WorldWideScience

Sample records for zirconium oxide thin

  1. Development of wear resistant zirconium oxide thin films on stainless steel substrates

    International Nuclear Information System (INIS)

    Then, I.K.; Mujahid, M.; Zhang, B.

    2005-01-01

    The present work deals specifically with the development of zirconium oxide thin film coatings on the stainless steel orthodontic bracket system by sputtering technique. Thin films of zirconium oxide have been deposited on injection molded stainless steel substrates using sputtering under controlled temperature and environment conditions. The deposited films, 1.5 μm in thickness, were found to have a predominantly tetragonal structure with grain size of about 5 nm. The grain size was found to increase only slightly with increasing heat treatment time at 650 C. It has been shown that thin-film zirconia coatings with stable structure and good adhesion along with very low friction coefficient could be produced. (orig.)

  2. Development of wear resistant zirconium oxide thin films on stainless steel substrates

    Energy Technology Data Exchange (ETDEWEB)

    Then, I.K.; Mujahid, M. [School of Materials Engineering, Nanyang Technological Univ. (Singapore); Zhang, B. [Dou Yee Technologies Pte Ltd, Bedok Industrial Park C (Singapore)

    2005-07-01

    The present work deals specifically with the development of zirconium oxide thin film coatings on the stainless steel orthodontic bracket system by sputtering technique. Thin films of zirconium oxide have been deposited on injection molded stainless steel substrates using sputtering under controlled temperature and environment conditions. The deposited films, 1.5 {mu}m in thickness, were found to have a predominantly tetragonal structure with grain size of about 5 nm. The grain size was found to increase only slightly with increasing heat treatment time at 650 C. It has been shown that thin-film zirconia coatings with stable structure and good adhesion along with very low friction coefficient could be produced. (orig.)

  3. MOCVD of zirconium oxide thin films: Synthesis and characterization

    International Nuclear Information System (INIS)

    Torres-Huerta, A.M.; Dominguez-Crespo, M.A.; Ramirez-Meneses, E.; Vargas-Garcia, J.R.

    2009-01-01

    The synthesis of thin films of zirconia often produces tetragonal or cubic phases, which are stable at high temperatures, but that can be transformed into the monoclinic form by cooling. In the present study, we report the deposition of thin zirconium dioxide films by metalorganic chemical vapor deposition using zirconium (IV)-acetylacetonate as precursor. Colorless, porous, homogeneous and well adherent ZrO 2 thin films in the cubic phase were obtained within the temperature range going from 873 to 973 K. The deposits presented a preferential orientation towards the (1 1 1) and (2 2 0) planes as the substrate temperature was increased, and a crystal size ranging between 20 and 25 nm. The kinetics is believed to result from film growth involving the deposition and aggregation of nanosized primary particles produced during the CVD process. A mismatch between the experimental results obtained here and the thermodynamic prediction was found, which can be associated with the intrinsic nature of the nanostructured materials, which present a high density of interfaces.

  4. MOCVD of zirconium oxide thin films: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atohuer@hotmail.com [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Instituto Politecnico Nacional, Km. 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Dominguez-Crespo, M.A.; Ramirez-Meneses, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Instituto Politecnico Nacional, Km. 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Vargas-Garcia, J.R. [ESIQIE, Departamento de Metalurgia y Materiales, Instituto Politecnico Nacional. A.P. 75-876, 07300 Mexico, D.F. (Mexico)

    2009-02-15

    The synthesis of thin films of zirconia often produces tetragonal or cubic phases, which are stable at high temperatures, but that can be transformed into the monoclinic form by cooling. In the present study, we report the deposition of thin zirconium dioxide films by metalorganic chemical vapor deposition using zirconium (IV)-acetylacetonate as precursor. Colorless, porous, homogeneous and well adherent ZrO{sub 2} thin films in the cubic phase were obtained within the temperature range going from 873 to 973 K. The deposits presented a preferential orientation towards the (1 1 1) and (2 2 0) planes as the substrate temperature was increased, and a crystal size ranging between 20 and 25 nm. The kinetics is believed to result from film growth involving the deposition and aggregation of nanosized primary particles produced during the CVD process. A mismatch between the experimental results obtained here and the thermodynamic prediction was found, which can be associated with the intrinsic nature of the nanostructured materials, which present a high density of interfaces.

  5. Enhanced low-temperature oxidation of zirconium alloys under irradiation

    International Nuclear Information System (INIS)

    Cox, B.; Fidleris, V.

    1989-01-01

    The linear growth of relatively thick (>300 nm) interference-colored oxide films on zirconium alloy specimens exposed in the Advanced Test Reactor (ATR) coolant at ≤55 o C was unexpected. Initial ideas were that this was a photoconduction effect. Experiments to study photoconduction in thin anodic zirconium oxide (ZrO 2 ) films in the laboratory were initiated to provide background data. It was found that, in the laboratory, provided a high electric field was maintained across the oxide during ultraviolet (UV) irradiation, enhanced growth of oxide occurred in the irradiated area. Similarly enhanced growth could be obtained on thin thermally formed oxide films that were immersed in an electrolyte with a high electric field superimposed. This enhanced growth was found to be caused by the development of porosity in the barrier oxide layer by an enhanced local dissolution and reprecipitation process during UV irradiation. Similar porosity was observed in the oxide films on the ATR specimens. Since it is not thought that a high electric field could have been present in this instance, localized dissolution of fast-neutron primary recoil tracks may be the operative mechanism. In all instances, the specimens attempt to maintain the normal barrier-layer oxide thickness, which causes the additional oxide growth. Similar mechanisms may have operated during the formation of thick loosely adherent, porous oxides in homogeneous reactor solutions under irradiation, and may be the cause of enhanced oxidation of zirconium alloys in high-temperature water-cooled reactors in some water chemistries. (author)

  6. Diagnostic study of the roughness surface effect of zirconium on the third-order nonlinear-optical properties of thin films based on zinc oxide nanomaterials

    International Nuclear Information System (INIS)

    Bahedi, K.; Addou, M.; El Jouad, M.; Sofiani, Z.; Alaoui Lamrani, M.; El Habbani, T.; Fellahi, N.; Bayoud, S.; Dghoughi, L.; Sahraoui, B.; Essaidi, Z.

    2009-01-01

    Zinc oxide (ZnO) and zirconium doped zinc oxide (ZnO:Zr) thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 500 deg. C using zinc and zirconium chlorides as precursors. Effects of zirconium doping agent and surface roughness on the nonlinear optical properties were investigated in detail using atomic force microscopy (AFM) and third harmonic generation (THG) technique. The best value of nonlinear optical susceptibility χ (3) was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility χ (3) = 20.12 x 10 -12 (esu) of the studied films was found for the 3% doped sample.

  7. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    Science.gov (United States)

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  8. Films of double oxides of zirconium and iron

    International Nuclear Information System (INIS)

    Kozik, V.V.; Borilo, L.P.; Shul'pekov, A.M.

    2000-01-01

    Films of double oxides of zirconium and iron were prepared by the method of precipitation from film-forming alcohol solutions of zirconium oxychloride and iron chloride with subsequent thermal treatment. Using the methods of X-ray phase and differential thermal analyses, conductometry and optical spectroscopy, basic chemical processes occurring in the film-forming solutions and during thermal treatment are studied alongside with phase composition and optical characteristics of the films prepared. The composition-property diagrams of the given system in a thin-film state are plotted [ru

  9. Diagnostic study of the roughness surface effect of zirconium on the third-order nonlinear-optical properties of thin films based on zinc oxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Bahedi, K., E-mail: bahedikhadija@yahoo.com [Laboratoire Optoelectronique et Physico-chimie des Materiaux Universite Ibn Tofail, Faculte des Sciences BP 133 Kenitra 14000, Maroc (Morocco); Addou, M.; El Jouad, M.; Sofiani, Z.; Alaoui Lamrani, M.; El Habbani, T.; Fellahi, N.; Bayoud, S.; Dghoughi, L. [Laboratoire Optoelectronique et Physico-chimie des Materiaux Universite Ibn Tofail, Faculte des Sciences BP 133 Kenitra 14000, Maroc (Morocco); Sahraoui, B.; Essaidi, Z. [Laboratoire POMA, UMR CNRS 6136, Universite d' Angers 2, Bd Lavoisier, 49045 France (France)

    2009-02-01

    Zinc oxide (ZnO) and zirconium doped zinc oxide (ZnO:Zr) thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 500 deg. C using zinc and zirconium chlorides as precursors. Effects of zirconium doping agent and surface roughness on the nonlinear optical properties were investigated in detail using atomic force microscopy (AFM) and third harmonic generation (THG) technique. The best value of nonlinear optical susceptibility {chi}{sup (3)} was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility {chi}{sup (3)} = 20.12 x 10{sup -12} (esu) of the studied films was found for the 3% doped sample.

  10. Optical and electrical characteristics of zirconium oxide thin films deposited on silicon substrates by spray pyrolysis

    International Nuclear Information System (INIS)

    Aguilar-Frutis, M.; Araiza, J.J.; Falcony, C.; Garcia, M.

    2002-01-01

    The optical and electrical characteristics of zirconium oxide thin films deposited by spray pyrolysis on silicon substrates are reported. The films were deposited from a spraying solution of zirconium acetylacetonate in N,N-dimethylformamide using an ultrasonic mist generator on (100) Si substrates. The substrate temperature during deposition was in the range of 400 to 600 grad C. Deposition rates up to 16 A/sec were obtained depending on the spraying solution concentration and on the substrate temperature. A refraction index of the order of 2.0 was measured on these films by ellipsometry. The electrical characteristics of the films were determined from the capacitance and current versus voltage measurements. The addition of water mist during the spraying deposition process was also studied in the characteristics of the films. (Authors)

  11. Investigation of Zirconium Oxide Films in Different Dissolved Hydrogen Concentration

    International Nuclear Information System (INIS)

    Kim, Taeho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun

    2016-01-01

    It has been reported that in pre-transition zirconium oxide, the volume fraction of tetragonal zirconium oxide increased near the oxide/metal (O/M) interface, and the sub-stoichiometric zirconium oxide layer was observed. The diffusion of oxygen ion through the oxide layer is the rate-limiting process during the pre-transition oxidation process, and this diffusion mainly occurs in the grain boundaries. The two layered oxide structure is formed in pre-transition oxide for the zirconium alloy in high-temperature water environment. It is known that the corrosion rate is related to the volume fraction of zirconium oxide and the pores in the oxides; therefore, the aim of this paper is to investigate the oxidation behavior in the pre-transition zirconium oxide in high-temperature water chemistry. In this study, in situ Raman and TEM analysis were conducted for investigating the phase transformation of zirconium alloy in primary water. From this study, the following conclusions are drawn: 1. The zirconium alloy was oxidized in primary water chemistry for 100 d, and Raman and TEM were measured after 30, 50, 80, and 100 d from start-up. 2. TEM and FFT analysis showed that the zirconium oxide mostly consisted of the monoclinic phase. The tetragonal zirconium oxide was just found near the O/M interface

  12. Oxidized zirconium on ceramic; Catastrophic coupling.

    Science.gov (United States)

    Ozden, V E; Saglam, N; Dikmen, G; Tozun, I R

    2017-02-01

    Oxidized zirconium (Oxinium™; Smith & Nephew, Memphis, TN, USA) articulated with polyethylene in total hip arthroplasty (THA) appeared to have the potential to reduce wear dramatically. The thermally oxidized metal zirconium surface is transformed into ceramic-like hard surface that is resistant to abrasion. The exposure of soft zirconium metal under hard coverage surface after the damage of oxidized zirconium femoral head has been described. It occurred following joint dislocation or in situ succeeding disengagement of polyethylene liner. We reported three cases of misuse of Oxinium™ (Smith & Nephew, Memphis, TN, USA) heads. These three cases resulted in catastrophic in situ wear and inevitable failure although there was no advice, indication or recommendation for this use from the manufacturer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Role of temperature and energy density in the pulsed laser deposition of zirconium oxide thin film

    International Nuclear Information System (INIS)

    Mittra, Joy; Abraham, G.J.; Viswanadham, C.S.; Kulkarni, U.D.; Dey, G.K.

    2011-01-01

    Present work brings out the effects of energy density and substrate temperature on pulsed laser deposition of zirconium oxide thin film on Zr-base alloy substrates. The ablation of sintered zirconia has been carried out using a KrF excimer laser having 30 ns pulse width and 600 mJ energy at source at 10 Hz repetition rate. To comprehend effects of these parameters on the synthesized thin film, pure zirconia substrate has been ablated at two different energy densities, 2 J.cm -2 and 5 J.cm -2 , keeping the substrate at 300 K, 573 K and 873 K, respectively. After visual observation, deposited thin films have been examined using Raman Spectroscopy (RS) and X-ray Photo-electron Spectroscopy (XPS). It has been found that the oxide deposited at 300 K temperature does not show good adherence with the substrate and deteriorates further with the reduction in energy density of the incident laser. The oxide films, deposited at 573 K and 873 K, have been found to be adherent with the substrate and appear lustrous black. These indicate that the threshold for adherence of the zirconia film on the Zr-base alloy substrate lies in between 300 K and 573 K. Analysis of Raman spectra has indicated that thin films of zirconia, deposited using pulsed laser, on the Zr-base metallic substrate are initially in amorphous state. Experimental evidence has indicated a strong link among the degree of crystallinity of the deposited oxide film, the substrate temperature and the energy density. It also has shown that the crystallization of the oxide film is dependent on the substrate temperature and the duration of holding at high temperature. The O:Zr ratios of the films, analyzed from the XPS data, have been found to be close to but less than 2. This appears to explain the reason for the transformation of amorphous oxide into monoclinic and tetragonal phases, below 573 K, and not into cubic phase, which is reported to be more oxygen deficient. (author)

  14. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  15. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-01-01

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  16. Study for the chlorination of zirconium oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Takiishi, H.; Paschoal, J.O.A.; Andreoli, M.

    1990-12-01

    In the development of new ceramic and metallic materials the chlorination process constitutes step in the formation of several intermediate compounds, such as metallic chlorides, used for the production of high, purity raw materials. Chlorination studies with the aim of fabrication special zirconium-base alloys have been carried out at IPEN. Within this program the chlorination technique has been used for zirconium tetrachloride production from zirconium oxide. In this paper some relevant parameters such as: time and temperature of reaction, flow rate of chloride gas and percentage of the reducing agent which influence the efficiency of chlorination of zirconium oxide are evaluated. Thermodynamical aspects about the reactions involved in the process are also presented. (author)

  17. Preliminary radiation-oxidizing treatment influence on electrophysical properties of zirconium

    International Nuclear Information System (INIS)

    Garibov, A.A.; Aliyev, A.G.; Agayev, T.N.; Ismailov, S.S.; Aliyev, S.M.; Velibekova, G.Z.

    2004-01-01

    The dependences of resistivity (ρ), thermoelectromotive force (α) voltage-current characteristics of thin zirconium film 80-200 mkm of thick from adsorbed dose of γ-quantum have been investigated. It has been found out that when initial meanings of absorbed dose are insignificant (D ≤ 20 kGy) in Zr-ZrO 2 system ρ is decreased at the expense of formation of point defects (biographic protective oxide film). The further increase of absorbed dose (up to definite value) leads to radiation-heterogeneous processes of protective oxide film formation with high vacancy concentration that is accompanied with ρ increase. (author)

  18. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  19. A microstuctural study on accelerated zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Sohn, Seung Bum; Oh, Seung Jun; Jang, Jung Nam; Kim, Yong Soo; Jung, Yong Hwan; Baek, Jong Hyuk; Park, Jung Yong

    2005-01-01

    It has been reported that the effect of thermal redistribution of hydrides across the zirconium metaloxide interface, coupled with thermal feedback on the metal-oxide interface, is a dominating factor in the accelerated oxidation in zirconium alloys cladding PWR fuel. Basically this influence determines characteristic of oxide layer. Influence estimation for corrosion oxide layer due to hydrogen / hydride carried out because of investigation on the kinetic on accelerated oxidation due to hydride precipitation was preceded. Generally, it is known that ZrO 2 tetragonal layer structures play an important role as a barrier layer. So analysing the ZrO 2 monoclinic and tetragonal structure distribution is our main aim. Especially, this study focused on the hydride effects. In other words, the difference of crystal structure distribution between pre-hydrided and without hydrided specimen is just expected results. Experimental results of microstructure at zirconium metal-oxide interface through TEM and EBSD analysis was confirmed

  20. Thin zirconium oxides

    International Nuclear Information System (INIS)

    Oviedo, Cristina

    2000-01-01

    Polycrystalline Zr and two pure Zr single-crystal samples, one oriented with the normal to the surface parallel to the c-axis of the hcp structure (Z1) and the other with the normal perpendicular to c (Z2), were oxidised at 10 -8 , 10 -7 and 10 -6 Torr and room temperature. Oxidation kinetics, composition and thicknesses of the oxide films formed in each case were analyzed using XPS (X-ray Photoelectron Spectroscopy) as the main technique. The oxidation kinetics followed logarithmic laws in all cases. The deconvolution of XPS Zr3d peaks indicated the formation of two Zr-O compounds before the formation of ZrO 2 . Varying the photoelectrons take-off angle, the compound distribution inside the oxide films could be established. Thus, it was confirmed that the most external oxide, in contact with the gas, was ZrO 2 . The thickness of the films grown at the different pressures was determined. In the polycrystalline samples, thicknesses between 15 and 19 ± 2Angstroem were obtained for pressures between 10 -8 and 10 -6 Torr, in close coincidence with the determined ones for Z2. The thicknesses measured in Z1 were smaller, reaching 13 ± 2Angstroem for the oxidations performed at 10 -6 Torr. (author)

  1. Irradiation effects of the zirconium oxidation and the uranium diffusion in zirconia; Effets d'irradiation sur l'oxydation du zirconium et la diffusion de l'uranium dans la zircone

    Energy Technology Data Exchange (ETDEWEB)

    Bererd, N

    2003-07-01

    The context of this study is the direct storage of spent fuel assemblies after operation in reactor. In order to obtain data on the capacities of the can as the uranium diffusion barrier, a fundamental study has been carried out for modelling the internal cladding surface under and without irradiation. The behaviour of zirconium in reactor conditions has at first been studied. A thin uranium target enriched with fissile isotope has been put on a zirconium sample, the set being irradiated by a thermal neutrons flux leading to the fission of the deposited uranium. The energetic history of the formed fission products has revealed two steps: 1)the zirconium oxidation and 2)the diffusion of uranium in the zirconia formed at 480 degrees C. A diffusion coefficient under irradiation has been measured. Its value is 10{sup -15} cm{sup 2}.s{sup -1}. In order to be able to reveal clearly the effect of the irradiation by the fission products on the zirconium oxidation, measurements of thermal oxidation and under {sup 129}Xe irradiation have been carried out. They have shown that the oxidation is strongly accelerated by the irradiation and that the temperature is negligible until 480 degrees C. On the other hand, the thermal diffusion of the uranium in zirconium and in zirconia has been studied by coupling ion implantation and Rutherford backscattering spectroscopy. This study shows that the uranium diffuses in zirconium and is trapped in zirconia in a UO{sub 3} shape. (O.M.)

  2. Oxidation of zirconium alloys in steam: influence of tetragonal zirconia on oxide growth mechanism

    International Nuclear Information System (INIS)

    Godlewski, J.

    1990-07-01

    The oxidation of zirconium alloys in presence of steam, presents after a 'parabolic' growth law, an acceleration of the oxidation velocity. This phenomenon limits the use of zirconium alloys as nuclear fuel cladding element. In order to determine the physico-chemical process leading to this kinetic transition, two approaches have been carried out: the first one has consisted to determine the composition of the oxide layer and its evolution with the oxidation time; and the second one to determine the oxygen diffusion coefficients in the oxide layers of pre- and post-transition as well as their evolution with the oxidation time. The composition of the oxide layers has been determined by two analyses techniques: the X-ray diffraction and the laser Raman spectroscopy. This last method has allowed to confirm the presence of tetragonal zirconium oxide in the oxide layers. Analyses carried out by laser Raman spectroscopy on oxides oblique cuttings have revealed that the tetragonal zirconium oxide is transformed in monoclinic phase during the kinetic transition. A quantitative approach has allowed to corroborate the results obtained by these two techniques. In order to determine the oxygen diffusion coefficients in the oxides layers, two diffusion treatments have been carried out: 1)under low pressure with D 2 18 O 2 ) under high pressure in an autoclave with H 2 18 O. The oxygen 18 concentration profiles have been obtained by two analyses techniques: the nuclear microprobe and the secondary ions emission spectroscopy. The obtained profiles show that the mass transport is made by the volume and particularly by the grain boundaries. The corresponding diffusion coefficients have been calculated with the WHIPPLE and LE CLAIRE solution. The presence of tetragonal zirconium oxide, its relation with the kinetic transition, and the evolution of the diffusion coefficients with the oxidation time, are discussed in terms of internal stresses in the oxide layer and of the oxide layer

  3. In situ Raman Spectroscopy of Oxide Films on Zirconium Alloy in Simulated PWR Primary Water Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The two layered oxide structure is formed in pre-transition oxide for the zirconium alloy in high temperature water environment. It is known that the corrosion rate is related to the volume fraction of zirconium oxide and the pores in the oxides; therefore, the aim of this paper is to investigate the oxidation behavior in the pretransition zirconium oxide in high-temperature water chemistry. In this work, Raman spectroscopy was used for in situ investigations for characterizing the phase of zirconium oxide. In situ Raman spectroscopy is a well-suited technique for investigating in detail the characteristics of oxide films in a high-temperature corrosion environment. In previous studies, an in situ Raman system was developed for investigating the oxides on nickel-based alloys and low alloy steels in high-temperature water environment. Also, the early stage oxidation behavior of zirconium alloy with different dissolved hydrogen concentration environments in high temperature water was treated in the authors' previous study. In this study, a specific zirconium alloy was oxidized and investigated with in situ Raman spectroscopy for 100 d oxidation, which is close to the first transition time of the zirconium alloy oxidation. The ex situ investigation methods such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to further characterize the zirconium oxide structure. As oxidation time increased, the Raman peaks of tetragonal zirconium oxide were merged or became weaker. However, the monoclinic zirconium oxide peaks became distinct. The tetragonal zirconium oxide was just found near the O/M interface and this could explain the Raman spectra difference between the 30 d result and others.

  4. Characterization of zirconium alloy oxidation films by alternating current impedance

    International Nuclear Information System (INIS)

    Rosecrans, P.M.

    1984-01-01

    Kinetics of zirconium alloy oxidation are highly nonlinear. The results of electrochemical measurements and electron microscopy support the existence of porosity in oxide films formed on zirconium alloys in high temperature aqueous environments. Analytical treatment is presented relating oxidation kinetics to the thickness and distribution of nonporous elements within the oxide. This analysis illustrates that both the level and distribution of porosity within the oxide factor into oxidation kinetics. The barrier layer model can provide a basis for predicting the effect of environmental changes on oxidation rate. In addition, it demonstrates the need for further research into porosity generation mechanisms in oxide films

  5. Tests for depositing thin films of metallic zirconium; Essais de depot de zirconium metallique en couches minces

    Energy Technology Data Exchange (ETDEWEB)

    Bentolila, J.; Pattoret, A.; Platzer, R.

    1957-01-15

    The authors report a study which aimed at obtaining a thin, adhesive and non porous coating of metallic zirconium on a uranium substrate by means of chemical process. The main required condition was not to go beyond the uranium phase change temperature (650 C). Two kinds of tests have been performed: on the one hand, tests of reduction of zirconium tetrachloride in non aqueous solvent medium, and on the other hand, tests of vacuum decomposition of zirconium hydride. As far as the first tests are concerned, the authors studied organic solvent media (reduction by aluminium and lithium hydride, action of organic-magnesium compounds), and liquid ammoniac. For the second test type, they describe the apparatus, the preparation of the zirconium hydride, preparation of the substrate surfaces, coating preparation, and decomposition process. Results are discussed in terms of temperature, of presence of copper powder in the coating, of early surface hydriding of uranium, surface polishing.

  6. Extraction of zirconium from raffinate stream of Zirconium Oxide Plant raffinate

    International Nuclear Information System (INIS)

    Pandey, Garima; Chinchale, R.; Renjith, A.U.; Mukhopadhyay, S.; Shenoy, K.T.; Ghosh, S.K.

    2013-01-01

    Recovery of metals from dilute streams is a major task in nuclear industry in the view of environmental remediation and value recovery. Presently solvent extraction process is employed on the commercial scale to recover nuclear pure zirconium using TBP as extractant. The waste stream of TBP extraction process contains about 1.2 gpl of Zirconium in nitrate form. At present there is no process to recover Zirconium from this raffinate stream. Hence, under the present study recovery of zirconium from the raffinate stream of Zirconium Oxide Plant Raffinate has been investigated. TBP, which is the most commonly used solvent in the nuclear industry is not suitable for the extraction of zirconium from lean solution at low acidity as its distribution coefficient is less than one. In search of a suitable extractant Mixed Alkyl Phosphine Oxide (MAPO) was investigated as potential carrier. Parametric batch studies for various equilibrium data like extractant concentration, strippant concentration, solvent reusability, equilibration time, acidity etc. were done to optimize the process condition. For the distribution studies, equal volumes of the raffinate and organic phase were shaken at room temperature in digital wrist action shaker for 10 minutes to ensure complete equilibrium. It was found that 0.1 M MAPO in 80:20 dodecane: isodecanol is suitable for extraction of Zr at 2 N acidity. 0.1 M MAPO gives distribution coefficient in the range of 12-15 for Zr. The slope of log-log plot between MAPO concentration and K, suggests involvement of 3 molecules of MAPO in the formation of extracting species. 0.2 M Oxalic acid was able to completely back extract Zr from the organic phase into aqueous phase. Also good regeneration capacity of MAPO projects its potential to be used as extractant for the process. Based on the equilibrium studies, Dispersion Liquid Membrane configuration in hollow fiber contactor was explored for the extraction of Zirconium from Zirconium Nitrate Pure

  7. Study of the production of zirconium tetrachloride by chlorination of its oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.

    1983-01-01

    The studies carried out on the production of zirconium tetrachloride by chlorination of pure zirconium oxide with carbon tetrachloride and chlorine in the presence of carbon. In the process of chlorination with carbon tetrachloride, the chlorination efficiency increases with the rise in temperature at intervals between 450 and 750 0 C. The flow of the carbon tetrachloride vapour was 1.50l/min. Higher temperatures of 700 to 850 0 C were used for the zirconium oxide chlorination in the presence of carbon, and the flowrate of the chlorine gas used in the process was 0.50 l/min. Pure zirconium oxide chlorination as well as zirconium oxide - carbon misture chlorination have been studied in connection with the time of reaction at different temperatures and the apparent rate constant, the activation energies, the order of reaction in relation to the concentration of the gases (CCl 4 and Cl 2 ) and the content of carbon in the pellet have all been determined. (Author) [pt

  8. Microstructural aspects of the oxidation of zirconium alloys

    International Nuclear Information System (INIS)

    Proff, Ch.

    2011-01-01

    This thesis is focused on the microstructural characterisation of precipitates in the oxide of binary zirconium alloys (1 wt.% Fe, Cr or Ni or 0.6 wt.% Nb) under different oxidation conditions at 415 C. The samples were oxidised in autoclave in air and steam and in an environmental scanning electron microscope in water vapour. The microstructural evolution of the precipitates during oxidation was characterised using electron microscopy. The findings from the analysis are the following: -Two types of oxidation behaviour are observed for precipitates. -Pilling Bedworth ratio of precipitates is higher than that of the zirconium matrix. -Formation of pure iron oxide crystals on the surface for iron bearing precipitates close to or at the surface. From these observations it is concluded that the precipitate oxidation behaviour can be correlated to precipitate composition and oxidation tendency of the elements in the precipitates. Iron exhibits clearly different behaviour. (author)

  9. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    International Nuclear Information System (INIS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-01-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ∝ 4.1 Aa), and low electrical resistivity (4.2 x 10 -4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained ''on/off'' current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 x 10 7 , 0.43 V/decade, 0.7 V, and 2.1 cm 2 /V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs. (orig.)

  10. Contribution of in situ acoustic emission analysis coupled with thermogravimetry to study zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Al Haj, O.; Peres, V.; Serris, E.; Cournil, M.; Grosjean, F.; Kittel, J.; Ropital, F.

    2015-01-01

    Zirconium alloy (zircaloy-4) corrosion behavior under oxidizing atmosphere at high temperature was studied using thermogravimetric experiment associated with acoustic emission analysis. Under a mixture of oxygen and air in helium, an acceleration of the corrosion is observed due to the detrimental effect of nitrogen which produces zirconium nitride. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration is accompanied by an acoustic emission (AE) activity. Most of the acoustic emission bursts were recorded after the kinetic transition or during the cooling of the sample. Acoustic emission signals analysis allows us to distinguish different populations of cracks in the ZrO 2 layer. These cracks have also been observed by SEM on post mortem cross section of oxidized samples and by in-situ microscopy observations on the top surface of the sample during oxidation. The numerous small convoluted thin cracks observed deeper in the zirconia scale are not detected by the AE technique. From these studies we can conclude that mechanisms as irreversible mechanisms, as cracks initiation and propagation, generate AE signals

  11. Preparation and Characterization of Hydrous Zirconium Oxide Formed by Homogeneous Precipitation

    Directory of Open Access Journals (Sweden)

    Silva G.L.J.P. da

    2002-01-01

    Full Text Available This paper reports on the preparation, characterization and study of the ion exchange behavior of hydrous zirconium oxides formed by homogeneous precipitation from zirconium oxychloride. The precipitants used were obtained by thermal decomposition of urea, sodium nitrite or ammonium carbonate. Seven compounds were prepared and characterized by thermal analysis, X-ray diffractometry and by surface area measurements. Amorphous forms were obtained in each case, a result that agrees with those obtained by conventional gel precipitation methodology. All these materials present surface area values of >148 m².g-1, determined after heat treatment at 50 °C. The ion exchange behavior of each hydrous zirconium oxide prepared was studied using K+ as the exchanged species and the results compared with those obtained for hydrous zirconium oxide originally precipitated by the sol gel method.

  12. Diffusion of insoluble carbon in zirconium oxides

    CERN Document Server

    Vykhodets, V B; Koester, U; Kondrat'ev, V V; Kesarev, A G; Hulsen, C; Kurennykh, T E

    2011-01-01

    The diffusion coefficient of insoluble carbon in zirconium oxides has been obtained for the temperature range of 900-1000A degrees C. There are no published data on the diffusion of insoluble impurities; these data are of current interest for the diffusion theory and nuclear technologies. Tracer atoms 13C have been introduced into oxides by means of ion implantation and the kinetics of their emission from the samples in the process of annealing in air has been analyzed. The measurements have been performed using the methods of nuclear microanalysis and X-ray photoelectron spectroscopy. The diffusion activation energy is 2.7 eV and the carbon diffusion coefficient is about six orders of magnitude smaller than that for oxygen self-diffusion in the same systems. This result indicates the strong anomaly of the diffusion properties of carbon in oxides. As a result, zirconium oxides cannot be used in some nuclear technologies, in particular, as a material of sources for accelerators of short-lived carbon isotopes.

  13. Study of the production of Zirconium tetracheoride by chlorination of its oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Abrao, A.

    1987-08-01

    This work describes the studies carried out on the production of zirconium tetrachloride by chlorianation of pure zirconium oxide with (a) carbon tetrachloride and (b) chlorine in the presence of carbon. In the process of chlorination with carbon tetrachloride it has been determined that efficiency increases with the rising of temperature between 450 and 750 0 C. The flow rate of the carbon tetrachloride vapour used was 1.50L/min. For the zirconium oxide chlorination in the presence of carbon, the study has been carried out at temperatures between 700 and 850 0 C and the flow rate of the chlorine gas used in the process was 0,50/Lmin. Pure zirconium oxide chlorination as well as zirconium oxide-carbon mixture chlrorination have been studied in connection with the time of reaction at different temperatures and the apparent rate constants, the activation energies, the order of reaction in relation to the concentration of the gases (CCl 4 and Cl 2 ) and the content of carbon in the pellet have all been determined. (Author) [pt

  14. Obtainment of zirconium oxide and partially stabilized zirconium oxide with yttrium and rare earth oxides, from Brazilian zirconite, for ceramic aim

    International Nuclear Information System (INIS)

    Ribeiro, S.

    1991-05-01

    This work presents experimental results for processing of brazilian zirconite in order to obtain zirconium oxide with Yttrium and Rare Earth oxide by mutual coprecipitation for ceramics purposes. Due to analysis of experimental results was possible to obtain the optimum conditions for each one of technological route stage, such as: alkaline fusion; acid leaching; sulfactation and coprecipitation. (author)

  15. Ion scattering spectroscopy studies of zirconium dioxide thin films prepared in situ

    International Nuclear Information System (INIS)

    Martin, P.J.; Netterfield, R.P.

    1987-01-01

    Low energy Ion Scattering Spectroscopy has been used to investigate, in situ, thin films of zirconium dioxide deposited by evaporation and ion-assisted deposition. It is shown that when a film is deposited to an average thickness of 0.3 nm +- 0.03, as measured by in situ ellipsometry, complete coverage of the substrate occurs. 'Ion-assisted films have detectably higher Zr surface concentrations and reduced low-energy sputter peaks. Inelastic tailing effects in the Zr scattering peak for 2 keV 4 He + are found to come from particles scattered from approximately the first 7 nm of the oxide surface. The influence of primary ion energy on the Zr/O ratio is also examined. (author)

  16. Electroless deposition process for zirconium and zirconium alloys

    Science.gov (United States)

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  17. In situ Investigation of Oxide Films on Zirconium Alloy in PWR Primary Water Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Zirconium alloys are used as fuel cladding materials in nuclear power reactors, because these materials have a very low thermal neutron capture cross section as well as desirable mechanical properties. However, the Fukushima accident shows that the oxidation behavior of zirconium alloy is an important issue because the zirconium alloy functions as a shield of nuclear material (i.e., uranium, fission gas), and the degradation on zirconium cladding directly causes severe accident on nuclear power plant. Therefore, to ensure the safety of nuclear power reactors, the performance and sustainability of nuclear fuel should be understood. Currently, the water-metal interface is regarded as the rate-controlling site governing the rapid oxidation transition in high-burn-up fuels. Zirconium oxide is formed at the water-metal interface, and its structure and phase play an important role in determining its mechanical properties. In the early stage of the oxidation process, zirconium oxide with both tetragonal and monoclinic phases is formed. With an increase in the oxidation time to 150 h, the unstable tetragonal phase disappears and the monoclinic phase is dominant and possibly because of the stress relaxation according to previous and present results.

  18. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics

    International Nuclear Information System (INIS)

    Fidan, S.; Muhaffel, F.; Riool, M.; Cempura, G.; Boer, L. de; Zaat, S.A.J.; Filemonowicz, A. Czyrska -; Cimenoglu, H.

    2017-01-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. - Highlights: • Micro-arc oxidation process was applied on zirconium in an electrolyte containing silver acetate. • Silver incorporated in the oxide layer in the form of nanoparticles. • 0.45 wt.% silver incorporation provided excellent antibacterial activity.

  19. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Fidan, S.; Muhaffel, F. [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Sariyer, 34469 Istanbul (Turkey); Riool, M. [Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam (Netherlands); Cempura, G. [International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, PL, 30-059 Kraków (Poland); Boer, L. de; Zaat, S.A.J. [Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam (Netherlands); Filemonowicz, A. Czyrska - [International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, PL, 30-059 Kraków (Poland); Cimenoglu, H., E-mail: cimenogluh@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Sariyer, 34469 Istanbul (Turkey)

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC{sub 2}H{sub 3}O{sub 2}). In general, synthesized MAO layers were composed of zirconium oxide (ZrO{sub 2}) and zircon (ZrSiO{sub 4}). Addition of AgC{sub 2}H{sub 3}O{sub 2} into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. - Highlights: • Micro-arc oxidation process was applied on zirconium in an electrolyte containing silver acetate. • Silver incorporated in the oxide layer in the form of nanoparticles. • 0.45 wt.% silver incorporation provided excellent antibacterial activity.

  20. Clinical Outcomes of Zirconium-Oxide Posts: Up-to-Date Systematic Review.

    Science.gov (United States)

    Al-Thobity, Ahmad M

    2016-06-01

    The aim of this systematic review was to investigate the clinical outcomes of the use of zirconium-oxide posts in the past 20 years. The addressed question was: Do zirconium-oxide posts maintain the long-term survival rate of endodontically treated teeth? A database search was made of articles from January 1995 to December 2014; it included combinations of the following keywords: "zirconia," "zirconium oxide," "dowel/dowels," "post/posts," and "post and core." Exclusion criteria included review articles, experimental studies, case reports, commentaries, and articles published in a language other than English. Articles were reviewed by the titles, followed by the abstracts, and, finally, the full text of the selected studies. Four studies were included after filtering the selected studies according to the inclusion and exclusion criteria. In one study, the prefabricated zirconia posts with indirect glass-ceramic cores had significantly higher failure rates than other posts with direct composite cores. In two studies, no failure of the cemented posts was observed throughout the follow-up period. Due to the limited number of clinical studies, it can be concluded that the long-term success rate of prefabricated zirconium-oxide posts is unclear.

  1. The effect of crystal textures on the anodic oxidization of zirconium in a boiling nitric acid solution

    International Nuclear Information System (INIS)

    Kato, Chiaki; Ishijima, Yasuhiro; Ueno, Fumiyoshi; Yamamoto, Masahiro

    2016-01-01

    The effects of crystal textures and the potentials in the anodic oxidation of zirconium in a boiling nitric acid solution were investigated to study the stress corrosion cracking of zirconium in nitric acid solutions. The test specimen was machined such that the specimen surface was parallel to the rolling surface, arranged with a (0002) crystal texture. The potentials applied for the anodic oxidation of zirconium were set at 1.2, 1.4, and 1.5 V against a saturated KCl–Ag/AgCl electrode (SSE) in boiling 6 M HNO_3. The growth of the zirconium oxide film dramatically changed depending on the applied potential at a closed depassivation potential (1.47 V vs. SSE in this study). At 1.5 V, the zirconium oxide film rapidly grows, and its growth exhibits cyclic oxidation kinetics in accordance with a nearly cubic rate law. The zirconium oxide film grows according to the quantity of electric charge and the growth rate does not depend on the crystal texture in the pretransition region before the cyclic oxidation kinetics. However, the growth and cracking under the thick oxide film depend on the crystal texture in the transition region. On the normal direction side, the oxide film thickness decreases on average since some areas of the thick oxide film are separated from the specimen surface owing to the cracks in the thick oxide. On the rolling direction (RD) side, no cracks in the thick oxide film are observed, but cracks are found under the thick oxide film, which deeply propagate in metal matrix along the RD without an external stress. The cracks under the thick oxide film propagate to the center of the oxide layer. The crystal orientation relationship between the oxide layer and the zirconium matrix is (0002)_Z_r//(111)_Z_r_O_2, and the cracks in the oxide layer propagate in the (0002)_Z_r plane in the zirconium matrix. The oxide layer consists of string-like zirconium oxide and zirconium hydride. The string-like zirconium oxide contains orthorhombic ZrO_2 in addition

  2. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement.

