coefficient of thermal expansion and an increase of the water durability of the glasses with the acids containing a large number of carboxylic groups per molecule. The presence of carboxylic groups of the acid acting as network modifier may retard the movement of water molecules through the glasses due to the steric hindrance strengthening the PSP connections in a chain-like structure

  7. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    Science.gov (United States)

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  8. Zirconium alloy barrier having improved corrosion resistance

    International Nuclear Information System (INIS)

    Adamson, R.B.; Rosenbaum, H.S.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor has a composite cladding container having a substrate and a dilute zirconium alloy liner bonded to the inside surface of the substrate. The dilute zirconium alloy liner forms about 1 to about 20 percent of the thickness of the cladding and is comprised of zirconium and a metal selected from the group consisting of iron, chromium, iron plus chromium, and copper. The dilute zirconium alloy liner shields the substrate from impurities or fission products from the nuclear fuel material and protects the substrate from stress corrosion and stress cracking. The dilute zirconium alloy liner displays greater corrosion resistance, especially to oxidation by hot water or steam than unalloyed zirconium. The substrate material is selected from conventional cladding materials, and preferably is a zirconium alloy. (author)

  9. Process for etching zirconium metallic objects

    International Nuclear Information System (INIS)

    Panson, A.J.

    1988-01-01

    In a process for etching of zirconium metallic articles formed from zirconium or a zirconium alloy, wherein the zirconium metallic article is contacted with an aqueous hydrofluoric acid-nitric acid etching bath having an initial ratio of hydrofluoric acid to nitric acid and an initial concentration of hydrofluoric and nitric acids, the improvement, is described comprising: after etching of zirconium metallic articles in the bath for a period of time such that the etching rate has diminished from an initial rate to a lesser rate, adding hydrofluoric acid and nitric acid to the exhausted bath to adjust the concentration and ratio of hydrofluoric acid to nitric acid therein to a value substantially that of the initial concentration and ratio and thereby regenerate the etching solution without removal of dissolved zirconium therefrom; and etching further zirconium metallic articles in the regenerated etching bath

  10. Hydrolysis of TBF and TiAP in presence of zirconium

    International Nuclear Information System (INIS)

    Vladimirova, M.V.; Kulikov, I.A.; Kuprij, A.A.

    1992-01-01

    Acid hydrolysis of organic solutions of tributyl phosphate (TBP) and tri-iso-amylphosphate (TiAP) in n-paraffin diluent in the presence of zirconium (0.025-0.1 mole/l) at nitric acid concentration of 0.3-1 mole/l is studied. Hydrolysis of extractants in a two-phase system, modelling conditions of spent fuel reprocessing and consisting of 1.1 mole/l TAP, 3 mole/l nitric acid at zirconium concentration in water phase 0.05-0.11 mole/l, at water-organic phase ratio 10:1 and at 60 deg C is also studied. Constants of TAP hydrolysis in organic and water phases are determined. Mechanism of increasing the TAP hydrolysis rate in zirconium presence is discussed. 5 refs., 2 figs., 5 tabs

  11. Comparison of greenhouse and 32P isotopic laboratory methods for evaluating the agronomic effectiveness of natural and modified rock phosphates in some acid soils of Ghana

    International Nuclear Information System (INIS)

    Owusu-Bennoah, E.; Zapata, F.; Fardeau, J.C.

    2002-01-01

    Phosphorus deficiency is one of the major constraints for normal plant growth and crop yields in the acid soils of Ghana and therefore addition of P inputs is required for sustainable crop production. This is often difficult, if not impossible for small-scale farmers due to the high cost of mineral P fertilizers and limited access to fertilizer supplies. Direct application of finely ground phosphate rocks (PRs) and their modified forms have been recommended as alternatives for P fertilization. The direct application of the natural and modified PRs to these acid soils implies the need to predict their agronomic effectiveness of the PRs in the simplest and most cost-effective manner. In this study the classical greenhouse pot experiment was compared to the 32 P isotopic kinetics laboratory method for evaluating the agronomic effectiveness of natural and modified Togo PR in six highly weathered Oxisols from southwest Ghana. In the 32 P isotopic kinetics laboratory experiment the six soil samples were each fertilised at the rate of 50 mg P kg -1 soil in the form of triple superphosphate (TSP), Togo PAPR-50%, and Togo PR, respectively. Controls without P amendment were also included. Isotopic exchange kinetics experiments were carried out on two sets of samples, immediately after P fertilizer additions (without incubation) and after 6 weeks of incubation under wet conditions and at a room temperature of 25 deg C. In the greenhouse pot experiment, P fertilizers in the form of Togo PR, Togo PAPR, Mali PR and TSP were each applied to the six soils at rates equivalent to 0, 30, 60, and 120 kg P ha -1 , respectively. The P fertilizers were mixed with the soils and maize (Zea mays L.) variety Obatanpa was grown for 42 days before harvest. The isotopic kinetics data of the control samples indicated that 5 of the studied soils had very low P fertility status as reflected by their low P concentrations in solution (C P -1 ) and low exchangeable P (E 1 min -1 ). The capacity

  12. TBP 20% diluent/H N O3/H2 O liquid-liquid extraction system: equilibrium data normalization of nitric acid, ruthenium and zirconium

    International Nuclear Information System (INIS)

    Oliveira, C.A.L.G. de; Araujo, B.F. de.

    1991-11-01

    The extraction behavior of nitric acid, nitrosyl ruthenium nitrate and zirconium hydroxide nitrate in the system tri-n-butyl phosphate (TBP) 20% -diluent was studied. The main purpose was to obtain enough data to elaborate process flowsheets for the treatment of irradiated uranium fuels. During the runs, the equilibrium diagrams of nitric acid, ruthenium and zirconium were settled. From the achieved data, the influence of nitric acid, ruthenium, zirconium and nitrate ions concentration in the aqueous phase was checked. Furthermore, the density and the surface tension of the aqueous and organic phases were determined, gathering the interfacial tension after the contact between the phases. (author)

  13. Synthesis, characterization and optical properties of novel N donor ligands-chelated zirconium(IV) complexes

    Science.gov (United States)

    Shahroosvand, Hashem; Nasouti, Fahimeh; Mohajerani, Ezeddin; Khabbazi, Amir

    2012-11-01

    Novel zirconium complexes have been synthesized by using a mixture of zirconium nitrate, 1,2,4,5-benzen tetracarboxylic acid (H4btec), 1,10-phenanthroline(phen) and potassium thiocyanate. Monodentate coordination mode of btec acid for all complexes was investigated by FT-IR spectroscopy. The complexes were also characterized by UV-Vis, 1H NMR, CHN, ICP-AES. The reaction details and features were described and discussed. The photoluminescence emission of seven zirconium complexes was shown two series peaks: first, sharp and intense bands from 300 to 500 nm and broadened with less intensity from 650 to 750 nm for the second bands. Each of the zirconium compounds were doped in PVK:PBD blend as host. The ratio of zirconium complexes for each type were modified 8 wt.% in PVK:PBD(100:40). The electroluminescence spectra of zirconium complexes were indicated a red shift rather than PVK:PBD blend. We suggest that the electroplex occurring at PVK-Zr complex interface.

  14. Irradiated uranium reprocessing, Final report I-VI, Part VI - Separation of uranium, plutonium and fission products from HNO{sub 3} solution on the zirconium phosphate (part I), Adsorption equilibrium and kinetics; Prerada ozracenog urana. Zavrani izvestaj - I-VI, VI Deo - Odvajanje urana, plutonijuma i fisionih produkata iz rastvora HNO{sub 3} na cirkonijum fosfatu (deo I.), Ravnoteza i kinetika adsorpcije

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I; Ruvarac, A [Institute of Nuclear Sciences Boris Kidric, Odeljenje za eksploataciju nuklearnog goriva, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Separation of uranium, plutonium and long-lived fission products was investigated on a inorganic ion exchanger. Zirconium phospate was chosen for this purpose because its ion exchanger properties were well known. This report deals with the study of equilibrium and kinetics of the adsorption.

  15. Novel synthesis of magnesium hydroxide nanoparticles modified with organic phosphate and their effect on the flammability of acrylonitrile-butadiene styrene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Nour F., E-mail: drnour2005@yahoo.com [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt); Goda, Emad S.; Nour, M.A. [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt); Sabaa, M.W. [Chemistry Department, Faculty of Science, Cairo University, NahdetMisr Street, Giza 12613 (Egypt); Hassan, M.A., E-mail: Mohamed_a_hassan@hotmail.com [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt)

    2015-11-15

    New and facile method for the synthesis and modification of magnesium hydroxide nanoparticles has been developed. The organic phosphate was used to facilitate the synthesis and wrapping of magnesium hydroxide nanoparticles with organic phosphate shell. The size of the nanoparticles wrapped with phosphate has an average diameter range from 46 to 125 nm. The preparation method has governed the nanoparticles diameter based on reaction time. Thermal stability and morphological properties of the new nanoparticles coated phosphates were investigated. The developed magnesium hydroxide nanoparticles-organic phosphate achieved a very good compatibility when dispersed in acrylonitrile-butadiene styrene polymer (ABS) produced dispersed nanocomposites. The flammability and thermal properties of the new polymer nanocomposites were studied. The rate of burning of the nanocomposites was reduced to 9.8 mm/min compared to 15, 21.9 and 42.5 mm/min for polymer-conventional magnesium hydroxide composite, polymer-conventional magnesium hydroxide-organic phosphate composite and virgin polymer, respectively. The peak heat release rate (PHRR) and total heat release (THR) of the new nanocomposites were recorded as 243.4 kW/m{sup 2} and 19.2 MJ/m{sup 2}, respectively, achieved 71% reduction for PHRR and 55% for THR. The synergism between magnesium hydroxide nanoparticles and organic phosphates shell was also studied. The developed nanoparticles suppressed the emission of toxic gases. The different materials were characterized using thermal gravimetric analysis, fourier transform infrared spectroscopy, transmission electron microscopy. The flammability properties were evaluated using UL94 horizontal method and cone calorimeter. The dispersion of magnesium hydroxide nanoparticles-organic phosphate in ABS was studied using scanning electron microscope. - Highlights: • Novel and facile nanoparticles synthesis and modification have developed. • Magnesium hydroxide nanoparticles size has

  16. Neutron activation of chlorine in zirconium and zirconium alloys use of the matrix as comparator

    International Nuclear Information System (INIS)

    Cohen, I.M.; Gomez, C.D.; Mila, M.I.

    1981-01-01

    A procedure is described for neutron activation analysis of chlorine in zirconium and zirconium alloys. Calculation of chlorine concentration is performed relative to zirconium concentration in the matrix in order to minimize effects of differences in irradiation and counting geometry. Principles of the method and the results obtained are discussed. (author)

  17. Spectrophotometric titration of zirconium in siliceous materials

    International Nuclear Information System (INIS)

    Sugawara, K.F.; Su, Y.-S.; Strzegowski, W.R.

    1978-01-01

    An accurate and selective complexometric titration procedure based upon a spectrophotometrically detected end-point has been developed for the determination of zirconium in glasses, glass-ceramics and refractories. A p-bromomandelic acid separation step for zirconium imparts excellent selectivity to the procedure. The method is particularly important for the 1 to 5% concentration range where a simple, accurate and selective method for the determination of zirconium has been lacking. (author)

  18. Voltammetric determination of zirconium using azo compounds

    International Nuclear Information System (INIS)

    Orshulyak, O.O.; Levitskaya, G.D.

    2008-01-01

    The optimum conditions for zirconium complexation with azo compounds are found. The applicability of Eriochrome Red B, Calcon, and Calcion to the voltammetric determination of zirconium, total Zr(IV) and Hf(IV), and Zr(IV) in the presence of Zn(II), Cu(II), Cd(II), Ni(II), or Ti(IV) is demonstrated. The developed procedures are used to determine zirconium in a terbium alloy and in an alloy for airplane wheel drums [ru

  19. Applications for zirconium and columbium alloys

    International Nuclear Information System (INIS)

    Condliff, A.F.

    1986-01-01

    Currently, zirconium and columbium are used in a wide range of applications, overlapping only in the field of corrosion control. As a construction material, zirconium is primarily used by the nuclear power industry. The use of zirconium in the chemical processing industry (CPI) is, however, increasing steadily. Columbian alloys are primarily applied as superconducting alloys for research particle accelerators and fusion generators as well as in magnetic resonance imaging for medical diagnosis

  20. Method of separating hafnium from zirconium

    International Nuclear Information System (INIS)

    Megy, J.A.

    1980-01-01

    English. A new anhydrous method was developed for separating zirconium and hafnium, which gives higher separation factors and is more economical than previous methods. A molten phase, comprising a solution of unseparated zirconium and hafnium and a solvent metal, is first prepared. The molten metal phase is contacted with a fused salt phase which includes a zirconium salt. Zirconium and hafnium separation is effected by mutual displacement with hafnium being transported from the molten metal phase to the fused salt phase, while zirconium is transported from the fused salt phase to the molten metal phase. The solvent metal is less electropositive than zirconium. Zinc was chosen as the solvent metal, from a group which also included cadmium, lead, bismuth, copper, and tin. The fused salt phase cations are more electropositive than zirconium and were selected from a group comprising the alkali elements, the alkaline earth elements, the rare earth elements, and aluminum. A portion of the zirconium in the molten metal phase was oxidized by injecting an oxidizing agent, chlorine, to form zirconium tetrachlorid

  1. Microhardness and microplasticity of zirconium nitride

    International Nuclear Information System (INIS)

    Neshpor, V.S.; Eron'yan, M.A.; Petrov, A.N.; Kravchik, A.E.

    1978-01-01

    To experimentally check the concentration dependence of microhardness of 4 group nitrides, microhardness of zirconium nitride compact samples was measured. The samples were obtained either by bulk saturation of zirconium iodide plates or by chemical precipitation from gas. As nitrogen content decreased within the limits of homogeneity of zirconium nitride samples where the concentration of admixed oxygen was low, the microhardness grew from 1500+-100 kg/mm 2 for ZrNsub(1.0) to 27000+-100 kg/mm 2 for ZrNsub(0.78). Microplasticity of zirconium nitride (resistance to fracture) decreased, as the concentration of nitrogen vacancies was growing

  2. Production kinetics of zirconium tetrachloride

    International Nuclear Information System (INIS)

    Sudjoko, D.; Masduki, B.; Sunardjo; Sulistyo, B.

    1996-01-01

    This research was intended to study the kinetics of zirconium tetrachloride production. The process was carried out in semi continuous reactor, equipped with heater, temperature controller, sublimator and scrubber. The variables investigated were time, temperature and the pellet forming pressure. Within the range of variables studied, the expression of the process in the chemical reaction controller region and diffusion controller region were both presented. (author)

  3. Effect of phosphate ion on filtration characteristics of solids generated in simulated high level liquid waste

    International Nuclear Information System (INIS)

    Kondo, Y.

    1998-01-01

    The effect of phosphate ion on the filtration characteristics of solids generated in a high level liquid waste was experimentally examined. Addition of phosphate ion into the simulated HLLW induced the formation of phosphate such as zirconium phosphate and phosphomolybdic acid. The filtration rate of zirconium phosphate abruptly dropped in the midst of filtration because of a gel-cake formation on the filter surface. The denitration of the simulated HLLW contained zirconium phosphate improved the filterability of this gelatinous solid. The filtration rates of denitrated HLLW decreased with increase of the phosphate ion concentration, since the solids formed by denitration had irregular particle size and configuration in the simulated HLLW with phosphate ion. To increase the filtration rate of denitrated HLLW, a solid suspension filtration tester was designed. The solid-suspension accelerated the filtration rate only in the simulated HLLW with more than 1500 ppm phosphate ion concentration. Under this condition, the simple agitation can easily suspend the constituent solids of filter cake in the solution and a much higher filtration rate can be obtained because the filter cake is continuously swept from the filter surface by rotation of propellers. (authors)

  4. Thermodynamic Database for Zirconium Alloys

    International Nuclear Information System (INIS)

    Jerlerud Perez, Rosa

    2003-05-01

    For many decades zirconium alloys have been commonly used in the nuclear power industry as fuel cladding material. Besides their good corrosion resistance and acceptable mechanical properties the main reason of using these alloys is the low neutron absorption. Zirconium alloys are exposed to a very severe environment during the nuclear fission process and there is a demand for better design of this material. To meet this requirement a thermodynamic database is developed to support material designers. In this thesis some aspects about the development of a thermodynamic database for zirconium alloys are presented. A thermodynamic database represents an important facility in applying thermodynamic equilibrium calculations for a given material providing: 1) relevant information about the thermodynamic properties of the alloys e.g. enthalpies, activities, heat capacity, and 2) significant information for the manufacturing process e.g. heat treatment temperature. The basic information in the database is first the unary data, i.e. pure elements; those are taken from the compilation of the Scientific Group Thermodata Europe (SGTE) and then the binary and ternary systems. All phases present in those binary and ternary systems are described by means of the Gibbs energy dependence on composition and temperature. Many of those binary systems have been taken from published or unpublished works and others have been assessed in the present work. All the calculations have been made using Thermo C alc software and the representation of the Gibbs energy obtained by applying Calphad technique

  5. Purification and physical characteristics of a hemoglobin solution modified by coupling to 2-nor-2-formylpyridoxal 5‘-phosphate (NFPLP)

    NARCIS (Netherlands)

    van der Plas, J; de Vries-van Rossen, A; Koorevaar, JJ; Buursma, Anneke; Zijlstra, Willem; Bakker, JC

    1988-01-01

    Human stroma-free hemoglobin (Hb) was crosslinked with 2-nor-2- formylpyridoxal 5′-phosphate (NFPLP), purified over crosslinked dextran, and eluted with a linear salt gradient. The oxygen dissociation curve of this crosslinked hemoglobin appeared to be shifted to the right with a standard P50 of 49

  6. Extraction with tributyl phosphate (TBP) from ferric nitrate solutions

    International Nuclear Information System (INIS)

    Kolarik, Z.; Grudpan, K.

    1985-01-01

    Ferric nitrate acts as a strong salting-out agent in the extraction of thorium(IV), uranyl, europium(III), samarium(III) and zirconium(IV) nitrates as well as of nitric acid with tributyl phosphate in dodecane. Nitric acid, if present in the extraction system together with large amounts of ferric nitrate, markedly suppresses the extraction of thorium(IV) and lanthanides(III) but significantly supports the extraction of zirconium(IV). Separation factors of different metal pairs are presented as functions of the concentrations of ferric nitrate and nitric acid

  7. Development of microstructure in thermomechanical processing of zirconium alloys

    International Nuclear Information System (INIS)

    Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2009-01-01

    Zirconium based alloys are used for the manufacture of fuel tubes pressure tubes calandria tubes and other components of Pressurized Heavy Water Reactors (PHWRS). In single or two phase zirconium alloy system a variety of microstructure can be generated by suitable heat treatments by the process of equilibrium and non equilibrium phase transformations Microstructure can also be modified by alloying with α and β stabilizers. The microstructure in Zr alloys could be single hexagonal phase (α alloys) two phase bcc and hexagonal (α + β alloys) phase, single metastable martensitic microstructure and β with ω phase. The microstructural and micro textural evolution during thermo mechanical treatments depends strongly on such initial microstructure. Hot extrusion is a significant bulk deformation step which decides the initial microstructure of the alloy. It is carried out at elevated temperature i e above the recrystallization temperature, which enable imposition of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on extrusion process parameters such as temperature, strain rate (Ram speed), reduction ratio etc. In the present paper development of microstructures, microtexture and texture have been examined. An attempt is also made to optimise the hot working parameters for different Zirconium alloys with help of these studies. (author)

  8. Development of tantalum–zirconium alloy for hydrogen purification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay, E-mail: sanjay.barc@gmail.com [Fusion Reactor Materials Section, MG, BARC, Mumbai 85 (India); IAMR, Hiroshima University, Higashihiroshima 739-8530 (Japan); Singh, Anamika [GSASM Hiroshima University, Higashihiroshima 739-8530 (Japan); Jain, Uttam; Dey, Gautam Kumar [Fusion Reactor Materials Section, MG, BARC, Mumbai 85 (India)

    2016-11-01

    Highlights: • Terminal solid solubility of Ta increases with Zr addition. • Increase in lattice parameters of Ta due to Zr addition may be the possible reason. • Enhance H solubility could also be explained on the change in e-DOS of Ta–Zr alloys. • Ta–Zr alloys could be possible combination for hydrogen purification membrane. - Abstract: Terminal solid solubility of hydrogen in Ta–Zr alloys has been studied in connection with the development of tantalum based metallic membrane for hydrogen/tritium purification. The alloys were prepared by vacuum arc melting technique and subsequently cold rolled to 0.2 mm thickness. The terminal solid solubility of hydrogen in these cold rolled samples was investigated in a modified Sieverts apparatus. The terminal solid solubility of hydrogen was marginally increased with zirconium content. The change in the lattices parameter of tantalum upon zirconium addition and the higher affinity of zirconium for hydrogen as compared to tantalum could be the possible reasons.

  9. Phosphate Salts

    Science.gov (United States)

    ... body. They are involved in cell structure, energy transport and storage, vitamin function, and numerous other processes ... Phosphate-containing foods and beverages include cola, wine, beer, whole grain cereals, nuts, dairy products and some ...

  10. Analysis of hydrogen in zirconium metallic

    International Nuclear Information System (INIS)

    Rodrigues, A.N.; Vega Bustillos, J.O.W.

    1991-02-01

    Determination of hydrogen in zirconium metallic have been performed using the hot vacuum extraction system and the gas chromatographic technique. The zirconium metallic samples were hydrieded by electrolitic technique at difference temperatures and times, then the samples were annealing at vacuum and eatching by fluoridric acid solution. The details of the hydrieded process, analytical technique and the data obtained are discussed. (author)

  11. Localized deformation of zirconium-liner tube

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Uchida, Masaaki

    1988-03-01

    Zirconium-liner tube has come to be used in BWR. Zirconium liner mitigates the localized stress produced by the pellet-cladding interaction (PCI). In this study, simulating the ridging, stresses were applied to the inner surfaces of zirconium-liner tubes and Zircaloy-2 tubes, and, to investigate the mechanism and the extent of the effect, the behavior of zirconium liner was examined. As the result of examination, stress was concentrated especially at the edge of the deformed region, where zirconium liner was highly deformed. Even after high stress was applied, the deformation of Zircaloy part was small, since almost the concentrated stress was mitigated by the deformation of zirconium liner. In addition, stress and strain distributions in the cross section of specimen were calculated with a computer code FEMAXI-III. The results also showed that zirconium liner mitigated the localized stress in Zircaloy, although the affected zone was restricted to the region near the boundary between zirconium liner and Zircaloy. (author)

  12. Zirconium behaviour in purex process solutions

    International Nuclear Information System (INIS)

    Shu, J.

    1982-01-01

    The extraction behaviour of zirconium, as fission product, in TBP/diluent- HNO 3 -H 2 O systems, simulating Purex solutions, is studied. The main purpose is to attain an increasing in the zirconium decontamination factor by adjusting the extraction parameters. Equilibrium diagram, TBP concentration, aqueous:organic ratio, salting-out effects and, uranium loading in the organic phase were the main factors studied. All these experiments had been made with zirconium in the 10 - 2 - 10 - 3 concentration range. The extractant degradation products influence uppon the zirconium behaviour was also verified. With the obtained data it was possible to introduce some modification in the standard Purex flow-sheet in order to obtain the uranium product with higher zirconium decontamination. (Author) [pt

  13. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  14. Chemistry of titanium, zirconium and thorium picramates

    International Nuclear Information System (INIS)

    Srivastava, R.S.; Agrawal, S.P.; Bhargava, H.N.

    1976-01-01

    Picramates of titanium, zirconium and thorium are prepared by treating the aqueous sulphate, chloride and nitrate solutions with sodium picramate. Micro-analysis, colorimetry and spectrophotometry are used to establish the compositions (metal : ligand ratio) of these picramates as 1 : 2 (for titanium and zirconium) and 1 : 4 (for thorium). IR studies indicate H 2 N → Me coordination (where Me denotes the metal). A number of explosive properties of these picramates point to the fact that the zirconium picramate is thermally more stable than the picramates of titanium and thorium. (orig.) [de

  15. A spanish mineral of zirconium and hafnium. Separation of the two elements by liquid-liquid extraction, using tributyl phosphate as chelating agent; Beneficio de un mineral espanol de circonio-hafnio. Separacion de ambos elementos por extraccion liquido-liquido, empleando fosfato de tributilo como agente de quelacion

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Sanchez, F; Cruz Castillo, F. de la; Fernandez Cellini, R

    1962-07-01

    The zirconium and Hafnium oxides are obtained from a Spanish mineral of zircon with an average contest of 55% in ZrO{sub 2}-HfO{sub 2}. An alkaline fusion to open the mineral, followed by a purification by crystallization as (Zr O-Hf O)Cl{sub 2} H{sub 2}O or as (Zr-Hf) (SO{sub 4}){sub 2}. 4H{sub 2}O, is used. A discussion of the best experimental conditions for opening the mineral and of the purification method is made. (Author) 45 refs.

  16. Square-wave adsorptive stripping voltammetric determination of nanomolar levels of bezafibrate using a glassy carbon electrode modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film.

    Science.gov (United States)

    Ardila, Jorge Armando; Oliveira, Geiser Gabriel; Medeiros, Roberta Antigo; Fatibello-Filho, Orlando

    2014-04-07

    A highly sensitive method for bezafibrate determination using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film based on square-wave adsorptive stripping voltammetry (SWAdSV) is proposed. The electrochemical behaviour of bezafibrate has been studied by cyclic voltammetry, showing an irreversible anodic peak at a potential of 1.09 V in 0.1 mol L(-1) phosphate buffer solution (pH 2.0). A study of the scan rate showed that the oxidation of bezafibrate is an adsorptive-controlled process, involving the transfer of two electrons and two protons per molecule. The analytical curve was linear over a bezafibrate concentration range from 50 to 910 nmol L(-1), with a detection limit of 16 nmol L(-1). This analytical method was successfully applied for benzafibrate determination in pharmaceutical formulations, with results showing good agreement with those obtained using a comparative spectrophotometric method, and has the potential for field application.

  17. Preparation, characterization and investigation of in vitro and in vivo biological properties of strontium-modified calcium phosphate cement for bone defect repair

    Directory of Open Access Journals (Sweden)

    Reza Masaeli

    2015-12-01

    Full Text Available Background and Aims: The aim of this study was to evaluate the invitro and invivo performance of a 3 wt% of strontium additive hydroxyapatite calcium phosphate cements (CPC. Materials and Methods: The prepared calcium phosphate cement was characterized with XRD, FTIR, setting time, STA and in vitro and in vivo biological analyses. The MTT assay ALP activities as in vitro study and radiological and histological examinations as in vivo study between the three groups of 3 wt% Sr-HA/CPC, CPC and control were performed and compared. Data were analyzed using T-test and One-way ANOVA. Results: XRD analysis demonstrated that by increasing the ratio of Powder/Liquid (P/L, the crystallinity of the prepared cement increased. The substitution of strontium instead of calcium in CPC could also alter the crystal structure, including some structural disorder. However, in the CPC with no strontium hydroxyapatite (Sr-HA, no significant increase in the crystallinity was observed. SEM observations revealed CPC with increasing P/L ratio, the formation of hydroxyapatite crystals arising from the interaction of solid and liquid phase of cement was decreased. Also, the addition of Sr within Ca site culminated in a dramatic increase in crystallinity of hydroxyapatite. In vitro biological properties ascertained that addition of 3 wt. % Sr-HA into CPC enhanced MTT assay and ALP activity, which could be due to the presence of strontium ions. The histological study showed that greater remodeling was seen at 4 weeks after implantation when the 3 wt% Sr-HA/CPC was used. Conclusion: The obtained results cleared that CPC can be a potential candidate as a carrier with strontium additives for bone remodeling and regeneration.

  18. The phases formed by the dehydration of disodium zirconium (IV) bis(orthophosphate) trihydrate and their ion-exchange behavior

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamada, Yoshimune

    1982-01-01

    The phase transformation of Na 2 Zr(PO 4 ) 2 .3H 2 O which had been obtained from zirconium (IV) bis(hydrogenphosphate) monohydrate(α-zirconium phosphate), prepared by the direct precipitation method, was studied by means of gravimetry, X-ray analysis, and acid-base titration. When the material was heated for 2d, it was transformed to a monohydrate at 80 0 C and then successively to three anhydrous phases, depending on the temperature. The monohydrate was also formed by letting the trihydrate stand over P 2 O 5 at room temperature for longer than two weeks. The processes were confirmed to be irreversible by an examination of the rehydration behavior, from which the conditions of the storage of five modifications of disodium zirconium (IV) bis(orthophosphate) were established. It is of special interest that the second anhydrous phase reverted to the first one when it was allowed to stand at room temperature in air or in a desiccator. The rate of the reversion decreased with the temperature of heat-treatment and with a decrease in the relative humidity of the surroundings. The difference between the present results and Clearfield's was clarified and attributed mainly to the difference in the crystallinity of the starting α-zirconium phosphate. (author)

  19. Oxidized zirconium on ceramic; Catastrophic coupling.

    Science.gov (United States)

    Ozden, V E; Saglam, N; Dikmen, G; Tozun, I R

    2017-02-01

    Oxidized zirconium (Oxinium™; Smith & Nephew, Memphis, TN, USA) articulated with polyethylene in total hip arthroplasty (THA) appeared to have the potential to reduce wear dramatically. The thermally oxidized metal zirconium surface is transformed into ceramic-like hard surface that is resistant to abrasion. The exposure of soft zirconium metal under hard coverage surface after the damage of oxidized zirconium femoral head has been described. It occurred following joint dislocation or in situ succeeding disengagement of polyethylene liner. We reported three cases of misuse of Oxinium™ (Smith & Nephew, Memphis, TN, USA) heads. These three cases resulted in catastrophic in situ wear and inevitable failure although there was no advice, indication or recommendation for this use from the manufacturer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Production of nuclear grade zirconium: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L., E-mail: L.Xu-2@tudelft.nl [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110004 (China); Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD (Netherlands); Xiao, Y. [Department of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Sandwijk, A. van [Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Xu, Q. [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110004 (China); Yang, Y. [Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD (Netherlands)

    2015-11-15

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium as a fuel cladding material. This paper provides an overview of the processes for nuclear grade zirconium production with emphasis on the methods of Zr–Hf separation. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The known pyrometallurgical Zr–Hf separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt–metal equilibrium. In the present paper, the available Zr–Hf separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  1. Study for the chlorination of zirconium oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Takiishi, H.; Paschoal, J.O.A.; Andreoli, M.

    1990-12-01

    In the development of new ceramic and metallic materials the chlorination process constitutes step in the formation of several intermediate compounds, such as metallic chlorides, used for the production of high, purity raw materials. Chlorination studies with the aim of fabrication special zirconium-base alloys have been carried out at IPEN. Within this program the chlorination technique has been used for zirconium tetrachloride production from zirconium oxide. In this paper some relevant parameters such as: time and temperature of reaction, flow rate of chloride gas and percentage of the reducing agent which influence the efficiency of chlorination of zirconium oxide are evaluated. Thermodynamical aspects about the reactions involved in the process are also presented. (author)

  2. Towards an understanding of zirconium alloy corrosion

    International Nuclear Information System (INIS)

    Cox, B.

    1976-08-01

    A brief historical summary is given of the development of a programme for understanding the corrosion mechanisms operating for zirconium alloys. A general summary is given of the progress made, so far, in carrying through this programme. (author)

  3. Titanium(IV), zirconium, hafnium and thorium

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    Titanium can exist in solution in a number of oxidation states. The titanium(IV) exists in acidic solutions as the oxo-cation, TiO 2+ , rather than Ti 4+ . Zirconium is used in the ceramics industry and in nuclear industry as a cladding material in reactors where its reactivity towards hydrolysis reactions and precipitation of oxides may result in degradation of the cladding. In nature, hafnium is found together with zirconium and as a consequence of the contraction in ionic radii that occurs due to the 4f -electron shell, the ionic radius of hafnium is almost identical to that of zirconium. All isotopes of thorium are radioactive and, as a consequence of it being fertile, thorium is important in the nuclear fuel cycle. The polymeric hydrolysis species that have been reported for thorium are somewhat different to those identified for zirconium and hafnium, although thorium does form the Th 4 (OH) 8 8+ species.

  4. Zirconium determination in refractories (gravimetric method)

    International Nuclear Information System (INIS)

    Capiotto, N.; Narahashi, Y.; Perish, C.G.; Souza, J.R.

    1991-01-01

    The zirconium determination in refractories is described, consisting in two separation methods for eliminating the interferences. The formatted product is calcined at 1100 0 C and determined gravimetrically as Zr P z 07. (author)

  5. Joint titrimetric determination of zirconium and hafnium

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Botbol, Moises; Bianco de Salas, G.N.; Cornell de Casas, M.I.

    1980-01-01

    A method for the joint titrimetric determination of zirconium and hafnium, which are elements of similar chemical behaviour, is described. The disodic salt of the ethylendiaminetetracetic acid (EDTA) is used for titration, while xilenol orange serves as final point indicator. Prior to titration it is important to evaporate with sulfuric acid, the solution resulting from the zirconium depolymerization process, to adjust the acidity and to eliminate any interferences. The method, that allows the quick and precise determination of zirconium and hafnium in quantities comprised between 0.01 and mg, was applied to the analysis of raw materials and of intermediate and final products in the fabrication of zirconium sponge and zircaloy. (M.E.L.) [es

  6. Zirconium determination in refractories (gravimetric method)

    International Nuclear Information System (INIS)

    Capiotto, N.; Narahashi, Y.; Perish, P.G.; Souza, J.R. de

    1991-01-01

    A gravimetric method for zirconium determination in refractories is described. X-ray fluorescence analysis is also employed in this experiment and considerations about interfering elements are presented. (M.V.M.)

  7. Effect of surface treatment and type of cement on push-out bond strength of zirconium oxide posts.

    Science.gov (United States)

    Almufleh, Balqees S; Aleisa, Khalil I; Morgano, Steven M

    2014-10-01

    The effect of the surface treatment of zirconium oxide posts on their push-out bond strength is controversial. The purpose of this study was to compare the effects of 2 surface treatments on the bond strength of zirconium oxide posts cemented with different cements and to assess the failure mode. Seventy extracted human teeth were divided into 7 groups (n=10). Custom zirconium oxide posts (Cercon; Degudent) were fabricated for 6 groups. Posts in 3 groups were airborne-particle abraded (A). Posts in the other 3 groups were tribochemical silica coated (T). Three cements were used. Zinc phosphate cement was used to cement the zirconium oxide posts in groups AZ and TZ, RelyX ARC cement was used in groups ARA and TRA, and RelyX Unicem cement was used in groups ARU and TRU. Group C contained custom metal posts cemented with zinc phosphate cement. Specimens were horizontally sectioned into 3 sections and subjected to a push-out test. A mixed model analysis of variance, 1-way ANOVA, and the Tukey multiple comparison tests were used for statistical analysis. The highest push-out bond strength was recorded for Group ARU (21.03 MPa), and the lowest was recorded for Group ARA (7.57 MPa). No significant difference in push-out bond strength was found among the different surface treatments and root regions (P>.05). The type of cement had a significant effect on the push-out bond strength of zirconium oxide posts (P=.049). RelyX Unicem cement recorded (19.57 ±8.83 MPa) significantly higher push-out bond strength compared with zinc phosphate (9.95 ±6.31 MPa) and RelyX ARC cements (9.39 ±5.45 MPa). Adhesive failure at the post-cement interface was recorded for 75% of the posts cemented with zinc phosphate and RelyX ARC cements, while mixed failure was recorded for 75% of the posts cemented with RelyX Unicem cement. The type of cement used resulted in a statistically significant difference in the push-out bond strength of zirconium oxide posts, while both the surface treatment

  8. Synthesis of Zirconium Lower Chlorides

    International Nuclear Information System (INIS)

    Gaviria, Juan P.

    2002-01-01

    This research is accurately related to the Halox concept of research reactor spent fuel element treatment.The aim of this project is to work the conditioning through selected chlorination of the element that make the spent fuel element. This research studied the physical chemistry conditions which produce formation of the lower zirconium chlorides through the reaction between metallic Zr and gaseous ZrCl 4 in a silica reactor.This work focused special attention in the analysis and confrontation of the published results among the different authors in order to reveal coincidences and contradictions.Experimental section consisted in a set of synthesis with different reaction conditions and reactor design. After reaction were analyzed the products on Zr shavings and the deposit growth on wall reactor.The products were strongly dependent of reactor design. It was observed that as the distance between Zr and wall reactor increased greater was tendency to lower chlorides formation.In reactors with small distance the reaction follows other way without formation of lower chlorides.Analysis on deposit growth on reactor showed that may be formed to a mixture of Si x Zr y intermetallics and zirconium oxides.Presence of oxygen in Zr and Zr-Si compounds on wall reactor reveals that there is an interaction between quartz and reactants.This interaction is in gaseous phase because contamination is observed in experiences where Zr was not in contact with reactor.Finally, it was made a global analysis of all experiences and a possible mechanism that interprets reaction ways is proposed

  9. Determination of impurities in uranium--niobium (7.5%)--zirconium (2.5%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Arragon, Y

    1973-10-01

    The determination of 11 impurities in uranium--niobium-- zirconium alloys was studied. Elements of which the alloy is composed are considered and information is given on the determination of niobium by niobic acid precipitation. Selective elimination of the three components is discussed. Two liquid-liquid extractions are used. The nioblum is separated by methylisobutylketone in a hydrochloric --hydrofluoric medium and the zirconium and uranium by tributyl phosphate in a nitric medium. The determination of trace elements using electrochemical methods is discussed. Anodic re-dissolution polarography or square wave polarography enabled six elements (cadmium, copper, lead, zinc, bismuth, and thallium) to be determined in a carbonate medium together with aluminium in tetraethylammonium perchlorate, molybdenum in nitric acid, ammonium nitrate, and tungsten in hydrochloric acid with added double sodium and potassium tartrate. Fluorine was determined using ionometric techniques with a specific electrode and carbon was titrated by conductometry after combustion of the sample in an oxygen current. (auth)

  10. The 2-(acetoxymethyl)benzoyl (AMB) group as a new base-protecting group, designed for the protection of (phosphate) modified oligonucleotides.

    NARCIS (Netherlands)

    Kuijpers, W.H.A.; Huskens, J.; Boeckel, van C.A.A.

    1990-01-01

    The 2-(acetoxymethyl)benzoyl (AMB) group is a new base-protecting group that facilitates the synthesis of labile, modified nucleotides, since it can be rapidly cleaved under mild basic conditions. The 2-(acetoxymethyl)benzoyl (AMB) group is a new base-protecting group that facilitates the synthesis

  11. Purification and identification of O-GlcNAc-modified peptides using phosphate-based alkyne CLICK chemistry in combination with titanium dioxide chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Parker, Benjamin L; Gupta, Pankaj; Cordwell, Stuart

    2011-01-01

    A selective method for the enrichment of O-GlcNAcylated peptides using a novel CLICK chemistry reagent is described. Peptides modified by O-GlcNAc were enzymatically labeled with N-azidoacetylgalactosamine. The azide was then reacted with a phospho-alkyne using CLICK chemistry and O-GlcNAcGalNAzPO4...

  12. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    Science.gov (United States)

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  13. METHOD OF IMPROVING CORROSION RESISTANCE OF ZIRCONIUM

    Science.gov (United States)

    Shannon, D.W.

    1961-03-28

    An improved intermediate rinse for zirconium counteracts an anomalous deposit that often results in crevices and outof-the-way places when ordinary water is used to rinse away a strong fluoride etching solution designed to promote passivation of the metal. The intermediate rinse, which is used after the etching solution and before the water, is characterized by a complexing agent for fluoride ions such as aluminum or zirconium nitrates or chlorides.

  14. In-situ synthesis of reduced graphene oxide modified lithium vanadium phosphate for high-rate lithium-ion batteries via microwave irradiation

    International Nuclear Information System (INIS)

    Wang, Zhaozhi; Guo, Haifu; Yan, Peng

    2015-01-01

    Highlights: • Graphene-decorated Li 3 V 2 (PO 4 ) 3 is synthesized via microwave irradiation. • Both Li 3 V 2 (PO 4 ) 3 and RGO can be simultaneously achieved through this route. • The GO is reduced by microwave irradiation not the carbon. • Li 3 V 2 (PO 4 ) 3 /RGO displays excellent high-rate ability and cyclic stability. - Abstract: We report a simple and rapid method to synthesize graphene-modified Li 3 V 2 (PO 4 ) 3 as cathode material for lithium-ion batteries via microwave irradiation. By treating graphene oxide and the precursor of Li 3 V 2 (PO 4 ) 3 in a commercial microwave oven, both reduced graphene oxide and Li 3 V 2 (PO 4 ) 3 could be simultaneously synthesized within 5 min. The structure, morphology and electrochemical performances of as-synthesized graphene-modified Li 3 V 2 (PO 4 ) 3 are investigated systematically by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, charge/discharge tests, electrochemical impedance spectra (EIS) and cyclic voltammetry (CV). The XRD result indicates that single-phase graphene-modified Li 3 V 2 (PO 4 ) 3 with monoclinic structure can be obtained. Both SEM and TEM images show that Li 3 V 2 (PO 4 ) 3 nanocrystals are embedded in the reduced graphene oxide sheets which could provide an easy path for the electrons and Li-ions during the cycling process. Compared with the pristine Li 3 V 2 (PO 4 ) 3 electrode, graphene-modified Li 3 V 2 (PO 4 ) 3 exhibits a better high-rate ability and cyclic stability. These superior electrochemical performances are attributed to the good conductivity of reduced graphene oxide which enhances the electrons and Li-ions transport on the surface of Li 3 V 2 (PO 4 ) 3 . Thus, this simple and rapid method could be promising to synthesize graphene-modified electrode materials

  15. Preparation and investigation of ion exchange properties of sorbent based on activated carbon BAU and zirconium hydroxide

    International Nuclear Information System (INIS)

    Blokhin, A.A.; Semenov, M.I.; Taushkanov, V.P.; Andronov, E.A.

    1978-01-01

    The method of obtaining the sorbent based on the activated carbon and zirconium hydroxide, performed by carbon soaking by zirconium salt solution, hydrolytic decomposition, being in salt pores by ammonia solution and drying of the obtained sorbet in the air at the temperature of 105-115 deg. The kinetic characteristics of the obtained sorbent in the wide range of pH value of solutions are studied; sodium, chloride, fluoride and phosphate ion sorbtion taken as examples. A high selectivity of the sorbent to phosphate and fluoride ions has been established. The usefullness of the obtained sorbent for extraction of phosphorus microquantities from 1M sodium chloride solution and its concentration at the elution stage is shown

  16. Corrosion and hydrogen absorption of commercially pure zirconium in acid fluoride solutions

    International Nuclear Information System (INIS)

    Yokoyama, Ken’ichi; Yamada, Daisuke; Sakai, Jun’ichi

    2013-01-01

    Highlights: •Zirconium corrodes and absorbs hydrogen in acid fluoride solutions. •Hydrogen thermal desorption is observed at 300–700 °C. •The resistance to hydrogen absorption of zirconium is higher than that of titanium. -- Abstract: The corrosion and hydrogen absorption of commercially pure zirconium have been investigated in acidulated phosphate fluoride (APF) solutions. Upon immersion in 2.0% APF solution of pH 5.0 at 25 °C, a granular corrosion product (Na 3 ZrF 7 ) deposits over the entire side surface of the specimen, thereby inhibiting further corrosion. In 0.2% APF solution, marked corrosion is observed from the early stage of immersion; no deposition of the corrosion product is observed by scanning electron microscopy. A substantial amount of hydrogen absorption is confirmed in both APF solutions by hydrogen thermal desorption analysis. The amount of absorbed hydrogen of the specimen immersed in the 2.0% APF solution is smaller than that in the 0.2% APF solution in the early stage of immersion. The hydrogen absorption behavior is not always consistent with the corrosion behavior. Hydrogen thermal desorption occurs in the temperature range of 300–700 °C for the specimen without the corrosion product. Under the same immersion conditions, the amount of absorbed hydrogen in commercially pure zirconium is smaller than that in commercially pure titanium as reported previously. The present results suggest that commercially pure zirconium, compared with commercially pure titanium, is highly resistant to hydrogen absorption, although corrosion occurs in fluoride solutions

  17. Bi-functional modified-phosphate catalyzed the synthesis of α-α′-(EE)-bis(benzylidene)-cycloalkanones: Microwave versus conventional-heating

    KAUST Repository

    Solhy, Abderrahim

    2011-02-01

    The impregnation of hydroxyapatite (HAP) by NaNO3 leads to a modified-hydroxyapatite which has a bi-functional acid-base property. Sodium-modified-hydroxyapatite (Na-HAP) efficiently catalyzed the cross-aldol condensation of arylaldehydes and cycloketones to afford α-α′- (EE)-bis(benzylidene)-cycloalkanones in good yields under microwave irradiation. Moreover, the methodology described in this paper provides a very easy and efficient synthesis carried out in water as the greenest available solvent under conventional heating. A comparison study between these two different modes of heating was investigated. The catalyst was easily recovered and efficiently re-used. © 2010 Elsevier B.V.

  18. Effect of alkaline earth modifier on the optical and structural properties of Cu2+ doped phosphate glasses as a bandpass filter

    Science.gov (United States)

    Farouk, M.; Samir, A.; El Okr, M.

    2018-02-01

    Glasses of composition [16RO-3Al2O3sbnd 6CuOsbnd 20Na2Osbnd 55P2O5], where R is the alkaline earth (R = Mg, Ca, Sr and Ba mol. %), were prepared by conventional melt quenching technique. The glass samples were characterized by X-ray diffraction, infrared spectroscopy, and spectrophotometer. XRD patterns show no sharp peaks indicating the non-crystalline nature of the prepared glasses. The density and molar volume of the glass systems were determined in order to study their structures. These results revealed that addition of alkaline earth elements leads to the formation of non-bridging oxygens (NBOs) and expands (opens up) the structure. The infrared spectra were analyzed to quantify the present phosphate groups. The optical absorption spectra of Cu2+ ions show the characteristic broadband single of Cu2+ ions in octahedral symmetry. The band gap was estimated following two methodologies. The first method considers the band edge of the transmission, while the second approach relays on the estimated values of the optical constants. A decent agreement for the band gap values using the two methods was obtained.

  19. τ - hydrogen phosphate of zirconia in sodium salt form and some of its properties

    International Nuclear Information System (INIS)

    Fernandez V, S.M.; Ordonez R, E.

    2004-01-01

    It is reported the obtaining and characterization in the sodium salt form of the τ-hydrogen phosphate of zirconium in sodium form, this compound it was synthesized, for a new technique developed in the laboratory of Dept. of Chemistry of the ININ. The characterization was carried out for XRD, IR, Sem and EDS the thermal gravimetric analysis is also reported. (Author)

  20. Population screening for glucose-6-phosphate dehydrogenase deficiencies in Isabel Province, Solomon Islands, using a modified enzyme assay on filter paper dried bloodspots

    Directory of Open Access Journals (Sweden)

    Landry Losi

    2010-08-01

    Full Text Available Abstract Background Glucose-6-phosphate dehydrogenase deficiency poses a significant impediment to primaquine use for the elimination of liver stage infection with Plasmodium vivax and for gametocyte clearance, because of the risk of life-threatening haemolytic anaemia that can occur in G6PD deficient patients. Although a range of methods for screening G6PD deficiency have been described, almost all require skilled personnel, expensive laboratory equipment, freshly collected blood, and are time consuming; factors that render them unsuitable for mass-screening purposes. Methods A published WST8/1-methoxy PMS method was adapted to assay G6PD activity in a 96-well format using dried blood spots, and used it to undertake population screening within a malaria survey undertaken in Isabel Province, Solomon Islands. The assay results were compared to a biochemical test and a recently marketed rapid diagnostic test. Results Comparative testing with biochemical and rapid diagnostic test indicated that results obtained by filter paper assay were accurate providing that blood spots were assayed within 5 days when stored at ambient temperature and 10 days when stored at 4 degrees. Screening of 8541 people from 41 villages in Isabel Province, Solomon Islands revealed the prevalence of G6PD deficiency as defined by enzyme activity Conclusions The assay enabled simple and quick semi-quantitative population screening in a malaria-endemic region. The study indicated a high prevalence of G6PD deficiency in Isabel Province and highlights the critical need to consider G6PD deficiency in the context of P. vivax malaria elimination strategies in Solomon Islands, particularly in light of the potential role of primaquine mass drug administration.

  1. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    Science.gov (United States)

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  2. Artefacts in multimodal imaging of titanium, zirconium and binary titanium–zirconium alloy dental implants: an in vitro study

    Science.gov (United States)

    Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-01-01

    Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719

  3. Electrochemical-metallothermic reduction of zirconium in molten salt solutions

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Talko, F.

    1990-01-01

    This patent describes a method for separating hafnium from zirconium of the type wherein a feed containing zirconium and hafnium chlorides is prepared from zirconium-hafnium chloride and the feed is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a hafnium chloride enriched stream is taken from the top of the column and a zirconium enriched chloride stream is taken from the bottom of the column. It comprises: reducing the zirconium enriched chloride stream taken from the distillation column to metal by electrochemically reducing an alkaline earth metal in a molten salt bath with the molten salt in the molten salt bath consisting essentially of a mixture of at least one alkali metal chloride and at least one alkaline earth metal chloride and zirconium chloride, with the reduced alkaline earth metal reacting with the zirconium chloride to produce zirconium metal and alkaline earth metal chloride

  4. A review of the inorganic and organometallic chemistry of zirconium

    International Nuclear Information System (INIS)

    Kalvins, A.K.

    1985-01-01

    The results of a literature review of the inorganic and organometallic chemistry of zirconium are presented. Compounds with physical and chemical properties compatible with the requirements of an ir laser zirconium isotope separation process have been identified

  5. Modification of Different Zirconium Propoxide Precursors by Diethanolamine. Is There a Shelf Stability Issue for Sol-Gel Applications?