    Science.gov (United States)

    Coleman, Nichola J; Li, Qiu

    2013-01-01

    Zirconium oxide has been identified as a candidate radiopacifying agent for use in Portland cement-based biomaterials. During this study, the impact of 20 wt.% zirconium oxide on the hydration and setting reactions of white Portland cement (WPC) was monitored by powder X-ray diffraction (XRD), (29)Si and (27)Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), transmission electron microscopy (TEM) and Vicat apparatus. The presence of 20 wt.% zirconium oxide particles in the size-range of 0.2 to 5 μm was found to reduce the initial and final setting times of WPC from 172 to 147 min and 213 to 191 min, respectively. Zirconium oxide did not formally participate in the chemical reactions of the hydrating cement; however, the surface of the zirconium oxide particles presented heterogeneous nucleation sites for the precipitation and growth of the early C-S-H gel products which accelerated the initial setting reactions. The presence of zirconium oxide was found to have little impact on the development of the calcium (sulpho)aluminate hydrate phases. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Zirconium Micro-Arc Oxidation as a Method for Producing Heat Insulation Elements in Spacecraft

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2014-01-01

    Full Text Available Application of coatings on the surface of materials as well as their composition and structure control in the near-surface layer enables us to use properties of base material and modified layers in the most rational and profitable way and save expensive and rare metals and alloys.The space telescope of T-170M will be the main tool of the international space observatory "Spektr-UF".It is being understood that the main mirror shade, which is in the outer space and has a considerable height will act as a radiator cooling a unit (cage of the main mirror. Therefore it is necessary to create heat insulation between the shade of the main mirror and the frame of the main mirror unit. From the thermal calculations a detail to provide heat insulation must possess thermal conductivity, at most, 2,5 and a conditional limit of fluidity for compression, at least, 125 MPas to ensure that the shade diaphragms position of the main mirror is stable with respect to the optical system of telescope.Considering that oxide of zirconium possesses one of the lowest thermal conductivities among oxides of metals, it is offered to use zirconium, as a material of base, and to put the MAO-covering (micro-arc oxide on its surface.As a result of studying the features of MAO-coverings on zirconium it is:1 found that the composite material consisting of zirconium and MAO-covering on it, has low thermal conductivity (less than 2 , and thus, because of small oxide layer thickness against the thickness of base material, possesses the mechanical properties which are slightly different from the pure zirconium ones;2 found that the composite material possesses the low gas release, allowing its use in the outer space conditions; the material processed in two electrolytes i.e. phosphate and acid ones has the lowest gas release;3 found that with growing thickness of MAO-covering its porosity decreases, thus the average pore diameter grows thereby leading to increasing thermal

  4. The air oxidation behavior of lanthanum ion implanted zirconium at 500 deg. C

    CERN Document Server

    Peng, D Q; Chen, X W; Zhou, Q G

    2003-01-01

    The beneficial effect of lanthanum ion implantation on the oxidation behavior of zirconium at 500 deg. C has been studied. Zirconium specimens were implanted by lanthanum ions using a MEVVA source at energy of 40 keV with a fluence range from 1x10 sup 1 sup 6 to 1x10 sup 1 sup 7 ions/cm sup 2 at maximum temperature of 130 deg. C, The weight gain curves were measured after being oxidized in air at 500 deg. C for 100 min, which showed that a significant improvement was achieved in the oxidation behavior of zirconium ion implanted with lanthanum compared with that of the as-received zirconium. The valence of the oxides in the scale was analyzed by X-ray photoemission spectroscopy; and then the depth distributions of the elements in the surface of the samples were obtained by Auger electron spectroscopy. Glancing angle X-ray diffraction at 0.3 deg. incident angles was employed to examine the modification of its phase transformation because of the lanthanum ion implantation in the oxide films. It was obviously fou...

  5. Dry And Ringer Solution Lubricated Tribology Of Thin Osseoconductive Metal Oxides And Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Waldhauser W.

    2015-09-01

    Full Text Available Achieving fast and strong adhesion to jawbone is essential for dental implants. Thin deposited films may improve osseointegration, but they are prone to cohesive and adhesive fracture due to high stresses while screwing the implant into the bone, leading to bared, less osteoconductive substrate surfaces and nano- and micro-particles in the bone. Aim of this work is the investigation of the cohesion and adhesion failure stresses of osteoconductive tantalum, titanium, silicon, zirconium and aluminium oxide and diamond-like carbon films. The tribological behaviour under dry and lubricated conditions (Ringer solution reveals best results for diamond-like carbon, while cohesion and adhesion of zirconium oxide films is highest.

  6. Experimental investigation and thermodynamic simulation of the uranium oxide-zirconium oxide-iron oxide system in air

    Czech Academy of Sciences Publication Activity Database

    Petrov, Y. B.; Udalov, Y. P.; Šubrt, Jan; Bakardjieva, Snejana; Sázavský, P.; Kiselová, M.; Selucký, P.; Bezdička, Petr; Joumeau, C.; Piluso, P.

    2011-01-01

    Roč. 37, č. 2 (2011), s. 212-229 ISSN 1087-6596 Institutional research plan: CEZ:AV0Z40320502 Keywords : uranium oxide * zirconium oxide * iron oxide * fusibility curve * oxygen partial pressure * crystallization * phase composition Subject RIV: CA - Inorganic Chemistry Impact factor: 0.492, year: 2011

  7. Synthesis and characterization of a mesoporous hydrous zirconium oxide used for arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Bortun, Anatoly; Bortun, Mila; Pardini, James; Khainakov, Sergei A.; Garcia, Jose R.

    2010-01-01

    Powder (20-50 μm) mesoporous hydrous zirconium oxide was prepared from a zirconium salt granular precursor. The effect of some process parameters on product morphology, porous structure and adsorption performance has been studied. The use of hydrous zirconium oxide for selective arsenic removal from drinking water is discussed.

  8. The 5-year Results of an Oxidized Zirconium Femoral Component for TKA

    Science.gov (United States)

    Innocenti, Massimo; Carulli, Christian; Matassi, Fabrizio; Villano, Marco

    2009-01-01

    Osteolysis secondary to polyethylene wear is one of the major factors limiting long-term performance of TKA. Oxidized zirconium is a new material that combines the strength of a metal with the wear properties of a ceramic. It remains unknown whether implants with a zirconium femoral component can be used safely in TKA. To answer that question, we reviewed, at a minimum of 5 years, the clinical outcome and survivorship of a ceramic-surfaced oxidized zirconium femoral component implanted during 98 primary TKAs between April 2001 and December 2003. Survivorship was 98.7% at 7 years postoperatively. No revision was necessary and only one component failed because of aseptic loosening. Mean Knee Society score improved from 36 to 89. No adverse events were observed clinically or radiologically. These results justify pursuing the use of oxidized zirconium as an alternative bearing surface for a femoral component in TKA. Level of Evidence: Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence. PMID:19798541

  9. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Aktuğ, Salim Levent, E-mail: saktug@gtu.edu.tr [The Department of Materials Science and Engineering, Gebze Technical University, Gebze, Kocaeli 41400 (Turkey); Durdu, Salih, E-mail: durdusalih@gmail.com [The Department of Industrial Engineering, Giresun University, Merkez, Giresun 28200 (Turkey); Yalçın, Emine, E-mail: emine.yalcin@giresun.edu.tr [The Department of Biology, Giresun University, Merkez, Giresun 28200 (Turkey); Çavuşoğlu, Kültigin, E-mail: kultigin.cavusoglu@giresun.edu.tr [The Department of Biology, Giresun University, Merkez, Giresun 28200 (Turkey); Usta, Metin, E-mail: ustam@gtu.edu.tr [The Department of Materials Science and Engineering, Gebze Technical University, Gebze, Kocaeli 41400 (Turkey); Materials Institute, Marmara Research Center, TUBITAK, Gebze, Kocaeli 41470 (Turkey)

    2017-02-01

    In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28 days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370 A/cm{sup 2} was minimum compared to uncoated zirconium coated at 0.260 and 0.292 A/cm{sup 2}. The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. - Highlights: • Hydroxyapatite was formed on zirconium at different current densities by single-step plasma electrolytic oxidation. • The amount of hydroxyapatite and calcium-based phases increased with

  10. Effect of carbon on the oxidation of zirconium; Influence du carbone sur l'oxygenation du zirconium a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, G; Boudouresques, B; Coriou, H; Hure, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The study of specimens contaminated by different amounts of carbon shows a deleterious effect of this element in the resistance of zirconium to high temperature oxidation (700 to 900 deg. C). We drew the following results: a) the white spots or 'pimples' observed by numerous authors seem to be caused by the oxidation of precipitated carbides. We suggest a mechanism of formation and growth of these pimples; b) for a certain carbon content, the resistance to oxidation is increased by an uniform dispersion of the carbide phase and decreased, for instance, by extrusion textures. In this case, for the more marked textures, the more oriented corrosion was observed; c) by burning of the carbide phase it can result a second reaction increasing the corrosion rate; d) thin zirconium foils undergoes dimensional changes when scaling in oxygen. This unusual feature is also subordinated to carbon content and specially to the carbide phase dispersion. (author) [French] L'etude d'echantillons differemment contamines par le carbone nous a permis de mettre en evidence l'action particulierement nocive de cet element sur la resistance du zirconium a la corrosion par l'oxygene a haute temperature (700 a 900 deg. C). Nous avons pu degager les resultats essentiels suivants: a) l'origine des pustules d'oxyde blanc signalees par de nombreux auteurs doit etre recherchee dans l'oxydation des carbures precipites. Nous suggerons un mecanisme de formation et de croissance de ces pustules, b) la tenue du metal est d'autant meilleure que, pour une meme teneur en carbone, la phase 'carbure' est plus uniformement dispersee. En consequence, si la dispersion est mauvaise, on observe selon l'axe des textures de filage, par exemple, une corrosion preferentielle d'autant plus accentuee que les textures sont plus marquees, c) la combustion de la phase 'carbure' peut engendrer une reaction secondaire susceptible d'accroitre la cinetique de corrosion, d) l'expansion des grandes faces d

  11. Standard Specification for Nuclear Grade Zirconium Oxide Pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This specification applies to pellets of stabilized zirconium oxide used in nuclear reactors. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  12. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement

    International Nuclear Information System (INIS)

    Coleman, Nichola J.; Li, Qiu

    2013-01-01

    Zirconium oxide has been identified as a candidate radiopacifying agent for use in Portland cement-based biomaterials. During this study, the impact of 20 wt.% zirconium oxide on the hydration and setting reactions of white Portland cement (WPC) was monitored by powder X-ray diffraction (XRD), 29 Si and 27 Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), transmission electron microscopy (TEM) and Vicat apparatus. The presence of 20 wt.% zirconium oxide particles in the size-range of 0.2 to 5 μm was found to reduce the initial and final setting times of WPC from 172 to 147 min and 213 to 191 min, respectively. Zirconium oxide did not formally participate in the chemical reactions of the hydrating cement; however, the surface of the zirconium oxide particles presented heterogeneous nucleation sites for the precipitation and growth of the early C-S-H gel products which accelerated the initial setting reactions. The presence of zirconium oxide was found to have little impact on the development of the calcium (sulpho)aluminate hydrate phases. - Highlights: ► This is the first study of Portland cement-based biomaterials by 27 Al and 29 Si NMR. ► 20 wt.% ZrO 2 radiopacifier accelerates the early cement hydration reactions. ► Extent of hydration after 6 h is increased from 5.7% to 15% in the presence of ZrO 2 . ► Initial and final setting times are reduced by 25 and 22 min, respectively. ► ZrO 2 provides nucleation sites for the precipitation of early hydration products.

  13. Ligand exchange chromatography of free amino acids and proteins on porous microparticulate zirconium oxide

    International Nuclear Information System (INIS)

    Blackwell, J.A.; Carr, P.W.

    1992-01-01

    The Lewis acid sites present on the underlying zirconium oxide particles are responsible for the unusual elution sequence for amino acids on copper loaded, phosphated zirconium oxide supports reported in an earlier study. To more thoroughly examine the effect of these strong Lewis acid sites in this paper. The authors have studied ligand exchange chromatography on copper loaded zirconium oxide particles. It is shown here that carboxylate functional groups on amino acid solutes strongly interact with surface Lewis acid sites. Addition of competing hard Lewis bases to the eluent attenuates these specific interactions. The result is a chromatographic system with high selectivity which is also suitable for ligand exchange chromatography of proteins

  14. Oxidation kinetics and auger microprobe analysis of some oxidized zirconium alloys

    International Nuclear Information System (INIS)

    Ploc, R.A.

    1989-01-01

    Oxidation kinetics at 300 o C in dry oxygen of 0.5 wt% binary alloys of iron, nickel, and chromium in zirconium were determined for several surface preparations. Further, chemical profiles of the oxides as they existed on the matrix and on the precipitates were obtained by sputtering and Auger electron analysis. The appearance of 'breakaway' oxidation was controlled by the surface finish of the alloy, a variable that could be used to eliminate the phenomenon for all alloys except the Zr/Ni binary, which required β-quenching to accomplish the same purpose. (author)

  15. Extensive Bone Reaction From Catastrophic Oxidized Zirconium Wear.

    Science.gov (United States)

    Cassar-Gheiti, Adrian J; Collins, Dennis; McCarthy, Tom

    2016-01-01

    The use of alternative bearing surfaces for total hip arthroplasty has become popular to minimize wear and increase longevity, especially in young patients. Oxidized zirconium (Oxinium; Smith & Nephew, Memphis, Tennessee) femoral heads were introduced in the past decade for use in total hip arthroplasty. The advantages of oxidized zirconium include less risk of fracture compared with traditional ceramic heads. This case report describes a patient with a history of bilateral avascular necrosis of the femoral head after chemotherapy for acute lymphoblastic leukemia. Nonoperative management of avascular necrosis failed, and the patient was treated with bilateral total hip arthroplasty. The patient was followed at regular intervals and had slow eccentric polyethylene wear during a 10-year period. After 10 years, the patient had accelerated wear, with femoral and acetabular bone changes as a result of Oxinium and ultrahigh-molecular-weight polyethylene wear during a 6-month period. This article highlights the unusual accelerated bone changes that occurred as a result of Oxinium wear particles. Copyright 2016, SLACK Incorporated.

  16. Reliability and failure modes of implant-supported zirconium-oxide fixed dental prostheses related to veneering techniques

    Science.gov (United States)

    Baldassarri, Marta; Zhang, Yu; Thompson, Van P.; Rekow, Elizabeth D.; Stappert, Christian F. J.

    2011-01-01

    Summary Objectives To compare fatigue failure modes and reliability of hand-veneered and over-pressed implant-supported three-unit zirconium-oxide fixed-dental-prostheses(FDPs). Methods Sixty-four custom-made zirconium-oxide abutments (n=32/group) and thirty-two zirconium-oxide FDP-frameworks were CAD/CAM manufactured. Frameworks were veneered with hand-built up or over-pressed porcelain (n=16/group). Step-stress-accelerated-life-testing (SSALT) was performed in water applying a distributed contact load at the buccal cusp-pontic-area. Post failure examinations were carried out using optical (polarized-reflected-light) and scanning electron microscopy (SEM) to visualize crack propagation and failure modes. Reliability was compared using cumulative-damage step-stress analysis (Alta-7-Pro, Reliasoft). Results Crack propagation was observed in the veneering porcelain during fatigue. The majority of zirconium-oxide FDPs demonstrated porcelain chipping as the dominant failure mode. Nevertheless, fracture of the zirconium-oxide frameworks was also observed. Over-pressed FDPs failed earlier at a mean failure load of 696 ± 149 N relative to hand-veneered at 882 ± 61 N (profile I). Weibull-stress-number of cycles-unreliability-curves were generated. The reliability (2-sided at 90% confidence bounds) for a 400N load at 100K cycles indicated values of 0.84 (0.98-0.24) for the hand-veneered FDPs and 0.50 (0.82-0.09) for their over-pressed counterparts. Conclusions Both zirconium-oxide FDP systems were resistant under accelerated-life-time-testing. Over-pressed specimens were more susceptible to fatigue loading with earlier veneer chipping. PMID:21557985

  17. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics.

    Science.gov (United States)

    Fidan, S; Muhaffel, F; Riool, M; Cempura, G; de Boer, L; Zaat, S A J; Filemonowicz, A Czyrska-; Cimenoglu, H

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. No difference in in vivo polyethylene wear particles between oxidized zirconium and cobalt-chromium femoral component in total knee arthroplasty.

    Science.gov (United States)

    Minoda, Yukihide; Hata, Kanako; Iwaki, Hiroyoshi; Ikebuchi, Mitsuhiko; Hashimoto, Yusuke; Inori, Fumiaki; Nakamura, Hiroaki

    2014-03-01

    Polyethylene wear particle generation is one of the most important factors affecting mid- to long-term results of total knee arthroplasties. Oxidized zirconium was introduced as a material for femoral components to reduce polyethylene wear generation. However, an in vivo advantage of oxidized zirconium on polyethylene wear particle generation is still controversial. The purpose of this study was to compare in vivo polyethylene wear particles between oxidized zirconium total knee prosthesis and conventional cobalt-chromium (Co-Cr) total knee prosthesis. Synovial fluid was obtained from the knees of 6 patients with oxidized zirconium total knee prosthesis and from 6 patients with conventional cobalt-chromium (Co-Cr) total knee prosthesis 12 months after the operation. Polyethylene particles were isolated and examined using a scanning electron microscope and image analyser. Total number of particles in each knee was 3.3 ± 1.3 × 10(7) in the case of oxidized zirconium (mean ± SD) and 3.4 ± 1.2 × 10(7) in that of Co-Cr (n.s.). The particle size (equivalent circle diameter) was 0.8 ± 0.3 μm in the case of oxidized zirconium and 0.6 ± 0.1 μm in that of Co-Cr (n.s.). The particle shape (aspect ratio) was 1.4 ± 0.0 in the case of oxidized zirconium and 1.4 ± 0.0 in that of metal Co-Cr (n.s). Although newly introduced oxidized zirconium femoral component did not reduce the in vivo polyethylene wear particles in early clinical stage, there was no adverse effect of newly introduced material. At this moment, there is no need to abandon oxidized zirconium femoral component. However, further follow-up of polyethylene wear particle generation should be performed to confirm the advantage of the oxidized zirconium femoral component. Therapeutic study, Level III.

  19. Separation of sup(99m)Tc from 99Mo through a hydrous zirconium oxide column

    International Nuclear Information System (INIS)

    Mengatti, J.

    1980-01-01

    The preparation of 99 Mo-,sup(99m)Tc generator based on the adsorption of 99 Mo on hydrous zirconium oxide column, employing the in exchange technique, is described. The adsorption of 99 Mo on hydrous zirconium oxide (HZO) and the separation of sup(99m)Tc, generated by the decay of 99 Mo with saline solution, are analised. The sup(99m)Tc separation yield, pH of the eluted solution, aspect of the elution curve and the adsorption of 99 Mo on hydrous zirconium oxide calcined at 800 0 C are studied. The chemical and radioactive purities of the final product are analysed and the variation of the elution yield for successive elutions is studied. (Author) [pt

  20. Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material.

    Science.gov (United States)

    Camilleri, J; Cutajar, A; Mallia, B

    2011-08-01

    Zirconium oxide can be added to dental materials rendering them sufficiently radiopaque. It can thus be used to replace the bismuth oxide in mineral trioxide aggregate (MTA). Replacement of Portland cement with 30% zirconium oxide mixed at a water/cement ratio of 0.3 resulted in a material with adequate physical properties. This study aimed at investigating the microstructure, pH and leaching in physiological solution of Portland cement replaced zirconium oxide at either water-powder or water-cement ratios of 0.3 for use as a root-end filling material. The hydration characteristics of the materials which exhibited optimal behavior were evaluated. Portland cement replaced by zirconium oxide in varying amounts ranging from 0 to 50% in increments of 10 was prepared and divided into two sets. One set was prepared at a constant water/cement ratio while the other set at a constant water/powder ratio of 0.3. Portland cement and MTA were used as controls. The materials were analyzed under the scanning electron microscope (SEM) and the hydration products were determined. X-ray energy dispersive analysis (EDX) was used to analyze the elemental composition of the hydration products. The pH and the amount of leachate in Hank's balanced salt solution (HBSS) were evaluated. A material that had optimal properties that satisfied set criteria and could replace MTA was selected. The microstructure of the prototype material and Portland cement used as a control was assessed after 30 days using SEM and atomic ratio diagrams of Al/Ca versus Si/Ca and S/Ca versus Al/Ca were plotted. The hydration products of Portland cement replaced with 30% zirconium oxide mixed at water/cement ratio of 0.3 were calcium silicate hydrate, calcium hydroxide and minimal amounts of ettringite and monosulphate. The calcium hydroxide leached in HBSS solution resulted in an increase in the pH value. The zirconium oxide acted as inert filler and exhibited no reaction with the hydration by-products of Portland

  1. Traps in Zirconium Alloys Oxide Layers

    Directory of Open Access Journals (Sweden)

    Helmar Frank

    2005-01-01

    Full Text Available Oxide films long-time grown on tubes of three types of zirconium alloys in water and in steam were investigated, by analysing I-V characteristic measured at constant voltages with various temperatures. Using theoretical concepts of Rose [3] and Gould [5], ZryNbSn(Fe proved to have an exponential distribution of trapping centers below the conduction band edge, wheras Zr1Nb and IMP Zry-4 proved to have single energy trap levels.

  2. Zirconium oxide obtainment from brazilian zircon concentrate

    International Nuclear Information System (INIS)

    Ribeiro, S.; Martins, A.H.

    1991-01-01

    This work presents the experimental results of studies about alkaline melting, acid leaching and sulfation steps for obtention of zirconium oxide and partially stabilized zirconia by yttrium and rare-earth coprecipitation in chlorine medium, starting from the brazilian zircon concentrate. Using statistical methods of factorial design and the Packett-Burman approach, the results are discussed and the optimal conditions of the production steps were determined. (author)

  3. Experimental Calcium Silicate-Based Cement with and without Zirconium Oxide Modulates Fibroblasts Viability.

    Science.gov (United States)

    Slompo, Camila; Peres-Buzalaf, Camila; Gasque, Kellen Cristina da Silva; Damante, Carla Andreotti; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; de Oliveira, Rodrigo Cardoso

    2015-01-01

    The aim of this study was to verify whether the use of zirconium oxide as a radiopacifier of an experimental calcium silicate-based cement (WPCZO) leads to cytotoxicity. Fibroblasts were treated with different concentrations (10 mg/mL, 1 mg/mL, and 0.1 mg/mL) of the cements diluted in Dulbecco's modified Eagle's medium (DMEM) for periods of 12, 24, and 48 h. Groups tested were white Portland cement (WPC), white Portland cement with zirconium oxide (WPCZO), and white mineral trioxide aggregate Angelus (MTA). Control group cells were not treated. The cytotoxicity was evaluated through mitochondrial-activity (MTT) and cell-density (crystal violet) assays. All cements showed low cytotoxicity. In general, at the concentration of 10 mg/mL there was an increase in viability of those groups treated with WPC and WPCZO when compared to the control group (pcement with 20% zirconium oxide as the radiopacifier showed low cytotoxicity as a promising material to be exploited for root-end filling.

  4. Influence of preliminary radiation-oxidizing treatment on the corrosion resistance of zirconium in conditions of action of ionizing radiation

    International Nuclear Information System (INIS)

    Garibov, A. A.; Aliyev, A. G.; Agayev, T. N.; Velibekova, G. Z.

    2004-01-01

    Today mainly water-cooled nuclear reactors predominate in atomic energetics. For safe work of nuclear reactors detection of accumulation process of explosives, formed during radiation and temperature influence on heat-carriers in contact with materials of nuclear reactors in normal and emergency regimes of work is of great importance. The main sources of molecular hydrogen formation in normal and emergency regimes are the processes of liquid and vaporous water in vapo metallic reaction [1-5]. At the result of these processes molecular hydrogen concentration in heat-carrier composition always exceeds theoretically expected concentration. One of the main ways to solve the problem of water-cooled reactors safety is detection of possibilities to raise material resistance of fuel elements and heat carrier to joint action of ionizing radiation and temperature. The second way is inhibition of radiation-catalytic activity of construction materials' surface during the process of water decomposition. It's been established, that one of the ways to raise resistance of zirconium materials to the influence of ionizing radiation is formation of thin oxide film on the surface of metals. In the given work the influence of preliminary oxidizing treatment of zirconium surface on its radiation-catalytic activity during the process of water decomposition. With this aim zirconium is exposed to preliminary influence of gamma-quantum in contact with hydrogen peroxide at different meanings of absorbed radiation dose

  5. Oxidation of zirconium-aluminum alloys

    International Nuclear Information System (INIS)

    Cox, B.

    1967-10-01

    Examination of the processes occurring during the oxidation of Zr-1% A1, Zr-3% A1, and Zr-1.5% A1-0.5% Mo alloys has shown that in steam rapid oxidation occurs predominantly around the Zr 3 A1 particles, which at low temperatures appear to be relatively unattacked. The unoxidised particles become incorporated in the oxide, and become fully oxidised as the film thickens. This rapid localised oxidation is preceded by a short period of uniform film growth, during which the oxide film thickness does not exceed ∼200A-o. Thus the high oxidation rates can probably be ascribed to aluminum in solution in the zirconium matrix, although its precise mode of operation has not been determined. Once the solubility limit of aluminum is exceeded, the size, distribution and number of intermetallic particles affects the oxidation rate merely by altering the distribution of regions of metal giving high oxidation rates. The controlling process during the early stages of oxidation is electron transport and not ionic transport. Thus, the aluminum in the oxide film is presumably increasing the ionic conductivity more than the electronic. The oxidation rates in atmospheric pressure steam are very high and their irregular temperature dependence suggests that the oxidation rate will be pressure dependent. This was confirmed, in part, by a comparison with oxidation in moist air. It was found that the rate of development of white oxide around intermetallic particles was considerably reduced by the decrease in the partial pressure of H 2 O; the incubation period was not much different, however. (author)

  6. Synthesis of mesoporous cerium-zirconium mixed oxides by hydrothermal templating method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template.The effects of amount of template,pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated.The final products were characterized by XRD,TEM,FT-IR,and BET.The results indicate that all the cerium-zirconium mixed oxides present a meso-structure.At molar ratio of n(CTAB)/n((Ce)+(Zr))=0.15,pH value of 9,and hydrothermal temperature of 120 ℃,the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.

  7. Study of the pelletizing process zirconium oxide and zircon sand

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Paschoal, J.O.A.; Acevedo, M.T.P.

    1990-12-01

    The study of the process to obtain zirconium tetrachloride under development at IPEN, can be divide into two steps: pelletizing and chlorination. Pelletizing is an important step in the overall process as it facilitates greater contact between the particles and permits the production of pellets with dimensional uniformity and mechanical strength. In this paper, the results of the study of pelletizing zirconium oxide and zircon sand are presented. The influence of some variables related to the process and the equipment on the physical characteristics of the pellets are discussed. (author)

  8. The Effect of Luting Cement and Titanium Base on the Final Color of Zirconium Oxide Core Material.

    Science.gov (United States)

    Capa, Nuray; Tuncel, Ilkin; Tak, Onjen; Usumez, Aslihan

    2017-02-01

    To evaluate the effects of different types of luting cements and different colors of zirconium cores on the final color of the restoration that simulates implant-supported fixed partial dentures (FPDs) by using a titanium base on the bottom. One hundred and twenty zirconium oxide core plates (Zr-Zahn; 10 mm in width, 5 mm in length, 0.5 mm in height) were prepared in different shades (n = 20; noncolored, A2, A3, B1, C2, D2). The specimens were subdivided into two subgroups for the two types of luting cements (n = 10). The initial color measurements were made on zirconium oxide core plates using a spectrometer. To create the cement thicknesses, stretch strips with holes in the middle (5 mm in diameter, 70 μm in height) were used. The second measurement was done on the zirconium oxide core plates after the application of the resin cement (U-200, A2 Shade) or polycarboxylate cement (Lumicon). The final measurement was done after placing the titanium discs (5 mm in diameter, 3 mm in height) in the bottom. The data were analyzed with two-way ANOVA and Tukey's honestly significant differences (HSD) tests (α = 0.05). The ∆E* ab value was higher in the resin cement-applied group than in the polycarboxylate cement-applied group (p zirconium oxide core-resin cement-titanium base, and the lowest was recorded for the polycarboxylate cement-zirconium oxide core (p zirconium are all important factors that determine the final shade of zirconia cores in implant-supported FPDs. © 2015 by the American College of Prosthodontists.

  9. Layer-by-layer deposition of zirconium oxide films from aqueous solutions for friction reduction in silicon-based microelectromechanical system devices

    International Nuclear Information System (INIS)

    Liu Junfu; Nistorica, Corina; Gory, Igor; Skidmore, George; Mantiziba, Fadziso M.; Gnade, Bruce E.

    2005-01-01

    This work reports layer-by-layer deposition of zirconium oxide on a Si surface from aqueous solutions using the successive ionic layer adsorption and reaction technique. The process consists of repeated cycles of adsorption of zirconium precursors, water rinse, and hydrolysis. The film composition was determined by X-ray photoelectron spectroscopy. The film thickness was determined by Rutherford backscattering spectrometry, by measuring the Zr atom concentration. The average deposition rate from a 0.1 M Zr(SO 4 ) 2 solution on a SiO 2 /Si surface is 0.62 nm per cycle. Increasing the acidity of the zirconium precursor solution inhibits the deposition of the zirconium oxide film. Atomic force microscopy shows that the zirconium oxide film consists of nanoparticles of 10-50 nm in the lateral dimension. The surface roughness increased with increasing number of deposition cycles. Friction measurements made with a microelectromechanical system device reveal a reduction of 45% in the friction coefficient of zirconium oxide-coated surfaces vs. uncoated surfaces in air

  10. Characterization of zirconium alloy oxidation films by alternating current impedance

    International Nuclear Information System (INIS)

    Rosecrans, P.M.

    1983-11-01

    Kinetics of zirocnium alloy oxidation are highly nonlinear. The results of electrochemical measurements and electron microscopy support the existence of porosity in oxide films formed on zirconium alloys in high temperature aqueous environments. Analytical treatment is presented relating oxidation kinetics to the thickness and distribution of nonporous elements within the oxide. This analysis illustrates that both the level and distribution of porosity within the oxide factor into oxidation kinetics. The barrier layer model can provide a basis for predicting the effect of environmental changes on oxidation rate. In addition, it demonstrates the need for further research into porosity generation mechanisms in oxide films

  11. Zirconium-barrier cladding attributes

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.; Rand, R.A.; Tucker, R.P.; Cheng, B.; Adamson, R.B.; Davies, J.H.; Armijo, J.S.; Wisner, S.B.

    1987-01-01

    This metallurgical study of Zr-barrier fuel cladding evaluates the importance of three salient attributes: (1) metallurgical bond between the zirconium liner and the Zircaloy substrate, (2) liner thickness (roughly 10% of the total cladding wall), and (3) softness (purity). The effect that each of these attributes has on the pellet-cladding interaction (PCI) resistance of the Zr-barrier fuel was studied by a combination of analytical model calculations and laboratory experiments using an expanding mandrel technique. Each of the attributes is shown to contribute to PCI resistance. The effect of the zirconium liner on fuel behavior during off-normal events in which steam comes in contact with the zirconium surface was studied experimentally. Simulations of loss-of-coolant accident (LOCA) showed that the behavior of Zr-barrier cladding is virtually indistinguishable from that of conventional Zircaloy cladding. If steam contacts the zirconium liner surface through a cladding perforation and the fuel rod is operated under normal power conditions, the zirconium liner is oxidized more rapidly than is Zircaloy, but the oxidation rate returns to the rate of Zircaloy oxidation when the oxide phase reaches the zirconium-Zircaloy metallurgical bond

  12. Weight of Polyethylene Wear Particles is Similar in TKAs with Oxidized Zirconium and Cobalt-chrome Prostheses

    Science.gov (United States)

    Kim, Jun-Shik; Huh, Wansoo; Lee, Kwang-Hoon

    2009-01-01

    Background The greater lubricity and resistance to scratching of oxidized zirconium femoral components are expected to result in less polyethylene wear than cobalt-chrome femoral components. Questions/purposes We examined polyethylene wear particles in synovial fluid and compared the weight, size (equivalent circle diameter), and shape (aspect ratio) of polyethylene wear particles in knees with an oxidized zirconium femoral component with those in knees with a cobalt-chrome femoral component. Patients and Methods One hundred patients received an oxidized zirconium femoral component in one knee and a cobalt-chrome femoral component in the other. There were 73 women and 27 men with a mean age of 55.6 years (range, 44–60 years). The minimum followup was 5 years (mean, 5.5 years; range, 5–6 years). Polyethylene wear particles were analyzed using thermogravimetric methods and scanning electron microscopy. Results The weight of polyethylene wear particles produced at the bearing surface was 0.0223 ± 0.0054 g in 1 g synovial fluid in patients with an oxidized zirconium femoral component and 0.0228 ± 0.0062 g in patients with a cobalt-chrome femoral component. Size and shape of polyethylene wear particles were 0.59 ± 0.05 μm and 1.21 ± 0.24, respectively, in the patients with an oxidized zirconium femoral component and 0.52 ± 0.03 μm and 1.27 ± 0.31, respectively, in the patients with a cobalt-chrome femoral component. Knee Society knee and function scores, radiographic results, and complication rate were similar between the knees with an oxidized zirconium and cobalt-chrome femoral component. Conclusions The weight, size, and shape of polyethylene wear particles were similar in the knees with an oxidized zirconium and a cobalt-chrome femoral component. We found the theoretical advantages of this surface did not provide the actual advantage. Level of Evidence Level I, therapeutic study. See the guidelines for Authors for a complete

  13. Stress-induced breakdown during galvanostatic anodising of zirconium

    International Nuclear Information System (INIS)

    Van Overmeere, Q.; Proost, J.

    2010-01-01

    Although internal stress is frequently being suggested as a plausible reason for oxide breakdown during valve metal anodising, no direct quantitative evidence has been made available yet. In this work, we anodized sputtered zirconium thin films galvanostatically at room temperature in sulphuric acid until breakdown was observed, and simultaneously measured the internal stress evolution in the oxide in situ, using a high-resolution curvature setup. It was found that the higher the magnitude of the observed internal compressive stress in the oxide, the smaller the oxide thickness at which breakdown occurred. The moment of breakdown was identified from a slope change in the cell voltage evolution, indicative for a decrease in anodising efficiency. The latter presumably occurs as a result of oxygen evolution, initiated by the relative increase of the cubic or tetragonal zirconia phase content relative to the monoclinic one. This was evidenced in turn by comparing electron diffractograms, taken in a transmission electron microscope, before and after breakdown. The critical role of internal stress on oxide breakdown during zirconium anodising can therefore be associated with its promoting effect on the densifying phase transformation of monoclinic oxide.

  14. Trap state passivation improved hot-carrier instability by zirconium-doping in hafnium oxide in a nanoscale n-metal-oxide semiconductor-field effect transistors with high-k/metal gate

    International Nuclear Information System (INIS)

    Liu, Hsi-Wen; Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Chang, Ting-Chang; Chen, Ching-En; Tseng, Tseung-Yuen; Lin, Chien-Yu; Cheng, Osbert; Huang, Cheng-Tung; Ye, Yi-Han

    2016-01-01

    This work investigates the effect on hot carrier degradation (HCD) of doping zirconium into the hafnium oxide high-k layer in the nanoscale high-k/metal gate n-channel metal-oxide-semiconductor field-effect-transistors. Previous n-metal-oxide semiconductor-field effect transistor studies demonstrated that zirconium-doped hafnium oxide reduces charge trapping and improves positive bias temperature instability. In this work, a clear reduction in HCD is observed with zirconium-doped hafnium oxide because channel hot electron (CHE) trapping in pre-existing high-k bulk defects is the main degradation mechanism. However, this reduced HCD became ineffective at ultra-low temperature, since CHE traps in the deeper bulk defects at ultra-low temperature, while zirconium-doping only passivates shallow bulk defects.

  15. Do oxidized zirconium femoral heads reduce polyethylene wear in cemented THAs? A blinded randomized clinical trial.

    Science.gov (United States)

    Zaoui, Amine; Hage, Samer El; Langlois, Jean; Scemama, Caroline; Courpied, Jean Pierre; Hamadouche, Moussa

    2015-12-01

    Charnley low-friction torque total hip arthroplasty (THA) remains the gold standard in THA. The main cause for failure is wear of the socket. Highly crosslinked polyethylene (HXLPE) has been associated with reduced wear rates. Also, oxidized zirconium has shown in vitro reduced wear rates. However, to our knowledge, there are no data comparing oxidized zirconium femoral heads with metal heads against HXLPE or ultrahigh-molecular-weight polyethylene (UHMWPE) when 22.25-mm bearings were used, which was the same size that performed so well in Charnley-type THAs. We hypothesized that after a minimal 4-year followup (1) use of HXLPE would result in lower radiographic wear than UHMWPE when articulating with a stainless steel head or with an oxidized zirconium head; (2) use of oxidized zirconium would result in lower radiographic wear than stainless steel when articulating with UHMWPE and HXLPE; and (3) there would be no difference in terms of Merle d'Aubigné scores between the bearing couple combinations. One hundred patients were randomized to receive cemented THA with either oxidized zirconium or a stainless steel femoral head. UHMWPE was used in the first 50 patients, whereas HXLPE was used in the next 50 patients. There were 25 patients in each of the four bearing couple combinations. All other parameters were identical in both groups. Complete followup was available in 86 of these patients. Femoral head penetration was measured using a validated computer-assisted method dedicated to all-polyethylene sockets. Clinical results were compared between the groups using the Merle d'Aubigné score. In the UHMWPE series, the median steady-state penetration rate from 1 year onward was 0.03 mm/year (range, 0.003-0.25 mm/year) in the oxidized zirconium group versus 0.11 mm/year (range, 0.03-0.29 mm/year) in the metal group (difference of medians 0.08, p zirconium group versus 0.05 mm/year (range, -0.39 to 0.11 mm/year) in the metal group (difference of medians 0.03, p

  16. Passivation of mechanically polished, chemically etched and anodized zirconium in various aqueous solutions: Impedance measurements

    International Nuclear Information System (INIS)

    Abo-Elenien, G.M.; Abdel-Salam, O.E.

    1987-01-01

    Zirconium and its alloys are finding increasing applications especially in water-cooled nuclear reactors. Because of the fact that zirconium is electronegative (E 0 = -1.529V) its corrosion resistance in aqueous solutions is largely determined by the existence of a thin oxide film on its surface. The structure and properties of this film depend in the first place on the method of surface pre-treatment. This paper presents an experimental study of the nature of the oxide film on mechanically polished, chemically etched and anodized zirconium. Ac impedance measurements carried out in various acidic, neutral and alkaline solutions show that the film thickness depends on the method of surface pre-treatment and the type of electrolyte solution. The variation of the potential and impedance during anodization of zirconium at low current density indicates that the initial stages of polarization consist of oxide build-up at a rate dependent on the nature of the electrode surface and the electrolyte. Oxygen evolution commences at a stage where oxide thickening starts to decline. The effect of frequency on the measured impedance indicates that the surface reactivity, and hence the corrosion rate, decreases in the following order: mechanically polished > chemically etched > anodized

  17. Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Joshua K.; Arcibar-Orozco, Javier A.; Bandosz, Teresa J., E-mail: tbandosz@ccny.cuny.edu

    2016-12-30

    Highlights: • Microporous zirconium-cerium (hydr) oxides were synthetized. • Ce presence narrowed the band gap of the materials. • The samples showed a high efficiency for removal of CEES vapors. • 1,2-Bis (ethyl thio) ethane and ethyl vinyl sulfide were the main reaction products. • 5% (Ce/Zr mol) addition of cerium oxide results in the best performing material. - Abstract: Highly porous cerium oxide modified Zr(OH){sub 4} samples were synthesized using a simple one stage urea precipitation method. The amorphicity level of zirconium hydroxide did not change upon addition of cerium oxide particles. A unique aspect of the cerium oxide-modified materials is the presence of both the oxide (CeO{sub 2}) and hydroxide (Zr(OH){sub 4}) phases resulting in a unique microporous structure of the final material. Extensive characterization using various chemical and physical methods revealed significant differences in the surface features. All synthesized materials were microporous and small additions of cerium oxide affected the surface chemistry. These samples were found as effective catalysts for a decontamination of mustard gas surrogate, 2-chloroethyl ethyl sulfide (CEES). Cerium oxide addition significantly decreased the band gap of zirconium hydroxide. Ethyl vinyl sulfide and 1,2-bis (Ethyl thio) ethane were identified as surface reaction products.