    Science.gov (United States)

    Spijksma, Gerald I.; Blank, Dave H. A.; Bouwmeester, Henny J. M.; Kessler, Vadim G.

    2009-01-01

    Modification of different zirconium propoxide precursors with H2dea was investigated by characterization of the isolated modified species. Upon modification of zirconium n-propoxide and [Zr(OnPr)(OiPr)3(iPrOH)]2 with ½ a mol equivalent of H2dea the complexes [Zr2(OnPr)6(OCH2CH2)2NH]2 (1) and [Zr2(OnPr)2(OiPr)4(OCH2CH2)2NH]2 (2) were obtained. However, 1H-NMR studies of these tetranuclear compounds showed that these are not time-stable either in solution or solid form. The effect of this time instability on material properties is demonstrated by light scattering and TEM experiments. Modification of zirconium isopropoxide with either ½ or 1 equivalent mol of H2dea results in formation of the trinuclear complex, Zr{η3μ2-NH(C2H4O)2}3[Zr(OiPr)3]2(iPrOH)2 (3) countering a unique nona-coordinated central zirconium atom. This complex 3 is one of the first modified zirconium propoxide precursors shown to be stable in solution for long periods of time. The particle size and morphology of the products of sol-gel synthesis are strongly dependent on the time factor and eventual heat treatment of the precursor solution. Reproducible sol-gel synthesis requires the use of solution stable precursors. PMID:20087472

  6. Experimental study of water droplets on over-heated nano/microstructured zirconium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seol Ha [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Ahn, Ho Seon [Division of Mechanical System Engineering, Incheon National University, 406-772 (Korea, Republic of); Kim, Joonwon [Department of Mechanical Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of)

    2014-10-15

    Highlights: • Heat transfer performance of a droplet on a modified zirconium surface is evaluated. • Modified (nano/micro-) surfaces enhanced heat transfer rate and Leidenfrost point. • A highly wettable condition of the modified surface contributes the enhancement. • Nano-scaled modification indicates the higher performance of droplet cooling. • Investigation via visualization of the droplet support the heat transfer experimental data. - Abstract: In this study, we observed the behavior of water droplets near the Leidenfrost point (LFP) on zirconium alloy surfaces with anodizing treatment and investigated the droplet cooling performance. The anodized zirconium surface, which consists of bundles of nanotubes (∼10–100 nm) or micro-mountain-like structures, improved the wetting characteristics of the surface. A deionized water droplet (6 μL) was dropped onto test surfaces heated to temperatures ranging from 250 °C to the LFP. The droplet dynamics were investigated through high-speed visualization, and the cooling performance was discussed in terms of the droplet evaporation time. The modified surface provided vigorous, intensive nucleate boiling in comparison with a clean, bare surface. Additionally, we observed that the structured surface had a delayed LFP due to the high wetting condition induced by strong capillary wicking forces on the structured surface.

  7. Environmentally Friendly Zirconium Oxide Pretreatment

    Science.gov (United States)

    2013-05-01

    Society for Testing and Materials AVCRAD Aviation Classification Repair Activity Depot Chrome (VI) Hexavalent Chromium CRS Cold Rolled Steel...are being used commercially in automotive and other industrial operations as replacements to hexavalent chromium-based and zinc phosphate...application over CRS and aluminum with water-borne and solvent-borne Mil-Spec primers gave results in corrosion performance similar to the chrome

  8. Minimization of zirconium chlorinator residues

    International Nuclear Information System (INIS)

    Green, G.K.; Harbuck, D.D.

    1995-01-01

    Zirconium chlorinator residues contain an array of rare earths, scandium, unreacted coke, and radioactive thorium and radium. Because of the radioactivity, the residues must be disposed in special waste containment facilities. As these sites become more congested, and with stricter environmental regulations, disposal of large volumes of wastes may become more difficult. To reduce the mass of disposed material, the US Bureau of Mines (USBM) developed technology to recover rare earths, thorium and radium, and unreacted coke from these residues. This technology employs an HCl leach to solubilize over 99% of the scandium and thorium, and over 90% of the rare earths. The leach liquor is processed through several solvent extraction stages to selectively recover scandium, thorium, and rare earths. The leach residue is further leached with an organic acid to solubilize radium, thus allowing unreacted coke to be recycled to the chlorinator. The thorium and radium waste products, which comprise only 2.1% of the original residue mass, can then be sent to the radioactive waste facility

  9. The chemical vapor deposition of zirconium carbide onto ceramic substrates

    International Nuclear Information System (INIS)

    Glass A, John Jr.; Palmisiano, Nick Jr.; Welsh R, Edward

    1999-01-01

    Zirconium carbide is an attractive ceramic material due to its unique properties such as high melting point, good thermal conductivity, and chemical resistance. The controlled preparation of zirconium carbide films of superstoichiometric, stoichiometric, and substoichiometric compositions has been achieved utilizing zirconium tetrachloride and methane precursor gases in an atmospheric pressure high temperature chemical vapor deposition system

  10. Processing fissile material mixtures containing zirconium and/or carbon

    Science.gov (United States)

    Johnson, Michael Ernest; Maloney, Martin David

    2013-07-02

    A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

  11. 40 CFR 721.9973 - Zirconium dichlorides (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Zirconium dichlorides (generic). 721... Substances § 721.9973 Zirconium dichlorides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as zirconium dichlorides (PMNs P...

  12. Removal of iron contaminant from zirconium chloride solution

    International Nuclear Information System (INIS)

    Voit, D.O.

    1992-01-01

    This patent describes a process for eliminating iron contaminant from an aqueous zirconium chloride solution that has been contaminated with FeCl 3 in a plant in which zirconium and hafnium chloride solutions are separated by a main MINK solvent extraction system and the FeCl 3 is normally removed from the zirconium chloride solution by a secondary MINK solvent extraction system

  13. Automatic measuring system of zirconium thickness for zirconium liner cladding tubes

    International Nuclear Information System (INIS)

    Matsui, K.; Yamaguchi, H.; Hiroshima, T.; Sakamoto, T.; Murayama, R.

    1985-01-01

    An automatic system of pure zirconium liner thickness for zirconium-zircaloy cladding tubes has been successfully developed. The system consists of three parts. (1) An ultrasonic thickness measuring method for mother tubes before cold rolling. (2) An electromagnetic thickness measuring method for the manufactured tubes. (3) An image processing method for the cross sectional view of the manufactured cut tube samples. In Japanese nuclear industry, zirconium-zircaloy cladding tubes have been tested in order to realize load following operation in the atomic power plant. In order to provide for the practical use in the near future, Sumitomo Metal Industries, Ltd. has been studied and established the practical manufacturing process of the zirconium liner cladding tubes. The zirconium-liner cladding tube is a duplex tube comprising an inner layer of pure zirconium bonded to zircaloy metallurgically. The thickness of the pure zirconium is about 10 % of the total wall thickness. Several types of the automatic thickness measuring methods have been investigated instead of the usual microscopic viewing method in which the liner thickness is measured by the microscopic cross sectional view of the cut tube samples

  14. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  15. Radiochemical neutron activation analysis of zirconium and zirconium-niobium alloys

    International Nuclear Information System (INIS)

    Tashimova, F.A.; Sadikov, I.I.; Salimov, M.

    2004-01-01

    Full text: Zirconium and zirconium-niobium alloys are used on nuclear technology, as fuel cladding of nuclear reactors. Their nuclear-physical, mechanical and thermophysical properties are influenced them matrix and impurity composition, therefore determination of matrix and impurity content of these materials is a very important task. Neutron activation analysis is one from multielemental and high sensible techniques that are widely applied in analysis of high purity materials. Investigation of nuclear-physical characteristics of zirconium has shown that instrumental variant NAA is unusable for analysis due to high radioactivity of a matrix. Therefore it is necessary carrying out radiochemical separation of impurity radionuclides from matrix. Study of the literature datum have shown, that zirconium and niobium are very well extracted from muriatic solution with 5% tributyl phosphineoxide (TBPO) solution in toluene and 0,75 M solution of di-2-ethyl hexyl phosphoric acid (HDEHP) in cyclohexanone. Investigation of these elements extraction in these systems has shown that more effective and selective separation of matrix radionuclides is achieved in HDEHP-3M HCI system. This system is also extracted and hafnium, witch is an accompanying element of zirconium and its high content prevented determination of other impurity elements in sample. Therefore we used extraction system HDEHP-3M HCl for analysis of zirconium and zirconium-niobium alloys in chromatographic variant. By measurement of distribution profile of a matrix and of elution curve of determined elements is established, that for effective separation of impurity and matrix radionuclides there is enough chromatographic column with diameter 1 cm and height of a sorbent layer 7 cm, thus volume of elute, necessary for complete elution of determinate elements is 35-40 ml. On the basis of the carried out researches the technique of radiochemical NAA of high purity zirconium and zirconium-niobium alloy, which allows to

  16. Experimental and thermodynamic study of the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems

    International Nuclear Information System (INIS)

    Jourdan, J.

    2009-11-01

    This work is a contribution to the development of innovative concepts for fuel cladding in pressurized water nuclear reactors. This concept implies the insertion of rare earth (erbium and gadolinium) in the zirconium fuel cladding. The determination of phase equilibria in the systems is essential prior to the implementation of such a promising solution. This study consisted in an experimental determination of the erbium-zirconium phase diagram. For this, we used many different techniques in order to obtain diagram data such as solubility limits, solidus, liquidus or invariant temperatures. These data allowed us to present a new diagram, very different from the previous one available in the literature. We also assessed the diagram using the CALPHAD approach. In the gadolinium-zirconium system, we determined experimentally the solubility limits. Those limits had never been determined before, and the values we obtained showed a very good agreement with the experimental and assessed versions of the diagram. Because these alloys are subjected to oxygen diffusion throughout their life, we focused our attention on the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems. The first system has been investigated experimentally. The alloys fabrication has been performed using powder metallurgy. In order to obtain pure raw materials, we fabricated powder from erbium and zirconium bulk metals using hydrogen absorption/desorption. The characterisation of the ternary pellets allowed the determination of two ternary isothermal sections at 800 and 1100 C. For the gadolinium-oxygen-zirconium system, we calculated the phase equilibria at temperatures ranging from 800 to 1100 C, using a homemade database compiled from literature assessments of the oxygen-zirconium, gadolinium-zirconium and gadolinia-zirconia systems. Finally, we determined the mechanical properties, in connexion with the microstructure, of industrial quality alloys in order to identify the influence of

  17. Review of zirconium-zircaloy pyrophoricity

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1984-11-01

    Massive zirconium metal scrap can be handled, shipped, and stored with no evidence of combustion or pyrophoricity hazards. Mechanically produced fine scrap such as shavings, turnings, or powders can burn but are not pyrophoric unless the particle diameter is less than 54 μm. Powders with particle diameters less than 54 μm can be both pyrophoric and explosive. Pyrophoric powders should be collected and stored underwater or under inert gas cover to reduce the flammability hazard. Opening sealed containers of zirconium stored underwater should be attempted with caution since hydrogen may be present. The factors that influence the ignition temperature have been explored in depth and recommendations are included for the safe handling, shipping, and storage of pyrophoric or flammable zirconium. 29 refs., 5 figs., 6 tabs

  18. Laser-Based Additive Manufacturing of Zirconium

    Directory of Open Access Journals (Sweden)

    Himanshu Sahasrabudhe

    2018-03-01

    Full Text Available Additive manufacturing of zirconium is attempted using commercial Laser Engineered Net Shaping (LENSTM technique. A LENSTM-based approach towards processing coatings and bulk parts of zirconium, a reactive metal, aims to minimize the inconvenience of traditional metallurgical practices of handling and processing zirconium-based parts that are particularly suited to small volumes and one-of-a-kind parts. This is a single-step manufacturing approach for obtaining near net shape fabrication of components. In the current research, Zr metal powder was processed in the form of coating on Ti6Al4V alloy substrate. Scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS as well as phase analysis via X-ray diffraction (XRD were studied on these coatings. In addition to coatings, bulk parts were also fabricated using LENS™ from Zr metal powders, and measured part accuracy.

  19. Phosphate Fertilizer and Growing Environment Change the Phytochemicals, Oil Quality, and Nutritional Composition of Roundup Ready Genetically Modified and Conventional Soybean.

    Science.gov (United States)

    Scilewski da Costa Zanatta, Tatiane; Manica-Berto, Roberta; Ferreira, Cristiano Dietrich; Cardozo, Michele Maciel Crizel; Rombaldi, Cesar Valmor; Zambiazi, Rui Carlos; Dias, Álvaro Renato Guerra

    2017-04-05

    Phosphorus (P) intake, genotype, and growth environment in soybean cultivation can affect the composition of the soybean. This experiment was conducted in two locations (microregions I and II) using a randomized complete block design, including conventional soybean (BRS Sambaíba) and genetically modified (GM) [Msoy 9144 Roundup Ready (RR)] cultivars and varying doses of phosphorus fertilizer (0, 60, 120, and 240 kg/ha P 2 O 5 ). Soybeans were evaluated for chemical composition, total phenols, phytic acid content, individual isoflavone content, antioxidant activity, oil quality, fatty acid profile, total carotenoid content, and individual tocopherol contents. Multivariate analysis facilitated reduction in the number of variables with respect to soybean genotype (conventional BRS Sambaíba and GM Msoy 9144 RR), dose of P 2 O 5 fertilizer, and place of cultivation (microregion I and II). BRS Sambaíba had higher concentrations of β-glucosides, malonylglucosides, glycitein, and genistein than Msoy 9144 RR, which showed a higher concentration of daidzein. The highest concentrations of isoflavones and fatty acids were observed in soybeans treated with 120 and 240 kg/ha P 2 O 5 , regardless of the location and cultivar.

  20. Analysis of hafnium in zirconium alloys

    International Nuclear Information System (INIS)

    Kondo, Isao; Sakai, Fumiaki; Ohuchi, Yoshifusa; Nakamura, Hisashi

    1977-01-01

    It is required to analyse alloying components and impurity elements in the acceptance analysis of zirconium alloys as the material for fuel cladding tubes and pressure tubes for advanced thermal reactors. Because of extreme similarity in chemical properties between zirconium and hafnium, about 100 ppm of hafnium is usually contained in zirconium alloys. Zircaloy-2 alloy and 2.5% Nb-zirconium with the addition of hafnium had been prepared as in-house standard samples for rapid analysis. Study was made on fluorescent X-ray analysis and emission spectral analysis to establish the analytical method. By using these in-house standard samples, acceptance analysis was successfully carried out for the fuel cladding tubes for advanced thermal reactors. Sulfuric acid solution was prepared from JAERI-Z 1, 2 and 3, the standard sample for zircaloy-2 prepared by the Analytical Committee on Nuclear Fuel and Reactor Materials, JAERI, and zirconium oxide (Hf 1 ppm/Zr). Standard Hf solution was added to the sulfuric acid solution step by step, to make up a series of the standard oxide samples by the precipitation process. By the use of these standard samples, the development of the analytical method and joint analysis were made by the three-member analytical technique research group including PNC. The analytical precision for the fluorescent X-ray analysis was improved by attaching a metallic yttrium filter to the window of an X-ray tube so as to suppress the effect due to zirconium matrix. The variation factor of the joint analysis was about 10% to show good agreement, and the indication value was determined. (Kobatake, H.)

  1. Zirconium diselenite microstructures, formation and mechanism

    Science.gov (United States)

    Naik, Chandan C.; Salker, A. V.

    2018-04-01

    In this work, a series of microstructures of zirconium diselenite (Zr(SeO3)2) has been prepared via a simple precipitation method at room temperature without adding any organic surfactants. Phase purity of the sample has been checked by X-ray Diffraction. From the SEM, FESEM, and TEM images spheroid nanoparticles to the starfish-like structure of zirconium diselenite are detected. The morphological evolution processes were investigated carefully following time-dependent experiments and a growth mechanism has been proposed. Two different crystal growth processes, the oriented attachment process accompanying the Ostwald ripening process were held responsible for the formation of a structure resembling starfish having four arms.

  2. Cathodic behavior of zirconium in aqueous solutions

    International Nuclear Information System (INIS)

    Hine, F.; Yasuda, M.; Sato, H.

    1977-01-01

    The electrochemical behavior of Zr was studied by polarization measurements. The surface oxide and zirconium hydride formed by cathodic polarization of Zr have been examined by X-ray, SEM, and a hardness tester. Zirconium hydride would form on Zr cathode after the surface oxide is reduced at the potential, which is several hundred mV more noble than the predicted value shown by the Pourbaix diagram. The parameters for the hydrogen evolution reaction on the hydride formed Zr cathode differs from that on the oxide covered surface, which means that hydrogen evolution takes place on both surfaces under a different mechanism, while details are still veiled at present

  3. Hydrogen outbreak of Zirconium Molybdate Hihydrate

    International Nuclear Information System (INIS)

    Miura, Yasuhiko; Fukuda, Kazuhiro; Ochi, Eiji

    2008-01-01

    JNFL is planning to construct a facility for enclosing the hull and end pieces produced due to reprocessing of spent fuel into stainless canisters after compressing, while those hull and end pieces enclosed into the stainless canisters are called 'compressed hulls'. Since the compressed hulls contain moisture absorbent Zirconium Molybdate Hihydrate accompanying hull and end pieces, there is a risk of outbreak of radiolysisradiolysis gas such as hydrogen, etc. by radiolysisradiolysis. This report intends to state the result of radiation irradiation experiment with the purpose of examining the volume of hydrogen outbreak from Zirconium Molybdate Hihydrate of the compressed hulls. (author)

  4. Electron microscopy of nuclear zirconium alloys

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, Miguel

    1986-01-01

    Transmission electron microscopy observations of the microstructure of zirconium alloys used in fuel sheaths of nuclear power reactors are reported. Specimens were observed after different thermal and mechanical treatment, similar to those actually used during fabrication of the sheaths. Electron micrographs and electron diffraction patterns of second phase particles present in zircaloy-2 and zircaloy-4 were also obtained, as well as some characteristic parameters. Images of oxides and hydrides most commonly present in zirconium alloys are also shown. Finally, the structure of a Zr-2,5Nb alloy used in CANDU reactors pressure tubes, is observed by electron microscopy. (Author) [es

  5. The fluorimetric titration of zirconium in the ppm-range

    International Nuclear Information System (INIS)

    Linden, W.E. von der; Boef, G. den; Ozinga, W.

    1976-01-01

    A fluorimetric titration of zirconium(IV) with EDTA is proposed. The fluorescence intensity of the zirconium-morin complex is used to indicate the end-point. More than twenty other cations were investigated and it was found that they did not interfere, neither did common anions. Mercury(II) can only be tolerated in amount not exceeding that of zirconium. Bismuth(III) interferes and hafnium(IV0 is titrated together with zirconium. The relative standard deviation of the titration of 10ml of a solution containing 1 ppm of zirconium does not exceed 1.5%

  6. Contribution to the study of zirconium self-diffusion in zirconium carbide

    International Nuclear Information System (INIS)

    An, Chul

    1972-01-01

    The objective of this research thesis is to determine experimental conditions allowing the measurement of the self-diffusion coefficient of zirconium in zirconium carbide. The author reports the development of a method of preparation of zirconium carbide samples. He reports the use of ion implantation as technique to obtain a radio-tracer coating. The obtained results give evidence of the impossibility to use sintered samples with small grains because of the demonstrated importance of intergranular diffusion. The self-diffusion coefficient is obtained in the case of zirconium carbide with grains having a diameter of few millimetres. The presence of 95 Nb from the disintegration of 95 Zr indicates that these both metallic elements have very close diffusion coefficients at 2.600 C [fr

  7. High purity zirconium obtainment through the iodine compounds transport method

    International Nuclear Information System (INIS)

    Bolcich, J.C.; Zuzek, E.; Dutrus, S.M.; Corso, H.L.

    1987-01-01

    This paper describes the experimental method and the equipment designed, constructed and actually applied for the high purity zirconium obtainment from a zirconium sponge of the nuclear type. The mechanism of purification is based on the impure metal attack with gaseous iodine (at 200 deg C) to obtain zirconium tetra iodine as main product which is then transformed into a pure zirconium base (at 1000-1300 deg C), precipitating the metallic zirconium and releasing the gaseous iodine. From the first experiences carried out, pure zirconium has been obtained from an initial filament of 0.5 mm of diameter as well as wires up to 2.5 mm of diameter. This work presents the results from the studies and analysis made to characterize the material obtained. Finally, the refining methods to which the zirconium produced may be submitted so as to optimize the final purity are discussed. (Author)

  8. Extractive metallurgy of zirconium--1945 to the present

    International Nuclear Information System (INIS)

    Franklin, D.G.; Adamson, R.B.

    1984-01-01

    Although the history of the reduction of zirconium dates from 1824 and the first ductile zirconium metal was produced in the laboratory in 1914, modern reduction practice was pioneered by the U.S. Bureau of Mines starting in 1945. This paper reviews the history of the extractive metallurgy of zirconium from the early work of W. J. Kroll and co-workers at the Bureau of Mines in Albany, Ore., through the commercial development of the production of reactor-grade zirconium metal which was spurred by the requirements of the Naval Reactor Program and the development of commercial nuclear power. Technical subjects covered include processes for opening the ore, zirconium-hafnium separation, chlorination of zirconium oxide, reduction processes, and electrowinning of zirconium metal. Proposed new processes and process modifications are reviewed

  9. Synthesis of zirconium by zirconium tetrachloride reduction by magnesio-thermia. Experimental study and modelling

    International Nuclear Information System (INIS)

    Basin, N.

    2001-01-01

    This work deals with the synthesis of zirconium. The ore is carbo-chlorinated to obtain the tetrachloride which is then purified by selective condensation and extractive distillation. Zirconium tetrachloride is then reduced by magnesium and the pseudo-alloy is obtained according to the global following reaction (Kroll process): ZrCl 4 + 2 Mg = 2 MgCl 2 . By thermodynamics, it has been shown that the volatilization of magnesium chloride and the formation of zirconium sub-chlorides are minimized when the combined effects of temperature and of dilution with argon are limited. With these conditions, the products, essentially zirconium and magnesium chloride, are obtained in equivalence ratio in the magnesio-thermia reaction. The global kinetics of the reduction process has been studied by a thermal gravimetric method. A thermo-balance device has been developed specially for this kinetics study. It runs under a controlled atmosphere and is coupled to a vapor tetrachloride feed unit. The transformation is modelled supposing that the zirconium and magnesium chloride formation result: 1)of the evaporation of magnesium from its liquid phase 2)of the transfer of magnesium and zirconium tetrachloride vapors towards the front of the reaction located in the gaseous phase 3)of the chemical reaction. In the studied conditions, the diffusion is supposed to be the limiting process. The influence of the following parameters: geometry of the reactive zone, temperature, scanning rate of the argon-zirconium tetrachloride mixture, composition of the argon-zirconium tetrachloride mixture has been experimentally studied and confronted with success to the model. (O.M.)

  10. Influence of alloying elements on the dislocation loops created by Zr+ ion irradiation in alpha-zirconium

    International Nuclear Information System (INIS)

    Hellio, C.; Novion, C.H. de; Boulanger, L.

    1987-01-01

    Pure zirconium and four (annealed) α - zirconium based alloys (Zr-1760 ppm weight 0, Zr - 1% Nb - 430 ppm 0, Zr-1% Nb-1800 ppm 0, zircaloy 4) have been studied by transmission electron microscopy after 500 keV Zr + ion or 1 MeV electron irradiation performed at high temperature. Type of burgers vectors of the dislocation loops are given; in the case of electron irradiated Zr-1760 ppm 0, the larger loops were found of interstitial type. Alloying elements increase the loop density. The kinetic of loop growth was observed in-situ during 1 MeV electron irradiation between 400 and 700 0 C: oxygen was found to reduce considerably the growth speed of loops. In-situ annealing at 450 or 500 0 C after ion irradiation led to a large coalescence of loops in the case of pure zirconium, but modified only slightly the defect structure of the alloys

  11. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [University of Wisconsin-Madison; Mariani, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Company; Lahoda, Ed [Westinghouse Electric Company

    2018-03-31

    Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi2 coating) during clad quenching experiments is discussed in detail. Oxidation of bulk ZrSi2 was found to be negligible compared to Zircaloy-4 (a common Zr-alloy cladding material) and mechanical integrity of ZrSi2 was superior to that of bulk Zr2Si at high temperatures in ambient air. Very interesting and unique multi-nanolayered composite of ZrO2 and SiO2 were observed. Physical model for the oxidation has been proposed wherein Zr–Si–O mixture undergoes a spinodal phase decomposition into ZrO2 and SiO2, which is manifested as a nanoscale assembly of alternating layer of the two oxides. Steam corrosion at high pressure (10.3 MPa) led to weight loss of ZrSi2 and produced oxide scale with depletion of silicon, possibly attributed to volatile silicon hydroxide, gaseous silicon monoxide, and a solubility of silicon dioxide in water. Only Zircon phase (ZrSiO4) formed during oxidation of ZrSi2 at 1400°C in air, and allowed for immobilization silicon species in oxide scale in the aqueous environments. Zirconium-silicide coatings (on zirconium-alloy substrates) investigated in this study were deposited primarily using magnetron sputter deposition method and slurry method, although powder spray deposition processes cold spray and thermal spray methods were also investigated. The optimized ZrSi2 sputtered coating exhibited a highly protective nature at elevated temperatures in ambient air by mitigating oxygen permeation to the underlying zirconium alloy substrate. The high oxidation resistance of the coating has been shown to be due to nanocrystalline SiO2 and ZrSiO4 phases in the amorphous

  12. Thermo-mechanical treatment of zirconium alloys

    International Nuclear Information System (INIS)

    Levy, I.S.

    1975-01-01

    A zirconium alloy comprising at least 95 percent Zr (Zircaloy), which has been thoroughly annealed, is greatly increased in strength without substantial loss in ductility by subjecting it to tensile creep deformation in a temperature range in which creep will occur, yet which is below the temperature for significant recovery. (U.S.)

  13. METHOD AND ALLOY FOR BONDING TO ZIRCONIUM

    Science.gov (United States)

    McCuaig, F.D.; Misch, R.D.

    1960-04-19

    A brazing alloy can be used for bonding zirconium and its alloys to other metals, ceramics, and cermets, and consists of 6 to 9 wt.% Ni, 6 to 9 wn~.% Cr, Mo, or W, 0 to 7.5 wt.% Fe, and the balance Zr.

  14. Structuring of gels of zirconium oxohydrate

    International Nuclear Information System (INIS)

    Sukharev, Yu.I.; Skuratovich, L.P.

    1991-01-01

    Genetic relationship between formation of mesophase states of zirconium oxohydrate gel, coprecipitated with dimethylamine, and ordered macrocrystallites of sorption material after cryogranulation or decryptation granulating is shown. This phenomenon is followed on example of formation of flattened crystallites when preparing granules in the presence of appl. The successive polymerization growth of crystallites leads to the frame ordered aggregation or aggregation of another type

  15. Accelerated irradiation growth of zirconium alloys

    International Nuclear Information System (INIS)

    Griffiths, M.; Gilbert, R.W.; Fidleris, V.

    1989-01-01

    This paper discusses how sponge zirconium and Zr-2.5 wt% Nb, Zircaloy, or Excel alloys all exhibit accelerated irradiation growth compared with high-purity crystal-bar zirconium for irradiation temperatures between 550 to 710 K and fluences between 0.1 to 10 x 10 25 n · m -2 (E > 1 MeV). There is generally an incubation period or fluence before the onset of accelerated or breakaway growth, which is dependent on the particular material being irradiated, its metallurgical condition before irradiation, and the irradiation temperature. Transmission electron microscopy has shown that there is a correlation between accelerated irradiation growth and the appearance of c-component vacancy loops on basal planes. Measurements in some specimens indicate that a significant fraction of the strain can be directly attributed to the loops themselves. There is considerable evidence to show that their formation is dependent both on the specimen purity and on the irradiation temperature. Materials that have a high interstitial-solute content contain c-component loops and exhibit high growth rates even at low fluences ( 2 :5 n · m -2 , E > 1 MeV). For sponge zirconium and the Zircaloys, c-component loop formation and the associated acceleration of growth (breakaway) during irradiation occurs because the intrinsic interstitial solute (mainly, oxygen, carbon and nitrogen) in the zirconium matrix is supplemented by interstitial iron, chromium, and nickel from the radiation-induced dissolution of precipitates. (author)

  16. Zirconium (IV) complexes with some polymethylenediimines | Na ...

    African Journals Online (AJOL)

    The syntheses of zirconium (IV) complexes have been carried out by the reaction of oxozirconium (IV) chloride with the appropriate diimines (Schiff bases). The complexes were isolated as yellow solids which are stable to heat. The complexes were found to be insoluble in most solvents. The infrared spectra, elemental ...

  17. Manufacture of titanium and zirconium hydrides

    International Nuclear Information System (INIS)

    Mares, F.; Hanslik, T.

    1973-01-01

    A method is described of manufacturing titanium and zirconium hydrides by hydrogenation of said metals characterized by the reaction temperature ranging between 250 to 500 degC, hydrogen pressure of 20 to 300 atm and possibly by the presence of a hydride of the respective metal. (V.V.)

  18. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    International Nuclear Information System (INIS)

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-01-01

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4′-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules. - Graphical abstract: Nitrogen-containing organic compounds can be intercalated into the interlayer space of zirconium 4-sulfophenylphosphonate. - Highlights: • Zirconium 4-sulfophenylphosphonate was examined as a host material in intercalation chemistry. • A wide range of nitrogen-containing organic compounds were intercalated. • Possible arrangement of the intercalated species is described

  19. Studies on inorganic exchanger: zirconium antimonate

    International Nuclear Information System (INIS)

    Dash, A.; Balasubramanian, K.R.

    1992-01-01

    The inorganic exchanger zirconium antimonate has been prepared and its characteristics evaluated. A method has been developed for the separation of 90 Sr and 144 Ce from fission products solution using this exchanger. (author). 23 refs., 18 f igs., 9 tabs

  20. Mechanism for iodine cracking of zirconium claddings

    International Nuclear Information System (INIS)

    Novikov, V.V.

    1991-01-01

    The mechanism of iodine cracking of zirconium cladding is analyzed taking into account the effect of stresses on diffusion. A decisive effect of the stress gradiemt on crack propagation in an agressive medium is shown. The experimental data are compared with the proposed model

  1. Superconductivity in zirconium-rhodium alloys

    Science.gov (United States)

    Zegler, S. T.

    1969-01-01

    Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition.

  2. Electrochemical impedance spectroscopic study of passive zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Ai Jiahe; Chen Yingzi [Center for Electrochemical Science and Technology, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Urquidi-Macdonald, Mirna [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); Macdonald, Digby D. [Center for Electrochemical Science and Technology, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)], E-mail: ddm2@psu.edu

    2008-09-30

    Spent, unreproccessed nuclear fuel is generally contained within the operational fuel sheathing fabricated from a zirconium alloy (Zircaloy 2, Zircaloy 4, or Zirlo) and is then stored in a swimming pool and/or dry storage facilities until permanent disposal in a licensed repository. During this period, which begins with irradiation of the fuel in the reactor during operation, the fuel sheathing is exposed to various, aggressive environments. The objective of the present study was to characterize the nature of the passive film that forms on pure zirconium in contact with an aqueous phase [0.1 M B(OH){sub 3} + 0.001 M LiOH, pH 6.94] at elevated temperatures (in this case, 250 deg. C), prior to storage, using electrochemical impedance spectroscopy (EIS) with the data being interpreted in terms of the point defect model (PDM). The results show that the corrosion resistance of zirconium in high temperature, de-aerated aqueous solutions is dominated by the outer layer. The extracted model parameter values can be used in deterministic models for predicting the accumulation of general corrosion damage to zirconium under a wide range of conditions that might exist in some repositories.

  3. Corrosion resistance of zirconium in nitric acid

    International Nuclear Information System (INIS)

    Kajimura, H.; Morikawa, H.; Nagano, H.

    1987-01-01

    Slow strain rate tests are effected on zirconium in boiling nitric acid to study the influence of nitric acid concentration, of oxidizing ions (Cr and Ce) and of electric potential. Corrosion resistance is excellent and stress corrosion cracking occurs only for severe conditions: 350 mV over electric potential for corrosion with nitric acid concentration of 40 % [fr

  4. Obtention of titanium and zirconium metallic

    International Nuclear Information System (INIS)

    Santos, P.R.G.; Rover, C.F.S.; Amaral, F.L.L.

    1988-01-01

    The development works of techniques and equipments for titanium and zirconium sponges obtention are mentioned. The Kroll Process used for the sponges production is described, consisting in the reduction of the metal tetracloride with magnesium in an inert atmosphere of helium or argon. (C.G.C.) [pt

  5. Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material.

    Science.gov (United States)

    Camilleri, J; Cutajar, A; Mallia, B

    2011-08-01

    cement. A prototype dental material composed of Portland cement replaced with 30% zirconium oxide as radiopacifier leached calcium ions on hydration which reacted with phosphates present in simulated tissue fluids. This resulted in bioactive cement that could prospectively be used as a root-end filling material. The zirconium oxide acted as inert filler and did not participate in the hydration reaction of the Portland cement. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Investigation of Zirconium Oxide Films in Different Dissolved Hydrogen Concentration

    International Nuclear Information System (INIS)

    Kim, Taeho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun

    2016-01-01

    It has been reported that in pre-transition zirconium oxide, the volume fraction of tetragonal zirconium oxide increased near the oxide/metal (O/M) interface, and the sub-stoichiometric zirconium oxide layer was observed. The diffusion of oxygen ion through the oxide layer is the rate-limiting process during the pre-transition oxidation process, and this diffusion mainly occurs in the grain boundaries. The two layered oxide structure is formed in pre-transition oxide for the zirconium alloy in high-temperature water environment. It is known that the corrosion rate is related to the volume fraction of zirconium oxide and the pores in the oxides; therefore, the aim of this paper is to investigate the oxidation behavior in the pre-transition zirconium oxide in high-temperature water chemistry. In this study, in situ Raman and TEM analysis were conducted for investigating the phase transformation of zirconium alloy in primary water. From this study, the following conclusions are drawn: 1. The zirconium alloy was oxidized in primary water chemistry for 100 d, and Raman and TEM were measured after 30, 50, 80, and 100 d from start-up. 2. TEM and FFT analysis showed that the zirconium oxide mostly consisted of the monoclinic phase. The tetragonal zirconium oxide was just found near the O/M interface

  7. Determination of zirconium by fluoride ion selective electrode

    International Nuclear Information System (INIS)

    Mahanty, B.N.; Sonar, V.R.; Gaikwad, R.; Raul, S.; Das, D.K.; Prakash, A.; Afzal, Md.; Panakkal, J.P.

    2010-01-01

    Full text: Zirconium is used in a wide range of applications including nuclear clad, catalytic converters, surgical appliances, metallurgical furnaces, superconductors, ceramics, lamp filaments, anti corrosive alloys and photographical purposes. Irradiation testing of U-Zr and U-Pu-Zr fuel pins has also demonstrated their feasibility as fuel in liquid metal reactors. Different methods that are employed for the determination of zirconium are spectrophotometry, potentiometry, neutron activation analysis and mass spectrometry. Ion-selective electrode (ISE), selective to zirconium ion has been studied for the direct potentiometric measurements of zirconium ions in various samples. In the present work, an indirect method has been employed for the determination of zirconium in zirconium nitrate sample using fluoride ion selective electrode. This method is based on the addition of known excess amount of fluoride ion to react with the zirconium ion to produce zirconium tetra fluoride at about pH 2-3, followed by determination of residual fluoride ion selective electrode. The residual fluoride ion concentrations were determined from the electrode potential data using calibration plot. Subsequently, zirconium ion concentrations were determined from the concentration of consumed fluoride ions. A precision of about 2% (RSD) with the mean recovery of more than 94% has been achieved for the determination of zirconium at the concentration of 4.40 X 10 -3 moles lit -1

  8. TBP 20% - diluent/HNO3/H2O liquid-liquid extraction system: equilibrium normalization data of nitric acid, ruthenium and zirconium

    International Nuclear Information System (INIS)

    Oliveira, C.A.L.G. de.

    1984-01-01

    The extraction behaviour of nitric acid, nitrosyl-ruthenium nitrate and zirconium hydroxide nitrate in the system tri-n-butyl phosphate (TBP) 20% - diluent was studied. The main purpose was to obtain enough data to elaborate process flowsheets for the treatment of irradiated uranium fuels. During the runs, the equilibrium diagrams of nitric acid, ruthenium and zirconium were settled. From the achieved data, the influence of nitric acid, ruthenium, zirconium and nitrate ions concentration in the aqueous phase was checked. Furthermore, the density and the surface tension of the aqueous and organic phases were determined, gathering the interfacial tension after the contact between the phases. A comparison among the obtained equilibrium data and the existing one from literature allowed the elaboration of mathematical models to express the distribution behaviour of nitric acid, ruthenium and zirconium as a function of nitrate ions concentration in the aqueous phase. The reduction of TBP concentration from 30% v/v (normally used) to 20% v/v, has shown no influence in the extraction behaviour of the elements. A decreasing in the distribution values was observed and that means an important factor during the decontamination of uranium from its contaminants, ruthenium and zirconium. (Author) [pt

  9. Thermal expansion of phosphates with the NaZr2(PO4)3 structure containing lanthanides and zirconium: R0.33Zr2(PO4)3 (R = Nd, Eu, Er) and Er0.33(1–x) Zr0.25xZr2(PO4)3

    International Nuclear Information System (INIS)

    Volgutov, V. Yu.; Orlova, A. I.

    2015-01-01

    Phosphates R 0.33 Zr 2 (PO 4 ) 3 (R = Nd, Eu, or Er) and Er 0.33(1–x) Zr 0.25 Zr 2 (PO 4 ) 3 (x = 0, 0.25, 0.5, 0.75, 1.0) of the NaZr 2 (PO 4 ) 3 family have been synthesized and investigated by high-temperature X-ray diffraction. The crystallochemical approach is used to obtain compounds with expected small and controllable thermal-expansion parameters. Phosphates with close-to-zero thermal-expansion parameters, including those with low thermal-expansion anisotropy, have been obtained: Nd 0.33 Zr 2 (PO 4 ) 3 with α a =–2.21 × 10 −6 °C −1 , α c = 0.81 × 10 −6 °C −1 , and Δα = 3.02 × 10 −6 °C –1 and Er 0.08 Zr 0.19 Zr 2 (PO 4 ) 3 with α a =–1.86 × 10 −6 °C −1 , α c = 1.73 × 10 −6 °C −1 , and Δα = 3.58 × 10 −6 °C −1

  10. Zirconium Zr and hafnium Hf

    International Nuclear Information System (INIS)

    Busev, A.I.; Tiptsova, V.G.; Ivanov, V.M.

    1978-01-01

    The basic methods for extracting and determining Zr(4) and Hf(4) are described. Diantipyrinemethane and its alkyl homologs selectively extract Zr and Hf from HNO 3 solutions in the presence of nitrates. Zr is selectively extracted with tetraethyldiamide of heptyl phosphoric acid (in benzene) as well as with 2-thenoyltrifluoroacetone (in an acid). The latter reagents is suitable for rapid determination of 95 Zr in a mixture with 95 Nb and other fragments. The complexometric determination of Zr is based on formation of a stable complex of Zr with EDTA. The titration is carried out in the presence of n-sulfobenzene-azo-pyrocatechol, eriochrome black T. The determination is hindered by Hf, fluoride-, phosphate-, oxalate- and tartrate-ions. The method is used for determining Zr in zircon and eudialyte ore. Zr is determined photometrically with the aid of xylenol orange, arsenazo 3 and pyrocatechol violet (in phosphorites). Hf is determined in the presence of Zr photometrically with the aid of xylenol orange or methyl-thymol blue. The method is based on Zr being masked with hydrogen peroxide in the presence of sulfate-ions

  11. Molten salt extractive distillation process for zirconium-hafnium separation

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1989-01-01

    This patent describes an improvement in a process for zirconium-hafnium separation. It utilizes an extractive distillation column with a mixture of zirconium and hafnium tetrachlorides introduced into a distillation column having a top and bottom with hafnium enriched overheads taken from the top of the column and a molten salt solvent circulated through the column to provide a liquid phase, and with molten salt solvent containing zirconium chloride being taken from the bottom of the distillation column. The improvements comprising: utilizing a molten salt solvent consisting principally of lithium chloride and at least one of sodium, potassium, magnesium and calcium chlorides; stripping of the zirconium chloride taken from the bottom of the distillation column by electrochemically reducing zirconium from the molten salt solvent; and utilizing a pressurized reflux condenser on the top of the column to add the hafnium chloride enriched overheads to the molten salt solvent previously stripped of zirconium chloride

  12. Advances in zirconium technology for nuclear reactor application

    International Nuclear Information System (INIS)

    Ganguly, C.

    2002-01-01

    Zirconium alloys are extensively used as a material for cladding nuclear fuels and for making core structurals of water-cooled nuclear power reactors all over the world for generation of nearly 16 percent of the worlds electricity. Only four countries in the world, namely France, USA, Russia and India, have large zirconium industry and capability to manufacture reactor grade zirconium sponge, a number of zirconium alloys and a wide variety of structural components for water cooled nuclear reactor. The present paper summarises the status of zirconium technology and highlights the achievement of Nuclear Fuel Complex during the last ten years in developing a wide variety of zirconium alloys and components for water-cooled nuclear power programme

  13. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-01-01

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  14. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    International Nuclear Information System (INIS)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    Graphical abstract: Ligand-modified signal-site SBA-15 supported zirconium catalysts were synthesized by SOMC method and characterized by a variety of techniques. The zirconium surface complexes show high catalytic efficiency for cyanosilylation of benzaldehyde. - Highlights: • Some Zr active species have been anchored on the surface of SBA-15 by SOMC technique. • The structures of the Zr species have been characterized by a variety of techniques. • The anchored Zr species are single-sited surface complexes. • The Zr surface complexes are catalytic active for cyanosilylation of benzaldehyde. - Abstract: A successive anchoring of Zr(NMe 2 ) 4 , cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15 -500 ) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15 -500 supported zirconium complexes were characterized by in situ FT-IR, 13 C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands

  15. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang, E-mail: gfzhang@snnu.edu.cn; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn

    2015-01-15

    Graphical abstract: Ligand-modified signal-site SBA-15 supported zirconium catalysts were synthesized by SOMC method and characterized by a variety of techniques. The zirconium surface complexes show high catalytic efficiency for cyanosilylation of benzaldehyde. - Highlights: • Some Zr active species have been anchored on the surface of SBA-15 by SOMC technique. • The structures of the Zr species have been characterized by a variety of techniques. • The anchored Zr species are single-sited surface complexes. • The Zr surface complexes are catalytic active for cyanosilylation of benzaldehyde. - Abstract: A successive anchoring of Zr(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15{sub -500}) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15{sub -500} supported zirconium complexes were characterized by in situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands.

  16. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  17. Titanium zirconium and hafnium coordination compounds with vanillin thiosemicarbazone

    International Nuclear Information System (INIS)

    Konunova, Ts.B.; Kudritskaya, S.A.

    1987-01-01

    Coordination compounds of titanium zirconium and hafnium tetrachlorides with vanillin thiosemicarbazone of MCl 4 x nLig composition, where n=1.5, 4 for titanium and 1, 2, 4 for zirconium and hafnium, are synthesized. Molar conductivity of ethanol solutions is measured; IR spectroscopic and thermochemical investigation are carried out. The supposition about ligand coordination via sulfur and azomethine nitrogen atoms is made. In all cases hafnium forms stable compounds than zirconium

  18. Manufacturing process to reduce large grain growth in zirconium alloys

    International Nuclear Information System (INIS)

    Rosecrans, P.M.

    1987-01-01

    A method is described of treating cold worked zirconium alloys to reduce large grain growth during thermal treatment above its recrystallization temperature. The method comprises heating the zirconium alloy at a temperature of about 1300 0 F. to 1350 0 F. for about 1 to 3 hours subsequent to cold working the zirconium alloy and prior to the thermal treatment at a temperature of between 1450 0 -1550 0 F., the thermal treatment temperature being above the recrystallization temperature

  19. Preparation of zirconium molybdate gel generator

    International Nuclear Information System (INIS)

    Charoen, S.; Aungurarat, G.; Laohawilai, S.; Sukontpradit, W.; Jingjit, S.

    1994-01-01

    A procedure for preparation of 99mTc generator based on conversion to zirconium molybdate gel of 99Mo produced by neutron activation was reported. The gel was prepared from zirconium oxychloride solution pH 1.6, ammonium molybdate solution pH 3-5 and mole ratio of Zr:Mo 1:1 which had water content about 7-8%. Small generators containing 1-1.5 g of gel were eluted with average efficiencies of 77% and the activity peak in the first 3 ml of 10 ml of saline solution. The amount of Mo and Zr in eluates were below the acceptance limit. The gel generators of activity about 100 mCi were prepared and had the good performance in elutability and stability

  20. Sorption of Europium in zirconium silicate

    International Nuclear Information System (INIS)

    Garcia R, G.

    2004-01-01

    Some minerals have the property of sipping radioactive metals in solution, that it takes advantage to manufacture contention barriers that are placed in the repositories of nuclear wastes. The more recent investigations are focused in the development of new technologies guided to the sorption of alpha emissors on minerals which avoid their dispersion in the environment. In an effort to contribute to the understanding of this type of properties, some studies of sorption of Europium III are presented like homologous of the americium, on the surface of zirconium silicate (ZrSiO 4 ). In this work the results of sorption experiences are presented as well as the interpretation of the phenomena of the formation of species in the surface of the zirconium silicate. (Author)

  1. New solvent extraction process for zirconium and hafnium

    International Nuclear Information System (INIS)

    Takahashi, M.; Katoh, Y.; Miyazaki, H.

    1984-01-01

    The authors' company developed a new solvent extraction process for zirconium and hafnium separation, and started production of zirconium sponge by this new process in September 1979. The process utilizes selective extraction of zirconium oxysulfate using high-molecular alkyl amine, and has the following advantages: 1. This extraction system has a separation factor as high as 10 to 20 for zirconium and hafnium in the range of suitable acid concentration. 2. In the scrubbing section, removal of all the hafnium that coexists with zirconium in the organic solvent can be effectively accomplished by using scrubbing solution containing hafnium-free zirconium sulfate. Consequently, hafnium in the zirconium sponge obtained is reduced to less than 50 ppm. 3. The extractant undergoes no chemical changes but is very stable for a long period. In particular, its solubility in water is small, about 20 ppm maximum, posing no environmental pollution problems such as are often caused by other process raffinates. At the present time, the zirconium and hafnium separation operation is very stable, and zirconium sponge made by this process can be applied satisfactorily to nuclear reactors

  2. Effects of titanium and zirconium on iron aluminide weldments

    Energy Technology Data Exchange (ETDEWEB)

    Mulac, B.L.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States). Center for Welding, Joining, and Coatings Research; Burt, R.P. [Alumax Technical Center, Golden, CO (United States); David, S.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen embrittlement. Titanium inoculation effectively refined the fusion zone microstructure in iron aluminide weldments, but the inoculated weldments had a reduced fracture strength despite the presence of a finer microstructure. The weldments fractured by transgranular cleavage which nucleated at cracked second phase particles. With titanium inoculation, second phase particles in the fusion zone changed shape and also became more concentrated at the grain boundaries, which increased the particle spacing in the fusion zone. The observed decrease in fracture strength with titanium inoculation was attributed to increased spacing of second phase particles in the fusion zone. Current research has focused on the weldability of zirconium- and carbon-alloyed iron aluminides. Preliminary work performed at Oak Ridge National Laboratory has shown that zirconium and carbon additions affect the weldability of the alloy as well as the mechanical properties and fracture behavior of the weldments. A sigmajig hot cracking test apparatus has been constructed and tested at Colorado School of Mines. Preliminary characterization of hot cracking of three zirconium- and carbon-alloyed iron aluminides, each containing a different total concentration of zirconium at a constant zirconium/carbon ratio of ten, is in progress. Future testing will include low zirconium alloys at zirconium/carbon ratios of five and one, as well as high zirconium alloys (1.5 to 2.0 atomic percent) at zirconium/carbon ratios of ten to forty.

  3. Traps in Zirconium Alloys Oxide Layers

    Directory of Open Access Journals (Sweden)

    Helmar Frank

    2005-01-01

    Full Text Available Oxide films long-time grown on tubes of three types of zirconium alloys in water and in steam were investigated, by analysing I-V characteristic measured at constant voltages with various temperatures. Using theoretical concepts of Rose [3] and Gould [5], ZryNbSn(Fe proved to have an exponential distribution of trapping centers below the conduction band edge, wheras Zr1Nb and IMP Zry-4 proved to have single energy trap levels.

  4. Structure of zirconium dioxide based porous glasses

    Czech Academy of Sciences Publication Activity Database

    Gubanova, N. N.; Kopitsa, G. P.; Ezdakova, K. V.; Baranchikov, A. Y.; Angelov, Borislav; Feoktystov, A.; Pipich, V.; Ryukhtin, Vasyl; Ivanov, V. K.

    2014-01-01

    Roč. 8, č. 5 (2014), s. 967-975 ISSN 1027-4510 R&D Projects: GA ČR GAP208/10/1600; GA MŠk(XE) LM2011019; GA ČR GB14-36566G Institutional support: RVO:61389013 ; RVO:61389005 Keywords : zirconium dioxide * porous glasse * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry; BG - Nuclear, Atomic and Molecular Physics, Colliders (UJF-V) Impact factor: 0.359, year: 2012

  5. Evaluation of a Zirconium Recycle Scrubber System

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A hot-cell demonstration of the zirconium recycle process is planned as part of the Materials Recovery and Waste Forms Development (MRWFD) campaign. The process treats Zircaloy® cladding recovered from used nuclear fuel with chlorine gas to recover the zirconium as volatile ZrCl4. This releases radioactive tritium trapped in the alloy, converting it to volatile tritium chloride (TCl). To meet regulatory requirements governing radioactive emissions from nuclear fuel treatment operations, the capture and retention of a portion of this TCl may be required prior to discharge of the off-gas stream to the environment. In addition to demonstrating tritium removal from a synthetic zirconium recycle off-gas stream, the recovery and quantification of tritium may refine estimates of the amount of tritium present in the Zircaloy cladding of used nuclear fuel. To support these objectives, a bubbler-type scrubber was fabricated to remove the TCl from the zirconium recycle off-gas stream. The scrubber was fabricated from glass and polymer components that are resistant to chlorine and hydrochloric acid solutions. Because of concerns that the scrubber efficiency is not quantitative, tests were performed using DCl as a stand-in to experimentally measure the scrubbing efficiency of this unit. Scrubbing efficiency was ~108% ± 3% with water as the scrubber solution. Variations were noted when 1 M NaOH scrub solution was used, values ranged from 64% to 130%. The reason for the variations is not known. It is recommended that the equipment be operated with water as the scrubbing solution. Scrubbing efficiency is estimated at 100%.