  18. Standard specification for nuclear-grade zirconium oxide powder

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification defines the physical and chemical requirements for zirconium oxide powder intended for fabrication into shapes, either entirely or partially of zirconia, for use in a nuclear reactor core. 1.2 The material described herein shall be particulate in nature. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  19. Photoelectrochemical properties and band structure of oxide films on zirconium-transition metal alloys

    International Nuclear Information System (INIS)

    Takahashi, Kazuo; Uno, Masayoshi; Okui, Mihoko; Yamanaka, Shinsuke

    2006-01-01

    The microalloying effects of 4d and 5d transition metals, M (M: Nb, Mo, Ta, W) on the photoelectrochemical properties, the flat band potential (U fb ) and the band gap energy (E g ), for zirconium oxide films were investigated by photoelectrochemical measurements and band calculation. Button ingots of zirconium-5 mol% M (M: Nb, Mo, Ta, W) were made from high-purity metals (99.9% purity) by arc melting in a purified argon atmosphere. These plate specimens were sealed into silica tubes in vacuum, and then homogenized at 1273 K for 24 h. Subsequently, these specimens were oxidized up to 1173 K. The photocurrent of each specimen was evaluated at room temperature under the irradiation of Xe lamp (500 W) through grating monochrometer and cut-off filter. 0.1 M Na 2 SO 4 solution was used as the electrolyte. The value of the flat band potential was higher and the value of the band gap energy was smaller than that of pure zirconium oxide film in all sample. It was found from the calculation by CASTEP code that the decreases in band gap energy of these oxide films was due to formation of 4d or 5d orbital of transition metals

  20. MOCVD of zirconium oxide from the zirconium guanidinate complex |ZrCp′{2-(iPrN)2CNMe2}2Cl

    NARCIS (Netherlands)

    Blackman, C.S.; Carmalt, C.J.; Moniz, S.J.A.; Potts, S.E.; Davies, H.O.; Pugh, D.C.

    2009-01-01

    Parallel to successful studies into use of [ZrCp'{¿ 2-(iPrN)2CNMe2} 2Cl] as a precursor to the deposition of zirconium carbonitride via CVD the same precursor was utilised for the MOCVD of thin films of ZrO 2 using borosilicate glass substrates. The deposited films were of mixed phase; films

  1. Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method

    International Nuclear Information System (INIS)

    Wang Luning; Luo Jingli

    2011-01-01

    Hydroxyapatite (HA) coating has been widely applied on metallic biomedical implants to enhance their biocompatibility. It has been reported that HA coating can be formed on annealed zirconium with anodic zirconium oxide nanotubular arrays after immersion in simulated biological fluid (SBF) for about 14 days. In the present study, we apply an alternative immersion method (AIM) to form presynthesized HA on ZrO 2 nanotubes. The AIM-treated specimen was then moved to the SBF to evaluate the capability for the formation of HA on it. The HA coating formed after only 2 days immersion and thickened after 5 days in the SBF. The HA coating is the carbonated HA with a ratio of Ca to P of about 1.4, similar to the physiological HA containing other minor elements such as Mg and Na. The results demonstrate that the AIM treatment is indeed suitable for the zirconium oxide nanotubes and highly accelerates the formation of HA coating in comparison with the existing methods, i.e. the annealing of the as-formed zirconium oxide nanotubular arrays.

  2. Critical assessment of finite element analysis applied to metal–oxide interface roughness in oxidising zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Platt, P., E-mail: Philip.Platt@manchester.ac.uk [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Frankel, P. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Gass, M. [AMEC, Walton House, Faraday Street, Birchwood Park, Risley, Warrington WA3 6GA (United Kingdom); Preuss, M. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom)

    2015-09-15

    As a nuclear fuel cladding material, zirconium alloys act as a barrier between the fuel and pressurised steam or lithiated water environment. Controlling degradation mechanisms such as oxidation is essential to extending the in-service lifetime of the fuel. At temperatures of ∼360 °C zirconium alloys are known to exhibit cyclical, approximately cubic corrosion kinetics. With acceleration in the oxidation kinetics occurring every ∼2 μm of oxide growth, and being associated with the formation of a network of lateral cracks. Finite element analysis has been used previously to explain the lateral crack formation by the development of localised out-of-plane tensile stresses at the metal–oxide interface. This work uses the Abaqus finite element code to assess critically current approaches to representing the oxidation of zirconium alloys, with relation to undulations at the metal–oxide interface and localised stress generation. This includes comparison of axisymmetric and 3D quartered modelling approaches, and investigates the effect of interface geometry and plasticity in the metal substrate. Particular focus is placed on the application of the anisotropic strain tensor used to represent the oxidation mechanism, which is typically applied with a fixed coordinate system. Assessment of the impact of the tensor showed that 99% of the localised tensile stresses originated from the out-of-plane component of the strain tensor, rather than the in-plane expansion as was previously thought. Discussion is given to the difficulties associated with this modelling approach and the requirements for future simulations of the oxidation of zirconium alloys.

  3. The effect of substrate texture and oxidation temperature on oxide texture development in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garner, A., E-mail: alistair.garner@manchester.ac.uk [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom); Frankel, P. [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom); Partezana, J. [Westinghouse Electric Company, 1332 Beulah Road, Pittsburgh, PA 15235 (United States); Preuss, M. [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom)

    2017-02-15

    During corrosion of zirconium alloys a highly textured oxide is formed, the degree of this preferred orientation has previously been shown to be an important factor in determining the corrosion behaviour of these alloys. Two distinct experiments were designed in order to investigate the origin of this oxide texture development on two commercial alloys. Firstly, sheet samples of Zircaloy-4 were oxidised between 500 and 800 °C in air. The resulting monoclinic oxide texture strength was observed to decrease with increasing oxidation temperature. In a second experiment, orthogonal faces of Low Tin ZIRLO{sub ™} were oxidised in 360 °C water, providing different substrate textures but identical microstructures. The substrate texture was observed to have a negligible effect on the corrosion performance whilst the major orientation of both oxide phases was found to be independent of substrate orientation. It is concluded that the main driving force for oxide texture development in single-phase zirconium alloys is the compressive stress caused by the Zr−ZrO{sub 2} transformation. - Highlights: • Substrate orientation does not significantly affect oxide texture development. • Corrosion performance is independent of substrate texture. • Monoclinic oxide texture strength decreases with increasing oxidation temperature. • The main driving force for texture development is the oxidation-induced stress.

  4. Synthesis and biological characterization of zirconium oxynitride thin film growth by radio-frequency sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, G.I. [Departamento de Química, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia); Olaya, J.J. [Facultad de Ingeniería, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia); Clavijo, D. [Facultad de Medicina, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia); Alfonso, J.E., E-mail: jealfonsoo@unal.edu.co [Grupo de materiales con Aplicaciones Tecnológicas, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia); Cardozo, C. [Instituto de Biotecnología, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia)

    2013-02-01

    Thin films of zirconium oxynitride were grown on common glass, silicon substrates (100) and on stainless steel 316L using the reactive RF magnetron sputtering technique. The films were analyzed through structural, morphological, and biocompatibility studies. The structural analysis was carried out using X-ray diffraction (XRD), and the morphological analysis was carried out using scanning electron microscopy (SEM) and atomic force microscopy (AFM). These studies were done as a function of growth parameters, such as power applied to the target, substrate temperature, and flow ratios. The studies of biocompatibility were carried out on zirconium oxynitride films deposited on stainless steel 316L through proliferation and cellular adhesion. The XRD analysis showed that films deposited at 623 K, with a flow ratio ΦN{sub 2}/ΦO{sub 2} of 1.25 and a total deposit time of 30 min grew preferentially oriented along the (111) plane of the zirconium oxynitride monoclinic phase. The SEM analyses showed that the films grew homogeneously, and the AFM studies indicated that the average rugosity of the film was 5.9 nm and the average particle size was 150 nm. Finally, through the analysis of the biocompatibility, we established that the films have a better surface than the substrate (stainless steel 316L) in terms of adhesion and proliferation of bone cells. - Highlights: ►ZrO{sub x}N{sub y} thin films were deposited using reactive radio-frequency magnetron sputtering. ►We studied the effect of deposition parameters on ZrO{sub x}N{sub y} thin films microstructure. ►We have been able to grow bone cells on ZrO{sub x}N{sub y} coated stainless steel 316L.

  5. Analysis of zirconium and nickel based alloys and zirconium oxides by relative and internal monostandard neutron activation analysis methods

    International Nuclear Information System (INIS)

    Shinde, Amol D.; Acharya, Raghunath; Reddy, Annareddy V. R.

    2017-01-01

    The chemical characterization of metallic alloys and oxides is conventionally carried out by wet chemical analytical methods and/or instrumental methods. Instrumental neutron activation analysis (INAA) is capable of analyzing samples nondestructively. As a part of a chemical quality control exercise, Zircaloys 2 and 4, nimonic alloy, and zirconium oxide samples were analyzed by two INAA methods. The samples of alloys and oxides were also analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and direct current Arc OES methods, respectively, for quality assurance purposes. The samples are important in various fields including nuclear technology. Samples were neutron irradiated using nuclear reactors, and the radioactive assay was carried out using high-resolution gamma-ray spectrometry. Major to trace mass fractions were determined using both relative and internal monostandard (IM) NAA methods as well as OES methods. In the case of alloys, compositional analyses as well as concentrations of some trace elements were determined, whereas in the case of zirconium oxides, six trace elements were determined. For method validation, British Chemical Standard (BCS)-certified reference material 310/1 (a nimonic alloy) was analyzed using both relative INAA and IM-NAA methods. The results showed that IM-NAA and relative INAA methods can be used for nondestructive chemical quality control of alloys and oxide samples

  6. Analysis of zirconium and nickel based alloys and zirconium oxides by relative and internal monostandard neutron activation analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Amol D.; Acharya, Raghunath; Reddy, Annareddy V. R. [Bhabha Atomic Research Centre, Mumbai (India)

    2017-04-15

    The chemical characterization of metallic alloys and oxides is conventionally carried out by wet chemical analytical methods and/or instrumental methods. Instrumental neutron activation analysis (INAA) is capable of analyzing samples nondestructively. As a part of a chemical quality control exercise, Zircaloys 2 and 4, nimonic alloy, and zirconium oxide samples were analyzed by two INAA methods. The samples of alloys and oxides were also analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and direct current Arc OES methods, respectively, for quality assurance purposes. The samples are important in various fields including nuclear technology. Samples were neutron irradiated using nuclear reactors, and the radioactive assay was carried out using high-resolution gamma-ray spectrometry. Major to trace mass fractions were determined using both relative and internal monostandard (IM) NAA methods as well as OES methods. In the case of alloys, compositional analyses as well as concentrations of some trace elements were determined, whereas in the case of zirconium oxides, six trace elements were determined. For method validation, British Chemical Standard (BCS)-certified reference material 310/1 (a nimonic alloy) was analyzed using both relative INAA and IM-NAA methods. The results showed that IM-NAA and relative INAA methods can be used for nondestructive chemical quality control of alloys and oxide samples.

  7. Swelling of a Zirconium Oxide Film

    International Nuclear Information System (INIS)

    Henderson, Mark; Hawley, Adrian; White, John; Rennie, Adrian

    2005-01-01

    Full text: The structural changes that cause the change in the interlayer spacing of a surfactanttemplated zirconium oxide film have been studied using neutron diffractometry. We report that the film after drying on a glass substrate swells slightly through the addition of benzene by up to 4 Aangstroem on a lattice parameter of about 36 Aangstroem. The (001) and (002) diffraction peaks positions, widths and areas of a swollen film were then monitored by neutron diffraction as a function of benzene desorption. Disorder of the lamellar mesophase is considered as a cause of the observed effects on the diffraction signals. (authors)

  8. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation.

    Science.gov (United States)

    Aktuğ, Salim Levent; Durdu, Salih; Yalçın, Emine; Çavuşoğlu, Kültigin; Usta, Metin

    2017-02-01

    In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370A/cm 2 was minimum compared to uncoated zirconium coated at 0.260 and 0.292A/cm 2 . The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Influence of protecting gel film on oxidation of zirconium alloys

    Czech Academy of Sciences Publication Activity Database

    Frank, H.; Weishauptová, Zuzana; Vrtílková, V.

    2007-01-01

    Roč. 360, č. 3 (2007), s. 282-292 ISSN 0022-3115 R&D Projects: GA ČR GA106/04/0043 Institutional research plan: CEZ:AV0Z30460519 Keywords : fuel cladding * corrosion * Zirconium oxide Subject RIV: JF - Nuclear Energetics Impact factor: 1.643, year: 2007

  10. Growth and characterization of oxide layers on zirconium alloys

    International Nuclear Information System (INIS)

    Maroto, A.J.G.; Bordoni, R.; Villegas, M.; Blesa, M.A.; Olmedo, A.M.; Iglesias, A.; Rigotti, G.

    1997-01-01

    Corrosion behaviour in aqueous media at high temperature of zirconium alloys has been extensively studied in order to elucidate the corrosion mechanism and kinetics. The characterization of the morphology and microstructure of these oxides through the different stages of oxide growth may contribute to understand their corrosion mechanism. Argentina has initiated a research program to correlate long term in and out-reactor corrosion of these alloys. This paper reports a comparative study of out of pile oxidation of Zr-2.5Nb and Zry-4, which are structural materials of in-core components of nuclear power plants. Kinetic data at different temperatures and microstructural characterization of the oxide films are presented. (author). 25 refs, 18 figs, 1 tab

  11. Growth and characterization of oxide layers on zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maroto, A J.G.; Bordoni, R; Villegas, M; Blesa, M A; Olmedo, A M; Iglesias, A; Rigotti, G [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    1997-02-01

    Corrosion behaviour in aqueous media at high temperature of zirconium alloys has been extensively studied in order to elucidate the corrosion mechanism and kinetics. The characterization of the morphology and microstructure of these oxides through the different stages of oxide growth may contribute to understand their corrosion mechanism. Argentina has initiated a research program to correlate long term in and out-reactor corrosion of these alloys. This paper reports a comparative study of out of pile oxidation of Zr-2.5Nb and Zry-4, which are structural materials of in-core components of nuclear power plants. Kinetic data at different temperatures and microstructural characterization of the oxide films are presented. (author). 25 refs, 18 figs, 1 tab.

  12. Study of diffusion processes in the oxide layer of zirconium alloys

    Directory of Open Access Journals (Sweden)

    Sialini P.

    2016-03-01

    Full Text Available In the active zone of a nuclear reactor where zirconium alloys are used as a coating material, this material is subject to various harmful impacts. During water decomposition reactions, hydrogen and oxygen are evolved that may diffuse through the oxidic layer either through zirconium dioxide (ZrO2 crystals or along ZrO2 grains. The diffusion mechanism can be studied using the Ion Beam Analysis (IBA method where nuclear reaction 18O(p,α15N is used. A tube made of zirconium alloy E110 (with 1 wt. % of Nb was used for making samples that were pre-exposed in UJP PRAHA a.s. and subsequently exposed to isotopically cleansed environment of H2 18O medium in an autoclave. The samples were analysed with gravimetric methods and IBA methods performed at the electrostatic particle accelerator Tandetron 4130 MC in the Nucler Physics Institute of the CAS, Řež. With IBA methods, the overall thicknesses of corrosion layers on the samples, element composition of the alloy and distribution of oxygen isotope 18O in the corrosion layer and its penetration in the alloy were identified. The retrieved data shows at the oxygen diffusion along ZrO2 grains because there are two peaks of 18O isotope concentrations in the corrosion layer. These peaks occur at the environment-oxide and oxide-metal interface. The element analysis identified the presence of undesirable hafnium.

  13. Investigation of nano-structured Zirconium oxide film on Ti6Al4V substrate to improve tribological properties prepared by PIII&D

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Sehrish [Department of Physics, Government College University, Lahore 54000 (Pakistan); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Ahmad, R., E-mail: ahriaz@gcu.edu.pk [Department of Physics, Government College University, Lahore 54000 (Pakistan); Centre for Advanced Studies in Physics (CASP), Government College University, Lahore 54000 (Pakistan); Ayub, R. [Centre for Advanced Studies in Physics (CASP), Government College University, Lahore 54000 (Pakistan); Ikhlaq, Uzma [Department of Physics, Government College University, Lahore 54000 (Pakistan); Jin, Weihong; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2017-02-01

    Highlights: • ZrO{sub 2} film was deposited on Ti6Al4V alloy using the plasma immersion ion implantation and deposition at various bias voltage. • The deposited film was characterized by XPS, AFM, Ellipometry, Nano-indentation and Pin-on disk machine. • A dense zirconium oxide film with the maximum thickness 108 nm was formed at maximum applied voltage. • The hardness and wear resistance of film is much higher as compared to the substrate. - Abstract: Plasma immersion ion implantation and deposition (PIII&D) is the most attractive and efficient technique used in the medical field to tailor materials for biomedical applications. In the present study zirconium oxide nano-structured thin films were deposited on surface of Ti6Al4V alloy for bias voltages of 15, 20 and 25 kV. The chemical composition, surface roughness and thickness of deposited films were characterized by the x-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and ellipsometry respectively. The XPS results confirm the formation of a dense zirconium oxide film of the treated specimens. AFM results exhibit a smooth film with maximum roughness of about 8.4 nm is formed. The thickness of the film is increased with the increase in bias voltages and is maximum at 25 kV. The effect of bias voltages on wear characteristics was further investigated by pin-on-disk test. It is observed that the friction coefficient is reduced, whereas wear resistance is enhanced and it is found to be maximum at 25 kV compared to the other bias voltages. Nanohardness is improved up to twice compared to untreated specimen at the maximum bias voltage. Therefore, it is concluded that deposition of zirconium oxide using the PIII&D is produced a dense layer on the substrate surface, which can be used as a promising candidate for the improved tribological properties of Ti6Al4V.

  14. Zirconium metal-water oxidation kinetics. I. Thermometry

    International Nuclear Information System (INIS)

    Cathcart, J.V.; McElroy, D.L.; Pawel, R.E.; Perkins, R.A.; Williams, R.K.; Yurek, G.J.

    1976-02-01

    A description is given of the thermometry techniques used in the Zirconium Metal--Water Oxidation Kinetics Program. Temperature measurements in the range 900 to 1500 0 C are made in three experimental systems: two oxidation apparatuses and the annealing furnace used in a corollary study of the diffusion of oxygen in β-Zircaloy. Carefully calibrated Pt vs Pt--10 percent Rh thermocouples are employed in all three apparatuses, while a Pt--6 percent Rh vs Pt-- 30 percent Rh thermocouple and an optical pyrometer are used in addition in the annealing furnace. Features of the experimental systems pertaining to thermocouple installation, temperature control, emf measurements, etc. are described, and potential temperature-measurement error sources are discussed in detail. The accuracy of the temperature measurements is analyzed

  15. Retention of implant-supported zirconium oxide ceramic restorations using different luting agents.

    Science.gov (United States)

    Nejatidanesh, Farahnaz; Savabi, Omid; Shahtoosi, Mojtaba

    2013-08-01

    The aim of this study was to evaluate the retention value of implant-supported zirconium oxide ceramic copings using different luting agents. Twenty ITI solid abutments of 5.5 mm height and ITI implant analogs were mounted vertically into autopolymerizing acrylic resin blocks. Ninety zirconium oxide copings (Cercon, Degudent) with a loop on the occlusal portion were made. All samples were airborne particle abraded with 110 μm Al₂O₃ and luted using different types of luting agents: resin cements (Clearfil SA, Panavia F2.0, Fuji Plus), conventional cements (Fleck's, Poly F, Fuji I), and temporary cements (Temp Bond, GC free eugenol, TempSpan) with a load of 5 Kg. (N = 10) All copings were incubated at 37°C for 24 h and conditioned in artificial saliva for 1 week, and thermal cycled for 5000 cycles 5-55°C with a 30-s dwell time. The dislodging force of the copings along the long axis of the implant-abutment complex was recorded using universal testing machine with 5 mm/min crosshead speed. Data were subjected to Kruskal-Wallis (α = 0.05) and Mann-Whitney tests with Bonferroni step down correction (α = 0.001). There was significant difference between the mean rank retention values of different luting agents (P zirconium oxide restorations. © 2011 John Wiley & Sons A/S.

  16. Experimental and numerical study of the effects of a nanocrystallisation treatment on high-temperature oxidation of a zirconium alloy

    International Nuclear Information System (INIS)

    Panicaud, B.; Retraint, D.; Grosseau-Poussard, J.-L.; Li, L.; Guérain, M.; Goudeau, P.; Tamura, N.; Kunz, M.

    2012-01-01

    Highlights: ► SMAT leads to a modification of surface properties of an M5 zirconium alloy (grain size and roughness. ► SMAT induces a change in the oxidation kinetics during high temperature oxidation. ► A diffusion model is able to reproduce kinetics and emphasise the consequences of SMAT on dissolution of oxygen in Zr. - Abstract: In the present work, the effects of a nanocrystallisation treatment on the high-temperature oxidation of a zirconium alloy are investigated. Surface Mechanical Attrition Treatment is a recent process designed to nanocrystallise the surface of materials. The particular effects of this treatment on an M5 zirconium alloy are studied using different experimental techniques at several scales. This material is of considerable interest, especially to the nuclear industry where very stringent conditions apply. High temperature oxidation was performed in order to show the benefits of this type of nanocrystallisation on the corrosion resistance of the alloy concerned. Microstructure development mechanisms, which improve the oxidation resistance of zirconium alloys have been identified during high-temperature corrosion. Those mechanisms have been discussed in further detail in relation to numerical calculations concerning the oxidation kinetics.

  17. Mid-term survivorship and clinical outcomes of cobalt-chrome and oxidized zirconium on highly crosslinked polyethylene.

    Science.gov (United States)

    Petis, Stephen M; Vasarhelyi, Edward M; Lanting, Brent A; Howard, James L; Naudie, Douglas D R; Somerville, Lyndsay E; McCalden, Richard W

    2016-02-01

    The choice of bearing articulation for total hip arthroplasty in younger patients is amenable to debate. We compared mid-term patient-reported outcomes and survivorship across 2 different bearing articulations in a young patient cohort. We reviewed patients with cobalt-chrome or oxidized zirconium on highly crosslinked polyethylene who were followed prospectively between 2004 and 2012. Kaplan-Meier analysis was used to determine predicted cumulative survivorship at 5 years with all-cause and aseptic revisions as the outcome. We compared patient-reported outcomes, including the Harris hip score (HHS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC) and Short-form 12 (SF-12) scores. A total of 622 patients were followed during the study period. Mean follow-up was 8.2 (range 2.0-10.6) years for cobalt-chrome and 7.8 (range 2.1-10.7) years for oxidized zirconium. Mean age was 54.9 ± 10.6 years for cobalt-chrome and 54.8 ± 10.7 years for oxidized zirconium. Implant survivorship was 96.0% (95% confidence interval [CI] 94.9%-97.1%) for cobalt-chrome and 98.7% (95% CI 98.0%-99.4%) for oxidized zirconium on highly crosslinked polyethylene for all-cause revisions, and 97.2% (95% CI 96.2%-98.2%) for cobalt-chrome and 99.0% (95% CI 98.4%-99.6%) for oxidized zirconium for aseptic revisions. An age-, sex- and diagnosis-matched comparison of the HHS, WOMAC and SF-12 scores demonstrated no significant changes in clinical outcomes across the groups. Both bearing surface couples demonstrated excellent mid-term survivorship and outcomes in young patient cohorts. Future analyses on wear and costs are warranted to elicit differences between the groups at long-term follow-up.

  18. Preparation and characterization of sugar cane bagasse fiber modified with nanoparticles of zirconium oxide

    International Nuclear Information System (INIS)

    Carvalho, K.C.C. de; Mulinari, D.R.; Voorwald, H.C.J.; Cioffi, M.O.H.

    2010-01-01

    The sugar cane bagasse fiber are renewable materials and have great application potential when used as reinforcement in a polymer matrix to give rise to composite materials and as supports for adsorption of heavy metals. This paper therefore describes the preparation and characterization of bleached and hydrated zirconium oxide modified sugar cane bagasse fiber by conventional precipitation method. Through the technique of electron microscopy we observed the presence of oxide nanoparticles on the fiber surface, proving the efficiency of the conventional precipitation method. With the X-ray diffraction analysis it was determined a decrease of 6.2% in the crystallinity index of modified fibers when compared to the bleached fibers showing the deposition of amorphous zirconium oxide on the fiber surface. (author)

  19. Effects of Oxidation and fractal surface roughness on the wettability and critical heat flux of glass-peened zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Nitheanandan, T.; Bullock, C.D.; Slater, L.F.; McRae, G.A.

    2003-05-01

    Glass-bead peening the outside surfaces of zirconium alloy tubes has been shown to increase the Critical Heat Flux (CHF) in pool boiling of water. The CHF is found to correlate with the fractal roughness of the metal tube surfaces. In this study on the effect of oxidation on glass-peened surfaces, test measurements for CHF, surface wettability and roughness have been evaluated using various glass-peened and oxidized zirconium alloy tubes. The results show that oxidation changes the solid-liquid contact angle (i.e., decreases wettability of the metal-oxide surface), but does not change the fractal surface roughness, appreciably. Thus, oxidation of the glass-peened surfaces of zirconium alloy tubes is not expected to degrade the CHF enhancement obtained by glass-bead peening. (author)

  20. Synthesis of amorphous zirconium oxide with luminescent characteristics

    International Nuclear Information System (INIS)

    Barrera S, M.; Chavez G, M.; Soto E, A.M.; Velasquez O, C.; Garcia S, M.A.; Olvera T, L.; Rivera M, T.

    2004-01-01

    It was prepared zirconium oxide, ZrO 2 , by means of hydrolysis-condensation reactions (sol-gel method), using zirconium propoxide, Zr(C 3 H 7 O) 4 , as precursor and nitric acid, HNO 3 , as catalyst of the hydrolysis reaction. In this synthesis it was used a molar ratio water-alkoxide, r=n H2O /n Zr (C 3 H 7 0) 4 , high, similar to 200, so that the hydrolysis happens quickly and the nucleation and growth are completed in very little time. The solid was characterized with Ftir spectrophotometry, Differential thermal analysis (Dta), Thermal gravimetric analysis (T G), X-ray diffraction of powders, Scanning electron microscopy (Sem) and X-ray Dispersion energy (EDX). The ZrO 2 obtained by this way is amorphous even to 300 C and it consists of big aggregates. The amorphous ZrO 2 , presents thermoluminescent behavior, after it was irradiated with UV radiation and beta particles of 90 Sr/ 90 Y and it was thermally stimulated. (Author)

  1. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    International Nuclear Information System (INIS)

    Ma, Wen; Yildiz, Bilge; Herbert, F. William; Senanayake, Sanjaya D.

    2015-01-01

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr 1+ , Zr 2+ , and Zr 3+ as non-equilibrium oxidation states, in addition to Zr 4+ in the stoichiometric ZrO 2 . This finding resolves the long-debated question of whether it is possible to form any valence states between Zr 0 and Zr 4+ at the metal-oxide interface. The presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr

  2. Corrosion resistance of zirconium: general mechanisms, behaviour in nitric acid

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1990-01-01

    Corrosion resistance of zirconium results from the strong affinity of this metal for oxygen; as a result a thin protective oxide film is spontaneously formed in air or aqueous media, its thickness and properties depending on the physicochemical conditions at the interface. This film passivates the underlying metal but obviously if the passive film is partially or completely removed, localised or generalised corrosion phenomena will occur. In nitric acid, this depassivation may be chemical (fluorides) or mechanical (straining, creep, fretting). In these cases it is useful to determine the physicochemical conditions (concentration, temperature, potential, stress) which will have to be observed to use safely zirconium and its alloys in nitric acid solutions [fr

  3. Method of separating hafnium from zirconium

    International Nuclear Information System (INIS)

    Megy, J.A.

    1980-01-01

    English. A new anhydrous method was developed for separating zirconium and hafnium, which gives higher separation factors and is more economical than previous methods. A molten phase, comprising a solution of unseparated zirconium and hafnium and a solvent metal, is first prepared. The molten metal phase is contacted with a fused salt phase which includes a zirconium salt. Zirconium and hafnium separation is effected by mutual displacement with hafnium being transported from the molten metal phase to the fused salt phase, while zirconium is transported from the fused salt phase to the molten metal phase. The solvent metal is less electropositive than zirconium. Zinc was chosen as the solvent metal, from a group which also included cadmium, lead, bismuth, copper, and tin. The fused salt phase cations are more electropositive than zirconium and were selected from a group comprising the alkali elements, the alkaline earth elements, the rare earth elements, and aluminum. A portion of the zirconium in the molten metal phase was oxidized by injecting an oxidizing agent, chlorine, to form zirconium tetrachlorid

  4. Oxidized zirconium: a potentially longer lasting hip implant

    International Nuclear Information System (INIS)

    Good, V.; Widding, K.; Hunter, G.; Heuer, D.

    2005-01-01

    Because younger, more active patients are receiving total hip replacements, it is necessary to develop materials, which would increase the life span of the implants and challenge their wear potential under adverse conditions. Oxidized zirconium (OxZr) is a metal with the surface transformed to ceramic by oxidation that offers low fracture risk and excellent abrasion resistance. This study compared wear of polyethylene (non-irradiated and highly crosslinked) with OxZr and CoCr heads under smooth and rough (clinically relevant) conditions. Wear was up to 15-fold less and up to 4-fold fewer particles were produced when coupled with OxZr than with CoCr, demonstrating that OxZr heads should increase clinical implant longevity

  5. Determination of hydrogen in zirconium hydride and uranium-zirconium hydride by inert gas exraction-gravimetric method

    International Nuclear Information System (INIS)

    Hoshino, Akira; Iso, Shuichi

    1976-01-01

    An inert gas extraction-gravimetric method has been applied to the determination of hydrogen in zirconium hydride and uranium-zirconium hydride which are used as neutron moderator and fuel of nuclear safety research reactor (NSRR), respectively. The sample in a graphite-enclosed quartz crucible is heated inductively to 1200 0 C for 20 min in a helium stream. Hydrogen liberated from the sample is oxidized to water by copper(I) oxide-copper(II) oxide at 400 0 C, and the water is determined gravimetrically by absorption in anhydrone. The extraction curves of hydrogen for zirconium hydride and uranium-zirconium hydride samples are shown in Figs. 2 and 3. Hydrogen in the samples is extracted quantitatively by heating at (1000 -- 1250) 0 C for (10 -- 40) min. Recoveries of hydrogen in the case of zirconium hydride were examined as follows: a weighed zirconium rod (5 phi x 6 mm, hydrogen -5 Torr. After the chamber was filled with purified hydrogen to 200 Torr, the rod was heated to 400 0 C for 15 h, and again weighed to determine the increase in weight. Hydrogen in the rod was then determined by the proposed method. The results are in excellent agreement with the increase in weight as shown in Table 1. Analytical results of hydrogen in zirconium hydride samples and an uranium-zirconium hydride sample are shown in Table 2. (auth.)

  6. Long-time corrosion and high-temperature oxidation of zirconium alloys applied on NPP like fuel elements cover

    International Nuclear Information System (INIS)

    Vrtilkova, V.; Novotny, L.; Lingart, S.; Doukha, R.; Yarosh, Ya.; Kolenchik, Ya.

    2007-01-01

    Zirconium is applying in nuclear energy since 50-th of last century in capacity of material for cover production for fuel elements, reactor fuel and structural parts, and mainly due to both corrosion stability and low effective cross section for thermal neutrons capture. Impurities in doping elements form and alloy production technology has influence on mechanical and corrosion properties of finite alloy. Long-time corrosion tests for several zirconium alloys in forcing autoclave under different reaction conditions were carried out. After that process kinetics was studied, mass increase, hydrogen formation, zirconium hydride forming morphology, zirconium oxide layer thickness have been determined as well

  7. Swelling of a mesostructured zirconium oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.J. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); Rennie, A.R. [Uppsala University, Studsvik Neutron Research Laboratory, S-611 82 Nykoeping (Sweden); Hawley, A.M. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); White, J.W. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)]. E-mail: jww@rsc.anu.edu.au

    2006-11-15

    The structural changes that cause the change in interlayer spacing of a surfactant-templated zirconium oxide film have been studied using neutron diffractometry. We report that the film after drying on a glass substrate swells slightly through the addition of benzene by up to 4 A on a lattice parameter of about 36 A. The (0 0 1) and (0 0 2) diffraction peak widths, positions and areas of a swollen film were monitored as a function of benzene desorption. Disorder of the lamellar mesophase is considered as a cause of the observed effects on the diffraction signals.

  8. The oxidation kinetics of zirconium alloys applicable to loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Parsons, P.D.; Miller, W.N.

    1977-10-01

    A review is presented of the available published measurements of the rate of reaction between zirconium alloys and steam and, in some cases, oxygen. Attempts are made to define from all the experimental data a suitable rate equation which is appropriate over the range of temperatures relevant to LOCA conditions. The data reviewed encompass a temperature range 910 0 C to the melting point of zirconium, 1852 0 C. It can be concluded that within 910 to 1577 0 C, Zircaloy-2, Zircaloy-4 and Zr/2 1/2%Nb alloys have the same response to oxidation. (author)

  9. Change in the work function of zirconium by oxidation at high temperatures and low oxygen pressures

    International Nuclear Information System (INIS)

    Maeno, Yutaka; Yamamoto, Masahiro; Naito, Shizuo; Mabuchi, Mahito; Hashino, Tomoyasu

    1991-01-01

    Changes in the work function of zirconium on oxidation are measured at oxygen pressures of 3.0 x 10 -6 - 3.0 x 10 -4 Pa and at temperatures in the range 426-775 K. The work function first decreases then increases until a final saturation stage is reached. Use of secondary-ion mass spectroscopy (SIMS) shows that the changes correspond to oxygen adsorption, oxide nucleation and oxide growth, respectively. The initial decrease in work function is interpreted by the incorporation of oxygen adatoms into the subsurface. The oxygen adsorption potential of zirconium is evaluated by an effective medium theory, and the physical origin of the incorporation of oxygen adatoms is discussed. The positive change in the work function caused by oxide formation and the temperature and pressure dependences of the change in the work function by oxidation are explained qualitatively. (author)

  10. In-situ electrochemical impedance spectroscopy measurements of zirconium alloy oxide conductivity: Relationship to hydrogen pickup

    International Nuclear Information System (INIS)

    Couet, Adrien; Motta, Arthur T.; Ambard, Antoine; Livigni, Didier

    2017-01-01

    Highlights: • In-situ electrochemistry on zirconium alloys in 360 °C pure water show oxide layer resistivity changes during corrosion. • A linear relationship is observed between oxide resistivity and instantaneous hydrogen pickup fraction. • The resistivity of the oxide layer formed on Zircaloy-4 (and thus its hydrogen pickup fraction) is higher than on Zr-2.5Nb. - Abstract: Hydrogen pickup during nuclear fuel cladding corrosion is a critical life-limiting degradation mechanism for nuclear fuel. Following a program dedicated to zirconium alloys, corrosion, it has been hypothesized that oxide electronic resistivity determines hydrogen pickup. In-situ electrochemical impedance spectroscopy experiments were performed on Zircaloy-4 and Zr-2.5Nb alloys in 360 °C water. The oxide resistivity was measured as function of time. The results show that as the oxide resistivity increases so does the hydrogen pickup fraction. The resistivity of the oxide layer formed on Zircaloy-4 is higher than on Zr-2.5Nb, resulting in a higher hydrogen pickup fraction of Zircaloy-4, compared to Zr-2.5Nb.

  11. Preliminary radiation-oxidizing treatment influence on radiation-catalytic activity of zirconium during water decomposition process

    International Nuclear Information System (INIS)

    Garibov, A.A.; Aliyev, A.G.; Agayev, T.N.; Aliyev, S.M.; Velibekova, G.Z.

    2004-01-01

    The study of physical-chemical processes proceeding in contact of metal constructional materials nuclear reactors with water at simultaneous influence of temperature and radiation represents the large interest at the decision of problems material authority and safety of work of nuclear -power installations [1-2]. One of the widely widespread materials of active zone nuclear reactors is metal zirconium and its alloys. The influence of preliminary radiation processing on radiation, radiation -thermal and thermal processes of accumulation of molecular hydrogen and oxidation zirconium in contact with water is investigated at T=673 K and ρ=5mg/sm 3 [3-4]. Initial samples zirconium previously has been exposed by an irradiation in medium H 2 O 2 at D=20-410 kGy. The contribution of radiation processes in these contacts in process thermo-radiation decomposition of water and oxidation of materials of zirconium is revealed. It is established that the interaction of Zr metal, preliminary treated by radiation, with water at radiation -heterogeneous processes leads to passivity of a surface. The rate meanings of thermal, radiation -thermal processes and radiation-chemical yields of hydrogen are determined. It is revealed, that at radiation-heterogeneous processes in system Zr +H 2 O (ρ =5mg/sm 3 T=673 K) the increase of the absorbed doze up to 123 kGy results to reduction of a radiation -chemical yield of molecular hydrogen. The further increase of the absorbed doze results to increase of a radiation -chemical yield of hydrogen. The observable effect at the preliminary radiation of zirconium is connected to formation of oxide phase on a surface. The mechanism of radiation -heterogeneous processes proceeding in system Zr+H 2 O is suggested. (author)

  12. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    International Nuclear Information System (INIS)

    Stengl, Vaclav; Houskova, Vendula; Bakardjieva, Snejana; Murafa, Nataliya; Marikova, Monika; Oplustil, Frantisek; Nemec, Tomas

    2010-01-01

    Zirconium doped nano dispersive oxides of Fe, Al and Zn were prepared by a homogeneous hydrolysis of the respective sulfate salts with urea in aqueous solutions. Synthesized metal oxide hydroxides were characterized using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). These oxides were taken for an experimental evaluation of their reactivity with sulfur mustard (HD or bis(2-chloroethyl)sulfide), soman (GD or (3,3'-Dimethylbutan-2-yl)-methylphosphonofluoridate) and VX agent (S-[2-(diisopropylamino)ethyl]-O-ethyl-methylphosphonothionate). The presence of Zr 4+ dopant can increase both the surface area and the surface hydroxylation of the resulting doped oxides, decreases their crystallites' sizes thereby it may contribute in enabling the substrate adsorption at the oxide surface thus it can accelerate the rate of degradation of warfare agents. Addition of Zr 4+ converts the product of the reaction of ferric sulphate with urea from ferrihydrite to goethite. We found out that doped oxo-hydroxides Zr-FeO(OH) - being prepared by a homogeneous hydrolysis of ferric and zirconium oxo-sulfates mixture in aqueous solutions - exhibit a comparatively higher degradation activity towards chemical warfare agents (CWAs). Degradation of soman or VX agent on Zr-doped FeO(OH) containing ca. 8.3 wt.% of zirconium proceeded to completion within 30 min.

  13. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, Vaclav, E-mail: stengl@uach.cz [Institute of Inorganic Chemistry AS CR v.v.i., 250 68 Rez (Czech Republic); Houskova, Vendula; Bakardjieva, Snejana; Murafa, Nataliya; Marikova, Monika [Institute of Inorganic Chemistry AS CR v.v.i., 250 68 Rez (Czech Republic); Oplustil, Frantisek; Nemec, Tomas [Military Technical Institute of Protection Brno, Veslarska 230, 628 00 Brno (Czech Republic)

    2010-11-15

    Zirconium doped nano dispersive oxides of Fe, Al and Zn were prepared by a homogeneous hydrolysis of the respective sulfate salts with urea in aqueous solutions. Synthesized metal oxide hydroxides were characterized using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). These oxides were taken for an experimental evaluation of their reactivity with sulfur mustard (HD or bis(2-chloroethyl)sulfide), soman (GD or (3,3'-Dimethylbutan-2-yl)-methylphosphonofluoridate) and VX agent (S-[2-(diisopropylamino)ethyl]-O-ethyl-methylphosphonothionate). The presence of Zr{sup 4+} dopant can increase both the surface area and the surface hydroxylation of the resulting doped oxides, decreases their crystallites' sizes thereby it may contribute in enabling the substrate adsorption at the oxide surface thus it can accelerate the rate of degradation of warfare agents. Addition of Zr{sup 4+} converts the product of the reaction of ferric sulphate with urea from ferrihydrite to goethite. We found out that doped oxo-hydroxides Zr-FeO(OH) - being prepared by a homogeneous hydrolysis of ferric and zirconium oxo-sulfates mixture in aqueous solutions - exhibit a comparatively higher degradation activity towards chemical warfare agents (CWAs). Degradation of soman or VX agent on Zr-doped FeO(OH) containing ca. 8.3 wt.% of zirconium proceeded to completion within 30 min.