  6. Zirconium oxide obtainment from brazilian zircon concentrate

    International Nuclear Information System (INIS)

    Ribeiro, S.; Martins, A.H.

    1991-01-01

    This work presents the experimental results of studies about alkaline melting, acid leaching and sulfation steps for obtention of zirconium oxide and partially stabilized zirconia by yttrium and rare-earth coprecipitation in chlorine medium, starting from the brazilian zircon concentrate. Using statistical methods of factorial design and the Packett-Burman approach, the results are discussed and the optimal conditions of the production steps were determined. (author)

  7. Fluorometric determination of zirconium in minerals

    Science.gov (United States)

    Alford, W.C.; Shapiro, L.; White, C.E.

    1951-01-01

    The increasing use of zirconium in alloys and in the ceramics industry has created renewed interest in methods for its determination. It is a common constituent of many minerals, but is usually present in very small amounts. Published methods tend to be tedious, time-consuming, and uncertain as to accuracy. A new fluorometric procedure, which overcomes these objections to a large extent, is based on the blue fluorescence given by zirconium and flavonol in sulfuric acid solution. Hafnium is the only element that interferes. The sample is fused with borax glass and sodium carbonate and extracted with water. The residue is dissolved in sulfuric acid, made alkaline with sodium hydroxide to separate aluminum, and filtered. The precipitate is dissolved in sulfuric acid and electrolysed in a Melaven cell to remove iron. Flavonol is then added and the fluorescence intensity is measured with a photo-fluorometer. Analysis of seven standard mineral samples shows excellent results. The method is especially useful for minerals containing less than 0.25% zirconium oxide.

  8. Study of zirconium-addition binary systems

    International Nuclear Information System (INIS)

    Wozniakova, B.; Kuchar, L.

    1975-01-01

    The curves are given of the solid and the liquid of binary zirconium-addition systems. Most additions reduce the melting temperature of zirconium. The only known additions to increase the melting temperature are nitrogen, oxygen and hafnium. Also given are the transformation curves of the systems and the elements are given which reduce or raise the temperature of α-β transformation. From the Mendeleev table into which are plotted the curves of the solid and the liquid of binary systems it is possible to predict the properties of unknown binary systems. For the calculations of the curves of the solid and the liquid, 1860 degC was taken as the temperature of zirconium melting. For the calculations of transformation curves, 865 degC was taken as the temperature of α-β transformation. The equations are given of the curves of the solid and the liquid and of the transformation curves of some Zr-addition systems. Also given are the calculated equilibrium distribution coefficients and the equilibrium distribution coefficients of the transformation of additions in Zr and their limit values for temperatures approximating the melting point or the temperature of the transformation of pure Zr, and the values pertaining to eutectic and peritectic or eutectoid and peritectoid temperatures. (J.B.)

  9. Development of zirconium alloy tube manufacturing technology

    International Nuclear Information System (INIS)

    Kim, In Kyu; Park, Chan Hyun; Lee, Seung Hwan; Chung, Sun Kyo

    2009-01-01

    In late 2004, Korea Nuclear Fuel Company (KNF) launched a government funded joint development program with Westinghouse Electric Co. (WEC) to establish zirconium alloy tube manufacturing technology in Korea. Through this program, KNF and WEC have developed a state of the art facility to manufacture high quality nuclear tubes. KNF performed equipment qualification tests for each manufacturing machine with the support of WEC, and independently carried out product qualification tests for each tube product to be commercially produced. Apart from those tests, characterization test program consisting of specification test and characterization test was developed by KNF and WEC to demonstrate to customers of KNF the quality equivalency of products manufactured by KNF and WEC plants respectively. As part of establishment of performance evaluation technology for zirconium alloy tube in Korea, KNF carried out analyses of materials produced for the characterization test program using the most advanced techniques. Thanks to the accomplishment of the development of zirconium alloy tube manufacturing technology, KNF is expected to acquire positive spin off benefits in terms of technology and economy in the near future

  10. Neutronographic Texture Analysis of Zirconium Based Alloys

    International Nuclear Information System (INIS)

    Kruz'elová, M; Vratislav, S; Kalvoda, L; Dlouhá, M

    2012-01-01

    Neutron diffraction is a very powerful tool in texture analysis of zirconium based alloys used in nuclear technique. Textures of five samples (two rolled sheets and three tubes) were investigated by using basal pole figures, inversion pole figures, and ODF distribution function. The texture measurement was performed at diffractometer KSN2 on the Laboratory of Neutron Diffraction, Department of Solid State Engineering, Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague. Procedures for studying textures with thermal neutrons and procedures for obtaining texture parameters (direct and inverse pole figures, three dimensional orientation distribution function) are also described. Observed data were processed by software packages HEXAL and GSAS. Our results can be summarized as follows: i) All samples of zirconium alloys show the distribution of middle area into two maxima in basal pole figures. This is caused by alloying elements. A characteristic split of the basal pole maxima tilted from the normal direction toward the transverse direction can be observed for all samples, ii) Sheet samples prefer orientation of planes (100) and (110) perpendicular to rolling direction and orientation of planes (002) perpendicular to normal direction, iii) Basal planes of tubes are oriented parallel to tube axis, meanwhile (100) planes are oriented perpendicular to tube axis. Level of resulting texture and maxima position is different for tubes and for sheets. The obtained results are characteristic for zirconium based alloys.

  11. Development of Zirconium alloys (for pressure tubes)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Choo, Ki Nam; Jung, Chung Hwan; Yim, Kyong Soo; Kim, Sung Soo; Baek, Jong Hyuk; Jeong, Yong Hwan; Kim, Kyong Ho; Cho, Hae Dong [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Hwang, S. K.; Kim, M. H. [Inha Univ., Incheon (Korea, Republic of); Kwon, S. I [Korea Univ., Seoul (Korea, Republic of); Kim, I. S. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1997-09-01

    The objective of this research is to set up the basic technologies for the evaluation of pressure tube integrity and to develop improved zirconium alloys to prevent pressure tube failures due to DHC and hydride blister caused by excessive creep-down of pressure tubes. The experimental procedure and facilities for characterization of pressure tubes were developed. The basic research related to a better understanding of the in-reactor performances of pressure tubes leads to noticeable findings for the first time : the microstructural effect on corrosion and hydrogen pick-up behavior of Zr-2.5Nb pressure tubes, texture effect on strength and DHC resistance and enhanced recrystallization by Fe in zirconium alloys and etc. Analytical methodology for the assessment of pressure tubes with surface flaws was set up. A joint research is being under way with AECL to determine the fracture toughness of O-8 at the EOL (End of Life) that had been quadruple melted and was taken out of the Wolsung Unit-1 after 10 year operation. In addition, pressure tube with texture controlled is being made along with VNINM in Russia as a joint project between KAERI and Russia. Finally, we succeeded in developing 4 different kinds of zirconium alloys with better corrosion resistance, low hydrogen pickup fraction and higher creep strength. (author). 121 refs., 65 tabs., 260 figs

  12. Low stress creep behaviour of zirconium

    International Nuclear Information System (INIS)

    Prasad, N.

    1989-01-01

    Creep behaviour of alpha zirconium of grain size varying between 16 and 55 μm has been investigated in the temperature range 813 to 1003K at stresses upto 5.5 MNm -2 using high sensitive spring specimen geometry. Creep experiments on specimens of 50 μm grain size revealed a transition from lattice diffusion controlled viscous creep at temperatures greater than 940K to grain boundary diffusion controlled viscous creep at lower temperatures. Tests conducted on either side of the transition suggest the dominance of Nabarro-Herring and Coble creep processes respectively. Evidence for power-law creep has been observed in practically all the creep tests. Based on the experimental data obtained in the present study and those recently reported by Novotny et al (1985), Langdon creep mechanism maps have bee n constructed at 873 and 973K. With the help of these maps for zirconium and those published for titanium the low stress creep behaviour of zirconium and titanium are compared. (author). 22 refs., 11 figs., 3 tabs

  13. Quantitative analysis of nickel in zirconium and zircaloy; Dosage du nickel dans le zirconium et dans le zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Rastoix, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    A rapid spectrophotometric has been developed for determination of 10 to 1000 ppm of Ni in zirconium and zircaloy using dimethylglyoxime. Iron, copper, tin and chromium, do not interfere at the concentration usually present in zirconium and its alloys. (author) [French] On determine colorimetriquenent 10 a 1000 ppm de Ni dans le zirconium et le zircaloy par photo colorimetrie a 440 m{mu} de la dimethylglyoxime nickelique. Le dosage est rapide. Le fer, le cuivre, l'etain, le chrome ne genent pas aux concentrations habituellement rencontrees dans le zirconium et ses alliages. (auteur)

  14. Uranium from phosphate ores

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant

  15. Effect of zirconium nanoparticles on the mechanical properties of light-cured resin based dental composites

    International Nuclear Information System (INIS)

    Afza, N.; Anis, I.; Aslam, M.; Shah, M.R.; Hussain, M.T.; Bokhari, T.H.; Hussain, A.; Safdar, M.

    2012-01-01

    The aim of this study was to evaluate the mechanical properties of conventional composite resins (Solare-P) and the modified composite resin having mixed with zirconium nanoparticles. The composite resins are used to replace the missing tooth structure and improve esthetics. In this study, the composite was filled with increments in a mould which was 4 mm in depth and 3 mm in diameter. After filling, it was polymerized with halogen light curing unit for 20 seconds for each increment. In other experiments, the composite was mixed with zirconium nanoparticles and filled in the moulds with increments and polymerized for 20 seconds with halogen light curing unit for each increment. After keeping the moulds at 37 deg. C for 24 hours their mechanical properties including compressive force, %age elongation, compressive strength and hardness were evaluated. It was seen that by adding zirconium nanoparticles, compressive force, %age elongation, compressive strength and hardness increased significantly. Thus it was concluded that the new materials are better than the conventional compomers. (author)

  16. Experimental Calcium Silicate-Based Cement with and without Zirconium Oxide Modulates Fibroblasts Viability.

    Science.gov (United States)

    Slompo, Camila; Peres-Buzalaf, Camila; Gasque, Kellen Cristina da Silva; Damante, Carla Andreotti; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; de Oliveira, Rodrigo Cardoso

    2015-01-01

    The aim of this study was to verify whether the use of zirconium oxide as a radiopacifier of an experimental calcium silicate-based cement (WPCZO) leads to cytotoxicity. Fibroblasts were treated with different concentrations (10 mg/mL, 1 mg/mL, and 0.1 mg/mL) of the cements diluted in Dulbecco's modified Eagle's medium (DMEM) for periods of 12, 24, and 48 h. Groups tested were white Portland cement (WPC), white Portland cement with zirconium oxide (WPCZO), and white mineral trioxide aggregate Angelus (MTA). Control group cells were not treated. The cytotoxicity was evaluated through mitochondrial-activity (MTT) and cell-density (crystal violet) assays. All cements showed low cytotoxicity. In general, at the concentration of 10 mg/mL there was an increase in viability of those groups treated with WPC and WPCZO when compared to the control group (pcement with 20% zirconium oxide as the radiopacifier showed low cytotoxicity as a promising material to be exploited for root-end filling.

  17. Geology, mineralogy, geochemistry and origin of phosphates from Jandia, Cansa Perna, Itacupim (Para) and Pirocaua and Trauira (Maranhao)

    International Nuclear Information System (INIS)

    Costa, M. L. da.

    1980-01-01

    The phosphate occurrences of Northeastern Para and Northwestern Maranhao were formed by strong lateritic weathering of phosphorus-rich Precambrian rocks. The rock formation affected by those processes were phyllites and schists of the Gurupi Group in Cansa Perna and Pirocaua, a complex of felsic to mafic and ultramafic rocks metamorphosed in the greenschist facies in Itacupim and Trauira and probably phosphoritic sandstone in Jandia. The geology, the mineralogy of phosphates, oxides, hydroxides and silicates, the geochemistry of element distribution (aluminium, silicon, iron, calcium, etc) and trace elements distribution (strontium, rubidium, barium, rare earths, zirconium, niobium uranium, thorium, etc) and the phosphates origin are studied. (C.G.C.)

  18. Preparation and characterization of zirconia-loaded lignocellulosic butanol residue as a biosorbent for phosphate removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Enmin [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000 (China); Liu, Xiaohuan, E-mail: liuxiaohuancaf@163.com [School of Engineering, National Engineering and Technology Research Center of Wood-Based Resources Comprehensive Utilization, and Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, Lin’an 311300 (China); Jiang, Jinhua [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000 (China); Fu, Shenyuan [School of Engineering, National Engineering and Technology Research Center of Wood-Based Resources Comprehensive Utilization, and Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, Lin’an 311300 (China); Chu, Fuxiang [Institute of Chemical Industry of Forestry Products, CAF, Nanjing 210037 (China)

    2016-11-30

    Highlights: • LBR-Zr was evaluated as a novel biosorbent for phosphate removal. • Effects of process factors on phosphate adsorption were studied in detail. • LBR-Zr showed markedly enhanced phosphate adsorption compared to LBR. • The underlying mechanism for phosphate adsorption of LBR-Zr was fully investigated. - Abstract: Zirconium(IV) loaded lignocellulosic butanol residue (LBR-Zr) used for the adsorption of phosphate (P) ions from aqueous solution was synthesized and evaluated. The adsorption isotherms were fitted well with the Freundlich and Temkin modes. Thermodynamic analyses indicated that phosphate adsorption on the LBR-Zr increased with increasing temperature from 298 to 338 K. The kinetic datas were described better by the pseudo-second-order adsorption kinetic rate model. Increasing pH suppressed phosphate adsorption. Coexisting anions study exhibited that the incorporation of CO{sub 3}{sup 2−} anion had the largest influence on the phosphate adsorption capacity. The mechanism of adsorption process on LBR-Zr was analyzed by FTIR (Fourier transform infrared spectroscopy), scanning electron microscope (SEM) with an EDX (energy dispersive X-ray) and X-ray photoelectron spectroscopy (XPS) technologies, respectively. The above results confirmed that surface hydroxyl groups on biosorbent LBR-Zr were replaced by phosphate. The LBR-Zr with good specific affinity towards phosphate was a promising biosorbent for phosphate removal from aqueous solution. The research would be beneficial for developing a promising, eco-friendly phosphate biosorbent from plentiful lignocellulosic butanol residue.

  19. Mechanism of chlorination of some actinide and fission product phosphates and tungstates in chloride melts

    International Nuclear Information System (INIS)

    Kryukova, A.I.; Chernikov, A.A.; Skiba, O.V.; Kazantsev, G.N.

    1989-01-01

    Results of kinetic studies on the chlorination of crystalline phosphates and tungstates of uranium, cerium, zirconium, and plutonium by gaseous carbon tetrachloride in melts of alkali metal chlorides at 973-1073 degree K are analyzed. A mathematical model of the process is proposed. Analysis of regression models allowed solution of the problem by statistical evaluation of the effective factors and prediction within the limits of the factors studied of the optimal conditions for the process

  20. [The clinical application of zirconium-dioxide-ceramics. Case report].

    Science.gov (United States)

    Somfai, Dóra; Zsigmond, Ágnes; Károlyházy, Katalin; Kispély, Barbara; Hermann, Péter

    2015-12-01

    Due to its outstanding physical, mechanical and esthetic properties, zirconium-dioxide is one of the most popular non-metal denture, capable of surpassing PFM in most cases. The recent advances of CAD/CAM technology makes it a good alternitve. Here we show the usefulness of zirconium-dioxide in everyday dental practice through three case reports.

  1. Thermotransport of nitrogen and oxygen in β-zirconium

    NARCIS (Netherlands)

    Vogel, D.L.; Rieck, G.D.

    1971-01-01

    An investigation of thermotransport of nitrogen in ß-zirconium is reported. Using a method previously described, the heat of transport turned out to be 25.1 kcal/mole with a standard deviation of 2.5 kcal/mole. The formerly published value of the heat of transport of oxygen in ß-zirconium, viz. 20

  2. Quantitative analysis of nickel in zirconium and zircaloy

    International Nuclear Information System (INIS)

    Rastoix, M.

    1957-01-01

    A rapid spectrophotometric has been developed for determination of 10 to 1000 ppm of Ni in zirconium and zircaloy using dimethylglyoxime. Iron, copper, tin and chromium, do not interfere at the concentration usually present in zirconium and its alloys. (author) [fr

  3. Effect of zirconium addition on the recrystallization behaviour of a ...

    Indian Academy of Sciences (India)

    In the present work, zirconium was added to a commercial Al–Cu–Mg alloy and by heat treatment Al3Zr particles were precipitated and after forging, the grain size was an order of magnitude lower than the alloy without zirconium. Transmission electron microscopy was employed to characterize the second phase particles, ...

  4. Molten salt scrubbing of zirconium or hafnium tetrachloride

    International Nuclear Information System (INIS)

    Lee, E.D.; McLaughlin, D.F.

    1990-01-01

    This patent describes a continuous process for removing impurities of iron or aluminum chloride or both from vaporous zirconium or hafnium chloride or both. It comprises: introducing impure zirconium or hafnium chloride vapor or both into a middle portion of an absorbing column containing a molten salt phase, the molten salt phase absorbing the impurities of iron or aluminum chloride or both to produce chloride vapor stripped of zirconium or hafnium chloride; introducing sodium or potassium chloride or both into a top portion of the column; controlling the top portion of the column to between 300--375 degrees C.; heating a bottom portion of the column to 450--550 degrees C. To vaporize zirconium chloride or hafnium chloride or hafnium and zirconium chloride from the molten salt; withdrawing molten salt substantially free of zirconium and hafnium chloride from the bottom portion of the column; and withdrawing zirconium chloride or hafnium chloride or hafnium and zirconium chloride vapor substantially free of impurities of iron and aluminum chloride from the top of the column

  5. Formation of zirconium dioxide layers on microelectrode of zirconium. Inhibition of the hydrogen evolution reaction

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Lubomír; Fanelli, N.; Hromadová, Magdaléna

    2017-01-01

    Roč. 49, C (2017), s. 128-133 ISSN 0324-1130 R&D Projects: GA ČR(CZ) GA16-03085S Institutional support: RVO:61388955 Keywords : zirconium * ZrO2 * corrosion Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 0.238, year: 2016

  6. PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS

    Science.gov (United States)

    Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.

    1962-08-14

    A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)

  7. Phase Transformations in a Uranium-Zirconium Alloy containing 2 weight per cent Zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Lagerberg, G

    1961-04-15

    The phase transformations in a uranium-zirconium alloy containing 2 weight percent zirconium have been examined metallographically after heat treatments involving isothermal transformation of y and cooling from the -y-range at different rates. Transformations on heating and cooling have also been studied in uranium-zirconium alloys with 0.5, 2 and 5 weight per cent zirconium by means of differential thermal analysis. The results are compatible with the phase diagram given by Howlett and Knapton. On quenching from the {gamma}-range the {gamma} phase transforms martensitically to supersaturated a the M{sub S} temperature being about 490 C. During isothermal transformation of {gamma} in the temperature range 735 to 700 C {beta}-phase is precipitated as Widmanstaetten plates and the equilibrium structure consists of {beta} and {gamma}{sub 1}. Below 700 C {gamma} transforms completely to Widmanstaetten plates which consist of {beta} above 660 C and of a at lower temperatures. Secondary phases, {gamma}{sub 2} above 610 C and {delta} below this temperature, are precipitated from the initially supersaturated Widmanstaetten plates during the isothermal treatments. At and slightly below 700 C the cooperative growth of |3 and {gamma}{sub 2} is observed. The results of isothermal transformation are summarized in a TTTdiagram.

  8. Techniques for chemical characterization of zirconium and its alloys

    International Nuclear Information System (INIS)

    Iyer, K.V.; Bassan, M.K.T.; Sudersanan, M.

    2002-01-01

    Chemical characterization of zirconium and its alloys such as zircaloy, Zr-Nb, etc for minor and trace constituents like Nb, Ti, Fe, Cr, Ni, Sn, Al etc has been carried out. Zirconium, being a major constituent, has been determined by gravimetry as zirconium oxide while other constituents like Nb, Ti, Fe have been determined by spectrophotometric methods. Other metals of importance at trace level have been estimated by AAS or ICPAES. The judicious use of both conventional and modern instrumental methods of analysis helps in the characterization of zirconium and its alloys for various major and minor constituents. The role of matrix effect in the determination was also investigated and methods have been worked out based on a preliminary separation of zirconium by a hydroxide precipitation. (author)

  9. Determination of microquantities of zirconium and thorium in uranium dioxide

    International Nuclear Information System (INIS)

    Weber de D'Alessio, Ana; Zucal, Raquel.

    1975-07-01

    A method for the determination of 10 to 50 ppm of zirconium and thorium in uranium IV oxide of nuclear purity is established. Zirconium and thorium are retained in a strong cation-exchange resin Dowex 50 WX8 in 1 M HCl. Zirconium is eluted with 0,5% oxalic acid solution and thorium with 4% ammonium oxalate. The colorimetric determination of zirconium with xilenol orange is done in perchloric acid after destructtion of oxalic acid and thorium is determined with arsenazo III in 5 M HCl. 10 μg of each element were determined with a standard deviation of 2,1% for thorium and 3,4% for zirconium. (author) [es

  10. Zirconium alloy fuel cladding resistant to PCI crack propagation

    International Nuclear Information System (INIS)

    Boyle, R.F.; Foster, J.P.

    1987-01-01

    A nuclear fuel element is described cladding tube comprising: concentric tubular layers of zirconium base alloys; the concentric tubular layers including an inner layer and outer layer; the outer layer metallurgically bonded to the inner layer; the outer layer composed of a first zirconium base alloy characterized by excellent resistance to corrosion caused by exposure to high temperature and pressure aqueous environments; the inner layer composed of a second zirconium base alloy consisting of: about 0.2 to 0.6 wt.% tin, about 0.03 to 0.11 wt.% iron, less than about 0.02 wt.% chromium, up to about 350 ppm oxygen and the remainder being zirconium and incidental impurities, and the inner layer characterized by improved resistance to crack propagation under reactor operating conditions compared to the first zirconium alloy

  11. Antimony removal from aqueous solutions using Zirconium hydroxide

    International Nuclear Information System (INIS)

    Petrescu, D.; Velciu, L.; Bucur, C.

    2016-01-01

    In this paper it is presented an experimental test for non-radioactive antimony removal from aqueous solutions using zirconium hydroxide powder. Also, it was studied how the temperature and pH influences antimony adsorption onto zirconium hydroxide surface. After the adsorption, solutions were filtered on Cellulose Mixed Ester Membrane with 0.2 μm pore size to remove the zirconium powder and then the aqueous solutions were sent to Inductively Coupled Plasma Optic Emission Spectrometry (ICP-OES) for quantitative analysis of Sb. Zirconium hydroxide powders were examined by optical microscopy. For the solutions that were tested at pH 4.5 and 10.2 the antimony concentration dropped below the detection limit of ICP-OES device, proof of antimony adsorption on zirconium hydroxide. Also, for the other tested solutions which had pH=12 the antimony concentration reduced with 77% and 80%. The temperature had no influence upon adsorption mechanism. (authors)

  12. Electrothermal atomic absorption spectrometric determination of copper in nickel-base alloys with various chemical modifiers*1

    Science.gov (United States)

    Tsai, Suh-Jen Jane; Shiue, Chia-Chann; Chang, Shiow-Ing

    1997-07-01

    The analytical characteristics of copper in nickel-base alloys have been investigated with electrothermal atomic absorption spectrometry. Deuterium background correction was employed. The effects of various chemical modifiers on the analysis of copper were investigated. Organic modifiers which included 2-(5-bromo-2-pyridylazo)-5-(diethylamino-phenol) (Br-PADAP), ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2-pyridylazo)resorcinol, ethylenediaminetetraacetic acid and Triton X-100 were studied. Inorganic modifiers palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, hydrogen peroxide and potassium nitrate were also applied in this work. In addition, zirconium hydroxide and ammonium hydroxide precipitation methods have also been studied. Interference effects were effectively reduced with Br-PADAP modifier. Aqueous standards were used to construct the calibration curves. The detection limit was 1.9 pg. Standard reference materials of nickel-base alloys were used to evaluate the accuracy of the proposed method. The copper contents determined with the proposed method agreed closely with the certified values of the reference materials. The recoveries were within the range 90-100% with relative standard deviation of less than 10%. Good precision was obtained.