  14. Effect of surface treatment and type of cement on push-out bond strength of zirconium oxide posts.

    Science.gov (United States)

    Almufleh, Balqees S; Aleisa, Khalil I; Morgano, Steven M

    2014-10-01

    The effect of the surface treatment of zirconium oxide posts on their push-out bond strength is controversial. The purpose of this study was to compare the effects of 2 surface treatments on the bond strength of zirconium oxide posts cemented with different cements and to assess the failure mode. Seventy extracted human teeth were divided into 7 groups (n=10). Custom zirconium oxide posts (Cercon; Degudent) were fabricated for 6 groups. Posts in 3 groups were airborne-particle abraded (A). Posts in the other 3 groups were tribochemical silica coated (T). Three cements were used. Zinc phosphate cement was used to cement the zirconium oxide posts in groups AZ and TZ, RelyX ARC cement was used in groups ARA and TRA, and RelyX Unicem cement was used in groups ARU and TRU. Group C contained custom metal posts cemented with zinc phosphate cement. Specimens were horizontally sectioned into 3 sections and subjected to a push-out test. A mixed model analysis of variance, 1-way ANOVA, and the Tukey multiple comparison tests were used for statistical analysis. The highest push-out bond strength was recorded for Group ARU (21.03 MPa), and the lowest was recorded for Group ARA (7.57 MPa). No significant difference in push-out bond strength was found among the different surface treatments and root regions (P>.05). The type of cement had a significant effect on the push-out bond strength of zirconium oxide posts (P=.049). RelyX Unicem cement recorded (19.57 ±8.83 MPa) significantly higher push-out bond strength compared with zinc phosphate (9.95 ±6.31 MPa) and RelyX ARC cements (9.39 ±5.45 MPa). Adhesive failure at the post-cement interface was recorded for 75% of the posts cemented with zinc phosphate and RelyX ARC cements, while mixed failure was recorded for 75% of the posts cemented with RelyX Unicem cement. The type of cement used resulted in a statistically significant difference in the push-out bond strength of zirconium oxide posts, while both the surface treatment

  15. Nanostructure and bonding of zirconium diboride thin films studied by X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, David M., E-mail: david.stewart@maine.edu; Meulenberg, Robert W.; Lad, Robert J., E-mail: rjlad@maine.edu

    2015-12-01

    Zirconium diboride (ZrB{sub 2}) is an important ceramic due to its extremely high melting temperature of 3245 °C and metallic electrical conductivity, properties that make it an ideal candidate thin film electrode material for high temperature electronics. In this report, thin films of varying B:Zr ratio ranging from 3–0.67 have been grown by e-beam evaporation from elemental sources. X-ray absorption spectra at the Zr K-edge were measured before and after annealing in ultra-high vacuum for 9 h at 1000 °C. Films with compositions near ZrB{sub 2} stoichiometry show X-ray absorption fine structure that can be well modeled by crystalline ZrB{sub 2} with a small portion of a coexisting tetragonal zirconia (t-ZrO{sub 2}) phase. Films far from stoichiometry show substantial disorder beyond the nearest-neighbor distances, and after vacuum annealing exhibit high levels of oxidation. Contributions to the X-ray absorption fine structure from a pure Zr phase are very small compared to ZrB{sub 2} and t-ZrO{sub 2} phases. The fact that nearly stoichiometric (3 < B:Zr < 1.6) as-deposited amorphous films form the same crystalline ZrB{sub 2} nanostructure after annealing is particularly encouraging for high temperature thin film electronics applications, because it would allow the production of highly stable electrodes with e-beam evaporation without the need of any high temperature heating during film growth. - Highlights: • Zr–B thin films of different compositions were grown at low substrate temperatures. • EXAFS analysis indicates a ZrB{sub 2} crystal structure after vacuum annealing. • The coexistence of crystalline and amorphous Zr–B phases is also observed. • Films with excess Zr readily form t-ZrO{sub 2} during deposition, which coexists with ZrB{sub 2}. • Low temperature synthesis routes are important for technological applications.

  16. Oxidation behaviour of zirconium alloys and their precipitates – A mechanistic study

    International Nuclear Information System (INIS)

    Proff, C.; Abolhassani, S.; Lemaignan, C.

    2013-01-01

    The precipitate oxidation behaviour of binary zirconium alloys containing 1 wt.% Fe, Ni, Cr or 0.6 wt.% Nb was characterised in TEM on FIB prepared transverse sections of the oxide and reported in previous studies [1,2]. In the present study the following alloys: Zr1%Cu, Zr0.5%Cu0.5%Mo and pure Zr are analysed to add to the available information. In all cases, the observed precipitate oxidation behaviour in the oxide close to the metal-oxide interface could be described either with delayed oxidation with respect to the matrix or simultaneous oxidation as the surrounding zirconium matrix. Attempt was made to explain these observations, with different parameters such as precipitate size and structure, composition and thermodynamic properties. It was concluded that the thermodynamics with the new approach presented could explain most precisely their behaviour, considering the precipitate stoichiometry and the free energy of oxidation of the constituting elements. The surface topography of the oxidised materials, as well as the microstructure of the oxide presenting microcracks have been examined. A systematic presence of microcracks above the precipitates exhibiting delayed oxidation has been found; the height of these crack calculated using the Pilling–Bedworth ratios of different phases present, can explain their origin. The protrusions at the surface in the case of materials containing large precipitates can be unambiguously correlated to the presence of these latter, and the height can be correlated to the Pilling–Bedworth ratios of the phases present as well as the diffusion of the alloying elements to the surface and their subsequent oxidation. This latter behaviour was much more considerable in the case of Fe and Cu with Fe showing systematically diffusion to the outer surface.

  17. The influence of the texture and microstructure of a Zr-2.5Nb substrate upon the oxidation kinetics

    International Nuclear Information System (INIS)

    Lin, J.; Cao Xiaohui; Szpunar, J.A.

    2002-01-01

    The thin oxide layer growing on the zirconium alloy is dense and adherent and therefore is protective against further oxidation and hydrogen ingress, which is deleterious to zirconium pressure tube used in nuclear power stations because it facilitates formation of zirconium hydrides. Heat treatment and other surface modification methods were applied to zirconium alloys and the texture was investigated. Thermogravimetric analytic (TGA) was used for oxidation kinetics studies. The oxidation kinetics data show the variation of the oxidation rate due to the difference of texture and microstructure and the oxidation resistance is improved after the substrate is cold worked and heat treated. After cold work and heat treatment, the texture of substrate changes from (11-20)[1-100] to (11-23)[1-100]. (orig.)

  18. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    Science.gov (United States)

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  19. Evolution of zirconium-based precipitates during oxidation and irradiation of Zr alloys (impact on the oxidation kinetics of Zr alloys)

    International Nuclear Information System (INIS)

    Pecheur, Dominique

    1993-01-01

    As the oxidation of the zircaloy sheath is one of the factors which limit the lifetime of nuclear fuel rods, this research thesis aims at a better knowledge of the involved oxidation mechanisms and to improve the oxidation resistance in order to increase rod lifetime. Oxidation test performed in autoclave to study zirconium alloy oxidation without irradiation showed that oxidation kinetics is significantly higher under irradiation. This difference is attributed to a different evolution of the sheath material under irradiation. Thus, this research focused on the role of precipitates in the oxidation process of zirconium alloys, and on the impact of their amorphization on this oxidation. After a detailed description of the context and of the various implemented experimental means, the author presents the results obtained on a reference material on the one hand, and on a material irradiated by ions or neutrons on the other hand. More particularly, the author studied in these both cases the introduction of precipitates in the oxide layer by transmission electronic microscopy, and oxidation kinetics obtained in autoclave on these two types of material. He reports the analysis of the introduction of precipitates in the oxide layer formed on the reference material. He proposes interpretations for the evolutions of structure and of chemical compositions of precipitates in the oxide layer. These observations are then correlated with oxidation kinetics in these alloys. Finally, the author discusses results of oxidation tests obtained on materials irradiated by ions and by neutrons [fr

  20. Reaction of hydrogen peroxide with uranium zirconium oxide solid solution - Zirconium hinders oxidative uranium dissolution

    Science.gov (United States)

    Kumagai, Yuta; Takano, Masahide; Watanabe, Masayuki

    2017-12-01

    We studied oxidative dissolution of uranium and zirconium oxide [(U,Zr)O2] in aqueous H2O2 solution to estimate (U,Zr)O2 stability to interfacial reactions with H2O2. Studies on the interfacial reactions are essential for anticipating how a (U,Zr)O2-based molten fuel may chemically degrade after a severe accident. The fuel's high radioactivity induces water radiolysis and continuous H2O2 generation. Subsequent reaction of the fuel with H2O2 may oxidize the fuel surface and facilitate U dissolution. We conducted our experiments with (U,Zr)O2 powder (comprising Zr:U mole ratios of 25:75, 40:60, and 50:50) and quantitated the H2O2 reaction via dissolved U and H2O2 concentrations. Although (U,Zr)O2 reacted more quickly than UO2, the dissolution yield relative to H2O2 consumption was far less for (U,Zr)O2 compared to that of UO2. The reaction kinetics indicates that most of the H2O2 catalytically decomposed to O2 at the surface of (U,Zr)O2. We confirmed the H2O2 catalytic decomposition via O2 production (quantitative stoichiometric agreement). In addition, post-reaction Raman scattering spectra of the undissolved (U,Zr)O2 showed no additional peaks (indicating a lack of secondary phase formation). The (U,Zr)O2 matrix is much more stable than UO2 against H2O2-induced oxidative dissolution. Our findings will improve understanding on the molten fuels and provide an insight into decommissioning activities after a severe accident.

  1. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  2. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  3. Properties of zirconium ceramics and film stabilized by yttrium

    International Nuclear Information System (INIS)

    Korobova, N.

    2004-01-01

    Full text: Unstable zirconium dioxide phase transformation can be eliminated by stabilization of the cubic phase with an addition of a selected alkaline earth or rare-earth oxide. Stabilized ZrO 2 has been widely utilized in various high-temperature refractory applications. These stabilized ZrO 2 -base solid solutions also possess rather unique electrical properties, and as a result have considerable potential as solid electrolytes in galvanic and fuel cells and, possibly, as heating elements in high-temperature furnaces. The complex study of synthesis processes, structure and properties of metal alkoxide organic sols have been developed. These have allowed to create main principles of their formation and to show the practical realization of obtained theoretical and experimental results. The correlation between hydrolysis conditions of (Zr+Y) metal alkoxide sols and synthesis of stable colloid multi-component systems has been established. Systematic research of zirconium and yttrium bi-alkoxide electrophoretic deposition was conducted for the first time. The formation mechanism of electrophoretic deposits has been offered and general scientific principles of the electrophoretic process have been formulated. The model of gel deposits structure was proposed. It has enabled to analyze the main (for example, cluster) effects, which have been exhibited in technological procedure for thin film preparation. The structure investigation of stabilized zirconium dioxide thin films and ceramics has been studied. The researches were based on the comparative analysis of the initial gel microstructure and dried gel by the various drying methods. The new approach for drying of gel electrophoretic deposits was formulated theoretically and experimentally has been proved. The modeling of the aggregate kinetics as a type of 'cluster-cluster' has been proposed like a qualitative description of the process. The data of fractal dimensions of aggregates which have been formed at the

  4. Corrosion evaluation of zirconium doped oxide coatings on aluminum formed by plasma electrolytic oxidation.

    Science.gov (United States)

    Bajat, Jelena; Mišković-Stanković, Vesna; Vasilić, Rastko; Stojadinović, Stevan

    2014-01-01

    The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) · (2)H(2)O) and Na(2)WO(4) · (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times. Evolution of EIS spectra during the exposure to 3% NaCl, as a strong corrosive agent, indicated the highest corrosion stability for PEO coating formed on aluminum at 70 mA/cm(2) for 2 min in a zirconium containing electrolyte.

  5. Removal of methylene blue and rhodamine B from water by zirconium oxide/graphene

    Directory of Open Access Journals (Sweden)

    Sumita Rani

    2016-04-01

    Full Text Available Methylene blue (MB and rhodamine B dyes (RB were degraded from water using zirconium oxide (ZrO2 and zirconium oxide/graphene composites (ZrO2/GR as photocatalyst. The photocatalytic efficiency was calculated from absorption spectra obtained using UV–visible spectroscopy. It has been observed that photodegradation time as well as photocatalytic efficiency increase with the concentration of catalyst up to a certain limit after which effect was reversed. The degradation was studied as a function of pH also. It was found that photocatalytic efficiency was more in alkaline medium than acidic medium. Degradation of RB takes place at higher value of pH as compared to MB. The degradation time for MB was 1 h using ZrO2 which get reduced to 32 min using ZrO2/GR composite and for RB it reduced to 40 min (using ZrO2/GR from 80 min (ZrO2.

  6. Hydrogenation and high temperature oxidation of Zirconium claddings

    International Nuclear Information System (INIS)

    Novotny, T.; Perez-Feró, E.; Horváth, M.

    2015-01-01

    In the last few years a new series of experiments started for supporting the new LOCA criteria, considering the proposals of US NRC. The effects which can cause the embrittlement of VVER fuel claddings were reviewed and evaluated in the framework of the project. The purpose of the work was to determine how the fuel cladding’s hydrogen uptake under normal operating conditions, effect the behavior of the cladding under LOCA conditions. As a first step a gas system equipment with gas valves and pressure gauge was built, in which the zirconium alloy can absorb hydrogen under controlled conditions. In this apparatus E110 (produced by electrolytic method, currently used at Paks NPP) and E110G (produced by a new technology) alloys were hydrogenated to predetermined hydrogen contents. According the results of ring compression tests the E110G alloys lose their ductility above 3200 ppm hydrogen content. This limit can be applied to determine the ductile-brittle transition of the nuclear fuel claddings. After the hydrogenation, high temperature oxidation experiments were carried out on the E110G and E110 samples at 1000 °C and 1200 °C. 16 pieces of E110G and 8 samples of E110 with 300 ppm and 600 ppm hydrogen content were tested. The oxidation of the specimens was performed in steam, under isothermal conditions. Based on the ring compression tests load-displacement curves were recorded. The main objective of the compression tests was to determine the ductile-brittle transition. These results were compared to the results of our previous experiments where the samples did not contain hydrogen. The original claddings showed more ductile behavior than the samples with hydrogen content. The higher hydrogen content resulted in a more brittle mechanical behavior. However no significant difference was observed in the oxidation kinetics of the same cladding types with different hydrogen content. The experiments showed that the normal operating hydrogen uptake of the fuel claddings

  7. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Nor Monica Ahmad

    2016-06-01

    Full Text Available A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB, polyethylene glycol (PEG, and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE. Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM, Electrochemical Impedance Spectroscopy (EIS, and Cyclic voltamogram (CV. The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  8. Variation on wettability of anodic zirconium oxide nanotube surface

    International Nuclear Information System (INIS)

    Wang, Lu-Ning; Shen, Chen; Shinbine, Alyssa; Luo, Jing-Li

    2013-01-01

    The present study reports the effect of fabrication conditions and environmental conditions, such as anodization voltage and aging period, on the wetting of zirconium dioxide nanotube (ZrNT) surfaces. Comparing with intact zirconium foil, which was inherently less hydrophilic, possessing an approximate contact angle of 60–70°, the as-formed ZrNT surfaces were much hydrophilic with an approximate contact angle of 18°. However, the hydrophilicity of the surfaces exhibited a decrease when the nanotubular opening diameters decreased while maintaining the nanotubular layer thickness. This phenomenon was attributed to the balance of capillary force and force generated by compressed air in the ZrNTs. The annealing treatment further increased the hydrophilic property of the ZrNTs. In addition, it was found that the wettability of ZrNTs, when aged in air over a period of 105 days, demonstrated a decrease in hydrophilic characteristics and exhibited, to some extent, an increase in hydrophobic characteristics. It was believed that the surface wettability was able to be changed due to the decreasing content of hydroxyl groups in ambient atmosphere. This work can provide guidelines for improving the structural and environmental conditions responsible for changing surface wettability of ZrNT surfaces for biomedical application. - Highlights: ► Wettability of zirconium oxide nanotubes (ZrNTs) was observed and characterized. ► Increasing of nanotubular diameter decreased the hydrophilicity of ZrNTs. ► Annealing processes enhanced the hydrophilicity of ZrNTs. ► Long term aging resulted in the hydrophobicity of ZrNTs

  9. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Platt, P., E-mail: Philip.Platt@manchester.ac.uk [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Frankel, P. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Gass, M.; Howells, R. [AMEC, Walton House, Faraday Street, Birchwood Park, Risley, Warrington WA3 6GA (United Kingdom); Preuss, M. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom)

    2014-11-15

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal–oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  10. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    Science.gov (United States)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-11-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  11. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    International Nuclear Information System (INIS)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-01-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal–oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations

  12. An In Vivo Evaluation of the Fit of Zirconium-Oxide Based, Ceramic Single Crowns with Vertical and Horizontal Finish Line Preparations.

    Science.gov (United States)

    Vigolo, Paolo; Mutinelli, Sabrina; Biscaro, Leonello; Stellini, Edoardo

    2015-12-01

    Different types of tooth preparations influence the marginal precision of zirconium-oxide based ceramic single crowns. In this in vivo study, the marginal fits of zirconium-oxide based ceramic single crowns with vertical and horizontal finish lines were compared. Forty-six teeth were chosen in eight patients indicated for extraction for implant placement. CAD/CAM technology was used for the production of 46 zirconium-oxide-based ceramic single crowns: 23 teeth were prepared with vertical finishing lines, 23 with horizontal finishing lines. One operator accomplished all clinical procedures. The zirconia crowns were cemented with glass ionomer cement. The teeth were extracted 1 month later. Marginal gaps along vertical planes were measured for each crown, using a total of four landmarks for each tooth by means of a microscope at 50× magnification. On conclusion of microscopic assessment, ESEM evaluation was completed on all specimens. The comparison of the gap between the two types of preparation was performed with a nonparametric test (two-sample Wilcoxon rank-sum test) with a level of significance fixed at p zirconium-oxide-based ceramic CAD/CAM crowns with vertical and horizontal finish line preparations were not different. © 2015 by the American College of Prosthodontists.

  13. Raman spectroscopy analysis of air grown oxide scale developed on pure zirconium substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kurpaska, L., E-mail: lukasz.kurpaska@ncbj.gov.pl [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France); National Center for Nuclear Research, St. A. Soltana 7/23, 05-400 Otwock-Swierk (Poland); Favergeon, J. [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France); Lahoche, L. [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France); Laboratoire des Technologies Innovantes, Université de Picardie Jules-Verne, EA 3899, Avenue des Facultés – Le Bailly, 80025 Amiens Cedex (France); El-Marssi, M. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules-Verne, 33 rue St. Leu, 80039 Amiens Cedex (France); Grosseau Poussard, J.-L. [LaSIE UMR-CNRS 7356, Pole Sciences et Technologie, Universite de La Rochelle, av. M Crepeau, 17042 La Rochelle, Cedex (France); Moulin, G.; Roelandt, J.-M. [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France)

    2015-11-15

    Using Raman spectroscopy technique, external and internal parts of zirconia oxide films developed at 500 °C and 600 °C on pure zirconium substrate under air at normal atmospheric pressure have been examined. Comparison of Raman peak positions of tetragonal and monoclinic zirconia phases, recorded during the oxide growth at elevated temperature, and after cooling at room temperature have been presented. Subsequently, Raman peak positions (or shifts) were interpreted in relation with the stress evolution in the growing zirconia scale, especially closed to the metal/oxide interface, where the influence of compressive stress in the oxide is the biggest. Reported results, for the first time show the presence of a continuous layer of tetragonal zirconia phase developed in the proximity of pure zirconium substrate. Based on the Raman peak positions we prove that this tetragonal layer is stabilized by the high compressive stress and sub-stoichiometry level. Presence of the tetragonal phase located in the outer part of the scale have been confirmed, yet its Raman characteristics suggest a stress-free tetragonal phase, therefore different type of stabilization mechanism. Presented study suggest that its stabilization could be related to the lattice defects introduced by highstoichiometry of zirconia or presence of heterovalent cations. - Highlights: • The oxide layer consists of a mixture of tetragonal and monoclinic phases, clearly distinguishable by Raman spectroscopy. • The layer located close to the metal/oxide interphase consists mainly of the tetragonal phase. • Small amount of tetragonal layer located in the external oxide scale have been observed. • Stabilization mechanism of the tetragonal phase located in the external part of the oxide have been proposed.

  14. Methods of studying oxide scales grown on zirconium alloys in autoclaves and in a PWR

    International Nuclear Information System (INIS)

    Blank, H.; Bart, G.; Thiele, H.

    1992-01-01

    The analysis of water-side corrosion of zirconium alloys has been a field of research for more than 25 years, but the details of the mechanisms involved still cannot be put into a coherent picture. Improved methods are required to establish the details of the microstructure of the oxide scales. A new approach has been made for a general analysis of oxide specimens from scales grown on the zirconium-based cladding alloys of PWR rods in order to analyse the morphology of these scales, the topography of the oxide/metal interface and the crystal structures close to this interface: a) Instead of using the conventional pickling solutions, the Zr-alloys are dissolved using a 'softer' solution (Br 2 in an organic solvent) in order to avoid damage to the oxide at the oxide/metal interface to be analysed by SEM (scanning electron microscopy). A second advantage of this method is easy etching of the grain structure of Zr-alloys for SEM analysis; b) By using the particular properties of the oxide scales, the corrosion-rate-determining innermost part of the oxide layer at the oxide/metal interface can be separated from the rest of the oxide scale and then analysed by SEM, STEM (scanning transmission electron microscopy), TEM (transmission electron microscopy) and electron diffraction after dissolution of the alloy. Examples are given from oxides grown on Zr-alloys in a pressurized water reactor and in autoclaves. (author) 8 figs., 3 tabs., 9 refs

  15. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [University of Wisconsin-Madison; Mariani, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Company; Lahoda, Ed [Westinghouse Electric Company

    2018-03-31

    Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi2 coating) during clad quenching experiments is discussed in detail. Oxidation of bulk ZrSi2 was found to be negligible compared to Zircaloy-4 (a common Zr-alloy cladding material) and mechanical integrity of ZrSi2 was superior to that of bulk Zr2Si at high temperatures in ambient air. Very interesting and unique multi-nanolayered composite of ZrO2 and SiO2 were observed. Physical model for the oxidation has been proposed wherein Zr–Si–O mixture undergoes a spinodal phase decomposition into ZrO2 and SiO2, which is manifested as a nanoscale assembly of alternating layer of the two oxides. Steam corrosion at high pressure (10.3 MPa) led to weight loss of ZrSi2 and produced oxide scale with depletion of silicon, possibly attributed to volatile silicon hydroxide, gaseous silicon monoxide, and a solubility of silicon dioxide in water. Only Zircon phase (ZrSiO4) formed during oxidation of ZrSi2 at 1400°C in air, and allowed for immobilization silicon species in oxide scale in the aqueous environments. Zirconium-silicide coatings (on zirconium-alloy substrates) investigated in this study were deposited primarily using magnetron sputter deposition method and slurry method, although powder spray deposition processes cold spray and thermal spray methods were also investigated. The optimized ZrSi2 sputtered coating exhibited a highly protective nature at elevated temperatures in ambient air by mitigating oxygen permeation to the underlying zirconium alloy substrate. The high oxidation resistance of the coating has been shown to be due to nanocrystalline SiO2 and ZrSiO4 phases in the amorphous

  16. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry

    Science.gov (United States)

    Mozafari, Masoud; Salahinejad, Erfan; Shabafrooz, Vahid; Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Tayebi, Lobat

    2013-01-01

    Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. PMID:23641155

  17. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study

    OpenAIRE

    Felemban, Nayef H.; Ebrahim, Mohamed I.

    2017-01-01

    Background The purpose of this in-vitro study was to examine the effect of incorporating different concentrations of Zirconium oxide-Titanium dioxide (ZrO2-TiO2) nanoparticles, which can have antibacterial properties, on the mechanical properties of an orthodontic adhesive. Methods ZrO2-TiO2 (Zirconium oxide, HWNANO, Hongwu International Group Ltd, China) -Titanium dioxide, Nanoshell, USA) nanopowder were incorporated into orthodontic adhesive (Transbond XT, 3?M Unitek, Monrovia, USA) with di...

  18. Kinetic study of Cs+ and Eu3+ ions sorption by zirconium oxide powder

    International Nuclear Information System (INIS)

    Hanafi, H.A.; Hassan, H.S.; Hamed, M.M.

    2009-01-01

    Full text: Zirconium oxide powder was chemically synthesized by sol-gel method and characterized using infrared spectra and x-ray diffraction. The sorptive removal of cesium and europium ions from aqueous waste solution using synthetic zirconium oxide powder was investigated using batch technique. Experiments were carried out as a function of pH, time and temperature. The uptake of europium was found to be greater than that of cesium. A comparison of kinetic models applied to the sorption process of each ion was evaluated for the pseudo first order, the pseudo second order, and homogeneous particle diffusion kinetic models, respectively. The results showed that both the pseudo second order and the homogeneous particle diffusion models (HPDM) were found to best correlate the experimental rate data. The numerical values of the rate constants and particle diffusion coefficients were determined from the graphical representation of the proposed models. Activation energy (Ea) and entropy (Δ S*) of activation for each sorption process were also calculated from the linearized form of Arrhenius equation. (author)

  19. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry

    Directory of Open Access Journals (Sweden)

    Mozafari M

    2013-04-01

    Full Text Available Masoud Mozafari,1,2 Erfan Salahinejad,1,3 Vahid Shabafrooz,1 Mostafa Yazdimamaghani,1 Daryoosh Vashaee,4 Lobat Tayebi1,5 1Helmerich Advanced Technology Research Center, School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK, USA; 2Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence, Amirkabir University of Technology, Tehran, Iran; 3Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran; 4Helmerich Advanced Technology Research Center, School of Electrical and Computer Engineering, Oklahoma State University, Tulsa, OK, USA; 5School of Chemical Engineering, Oklahoma State University, Tulsa, OK, USA Abstract: Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. Keywords: bioactive glass, zirconium titanate, spin-coating, microstructural properties, bone/dental applications, tissue engineering

  20. Silica-gel modified with zirconium oxide as a novel 99Mo adsorbent 99mTc generators

    International Nuclear Information System (INIS)

    Salehi, H.; Mollarazi, E.; Abbasi, H.

    2010-01-01

    A new 99 Mo adsorbent has been prepared with modified silica gel with zirconium oxide (SiO 2 /ZrO 2 :Na 2 MoO 4 ) and used in technetium-99m generator. The adsorption behaviors of 99 Mo in the form of molybdate and 99m Tc in the form of pertechnetate on the new adsorbent was investigated showed that the adsorption capacity of molybdate on this generator was considerably higher than the usual generator with alumina column. Coating zirconium oxide on the surface of silica gel resulted in higher 99 Mo adsorption of this compound. 99m Tc is eluted with 0.9% NaCl, and the radionuclidic, radiochemical and chemical purities of the eluate were checked. This generator has a great potential as compared to the traditional alumina generators.

  1. Corrosion resistance and biocompatibility of zirconium oxynitride thin film growth by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, G. I.; Olaya, J. J.; Clavijo, D.; Alfonso, J. E. [Universidad Nacional de Colombia, Carrera 45 No. 26-85, AA 14490 Bogota D. C. (Colombia); Bethencourt, M., E-mail: jealfonsoo@unal.edu.co [Universidad de Cadiz, Centro Andaluz de Ciencia y Tecnologia Marinas, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Av. Republica de Saharaui, Puerto Real, E-11510 Cadiz (Spain)

    2012-07-01

    Thin films of zirconium oxynitride were grown on common glass, silicon (100) and stainless steel 316 L substrates using the reactive RF magnetron sputtering technique. The films were analyzed through structural, morphological and biocompatibility studies. The structural analysis was carried out using X-ray diffraction (XRD), and the morphological analysis was carried out using scanning electron microscopy (Sem) and atomic force microscopy (AFM). These studies were done as a function of growth parameters, such as power applied to the target, substrate temperature, and flow ratios. The corrosion resistance studies were made on samples of stainless steel 316 L coated and uncoated with Zr{sub x}N{sub y}O films, through of polarization curves. The studies of biocompatibility were carried out on zirconium oxynitride films deposited on stainless steel 316 L through proliferation and cellular adhesion. The XRD analysis shows that films deposited at 623 K, with a flow ratio {Phi}N{sub 2}/{Phi}O{sub 2} of 1.25 and a total deposit time of 30 minutes grew preferentially oriented along the (111) plane of the zirconium oxynitride monoclinic phase. The Sem analyses showed that the films grew homogeneously, and the AFM studies indicated that the average rugosity of the film was 5.9 nm and the average particle size was 150 nm. The analysis of the corrosion resistant, shows that the stainless steel coated with the film was increased a factor 10. Finally; through the analysis of the biocompatibility we established that the films have a better surface than the substrate (stainless steel 316 L) in terms of the adhesion and proliferation of bone cells. (Author)

  2. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    Science.gov (United States)

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  3. Dissolution of anodic zirconium dioxide films in aqueous media

    International Nuclear Information System (INIS)

    Merati, A.; Cox, B.

    1999-01-01

    Zirconium with a low thermal neutron cross section, good corrosion resistance in high-temperature water, and high thermal conductivity is an ideal material for nuclear reactors. Its good resistance to water and steam at reactor temperatures is of the greatest interest to nuclear fuel designers. Dissolution of zirconium dioxide (ZrO 2 ) films in aggressive media was investigated. The extent of uniform and localized dissolution was measured by ultraviolet-visible (UV-VIS) spectrometry and an alternating current (AC) impedance test, respectively. Scanning electron microscopy (SEM) showed the extent of dissolution of ZrO 2 was a function only of the fluoride ion content and pH of the medium. Cathodic polarization was used to identify the preferred sites for localized dissolution of the oxide film. In 0.1 M potassium bifluoride (KHF 2 ), both uniform thinning and local breakdown of the oxide were observed. Within the limits of the investigating techniques, no evidence of dissolution was observed in the other solutions tested: 0.5 M sulfuric acid (H 2 SO 4 ). 1.0 M nitric acid (HNO 3 ), 5 M hydrochloric acid (HCl), or 0.1 M potassium fluoride (KF). In areas around iron-containing particles, fine cracks in the anodic oxide at prior metal grain boundaries and arrays of cracks in the oxide associated with residual scratches from the initial specimen preparation were the preferred spots for localized dissolution of the oxide film. Iron precipitates immediately below the surface of the oxide layer increased the local electrical conductivity. Enrichment of iron in the oxide matrix around these precipitates during the anodization process appeared to cause prospective spots, acting as anodic sites for pH formation

  4. Cation incorporation into zirconium oxide in LiOH, NaOH, and KOH solutions

    International Nuclear Information System (INIS)

    Jeong, Y.H.; Kim, K.H.; Baek, J.H.

    1999-01-01

    To investigate the cation incorporation into zirconium oxide, SIMS analysis was performed on the specimens prepared to have an equal oxide thickness in LiOH, NaOH, and KOH solutions. Even though they have an equal oxide thickness in LiOH, NaOH, and KOH solutions, the penetration depth of cation into the oxide decreased with an increase in the ionic radius of cation. The cation is considered to control the corrosion in alkali hydroxide solutions and its effect is dependent on the concentration of alkali and the oxide thickness. The slight enhancement of the corrosion rate at a low concentration is thought to be caused by cation incorporation into oxide, while the significant acceleration at a high concentration is due to the transformation of oxide microstructures that would be also induced by cation incorporation into oxide. (orig.)

  5. Titanium(IV), zirconium, hafnium and thorium

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    Titanium can exist in solution in a number of oxidation states. The titanium(IV) exists in acidic solutions as the oxo-cation, TiO 2+ , rather than Ti 4+ . Zirconium is used in the ceramics industry and in nuclear industry as a cladding material in reactors where its reactivity towards hydrolysis reactions and precipitation of oxides may result in degradation of the cladding. In nature, hafnium is found together with zirconium and as a consequence of the contraction in ionic radii that occurs due to the 4f -electron shell, the ionic radius of hafnium is almost identical to that of zirconium. All isotopes of thorium are radioactive and, as a consequence of it being fertile, thorium is important in the nuclear fuel cycle. The polymeric hydrolysis species that have been reported for thorium are somewhat different to those identified for zirconium and hafnium, although thorium does form the Th 4 (OH) 8 8+ species.

  6. Niobium and zirconium telluride thin films prepared by sputtering

    International Nuclear Information System (INIS)

    Kassem, M.; Pailharey, D.; Mathey, Y.

    2000-01-01

    A versatile procedure of sputter deposition, well adapted for getting a large of Te/M ratios (with M = Zr or Nb), has led to the synthesis of several highly anisotropic zirconium and niobium poly tellurides in thin film form. Upon tuning the two key parameters of the process, i.e., the Te percentage in the target and the substrate temperature during the deposition, preparation of systems ranging from ZrTe 0 .72 to ZrTe 6 .7, on the one hand, and from NbTe 1 .28 to NbTe 7 .84, on the other, has been achieved. Besides their amorphous or crystalline (with or without preferential orientations) behavior and their relationship to known structural types, the most striking feature of these films is their large departure from the stoichiometry of the bulk Mte x reference compounds. This peculiarity, together with the possible changes of composition under annealing, are described and interpreted in terms of variable of Te and M atoms trapped or intercalated within the parent structures. (author)

  7. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, A.; Kannan, R. [Department of Physics, University College of Engineering, Anna University, Dindugal-624622 (India); Subramanian, N. Sankara [Department of Physics, Thiagarajar College of Engineering, Madurai -625015, Tamilnadu (India); Loganathan, S. [Ion Plating, Titan Industries Ltd., Hosur - 635126, Tamilnadu (India)

    2014-04-24

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  8. Fretting wear behavior of zirconium alloy in B-Li water at 300 °C

    Science.gov (United States)

    Zhang, Lefu; Lai, Ping; Liu, Qingdong; Zeng, Qifeng; Lu, Junqiang; Guo, Xianglong

    2018-02-01

    The tangential fretting wear of three kinds of zirconium alloys tube mated with 304 stainless steel (SS) plate was investigated. The tests were conducted in an autoclave containing 300 °C pressurized B-Li water for tube-on-plate contact configuration. The worn surfaces were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and 3D microscopy. The cross-section of wear scar was examined with transmission electron microscope (TEM). The results indicated that the dominant wear mechanism of zirconium alloys in this test condition was delamination and oxidation. The oxide layer on the fretted area consists of outer oxide layer composed of iron oxide and zirconium oxide and inner oxide layer composed of zirconium oxide.

  9. Methods for determination of zirconium in titanium alloys

    International Nuclear Information System (INIS)

    1985-01-01

    Two methods for determining zirconium content in titanium alloys are specified in this standard. One is the ion-exchange/mandelic acid gravimetry for Zr content below 20 % down to 1 % while the other is the mandelic acid gravimetry for Zr content below 20 % down to 0.5 %. In the former, a specimen is decomposed by hydrochloric acid and hydrofluoric acid. After substances such as titanium are oxidized by adding nitric acid, the liquid is adjusted into a 4N hydrochloric acid - gN hydrofluoric acid solution, which is them passed through an ion-exchange column. The niobium and tantalum contents are absorbed while the titanium and zirconium contents flow out. Perchloric acid and sulfuric acid are poured in the solution to remove hydrofluoric acid. Aqueous ammonia is added to produce hydroxide of titanium and zirconium, which is then filtered out. The hydroxyde is dissolved in hydrochloric acid, and mandelic acid is poured to precipitate the zirconium content. The precipitate is ignited and the weight of the oxide formed is measured. The coprecipitated titanium content is determined by the absorptiometric method using hydrogen peroxide. Finally, the weight of the oxide is corrected. In the latter determination method, on the other hand, only several steps of the above procedure are used, namely, decomposition by hydrochloric acid, precipitation of zirconium, ignition of precipitate, measurement of oxide weight and weight correction. (Nogami, K.)

  10. Zirconium alloy barrier having improved corrosion resistance

    International Nuclear Information System (INIS)

    Adamson, R.B.; Rosenbaum, H.S.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor has a composite cladding container having a substrate and a dilute zirconium alloy liner bonded to the inside surface of the substrate. The dilute zirconium alloy liner forms about 1 to about 20 percent of the thickness of the cladding and is comprised of zirconium and a metal selected from the group consisting of iron, chromium, iron plus chromium, and copper. The dilute zirconium alloy liner shields the substrate from impurities or fission products from the nuclear fuel material and protects the substrate from stress corrosion and stress cracking. The dilute zirconium alloy liner displays greater corrosion resistance, especially to oxidation by hot water or steam than unalloyed zirconium. The substrate material is selected from conventional cladding materials, and preferably is a zirconium alloy. (author)

  11. Study of the oxidation resistance of ZrxNand ZrxSi1-xN thin films deposited by reactive magnetron sputtering; Estudo da resistencia a oxidacao de filmes finos de ZrxN e ZrxSi1-xN depositados por magnetron sputtering reativo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, D.R.; Freitas, F.G.R.; Felix, L.C.; Carvalho, R.G.; Fontes Junior, A.S.; Tentardini, E.K., E-mail: daniel.angel0275@gmail.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Ciencia e Engenharia de Materiais; Silva Junior, H. da [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2016-07-01

    The objective of this work is to evaluate the oxidation resistance on pure zirconium nitride thin films and with silicon addition (ZrN and ZrSiN respectively). The thin films deposition were performed using reactive magnetron sputtering. The coatings were characterized by Rutherford Backscattering Spectroscopy (RBS), grazing angle X ray diffraction (GAXRD), scanning electronic microscopy (SEM-FEG) and oxidation tests starting from 500°C to 700°C. This study evaluated thin films with silicon content up to 14,9 at.%. GAXRD results showed only ZrN characteristics peaks, which allow the inference that Si3N4 has an amorphous structure. Oxidation tests demonstrate that the film with highest silicon content shows an increase of 200°C in oxidation temperature when compared with ZrN pure thin film. (author)

  12. Oxidized zirconium versus cobalt-chromium against the native patella in total knee arthroplasty: Patellofemoral outcomes.

    Science.gov (United States)

    Matassi, Fabrizio; Paoli, Tommaso; Civinini, Roberto; Carulli, Christian; Innocenti, Massimo

    2017-10-01

    Oxidized zirconium (OxZr) has demonstrated excellent mechanical properties in vitro when used against articular cartilage; less coefficient of friction and less chondral damage have been found when compared with cobalt-chromium (CoCr) implants. However, controversy exists as to whether implants with a zirconium femoral component articulate safely with a native patella in total knee arthroplasty (TKA). To answer this question, the clinical and radiographic results were analysed from a group of patients who underwent a TKA with patella retention; the OxZr versus CoCr femoral components were compared. The present study prospectively evaluated 83 knees of 74 patients from 2009 to 2010. Each patient was evaluated clinically (visual analogue scale, Knee Society score, patellar score) and radiographically (long leg standing radiograph, anterior-posterior and latero-lateral projections, axial view of the patella) pre-operatively and postoperatively with a mean follow-up of 4.47years. The patellar tilt and shift, and progression of patellofemoral osteoarthritis were calculated with the axial view. There were no patient reported adverse reactions and none of the evaluated prostheses failed. Both the clinical and radiographic evaluations showed no statistically significant between-group differences. No adverse events were observed clinically or radiologically. These results justify pursuing the use of oxidized zirconium as an alternative bearing surface for a femoral component associated with patellar retention in TKA. Published by Elsevier B.V.

  13. Oxidized zirconium head on crosslinked polyethylene liner in total hip arthroplasty: a 7- to 12-year in vivo comparative wear study.