  13. Determination of hydrogen in zirconium hydride and uranium-zirconium hydride by inert gas exraction-gravimetric method

    International Nuclear Information System (INIS)

    Hoshino, Akira; Iso, Shuichi

    1976-01-01

    An inert gas extraction-gravimetric method has been applied to the determination of hydrogen in zirconium hydride and uranium-zirconium hydride which are used as neutron moderator and fuel of nuclear safety research reactor (NSRR), respectively. The sample in a graphite-enclosed quartz crucible is heated inductively to 1200 0 C for 20 min in a helium stream. Hydrogen liberated from the sample is oxidized to water by copper(I) oxide-copper(II) oxide at 400 0 C, and the water is determined gravimetrically by absorption in anhydrone. The extraction curves of hydrogen for zirconium hydride and uranium-zirconium hydride samples are shown in Figs. 2 and 3. Hydrogen in the samples is extracted quantitatively by heating at (1000 -- 1250) 0 C for (10 -- 40) min. Recoveries of hydrogen in the case of zirconium hydride were examined as follows: a weighed zirconium rod (5 phi x 6 mm, hydrogen -5 Torr. After the chamber was filled with purified hydrogen to 200 Torr, the rod was heated to 400 0 C for 15 h, and again weighed to determine the increase in weight. Hydrogen in the rod was then determined by the proposed method. The results are in excellent agreement with the increase in weight as shown in Table 1. Analytical results of hydrogen in zirconium hydride samples and an uranium-zirconium hydride sample are shown in Table 2. (auth.)

  14. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  15. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Science.gov (United States)

    2010-04-01

    ... zirconium. 700.16 Section 700.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient... indicates that certain zirconium compounds have caused human skin granulomas and toxic effects in the lungs...

  16. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    Science.gov (United States)

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  17. Irradiation induced effects in zirconium (A review)

    International Nuclear Information System (INIS)

    Madden, P.K.

    1975-06-01

    Irradiation creep in zirconium and its alloys is comprehensively discussed. The main theories are outlined and the gaps between them and the observed creep behaviour, indicated. Although irradiation induced point defects play an important role, effects due to irradiation induced dislocation loops seem insignificant. The experimental results suggest that microstructural variations due to prior cold-working or hydrogen injection perturb the irradiation growth and the irradiation creep of zircaloy. Further investigations into these areas are required. One disadvantage of creep experiments lies in their duration. The possibility of accelerated experiments using ion implantation or electron irradiation is examined in the final section, and its possible advantages and disadvantages are outlined. (author)

  18. Minimizing hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Coleman, C.E.; Cheadle, B.A.; Ambler, J.F.R.; Eadie, R.L.

    1985-01-01

    Zirconium alloy components can fail by hydride cracking if they contain large flaws and are highly stressed. If cracking in such components is suspected, crack growth can be minimized by following two simple operating rules: components should be heated up from at least 30K below any operating temperature above 450K, and when the component requires cooling to room temperature from a high temperature, any tensile stress should be reduced as much and as quickly as is practical during cooling. This paper describes the physical basis for these rules

  19. Quantitative spectrographic determination of zirconium minerals

    International Nuclear Information System (INIS)

    Rocal Adell, M.; Alvarez Gonzalez, F.; Fernandez Cellini, R.

    1958-01-01

    The method described in the following report permits the quantitative determination of zirconium in minerals and rocks in a 0,02-100% of ZrO 2 concentration rate. The excitation is carried out by a 10 ampere continuous current arc among carbon electrodes, and placing the sample in a crater of 2 mm depth. For low concentrations a dilution of the sample with the same weight as its own in carbon powder and with 1/25 of its weight of Co 3 O 4 (internal patron) is carried out. Line Zr 2571,4, Co 2585,3 and Co 2587,2 are used. (Author) 6 refs

  20. Phase equilibria at the Zirconium metal purification

    International Nuclear Information System (INIS)

    Dwiretnani-Sudjoko; Busron-Masduki; Sunardjo; Budi-Sulistyo

    1996-01-01

    It was investigated the research in the purification of zirconium metal, which was results from the reduction process, by adding heat in the vacuum environment. The process was done in batch in the stainless steel reactor, equiped with vacuum pump and electric heater. The investigated variable were process temperature and pressure. From this research it was obtained that equilibrium constant for MgCl 2 and Mg were expressed in the equation K M g C l 2 = 0.9011 P 1 .3779 1.06552 T and K M g = 6.0115P + 1.35256T - 6.93912

  1. Swelling of a Zirconium Oxide Film

    International Nuclear Information System (INIS)

    Henderson, Mark; Hawley, Adrian; White, John; Rennie, Adrian

    2005-01-01

    Full text: The structural changes that cause the change in the interlayer spacing of a surfactanttemplated zirconium oxide film have been studied using neutron diffractometry. We report that the film after drying on a glass substrate swells slightly through the addition of benzene by up to 4 Aangstroem on a lattice parameter of about 36 Aangstroem. The (001) and (002) diffraction peaks positions, widths and areas of a swollen film were then monitored by neutron diffraction as a function of benzene desorption. Disorder of the lamellar mesophase is considered as a cause of the observed effects on the diffraction signals. (authors)

  2. Swelling of a mesostructured zirconium oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.J. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); Rennie, A.R. [Uppsala University, Studsvik Neutron Research Laboratory, S-611 82 Nykoeping (Sweden); Hawley, A.M. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); White, J.W. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)]. E-mail: jww@rsc.anu.edu.au

    2006-11-15

    The structural changes that cause the change in interlayer spacing of a surfactant-templated zirconium oxide film have been studied using neutron diffractometry. We report that the film after drying on a glass substrate swells slightly through the addition of benzene by up to 4 A on a lattice parameter of about 36 A. The (0 0 1) and (0 0 2) diffraction peak widths, positions and areas of a swollen film were monitored as a function of benzene desorption. Disorder of the lamellar mesophase is considered as a cause of the observed effects on the diffraction signals.

  3. Studies on adsorptions of metallic ions in water by zirconium glyphosate (ZrGP): Behaviors and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jia Yunjie; Zhang Yuejuan [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China); Wang Runwei [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012 (China); Fan Faying [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China); Xu Qinghong, E-mail: xuqh@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China)

    2012-01-15

    A new adsorbent named zirconium glyphosate [Zr(O{sub 3}PCH{sub 2}NHCH{sub 2}COOH){sub 2}{center_dot}0.5H{sub 2}O, denoted as ZrGP] and its selective adsorptions to Pb{sup 2+}, Cd{sup 2+}, Mg{sup 2+} and Ca{sup 2+} ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO{sub 4}){sub 2}], ZrGP exhibited highly selective adsorption to Pb{sup 2+} in solution which contained Pb{sup 2+}, Cd{sup 2+}, Mg{sup 2+} and Ca{sup 2+} ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg{sup 2+} and Ca{sup 2+} were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.

  4. Studies on adsorptions of metallic ions in water by zirconium glyphosate (ZrGP): Behaviors and mechanisms

    International Nuclear Information System (INIS)

    Jia Yunjie; Zhang Yuejuan; Wang Runwei; Fan Faying; Xu Qinghong

    2012-01-01

    A new adsorbent named zirconium glyphosate [Zr(O 3 PCH 2 NHCH 2 COOH) 2 ·0.5H 2 O, denoted as ZrGP] and its selective adsorptions to Pb 2+ , Cd 2+ , Mg 2+ and Ca 2+ ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO 4 ) 2 ], ZrGP exhibited highly selective adsorption to Pb 2+ in solution which contained Pb 2+ , Cd 2+ , Mg 2+ and Ca 2+ ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg 2+ and Ca 2+ were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.

  5. Phosphate acquisition efficiency and phosphate starvation tolerance ...

    Indian Academy of Sciences (India)

    3Department of Genetics and Plant Breeding, College of Agriculture, Lembucherra, Tripura 799 ... vated in soil like red and lateritic or acid, with low soluble phosphate content. ..... activation of genes involved in the adaptation of Arabidopsis to.

  6. {tau} - hydrogen phosphate of zirconia in sodium salt form and some of its properties; {tau} - hidrogenofosfato de zirconio en forma sodica y algunas de sus propiedades

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez V, S.M.; Ordonez R, E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    It is reported the obtaining and characterization in the sodium salt form of the {tau}-hydrogen phosphate of zirconium in sodium form, this compound it was synthesized, for a new technique developed in the laboratory of Dept. of Chemistry of the ININ. The characterization was carried out for XRD, IR, Sem and EDS the thermal gravimetric analysis is also reported. (Author)

  7. The development of zirconium alloy and its manufacturing

    International Nuclear Information System (INIS)

    Yuan Gaihuan; Yue Qiang

    2015-01-01

    Nuclear power which acts as one of low-carbon energy resources is the most realistic in large-scale application. It is also the preferred choice for many countries to develop energy resources and optimize its structure. Zirconium alloy is a key structural material for nuclear power plant fuel assemblies and cladding tubes of zirconium alloy are often referred as the first safeguard to nuclear power safety. With the development of nuclear power, three kinds of zirconium alloys Zr-Sn, Zr-Nb, Zr-Sn-Nb and with the representative products of Zr-4, M5, Zirlo respectively are developed and widely applied. Because of its severe operating environment and influence to nuclear safety, the requirements to zirconium alloys for physical and chemical properties, nuclear capability, tolerance and surface quality are very strict. The in-depth research and its manufacture capability become one of the main barriers for many countries who are developing the nuclear energy. In recent years, a stated-owned company, State Nuclear Bao Ti Zirconium Industry Company ('SNZ' for short) as well as National R and D Center for Nuclear Grade Zirconium material, is founded to meet the requirement of the rapid development of China's nuclear power industry. SNZ is dedicated for the fabrication and the research of nuclear grade zirconium products. After the successful completion of technology transfer of manufacturing for production chain and fully grasped of the manufacturing technology for the nuclear grade zirconium sponge through zirconium alloy tube, rod and strip products. National R and D Center for Nuclear Grade Zirconium material is cooperating with universities, nuclear energy research and design institutes and the owners of nuclear power plant to develop new zirconium alloy of self-owned brand. Through the selection of components, in-process testing and product inspection, four kinds of new zirconium alloys owns better performance than currently commercialized M5, Zirlo etc

  8. Extraction of zirconium from raffinate stream of Zirconium Oxide Plant raffinate

    International Nuclear Information System (INIS)

    Pandey, Garima; Chinchale, R.; Renjith, A.U.; Mukhopadhyay, S.; Shenoy, K.T.; Ghosh, S.K.

    2013-01-01

    Recovery of metals from dilute streams is a major task in nuclear industry in the view of environmental remediation and value recovery. Presently solvent extraction process is employed on the commercial scale to recover nuclear pure zirconium using TBP as extractant. The waste stream of TBP extraction process contains about 1.2 gpl of Zirconium in nitrate form. At present there is no process to recover Zirconium from this raffinate stream. Hence, under the present study recovery of zirconium from the raffinate stream of Zirconium Oxide Plant Raffinate has been investigated. TBP, which is the most commonly used solvent in the nuclear industry is not suitable for the extraction of zirconium from lean solution at low acidity as its distribution coefficient is less than one. In search of a suitable extractant Mixed Alkyl Phosphine Oxide (MAPO) was investigated as potential carrier. Parametric batch studies for various equilibrium data like extractant concentration, strippant concentration, solvent reusability, equilibration time, acidity etc. were done to optimize the process condition. For the distribution studies, equal volumes of the raffinate and organic phase were shaken at room temperature in digital wrist action shaker for 10 minutes to ensure complete equilibrium. It was found that 0.1 M MAPO in 80:20 dodecane: isodecanol is suitable for extraction of Zr at 2 N acidity. 0.1 M MAPO gives distribution coefficient in the range of 12-15 for Zr. The slope of log-log plot between MAPO concentration and K, suggests involvement of 3 molecules of MAPO in the formation of extracting species. 0.2 M Oxalic acid was able to completely back extract Zr from the organic phase into aqueous phase. Also good regeneration capacity of MAPO projects its potential to be used as extractant for the process. Based on the equilibrium studies, Dispersion Liquid Membrane configuration in hollow fiber contactor was explored for the extraction of Zirconium from Zirconium Nitrate Pure

  9. Characterization of Fe -doped silver phosphate glasses

    Indian Academy of Sciences (India)

    ... to their several spe- cial properties such as large thermal expansion coefficients, ... increase the conductivity of these glasses is to increase the modifier or dopant ... phosphate glasses were measured by the a.c. impedance spectroscopic .... and Fe2O3-doped Ag2O–P2O5 glasses were determined from. DSC curves and ...

  10. Formation and dissolution of the anodic oxide film on zirconium in alcoholic aqueous solutions

    International Nuclear Information System (INIS)

    Mogoda, A.S.

    1995-01-01

    The dissolution behavior of the anodic oxide film formed in alcoholic aqueous solutions was studied. Results indicated the dissolution mechanism of the duplex oxide film followed a zero-order rate equation. The increase in methanol concentration in the formation medium (phosphoric acid [H 3 PO 4 ]) resulted in formation of an oxide film that incorporated little phosphate ion and that dissolved at a low rate. The dissolution rate of the oxide film decreased with increasing methanol concentration in the dissolution medium. This was attributed to the increase in the viscosity of the medium, which led to a decrease in the diffusion coefficient of the dissolution product of the zirconium oxide film. Dissolution of the anodic oxide film also was investigated as a function of the chain length of alcohols

  11. Zirconium intermetallics and hydrogen uptake during corrosion

    International Nuclear Information System (INIS)

    Cox, B.

    1987-04-01

    The routes by which hydrogen can enter zirconium alloys containing second phase particles during corrosion are discussed. Both direct diffusion through the bulk of the oxide film, and migration through second phase particles that intersect the surface are considered. An examination of results for hydrogen uptake by zirconium alloys during the early stages of oxidation, when the oxide film is still coherent, suggests that for Zr, Zr-1%Cu and Zr-1%Fe the hydrogen enters by diffusing through the bulk ZrO 2 film, whereas for the Zircaloys the primary migration route may be through the intermetallics. The steps in the latter process are discussed and the evidence available on the properties of the intermetallics collated. A comparison of these data with results for hydrogen uptake by two series of ternary alloys (Zr-1%Nb - 1%X, Zr-1%Cu - 1%X) suggests that high hydrogen uptakes often correlate with intermetallics with high hydrogen solubilities and vice versa. The properties of Zr(Fe/Cr) 2+x intermetallics are examined in an attempt to understand the behaviour of the Zircaloys, and it is concluded that present data establishing composition and unit cell dimensions for such intermetallic particles are not of sufficient accuracy to permit a correlation

  12. Thermal behaviour of nitrogen implanted into zirconium

    International Nuclear Information System (INIS)

    Miyagawa, S.; Ikeyama, M.; Saitoh, K.; Nakao, S.; Niwa, H.; Tanemura, S.; Miyagawa, Y.

    1994-01-01

    Zirconium films were implanted with 15 N ions of energy 50keV to a total fluence of 1x10 18 ionscm -2 in an attempt to study the formation process and thermal stability of ZrN layers produced by high fluence implantation of nitrogen. Subsequent to the implantation at room temperature, samples were annealed at temperatures of 300 C-900 C. The depth profiles of the implanted nitrogen were measured by nuclear reaction analysis using the 15 N(p,αγ) 12 C at E R =429keV, and the surfaces were examined by thin film X-ray diffraction (XRD) and scanning electron microscopy. There were many blisters 0.2-0.4μm in diameter on the surface of the as-implanted samples and double peaks were observed in the nitrogen depth profiles; they were in both sides of the mean projected range. It was found that most of the blisters became extinct after annealing above 400 C, and the XRD peak (111) intensity was increased with the increase in the annealing temperature. Moreover, 14 N and 15 N implantations were superimposed on Zr samples in order to study the atomic migration of nitrogen at each stage of high fluence implantation. It was found that the decrease in the peak at the deeper layers was related to blister extinction and nitrogen diffusion into underling zirconium which could be correlated with radiation damage induced by post-implanted ions. ((orig.))

  13. Recrystallization resistance in aluminum alloys containing zirconium

    International Nuclear Information System (INIS)

    Ranganathan, K.

    1991-01-01

    Zirconium forms a fine dispersion of the metastable β' (Al 3 Zr) phase that controls recrystallization by retarding the motion of high-angle boundaries. The primary material chosen for this research was aluminum alloy 7150 containing zinc, magnesium, and copper as the major solute elements and zirconium as the dispersoid-forming element. The size, distribution, and the volume fraction of β' was controlled by varying the alloy composition and preheat practices. Preheated ingots were subjected to a specific sequence of hot-rolling operations to evaluate the resistance to recrystallization of the different microstructures. Optical and transmission electron microscopy (TEM) techniques were used to investigate the influence of dispersoid morphology resulting from the thermal treatments and deformation processing on the recrystallization behavior of the alloy. Studies were conducted to determine the influence of the individual solute elements present in 7150 on the precipitation of β' and consequently on the recrystallization behavior of the material. These studies were done on compositional variants of commercial 7150

  14. Diffusion of insoluble carbon in zirconium oxides

    CERN Document Server

    Vykhodets, V B; Koester, U; Kondrat'ev, V V; Kesarev, A G; Hulsen, C; Kurennykh, T E

    2011-01-01

    The diffusion coefficient of insoluble carbon in zirconium oxides has been obtained for the temperature range of 900-1000A degrees C. There are no published data on the diffusion of insoluble impurities; these data are of current interest for the diffusion theory and nuclear technologies. Tracer atoms 13C have been introduced into oxides by means of ion implantation and the kinetics of their emission from the samples in the process of annealing in air has been analyzed. The measurements have been performed using the methods of nuclear microanalysis and X-ray photoelectron spectroscopy. The diffusion activation energy is 2.7 eV and the carbon diffusion coefficient is about six orders of magnitude smaller than that for oxygen self-diffusion in the same systems. This result indicates the strong anomaly of the diffusion properties of carbon in oxides. As a result, zirconium oxides cannot be used in some nuclear technologies, in particular, as a material of sources for accelerators of short-lived carbon isotopes.

  15. Modelling of zirconium alloys corrosion in LWRs

    International Nuclear Information System (INIS)

    Kritskij, V.G.; Berezina, I.G.; Kritskij, A.V.; Stjagkin, P.S.

    1999-01-01

    Chemical parameters, that exerted effect on Zr+1%Nb alloy corrosion and deserved consideration during reactor operation, were defined and a model was developed to describe the influence of physical and chemical parameters on zirconium alloys corrosion in nuclear power plants. The model is based on the correlation between the zirconium oxide solubility in high-temperature water under the influence of the chemical parameters and the measured values of fuel cladding corrosion under LWR conditions. The intensity of fuel cladding corrosion in the primary circuits depends on the coolant water quality, growth of iron oxide deposits and vaporization portion. Mathematically, the oxidation rate can be expressed as a sum of heat and radiation components. The temperature dependence on the oxidation rate can be described by the Arrenius equation. The radiation component of Zr uniform corrosion equation is a function of several factors such as neutron fluency, the temperature the metallurgical composition and et. We assume that the main factor is the changing of water chemistry and the H 2 O 2 concentration play the determinative role. Probably, the influence of H 2 O 2 is based on the formation of unstable compound ZrO 3 ·nH 2 O and Zr(OH) 4 with high solubility. The validity of the used formulae was confirmed by corrosion measurements on WWER and RBMK fuel cladding. The model can be applied for calculating the reliability of nuclear fuel operation. (author)

  16. Irradiation growth in zirconium alloys: a review

    International Nuclear Information System (INIS)

    Fidleris, V.

    1980-09-01

    The change in shape during irradiation without external stress, irradiation growth, was first discovered in uranium and later in graphite, zirconium and other core materials which exhibit anisotropic physical properties. The direction of maximum growth of metals invariably corresponds with the direction of minimum thermal expansion. In polycrystalline zirconium alloys growth is positive in the direction of maximum deformation during fabrication and in other directions it can be either positive or negative depending on the preferred orientation of grains (crystallographic texture). Growth increases gradually with temperature between 300 K and 620 K and rapidly with fluence up to about 1 x 10 25 n.m. -2 (Eμ1 MeV). At higher fluences the growth appears to saturate in annealed materials and reach a steady rate approximately proportional to dislocation density in cold-worked materials. Above 600 K both annealed and cold-worked materials have similar steady growth rates. Irradiation growth is caused by the segregation to different sinks of the vacancies and interstitials generated by irradiation, but the dominant types of sinks for each type of point defect and the mode of transport of the point defects to sinks cannot therefore be predicted theoretically. For the purpose of designing reactor core components empirical equations have been derived that can satisfactorily predict the steady state growth behaviour from texture and microstructure. (auth)

  17. Waterside corrosion of zirconium alloys in nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    Technically the study of corrosion of zirconium alloys in nuclear power reactors is a very active field and both experimental work and understanding of the mechanisms involved are going through rapid changes. As a result, the lifetime of any publication in this area is short. Because of this it has been decided to revise IAEA-TECDOC-684 - Corrosion of Zirconium Alloys in Nuclear Power Plants - published in 1993. This updated, revised and enlarged version includes major changes to incorporate some of the comments received about the first version. Since this review deals exclusively with the corrosion of zirconium and zirconium based alloys in water, and another separate publication is planned to deal with the fuel-side corrosion of zirconium based fuel cladding alloys, i.e. stress corrosion cracking, it was decided to change the original title to Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants. The rapid changes in the field have again necessitated a cut-off date for incorporating new data. This edition incorporates data up to the end of 1995; including results presented at the 11 International Symposium on Zirconium in the Nuclear Industry held in Garmisch-Partenkirchen, Germany, in September 1995. The revised format of the review now includes: Introductory chapters on basic zirconium metallurgy and oxidation theory; A revised chapter discussing the present extent of our knowledge of the corrosion mechanism based on laboratory experiments; a separate and revised chapter discussing hydrogen uptake; a completely reorganized chapter summarizing the phenomenological observations of zirconium alloy corrosion in reactors; a new chapter on modelling in-reactor corrosion; a revised chapter devoted exclusively to the manner in which irradiation might influence the corrosion process; finally, a summary of our present understanding of the corrosion mechanisms operating in reactor

  18. Preparation of epoxy/zirconia hybrid materials via in situ polymerization using zirconium alkoxide coordinated with acid anhydride

    International Nuclear Information System (INIS)

    Ochi, Mitsukazu; Nii, Daisuke; Harada, Miyuki

    2011-01-01

    Highlights: → Novel epoxy/zirconia hybrid materials were synthesized via in situ polymerization using zirconium alkoxide coordinated with acid anhydride. → The half-ester compound of acid anhydride desorbed from zirconium played as curing agent of epoxy resin. → The zirconia was uniformly dispersed in the epoxy matrix on the nanometer or sub-nanometer scale by synchronizing the epoxy curing and sol-gel reactions. → The refractive indices of the hybrid materials significantly improved with an increase in the zirconia content. - Abstract: Novel epoxy/zirconia hybrid materials were synthesized using a bisphenol A epoxy resin (diglycidyl ether of bisphenol A; DGEBA), zirconium(IV)-n-propoxide (ZTNP), and hexahydrophthalic anhydride (HHPA) via in situ polymerization. HHPA played two roles in this system: it acted as a modifier to control the hydrolysis and condensation reactions of zirconium alkoxide and also as a curing agent - the half-ester compound of HHPA desorbed from zirconium reacted with the epoxy resin to form the epoxy network. As a result, both the sol-gel reaction and epoxy curing occurred simultaneously in a homogeneous solution, and organic-inorganic hybrid materials were readily obtained. Further, the zirconia produced by the in situ polymerization was uniformly dispersed in the epoxy matrix on the nanometer or sub-nanometer scale; thus, hybrid materials that exhibited excellent optical transparency were obtained. Furthermore, the heat resistance of the hybrid materials could be improved by hybridization with zirconia. And, the refractive indices of the hybrid materials significantly improved with an increase in the zirconia content.

  19. Determination of impurities in zirconium by emission spectrograph method

    International Nuclear Information System (INIS)

    Simbolon, S.; Masduki, B.; Aryadi

    2000-01-01

    Analysis of B, Cd, Si and Cr elements in zirconium oxide was carried out. Zirconium oxide was made by precipitating zirconium solution with oxalic acid and calcination was at temperature 900 oC for four hours. Silver chloride compound as much as 10% was used as a distillation carrier and 7 step filtration was used to reduce the impurities element spectra having high density. It was found that B concentration is between 3.80 and 7.44 ppm, Cd less then 0.5 ppm, Si between 74.38-150.33 ppm and Cr between 19.90-45.76 ppm. (author)

  20. Research and development of zirconium industry in China

    International Nuclear Information System (INIS)

    Liu Jianzhang; Tian Zhenye

    2001-01-01

    The development of uranium material for nuclear power and silicon material for information industry represents two revolutionary changes in the material field in 20-th century. The development of these kinds of materials not only brings about great revolution of technology in the material field, but also promotes the great advancement of the world economy. Zirconium or its alloy, as one of the most important material in atomic age, just as the same as foreign countries has been developed under promotion of nuclear submarine project in China, and building of civil nuclear power reactor then has been laid a solid foundation for zirconium industry and provide a broad market for zirconium material

  1. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    Science.gov (United States)

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  2. Effects of different titanium zirconium implant surfaces on initial supragingival plaque formation.

    Science.gov (United States)

    John, Gordon; Becker, Jürgen; Schwarz, Frank

    2017-07-01

    The aim of the current study was the evaluation of biofilm development on different implant surfaces. Initial biofilm formation was investigated on five different implant surfaces, machined titanium (MTi), modified machined acid-etched titanium (modMATi), machined titanium zirconium (MTiZr), modified machined and acid-etched titanium zirconium (modMATiZr) and sandblasted large grid and acid-etched titanium zirconium surface (SLATiZr) for 24 and 48 h. Biocompatibility was tested after tooth brushing of the samples via cell viability testing with human gingival fibroblasts. After 24 h of biofilm collection, mean plaque surface was detected in the following descending order: After 24 h: MTiZr > MTi > SLATiZr > modMATiZr > modMATi. Both M surfaces showed significant higher biofilm formation than the other groups. After 48 h: MTiZr > MTi > SLATiZr > modMATiZr > modMATi. After tooth brushing: SLATiZr > modMATi > modMATiZr > MTi > MTiZr. All native samples depicted significant higher cell viability than their corresponding surfaces after biofilm removal procedure. The TiZr groups especially the modMATiZr group showed slower and less biofilm formation. In combination with the good biocompatibility, both modMA surfaces seem to be interesting candidates for surfaces in transgingival implant design. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  4. Study of the uranium-zirconium diffusion; Etude de la diffusion uranium-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y; Mairy, C; Bouchet, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The intermetallic diffusion of uranium fuel and zirconium used as cladding is studied. Intermetallic diffusion can occur during the cladding of uranium rods and uranium can penetrate the zirconium cladding. Different parameters are involved in this mechanism as structure and mechanical properties of the diffusion area as well as presence of impurities in the metal. The uses of different analysis techniques (micrography, Castaing electronic microprobe, microhardness and autoradiography) have permitted to determine with great accuracy the diffusion coefficient in gamma phase (body centered cubic system) and the results have given important information on the intermetallic diffusion mechanisms. The existence of the Kirkendall effect in the U-Zr diffusion is also an argument in favor of the generality of the diffusion mechanism by vacancies in body centered cubic system. (M.P.)

  5. Synthesis of zirconium guanidinate complexes and the formation of zirconium carbonitride via low pressure CVD

    NARCIS (Netherlands)

    Potts, S.E.; Carmalt, C.J.; Blackman, C.S.; Abou-Chabine, F.; Pugh, D.; Davies, H.O.

    2009-01-01

    Thin films of zirconium carbonitride have been deposited on glass at 600 °C from two novel guanidinate precursors: [ZrCp'{¿2-(iPrN)2CNMe2}2Cl] (1) and [ZrCp'2{¿2-(iPrN)2CNMe2}Cl] (2) (Cp' ) monomethylcyclopentadienyl). Both compounds 1 and 2 were structurally characterized by X-ray crystallography.

  6. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    Science.gov (United States)

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  7. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Nor Monica Ahmad

    2016-06-01

    Full Text Available A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB, polyethylene glycol (PEG, and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE. Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM, Electrochemical Impedance Spectroscopy (EIS, and Cyclic voltamogram (CV. The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  8. A computer model for hydride blister growth in zirconium alloys

    International Nuclear Information System (INIS)

    White, A.J.; Sawatzky, A.; Woo, C.H.

    1985-06-01

    The failure of a Zircaloy-2 pressure tube in the Pickering unit 2 reactor started at a series of zirconium hydride blisters on the outside of the pressure tube. These blisters resulted from the thermal diffusion of hydrogen to the cooler regions of the pressure tube. In this report the physics of thermal diffusion of hydrogen in zirconium is reviewed and a computer model for blister growth in two-dimensional Cartesian geometry is described. The model is used to show that the blister-growth rate in a two-phase zirconium/zirconium-hydride region does not depend on the initial hydrogen concentration nor on the hydrogen pick-up rate, and that for a fixed far-field temperature there is an optimum pressure-type/calandria-tube contact temperature for growing blisters. The model described here can also be used to study large-scale effects, such as hydrogen-depletion zones around hydride blisters

  9. Ductile zirconium powder by hydride-dehydride process

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, T S [BHABHA ATOMIC RESEARCH CENTRE, BOMBAY (INDIA); CHAUDHARY, S [NUCLEAR FUEL COMPLEX, HYDERABAD (INDIA)

    1976-09-01

    The preparation of ductile zirconium powder by the hydride-dehydride process has been described. In this process massive zirconium obtained from Kroll reduction of ZrCl/sub 4/ is first rendered brittle by hydrogenation and the hydride crushed and ground in a ball mill to the required particle size. Hydrogen is then hot vacuum extracted to yield the metal powder. The process has been successfully employed for the production of zirconium powders with low oxygen content and having hardness values in the range of 115-130 BHN, starting from a zirconium sponge of 100-120 BHN hardness. Influence of surface characteristics of the starting metal on its hydriding behaviour has been studied and the optimum hydriding-dehydriding conditions established.

  10. Investigation on the corrosion resistance of zirconium in nitric acid

    International Nuclear Information System (INIS)

    Fauvet, P.; Mur, P.

    1990-01-01

    Zirconium in nitric solutions exhibits an excellent corrosion resistance in the passive state, and a mediocre corrosion resistance in the unpassive state with risk of stress corrosion cracking. Results of the influence of some parameters (medium, potential, temperature, stress, friction, metallurgical structure and surface state) on zirconium passivation are presented. Zirconium remains passive in a large range of HNO 3 concentration (at least up to 14.4N), in the presence of oxidizing ions (Cr 4 , Ce 4 ), in a spent fuel dissolution solution. Zirconium is depassived by friction at high speed and pressure, by platinum coupling in boiling 14.4N HNO 3 with or without stress, or by imposed deformation speed under high potential. (A.B.)

  11. Spectrophotometric titration of sulfates in the presence of zirconium

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.; Kotova, S.S.; Molokanova, L.G.; Chekmarev, A.M.; Yagodin, G.A.

    1978-01-01

    The procedure has been proposed for express determination of sulphate ions in the presence of zirconium by spectrophotometric titration with the use of barium chloride and nitrochromazo as an indicator. The procedure is based on bonding zirconium into a more stable complex with EDTA (ethylenediaminotetraacetic acid). The presence of excess of EDTA and zirconium (4) complexonate in the solution being titrated does not affect the titration curve shape and the character of break on the curve in the equivalence point. A complete demasking of SO 4 2- is observed in the case of 1O-fold excess of EDTA with respect to zirconium (4). Statistic evaluation of the method has shown that the results of titration can be distorted by chance errors only

  12. Development of zirconium hydride highly effective moderator materials

    International Nuclear Information System (INIS)

    Yin Changgeng

    2005-10-01

    The zirconium hydride with highly content of hydrogen and low density is new efficient moderator material for space nuclear power reactor. Russia has researched it to use as new highly moderator and radiation protection materials. Japanese has located it between the top of pressure vessel and the main protection as a shelter, the work temperature is rach to 220 degree C. The zirconium hydride moderator blocks are main parts of space nuclear power reactor. Development of zirconium hydride moderator materials have strength research and apply value. Nuclear Power Research and Design Instituteoh China (NPIC) has sep up the hydrogenation device and inspect systems, and accumurate a large of experience about zirconium hydride, also set up a strict system of QA and QC. (authors)

  13. Investigation of colourless complexes of thorium, hafnium and zirconium

    International Nuclear Information System (INIS)

    Kiciak, S.; Stefanowicz, T.; Gontarz, H.; Swit, Z.

    1980-01-01

    The investigations conducted in the Institute of General Chemistry of Poznan Technical University in partial cooperation with Kharkhof Technical University related with thorium, hafnium and zirconium complexes are reviewed. (author)

  14. Zirconium analysis. Impurities determination by spark mass specrometry

    International Nuclear Information System (INIS)

    Anon.

    Determination of impurities in zirconium, suitable for atomic content greater than 10 -8 but particularly adapted for low contents. The method is quantitative only if a reference sample is available (metallic impurities) [fr

  15. Radiation stability of proton irradiated zirconium carbide

    International Nuclear Information System (INIS)

    Yang, Yong; Dickerson, Clayton A.; Allen, Todd R.

    2009-01-01

    The use of zirconium carbide (ZrC) is being considered for the deep burn (DB)-TRISO fuel as a replacement for the silicon carbide coating. The radiation stability of ZrC was studied using 2.6 MeV protons, across the irradiation temperature range from 600 to 900degC and to doses up to 1.75 dpa. The microstructural characterization shows that the irradiated microstructure is comprised of a high density of nanometer-sized dislocation loops, while no irradiation induced amorphization or voids are observed. The lattice expansion induced by point defects is found to increase as the dose increases for the samples irradiated at 600 and 800degC, while for the 900degC irradiation, a slight lattice contraction is observed. The radiation hardening is also quantified using a micro indentation technique for the temperature and doses studies. (author)

  16. In situ hydrogen loading on zirconium powder

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitiyili, Tuerdi, E-mail: tuerdi.maimaitiyili@mah.se; Blomqvist, Jakob [Malmö University, Östra Varvsgatan 11 A, Malmö, Skane 20506 (Sweden); Steuwer, Axel [Lund University, Ole Römers väg, Lund, Skane 22100 (Sweden); Nelson Mandela Metropolitan University, Gardham Avenue, Port Elizabeth 6031 (South Africa); Bjerkén, Christina [Malmö University, Östra Varvsgatan 11 A, Malmö, Skane 20506 (Sweden); Zanellato, Olivier [Ensam - Cnam - CNRS, 151 Boulevard de l’Hôpital, Paris 75013 (France); Blackmur, Matthew S. [Materials Performance Centre, School of Materials, The University of Manchester, Manchester M1 7HS (United Kingdom); Andrieux, Jérôme [European Synchrotron Radiation Facility, 6 rue J Horowitz, Grenoble 38043 (France); Université de Lyon, 43 Bd du 11 novembre 1918, Lyon 69100 (France); Ribeiro, Fabienne [Institut de Radioprotection et Sûreté Nucléaire, IRSN, BP 3, 13115 Saint-Paul Lez Durance (France)

    2015-06-26

    Commercial-grade Zr powder loaded with hydrogen in situ and phase transformations between various Zr and ZrH{sub x} phases have been monitored in real time. For the first time, various hydride phases in a zirconium–hydrogen system have been prepared in a high-energy synchrotron X-ray radiation beamline and their transformation behaviour has been studied in situ. First, the formation and dissolution of hydrides in commercially pure zirconium powder were monitored in real time during hydrogenation and dehydrogenation, then whole pattern crystal structure analysis such as Rietveld and Pawley refinements were performed. All commonly reported low-pressure phases presented in the Zr–H phase diagram are obtained from a single experimental arrangement.

  17. Solute redistribution studies in oxidised zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khera, S K; Kale, G B; Gadiyar, H S [Bhabha Atomic Research Centre, Bombay (India). Metallurgy Div.

    1977-01-01

    Electron microprobe studies on solute distribution in oxide layers and in the regions near oxide metal interface have been carried out in the case of zircaloy-2 and zirconium binary alloys containing niobium, tin, iron, copper, chromium and nickel and oxidised in steam at 550 deg C. In the case of alloys having higher oxidation rates, the oxide of solute element was found to dissolve in ZrO/sub 2/ without any composition variation. However, for solute addition with limited solubility like Cr, Cu and Fe, solute enrichment at metal/oxide interface and depletion of the same matrix has been observed. The intensity profiles for nickel distribution were also found to be identical to Fe or Cr distribution. The mode of solute distribution has been discussed in relation to oxidation behaviour of these alloys.

  18. Irradiation effects in hydrated zirconium molybdate

    Energy Technology Data Exchange (ETDEWEB)

    Fourdrin, C., E-mail: chloe.fourdrin@polytechnique.edu [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91 191 Gif-sur-Yvette (France); CEA Saclay, DSM/IRAMIS/SIS2M-UMR 3299/Lrad, 91 191 Gif-sur-Yvette (France); Esnouf, S. [CEA Saclay, DSM/IRAMIS/SIS2M-UMR 3299/Lrad, 91 191 Gif-sur-Yvette (France); Dauvois, V. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91 191 Gif-sur-Yvette (France); Renault, J.-P. [CEA Saclay, DSM/IRAMIS/SIS2M-UMR 3299/Lrad, 91 191 Gif-sur-Yvette (France); Venault, L. [CEN Valrho, DEN/DRCP/SCPS/LC2A, 30 207 Bagnols-sur-Ceze (France); Tabarant, M. [CEA Saclay, DEN/DANS/DPC/LRSI, 91 191 Gif-sur-Yvette (France); Durand, D. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91 191 Gif-sur-Yvette (France); Cheniere, A. [CEA Saclay, DEN/DANS/DPC/LRSI, 91 191 Gif-sur-Yvette (France); Lamouroux-Lucas, C. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91 191 Gif-sur-Yvette (France); Cochin, F. [AREVA NC Tour, AREVA, 92 084 Paris La Defense cedex (France)

    2012-07-15

    Hydrated zirconium molybdate is a precipitate formed during the process of spent nuclear fuel dissolution. In order to study the radiation stability of this material, we performed gamma and electron irradiation in a dose range of 10-100 kGy. XRD patterns showed that the crystalline structure is not affected by irradiation. However, the yellow original sample exhibits a blue-grey color after exposure. The resulting samples were analyzed by means of EPR and diffuse reflectance spectroscopy. Two sites for trapped electrons were evidenced leading to a d{sup 1} configuration responsible for the observed coloration. Moreover, a third defect corresponding to a hole trapped on oxygen was observed after electron irradiation at low temperature.

  19. Progress in zirconium resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Page, R.H.; Dropinski, S.C.; Worden, E.F.; Stockdale, J.A.D.

    1993-01-01

    The authors have examined the stepwise-resonant three-photon-ionization spectrum of neutral zirconium atoms using three separately-tunable pulsed visible dye lasers. The ground-level (first-step) transitions were chosen on the basis of demonstrated 91 Zr selectivity. Lifetimes of even-parity levels around 36,000 cm -1 , measured with the delayed-photoionization technique, range from 10 to 100 nsec. Direct ionization cross sections appear to be less than 10 -17 cm 2 ; newly-detected autoionizing levels give peak ionization cross sections (inferred from saturation fluences) up to 10 -15 cm 2 . Portions of Rydberg series converging to the 315 and 763 cm -1 levels of Zr + were identified. Clumps of autoionizing levels are thought to be due to Rydberg-valence mixing

  20. In situ hydrogen loading on zirconium powder

    International Nuclear Information System (INIS)

    Maimaitiyili, Tuerdi; Blomqvist, Jakob; Steuwer, Axel; Bjerkén, Christina; Zanellato, Olivier; Blackmur, Matthew S.; Andrieux, Jérôme; Ribeiro, Fabienne

    2015-01-01

    Commercial-grade Zr powder loaded with hydrogen in situ and phase transformations between various Zr and ZrH x phases have been monitored in real time. For the first time, various hydride phases in a zirconium–hydrogen system have been prepared in a high-energy synchrotron X-ray radiation beamline and their transformation behaviour has been studied in situ. First, the formation and dissolution of hydrides in commercially pure zirconium powder were monitored in real time during hydrogenation and dehydrogenation, then whole pattern crystal structure analysis such as Rietveld and Pawley refinements were performed. All commonly reported low-pressure phases presented in the Zr–H phase diagram are obtained from a single experimental arrangement

  1. Fluorimetric determination of uranium in zirconium and zircaloy alloys

    International Nuclear Information System (INIS)

    Acosta L, E.

    1991-05-01

    The objective of this procedure is to determine microquantities of uranium in zirconium and zircaloy alloys. The report also covers the determination of uranium in zirconium alloys and zircaloy in the range from 0.25 to 20 ppm on 1 g of base sample of radioactive material. These limit its can be variable if the size of the used aliquot one is changed for the final determination of uranium. (Author)

  2. Arc melting in inert gas atmosphere of zirconium sponge

    International Nuclear Information System (INIS)

    Julio Junior, O.; Andrade, A.H.P. de

    1991-01-01

    The obtainment of metallic zirconium in laboratory scale with commercial and nuclear quality is the objective of the Metallurgy Department of IEN/CNEN - Brazil, so a melting procedure of zirconium sponge in laboratory scale using an arc furnace in inert atmosphere is developed. The effects of atmosphere operation, and the use of gas absorber and the sponge characteristics over the quality of button in as-cast reporting with hardness measures are described. (C.G.C.)

  3. Preparation of high-purity zirconium dioxide from baddeleyite

    International Nuclear Information System (INIS)

    Voskobojnikov, N.B.; Skiba, G.S.

    1996-01-01

    Interaction of baddeleyite concentrate with calcium oxide and calcium chloride in the process of caking is studied. The influence of grain size on calcium zirconate formation is tested. Conditions for cake leaching by hydrochloric acid and zirconium(4) oxychloride purification from calcium and silicon compounds by recrystallization are reported. Zirconium dioxide corresponding to specifications (6-2 special purity) is obtained with a high (more than 90%) chemical yield. 9 refs., 1 tab

  4. Modelling of Zirconium and Hafnium separation using continuous annular chromatography

    International Nuclear Information System (INIS)

    Moch-Setyadji; Endang Susiantini

    2014-01-01

    Nuclear degrees of zirconium in the form of a metal alloy is the main material for fuel cladding of NPP. Zirconium is also used as sheathing UO 2 kernel in the form of ZrC as a substitute of SiC in the fuel elements of High Temperature Reactor (HTR). Difficulty separating hafnium from zirconium because it has a lot of similarities in the chemical properties of Zr and Hf. Annular chromatography is a device that can be used for separating of zirconium and hafnium to obtain zirconium nuclear grade. Therefore, it is necessary to construct the mathematical modelling that can describe the separation of zirconium and hafnium in the annular chromatography containing anion resin dowex-1X8. The aim of research is to perform separation simulation by using the equilibrium model and mass transfer coefficient resulted from research. Zr and Hf feed used in this research were 26 and 1 g/l, respectively. Height of resin (L), angular velocity (ω) and the superficial flow rate (uz) was varied to determine the effect of each parameter on the separation of Zr and Hf. By using Kd and Dv values resulted previous research. Simulation results showed that zirconium and hafnium can be separated using a continuous annular chromatography with high resin (long bed) 50 cm, superficial flow rate of 0.001 cm/s, the rotation speed of 0.006 rad/min and 20 cm diameter annular. In these conditions the results obtained zirconium concentration of 10,303.226 g/m 3 and hafnium concentration of 12.324 g/m 3 (ppm). (author)

  5. Identification and characterization of a new Zirconium hydride

    International Nuclear Information System (INIS)

    Zhao, Z.

    2007-01-01

    In order to control the integrity of the fuel clad, alloy of zirconium, it is necessary to predict the behavior of zirconium hydrides in the environment (temperature, stress...), at a microscopic scale. A characterization study by TEM of hydrides has been realized. It shows little hydrides about 500 nm, in hydride Zircaloy 4. Then a more detailed study identified a new hydride phase presented in this paper. (A.L.B.)

  6. Zircon Carburation Studies as Intermediate Stage in the Zirconium Fabrication

    International Nuclear Information System (INIS)

    Almagro Huertas, V.; Saenz de Tejada Gonzalez, L.; Lopez Rodriguez, M.

    1963-01-01

    Zirconium carbide and carbonitride mixtures were obtained by Kroll's method.Reaction products have been identified by micrography and X-ray diffraction analysis. The optimum graphite content in the initial charge for the carburation reaction has been studied. zirconium, silicon and carbon content in the final product has been controlled as a function of current in the furnace and reaction time.Further chlorination of the final product was performed successfully. (Author) 16 refs

  7. Synthesis of zirconium by zirconium tetrachloride reduction by magnesio-thermia. Experimental study and modelling; Elaboration de zirconium par reduction de tetrachlorure de zirconium par magnesothermie. Etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Basin, N

    2001-01-01

    This work deals with the synthesis of zirconium. The ore is carbo-chlorinated to obtain the tetrachloride which is then purified by selective condensation and extractive distillation. Zirconium tetrachloride is then reduced by magnesium and the pseudo-alloy is obtained according to the global following reaction (Kroll process): ZrCl{sub 4} + 2 Mg = 2 MgCl{sub 2}. By thermodynamics, it has been shown that the volatilization of magnesium chloride and the formation of zirconium sub-chlorides are minimized when the combined effects of temperature and of dilution with argon are limited. With these conditions, the products, essentially zirconium and magnesium chloride, are obtained in equivalence ratio in the magnesio-thermia reaction. The global kinetics of the reduction process has been studied by a thermal gravimetric method. A thermo-balance device has been developed specially for this kinetics study. It runs under a controlled atmosphere and is coupled to a vapor tetrachloride feed unit. The transformation is modelled supposing that the zirconium and magnesium chloride formation result: 1)of the evaporation of magnesium from its liquid phase 2)of the transfer of magnesium and zirconium tetrachloride vapors towards the front of the reaction located in the gaseous phase 3)of the chemical reaction. In the studied conditions, the diffusion is supposed to be the limiting process. The influence of the following parameters: geometry of the reactive zone, temperature, scanning rate of the argon-zirconium tetrachloride mixture, composition of the argon-zirconium tetrachloride mixture has been experimentally studied and confronted with success to the model. (O.M.)

  8. Dielectric properties of zirconium dioxide-based ceramics

    International Nuclear Information System (INIS)

    Vladimirova, O.S.; Gruzdev, A.I.; Koposova, Z.L.; Lyutsareva, L.A.

    1985-01-01

    This paper studies the dielectric properties of materials based on stabilized zirconium dioxide with Co 3 O 4 additions possessing a high temperature-coefficient of resistance. These materials are promising for manufacturing resistance temperature gages that work under an oxidizing atmosphere at 370-1270 degrees K. The obtained results indicate the possibility of developing temperature gases possessing highsensitivity from stabilized zirconium dioxide with Co 3 O 4 additions

  9. Zirconium molybdate hydrate precipitates in spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Magnaldo, A.; Noire, M.H.; Esbelin, E.; Dancausse, J.P.; Picart, S.

    2004-01-01

    This paper presents through 2 posters a general overview studies realised by CEA teams on deposits observed in the La Hague plant dissolution facilities. Their main constituents are metallic debris bound together with zirconium molybdate hydrate. A comprehensive study of zirconium molybdate hydrate formation included nucleation and growth kinetics was developed. Fouling mechanisms were consequently explained as influenced by the operation conditions. Pu insertion was also overviewed. Its behaviour is important when curative and preventive chemical treatments are considered. (authors)

  10. Alkylation of isobutane by butenes on zirconium sulfate catalysts

    International Nuclear Information System (INIS)

    Lavrenov, A.V.; Perelevskij, E.V.; Finevich, V.P.; Zajkovskij, V.I.; Paukshtis, E.A.; Duplyakiv, V.K.; Bal'zhinimaev, B.S.

    2003-01-01

    Preparation of applied zirconium sulfate catalysts obtained by the method of impregnation is investigated. Results of comparative study of structural, acid-base and catalytic properties of sulfated zirconium dioxide applied on silica gel and aluminium oxide are represented. Intervals of values of synthesis basic parameters and characteristics of catalysts properties providing achievement of high activity and selectivity in isobutane alkylation by butenes in liquid phase are determined [ru

  11. An evaluated neutronic data file for elemental zirconium

    International Nuclear Information System (INIS)

    Smith, A.B.; Chiba, S.

    1994-09-01

    A comprehensive evaluated neutronic data file for elemental zirconium is derived and presented in the ENDF/B-VI formats. The derivation is based upon measured microscopic nuclear data, augmented by model calculations as necessary. The primary objective is a quality contemporary file suitable for fission-reactor development extending from conventional thermal to fast and innovative systems. This new file is a significant improvement over previously available evaluated zirconium files, in part, as a consequence of extensive new experimental measurements reported elsewhere

  12. Quercetin as colorimetric reagent for determination of zirconium

    Science.gov (United States)

    Grimaldi, F.S.; White, C.E.

    1953-01-01

    Methods described in the literature for the determination of zirconium are generally designed for relatively large amounts of this element. A good procedure using colorimetric reagent for the determination of trace amounts is desirable. Quercetin has been found to yield a sensitive color reaction with zirconium suitable for the determination of from 0.1 to 50?? of zirconium dioxide. The procedure developed involves the separation of zirconium from interfering elements by precipitation with p-dimethylaminoazophenylarsonic acid prior to its estimation with quercetin. The quercetin reaction is carried out in 0.5N hydrochloric acid solution. Under the operating conditions it is indicated that quercetin forms a 2 to 1 complex with zirconium; however, a 2 to 1 and a 1 to 1 complex can coexist under special conditions. Approximate values for the equilibrium constants of the complexes are K1 = 0.33 ?? 10-5 and K2 = 1.3 ?? 10-9. Seven Bureau of Standards samples of glass sands and refractories were analyzed with excellent results. The method described should find considerable application in the analysis of minerals and other materials for macro as well as micro amounts of zirconium.