    Science.gov (United States)

    Karidakis, George K; Karachalios, Theofilos

    2015-12-01

    Osteolysis resulting from wear debris production from the bearing surfaces is a major factor limiting long-term survival of hip implants. Oxidized zirconium head on crosslinked polyethylene (XLPE) is a modern bearing coupling. However, midterm in vivo wear data of this coupling are not known. The purpose of this study was to investigate in vivo whether the combination of an oxidized zirconium femoral head on XLPE produces less wear than a ceramic head on XLPE or a ceramic head on conventional polyethylene (CPE) couplings and whether any of these bearing combinations results in higher hip scores. Between 2003 and 2007, we performed 356 total hip arthroplasties in 288 patients; of those, 199 (69.1%) patients (199 hips) were enrolled in what began as a randomized trial. Unfortunately, after the 57(th) patient, the randomization process was halted because of patients' preference for the oxidized zirconium bearing instead of the ceramic after (as they were informed by the consent form), and after that, alternate allocation to the study groups was performed. Hips were allocated into four groups: in Group A, a 28-mm ceramic head on CPE was used; in Group B, a 28-mm ceramic head on XLPE; in Group C, a 28-mm Oxinium head on XLPE; and in Group D, a 32-mm Oxinium head on XLPE. The authors prospectively collected in vivo wear data (linear wear, linear wear rate, volumetric wear, and volumetric wear rate) using PolyWare software. Preoperative and postoperative clinical data, including Harris and Oxford hip scores, were also collected at regular intervals. Of those patients enrolled, 188 (95%) were available for final followup at a minimum of 7 years (mean, 9 years; range, 7-12 years). All bearing surfaces showed a varying high bedding-in effect (plastic deformation of the liner) up to the second postoperative year. At 5 years both oxidized zirconium on XLPE groups showed lower (p zirconium on XLPE groups also showed lower (p zirconium groups were compared, no differences were

  14. Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Hae; Jo, Yun Kyoung; Kim, Yong Tae; Tak, Yong Sug; Choi, Jin Sub [Inha University, Incheon (Korea, Republic of)

    2012-05-15

    For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

  15. Extractive metallurgy of zirconium--1945 to the present

    International Nuclear Information System (INIS)

    Franklin, D.G.; Adamson, R.B.

    1984-01-01

    Although the history of the reduction of zirconium dates from 1824 and the first ductile zirconium metal was produced in the laboratory in 1914, modern reduction practice was pioneered by the U.S. Bureau of Mines starting in 1945. This paper reviews the history of the extractive metallurgy of zirconium from the early work of W. J. Kroll and co-workers at the Bureau of Mines in Albany, Ore., through the commercial development of the production of reactor-grade zirconium metal which was spurred by the requirements of the Naval Reactor Program and the development of commercial nuclear power. Technical subjects covered include processes for opening the ore, zirconium-hafnium separation, chlorination of zirconium oxide, reduction processes, and electrowinning of zirconium metal. Proposed new processes and process modifications are reviewed

  16. Formation and dissolution of the anodic oxide film on zirconium in alcoholic aqueous solutions

    International Nuclear Information System (INIS)

    Mogoda, A.S.

    1995-01-01

    The dissolution behavior of the anodic oxide film formed in alcoholic aqueous solutions was studied. Results indicated the dissolution mechanism of the duplex oxide film followed a zero-order rate equation. The increase in methanol concentration in the formation medium (phosphoric acid [H 3 PO 4 ]) resulted in formation of an oxide film that incorporated little phosphate ion and that dissolved at a low rate. The dissolution rate of the oxide film decreased with increasing methanol concentration in the dissolution medium. This was attributed to the increase in the viscosity of the medium, which led to a decrease in the diffusion coefficient of the dissolution product of the zirconium oxide film. Dissolution of the anodic oxide film also was investigated as a function of the chain length of alcohols

  17. Determination of the composition of surface optical layers prepared with the use of rare earth and zirconium oxides

    International Nuclear Information System (INIS)

    Mishchenko, V.T.; Shilova, L.P.; Shkol'nikova, T.M.

    1991-01-01

    Simple titrimetric and gravimetric methods for determination of optical oxide layers (rare earth and zirconium oxides), sputtered on glass or quartz sublayer, have been developed. The minimal determined oxide mass in surface layers is equal to 0.01 mg in titrimetric determination and 0.1 mg - in gravimetric one. It is shown that composition of films and pellets, used for film sputtering, is identical

  18. High-resolution characterization of oxidation mechanism of zirconium nuclear fuel cladding alloys

    International Nuclear Information System (INIS)

    Hu, J.; Lozano-Perez, S.; Grovenor, C.

    2015-01-01

    Full text of publication follows. Zirconium alloys are used extensively as cladding materials in modern light water reactors to separate the uranium dioxide (UO 2 ) fuel rods and the coolant water in order to prevent the escape of radioactive fission products whilst maintaining heat transfer to the coolant. With increasing demand for high burn-up in modern nuclear reactors, environmental degradation of these alloys is now the life limiting factor for fuel assemblies. As part of the MUZIC-2 collaboration studying oxidation and hydrogen pickup in Zr alloys, several high resolution analysis techniques have been used to study the microstructure of a range of commercial and developmental Zr alloys. The sample used for this investigation was prepared from a Westinghouse TM developmental alloy with composition of Zr-0.9Nb-0.01Sn-0.08Fe (wt %) in the recrystallized condition. The sample was oxidised in an autoclave at EDF Energy under simulated PWR water conditions at 360 C. degrees for 360 days. Using Transmission Electron Microscope (TEM), we have studied the development of the equiaxed-columnar-equiaxed grain structure, and observe that the columnar grains are both longer and show a stronger preferred texture in more corrosion-resistant alloys. Fresnel imaging revealed the existence of both parallel interconnected pores and some vertically interconnected pores along the columnar oxide grain boundaries, which become more disconnected near the metal-oxide interface. Electron Energy Loss Spectroscopy (EELS) provided accurate quantitative analysis of the oxygen concentration across the interface, identifying the existence of local regions of stoichiometric ZrO and Zr 3 O 2 with varying thickness. These observations will be discussed in the context of current models for oxidation in zirconium alloys. (authors)

  19. Determination of impurities in zirconium by emission spectrograph method

    International Nuclear Information System (INIS)

    Simbolon, S.; Masduki, B.; Aryadi

    2000-01-01

    Analysis of B, Cd, Si and Cr elements in zirconium oxide was carried out. Zirconium oxide was made by precipitating zirconium solution with oxalic acid and calcination was at temperature 900 oC for four hours. Silver chloride compound as much as 10% was used as a distillation carrier and 7 step filtration was used to reduce the impurities element spectra having high density. It was found that B concentration is between 3.80 and 7.44 ppm, Cd less then 0.5 ppm, Si between 74.38-150.33 ppm and Cr between 19.90-45.76 ppm. (author)

  20. Thermoluminescence of magnesium doped zirconium oxide (ZrO2:Mg) UV irradiated

    International Nuclear Information System (INIS)

    Rivera Montalvo, Teodoro; Furetta, Claudio

    2008-01-01

    Full text: The monitoring of ultraviolet radiation (UVR) different thermoluminescent (TL) materials have been used to measure UVR. UV dosimetry using thermoluminescence phenomena has been suggested in the past by several authors. This technique has an advantage over others methods due to the readout of the samples. Other advantages of these phosphors are their small size, portability, lack of any power requirements, linear response to increasing radiation dose and high sensitivity. Zirconium oxide, recently received full attention in view of their possible use as thermoluminescent dosimeter (TLD), if doped with suitable activators, in radiation dosimetry. In the present investigation thermoluminescent (TL) properties of magnesium doped zirconium oxide (ZrO 2 :Mg) under ultraviolet radiation (UVR) were studied. The ZrO 2 :Mg powder of size 30-40 nm, having mono clinical structure, exhibit a thermoluminescent glow curve with one peak centered at 180 C degrees. The TL response of ZrO 2 :Mg as a function ultraviolet radiation exhibits four maxima centered at 230, 260, 310 and 350 nmn. TL response of ZrO 2 :Mg as a function of spectral irradiance of UV Light was linear in a wide range. Fading and reusability of the phosphor were also studied. The results showed that ZrO 2 :Mg nano powder has the potential to be used as a UV dosemeter in UVR dosimetry. (author)

  1. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  2. Aqueous metal–organic solutions for YSZ thin film inkjet deposition

    DEFF Research Database (Denmark)

    Gadea, Christophe; Hanniet, Q.; Lesch, A.

    2017-01-01

    Inkjet printing of 8% Y2O3-stabilized ZrO2 (YSZ) thin films is achieved by designing a novel water-based reactive ink for Drop-on-Demand (DoD) inkjet printing. The ink formulation is based on a novel chemical strategy that consists of a combination of metal oxide precursors (zirconium alkoxide...

  3. Analysis of the deconvolution of the thermoluminescent curve of the zirconium oxide doped with graphite

    International Nuclear Information System (INIS)

    Salas C, P.; Estrada G, R.; Gonzalez M, P.R.; Mendoza A, D.

    2003-01-01

    In this work, we present a mathematical analysis of the behavior of the thermoluminescent curve (Tl) induced by gamma radiation in samples made of zirconium oxide doped with different amounts of graphite. In accordance with the results gamma radiation induces a Tl curve with two maximum of emission localized in the temperatures at 139 and 250 C, the area under the curve is increasing as a function of the time of exposition to the radiation. The analysis of curve deconvolution, in accordance with the theory which indicates that this behavior must be obey a Boltzmann distribution, we found that each one of them has a different growth velocity as the time of exposition increase. In the same way, we observed that after the irradiation was suspended each one of the maximum decrease with different velocity. The behaviour observed in the samples is very interesting because the zirconium oxide has attracted the interest of many research groups, this material has demonstrated to have many applications in thermoluminescent dosimetry and it can be used in the quantification of radiation. (Author)

  4. Sulphur mustard degradation on zirconium doped Ti-Fe oxides

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, Vaclav, E-mail: stengl@iic.cas.cz [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i 250 68 Husinec-Rez (Czech Republic); Grygar, Tomas Matys [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i 250 68 Husinec-Rez (Czech Republic); Oplustil, Frantisek; Nemec, Tomas [Military Technical Institute of Protection Brno Veslarska 230, 628 00 Brno (Czech Republic)

    2011-09-15

    Highlights: {yields} New stechiometric materials for sulphur mustard degradation. {yields} High degree of degradation, more then 95% h{sup -1}. {yields} One-pot synthesis procedure. - Abstract: Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesized nanodispersive metal oxide hydroxides were characterised as the Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis, and acid-base titration. These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (chemical warfare agent HD or bis(2-chloroethyl)sulphide). The presence of Zr{sup 4+} dopant tends to increase both the surface area and the surface hydroxylation of the resulting doped oxides in such a manner that it can contribute to enabling the substrate adsorption at the oxide surface and thus accelerate the rate of degradation of warfare agents. The addition of Zr{sup 4+} to the hydrolysis of ferric sulphate with urea shifts the reaction route and promotes formation of goethite at the expense of ferrihydrite. We discovered that Zr{sup 4+} doped oxo-hydroxides of Ti and Fe exhibit a higher degradation activity towards sulphur mustard than any other yet reported reactive sorbents. The reaction rate constant of the slower parallel reaction of the most efficient reactive sorbents is increased with the increasing amount of surface base sites.

  5. Cathodic behavior of zirconium in aqueous solutions

    International Nuclear Information System (INIS)

    Hine, F.; Yasuda, M.; Sato, H.

    1977-01-01

    The electrochemical behavior of Zr was studied by polarization measurements. The surface oxide and zirconium hydride formed by cathodic polarization of Zr have been examined by X-ray, SEM, and a hardness tester. Zirconium hydride would form on Zr cathode after the surface oxide is reduced at the potential, which is several hundred mV more noble than the predicted value shown by the Pourbaix diagram. The parameters for the hydrogen evolution reaction on the hydride formed Zr cathode differs from that on the oxide covered surface, which means that hydrogen evolution takes place on both surfaces under a different mechanism, while details are still veiled at present

  6. The surface oxidation kinetics of zirconium-niobium alloys and aα-Fe with prevailing cubical texture

    International Nuclear Information System (INIS)

    Mukhambetov, D.G.; Kargin, D.B.; Chalaya, O. V.; Berber, N.N.

    2002-01-01

    It is known, that the kinetics of oxidation of zirconium at formed heating is characterized by two consecutive stages. At the initial stage the thin protecting film will be derived. The relation of its depth from time h (t) is described predominantly by parabolic law. Some time later there can be a transition to the linear law of oxidation. The time moment divided these areas on the kinetic relation is called as a point of break. The film is formed at the second stage, has a developed grid of pores or cracks, can be flake away and be crumbled by losing its protective properties. At the oxidation of the surface shells of the heat generating elements and the technological channels of atomic boilers both stages are proceeded simultaneously. This phenomenon is called modular corrosion. Its consequences can be dangerous for the equipment. Its mechanism is not clear till now. Similar dependencies h(t), with the break point, beginning from which the thin film is transformed into the thick one were found by us at the oxidation α-Fe with prevailing cubical texture. The task of the work was to study the oxide film growth laws in order to clarify the mechanisms of transition of the thin film into the oxide layer on the α-Fe surface and Zr-Nb alloy modular corrosion emergence. Low-carbonate steel with contents 99.43 % of α-Fe was used as a model object of our research. In the texture of the steel surface planar direction [100] was prevalent. Its part accounted for about 40 %. The isothermal air oxidation was carried out in the interval of 450-500 deg. C . Phase composition of the film was determined with X-ray diffraction. The mathematical treatment of the dependencies h(t) obtained by experiment showed that the kinetics of the film growth can be conditionally divided into 4-stages. The initial stage is described by function logarithmic function, the other stages - by the power mode h n =A n ·t, namely, the second stage - is described by function close to cubical (n≅3

  7. Zirconium oxide crystal phase: The role of the pH and time to attain the final pH for precipitation of the hydrous oxide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Harris, M.B.; Simpson, S.F.; De Angelis, R.J.; Davis, B.H.

    1988-01-01

    Precipitated hydrous zirconium oxide can be calcined to produce either a monoclinic or tetragonal product. It has been observed that the time taken to attain the final pH of the solution in contact with the precipitate plays a dominant role in determining the crystal structure of the zirconium oxide after calcination at 500 0 C. The dependence of crystal structure on the rate of precipitation is observed only in the pH range 7--11. Rapid precipitation in this pH range yields predominately monoclinic zirconia, whereas slow (8 h) precipitation produces the tetragonal phase. At pH of approximately 13.0, only the tetragonal phase is formed from both slowly and rapidly precipitated hydrous oxide. The present results, together with earlier results, show that both the pH of the supernatant liquid and the time taken to attain this pH play dominant roles in determining the crystal structure of zirconia that is formed after calcination of the hydrous oxide. The factors that determine the crystal phase are therefore imparted in a mechanism of precipitation that depends upon the pH, and it is inferred that it is the hydroxyl concentration that is the dominant factor

  8. In vitro adsorption of oxalic acid and glyoxylic acid onto activated charcoal, resins and hydrous zirconium oxide

    NARCIS (Netherlands)

    Scholtens, R.; Scholten, J.; de Koning, H. W.; Tijssen, J.; ten Hoopen, H. W.; Olthuis, F. M.; Feijen, J.

    1982-01-01

    Patients suffering from primary hyperoxaluria show elevated plasma concentrations of oxalic acid and glyoxylic acid. The in vitro adsorption of these compounds into activated charcoal, a series of neutral and ion exchange resins and onto hydrous zirconium oxide has been investigated. Hydrous

  9. Sensitivity analysis on the zirconium ignition in a postulated SFP loss of coolant accident

    International Nuclear Information System (INIS)

    Park, Sanggil; Lee, Jaeyoung; Kim, Sun-ki; Chun, Tae-hyun; Bang, Je-geon

    2016-01-01

    From both SFP complete LOCA experiments, it was observed that zirconium alloy cladding temperature was abruptly increased at a certain point and the cladding was almost fully oxidized. To capture this phenomenon, the concept of air oxidation breakaway model was adopted in MELCOR code. This paper examines this air oxidation breakaway model by comparing the SFP project test data and MELCOR code calculation results by using this model. The air oxidation model parameters are slightly altered to see their sensitivities on the occurrence of the zirconium ignition. Through such sensitivity analysis, limitations of the air oxidation breakaway model are revealed in comparison to the actual zirconium ignition phenomenon during air ingress scenarios. In addition, ways to overcome the identified limitations of the air oxidation model are recommended to estimate better the zirconium ignition phenomenon in SFP sequences. In this paper, the zirconium ignition phenomenon was reviewed and the model to capture this phenomenon was investigated. The model is the air oxidation breakaway model in MELCOR code, and its sensitivity of the model parameters on the time to ignition was studied. From the sensitivity analysis, the slight change of model parameters induce the large variation of the time to ignition. The model itself includes its weakness to fully represent both the air oxidation breakaway phenomenon and the followed zirconium ignition behavior. Furthermore, this model considers no effect of N2 on the cladding degradation and its promoted exothermic heat release

  10. Sensitivity analysis on the zirconium ignition in a postulated SFP loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sanggil; Lee, Jaeyoung [Handong Global Univ., Pohang (Korea, Republic of); Kim, Sun-ki; Chun, Tae-hyun; Bang, Je-geon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    From both SFP complete LOCA experiments, it was observed that zirconium alloy cladding temperature was abruptly increased at a certain point and the cladding was almost fully oxidized. To capture this phenomenon, the concept of air oxidation breakaway model was adopted in MELCOR code. This paper examines this air oxidation breakaway model by comparing the SFP project test data and MELCOR code calculation results by using this model. The air oxidation model parameters are slightly altered to see their sensitivities on the occurrence of the zirconium ignition. Through such sensitivity analysis, limitations of the air oxidation breakaway model are revealed in comparison to the actual zirconium ignition phenomenon during air ingress scenarios. In addition, ways to overcome the identified limitations of the air oxidation model are recommended to estimate better the zirconium ignition phenomenon in SFP sequences. In this paper, the zirconium ignition phenomenon was reviewed and the model to capture this phenomenon was investigated. The model is the air oxidation breakaway model in MELCOR code, and its sensitivity of the model parameters on the time to ignition was studied. From the sensitivity analysis, the slight change of model parameters induce the large variation of the time to ignition. The model itself includes its weakness to fully represent both the air oxidation breakaway phenomenon and the followed zirconium ignition behavior. Furthermore, this model considers no effect of N2 on the cladding degradation and its promoted exothermic heat release.

  11. Physicochemical study of zirconium oxides and of the alumina-zirconia dispersoid

    International Nuclear Information System (INIS)

    Orlans, Patrick

    1987-01-01

    This research thesis reports the physicochemical characterization of different zirconium oxides, but also their synthesis in laboratory by using a gel precipitation method. Various techniques are used to characterize gels and powders: electro-kinetic potential measurement, study of rheological properties, granulometry, chemical analysis, X-ray diffraction, thermo-luminescence, differential thermal analysis, specific surface measurements, scanning electronic microscopy. This process is then extended to the synthesis of an alumina-zirconia dispersoid. The measurement of mechanical properties allowed the synthesis to be modulated in order to obtain powders with properties as close as possible to defined properties [fr

  12. Titanium and zirconium alloys

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1994-01-01

    Titanium and zirconium pure and base alloys are protected by an oxide film with anionic vacancies which gives a very good resistance to corrosion in oxidizing medium, in some ph ranges. Results of pitting and crevice corrosion are given for Cl - , Br - , I - ions concentration with temperature and ph dependence, also with oxygenated ions effect. (A.B.). 32 refs., 6 figs., 3 tabs

  13. Analysis of hafnium in zirconium alloys

    International Nuclear Information System (INIS)

    Kondo, Isao; Sakai, Fumiaki; Ohuchi, Yoshifusa; Nakamura, Hisashi

    1977-01-01

    It is required to analyse alloying components and impurity elements in the acceptance analysis of zirconium alloys as the material for fuel cladding tubes and pressure tubes for advanced thermal reactors. Because of extreme similarity in chemical properties between zirconium and hafnium, about 100 ppm of hafnium is usually contained in zirconium alloys. Zircaloy-2 alloy and 2.5% Nb-zirconium with the addition of hafnium had been prepared as in-house standard samples for rapid analysis. Study was made on fluorescent X-ray analysis and emission spectral analysis to establish the analytical method. By using these in-house standard samples, acceptance analysis was successfully carried out for the fuel cladding tubes for advanced thermal reactors. Sulfuric acid solution was prepared from JAERI-Z 1, 2 and 3, the standard sample for zircaloy-2 prepared by the Analytical Committee on Nuclear Fuel and Reactor Materials, JAERI, and zirconium oxide (Hf 1 ppm/Zr). Standard Hf solution was added to the sulfuric acid solution step by step, to make up a series of the standard oxide samples by the precipitation process. By the use of these standard samples, the development of the analytical method and joint analysis were made by the three-member analytical technique research group including PNC. The analytical precision for the fluorescent X-ray analysis was improved by attaching a metallic yttrium filter to the window of an X-ray tube so as to suppress the effect due to zirconium matrix. The variation factor of the joint analysis was about 10% to show good agreement, and the indication value was determined. (Kobatake, H.)

  14. An X-ray absorption near-edge structure (XANES) study of the Sn L_3 edge in zirconium alloy oxide films formed during autoclave corrosion

    International Nuclear Information System (INIS)

    Hulme, Helen; Baxter, Felicity; Babu, R. Prasath; Denecke, Melissa A.; Gass, Mhairi; Steuwer, Axel; Norén, Katarina; Carlson, Stefan; Preuss, Michael

    2016-01-01

    Highlights: • Characterisation of tin speciation in zirconium alloy metal and oxide films using Sn L_3-XANES. • Chemical environment of tin in Zircaloy-4 and ZIRLO™ oxide films shown to be similar. • Tin in the oxide films is present in both the di- and tetravalent states and oxidises progressively with oxide-layer growth. - Abstract: Application of Sn L_3-XANES to study the oxidation state of alloying additions of tin (1–1.2 wt%) in <2 μm oxide layers formed on nuclear grade zirconium alloy has been demonstrated. Data obtained for metallic and corroded ZIRLO™ (1 wt% Sn) and Zircaloy-4 (1.2 wt% Sn) indicate tin has a similar chemical speciation in both metal alloys but this differs in the oxidised surface layers. By recording XANES at various incident angles to vary the photon penetration depth and amount of the oxide layer probed in the measurement, the authors found evidence that the oxidation of tin progresses with increasing oxide thickness.

  15. Effect of nitrogen flow ratio on structure and properties of zirconium ...

    Indian Academy of Sciences (India)

    Abstract. In this study, zirconium nitride thin films were deposited on Si substrates by ion beam sputtering (IBS). Influence of N2/(N2+Ar) on the structural and physical properties of the films has been investigated with respect to the atomic ratio between nitrogen and zirconium. It was found that the thickness of layers ...

  16. Characterization of the sorption behavior of trivalent actinides on zirconium(IV) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Eibl, Manuel; Huittinen, Nina [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Virtanen, S.; Merilaeinen, S.; Lehto, J. [Helsinki Univ. (Finland); Rabung, T. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Nuclear Waste Disposal

    2017-06-01

    The uptake of trivalent Eu and Cm on zirconium(IV) oxide was investigated in batch sorption and TRLFS studies, respectively. Sorption of Eu{sup 3+} was found to start at a pH-value of 4. Based on TRLFS results, sorption of Cm{sup 3+} was assigned to occur through innersphere complex formation at the zirconia surface. A deconvolution of the TRLFS emission spectra gave three different sorption species with strong red-shifts of the peak positions (600.3 nm, 604.3 nm and 608.2 nm) compared to similar systems.

  17. Investigation of anodizing parameter effect on barrier layer of anodic zirconium oxide

    International Nuclear Information System (INIS)

    Kharchenko, Eh.P.

    1979-01-01

    Effect of fluoride concentration and forming direction upon kinetics of barrier layer transformations in the process of preparation of phase anodic zirconium oxide in acid fluorine-containing solutions is considered. Suppositions are made on the mechanism of barrier layer transformation under the effect of the parameters mentioned. The thickness of the barrier layer is determined by two methods and it is shown that coefficient of the layer thickess growth at the voltage increase by 1 V is much lower than during formation of the barrier films in non-agressive electrolytes

  18. Hysteresis in Lanthanide Zirconium Oxides Observed Using a Pulse CV Technique and including the Effect of High Temperature Annealing.

    Science.gov (United States)

    Lu, Qifeng; Zhao, Chun; Mu, Yifei; Zhao, Ce Zhou; Taylor, Stephen; Chalker, Paul R

    2015-07-29

    A powerful characterization technique, pulse capacitance-voltage (CV) technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111) substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD). The results indicated that: (1) more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrO x ; (2) the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N₂ ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 10 12 cm -2 for as-deposited sample to 4.55 × 10 12 cm -2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10 - ⁶ A/cm² at V g = +0.5 V for the as-deposited sample to 10 -3 A/cm² at V g = +0.5 V for the 900 °C annealed one.

  19. Hysteresis in Lanthanide Zirconium Oxides Observed Using a Pulse CV Technique and including the Effect of High Temperature Annealing

    Directory of Open Access Journals (Sweden)

    Qifeng Lu

    2015-07-01

    Full Text Available A powerful characterization technique, pulse capacitance-voltage (CV technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111 substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD. The results indicated that: (1 more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrOx; (2 the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N2 ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 1012 cm−2 for as-deposited sample to 4.55 × 1012 cm−2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10−6 A/cm2 at Vg = +0.5 V for the as-deposited sample to 10−3 A/cm2 at Vg = +0.5 V for the 900 °C annealed one.

  20. Oxidation of ruthenium thin films using atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, A.P.; Bogan, J.; Brady, A.; Hughes, G.

    2015-12-31

    In this study, the use of atomic oxygen to oxidise ruthenium thin films is assessed. Atomic layer deposited (ALD) ruthenium thin films (~ 3 nm) were exposed to varying amounts of atomic oxygen and the results were compared to the impact of exposures to molecular oxygen. X-ray photoelectron spectroscopy studies reveal substantial oxidation of metallic ruthenium films to RuO{sub 2} at exposures as low as ~ 10{sup 2} L at 575 K when atomic oxygen was used. Higher exposures of molecular oxygen resulted in no metal oxidation highlighting the benefits of using atomic oxygen to form RuO{sub 2}. Additionally, the partial oxidation of these ruthenium films occurred at temperatures as low as 293 K (room temperature) in an atomic oxygen environment. - Highlights: • X-ray photoelectron spectroscopy study of the oxidation of Ru thin films • Oxidation of Ru thin films using atomic oxygen • Comparison between atomic oxygen and molecular oxygen treatments on Ru thin films • Fully oxidised RuO{sub 2} thin films formed with low exposures to atomic oxygen.

  1. Zirconium and hafnium

    Science.gov (United States)

    Jones, James V.; Piatak, Nadine M.; Bedinger, George M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Zirconium and hafnium are corrosion-resistant metals that are widely used in the chemical and nuclear industries. Most zirconium is consumed in the form of the main ore mineral zircon (ZrSiO4, or as zirconium oxide or other zirconium chemicals. Zirconium and hafnium are both refractory lithophile elements that have nearly identical charge, ionic radii, and ionic potentials. As a result, their geochemical behavior is generally similar. Both elements are classified as incompatible because they have physical and crystallochemical properties that exclude them from the crystal lattices of most rock-forming minerals. Zircon and another, less common, ore mineral, baddeleyite (ZrO2), form primarily as accessory minerals in igneous rocks. The presence and abundance of these ore minerals in igneous rocks are largely controlled by the element concentrations in the magma source and by the processes of melt generation and evolution. The world’s largest primary deposits of zirconium and hafnium are associated with alkaline igneous rocks, and, in one locality on the Kola Peninsula of Murmanskaya Oblast, Russia, baddeleyite is recovered as a byproduct of apatite and magnetite mining. Otherwise, there are few primary igneous deposits of zirconium- and hafnium-bearing minerals with economic value at present. The main ore deposits worldwide are heavy-mineral sands produced by the weathering and erosion of preexisting rocks and the concentration of zircon and other economically important heavy minerals, such as ilmenite and rutile (for titanium), chromite (for chromium), and monazite (for rare-earth elements) in sedimentary systems, particularly in coastal environments. In coastal deposits, heavy-mineral enrichment occurs where sediment is repeatedly reworked by wind, waves, currents, and tidal processes. The resulting heavy-mineral-sand deposits, called placers or paleoplacers, preferentially form at relatively low latitudes on passive continental margins and supply 100 percent of

  2. Rheological and technological properties of zirconium suspensions stabilized with various amounts of calcium oxide

    International Nuclear Information System (INIS)

    Shulik, I.G.; Usatikov, I.F.; Alekseenko, A.S.

    1987-01-01

    A complex research of properties of zirconium dioxide-based suspensions with various amounts of calcium oxide up to calcium zirconate is carried out. Aqueous suspensions are used when preparing a complex form of ZrO 2 -based ceramics by the method of slip casting. Phase composition effect on the nature of rheologic curves ie found. The role of organic alcohol additions in the improvement of suspension flowability and reduction of casting porosity is noted

  3. Unidirectional oxide hetero-interface thin-film diode

    International Nuclear Information System (INIS)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee; Kim, Youn Sang

    2015-01-01

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10 5 at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10 2  Hz < f < 10 6  Hz, providing a high feasibility for practical applications

  4. Unidirectional oxide hetero-interface thin-film diode

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Youn Sang, E-mail: younskim@snu.ac.kr [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institute of Convergence Technology, Gyeonggi-do 443-270 (Korea, Republic of)

    2015-10-05

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10{sup 5} at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10{sup 2} Hz < f < 10{sup 6} Hz, providing a high feasibility for practical applications.

  5. Determination of microquantities of zirconium and thorium in uranium dioxide

    International Nuclear Information System (INIS)

    Weber de D'Alessio, Ana; Zucal, Raquel.

    1975-07-01

    A method for the determination of 10 to 50 ppm of zirconium and thorium in uranium IV oxide of nuclear purity is established. Zirconium and thorium are retained in a strong cation-exchange resin Dowex 50 WX8 in 1 M HCl. Zirconium is eluted with 0,5% oxalic acid solution and thorium with 4% ammonium oxalate. The colorimetric determination of zirconium with xilenol orange is done in perchloric acid after destructtion of oxalic acid and thorium is determined with arsenazo III in 5 M HCl. 10 μg of each element were determined with a standard deviation of 2,1% for thorium and 3,4% for zirconium. (author) [es

  6. Electrochemical oxidation of zirconium alloys in pre-transition and post-transition kinetic regimes at corrosion in electrolyte solutions

    International Nuclear Information System (INIS)

    Barkov, A.A.; Shavshin, V.M.

    1986-01-01

    With the aim of investigation on oxidation of zirconium alloys (Zr+2.5% Nb) the critical thickness of beginning of spalling of froming oxide films in HCl and NHO 3 aqueous solutions was evaluated by coulometry with accelerated procedure. Some variants of predeposition of modificated oxide coatings are proposed increase pre-transition regime time and to decrease corrosion during post-transition regime. Increase in agressivity of solutions (addition of 1 vol.% HF) and UV irradiation are found to increase 3-4 times pre-transition period

  7. Techniques for chemical characterization of zirconium and its alloys

    International Nuclear Information System (INIS)

    Iyer, K.V.; Bassan, M.K.T.; Sudersanan, M.

    2002-01-01

    Chemical characterization of zirconium and its alloys such as zircaloy, Zr-Nb, etc for minor and trace constituents like Nb, Ti, Fe, Cr, Ni, Sn, Al etc has been carried out. Zirconium, being a major constituent, has been determined by gravimetry as zirconium oxide while other constituents like Nb, Ti, Fe have been determined by spectrophotometric methods. Other metals of importance at trace level have been estimated by AAS or ICPAES. The judicious use of both conventional and modern instrumental methods of analysis helps in the characterization of zirconium and its alloys for various major and minor constituents. The role of matrix effect in the determination was also investigated and methods have been worked out based on a preliminary separation of zirconium by a hydroxide precipitation. (author)

  8. A study into the impact of interface roughness development on mechanical degradation of oxides formed on zirconium alloys

    International Nuclear Information System (INIS)

    Platt, P.; Wedge, S.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2015-01-01

    As a cladding material used to encapsulate nuclear fuel pellets, zirconium alloys are the primary barrier separating the fuel and a pressurised steam or lithiated water environment. Degradation mechanisms such as oxidation can be the limiting factor in the life-time of the fuel assembly. Key to controlling oxidation, and therefore allowing increased burn-up of fuel, is the development of a mechanistic understanding of the corrosion process. In an autoclave, the oxidation kinetics for zirconium alloys are typically cyclical, with periods of accelerated kinetics being observed in steps of ∼2 μm oxide growth. These periods of accelerated oxidation are immediately preceded by the development of a layer of lateral cracks near the metal-oxide interface, which may be associated with the development of interface roughness. The present work uses scanning electron microscopy to carry out a statistical analysis of changes in the metal-oxide interface roughness between three different alloys at different stages of autoclave oxidation. The first two alloys are Zircaloy-4 and ZIRLO ™ for which analysis is carried out at stages before, during and after first transition. The third alloy is an experimental low tin alloy, which under the same oxidation conditions and during the same time period does not appear to go through transition. Assessment of the metal-oxide interface roughness is primarily carried out based on the root mean square of the interface slope known as the R dq parameter. Results show clear trends with relation to transition points in the corrosion kinetics. Discussion is given to how this relates to the existing mechanistic understanding of the corrosion process, and the components required for possible future modelling approaches

  9. Dielectric properties of zirconium dioxide-based ceramics

    International Nuclear Information System (INIS)

    Vladimirova, O.S.; Gruzdev, A.I.; Koposova, Z.L.; Lyutsareva, L.A.

    1985-01-01

    This paper studies the dielectric properties of materials based on stabilized zirconium dioxide with Co 3 O 4 additions possessing a high temperature-coefficient of resistance. These materials are promising for manufacturing resistance temperature gages that work under an oxidizing atmosphere at 370-1270 degrees K. The obtained results indicate the possibility of developing temperature gases possessing highsensitivity from stabilized zirconium dioxide with Co 3 O 4 additions

  10. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    Science.gov (United States)

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  11. Contribution to the identification of the processes kinetically limiting of the zirconium alloys oxidation; characterization of the oxide films formed at high temperature by solids electrochemistry

    International Nuclear Information System (INIS)

    Vermoyal, J.J.

    2000-06-01

    The corrosion behavior of zirconium alloys used for cladding tubes has been extensively studied under several oxidation conditions (temperature, steam, dry air, oxygen...) in order to clarify the mechanism(s) of oxide growth and breakdown. Oxidation rate is generally assumed to be controlled by oxygen diffusion inwards the oxide layer. Nevertheless, several experimental facts, such as acceleration or inhibition of corrosion rate in coupling conditions, suggest that electrochemical processes are involved as a rate determining step. This work is an attempt to shed light about the rate-limiting-mechanism of two zirconium alloys oxidation: Zircaloy-4 (Zy-4) and Zr-Nb(1%)O(0,13%). Impedance spectroscopy characterizations of oxide films formed in high temperature water and studied in gaseous atmosphere clearly show the difference of electrical properties between the two alloys. The in situ electrochemical and thermogravimetric investigations in gaseous medium, and the polarization effects on oxidation and hydridation of Zr alloys in PWRs conditions indicate that oxygen diffusion can be considered as the limiting kinetic step for Zy-4 oxidation. On the contrary, the acceleration of oxide growth on Zr-Nb(1%)O(0,13%) under anodic polarization in PWRs conditions (360 deg C) suggests that either the electronic conductivity in the oxide or an interfacial process at least partially control the oxidation rate. Catalytic effects observed in gaseous medium when noble metals increase the oxygen reduction rate would tend to corroborate the oxidation control of this alloy by an interfacial mechanism. An electrochemical description and a heterogeneous kinetics approach based on a diffusion-interfacial process as rate determining step are then proposed. (author)

  12. Synthesis of zirconium guanidinate complexes and the formation of zirconium carbonitride via low pressure CVD

    NARCIS (Netherlands)

    Potts, S.E.; Carmalt, C.J.; Blackman, C.S.; Abou-Chabine, F.; Pugh, D.; Davies, H.O.

    2009-01-01

    Thin films of zirconium carbonitride have been deposited on glass at 600 °C from two novel guanidinate precursors: [ZrCp'{¿2-(iPrN)2CNMe2}2Cl] (1) and [ZrCp'2{¿2-(iPrN)2CNMe2}Cl] (2) (Cp' ) monomethylcyclopentadienyl). Both compounds 1 and 2 were structurally characterized by X-ray crystallography.

  13. Photoinduced hydrophobic surface of graphene oxide thin films

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Song Peng; Cui Xiaoli

    2012-01-01

    Graphene oxide (GO) thin films were deposited on transparent conducting oxide substrates and glass slides by spin coating method at room temperature. The wettability of GO thin films before and after ultraviolet (UV) irradiation was characterized with water contact angles, which increased from 27.3° to 57.6° after 3 h of irradiation, indicating a photo-induced hydrophobic surface. The UV–vis absorption spectra, Raman spectroscopy, X-ray photoelectron spectroscopy, and conductivity measurements of GO films before and after UV irradiation were taken to study the mechanism of photoinduced hydrophobic surface of GO thin films. It is demonstrated that the photoinduced hydrophobic surface is ascribed to the elimination of oxygen-containing functional groups on GO molecules. This work provides a simple strategy to control the wettability properties of GO thin films by UV irradiation. - Highlights: ► Photoinduced hydrophobic surface of graphene oxide thin films has been demonstrated. ► Elimination of oxygen-containing functional groups in graphene oxide achieved by UV irradiation. ► We provide novel strategy to control surface wettability of GO thin films by UV irradiation.

  14. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics.

    Science.gov (United States)

    Yenisey, Murat; Dede, Doğu Ömür; Rona, Nergiz

    2016-01-01

    This study investigated the effects of surface treatments on bond strength between resin cement and differently sintered zirconium-oxide ceramics. 220 zirconium-oxide ceramic (Ceramill ZI) specimens were prepared, sintered in two different period (Short=Ss, Long=Ls) and divided into ten treatment groups as: GC, no treatment; GSil, silanized (ESPE-Sil); GSilPen, silane flame treatment (Silano-Pen); GSb, sandblasted; GSbSil, sandblasted+silanized; GSbCoSil, sandblasted+silica coated (CoJet)+silanized; GSbRoSil, sandblasted+silica coated (Rocatech-Plus)+silanized; GSbDSil, sandblasted+diamond particle abraded (Micron MDA)+silanized; GSbSilPen, sandblasted+silane flame treatment+silanized; GSbLSil, sandblasted+Er:Yag (Asclepion-MCL30) laser treated+silanized. The composite resin (Filtek Z-250) cylinders were cemented to the treated ceramic surfaces with a resin cement (Panavia F2.0). Shear bond strength test was performed after specimens were stored in water for 24h and thermo-cycled for 6000 cycles (5-55 °C). Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tamhane's multiple comparison test (α=0.05). According to the ANOVA, sintering time, surface treatments and their interaction were statistically significant (pzirconium-oxide ceramics. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  15. Study of the thermal oxidation of titanium and zirconium under argon ion irradiation in the low MeV range (E = 15 MeV)

    International Nuclear Information System (INIS)

    Do, N.-L.

    2012-01-01

    We have shown that argon ion irradiation between 1 and 15 MeV produces damage on both titanium and zirconium surfaces, taking the form of accelerated oxidation and/or craterization effects, varying as a function of the projectile energy and the annealing atmosphere (temperature and pressure) simulating the environmental conditions of the fuel/cladding interface of PWR fuel rods. Using AFM, we have shown that the titanium and zirconium surface is attacked under light argon ion bombardment at high temperature (up to 500 C) in weakly oxidizing medium (under rarefied dry air pressure ranging from 5,7 10 -5 Pa to 5 10 -3 Pa) for a fixed fluence of about 5 10 14 ions.cm -2 . We observed the formation of nano-metric craters over the whole titanium surface irradiated between 2 and 9 MeV and the whole zirconium surface irradiated at 4 MeV, the characteristics of which vary depending on the temperature and the pressure. In the case of the Ar/Ti couple, the superficial damage efficiency increases when the projectile energy decreases from 9 to 2 MeV. Moreover, whereas the titanium surface seems to be transparent under the 15-MeV ion beam, the zirconium surface exhibits numerous micrometric craters surrounded by a wide halo. The crater characteristics (size and superficial density) differ significantly from that observed both in the low energy range (keV) where the energy losses are controlled by ballistic collisions (Sn) and in the high energy range (MeV - GeV) where the energy losses are controlled by electronic excitations (Se), which was not completely unexpected in this intermediate energy range for which combined Sn - Se stopping power effects are possibly foreseen. Using XPS associated to ionic sputtering, we have shown that there is an irradiation effect on thermal oxidation of titanium, enhanced under the argon ion beam between 2 and 9 MeV, and that there is also an energy effect on the oxide thickness and stoichiometry. The study conducted using Spectroscopic

  16. Zr{sub 2}N{sub 2}Se. The first zirconium(IV) nitride selenide by the oxidation of zirconium(III) nitride with selenium

    Energy Technology Data Exchange (ETDEWEB)

    Lissner, Falk; Hack, Bettina; Schleid, Thomas [Institute for Inorganic Chemistry, University of Stuttgart (Germany); Lerch, Martin [Institute for Chemistry, Technical University of Berlin (Germany)

    2012-08-15

    The oxidation of zirconium(III) nitride (ZrN) with suitable amounts of selenium (Se) in the presence of sodium chloride (NaCl) as flux yields small yellow brownish platelets of the first zirconium(IV) nitride selenide with the composition Zr{sub 2}N{sub 2}Se. The new compound crystallizes in the hexagonal space group P6{sub 3}/mmc (no. 194) with a = 363.98(2) pm, c = 1316.41(9) pm (c/a = 3.617) and two formula units per unit cell. The crystallographically unique Zr{sup 4+} cations are surrounded by three selenide and four nitride anions in the shape of a capped trigonal antiprism. The Se{sup 2-} anions are coordinated by six Zr{sup 4+} cations as trigonal prism and the N{sup 3-} anions reside in tetrahedral surrounding of Zr{sup 4+} cations. These [NZr{sub 4}]{sup 13+} tetrahedra become interconnected via three edges each to form {sup 2}{sub ∞}{[(NZr_4_/_4)_2]"2"+} double layers parallel to the (001) plane, which are held together by monolayers of Se{sup 2-} anions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Preparation of highly-oxidized starch using hydrogen peroxide and its application as a novel ligand for zirconium tanning of leather.

    Science.gov (United States)

    Yu, Yue; Wang, Ya-Nan; Ding, Wei; Zhou, Jianfei; Shi, Bi

    2017-10-15

    A series of highly-oxidized starch (HOS) were prepared using H 2 O 2 and a copper-iron catalyst as a desired ligand for zirconium tanning of leather. The effects of catalyst and H 2 O 2 dosages, and reaction temperature on the oxidation degree (OD, represented as the amount of carbonyl and carboxyl groups derived) of starch were investigated. The OD reached 76.2% when oxidation was conducted using 60% H 2 O 2 and 0.015% catalyst at 98°C for 2h. 13 C NMR and FT-IR illustrated carbonyl and carboxyl groups were formed in HOS after oxidation. GPC and laser particle size analyses indicated the decrease of HOS molecular size with increasing H 2 O 2 dosage and OD. HOS with moderate OD and molecular weight was able to coordinate with zirconium and remarkably improve tanning process. Leather tanned by Zr complexes using HOS-60 (60% H 2 O 2 , Mn 3516g/mol) as ligand presented considerably better physical and organoleptic properties than those of traditional Zr-tanned leather. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. High performance solution processed zirconium oxide gate dielectric appropriate for low temperature device application

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Musarrat; Nguyen, Manh-Cuong; Kim, Hyojin; You, Seung-Won; Jeon, Yoon-Seok; Tong, Duc-Tai; Lee, Dong-Hwi; Jeong, Jae Kyeong; Choi, Rino, E-mail: rino.choi@inha.ac.kr

    2015-08-31

    This paper reports a solution processed electrical device with zirconium oxide gate dielectric that was fabricated at a low enough temperature appropriate for flexible electronics. Both inorganic dielectric and channel materials were synthesized in the same organic solvent. The dielectric constant achieved was 13 at 250 °C with a reasonably low leakage current. The bottom gate transistor devices showed the highest mobility of 75 cm{sup 2}/V s. The device is operated at low voltage with high-k dielectric with excellent transconductance and low threshold voltage. Overall, the results highlight the potential of low temperature solution based deposition in fabricating more complicated circuits for a range of applications. - Highlights: • We develop a low temperature inorganic dielectric deposition process. • We fabricate oxide semiconductor channel devices using all-solution processes. • Same solvent is used for dielectric and oxide semiconductor deposition.

  19. Atomic Layer Deposited Thin Films for Dielectrics, Semiconductor Passivation, and Solid Oxide Fuel Cells

    Science.gov (United States)

    Xu, Runshen

    , ultra-thin layer of encapsulating ZnS is coated on the surface of GaSb and GaSb/InAs substrates. The 2 nm-thick ZnS film is found to provide a long-term protection against reoxidation for one order and a half longer times than prior reported passivation likely due to its amorphous structure without pinholes. Finally, a combination of binary ALD processes is developed and demonstrated for the growth of yttria-stabilized zirconia films using alkylamido-cyclopentadiengyls zirconium and tris(isopropyl-cyclopentadienyl)yttrium, as zirconium and yttrium precursors, respectively, with ozone being the oxidant. The desired cubic structure of YSZ films is apparently achieved after post-deposition annealing. Further, platinum is atomic layer deposited as electrode on YSZ (8 mol% of Yttria) within the same system. In order to control the morphology of as-deposited Pt thin structure, the nucleation behavior of Pt on amorphous and cubic YSZ is investigated. Three different morphologies of Pt are observed, including nanoparticle, porous and dense films, which are found to depend on the ALD cycle number and the structure and morphology of they underlying ALD YSZ films.

  20. Some recent trends in the use of zirconium alloys for nuclear service

    International Nuclear Information System (INIS)

    Balaramamoorthy, K.

    1992-01-01

    Without any exception nuclear power reactors particularly the water cooled ones, operating in the World use natural or slightly enriched uranium oxide fuel pellets with zirconium alloy cladding. While the zirconium alloys have proven to be successful in their designed usage, a desire for longer lifetimes of core components and increased duty cycle puts more demand on materials performance. This demand has led to more in depth studies of phenomena associated with zirconium alloy corrosion mechanism, fine tuning of the zirconium alloy composition, development of fabrication techniques and to the evaluation of newer zirconium alloys for critical applications. (author). 5 refs., 32 figs

  1. Investigation of ferromagnetism in oxygen deficient hafnium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Krockenberger, Yoshiharu; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany); Suter, Andreas [PSI, Villingen (Switzerland); Wilhelm, Fabrice; Rogalev, Andrei [ESRF, Grenoble (France)

    2008-07-01

    Oxygen deficient thin films of hafnium oxide were grown on single crystal r-cut and c-cut sapphire by reactive molecular beam epitaxy. RF-activated oxygen was used for the in situ oxidation of hafnium oxide thin films. Oxidation conditions were varied substantially in order to create oxygen deficiency in hafnium oxide films intentionally. The films were characterized by X-ray and magnetic measurements. X-ray diffraction studies show an increase in lattice parameter with increasing oxygen deficiency. Oxygen deficient hafnium oxide thin films also showed a decreasing bandgap with increase in oxygen deficiency. The magnetisation studies carried out with SQUID did not show any sign of ferromagnetism in the whole oxygen deficiency range. X-ray magnetic circular dichroism measurements also confirmed the absence of ferromagnetism in oxygen deficient hafnium oxide thin films.

  2. Hot zirconium cathode sputtered layers for useful surface modification

    International Nuclear Information System (INIS)

    Duckworth, R.G.

    1986-01-01

    It has been found that multilayer zirconium based sputtered coatings can greatly improve the wear properties of a wide variety of mechanical components, machine tools, and metal surfaces. Although a hot (approximately 1000 0 C) cathode is employed, temperature sensitive components can be beneficially treated, and for precision parts a total coating thickness of only 0.5μm is often perfectly effective. Even at the highest coating rates substrate temperatures are below 300 0 C. For the corrosion protection of less well finished surfaces thicker layers are usually required and it is important that relatively stress free layers are produced. The authors employed a variety of tailored zirconium/zirconium nitride/zirconium oxide mixed layers to solve a number of tribological problems for some 5 or 6 years. However, it is only recently that they designed, built, and commissioned rapid cycle, multiple cathode, load-lock plant for economic production of such coatings. This paper provides an introduction to this method of depositing pure zirconium and pure synthetic zirconium nitride films

  3. Fabrication of Pb (Zr, Ti) O3 Thin Film for Non-Volatile Memory Device Application

    International Nuclear Information System (INIS)

    Mar Lar Win

    2011-12-01

    Ferroelectric lead zirconate titanate powder was composed of mainly the oxides of titanium, zirconium and lead. PZT powder was firstly prepared by thermal synthesis at different Zr/Ti ratios with various sintering temperatures. PZT thin film was fabricated on SiO2/Si substrate by using thermal evaporation method. Physical and elemental analysis were carried out by using SEM, EDX and XRD The ferroelectric properties and the switching behaviour of the PZT thin films were investigated. The ferroelectric properties and switching properties of the PZT thin film (near morphotropic phase boundary sintered at 800 C) could function as a nonvolatile memory.

  4. Preparation of high-purity zirconium dioxide from baddeleyite

    International Nuclear Information System (INIS)

    Voskobojnikov, N.B.; Skiba, G.S.

    1996-01-01

    Interaction of baddeleyite concentrate with calcium oxide and calcium chloride in the process of caking is studied. The influence of grain size on calcium zirconate formation is tested. Conditions for cake leaching by hydrochloric acid and zirconium(4) oxychloride purification from calcium and silicon compounds by recrystallization are reported. Zirconium dioxide corresponding to specifications (6-2 special purity) is obtained with a high (more than 90%) chemical yield. 9 refs., 1 tab

  5. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    Science.gov (United States)

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-Wzirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  6. Thin polycrystalline diamond films protecting zirconium alloys surfaces: From technology to layer analysis and application in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashcheulov, P. [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Škoda, R.; Škarohlíd, J. [Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, Prague 6, CZ-160 07 (Czech Republic); Taylor, A.; Fekete, L.; Fendrych, F. [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Vega, R.; Shao, L. [Texas A& M University, Department of Nuclear Engineering TAMU-3133, College Station, TX TX 77843 (United States); Kalvoda, L.; Vratislav, S. [Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, Brehova 7, CZ-115 19, Prague 1 (Czech Republic); Cháb, V.; Horáková, K.; Kůsová, K.; Klimša, L.; Kopeček, J. [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Sajdl, P.; Macák, J. [University of Chemistry and Technology, Power Engineering Department, Technická 3, Prague 6, CZ-166 28 (Czech Republic); Johnson, S. [Nuclear Fuel Division, Westinghouse Electric Company, 5801 Bluff Road, Hopkins, SC 29209 (United States); Kratochvílová, I., E-mail: krat@fzu.cz [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, Brehova 7, CZ-115 19, Prague 1 (Czech Republic)

    2015-12-30

    Graphical abstract: - Highlights: • In this work we showed that films prepared by MW-LA-PECVD technology can be used as anticorrosion protective layer for Zircaloy2 nuclear fuel claddings at elevated temperatures (950 °C) when α phase of zirconium changes to β phase (more opened for oxygen/hydrogen diffusion). Quality of PCD films was examined by Raman spectroscopy, XPS, SEM, AFM and SIMS analysis. • The polycrystalline diamond films were of high quality - without defects and contaminations. After hot steam oxidation (950 °C) a high level of structural integrity of PCD layer was observed. Both sp{sup 2} and sp{sup 3} C phases were present in the protective PCD layer. Higher resistance and a lower degree of impedance dispersion was found in the hot steam oxidized PCD coated Zircaloy2 samples, which may suggest better protection of the Zircaloy2 surface. The PCD layer blocks the hydrogen diffusion into the Zircaloy2 surface thus protecting the material from degradation. • Hot steam oxidation tests confirmed that PCD coated Zircaloy2 surfaces were effectively protected against corrosion. Presented results demonstrate that the PCD anticorrosion protection can significantly prolong service life of Zircaloy2 nuclear fuel claddings in nuclear reactors even at elevated temperatures. - Abstract: Zirconium alloys can be effectively protected against corrosion by polycrystalline diamond (PCD) layers grown in microwave plasma enhanced linear antenna chemical vapor deposition apparatus. Standard and hot steam oxidized PCD layers grown on Zircaloy2 surfaces were examined and the specific impact of polycrystalline Zr substrate surface on PCD layer properties was investigated. It was found that the presence of the PCD coating blocks hydrogen diffusion into the Zircaloy2 surface and protects Zircaloy2 material from degradation. PCD anticorrosion protection of Zircaloy2 can significantly prolong life of Zircaloy2 material in nuclear reactors even at temperatures above Zr

  7. Recovery of zirconium from pickling solution, regeneration and its reuse

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, D. [Nuclear Fuel Complex, Hyderabad 500062 (India); Mandal, D., E-mail: dmandal10@gmail.com [Alkali Material & Metal Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Visweswara Rao, R.V.R.L.; Sairam, S.; Thakur, S. [Nuclear Fuel Complex, Hyderabad 500062 (India)

    2017-05-15

    Graphical abstract: The following compares the performance of fresh pickling solution (PS) and regenerated and used pickling solution (UPS). - Highlights: • Pickling of zircaloy tubes and appendages is carried out to remove oxide layer. • The pickling solution become saturated with zirconium due to reuse. • As NaNO{sub 3} concentration increases, conc. of Zr in pickling solution decreases. • Experimental results shows that, used pickling solution can be regenerated. • Regenerated solution may be reused by adding makeup quantities of HF-HNO{sub 3}. - Abstract: The pressurized heavy water reactors use natural uranium oxide (UO{sub 2}) as fuel and uses cladding material made up of zircaloy, an alloy of zirconium. Pickling of zircaloy tubes and appendages viz., spacer and bearing pads is carried out to remove the oxide layer and surface contaminants, if present. Pickling solution, after use for many cycles i.e., used pickling solution (UPS) is sold out to vendors, basically for its zirconium value. UPS, containing a relatively small concentration of hydrofluoric acid. After repeated use, pickling solution become saturated with zirconium fluoride complex and is treated by adding sodium nitrate to precipitate sodium hexafluro-zirconate. The remaining solution can be recycled after suitable makeup for further pickling use. The revenue lost by selling UPS is very high compared to its zirconium value, which causes monetary loss to the processing unit. Experiments were conducted to regenerate and reuse UPS which will save a good amount of revenue and also protect the environment. Experimental details and results are discussed in this paper.

  8. Characterization of ultrasonic spray pyrolysed ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.S.; Ennaoui, E.A.; Lokhande, C.D.; Mueller, M.; Giersig, M.; Diesner, K.; Tributsch, H. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Physikalische Chemie

    1997-11-21

    The ultrasonic spray pyrolysis (USP) technique was employed to deposit ruthenium oxide thin films. The films were prepared at 190 C substrate temperature and further annealed at 350 C for 30 min in air. The films were 0.22 {mu} thick and black grey in color. The structural, compositional and optical properties of ruthenium oxide thin films are reported. Contactless transient photoconductivity measurement was carried out to calculate the decay time of excess charge carriers in ruthenium oxide thin films. (orig.) 28 refs.

  9. Zirconium doped TiO{sub 2} thin films deposited by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Juma, A. [Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Department of Physics and Astronomy, Botswana International University of Science and Technology, Private bag 16, Palapye (Botswana); Oja Acik, I., E-mail: ilona.oja@ttu.ee [Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Oluwabi, A.T.; Mere, A. [Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Mikli, V.; Danilson, M. [Chair of Semiconductor Materials Technology, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Krunks, M. [Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia)

    2016-11-30

    Highlights: • Mean crystallite size of TiO{sub 2}:Zr film decreases with increasing [Zr] in the solution. • Zr doping supresses the anatase to rutile transformation process in TiO{sub 2} films. • Band gap of TiO{sub 2}:Zr film is 3.4 eV irrespective of the annealing temperature. - Abstract: Chemical spray pyrolysis (CSP) is a flexible deposition technique that allows for mixing of the precursor solutions in different proportions suitable for doping thin films. The CSP method was used to dope TiO{sub 2} thin films with Zr by adding zirconium(IV) acetylacetonate into a solution of titanium(IV) isopropoxide in ethanol stabilized by acetylacetone at [Zr]/[Ti] of 0, 5, 10 and 20 at%. The Zr-doped TiO{sub 2} thin films were uniform and homogeneous showing much smaller grains than the undoped TiO{sub 2} films. Zr stabilized the anatase phase to temperatures above 800 °C depending on Zr concentration in the spray solution. The concentration of Zr determined by XPS was 6.4 at% for the thin film deposited from the 20 at% solution. According to AFM studies, Zr doping decreased the root mean square roughness of TiO{sub 2} film from 5.9 to 1.1 nm. An XRD study of samples with the highest Zr amount showed the ZrTiO{sub 4} phase started forming after annealing at 800 °C. The optical band gap for TiO{sub 2} decreased from 3.3 eV to 3.0 eV after annealing at 800 °C but for the TiO{sub 2}:Zr(20) film it remained at 3.4 eV. The dielectric constant increased by more than four times with Zr-doping and this was associated with the change in the bond formations caused by substitution of Ti by Zr in the lattice.

  10. Investigation on the corrosion resistance of zirconium in nitric acid

    International Nuclear Information System (INIS)

    Fauvet, P.; Mur, P.

    1990-01-01

    Zirconium in nitric solutions exhibits an excellent corrosion resistance in the passive state, and a mediocre corrosion resistance in the unpassive state with risk of stress corrosion cracking. Results of the influence of some parameters (medium, potential, temperature, stress, friction, metallurgical structure and surface state) on zirconium passivation are presented. Zirconium remains passive in a large range of HNO 3 concentration (at least up to 14.4N), in the presence of oxidizing ions (Cr 4 , Ce 4 ), in a spent fuel dissolution solution. Zirconium is depassived by friction at high speed and pressure, by platinum coupling in boiling 14.4N HNO 3 with or without stress, or by imposed deformation speed under high potential. (A.B.)

  11. Electron microscopy of nuclear zirconium alloys

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, Miguel

    1986-01-01

    Transmission electron microscopy observations of the microstructure of zirconium alloys used in fuel sheaths of nuclear power reactors are reported. Specimens were observed after different thermal and mechanical treatment, similar to those actually used during fabrication of the sheaths. Electron micrographs and electron diffraction patterns of second phase particles present in zircaloy-2 and zircaloy-4 were also obtained, as well as some characteristic parameters. Images of oxides and hydrides most commonly present in zirconium alloys are also shown. Finally, the structure of a Zr-2,5Nb alloy used in CANDU reactors pressure tubes, is observed by electron microscopy. (Author) [es

  12. Corium Oxidation at Temperatures Above 2000 K

    International Nuclear Information System (INIS)

    Hagrman, Donald L.; Rempe, Joy L.

    2001-01-01

    A mechanistic model, based on a quasi-equilibrium analysis of oxidation reactions, is proposed for predicting high-temperature corium oxidation. The analysis suggests that oxide forming on the surface of corium containing uranium, zirconium, and iron is similar to the oxides formed on zirconium and uranium as long as there is a small percentage of unoxidized zirconium or uranium in the metallic phase. This is because of the higher affinity of zirconium and uranium for oxygen. Hence, oxidation rates and heat production rates are similar to (U,Zr) compounds until nearly all the uranium and zirconium in the corium oxidizes. Oxidation rates after this point are predicted to be similar to those implied by the oxide thickness present when the forming oxide ceases to be protective, and heat generation rates should be similar to those implied by iron oxidation, i.e., ∼4% of the zirconium oxidation heating rate.The maximum atomic ratio of unoxidized iron to unoxidized liquid zirconium plus uranium for the formation of a solid protective oxide below 2800 K is estimated for a temperature, T (in Kelvin), as follows:(unoxidized iron)/(unoxidized zirconium + turanium) = (1/28){5.7/exp[-(147 061 + 12.08T log(T) - 61.03T - 0.000555T 2 /1.986T)]} 1/2 .As long as this limit is not exceeded, either zirconium or uranium metal oxidation rates and heating describe the corium oxidation rate. If this limit is exceeded, diffusion of steam to the corium surface will limit the oxidation rate, and linear time-dependent growth of a nonprotective, mostly FeO, layer will occur below the protective (Zr,U) O 2 scale. When this happens, the oxidation should be at the constant rate given by the thickness of the protective layer. Heat generation should be similar to that of iron oxidation

  13. Corium Oxidation at Temperatures Above 2000 K

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, Donald Lee; Rempe, Joy Lynn

    2001-02-01

    A mechanistic model, based on a quasi-equilibrium analysis of oxidation reactions, is proposed for predicting high-temperature corium oxidation. The analysis suggests that oxide forming on the surface of corium containing uranium, zirconium, and iron is similar to the oxides formed on zirconium and uranium as long as there is a small percentage of unoxidized zirconium or uranium in the metallic phase. This is because of the higher affinity of zirconium and uranium for oxygen. Hence, oxidation rates and heat production rates are similar to (U,Zr) compounds until nearly all the uranium and zirconium in the corium oxidizes. Oxidation rates after this point are predicted to be similar to those implied by the oxide thickness present when the forming oxide ceases to be protective, and heat generation rates should be similar to those implied by iron oxidation, i.e., ~4% of the zirconium oxidation heating rate. The maximum atomic ratio of unoxidized iron to unoxidized liquid zirconium plus uranium for the formation of a solid protective oxide below 2800 K is estimated for a temperature, T (in Kelvin), as follows: (unoxidized iron)/(unoxidized zirconium + turanium) = (1/28){5.7/exp[-(147 061 + 12.08T log(T) - 61.03T - 0.000555T2/1.986T)]}1/2. As long as this limit is not exceeded, either zirconium or uranium metal oxidation rates and heating describe the corium oxidation rate. If this limit is exceeded, diffusion of steam to the corium surface will limit the oxidation rate, and linear time-dependent growth of a nonprotective, mostly FeO, layer will occur below the protective (Zr,U) O2 scale. When this happens, the oxidation should be at the constant rate given by the thickness of the protective layer. Heat generation should be similar to that of iron oxidation.

  14. Modeling of mechanical behavior of quenched zirconium-based nuclear fuel claddings after a high temperature oxidation

    International Nuclear Information System (INIS)

    Cabrera-Salcedo, A.

    2012-01-01

    During the second stage of Loss Of Coolant Accident (LOCA) in Pressurized Water Reactors (PWR) zirconium-based fuel claddings undergo a high temperature oxidation (up to 1200 C), then a water quench. After a single-side steam oxidation followed by a direct quench, the cladding is composed of three layers: an oxide (Zirconia) outer layer (formed at HT), always brittle at Room Temperature (RT), an intermediate oxygen stabilized alpha layer, always brittle at RT, called alpha(O), and an inner 'prior-beta' layer, which is the only layer able to keep some significant Post Quench (PQ) ductility at RT. However, hydrogen absorbed because of service exposure or during the LOCA transient, concentrates in this layer and may leads to its embrittlement. To estimate the PQ mechanical properties of these materials, Ring Compression Tests (RCT) are widely used because of their simplicity. Small sample size makes RCTs advantageous when a comparison with irradiated samples is required. Despite their good reproducibility, these tests are difficult to interpret as they often present two or more load drops on the engineering load-displacement curve. Laboratories disagree about their interpretation. This study proposes an original fracture scenario for a stratified PQ cladding tested by RCT, and its associated FE model. Strong oxygen content gradient effect on layers mechanical properties is taken into account in the model. PQ thermal stresses resulting from water quench of HT oxidized cladding are investigated, as well as progressive damage of three layers during an RCT. The proposed scenario is based on interrupted RCT analysis, post- RCT sample's outer layers observation for damage evaluation, RCTs of prior-beta single-layer rings, and mechanical behavior of especially chemically adjusted samples. The force displacement curves appearance is correctly reproduced using the obtained FE model. The proposed fracture scenario elucidates RCTs of quenched zirconium-based nuclear fuel

  15. Behaviour of zirconium oxidation and is oxide films in alkali halide solutions as studied by electrochemical techniques

    International Nuclear Information System (INIS)

    Saleh, H.E.M.

    1996-01-01

    Study of the properties of Zr electrode and the oxide films that cover the metal surface is of extreme importance due to their wide applications in chemical and nuclear industry. In this thesis the electrochemical behaviour of Zr electrode in alkali halide solutions and with various surface conditions was studied, Also the galvanostatic oxidation of the metal in addition to the open circuit and impedance measurements were employed. Chapter I is a literature survey of the electrochemistry of Zr metal with particular emphasis on the stability and growth process of Zr in different media. Chapter II contains the experimental part, including details of the electrochemical techniques used in the measurements. The electrode impedance was always balanced as a series capacitance Cs and resistance Rs.Chapter III includes the experimental results and discussion. It is divide into sections, A and B. Section A includes the results of some experimental parameters which affect the reactivity of the oxide growth process on the zirconium surface, such as surface pre - treatment, electrolyte composition, the effect of different alkali halide anions, as well as the triiodide ion. 9 tabs.,26 figs.,67 refs

  16. Experimental study of the zirconium alloy oxidation under high pressure of steam and modelling of the mechanisms

    International Nuclear Information System (INIS)

    Dali, Yacoub

    2007-01-01

    The corrosion of the cladding materials used for the fuel rods is one of the limiting factor of their lifetime in light water reactors. In this field, the aim of the nuclear industry is today to increase the time and the number of cycles and to submit the claddings in zirconium alloys to higher corrosive conditions. In this way, new alloys devoted to replace the standard Zircaloy-4, for instance Nb containing alloys, have been recently developed and licensed and show better corrosion resistance. A better understanding of the corrosion mechanisms of the zirconium alloys is necessary to predict the corrosion behaviour of these materials. In this work, the oxidation rate of model alloys of two metallurgic families has been studied in steam in a pressure range between 100 milli-bars and 100 bars. The Zircaloy type alloys contain as alloying elements oxygen and/or tin and/or iron and chromium. For the Zr-Nb family, three niobium contents have been studied, respectively 0.2, 0.4 and 1 weight percent of niobium. Our objectives were to understand the variations of the reactivity between the low pressure and the high pressure range, in quantifying the dependency of the corrosion rate with the steam pressure and the alloying element concentrations. The segregation process of the niobium at the surface has also been studied on the Zr-Nb alloys. During this work, a magnetic suspension thermo-balance has been developed and used to follow in-situ the corrosion rate at high pressure of water vapour. The oxide layers have been characterized by many techniques, macro and micro-photo-electrochemistry, XRD, FEG-SEM, XPS, HR-TEM and SIMS. For the Zircaloy type alloys, we have confirmed the major role of the intermetallic precipitates Zr(Fe,Cr) 2 on the corrosion resistance. Unlike the standard Zircaloy-4, for which the oxidation rate does not depend on the pressure of the water vapour and is thus limited by the vacancy diffusion in the oxide layer, we have shown that the rate of the

  17. Albumin adsorption on oxide thin films studied by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Bermudez, P., E-mail: suriel21@yahoo.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico); Unidad de Posgrado, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, 04510, Mexico D.F. (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico)

    2011-12-15

    Thin films of tantalum, niobium, zirconium and titanium oxides were deposited by reactive magnetron sputtering and their wettability and surface energy, optical properties, roughness, chemical composition and microstructure were characterized using contact angle measurements, spectroscopic ellipsometry, profilometry, X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The purpose of the work was to correlate the surface properties of the films to the Bovine Serum Albumin (BSA) adsorption, as a first step into the development of an initial in vitro test of the films biocompatibility, based on standardized protein adsorption essays. The films were immersed into BSA solutions with different protein concentrations and protein adsorption was monitored in situ by dynamic ellipsometry; the adsorption-rate was dependent on the solution concentration and the immersion time. The overall BSA adsorption was studied in situ using spectroscopic ellipsometry and it was found to be influenced by the wettability of the films; larger BSA adsorption occurred on the more hydrophobic surface, the ZrO{sub 2} film. On the Ta{sub 2}O{sub 5}, Nb{sub 2}O{sub 5} and TiO{sub 2} films, hydrophilic surfaces, the overall BSA adsorption increased with the surface roughness or the polar component of the surface energy.

  18. Alkylation of isobutane by butenes on zirconium sulfate catalysts

    International Nuclear Information System (INIS)

    Lavrenov, A.V.; Perelevskij, E.V.; Finevich, V.P.; Zajkovskij, V.I.; Paukshtis, E.A.; Duplyakiv, V.K.; Bal'zhinimaev, B.S.

    2003-01-01

    Preparation of applied zirconium sulfate catalysts obtained by the method of impregnation is investigated. Results of comparative study of structural, acid-base and catalytic properties of sulfated zirconium dioxide applied on silica gel and aluminium oxide are represented. Intervals of values of synthesis basic parameters and characteristics of catalysts properties providing achievement of high activity and selectivity in isobutane alkylation by butenes in liquid phase are determined [ru

  19. Study of the zirconium passive layer in nitric medium, by the means of electrochemical impedance spectrometry

    International Nuclear Information System (INIS)

    Musy, C.

    1996-01-01

    Although zirconium exhibits a very low corrosion rate in nitric medium at 100 C, electrochemical impedance spectrometry enabled the in-situ monitoring of the zirconium oxide growth in theses conditions. The growth curve shows a very clear deceleration of the oxide growth kinetics after the first hundred hours of immersion in hot nitric medium. The initial thickness of the native oxide film is also examined

  20. Moessbauer spectrometry study and metallography of paramagnetic phases from zirconium-iron system

    International Nuclear Information System (INIS)

    Freitas Brandao Bittencourt, C. de.

    1976-01-01

    Binary alloys of zirconium with 3 to 23% of iron by weight, were made by diffusion at 875 0 C of iron onto thin plates of zirconium. Moessbauer spectroscopy and optic metallography indicated the phases Zr 2 Fe and Zr 4 Fe, the bulk of which probably formed during the diffusion. These phases were confirmed by electron probe microanalysis. Moessbauer spectra showed quadrupole doublets with the same hyperfine interaction parameters in both phases, but with clearly distinct asymmetries. (author)

  1. Oxidation protection and behavior of in-situ zirconium diboride–silicon carbide coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Li, Lu; Li, Hejun; Yin, Xuemin; Chu, Yanhui; Chen, Xi; Fu, Qiangang

    2015-01-01

    Highlights: • ZrB 2 –SiC coating was prepared on C/C composite by in-situ reaction. • A two-layered structure was obtained when the coating was oxidized at 1500 °C. • The formation and collapse of bubbles influenced the coating oxidation greatly. • The morphology evolution of oxide scale during oxidation was illuminated. - Abstract: To protect carbon/carbon (C/C) composites against oxidation, zirconium diboride–silicon carbide (ZrB 2 –SiC) coating was prepared by in-situ reaction using ZrC, B 4 C and Si as raw materials. The in-situ ZrB 2 –SiC coated C/C presented good oxidation resistance, whose weight loss was only 0.15% after isothermal oxidation at 1500 °C for 216 h. Microstructure evolution of coating at 1500 °C was studied, revealing a two-layered structure: (1) ZrO 2 (ZrSiO 4 ) embedded in SiO 2 -rich glass, and (2) unaffected ZrB 2 –SiC. The formation and collapse of bubbles influenced the coating oxidation greatly. A model based on the evolution of oxide scale was proposed to explain the failure mechanism of coating

  2. Fabrication of NiO/zirconium oxide nanofibers by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Sundarrajan, Subramanian, E-mail: sundarnus1@gmail.com [Department of Mechanical Engineering, NUS, 117576 (Singapore); Venkatesan, Arunachalam; Agarwal, Satya R.; Shaik Anwar Ahamed, Nabeela Nasreen [Department of Mechanical Engineering, NUS, 117576 (Singapore); Ramakrishna, Seeram, E-mail: seeram@nus.edu.sg [Department of Mechanical Engineering, NUS, 117576 (Singapore); King Saud University, Riyadh 11451 (Saudi Arabia); Institute of Materials Research and Engineering, 117602 (Singapore)

    2014-12-01

    The electrospinning technique has been used to fabricate 1D inorganic–organic composite nanofibers from solutions containing poly(vinyl alcohol) (PVA) and suitable aqueous precursors of nickel and zirconium ions. Upon calcination, nickel oxide/zirconia nanofibers retained the original morphological features of as-spun nanofibers. X-ray diffraction was used to identify the crystalline nature of the final product and analytical tools such as Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) were employed to elucidate the pathway of ceramic phase formation and the systematic evolution of morphological features in the as-spun and calcined fibers. These fibers will find potential applications in biomedical field. - Highlights: • PVA/NiO/zirconia composite nanofibers were synthesized via electrospinning. • Green processing of nanofibers using only water as solvent. • Calcination of composite nanofibers to yield ceramic nanofibers. • High aspect ratio nanofibers with diameters 106 ± 25 nm • The application of these fibers as dental composites and bone tissue engineering.

  3. Thermoluminescence of zirconium oxide nanostructured to mammography X-ray beams

    International Nuclear Information System (INIS)

    Palacios, L.L.; Rivera, T.; Roman, J.; Azorín, J.; Gaona, E.

    2012-01-01

    In the present work thermoluminescent (TL) response of zirconium oxide (ZrO 2 ) nanostructured induced by mammography X-ray radiation was investigated. Measurements were made of the response per unit air kerma of ZrO 2 with mammography equipment parameters (semiautomatic exposure control, 24 kVp and 108 mAs). The calibration curves were obtained by simultaneously irradiating ZrO 2 samples and ion chamber. Samples of ZrO 2 showed a linear response as a function of entrance skin air kerma. The observed results in TL properties suggest that ZrO 2 nanostructured could be considered as an effective material for X-ray beams dosimetry if appropriate calibration procedures are performed. - Highlights: ► X-ray low energy thermoluminescent of ZrO 2 dosimeter is developed. ► Air kerma measurements were made by thermoluminescent dosimeter ZrO 2 using mammography equipment parameters. ► Entrance surface skin doses were made using thermoluminescent dosimeter of ZrO 2 to X-ray beam quality control.

  4. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  5. Oxidation kinetics of some zirconium alloys in flowing carbon dioxide at high temperatures

    International Nuclear Information System (INIS)

    Kohli, R.

    1980-01-01

    The oxidation kinetics of three zirconium alloys (Zr-2.2 wt% Hf, Zr-2.5 wt% Nb, and Zr-3 wt% Nb-1 wt% Sn) have been measured in flowing carbon dioxide in the temperature range from 873 to 1173 K to 120 ks (2000 min). At all oxidation temperatures, Zr-2.5 Nb and Zr-3 Nb-1 Sn showed a transition to rapid linear kinetics after initial parabolic oxidation. The Zr-2.2 Hf showed this transition at temperatures in the range from 973 to 1173 K; at 873 K, no transition was observed within the oxidation times reported. The Zr-2.2 Hf showed the smallest weight gains, followed in order by Zr-2.5 Nb and Zr-3 Nb-1 Sn. Increased oxidation rates and shorter times-to-rate-transition of Zr-2.2 Nb and Zr-1 Sn as compared with Zr-2.2 Hf can be attributed to the presence of niobium, tin, and hafnium in the alloys. This is considered in terms of the Nomura-Akutsu model, according to which hafnium should delay the rate transition, while niobium and tin lead to shorter times-to-rate-transition. The scale on Zr-2.2 Hf was identified as monoclinic zirconia, while the tetragonal phase, 6ZrO 2 .Nb 2 O 5 , was contained in the monoclinic zirconia scales on both other alloys

  6. Investigation of strontium and uranium sorption onto zirconium-antimony oxide/polyacrylonitrile (Zr-Sb oxide/PAN) composite using experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Cakir, Pelin; Inan, Suleyman, E-mail: suleyman.inan@ege.edu.tr; Altas, Yuksel

    2014-04-01

    Highlights: • We model Sr{sup 2+} and UO{sub 2}{sup 2+} sorption onto Zr-Sb oxide/PAN composite. • Central composite design was separately employed for Sr{sup 2+} and UO{sub 2}{sup 2+} sorption. • The model F values indicate that both models are statistically significant. • All of the single factors were determined as significant for the sorption of Sr{sup 2+} and UO{sub 2}{sup 2+}. • Zr-Sb oxide/PAN can be used effectively for Sr{sup 2+} and UO{sub 2}{sup 2+} removal from acidic solutions. - Abstract: A study on the sorption of strontium (Sr{sup 2+}) and uranium (UO{sub 2}{sup 2+}) onto zirconium-antimony oxide/PAN (Zr-Sb oxide/PAN) composite was conducted. The zirconium-antimony oxide was synthesized and was then turned into composite spheres by mixing it with polyacrylonitrile (PAN). The single and combined effects of independent variables such as initial pH, temperature, initial ion concentration and contact time on the sorption of Sr{sup 2+} and UO{sub 2}{sup 2+} were separately analyzed using response surface methodology (RSM). Central composite design (CCD) was separately employed for Sr{sup 2+} and UO{sub 2}{sup 2+} sorption. Analysis of variance (ANOVA) revealed that all of the single effects found statistically significant on the sorption of Sr{sup 2+} and UO{sub 2}{sup 2+}. Probability F-values (F = 2.45 × 10{sup −08} and F = 9.63 × 10{sup −12} for Sr{sup 2+} and UO{sub 2}{sup 2+}, respectively) and correlation coefficients (R{sup 2} = 0.96 for Sr{sup 2+} and R{sup 2} = 0.98 for UO{sub 2}{sup 2+}) indicate that both models fit the experimental data well. At optimum sorption conditions Sr{sup 2+} and UO{sub 2}{sup 2+} sorption capacities of the composite were found as 39.78 and 60.66 mg/g, respectively. Sorption isotherm data pointed out that Langmuir model is more suitable for the Sr{sup 2+} sorption, whereas the sorption of UO{sub 2}{sup 2+} was correlated well with the Langmuir and Freundlich models. Thermodynamic parameters such as

  7. Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified Portland cement-based experimental endodontic sealers.

    Science.gov (United States)

    Viapiana, R; Flumignan, D L; Guerreiro-Tanomaru, J M; Camilleri, J; Tanomaru-Filho, M

    2014-05-01

    To evaluate the physicochemical and mechanical properties of Portland cement-based experimental sealers (ES) with different radiopacifying agents (zirconium oxide and niobium oxide micro- and nanoparticles) in comparison with the following conventional sealers: AH Plus, MTA Fillapex and Sealapex. The materials were tested for setting time, compressive strength, flow, film thickness, radiopacity, solubility, dimensional stability and formaldehyde release. Data were subjected to anova and Tukey tests (P 0.05) and lower solubility when compared with MTA Fillapex and Sealapex (P Portland cement-based experimental endodontic sealers presented physicochemical properties according to the specifications no 57 ANSI/ADA (ADA Professional Product Review, 2008) and ISO 6876 (Dentistry - Root Canal Sealing Materials, 2012, British Standards Institution, London, UK). The sealers had setting times and flow ability that was adequate for clinical use, satisfactory compressive strength and low solubility. Additional studies should be carried out with the purpose of decreasing the film thickness and to determine the ideal ratio of radiopacifying agents in Portland cement-based root canal sealers. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Silica intercalated crystalline zirconium phosphate-type materials

    NARCIS (Netherlands)

    1988-01-01

    The present invention relates to intercalated crystalline zirconium phosphate-types compositions wherein the interlayers of said composition have been intercalated with three-dimensional silicon oxide pillars whereby the pillars comprise at least two silicon atom layers parallel to the clay

  9. Fundamental aspects of actinide-zirconium pyrochlore oxides: Systematic comparison of the Pu, Am, Cm, Bk and Cf systems

    International Nuclear Information System (INIS)

    Haire, R.G.; Raison, P.E.