  13. Low cycle fatigue behaviour of zirconium alloys at 3000C

    International Nuclear Information System (INIS)

    Hosbons, R.R.

    1975-01-01

    The low cycle fatigue lives of two zirconium alloys, zirconium-2.5 wt% niobium and zirconium-1.1 wt% chronium-0.1 wt% iron, have been determined at 300 0 C. Both annealed material and cold-worked and stress-relieved material have similar fatigue lives to annealed Zircaloy-2 but β-quenched zirconium-niobium and zirconium-chromium-iron have lower fatigue lives than annealed Zircaloy-2. An atmosphere containing a concentration of iodine lower than that required for stress corrosion cracking still significantly lowers the fatigue life. A mathematical relationship between fatigue life and short-term tensile properties was used to estimate the fatigue life of zirconium alloy fuel sheaths and it was estimated that for a strain cycle of 0.1 per cent a cyclic frequency exceeding 0.116 Hz (10 000 cycles/day) would be required to cause fatigue failure of the sheath before its design life is realized. (author)

  14. Low cycle fatigue behaviour of zirconium alloys at 3000C

    International Nuclear Information System (INIS)

    Hosbons, R.R.

    1975-01-01

    The low cycle fatigue lives of two zirconium alloys, zirconium--2.5 wt percent niobium and zirconium--1.1 wt percent chromium--0.1 wt percent iron, have been determined at 300 0 C. Both annealed material and cold-worked and stress-relieved material have similar fatigue lives to annealed Zircaloy-2 but β-quenched zirconium--niobium and zirconium--chromium--iron have lower fatigue lives than annealed Zircaloy-2. An atmosphere containing a concentration of iodine lower than that required for stress corrosion cracking still significantly lowers the fatigue life. A mathematical relationship between fatigue life and short-term tensile properties was used to estimate the fatigue life of zirconium alloy fuel sheaths and it was estimated that for a strain cycle of 0.1 percent a cyclic frequency exceeding 0.116 Hz (10,000 cycles/ day) would be required to cause fatigue failure of the sheath before its design life is realized

  15. Hot zirconium cathode sputtered layers for useful surface modification

    International Nuclear Information System (INIS)

    Duckworth, R.G.

    1986-01-01

    It has been found that multilayer zirconium based sputtered coatings can greatly improve the wear properties of a wide variety of mechanical components, machine tools, and metal surfaces. Although a hot (approximately 1000 0 C) cathode is employed, temperature sensitive components can be beneficially treated, and for precision parts a total coating thickness of only 0.5μm is often perfectly effective. Even at the highest coating rates substrate temperatures are below 300 0 C. For the corrosion protection of less well finished surfaces thicker layers are usually required and it is important that relatively stress free layers are produced. The authors employed a variety of tailored zirconium/zirconium nitride/zirconium oxide mixed layers to solve a number of tribological problems for some 5 or 6 years. However, it is only recently that they designed, built, and commissioned rapid cycle, multiple cathode, load-lock plant for economic production of such coatings. This paper provides an introduction to this method of depositing pure zirconium and pure synthetic zirconium nitride films

  16. Tests for depositing thin films of metallic zirconium; Essais de depot de zirconium metallique en couches minces

    Energy Technology Data Exchange (ETDEWEB)

    Bentolila, J.; Pattoret, A.; Platzer, R.

    1957-01-15

    The authors report a study which aimed at obtaining a thin, adhesive and non porous coating of metallic zirconium on a uranium substrate by means of chemical process. The main required condition was not to go beyond the uranium phase change temperature (650 C). Two kinds of tests have been performed: on the one hand, tests of reduction of zirconium tetrachloride in non aqueous solvent medium, and on the other hand, tests of vacuum decomposition of zirconium hydride. As far as the first tests are concerned, the authors studied organic solvent media (reduction by aluminium and lithium hydride, action of organic-magnesium compounds), and liquid ammoniac. For the second test type, they describe the apparatus, the preparation of the zirconium hydride, preparation of the substrate surfaces, coating preparation, and decomposition process. Results are discussed in terms of temperature, of presence of copper powder in the coating, of early surface hydriding of uranium, surface polishing.

  17. Regularities of the chlorination process of phosphates and tungstates of some actinide and fission elements in chloride melts

    International Nuclear Information System (INIS)

    Kryukova, A.I.; Chernikov, A.A.; Skiba, O.V.; Kazantsev, G.N.

    1988-01-01

    Results of kinetic studies of chlorination process of crystal phosphates and tungstates of uranium, cerium, zirconium, plutonium by vapours of carbon tetrachloride in the melts of alkali element chlorides at of 973-1073 K have been analyzed. Mathematical models for the process description are suggested. Analysis of adequate models of regression type permitted to solve the problem of statistical evaluation of affecting factors and to predict within factor space studied the conditions for the optimal process course

  18. Phosphate Remediation and Recovery using Iron Oxide-based Adsorbents

    Science.gov (United States)

    E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese and nanoparticles. Characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-...

  19. Understanding the Irradiation Behavior of Zirconium Carbide

    International Nuclear Information System (INIS)

    Motta, Arthur; Sridharan, Kumar; Morgan, Dane; Szlufarska, Izabela

    2013-01-01

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450ee)C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800ee)C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  20. Fabrication and properties of polyimide composites filled with zirconium tungsten phosphate of negative thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Shi, XinWei, E-mail: Shixw@zzu.edu.cn [School of Physical Science & Engineering, Zhengzhou University, 100th Science Road, Zhengzhou 450001 (China); Lian, Hong; Yan, XiaoSheng; Qi, Ruiqiong; Yao, Ning [School of Physical Science & Engineering, Zhengzhou University, 100th Science Road, Zhengzhou 450001 (China); Li, Tao [Department of Technology & Physics, Zhengzhou University of Lightindustry, 5th Dongfeng Road, Zhengzhou 450002 (China)

    2016-08-15

    Negative thermal expansion Zr{sub 2}WP{sub 2}O{sub 12} (ZWP) powder prepared by hydrothermal method was used as fillers to tailor the thermal expansion coefficient (TEC) of the polyimide (PI)-based composites. A series of PI-based composites containing different loading (0–40 wt% or 0–19.6 vol%) of ZWP powder were fabricated by the in-situ polymerization technique. Their structures and properties were characterized by Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Impedance meter, Thermal mechanical analysis (TMA) and Thermogravimetric analysis (TGA). The additions of ZWP steadily reduced the TEC of the PI matrix at all loadings studied. A 40 wt% (19.6 vol%) ZWP loading gives a 32.5% (about 15 × 10{sup −6}/K) reduction of TEC. The thermal stability of the ZWP/PI composites can be enhanced with the increment of ZWP powder. The independence of the dielectric constant on frequency is improved by introduction of ZWP particles to PIs. The dielectric loss displays good stability, which indicates that the ZWP/PI composites show potential applications in microelectronic and aerospace industries. - Graphical abstract: With increasing of ZWP in the composites, the CTEs of the ZWP/PI were reduced. A 40 wt% (19.6 vol%) ZWP loading gives a 32.5% (about 15 × 10{sup −6}/K) reduction of CTE of the composite. - Highlights: • Zr{sub 2}P{sub 2}WO{sub 12} was firstly used as filler to tune the TEC of polyimides. • The TECs of polyimides were reduced by introduction of Zr{sub 2}P{sub 2}WO{sub 12} powders. • Polyimides with reduced TECs have favorable thermal and dielectric properties.

  1. Effect of temperature on the mechanisms of interaction between uranyl ion and zirconium oxo-phosphate

    International Nuclear Information System (INIS)

    Almazan Torres, Maria Guadalupe

    2007-01-01

    Uranium sorption onto Zr 2 O(PO 4 ) 2 has been studied between 298 K and 363 K, in 0.1 M NaClO 4 medium. Potentiometric titrations were realized to determine temperature dependency of the acid-base properties (pH pcn , acidity constants). Classical batch experiments were performed at different temperatures. The sorption experiments revealed that the uranium sorption onto Zr 2 O(PO 4 ) 2 is favoured with the temperature. Structural characterization of the surface complexes was performed by both Time-Resolved Laser-Induced Fluorescence (TRLIF) and EXAFS spectroscopy. The TRLIF measurements vs. temperature revealed two uranyl surface complexes. No influence of the temperature onto the nature surface complex was observed. The EXAFS analysis showed a splitting of the equatorial oxygen atoms in two shells, corresponding to uranyl bidentate, inner-sphere complexes. The obtained structural uranyl surface complex information was used to simulate (using a constant capacitance model) the sorption edges. The proposed complexes equilibrium model consists of the following surface complexes: (≡ZrOH) 2 UO 2 2+ and (≡PO) 2 UO 2 . Besides the stability constants for the surface complexes, the thermodynamic parameters ΔH 0 and ΔS 0 were determined using the van't Hoff equation. The enthalpy values associated to the U(VI) retention onto Zr 2 O(PO 4 ) 2 , determined by the temperature dependence of the stability constants, testify that the formation of the complex (≡PO) 2 UO 2 (55 kJ/mol) is endothermic, while no influence of the temperature was observed for the formation of the complex (≡ZrOH) 2 UO 2 2+ . The adsorption reaction of the last complex is then driven by entropy. In addition, calorimetric measurements of uranium sorption onto Zr 2 O(PO 4 ) 2 were carried out to directly quantify the enthalpy associated to the retention processes. (author)

  2. Preparation by ion exchange and structural simulation of a new hydrogen phosphate of sodium zirconium

    International Nuclear Information System (INIS)

    Contreras R, A.; Fernandez V, S. M.; Ordonez R, E.; Perez A, M.

    2008-01-01

    It is described the method of synthesis of the τ-Zr P and the obtaining of its sodium form by ion exchange, the simulation of crystalline model and their patterns of X-ray diffraction and comparison of these with other compounds reported in the literature. (Author)

  3. Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization

    Science.gov (United States)

    Pet'kov, Vladimir; Asabina, Elena; Loshkarev, Vladimir; Sukhanov, Maksim

    2016-04-01

    We have summarized our data and literature ones on the thermophysical properties and hydrolytic stability of Sr0.5Zr2(PO4)3 compound as a host NaZr2(PO4)3-type (NZP) structure for immobilization of 90Sr-containing radioactive waste. Absence of any polymorphic transformations on the temperature dependence of its heat capacity between 7 and 665 K is caused by the stability of crystalline Sr0.5Zr2(PO4)3. Calculated values of thermal conductivity coefficients at zero porosity in the range 298-673 K were 1.86-2.40 W·m-1 K-1. The compound may be classified as low thermal expanding material due to its average linear thermal expansion coefficient. Study of the hydrolytic stability in acid and alkaline media has shown that the relative mass fraction of Sr2+ ions, released into aggressive leaching media, didn't exceed 1% of the mass of sample. Soxhlet leaching studies have shown substantial resistance towards the release of Sr2+ ions into distilled water. Feeble sinterability constrains practical applications of NZP substances, that is why known in literature methods of Sr0.5Zr2(PO4)3 dense ceramics obtaining have been reviewed.

  4. Sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides

    Directory of Open Access Journals (Sweden)

    R.V. Smotraiev

    2016-05-01

    Full Text Available The actual problem of water supply in the world and in Ukraine, in particular, is a high level of pollution in water resources and an insufficient level of drinking water purification. With industrial wastewater, a significant amount of pollutants falls into water bodies, including suspended particles, sulfates, iron compounds, heavy metals, etc. Aim: The aim of this work is to determine the impact of aluminum and manganese ions additives on surface and sorption properties of zirconium oxyhydroxide based sorbents during their production process. Materials and Methods: The sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were prepared by sol-gel method during the hydrolysis of metal chlorides (zirconium oxychloride ZrOCl2, aluminum chloride AlCl3 and manganese chloride MnCl2 with carbamide. Results: The surface and sorption properties of sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were investigated. X-ray amorphous structure and evolved hydroxyl-hydrate cover mainly characterize the obtained xerogels. The composite sorbents based on xerogels of zirconium oxyhydroxide doped with aluminum oxyhydroxide (aS = 537 m2/g and manganese oxyhydroxide (aS = 356 m2/g have more developed specific surface area than single-component xerogels of zirconium oxyhydroxide (aS = 236 m2/g and aluminum oxyhydroxide (aS = 327 m2/g. The sorbent based on the xerogel of zirconium and manganese oxyhydroxides have the maximum SO42--ions sorption capacity. It absorbs 1.5 times more SO42–-ions than the industrial anion exchanger AN-221. The sorbents based on xerogels of zirconium oxyhydroxide has the sorption capacity of Fe3+-ions that is 1.5…2 times greater than the capacity of the industrial cation exchanger KU-2-8. The Na+-ions absorption capacity is 1.47…1.56 mmol/g for each sorbent. Conclusions: Based on these data it can be concluded that the proposed method is effective for sorbents production based on

  5. Irradiation creep in zirconium single crystals

    International Nuclear Information System (INIS)

    MacEwen, S.R.; Fidleris, V.

    1976-07-01

    Two identical single crystals of crystal bar zirconium have been creep tested in reactor. Both specimens were preirradiated at low stress to a dose of about 4 x 10 23 n/m 2 (E > 1 MeV), and were then loaded to 25 MPa. The first specimen was loaded with reactor at full power, the second during a shutdown. The loading strain for both crystals was more than an order of magnitude smaller than that observed when an identical unirradiated crystal was loaded to the same stress. Both crystals exhibited periods of primary creep, after which their creep rates reached nearly constant values when the reactor was at power. During shutdowns the creep rates decreased rapidly with time. Electron microscopy revealed that the irradiation damage consisted of prismatic dislocation loops, approximately 13.5 nm in diameter. Cleared channels, identified as lying on (1010) planes, were also observed. The results are discussed in terms of the current theories for flux enhanced creep in the light of the microstructures observed. (author)

  6. Zirconium ignition in exposed fuel channel

    Energy Technology Data Exchange (ETDEWEB)

    Elias, E., E-mail: merezra@technion.ac.il; Hasan, D.; Nekhamkin, Y.

    2015-05-15

    Highlights: • We demonstrate the idea of runaway zirconium–steam reactions in severe accidents in today's LWRs. • We predict the thermal-hydraulics conditions relevant to cladding oxidation in an exposed fuel channel of a partially uncovered core. • The Semenov theory of metal combustion is extended to define a criterion for runaway oxidation reaction in fuel cladding. - Abstract: A theoretical model based on simultaneous solution of the heat and mass transfer equations is developed for predicting the rate of thermo-chemical reaction between zirconium cladding and a hot steam environment. Ignition conditions relevant to cladding oxidation in an exposed fuel channel of a partially uncovered core are predicted based on the theory of metal combustion. A range of decay power, convective heat transfer coefficients, and initial temperatures leading to uncontrolled runaway cladding oxidation is identified. The model could be readily integrated as part of a fuel channel analysis code for predicting possible outcomes of different accident mitigation procedures in light water nuclear reactors under LOCA conditions.

  7. High-intensity low energy titanium ion implantation into zirconium alloy

    Science.gov (United States)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  8. Methods for determination of zirconium in titanium alloys

    International Nuclear Information System (INIS)

    1985-01-01

    Two methods for determining zirconium content in titanium alloys are specified in this standard. One is the ion-exchange/mandelic acid gravimetry for Zr content below 20 % down to 1 % while the other is the mandelic acid gravimetry for Zr content below 20 % down to 0.5 %. In the former, a specimen is decomposed by hydrochloric acid and hydrofluoric acid. After substances such as titanium are oxidized by adding nitric acid, the liquid is adjusted into a 4N hydrochloric acid - gN hydrofluoric acid solution, which is them passed through an ion-exchange column. The niobium and tantalum contents are absorbed while the titanium and zirconium contents flow out. Perchloric acid and sulfuric acid are poured in the solution to remove hydrofluoric acid. Aqueous ammonia is added to produce hydroxide of titanium and zirconium, which is then filtered out. The hydroxyde is dissolved in hydrochloric acid, and mandelic acid is poured to precipitate the zirconium content. The precipitate is ignited and the weight of the oxide formed is measured. The coprecipitated titanium content is determined by the absorptiometric method using hydrogen peroxide. Finally, the weight of the oxide is corrected. In the latter determination method, on the other hand, only several steps of the above procedure are used, namely, decomposition by hydrochloric acid, precipitation of zirconium, ignition of precipitate, measurement of oxide weight and weight correction. (Nogami, K.)

  9. Corrosion resistant zirconium alloys prepared by powder metallurgy

    International Nuclear Information System (INIS)

    Wojeik, C.C.

    1984-01-01

    Pure zirconium and zirconium 2.5% niobium were prepared by powder metallurgy. The powders were prepared directly from sponge and consolidated by cold isostatic pressing and sintering. Hot isostatic pressing was also used to obtain full density after sintering. For pure zirconium the effects of particle size, compaction pressure, sintering temperature and purity were investigated. Fully densified zirconium and Zr-2.5%Nb exhibited tensile properties comparable to cast material at room temperature and 300 0 F (149 0 C). Pressed and sintered material having density of 94-99% had slightly lower tensile properties. Corrosion tests were performed in boiling 65% H/sub 2/SO/sub 4/, 70% HNO/sub 3/, 20% HCl and 20% HCl + 500 ppm FeCl/sub 3/ (a known pitting solution). For fully dense material the observed corrosion behavior was nearly equivalent to cast material. A slightly higher rate of attack was observed for samples which were only 94-99% dense. Welding tests were also performed on zirconium and Zr-2.5%Nb alloy. Unlike P/M titanium alloys, these materials had good weldability due to the lower content of volatile impurities in the powder. A slight amount of weld porosity was observed but joint efficiencies were always not 100%, even for 94-99% density samples. Several practical applications of the P/M processed material will be briefly described

  10. Susceptibility of cold-worked zirconium-2.5 wt% niobium alloy to delayed hydrogen cracking

    International Nuclear Information System (INIS)

    Coleman, C.E.

    1976-01-01

    Notched tensile specimens of cold-worked zirconium-2.5 wt% niobium alloy have been stressed at 350 K and 520 K. At 350 K, above a possible threshold stress of 200 MPa, specimens exhibited delayed failure which was attributed to hydride cracking. Metallography showed that hydrides accumulated at notches and tips of growing cracks. The time to failure appeared to be independent of hydrogen content over the range 7 to 100 ppm hydrogen. Crack growth rates of about 10 -10 m/s deduced from fractography were in the same range as those necessary to fracture pressure tubes. The asymptotic stress intensity for delayed failure, Ksub(1H), appeared to be about 5 MPa√m. With this low value of Ksub(1H) small surface flaws may propagate in pressure tubes which contain large residual stresses. Stress relieving and modified rolling procedures will reduce the residual stresses to such an extent that only flaws 12% of the wall thickness or greater will grow. At 520 K no failures were observed at times a factor of three greater than times to failure at 350 K. Zirconium-2.5 wt% niobium appears to be safe from delayed hydrogen cracking at the reactor operating temperature. (author)

  11. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    Science.gov (United States)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Zr(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15-500) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15-500 supported zirconium complexes were characterized by in situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands.

  12. Inhibition of Ice Growth and Recrystallization by Zirconium Acetate and Zirconium Acetate Hydroxide

    Science.gov (United States)

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications. PMID:23555701

  13. Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison

    Science.gov (United States)

    2015-06-05

    of any copyrighted material in the thesis manuscript entitled: Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison Is...Uniformed Services University Date: 02/20/2015 Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison By...the thesis manuscript entitled: Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison Is appropriately acknowledged

  14. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Science.gov (United States)

    2010-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to waters of the...

  15. 40 CFR 421.330 - Applicability: Description of the primary zirconium and hafnium subcategory.

    Science.gov (United States)

    2010-07-01

    ... primary zirconium and hafnium subcategory. 421.330 Section 421.330 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Zirconium and Hafnium Subcategory § 421.330 Applicability: Description of the primary zirconium and hafnium subcategory. The provisions of this subpart are applicable to discharges resulting...

  16. Synthesis and characterization of a mesoporous hydrous zirconium oxide used for arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Bortun, Anatoly; Bortun, Mila; Pardini, James; Khainakov, Sergei A.; Garcia, Jose R.

    2010-01-01

    Powder (20-50 μm) mesoporous hydrous zirconium oxide was prepared from a zirconium salt granular precursor. The effect of some process parameters on product morphology, porous structure and adsorption performance has been studied. The use of hydrous zirconium oxide for selective arsenic removal from drinking water is discussed.

  17. Coupling NMR with Synchrotron radiation at high temperature for the study of molten fluorides : applied to zirconium fluorides

    International Nuclear Information System (INIS)

    Maksoud, Louis

    2013-01-01

    Molten fluorides are used in Molten Salt Reactors MSR such as the non moderated fast reactor MSFR, where the molten salt LiF-ThF 4 is the fuel and the coolant. The formation of fission products (FP) such as lanthanides, during the reactor operation, possibly modifies the physicochemical properties of the melt. It is therefore important to characterize the melt from the structural and the dynamics point of view in order to determine its properties. Because of problems related to the radioactivity of thorium, as well as requirements related to spectroscopic methods, the system studied in this thesis is the LiF-ZrF 4 -LaF 3 (zirconium and lanthanum are possible FP). The approach followed in this thesis combines measurements by NMR spectroscopy and EXAFS at 850 C with molecular dynamics simulations. In the molten salt, we have shown the existence of zirconium and lanthanum complexes with different coordination numbers, whose proportions depend on the composition. Depending on the content of ZrF 4 , [ZrF 7 ] 3- species are dominant but change slightly and are further connected between each other's via bridging fluorine. The addition of LaF 3 to the mixture stabilizes the 7 coordination number around the zirconium and tends to enrich the environment of lanthanum with fluorides. A medium-range order is established between the various complexes containing zirconium and lanthanum due to bridging fluorine. Species dynamics is slower when the amount of either ZrF 4 or LaF 3 is higher. We noted a significant effect on the structure and dynamics of species starting 10 mol% LaF 3 added to the medium. The data obtained by this novel approach concerning the chemistry of the molten salt in MSR containing FP, are fundamental to improve the separation of these products and optimize the process. (author)

  18. Fibroblast Growth Factor 23 (FGF23 and Disorders of Phosphate Metabolism

    Directory of Open Access Journals (Sweden)

    Tasuku Saito

    2009-01-01

    Full Text Available Derangements in serum phosphate level result in rickets/osteomalacia or ectopic calcification indicating that healthy people without these abnormalities maintain serum phosphate within certain ranges. These results indicate that there must be a regulatory mechanism of serum phosphate level. Fibroblast growth factor 23 (FGF23 was identified as the last member of FGF family. FGF23 is produced by bone and reduces serum phosphate level by suppressing phosphate reabsorption in proximal tubules and intestinal phosphate absorption through lowering 1,25-dihydroxyvitamin D level. It has been shown that excess and deficient actions of FGF23 result in hypophosphatemic rickets/osteomalacia and hyperphosphatemic tumoral calcinosis, respectively. These results indicate that FGF23 works as a hormone, and several disorders of phosphate metabolism can be viewed as endocrine diseases. It may become possible to treat patients with abnormal phosphate metabolism by pharmacologically modifying the activity of FGF23.

  19. Modification of zirconium diphosphate with salicylic acid and its effect on the uranium (Vi) sorption; Modificacion del difosfato de circonio con acido salicilico y su efecto sobre la sorcion de uranio (VI)

    Energy Technology Data Exchange (ETDEWEB)

    Almazan T, M. G.; Garcia G, N. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Simoni, E., E-mail: guadalupe.almazan@inin.gob.mx [Universidad Paris Sud, Instituto de Fisica Nuclear, Georges Clemenceau No. 15, Orsay (France)

    2014-10-15

    The surface of zirconium diphosphate (ZrP{sub 2}O{sub 7}) was modified with salicylic acid and its effect was evaluated on the uranium (Vi) sorption. The modified surface of the material was analyzed with different analytical techniques among which are included the atomic force microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. This analysis allowed showing that the salicylic acid is being held on the surface of the zirconium diphosphate. The reactivity of modified zirconium diphosphate compared with uranium (Vi) was investigated using the classical method of batch sorption. The analysis of sorption isotherms shows that the salicylic acid has an important effect in the uranium (Vi) sorption. According to the study conducted, the interaction among the uranium (Vi) and the surface of zirconium diphosphate modified with the salicylic acid most likely leads to the complexes formation of binary (U(Vi)/ZrP{sub 2}O{sub 7}) and ternary (U(Vi)/salicylate/ZrP{sub 2}O{sub 7}) surface. (Author)

  20. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Meier, R. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Heidelberg University, Institute of Physical Chemistry, Im Neuenheimer Feld 253, Heidelberg 69120 (Germany); Souček, P., E-mail: Pavel.Soucek@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Fanghänel, Th. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Heidelberg University, Institute of Physical Chemistry, Im Neuenheimer Feld 253, Heidelberg 69120 (Germany)

    2016-04-15

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An–Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An–Al alloys using a LiCl–KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions. - Highlights: • Recovery of actinides was shown by electrorefining of U/Pu–Zr alloys in LiCl–KCl. • Constant current density of 20 mA/cm{sup 2} is applied. • Most of the actinides were dissolved avoiding zirconium co-dissolution. • Deterioration of the deposit quality by a small amount of co-deposited Zr is not observed.