    2000-01-01

    Zirconium- and hafnium-based oxide materials have gained attraction for various nuclear applications. These materials have features in common with one of the early, well-publicized inorganic ceramics for immobilizing nuclear waste. Our interests have addressed the fundamental structural and chemical properties of these oxide systems. We pursued both the crystal chemical constraints of the oxide matrices, as well as the importance of the chemistry of the f-elements. By incorporating five actinide elements in our studies, we were able to compare systematically the materials science of these materials with the fundamental chemistry and electronic configurations of these actinides employed. It is expected that this basic information will be useful technologically in the realm of tailor-made materials for different applications

  10. Oxide characterization and hydrogen behaviors of Zr-based alloys

    International Nuclear Information System (INIS)

    Kim, Y. S.; Kim, D. J.; Kwon, S. H.; Lee, H. S.; Oh, S. J.; Yim, B. J.; Son, S. B.; Yun, S. P.

    2006-03-01

    The work scope and contents of the research are as follows : basic properties of zirconium alloys, hydrogen pick-up mechanism of zirconium alloy, effects of hydride on the corrosion behaviors of zirconium alloys, estimation on stress of oxide layer in the zirconium alloy, microstructure and characteristic of oxide in pre-hydrided zirconium alloys

  11. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  12. Corrosion resistance of high-performance materials titanium, tantalum, zirconium

    CERN Document Server

    2012-01-01

    Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high–performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self–healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valua...

  13. Waterside corrosion of zirconium alloys in nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    Technically the study of corrosion of zirconium alloys in nuclear power reactors is a very active field and both experimental work and understanding of the mechanisms involved are going through rapid changes. As a result, the lifetime of any publication in this area is short. Because of this it has been decided to revise IAEA-TECDOC-684 - Corrosion of Zirconium Alloys in Nuclear Power Plants - published in 1993. This updated, revised and enlarged version includes major changes to incorporate some of the comments received about the first version. Since this review deals exclusively with the corrosion of zirconium and zirconium based alloys in water, and another separate publication is planned to deal with the fuel-side corrosion of zirconium based fuel cladding alloys, i.e. stress corrosion cracking, it was decided to change the original title to Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants. The rapid changes in the field have again necessitated a cut-off date for incorporating new data. This edition incorporates data up to the end of 1995; including results presented at the 11 International Symposium on Zirconium in the Nuclear Industry held in Garmisch-Partenkirchen, Germany, in September 1995. The revised format of the review now includes: Introductory chapters on basic zirconium metallurgy and oxidation theory; A revised chapter discussing the present extent of our knowledge of the corrosion mechanism based on laboratory experiments; a separate and revised chapter discussing hydrogen uptake; a completely reorganized chapter summarizing the phenomenological observations of zirconium alloy corrosion in reactors; a new chapter on modelling in-reactor corrosion; a revised chapter devoted exclusively to the manner in which irradiation might influence the corrosion process; finally, a summary of our present understanding of the corrosion mechanisms operating in reactor

  14. Preparation and characterization of sugar cane bagasse fiber modified with nanoparticles of zirconium oxide; Preparacao e caracterizacao de fibras de bagaco de cana modificadas com nanoparticulas de oxido de zirconio

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, K.C.C. de; Mulinari, D.R.; Voorwald, H.C.J.; Cioffi, M.O.H., E-mail: kcccarvalho@hotmail.com.b [UNESP, Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia(FEG)

    2010-07-01

    The sugar cane bagasse fiber are renewable materials and have great application potential when used as reinforcement in a polymer matrix to give rise to composite materials and as supports for adsorption of heavy metals. This paper therefore describes the preparation and characterization of bleached and hydrated zirconium oxide modified sugar cane bagasse fiber by conventional precipitation method. Through the technique of electron microscopy we observed the presence of oxide nanoparticles on the fiber surface, proving the efficiency of the conventional precipitation method. With the X-ray diffraction analysis it was determined a decrease of 6.2% in the crystallinity index of modified fibers when compared to the bleached fibers showing the deposition of amorphous zirconium oxide on the fiber surface. (author)

  15. Fluorometric determination of zirconium in minerals

    Science.gov (United States)

    Alford, W.C.; Shapiro, L.; White, C.E.

    1951-01-01

    The increasing use of zirconium in alloys and in the ceramics industry has created renewed interest in methods for its determination. It is a common constituent of many minerals, but is usually present in very small amounts. Published methods tend to be tedious, time-consuming, and uncertain as to accuracy. A new fluorometric procedure, which overcomes these objections to a large extent, is based on the blue fluorescence given by zirconium and flavonol in sulfuric acid solution. Hafnium is the only element that interferes. The sample is fused with borax glass and sodium carbonate and extracted with water. The residue is dissolved in sulfuric acid, made alkaline with sodium hydroxide to separate aluminum, and filtered. The precipitate is dissolved in sulfuric acid and electrolysed in a Melaven cell to remove iron. Flavonol is then added and the fluorescence intensity is measured with a photo-fluorometer. Analysis of seven standard mineral samples shows excellent results. The method is especially useful for minerals containing less than 0.25% zirconium oxide.

  16. Experiments on interactions between zirconium-containing melt and water (ZREX). Hydrogen generation and chemical augmentation of energetics

    Energy Technology Data Exchange (ETDEWEB)

    Cho, D.H.; Armstrong, D.R.; Gunther, W.H. [Argonne National Lab., IL (United States); Basu, S.

    1998-01-01

    The results of the first data series of experiments on interactions between zirconium-containing melt and water are described. These experiments involved dropping 1-kg batches of pure zirconium or zirconium-zirconium dioxide mixture melt into a column of water. A total of nine tests were conducted, including four with pure zirconium melt and five with Zr-ZrO{sub 2} mixture melt. Explosions took place only in those tests which were externally triggered. While the extent of zirconium oxidation in the triggered experiments was quite extensive, the estimated explosion energetics were found to be very small compared to the combined thermal and chemical energy available. (author)

  17. Valence control of cobalt oxide thin films by annealing atmosphere

    International Nuclear Information System (INIS)

    Wang Shijing; Zhang Boping; Zhao Cuihua; Li Songjie; Zhang Meixia; Yan Liping

    2011-01-01

    The cobalt oxide (CoO and Co 3 O 4 ) thin films were successfully prepared using a spin-coating technique by a chemical solution method with CH 3 OCH 2 CH 2 OH and Co(NO 3 ) 2 .6H 2 O as starting materials. The grayish cobalt oxide films had uniform crystalline grains with less than 50 nm in diameter. The phase structure is able to tailor by controlling the annealing atmosphere and temperature, in which Co 3 O 4 thin film was obtained by annealing in air at 300-600, and N 2 at 300, and transferred to CoO thin film by raising annealing temperature in N 2 . The fitted X-ray photoelectron spectroscopy (XPS) spectra of the Co2p electrons are distinguishable from different valence states of cobalt oxide especially for their satellite structure. The valence control of cobalt oxide thin films by annealing atmosphere contributes to the tailored optical absorption property.

  18. Methods for the preparation of ultra-pure anhydrous zirconium tetrafluoride from zirconium tetraborohydride, researches in connection with halide glasses

    International Nuclear Information System (INIS)

    Tortevois, R.

    1990-01-01

    The synthesis of ultrapure zirconium tetrafluoride, the main component of fluorozirconate based optical fibers, was successfully attempted from zirconium tetraborohydride. Of the fluorinating agents used, nitrogen trifluoride doesn't react with zirconium tetraborohydride while xenon difluoride reacts too violently and leads to phases which contain boron. The fluorination in a compatible solvent enabled us to minimize the degradation. The best results were obtained with the fluorination of Zr(BH 4 ) 4 dissolved in CFCl 3 at -40 deg C by anhydrous HF. Using several analytical methods such as graphite furnace atomic absorption and proton activation, we analyzed the purity. The degree of transition element impurities is less than the ppm level for ZrF 4 . The dehydration of ZrF 4 ,H 2 O and ZrF 4 ,3H 2 O at room temperature by CIF 3 in gaseous and liquid state was also investigated. At exceptionally low temperature, this process allows oxide and oxyfluoride components to be reduced

  19. Thermoluminescence of zirconium oxide nanostructured to mammography X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.L. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria, IPN. Av. Legaria 694, 11500 Mexico D.F. (Mexico); Rivera, T., E-mail: trivera@ipn.mx [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria, IPN. Av. Legaria 694, 11500 Mexico D.F. (Mexico); Roman, J. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria, IPN. Av. Legaria 694, 11500 Mexico D.F. (Mexico); Azorin, J. [Universidad Autonoma Metropolitana-Iztapalapa. Av. San Rafael Atlixco 187, 09340 Mexico D.F. (Mexico); Gaona, E. [Universidad Autonoma Metropolitana-Xochimilco. Calz. Del Hueso 1100, 04960 Mexico D.F. (Mexico)

    2012-07-15

    In the present work thermoluminescent (TL) response of zirconium oxide (ZrO{sub 2}) nanostructured induced by mammography X-ray radiation was investigated. Measurements were made of the response per unit air kerma of ZrO{sub 2} with mammography equipment parameters (semiautomatic exposure control, 24 kVp and 108 mAs). The calibration curves were obtained by simultaneously irradiating ZrO{sub 2} samples and ion chamber. Samples of ZrO{sub 2} showed a linear response as a function of entrance skin air kerma. The observed results in TL properties suggest that ZrO{sub 2} nanostructured could be considered as an effective material for X-ray beams dosimetry if appropriate calibration procedures are performed. - Highlights: Black-Right-Pointing-Pointer X-ray low energy thermoluminescent of ZrO{sub 2} dosimeter is developed. Black-Right-Pointing-Pointer Air kerma measurements were made by thermoluminescent dosimeter ZrO{sub 2} using mammography equipment parameters. Black-Right-Pointing-Pointer Entrance surface skin doses were made using thermoluminescent dosimeter of ZrO{sub 2} to X-ray beam quality control.

  20. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    International Nuclear Information System (INIS)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin

    2014-01-01

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  1. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin [Chungnam National University, Daejeon (Korea, Republic of)

    2014-11-15

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  2. Characterization of low-temperature microwave loss of thin aluminum oxide formed by plasma oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chunqing, E-mail: cdeng@uwaterloo.ca; Otto, M.; Lupascu, A., E-mail: alupascu@uwaterloo.ca [Institute for Quantum Computing, Department of Physics and Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2014-01-27

    We report on the characterization of microwave loss of thin aluminum oxide films at low temperatures using superconducting lumped resonators. The oxide films are fabricated using plasma oxidation of aluminum and have a thickness of 5 nm. We measure the dielectric loss versus microwave power for resonators with frequencies in the GHz range at temperatures from 54 to 303 mK. The power and temperature dependence of the loss are consistent with the tunneling two-level system theory. These results are relevant to understanding decoherence in superconducting quantum devices. The obtained oxide films are thin and robust, making them suitable for capacitors in compact microwave resonators.

  3. Synthesis of amorphous zirconium oxide with luminescent characteristics; Sintesis de oxido de circonio amorfo con caracteristicas luminiscentes

    Energy Technology Data Exchange (ETDEWEB)

    Barrera S, M; Chavez G, M; Soto E, A M; Velasquez O, C; Garcia S, M A; Olvera T, L; Rivera M, T [UAM-I, 09340 Mexico D.F. (Mexico)

    2004-07-01

    It was prepared zirconium oxide, ZrO{sub 2}, by means of hydrolysis-condensation reactions (sol-gel method), using zirconium propoxide, Zr(C{sub 3}H{sub 7}O){sub 4}, as precursor and nitric acid, HNO{sub 3}, as catalyst of the hydrolysis reaction. In this synthesis it was used a molar ratio water-alkoxide, r=n{sub H2O}/n{sub Zr}(C{sub 3}H{sub 7}0){sub 4}, high, similar to 200, so that the hydrolysis happens quickly and the nucleation and growth are completed in very little time. The solid was characterized with Ftir spectrophotometry, Differential thermal analysis (Dta), Thermal gravimetric analysis (T G), X-ray diffraction of powders, Scanning electron microscopy (Sem) and X-ray Dispersion energy (EDX). The ZrO{sub 2} obtained by this way is amorphous even to 300 C and it consists of big aggregates. The amorphous ZrO{sub 2}, presents thermoluminescent behavior, after it was irradiated with UV radiation and beta particles of {sup 90}Sr/{sup 90}Y and it was thermally stimulated. (Author)

  4. Precipitation of γ-zirconium hydride in zirconium

    International Nuclear Information System (INIS)

    Carpenter, G.J.C.

    1978-01-01

    A mechanism for the precipitation of γ-zirconium hydride in zirconium is presented which does not require the diffusion of zirconium. The transformation is completed by shears caused by 1/3 (10 anti 10) Shockley partial dislocations on alternate zirconium basal planes, either by homogeneous nucleation or at lattice imperfections. Homogeneous nucleation is considered least likely in view of the large nucleation barrier involved. Hydrides may form at dislocations by the generation of partials by means of either a pole or ratchet mechanism. The former requires dislocations with a component of Burgers vector along the c-axis, but contrast experiments show that these are not normally observed in annealed zirconium. It is therefore most likely that intragranular hydrides form at the regular 1/3 (11 anti 20) dislocations, possibly by means of a ratchet mechanism. Contrast experiments in the electron microscope show that the precipitates have a shear character consistent with the mechanism suggested. The possibility that the shear dislocations associated with the hydrides are emissary dislocations is considered and a model suggested in which this function is satisfied together with the partial relief of misfit stresses. The large shear strains associated with the precipitation mechanism may play an important role in the preferential orientation of hydrides under stress

  5. MULTILAYER COMPOSITE PLASMA COATINGS ON SCREEN PROTECTION ELEMENTS BASED ON ZIRCONIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2017-01-01

    Full Text Available The paper contains results of investigations pertaining to an influence of plasma jet parameters (current, spraying distance, consumption of plasma formation gas (nitrogen, fractional composition of initial powder and degree of cooling with compressed air on anti-meteoric coating characteristics. Optimum modes (arc current 600 A; spray distance of 110 mm; consumption of plasma formation gas (nitrogen – 50 l/min; fractional composition of zirconium dioxide powder <50 μm; compressed air consumption for cooling – 1 m3/min; p = 4 bar make it possible to obtain anti-meteoric coatings based on zirconium dioxide with material utilization rate of 62 %, total ceramic layer porosity of 6 %. After exposure of compression plasma flows on a coating in the nitrogen atmosphere a cubic modification of zirconium oxide is considered as the main phase being present in the coating. The lattice parameter of cubic zirconium oxide modification is equal to 0.5174 nm. Taking into consideration usage of nitrogen as plasma formation substance its interaction with zirconium coating atoms occurs and zirconium nitride (ZrN is formed with a cubic crystal lattice (lattice parameter 0.4580 nm. Melting of pre-surface layer takes place and a depth of the melted layer is about 8 μm according to the results of a scanning electron microscopy. Pre-surface layer being crystallized after exposure to compression plasma flows is characterized by a homogeneous distribution of ele-ments and absence of pores formed in the process of coating formation. The coating structure is represented by a set of lar- ge (5–7 μm and small (1–2 μm zirconium oxide particles sintered against each other. Melting of coating surface layer and speed crystallization occur after the impact of compression plasma flows on the formed coating. Cracking of the surface layer arises due to origination of internal mechanical stresses in the crystallized part. While using a scanning electron microscopy a

  6. Analytical study of zirconium and hafnium α-hydroxy carboxylates

    International Nuclear Information System (INIS)

    Terra, V.R.

    1991-01-01

    The analytical study of zirconium and hafnium α-hydroxy carboxylates was described. For this purpose dl-mandelic, dl-p-bromo mandelic, dl-2-naphthyl glycolic, and benzilic acids were prepared. These were used in conjunction with glycolic, dl-lactic, dl-2-hydroxy isovaleric, dl-2-hydroxy hexanoic, and dl-2-hydroxy dodecanoic acids in order to synthesize the zirconium(IV) and hafnium(IV) tetrakis(α-hydroxy carboxylates). The compounds were characterized by melting point determination, infrared spectroscopy, thermogravimetric analysis, calcination to oxides and X-ray diffractometry by the powder method. (C.G.C)

  7. Conversion of actual flue gas CO 2 via cycloaddition to propylene oxide catalyzed by a single-site, recyclable zirconium catalyst

    KAUST Repository

    Kelly, Michael J.

    2017-06-12

    A reusable zirconium-based catalyst for the cycloaddition of CO2 to propylene oxide (PO) was prepared by the surface organometallic chemistry (SOMC) methodology. Accordingly, well-defined amounts of the ZrCl4·(OEt2)2 precursor were grafted on the surface of silica dehydroxylated at 700°C (SiO2-700) and at 200°C (SiO2-200) in order to afford surface coordination compounds with different podality and chemical environment. The identity of the surface complexes was thoroughly investigated by FT-IR, elemental microanalysis and solid state NMR and applied as a recoverable and reusable heterogeneous catalyst for the title reaction using pure CO2 and flue gas samples from a cement factory. The observed catalytic activity for the isolated zirconium complexes is rationalized by means of systematic DFT calculations.

  8. Conversion of actual flue gas CO 2 via cycloaddition to propylene oxide catalyzed by a single-site, recyclable zirconium catalyst

    KAUST Repository

    Kelly, Michael J.; Barthel, Alexander; Maheu, Clement; Sodpiban, Ounjit; Dega, Frank-Blondel; Vummaleti, Sai V.C.; Abou-Hamad, Edy; Pelletier, Jeremie; Cavallo, Luigi; D'Elia, Valerio; Basset, Jean-Marie

    2017-01-01

    A reusable zirconium-based catalyst for the cycloaddition of CO2 to propylene oxide (PO) was prepared by the surface organometallic chemistry (SOMC) methodology. Accordingly, well-defined amounts of the ZrCl4·(OEt2)2 precursor were grafted on the surface of silica dehydroxylated at 700°C (SiO2-700) and at 200°C (SiO2-200) in order to afford surface coordination compounds with different podality and chemical environment. The identity of the surface complexes was thoroughly investigated by FT-IR, elemental microanalysis and solid state NMR and applied as a recoverable and reusable heterogeneous catalyst for the title reaction using pure CO2 and flue gas samples from a cement factory. The observed catalytic activity for the isolated zirconium complexes is rationalized by means of systematic DFT calculations.

  9. Influence of irradiation and radiolysis on the corrosion rates and mechanisms of zirconium alloys

    International Nuclear Information System (INIS)

    Verlet, Romain

    2015-01-01

    The nuclear fuel of pressurized water reactors (PWR) in the form of uranium oxide UO 2 pellets (or MOX) is confined in a zirconium alloy cladding. This cladding is very important because it represents the first containment barrier against the release of fission products generated by the nuclear reaction to the external environment. Corrosion by the primary medium of zirconium alloys, particularly the Zircaloy-4, is one of the factors limiting the reactor residence time of the fuel rods (UO 2 pellets + cladding). To optimize core management and to extend the lifetime of the fuel rods in reactor, new alloys based on zirconium-niobium (M5) have been developed. However, the corrosion mechanisms of these are not completely understood because of the complexity of these materials, corrosion environment and the presence of radiation from the nuclear fuel. Therefore, this thesis specifically addresses the effects of radiolysis and defects induced by irradiation with ions in the matrix metal and the oxide layer on the corrosion rate of Zircaloy-4 and M5. The goal is to separate the influence of radiation damage to the metal, that relating to defects created in the oxide and that linked to radiolysis of the primary medium on the oxidation rate of zirconium alloys in reactor. 1) Regarding effect of irradiation of the metal on the oxidation rate: type dislocation loops appear and increase the oxidation rate of the two alloys. For M5, in addition to the first effect, a precipitation of fines needles of niobium reduced the solid solution of niobium concentration in the metal and ultimately in the oxide, which strongly reduces the oxidation rate of the alloy. 2) Regarding the effect of irradiation of the oxide layer on the oxidation rate: defects generated by the nuclear cascades in the oxide increase the oxidation rate of the two materials. For M5, germination of niobium enriched zones in irradiated oxide also causes a decrease of the niobium concentration in solid solution

  10. Effect of Zirconium Oxide Nanofiller and Dibutyl Phthalate Plasticizer on Ionic Conductivity and Optical Properties of Solid Polymer Electrolyte

    Science.gov (United States)

    Yasin, Siti Mariah Mohd; Ibrahim, Suriani

    2014-01-01

    New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2 nanofiller with maximum conductivity (1.38 × 10−4 Scm−1). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased. PMID:25133244

  11. Effect of Zirconium Oxide Nanofiller and Dibutyl Phthalate Plasticizer on Ionic Conductivity and Optical Properties of Solid Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    Siti Mariah Mohd Yasin

    2014-01-01

    Full Text Available New solid polymer electrolytes (SPE based on poly(ethylene oxide (PEO doped with lithium trifluoromethanesulfonate (LiCF3SO3, dibutyl phthalate (DBP plasticizer, and zirconium oxide (ZrO2 nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP plasticizer and ZrO2 nanofiller with maximum conductivity (1.38×10-4 Scm-1. The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased.

  12. Valence control of cobalt oxide thin films by annealing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shijing [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China); Zhang Boping, E-mail: bpzhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China); Zhao Cuihua; Li Songjie; Zhang Meixia; Yan Liping [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China)

    2011-02-01

    The cobalt oxide (CoO and Co{sub 3}O{sub 4}) thin films were successfully prepared using a spin-coating technique by a chemical solution method with CH{sub 3}OCH{sub 2}CH{sub 2}OH and Co(NO{sub 3}){sub 2}.6H{sub 2}O as starting materials. The grayish cobalt oxide films had uniform crystalline grains with less than 50 nm in diameter. The phase structure is able to tailor by controlling the annealing atmosphere and temperature, in which Co{sub 3}O{sub 4} thin film was obtained by annealing in air at 300-600, and N{sub 2} at 300, and transferred to CoO thin film by raising annealing temperature in N{sub 2}. The fitted X-ray photoelectron spectroscopy (XPS) spectra of the Co2p electrons are distinguishable from different valence states of cobalt oxide especially for their satellite structure. The valence control of cobalt oxide thin films by annealing atmosphere contributes to the tailored optical absorption property.

  13. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    Science.gov (United States)

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  14. A study of a production process for hafnium-free zirconium from zircon

    International Nuclear Information System (INIS)

    Ratanalert, N.

    1985-01-01

    The purpose of this experiment was to extract and purify the zirconium from zircon. The effects of time of extraction and stripping of zirconium, concentration of feed solution, concentration of hydrochloric acid in stripping process, equilibrium curve of extraction of zirconium and hafnium and equilibrium curve of stripping zirconium or scrubbing hafnium were studied from standard zirconium and hafnium. The results, subsequently were applied to the extraction procedures for zirconium from zircon. Minus 100 mesh zircon was fused with sodium hydroxide in the ratio of 1 : 6 at 700 degree C for l hour. After fusion the zirconate was leached with water and dissolved in hot concentrated hydrochloric acid. Zirconyl chloride octahydrate crystallized out when the solution was cooled. An agueons solution of zirconyl chloride was used as the feed to the hexone - thiocyanate solvent extraction process. This was prepared by dissolving zirconyl chloride octahydrate crystal in waster. This zirconium feed solution in 1 M HCl and 1 M N H 4 CNS was extracted with 2.7 m N H 4 CNS in hexone and then stripped with 3.6 M HCl the aqueous phase was got rid of thiocyanate ion by extracting with pure hexone, then the zirconium in aqueous phase was precipitated with sulfuric acid and ammonium hydroxide at pH 1.8 - 2.0 and zirconium oxide was obtained by ignition at 700 degree C. The process could be modified to improve the purity of zirconium by using cation exchange resin to get rid of thiocyanate ion after solvent extraction process

  15. Automatic measuring system of zirconium thickness for zirconium liner cladding tubes

    International Nuclear Information System (INIS)

    Matsui, K.; Yamaguchi, H.; Hiroshima, T.; Sakamoto, T.; Murayama, R.

    1985-01-01

    An automatic system of pure zirconium liner thickness for zirconium-zircaloy cladding tubes has been successfully developed. The system consists of three parts. (1) An ultrasonic thickness measuring method for mother tubes before cold rolling. (2) An electromagnetic thickness measuring method for the manufactured tubes. (3) An image processing method for the cross sectional view of the manufactured cut tube samples. In Japanese nuclear industry, zirconium-zircaloy cladding tubes have been tested in order to realize load following operation in the atomic power plant. In order to provide for the practical use in the near future, Sumitomo Metal Industries, Ltd. has been studied and established the practical manufacturing process of the zirconium liner cladding tubes. The zirconium-liner cladding tube is a duplex tube comprising an inner layer of pure zirconium bonded to zircaloy metallurgically. The thickness of the pure zirconium is about 10 % of the total wall thickness. Several types of the automatic thickness measuring methods have been investigated instead of the usual microscopic viewing method in which the liner thickness is measured by the microscopic cross sectional view of the cut tube samples

  16. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  17. Radiochemical neutron activation analysis of zirconium and zirconium-niobium alloys

    International Nuclear Information System (INIS)

    Tashimova, F.A.; Sadikov, I.I.; Salimov, M.

    2004-01-01

    Full text: Zirconium and zirconium-niobium alloys are used on nuclear technology, as fuel cladding of nuclear reactors. Their nuclear-physical, mechanical and thermophysical properties are influenced them matrix and impurity composition, therefore determination of matrix and impurity content of these materials is a very important task. Neutron activation analysis is one from multielemental and high sensible techniques that are widely applied in analysis of high purity materials. Investigation of nuclear-physical characteristics of zirconium has shown that instrumental variant NAA is unusable for analysis due to high radioactivity of a matrix. Therefore it is necessary carrying out radiochemical separation of impurity radionuclides from matrix. Study of the literature datum have shown, that zirconium and niobium are very well extracted from muriatic solution with 5% tributyl phosphineoxide (TBPO) solution in toluene and 0,75 M solution of di-2-ethyl hexyl phosphoric acid (HDEHP) in cyclohexanone. Investigation of these elements extraction in these systems has shown that more effective and selective separation of matrix radionuclides is achieved in HDEHP-3M HCI system. This system is also extracted and hafnium, witch is an accompanying element of zirconium and its high content prevented determination of other impurity elements in sample. Therefore we used extraction system HDEHP-3M HCl for analysis of zirconium and zirconium-niobium alloys in chromatographic variant. By measurement of distribution profile of a matrix and of elution curve of determined elements is established, that for effective separation of impurity and matrix radionuclides there is enough chromatographic column with diameter 1 cm and height of a sorbent layer 7 cm, thus volume of elute, necessary for complete elution of determinate elements is 35-40 ml. On the basis of the carried out researches the technique of radiochemical NAA of high purity zirconium and zirconium-niobium alloy, which allows to

  18. Extra spots in the electron diffraction patterns of neutron irradiated zirconium and its alloys

    International Nuclear Information System (INIS)

    Madden, P.K.

    1977-01-01

    Specimens of neutron irradiated zirconium and its alloys were examined in the transmission electron microscope. Groups of extra spots, often exhibiting four-fold symmetry, were observed in thin foil electron diffraction patterns of these specimens. The 'extra-spot' structure, like the expected black-dot/small scale dislocation loop neutron irradiated damage, is approximately 100 A in size. Its nature is uncertain. It may be related to irradiation damage or to some artefact introduced during specimen preparation. If it is the latter, then published irradiation damage defect size distributions and determined irradiation growth strains of other investigators, may require modification. The present inconclusive results indicate that extra-spot structure is likely to consist of oxide particles, but may correspond to hydride precipitation or decoration effects, or even, to electron beam effects. (author)

  19. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Bajpai, M.B.; Shenoi, M.R.K.; Keni, V.S.

    1994-01-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author)

  20. Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    Saif Ali Chaudhry

    2017-06-01

    Full Text Available This paper reports zirconium oxide-coated sand preparation, characterization by SEM, EDX, XRD, FT-IR and thermoanalytical techniques, and use as an adsorbent for the removal of most toxic form of arsenic, As(III, from aqueous solution in both batch and column methods. Batch experimental parameters such as contact time, concentration, dose of adsorbent, pH of As(III solution and temperature were optimized. The adsorption data was fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms at 303, 308 and 313 K. The maximum Langmuir monolayer adsorption capacity was found to be 136.98 μg/g at 313 K. Values of ΔH°, ΔG° and ΔS° were found to be −12.90, −8.74 to –8.28 and 0.014 kJ/mol, suggesting exothermic and spontaneous adsorption process with slight increase in entropy. The adsorption process followed pseudo-second order kinetics and was controlled by film diffusion step. The column studies showed that when flow rate was increased from 3.0 to 5.0 mL/min, the arsenic adsorption capacity of ZrOCS increased from 33.104 to 42.231 μg/g and breakthrough, and exhaustion times got reduced reduced. The results indicated that zirconium oxide-coated sand (ZrOCS is an excellent adsorbent for the removal of As(III from water.

  1. Zirconium intermetallics and hydrogen uptake during corrosion

    International Nuclear Information System (INIS)

    Cox, B.

    1987-04-01

    The routes by which hydrogen can enter zirconium alloys containing second phase particles during corrosion are discussed. Both direct diffusion through the bulk of the oxide film, and migration through second phase particles that intersect the surface are considered. An examination of results for hydrogen uptake by zirconium alloys during the early stages of oxidation, when the oxide film is still coherent, suggests that for Zr, Zr-1%Cu and Zr-1%Fe the hydrogen enters by diffusing through the bulk ZrO 2 film, whereas for the Zircaloys the primary migration route may be through the intermetallics. The steps in the latter process are discussed and the evidence available on the properties of the intermetallics collated. A comparison of these data with results for hydrogen uptake by two series of ternary alloys (Zr-1%Nb - 1%X, Zr-1%Cu - 1%X) suggests that high hydrogen uptakes often correlate with intermetallics with high hydrogen solubilities and vice versa. The properties of Zr(Fe/Cr) 2+x intermetallics are examined in an attempt to understand the behaviour of the Zircaloys, and it is concluded that present data establishing composition and unit cell dimensions for such intermetallic particles are not of sufficient accuracy to permit a correlation

  2. Experimental study and modeling of high-temperature oxidation and phase transformation of cladding-tubes made in zirconium alloy

    International Nuclear Information System (INIS)

    Mazeres, Benoit

    2013-01-01

    One of the hypothetical accident studied in the field of the safety studies of Pressurized light Water Reactor (PWR) is the Loss-Of-Coolant-Accident (LOCA). In this scenario, zirconium alloy fuel claddings could undergo an important oxidation at high temperature (T≅ 1200 C) in a steam environment. Cladding tubes constitute the first confinement barrier of radioelements and then it is essential that they keep a certain level of ductility after quenching to ensure their integrity. These properties are directly related to the growth kinetics of both the oxide and the αZr(O) phase and also to the oxygen diffusion profile in the cladding tube after the transient. In this context, this work was dedicated to the understanding and the modeling of the both oxidation phenomenon and oxygen diffusion in zirconium based alloys at high temperature. The numerical tool (EKINOX-Zr) used in this thesis is based on a numerical resolution of a diffusion/reaction problem with equilibrium-conditions on three moving boundaries: gas/oxide, oxide/αZr(O), αZr(O)/βZr. EKINOX-Zr kinetics model is coupled with ThermoCalc software and the Zircobase database to take into account the influence of the alloying elements (Sn, Fe, Cr, Nb) but also the influence of hydrogen on the solubility of oxygen. This study focused on two parts of the LOCA scenario: the influence of a pre-oxide layer (formed in-service) and the effects of hydrogen. Thanks to the link between EKINOX-Zr and the thermodynamic database Zircobase, the hydrogen effects on oxygen solubility limit could be considered in the numerical simulations. Thus, simulations could reproduce the oxygen diffusion profiles measured in pre-hydrided samples. The existence of a thick pre-oxide layer on cladding tubes can induce a reduction of this pre-oxide layer before the growth of a high-temperature one during the high temperature dwell under steam. The first simulations performed using the numerical tool EKINOX-Zr showed that this particular

  3. Method of reducing zirconium

    International Nuclear Information System (INIS)

    Megy, J.A.

    1980-01-01

    A method was developed for making nuclear-grade zirconium from a zirconium compound, which ismore economical than previous methods since it uses aluminum as the reductant metal rather than the more expensive magnesium. A fused salt phase containing the zirconium compound to be reduced is first prepared. The fused salt phase is then contacted with a molten metal phase which contains aluminum and zinc. The reduction is effected by mutual displacment. Aluminum is transported from the molten metal phase to the fused salt phase, replacing zirconium in the salt. Zirconium is transported from the fused salt phase to the molten metal phase. The fused salt phase and the molten metal phase are then separated, and the solvent metal and zirconium are separated by distillation or other means. (DN)

  4. A thermally robust and thickness independent ferroelectric phase in laminated hafnium zirconium oxide

    Directory of Open Access Journals (Sweden)

    S. Riedel

    2016-09-01

    Full Text Available Ferroelectric properties in hafnium oxide based thin films have recovered the scaling potential for ferroelectric memories due to their ultra-thin-film- and CMOS-compatibility. However, the variety of physical phenomena connected to ferroelectricity allows a wider range of applications for these materials than ferroelectric memory. Especially mixed HfxZr1-xO2 thin films exhibit a broad compositional range of ferroelectric phase stability and provide the possibility to tailor material properties for multiple applications. Here it is shown that the limited thermal stability and thick-film capability of HfxZr1-xO2 can be overcome by a laminated approach using alumina interlayers.

  5. On the initial corrosion mechanism of zirconium alloy: Interaction of oxygen and water with Zircaloy at room temperature and 450 C evaluated by x-ray absorption spectroscopy and photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Doebler, U.; Knop, A.

    1994-01-01

    The initial stages of zirconium oxide formation on Zircaloy after water (H 2 O) and oxygen (O 2 ) exposures have been investigated in situ using photoelectron spectroscopy and X-ray-absorption spectroscopy. The reactivity of the zirconium alloy with O 2 at room temperature is about 1,000 times higher than for H 2 O. Up to 100 L (1 L = 1 Langmuir unit = 1 · 10 -6 mbar · s) H 2 O exposure, the reactivity of the zirconium alloy at 450 C is comparable to the room temperature reaction. At higher H 2 O exposure, a sharp increase in the reaction rate for the high-temperature oxidation is observed. From the energy position of the Zr 3d photo emission line and their oxygen-induced chemical shifts, one can really follow the formation of the oxide films. Two different substoichiometric oxides were found during reaction with water. Suboxide (1) is located at the zirconium/zirconium-oxide interface. Subsequently, a Suboxide (2) is concluded from the chemical shift of the zirconium photoelectrons. After an oxide thickness of 2 nm, the stoichiometric ZrO 2 phase is not yet developed

  6. Corrosion resistance of zirconium in nitric acid

    International Nuclear Information System (INIS)

    Kajimura, H.; Morikawa, H.; Nagano, H.

    1987-01-01

    Slow strain rate tests are effected on zirconium in boiling nitric acid to study the influence of nitric acid concentration, of oxidizing ions (Cr and Ce) and of electric potential. Corrosion resistance is excellent and stress corrosion cracking occurs only for severe conditions: 350 mV over electric potential for corrosion with nitric acid concentration of 40 % [fr

  7. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José

    2010-10-24

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  8. Zirconium Phosphate Supported MOF Nanoplatelets.

    Science.gov (United States)

    Kan, Yuwei; Clearfield, Abraham

    2016-06-06

    We report a rare example of the preparation of HKUST-1 metal-organic framework nanoplatelets through a step-by-step seeding procedure. Sodium ion exchanged zirconium phosphate, NaZrP, nanoplatelets were judiciously selected as support for layer-by-layer (LBL) assembly of Cu(II) and benzene-1,3,5-tricarboxylic acid (H3BTC) linkers. The first layer of Cu(II) is attached to the surface of zirconium phosphate through covalent interaction. The successive LBL growth of HKUST-1 film is then realized by soaking the NaZrP nanoplatelets in ethanolic solutions of cupric acetate and H3BTC, respectively. The amount of assembled HKUST-1 can be readily controlled by varying the number of growth cycles, which was characterized by powder X-ray diffraction and gas adsorption analyses. The successful construction of HKUST-1 on NaZrP was also supported by its catalytic performance for the oxidation of cyclohexene.

  9. Influence of chemical composition of zirconium alloy E110 on embrittlement under LOCA conditions - Part 1: Oxidation kinetics and macrocharacteristics of structure and fracture

    Science.gov (United States)

    Nikulin, S. A.; Rozhnov, A. B.; Belov, V. A.; Li, E. V.; Glazkina, V. S.

    2011-11-01

    Exploratory investigations of the influence of alloying and impurity content in the E110 alloy cladding tubes on the behavior under conditions of Loss of Coolant Accidents (LOCA) has been performed. Three alloys of E110 type have been tested: E110 alloy of nominal composition Zr-1%Nb (E110), E110 alloy of modified composition Zr-1%Nb-0.12%Fe-0.13%O (E110M), E110 alloy of nominal composition Zr-1%Nb with reduced impurity content (E110G). Alloys E110 and E110M were manufactured on the electrolytic basis and alloy E110G was manufactured on the basis of zirconium sponge. The high temperature oxidation tests in steam ( T = 1100 °C, 18% of equivalent cladding reacted (ECR)) have been conducted, kinetics of oxidation was investigated. Quantitative research of structure and fracture macrocharacteristics was performed by means of optical and electron microscopy. The results received were compared with the residual ductility of specimens. The results of the investigation showed the existence of "breakaway oxidation" kinetics and white spalling oxide in E110 and E110M alloys while the specimen oxidation kinetics in E110G alloy was characterized by a parabolic law and specimens had a dense black oxide. Oxygen and iron alloying in the E110 alloy positively changed the macrocharacteristics of structure and fracture. However, in general, it did not improve the resistance to embrittlement in LOCA conditions apparently because of a strong impurity influence caused by electrolytic process of zirconium production.

  10. Corrosion mechanisms of zirconium alloys - study of the initial oxidation kinetics and of the mechanical behaviour of the metal/oxide system

    International Nuclear Information System (INIS)

    Parise, M.

    1996-12-01

    Nuclear fuel claddings are made of zirconium alloys. The conditions of use lead the cladding oxidize outside. The so-formed layers behaves like a thermal barrier and prevents from using oxidized claddings with an oxide thickness larger than 100 μm. The oxidation kinetic is approximately cubic for oxide thicknesses smaller than about 2μm, linear beyond. A kinetic model has been proposed which estimates the post-transition growth rate from the kinetic parameters of the pre-transition state and morphological features of post-transition layers. This work aims at providing the necessary elements to validate this model and studying the layers around the kinetic transition, in order to determine whether the oxidation mechanisms before and after the transition are similar. Thicknesses of the 50 - 500 nm range of the oxide layers are measured by an optical method; pre-transition kinetics are thus precisely determined. The effect of the composition, the thermal treatment and the presence of oxygen in solid solution is studied. The morphological and crystallographic study of the layers show that they exhibit a lot of similarities before and after the kinetic transition. The results concerning the kinetic aspects and the morphology of the post-transition layers point out that the proposed model leads to realistic post-transition growth rates. Furthermore, the kinetic transition corresponds to the appearance of cracks in the oxide layer. The mechanical behaviour of the metal/oxide system has been modelled at different scales. When the specific behaviours of the metal and the oxide are taken into account together with the interface geometry, radial stresses appear, which are high enough to locally open cracks. The appearance and localization of cracks depend on both the interface geometry and the stress distribution in the metal/oxide system. (author)

  11. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  12. On the mechanical effects of a nanocrystallisation treatment for ZrO2 oxide films growing on a zirconium alloy

    International Nuclear Information System (INIS)

    Panicaud, B.; Grosseau-Poussard, J.-L.; Retraint, D.; Guérain, M.; Li, L.

    2013-01-01

    Highlights: ► Raman spectroscopy is performed to determine the stress evolution in a Zr/ZrO 2 system. ► Analytical relations are used to determine material characteristics. ► A specific modelling of the mechanical fields within the oxide is done. ► Relaxation and growth parameters are identified from an inverse method. - Abstract: In the present work, mechanical features are investigated in the case of ZrO 2 thermal oxide films growing on a Zr alloy at the temperature of 550 °C. The effects of a nanocrystallisation treatment on high temperature oxidation of a zirconium alloy are specifically studied. High temperature oxidation is performed in order to show benefits of such a nanocrystallisation on corrosion resistance and its influence on the mechanical fields. Experimental results obtained by Raman spectroscopy give the growth stress evolution in ZrO 2 films. Using a modelling of the system, both asymptotic forms and an optimization procedure are developed to determine the mechanical characteristic parameters of the system.

  13. Solute redistribution studies in oxidised zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khera, S K; Kale, G B; Gadiyar, H S [Bhabha Atomic Research Centre, Bombay (India). Metallurgy Div.

    1977-01-01

    Electron microprobe studies on solute distribution in oxide layers and in the regions near oxide metal interface have been carried out in the case of zircaloy-2 and zirconium binary alloys containing niobium, tin, iron, copper, chromium and nickel and oxidised in steam at 550 deg C. In the case of alloys having higher oxidation rates, the oxide of solute element was found to dissolve in ZrO/sub 2/ without any composition variation. However, for solute addition with limited solubility like Cr, Cu and Fe, solute enrichment at metal/oxide interface and depletion of the same matrix has been observed. The intensity profiles for nickel distribution were also found to be identical to Fe or Cr distribution. The mode of solute distribution has been discussed in relation to oxidation behaviour of these alloys.

  14. Ultra-low power thin film transistors with gate oxide formed by nitric acid oxidation method

    International Nuclear Information System (INIS)

    Kobayashi, H.; Kim, W. B.; Matsumoto, T.

    2011-01-01

    We have developed a low temperature fabrication method of SiO 2 /Si structure by use of nitric acid, i.e., nitric acid oxidation of Si (NAOS) method, and applied it to thin film transistors (TFT). A silicon dioxide (SiO 2 ) layer formed by the NAOS method at room temperature possesses 1.8 nm thickness, and its leakage current density is as low as that of thermally grown SiO 2 layer with the same thickness formed at ∼900 deg C. The fabricated TFTs possess an ultra-thin NAOS SiO 2 /CVD SiO 2 stack gate dielectric structure. The ultrathin NAOS SiO 2 layer effectively blocks a gate leakage current, and thus, the thickness of the gate oxide layer can be decreased from 80 to 20 nm. The thin gate oxide layer enables to decrease the operation voltage to 2 V (cf. the conventional operation voltage of TFTs with 80 nm gate oxide: 12 V) because of the low threshold voltages, i.e., -0.5 V for P-ch TFTs and 0.5 V for N-ch TFTs, and thus the consumed power decreases to 1/36 of that of the conventional TFTs. The drain current increases rapidly with the gate voltage, and the sub-threshold voltage is ∼80 mV/dec. The low sub-threshold swing is attributable to the thin gate oxide thickness and low interface state density of the NAOS SiO 2 layer. (authors)

  15. ZIRCONIUM-CLADDING OF THORIUM

    Science.gov (United States)

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  16. Modelling of zirconium alloys corrosion in LWRs

    International Nuclear Information System (INIS)

    Kritskij, V.G.; Berezina, I.G.; Kritskij, A.V.; Stjagkin, P.S.

    1999-01-01

    Chemical parameters, that exerted effect on Zr+1%Nb alloy corrosion and deserved consideration during reactor operation, were defined and a model was developed to describe the influence of physical and chemical parameters on zirconium alloys corrosion in nuclear power plants. The model is based on the correlation between the zirconium oxide solubility in high-temperature water under the influence of the chemical parameters and the measured values of fuel cladding corrosion under LWR conditions. The intensity of fuel cladding corrosion in the primary circuits depends on the coolant water quality, growth of iron oxide deposits and vaporization portion. Mathematically, the oxidation rate can be expressed as a sum of heat and radiation components. The temperature dependence on the oxidation rate can be described by the Arrenius equation. The radiation component of Zr uniform corrosion equation is a function of several factors such as neutron fluency, the temperature the metallurgical composition and et. We assume that the main factor is the changing of water chemistry and the H 2 O 2 concentration play the determinative role. Probably, the influence of H 2 O 2 is based on the formation of unstable compound ZrO 3 ·nH 2 O and Zr(OH) 4 with high solubility. The validity of the used formulae was confirmed by corrosion measurements on WWER and RBMK fuel cladding. The model can be applied for calculating the reliability of nuclear fuel operation. (author)

  17. Oxidation of Zircaloy Fuel Cladding in Water-Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Digby; Urquidi-Macdonald, Mirna; Chen, Yingzi; Ai, Jiahe; Park, Pilyeon; Kim, Han-Sang

    2006-12-12

    thick oxide outer layer over a thin barrier layer. From thermodynamic analysis, it is postulated that a hydride barrier layer forms under PWR coolant conditions whereas an oxide barrier layer forms under BWR primary coolant conditions. Thus, the introduction of hydrogen into the solution lowers the corrosion potential of zirconium to the extent that the formation of ZrH2 is predicted to be spontaneous rather than the ZrO2. Mott-Schottky analysis shows that the passive film formed on zirconium is n-type, which is consistent with the PDM, corresponding to a preponderance of oxygen/hydrogen vacancies and/or zirconium interstitials in the barrier layer. The model parameter values were extracted from electrochemical impedance spectroscopic data for zirconium in high temperature, de-aerated and hydrogenated environments by optimization. The results indicate that the corrosion resistance of zirconium is dominated by the porosity and thickness of the outer layer for both cases. The impedance model based on the PDM provides a good account of the growth of the bi-layer passive films described above, and the extracted model parameter values might be used, for example, for predicting the accumulation of general corrosion damage to Zircaloy fuel sheath in BWR and PWR operating environments. Transients in current density and film thickness for passive film formation on zirconium in dearated and hydrogenated coolant conditions have confirmed that the rate law afforded by the Point Defect Model (PDM) adequately describes the growth and thinning of the passive film. The experimental results demonstrate that the kinetics of oxygen or hydrogen vacancy generation at the metal/film interface control the rate of film growth, when the potential is displaced in the positive direction, whereas the kinetics of dissolution of the barrier layer at the barrier layer/solution interface control the rate of passive film thinning when the potential is stepped in the negative direction. In addition, the

  18. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin films have been investigated as protective coatings for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å h-l. Etching in liquids...... with pH values in the range from pH 2 to 11 have generally given etch rates below 0.04 Å h-l. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex situ...... annealing O2 in the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallization lines are hard to cover. Sputtered tantalum oxide...

  19. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin-films have been investigated as protective coating for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å/h. Etching in liquids with p......H values in the range from pH 2-11 have generally given etch rates below 0.04 Å/h. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex-situ annealing in O2...... the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallisation lines are hard to cover. Sputtered tantalum oxide exhibits high...

  20. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R., E-mail: r.colomaribera@utwente.nl; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  1. Inhibitory Effect Evaluation of Glycerol-Iron Oxide Thin Films on Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    C. L. Popa

    2015-01-01

    Full Text Available The main purpose of this study was to evaluate the inhibitory effect of glycerol- iron oxide thin films on Methicillin-Resistant Staphylococcus aureus (MRSA. Our results suggest that glycerol-iron oxide thin films could be used in the future for various biomedical and pharmaceutical applications. The glycerol-iron oxide thin films have been deposited by spin coating method on a silicon (111 substrate. The structural properties have been studied by X-ray diffraction (XRD and scanning electron spectroscopy (SEM. The XRD investigations of the prepared thin films demonstrate that the crystal structure of glycerol-iron oxide nanoparticles was not changed after spin coating deposition. On the other hand, the SEM micrographs suggest that the size of the glycerol-iron oxide microspheres increased with the increase of glycerol exhibiting narrow size distributions. The qualitative depth profile of glycerol-iron oxide thin films was identified by glow discharge optical emission spectroscopy (GDOES. The GDOES spectra revealed the presence of the main elements: Fe, O, C, H, and Si. The antimicrobial activity of glycerol-iron oxide thin films was evaluated by measuring the zone of inhibition. After 18 hours of incubation at 37°C, the diameters of the zones of complete inhibition have been measured obtaining values around 25 mm.

  2. Structural and microstructural changes in the zirconium-indium mixed oxide system during the thermal treatment

    Science.gov (United States)

    Štefanić, G.; Štefanić, I. I.; Musić, S.; Ivanda, M.

    2011-05-01

    The zirconium-indium mixed oxide systems on both the zirconium- and the indium-rich side of the concentration range were prepared by co-precipitation from aqueous solutions of the corresponding salts, followed by washing and heat-treatment. The thermal behavior (up to 1000 °C) of the dried samples was examined by X-ray powder diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectrometry, differential thermal analysis and thermogravimetric measurements. The obtained results show that the increase in the amount of the second phase causes an increase of both the crystallization temperature of the amorphous precursors of ZrO 2, from 435 °C (0 mol.% of InO 1.5) to 476 °C (˜62 mol.% of InO 1.5), and of the topotactic transition temperature of cubic In(OH) 3 to cubic In 2O 3, from 259 °C (0 mol.% of ZrO 2) to 290 °C (˜25 mol.% of ZrO 2). The amorphous precursors of ZrO 2 phase exhibit an extended capability to incorporate In 3+ ions (more than 60 mol.%). With a rise in temperature the maximum solubility of In 3+ ions in the ZrO 2 lattice decreases from ˜55 mol.% in the crystallization products obtained after calcination at 400 °C to ˜10 mol.% after calcination at 1000 °C. The results of phase analysis indicate that the incorporation of In 3+ ions partially stabilized both the tetragonal and cubic ZrO 2 polymorphs. The maximum solubility of Zr 4+ ions in the starting In(OH) 3 lattice was estimated at ˜10 mol.%. Thermal treatment causes a small increase of Zr 4+ ion solubility limits, estimated at ˜15 mol.% in the cubic In 2O 3 lattice after calcination at 1000 °C. Precise lattice parameter measurements, by using Le Bail refinements of the powder diffraction patterns with added silicon as an internal standard, show that the incorporation of In 3+ ions caused a very small decrease of the cubic ZrO 2 lattice, while the incorporation of Zr 4+ ions had a negligible

  3. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, M B; Shenoi, M R.K.; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author). 3 figs., 2 tabs.

  4. Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition

    International Nuclear Information System (INIS)

    Xu, Hai Jian; Lu, Zheng; Wang, Dong Mei; Liu, Chunming

    2017-01-01

    To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of Fe-9Cr-2W-0.3Y_2O-3 and Fe-9Cr-2W-0.3Zr-0.3Y_2O_3 were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal δ-phase Y_4Zr_3O_1_2 oxides and body-centered cubic Y_2O_3 oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of Y_4Zr_3O_1_2 particles is much smaller than that of Y_2O_3. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is 1.1 x 10"2"3/m"3 with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time

  5. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    Science.gov (United States)

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  6. Metallurgy of zirconium and hafnium

    International Nuclear Information System (INIS)

    Baryshnikov, N.V.; Geger, V.Eh.; Denisova, N.D.; Kazajn, A.A.; Kozhemyakin, V.A.; Nekhamkin, L.G.; Rodyakin, V.V.; Tsylov, Yu.A.

    1979-01-01

    Considered are those properties of zirconium and of hafnium, which are of practical interest for the manufacture of these elements. Systematized are the theoretical and the practical data on the procedures for thermal decomposition of zirconia and for obtaining zirconium dioxide and hafnium dioxide by a thermal decomposition of compounds and on the hydrometallurgical methods for extracting zirconium and hafnium. Zirconium and hafnium fluorides and chlorides production procedures are described. Considered are the iodide and the electrolytic methods of refining zirconium and hafnium

  7. Thermal oxidation of Zr–Cu–Al–Ni amorphous metal thin films

    International Nuclear Information System (INIS)

    Oleksak, R.P.; Hostetler, E.B.; Flynn, B.T.; McGlone, J.M.; Landau, N.P.; Wager, J.F.; Stickle, W.F.; Herman, G.S.

    2015-01-01

    The initial stages of thermal oxidation for Zr–Cu–Al–Ni amorphous metal thin films were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The as-deposited films had oxygen incorporated during sputter deposition, which helped to stabilize the amorphous phase. After annealing in air at 300 °C for short times (5 min) this oxygen was found to segregate to the surface or buried interface. Annealing at 300 °C for longer times leads to significant composition variation in both vertical and lateral directions, and formation of a surface oxide layer that consists primarily of Zr and Al oxides. Surface oxide formation was initially limited by back-diffusion of Cu and Ni ( 30 min). The oxidation properties are largely consistent with previous observations of Zr–Cu–Al–Ni metallic glasses, however some discrepancies were observed which could be explained by the unique sample geometry of the amorphous metal thin films. - Highlights: • Thermal oxidation of amorphous Zr–Cu–Al–Ni thin films was investigated. • Significant short-range inhomogeneities were observed in the amorphous films. • An accumulation of Cu and Ni occurs at the oxide/metal interface. • Diffusion of Zr was found to limit oxide film growth.

  8. Application of modified multiwall carbon nanotubes as a sorbent for zirconium (IV) adsorption from aqueous solution

    International Nuclear Information System (INIS)

    Yavari, R.; Davarkhah, R.

    2013-01-01

    Modified multiwall carbon nanotubes (MWCNTs) by nitric acid solution were used to investigate the adsorption behavior of zirconium from aqueous solution. Pristine and oxidized MWCNTs were characterized using nitrogen adsorption/desorption isotherm, Boehm's titration method, thermogravimetry analysis, transmission electron microscopy and Fourier transform infrared spectroscopy. The results showed that the surface properties of MWCNTs such as specific surface area, total pore volume, functional groups and the total number of acidic and basic sites were improved after oxidation. These improvements are responsible for their hydrophobic properties and consequently an easy dispersion in water and suitable active sites for more adsorption of zirconium. The adsorption of Zr(IV) as a function of initial concentration of zirconium, contact time, MWCNTs dosage, HCl and HNO 3 concentration and also ionic strength was investigated using a batch technique under ambient conditions. The experimental results indicated that sorption of Zr(IV) was strongly influenced by zirconium concentrations, oxidized MWCNTs content and acid pH values. The calculated correlation coefficient of the linear regressions values showed that Langmuir model fits the adsorption equilibrium data better than the Freundlich model. Kinetic data of sorption indicated that equilibrium was achieved within 60 min and the adsorption process can be described by the pseudo second-order reaction rate model. Based on the experimental results, surface complexation is the major mechanism for adsorption of Zr(IV) onto MWCNTs. Also, Study on the desorption process of zirconium showed that the complete recovery can be obtained using nitric or hydrochloric acids of 4 M. (author)

  9. Hydrogen determination in magnesium, zirconium, sodium and lithium using installation, C2532

    International Nuclear Information System (INIS)

    Malikova, E.D.; Velyukhanov, V.P.; Makhinova, L.O.; Kunin, L.L.

    1980-01-01

    Techniques of hydrogen determination in magnesium, lithium, sodium and zirconium using the S 2532 installation are developed. The method of oxidizing melting using lead borate has been used for hydrogen determination in lithium and sodium and the method of vacuum extraction - for hydrogen determination in zirconium and magnesium. Zr and Mg extraction has been carried out in steel reactor at the temperatures of 1000 and 650 deg C, the time of extraction being 30 and 10 minutes respectively. A quartz reactor, temperatures of oxidizing melting of 700-800 deg C, the time of analysis 10 and 20 minutes have been used for sodium and lithium. A possibility to determine volumetric content of hydrogen in magnesium at the existing surface contaminations with hydrogen-containing compounds is shown [ru

  10. Synthesis of zirconium by zirconium tetrachloride reduction by magnesio-thermia. Experimental study and modelling; Elaboration de zirconium par reduction de tetrachlorure de zirconium par magnesothermie. Etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Basin, N

    2001-01-01

    This work deals with the synthesis of zirconium. The ore is carbo-chlorinated to obtain the tetrachloride which is then purified by selective condensation and extractive distillation. Zirconium tetrachloride is then reduced by magnesium and the pseudo-alloy is obtained according to the global following reaction (Kroll process): ZrCl{sub 4} + 2 Mg = 2 MgCl{sub 2}. By thermodynamics, it has been shown that the volatilization of magnesium chloride and the formation of zirconium sub-chlorides are minimized when the combined effects of temperature and of dilution with argon are limited. With these conditions, the products, essentially zirconium and magnesium chloride, are obtained in equivalence ratio in the magnesio-thermia reaction. The global kinetics of the reduction process has been studied by a thermal gravimetric method. A thermo-balance device has been developed specially for this kinetics study. It runs under a controlled atmosphere and is coupled to a vapor tetrachloride feed unit. The transformation is modelled supposing that the zirconium and magnesium chloride formation result: 1)of the evaporation of magnesium from its liquid phase 2)of the transfer of magnesium and zirconium tetrachloride vapors towards the front of the reaction located in the gaseous phase 3)of the chemical reaction. In the studied conditions, the diffusion is supposed to be the limiting process. The influence of the following parameters: geometry of the reactive zone, temperature, scanning rate of the argon-zirconium tetrachloride mixture, composition of the argon-zirconium tetrachloride mixture has been experimentally studied and confronted with success to the model. (O.M.)

  11. Zirconium - an imported mineral commodity

    International Nuclear Information System (INIS)

    1983-10-01

    This report examines Canada's position in regard to the principal zirconium materials: zircon; fusion-cast zirconium-bearing refractory products; zirconium-bearing chemicals; and zirconium metal, master alloys, and alloys. None of these is produced in Canada except fused alumina-zirconia and certain magnesium-zirconium alloys and zirconium-bearing steels. Most of the 3 000-4 000 tonnes of the various forms of zircon believed to be consumed in Canada each year is for foundry applications. Other minerals, notably chromite, olivine and silica sand are also used for these purposes and, if necessary, could be substituted for zircon. Zirconium's key role in Canada is in CANDU nuclear power reactors, where zirconium alloys are essential in the cladding for fuel bundles and in capital equipment such as pressure tubes, calandria tubes and reactivity control mechanisms. If zirconium alloys were to become unavailable, the Canadian nuclear power industry would collapse. As a contingency measure, Ontario Hydro maintains at least nine months' stocks of nuclear fuel bundles. Canada's vulnerability to short-term disruptions to supplies of nuclear fuel is diminished further by the availability of more expensive electricity from non-nuclear sources and, given time, from mothballed thermal plants. Zirconium minerals are present in many countries, notably Australia, the Republic of South Africa and the United States. Australia is Canada's principal source of zircon imports; South Africa is its sole source of baddeleyite. At this time, there are no shortages of either material. Canada has untapped zirconium resources in the Athabasca Oil Sands (zircon) and at Strange Lake along the ill-defined border between Quebec and Newfoundland (gittinsite). Adequate metal and alloy production facilities exist in France, Japan and the United States. No action by the federal government in regard to zirconium supplies is called for at this time

  12. Ternary cobalt-molybdenum-zirconium coatings for alternative energies

    Science.gov (United States)

    Yar-Mukhamedova, Gulmira; Ved', Maryna; Sakhnenko, Nikolay; Koziar, Maryna

    2017-11-01

    Consistent patterns for electrodeposition of Co-Mo-Zr coatings from polyligand citrate-pyrophosphate bath were investigated. The effect of both current density amplitude and pulse on/off time on the quality, composition and surface morphology of the galvanic alloys were determined. It was established the coating Co-Mo-Zr enrichment by molybdenum with current density increasing up to 8 A dm-2 as well as the rising of pulse time and pause duration promotes the content of molybdenum because of subsequent chemical reduction of its intermediate oxides by hydrogen ad-atoms. It was found that the content of the alloying metals in the coating Co-Mo-Zr depends on the current density and on/off times extremely and maximum Mo and Zr content corresponds to the current density interval 4-6 A dm-2, on-/off-time 2-10 ms. Chemical resistance of binary and ternary coatings based on cobalt is caused by the increased tendency to passivity and high resistance to pitting corrosion in the presence of molybdenum and zirconium, as well as the acid nature of their oxides. Binary coating with molybdenum content not less than 20 at.% and ternary ones with zirconium content in terms of corrosion deep index are in a group ;very proof;. It was shown that Co-Mo-Zr alloys exhibits the greatest level of catalytic properties as cathode material for hydrogen electrolytic production from acidic media which is not inferior a platinum electrode. The deposits Co-Mo-Zr with zirconium content 2-4 at.% demonstrate high catalytic properties in the carbon(II) oxide conversion. This confirms the efficiency of materials as catalysts for the gaseous wastes purification and gives the reason to recommend them as catalysts for red-ox processes activating by oxygen as well as electrode materials for red-ox batteries.

  13. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    International Nuclear Information System (INIS)

    Predoi, D.; Ciobanu, C.S.; Radu, M.; Costache, M.; Dinischiotu, A.; Popescu, C.; Axente, E.; Mihailescu, I.N.; Gyorgy, E.

    2012-01-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: ► Hybrid, dextran-iron oxide nanoparticles and thin films. ► Laser immobilization. ► Biocompatibility of dextran-iron oxide nanoparticles.

  14. Joint Test Protocol: Environmentally Friendly Zirconium Oxide Pretreatment Demonstration

    Science.gov (United States)

    2013-12-01

    and compliance issues associated with the use of zinc phosphate and chromate/ chrome containing conversion coatings while maintaining military...safety, and occupational health risks associated with the use of zinc phosphate and chromate/ chrome -containing conversion coatings. There is a need to...zirconium-based pretreatment will be shown to be both environmentally acceptable (no hazardous air pollutants or heavy metals such as hexavalent chromium

  15. Process for purifying zirconium sponge

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Kimball, L.S.

    1992-01-01

    This patent describes a Kroll reduction process wherein a zirconium sponge contaminated with unreacted magnesium and by-product magnesium chloride is produced as a regulus, a process for purifying the zirconium sponge. It comprises: distilling magnesium and magnesium chloride from: a regulus containing a zirconium sponge and magnesium and magnesium chloride at a temperature above about 800 degrees C and at an absolute pressure less than about 10 mmHg in a distillation vessel to purify the zirconium sponge; condensing the magnesium and the magnesium chloride distilled from the zirconium sponge in a condenser; and then backfilling the vessel containing the zirconium sponge and the condenser containing the magnesium and the magnesium chloride with a gas; recirculating the gas between the vessel and the condenser to cool the zirconium sponge from above about 800 degrees C to below about 300 degrees C; and cooling the recirculating gas in the condenser containing the condensed magnesium and the condensed magnesium chloride as the gas cools the zirconium sponge to below about 300 degrees C

  16. Intrinsic stress of bismuth oxide thin films: effect of vapour chopping and air ageing

    International Nuclear Information System (INIS)

    Patil, R B; Puri, R K; Puri, V

    2008-01-01

    Bismuth oxide thin films of thickness 1000 A 0 have been prepared by thermal oxidation (in air) of vacuum evaporated bismuth thin films (on glass substrate) at different oxidation temperatures and duration. Both the vapour chopped and nonchopped bismuth oxide thin films showed polycrystalline and polymorphic structure. The monoclinic bismuth oxide was found to be predominant in both the cases. The effect of vapour chopping and air exposure for 40 days on the intrinsic stress of bismuth oxide thin films has been studied. The vapour chopped films showed low (3.92 - 4.80 x 10 9 N/m 2 ) intrinsic stress than those of nonchopped bismuth oxide thin films (5.77 - 6.74 x 10 9 N/m 2 ). Intrinsic stress was found to increase due to air ageing. The effect of air ageing on the vapour chopped films was found low. The vapour chopped films showed higher packing density. Higher the packing density, lower the film will age. The process of chopping vapour flow creates films with less inhomogenety i.e. a low concentration of flaws and non-planar defects which results in lower intrinsic stress

  17. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  18. Oxygen control in solid fuel fired heating systems with zirconium oxide cells. Iltstyring af fastbraendselsfyrede anlaeg med zirkoniumoxidcelle

    Energy Technology Data Exchange (ETDEWEB)

    Zielke, U.

    1988-10-15

    During the heating season 87-88 the Jutland Technological Institute has carried out investigations of the zirconium oxygen meters of solid fuel heating units. The aim was to investigate whether the combustion of inflammable flue gas components on the surface of the oxygen meter cell is of any importance to the running and emissions of the units. The used zirconium oxide oxygen meters normally measure lower concentrations of oxygen as the paramagnetic comparator of the laboratory. The relative deviation is lowest at coal fired units (5.5% and highest at straw fired units (20%)). At several units there is a clear tendency towards increasing development of CO at an increasing surplus of air. Because of too large a surplus of air, and in consequence of this the formation of CO, the chimney waste of the units is increased by up to 6%. Both the surplus of air and the concentration of CO have been included as long term average values. Especially at the straw fired units, periodically very high concentrations of non-inflammable flue gas components can be found, resulting in an undesirable influence on the environment. The development of improved control systems and regulation equipment is recommended.

  19. Oxidation of scandium thin films on tungsten surface

    International Nuclear Information System (INIS)

    Gorodetskij, D.A.; Martynyuk, A.V.

    1988-01-01

    Presence of Sc on the surface of W in amounts larger than a monolayer coverage leads to a decrease of the work function at the initial oxidation stage, which is attributed to oxygen implantation into the surface layer of the metal. A subsequent oxidation is followed by the formation on the surface of a thin oxide layer and an increase of the work function. An increase of the amount of Sc deposited on the surface before the oxidation decreases the work function of the obtained oxide from 5.8 (clean W surface) down to 3.3 eV (thick Sc layer on W)

  20. Preparation and thermochemical stability of uranium-zirconium-carbonitrides

    International Nuclear Information System (INIS)

    Kouhsen, C.

    1975-08-01

    This investigation deals with the preparation and the thermochemical stability of uranium-zirconium-carbonitrides as well as with the mechanism of (U,Zr) (C,N)-preparation by carbothermic reduction of uranium-zirconium-oxide. Single-phase (U,Zr) (C,N)-solid solutions with U:Zr-propertions of 3:1, 1:1, and 1:3 were prepared from oxide powder. The thermochemical stability of the (U,Zr) (C,N)-solid solutions against carbon was measured for varying Zr- and N-contents and for several temperatures; the results indicate an increase of the uranium carbide stability potential by the formation of (U,Zr) (C,N)-solid solutions. The thermodynamic properties ΔG 0 , ΔH 0 , and ΔS 0 were calculated and the correlation between the M(C,N)-lattice constant and the N-content was evaluated. Through an intensive investigation of the reaction mechanism, several different reaction paths were found; for each of them the characteristical diffusion of matter was explained by means of the microsections. It was shown that the Zr-concentration of the oxide reactant and the heating rate during the carbothermic reduction influence the species of the reaction product, especially the homogeneity of the (U,Zr) (C,N)-solid solution. (orig.) [de

  1. Effect of additions of cerium, lanthanum, and zirconium on the state of plantinum and the activity of aluminoplatinum catalysts for the complete oxidation of hydrocarbons

    International Nuclear Information System (INIS)

    Drozdov, V.A.; Davydov, A.A.; Popovskii, V.V.; Tsyrul'nikov, P.G.

    1986-01-01

    It is shown from an analysis of the diffuse reflectance spectra that additions of cerium, lanthanum or zirconium to aluminoplatinum catalyst stabilize the platinum in an oxidized state. This leads to a change in the specific catalytic activity (SCA) towards the total oxidation of methane and butane. The SCA of modified, reduced samples is greater than the SCA of samples that were calcined in air. This is because of the greater activity of metallic platinum compared to the ionic form

  2. Contribution to the study of zirconium self-diffusion in zirconium carbide

    International Nuclear Information System (INIS)

    An, Chul

    1972-01-01

    The objective of this research thesis is to determine experimental conditions allowing the measurement of the self-diffusion coefficient of zirconium in zirconium carbide. The author reports the development of a method of preparation of zirconium carbide samples. He reports the use of ion implantation as technique to obtain a radio-tracer coating. The obtained results give evidence of the impossibility to use sintered samples with small grains because of the demonstrated importance of intergranular diffusion. The self-diffusion coefficient is obtained in the case of zirconium carbide with grains having a diameter of few millimetres. The presence of 95 Nb from the disintegration of 95 Zr indicates that these both metallic elements have very close diffusion coefficients at 2.600 C [fr

  3. Influence of annealing on texture properties of cerium oxide thin films

    International Nuclear Information System (INIS)

    Arunkumar, P.; Suresh Babu, K.; Ramaseshan, R.; Dash, S.

    2013-01-01

    Future power demand needs an energy source with higher efficiency, better power density, clean energy and fuel flexibility. Solid oxide fuel cell (SOFC) is one of the potential sources for future needs. Though the polymer and direct methanol based electrolyte are much suitable, for versatile applications (portable devices) they are having major challenges such as design, platinum based catalyst, lower power density and fuel flexibility (free from hydrocarbons). However, in SOFC the high operating temperature is the only major issue. Operating temperature of SOFC could be reduced by proper selection of electrolyte material which should have minimum ionic conductivity of 0.1 Scm -1 at reduced activation energy. This can be achieved by thin film based doped cerium oxide electrolyte for SOFC, leads to Intermediate Temperature Solid Oxide Fuel Cell (ITSOFC). In the present work, we focus on the synthesis of cerium oxide and 20 mol % samarium doped cerium oxide (SDC) nanoparticles by co-precipitation method and to synthesis thin films of the same. Pellets of those powders were heat treated at different temperatures and used as targets for e-beam evaporation to fabricate thin film based electrolyte. Stoichiometry of both powders and thin films were confirmed by XRF and EPMA. GIXRD profiles of ceria and SDC thin films are shown below and a preferred orientation effect is observed in SDC films. In SDC films the X-ray peaks have a shift towards lower angles, due to the difference in ionic radii of Ce 4+ and Sm 3+ . The band gap of CeO 2 (2.88 eV) from optical absorption technique indicates the presence of Ce 3+ with Ce 4+ , indirectly shows the concentration of oxygen vacancies which is required for the thin film electrolyte

  4. Picosecond laser registration of interference pattern by oxidation of thin Cr films

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, Vadim; Yarchuk, Michail [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation); Zakoldaev, Roman, E-mail: zakoldaev@gmail.com [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation); Gedvilas, Mindaugas; Račiukaitis, Gediminas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300, Vilnius (Lithuania); Kuzivanov, Michail; Baranov, Alexander [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation)

    2017-05-15

    Highlights: • Periodical patterning of thin films was achieved by combining two technologies. • Selective chemical etching was combined with laser-induced oxidation. • Formation of the protective oxide layer prevented of chromium film from etching. • 1D binary grating with the chromium stripe width of 750 nm was fabricated. - Abstract: The laser oxidation of thin metallic films followed by its selective chemical etching is a promising method for the formation of binary metal structures on the glass substrates. It is important to confirm that even a single ultrashort laser pulse irradiation is able to create the protective oxide layer that makes possible to imprint the thermochemical image. Results of the thermo-chemical treatment of thin chromium films irradiated by picosecond laser pulse utilizing two and four beam interference combined with the chemical etching are presented. The spatial resolution of this method can be high enough due to thermo-chemical sharpening and can be close to the diffraction limit. Micro-Raman spectroscopy was applied for characterization of the chemical composition of the protective oxide layers formed under atmospheric conditions on the surface of thin chromium films.

  5. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Predoi, D.; Ciobanu, C.S. [National Institute for Physics of Materials, P.O. Box MG 07, Bucharest, Magurele (Romania); Radu, M.; Costache, M.; Dinischiotu, A. [Molecular Biology Center, University of Bucharest, 91-95 Splaiul Independentei, 76201, Bucharest 5 (Romania); Popescu, C.; Axente, E.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Gyorgy, E., E-mail: egyorgy@cin2.es [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Consejo Superior de Investigaciones Cientificas, Centre d' Investigacions en Nanociencia i Nanotecnologia (CSIC-CIN2), Campus UAB, 08193 Bellaterra (Spain)

    2012-02-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: Black-Right-Pointing-Pointer Hybrid, dextran-iron oxide nanoparticles and thin films. Black-Right-Pointing-Pointer Laser immobilization. Black-Right-Pointing-Pointer Biocompatibility of dextran-iron oxide nanoparticles.

  6. Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process

    Science.gov (United States)

    Wong, Minhao; Ishige, Ryohei; White, Kevin L.; Li, Peng; Kim, Daehak; Krishnamoorti, Ramanan; Gunther, Robert; Higuchi, Takeshi; Jinnai, Hiroshi; Takahara, Atsushi; Nishimura, Riichi; Sue, Hung-Jue

    2014-04-01

    The large-scale assembly of asymmetric colloidal particles is used in creating high-performance fibres. A similar concept is extended to the manufacturing of thin films of self-assembled two-dimensional crystal-type materials with enhanced and tunable properties. Here we present a spray-coating method to manufacture thin, flexible and transparent epoxy films containing zirconium phosphate nanoplatelets self-assembled into a lamellar arrangement aligned parallel to the substrate. The self-assembled mesophase of zirconium phosphate nanoplatelets is stabilized by epoxy pre-polymer and exhibits rheology favourable towards large-scale manufacturing. The thermally cured film forms a mechanically robust coating and shows excellent gas barrier properties at both low- and high humidity levels as a result of the highly aligned and overlapping arrangement of nanoplatelets. This work shows that the large-scale ordering of high aspect ratio nanoplatelets is easier to achieve than previously thought and may have implications in the technological applications for similar materials.

  7. Convergent beam thickness determination of thin foil zirconium specimens

    International Nuclear Information System (INIS)

    Cann, C.D.

    1978-07-01

    The use of convergent beam patterns to determine the thickness of zirconium foils observed in the electron microscope has been investigated both theoretically and experimentally. On the basis of many-beam dynamical theory calculations, the [1012], [1013], and [1120] reflections at an accelerating voltage of 100 kV and the [1013], [1120], and [1122] reflections at 200 kV were found most suitable for convergent beam thickness determinations. Experimental convergent beam patterns were obtained in the JEOL-200B electron microscope under two different sets of conditions based on the size of the pattern desired. Computer assisted analysis of the patterns obtained gave foil thicknesses in good agreement with those determined from thickness extinction contours. (author)

  8. High temperature oxidation of thin FeCrAl strips

    International Nuclear Information System (INIS)

    Andrieu, E.; Germidis, A.; Molins, R.

    1997-01-01

    This study concerns the oxidation behaviour between 850 and 1100 C of FeCrAl thin strips. Oxidation kinetics have been continuously recorded on a thermobalance as well as discontinuously in an ''industrial'' furnace. Detailed observations of oxide layers have been performed in transmission electron microscopy on oxidized thin foil cross-sections. Oxide morphologies are correlated with kinetics: Slow kinetics and columnar α alumina grains above 950 C, fast kinetics and transition alumina platelets (γ-alumina) at 850 C and 900 C, followed by small α-alumina grains formation underneath. The weight gains in the industrial furnace displayed significant scatter and were generally greater than those measured in the thermobalance. The effect of extrinsic factors such as specimen size and shape, atmosphere, air flow conditions on the early formation of transition aluminas explains the observed differences. It appears then that in given cases parabolic constant identification from TGA recordings is difficult, or even impossible. This might contribute to explain the differences in the results presented in the literature. (orig.)

  9. A sensitive determination of terbutaline in pharmaceuticals and urine samples using a composite electrode based on zirconium oxide nanoparticles

    International Nuclear Information System (INIS)

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet

    2016-01-01

    An accurate and precise determination of terbutaline has been carried out using a glassy carbon electrode (GCE) modified with a composite of multi-walled carbon nanotubes (MWCNTs) and nanoparticles of zirconium oxide (ZrO_2NPs). Energy dispersive X-ray and scanning electron microscopic techniques were utilized for the characterization of the composite layer. Terbutaline exhibited a broad oxidation peak at 770 mV on a GCE. However, MWCNTs/GCE presented an electrocatalytic effect toward the oxidation of terbutaline with a better anodic peak at 660 mV. Furthermore, the electrochemical behavior of terbutaline has greatly been improved at a GCE modified with a composite of MWCNTs and nanoparticles of ZrO_2. The ZrO_2NPs/MWCNTs/GCE exhibited a sharp anodic wave at 645 mV with a large enhancement of the current response for terbutaline. Square wave voltammetry (SWV) was performed for the determination of terbutaline at ZrO_2NPs/MWCNTs/GCE. A linear plot was obtained for the current responses of terbutaline against concentrations in the range of 10–160 nM yielding a detection limit of 2.25 nM (based on 3S_b/m). Improved voltammetric behavior, long-time stability and good reproducibility were obtained for terbutaline at the proposed electrode. A mean recovery of 101.2% with an RSD% of 1.9 was obtained for the analysis of the drug formulation. The accurate and precise quantification of terbutaline makes the ZrO_2NPs/MWCNTs/GCE system of great interest for monitoring its therapeutic use. - Graphical abstract: A sensitive determination of terbutaline in pharmaceuticals and urine samples using a composite electrode based on zirconium oxide nanoparticles. Display Omitted - Highlights: • A composite electrode was prepared using nanoparticles of ZrO_2 and MWCNTs. • The ZrO_2NPs/MWCNTs/GCE has greatly improved the voltammetry of terbutaline • The proposed electrode enabled a detection limit of 2.25 nM. • The proposed electrode exhibited good reproducibility and long

  10. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution

    International Nuclear Information System (INIS)

    Zhang, Chang; Li, Yongqiu; Wang, Fenghua; Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Ma, Chi; Li, Zihao; Xu, ZiYi; Zeng, Guangming

    2017-01-01

    Highlights: • Magnetic zirconium-iron oxide nanoparticle (MZION) was successfully synthesized. • The removal of phosphate could be effectively fulfilled using MZION. • MZION could be conveniently separated by magnet after adsorption. • The Fe/Zr molar ratios played a key role in adsorption capacity and magnetic separation. - Abstract: In this study, magnetic zirconium-iron oxide nanoparticles (MZION) of different Fe/Zr molar ratios were successfully prepared using the co-precipitation method, and their performance for phosphate removal was systematically evaluated. The as-obtained adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential analyzer, Fourier transform infrared spectroscopy (FT-IR) and Brunauer Emmett Teller (BET) specific surface area analysis. The effects of pH, ionic strength, and co-existing ions (including Cl − , SO 4 2− , NO 3 − and HCO 3 − ) were measured to evaluate the adsorption performance in batch experiments. The results showed that decreasing the Fe/Zr molar ratios increased the specific surface area that was propitious to adsorption process, but the adsorption capacity enhanced with the decrease of Fe/Zr molar ratios. Phosphate adsorption on MZION could be well described by the Freundlich equilibrium model and pseudo-second-order kinetics. The adsorption of phosphate was highly pH dependent and decreased with increasing pH from 1.5 to 10.0. The adsorption was slightly affected by ionic strength. With the exception of HCO 3 − , co-existing anions showed minimum or no effect on their adsorption performance. After adsorption, phosphate on these MZION could be easily desorbed by 0.1 M NaOH solution. The phosphate adsorption mechanism of MZION followed the inner-sphere complexing mechanism, and the surface −OH groups played a significant role in the phosphate adsorption. Additionally, the main advantages of MZION consisted in its

  11. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chang, E-mail: zhangchang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Yongqiu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Wang, Fenghua, E-mail: 952157786@qq.com [Institute of Physical Education, Xinjiang Normal University, Urumqi 830054 (China); Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Ma, Chi; Li, Zihao; Xu, ZiYi; Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-02-28

    Highlights: • Magnetic zirconium-iron oxide nanoparticle (MZION) was successfully synthesized. • The removal of phosphate could be effectively fulfilled using MZION. • MZION could be conveniently separated by magnet after adsorption. • The Fe/Zr molar ratios played a key role in adsorption capacity and magnetic separation. - Abstract: In this study, magnetic zirconium-iron oxide nanoparticles (MZION) of different Fe/Zr molar ratios were successfully prepared using the co-precipitation method, and their performance for phosphate removal was systematically evaluated. The as-obtained adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential analyzer, Fourier transform infrared spectroscopy (FT-IR) and Brunauer Emmett Teller (BET) specific surface area analysis. The effects of pH, ionic strength, and co-existing ions (including Cl{sup −}, SO{sub 4}{sup 2−}, NO{sub 3}{sup −} and HCO{sub 3}{sup −}) were measured to evaluate the adsorption performance in batch experiments. The results showed that decreasing the Fe/Zr molar ratios increased the specific surface area that was propitious to adsorption process, but the adsorption capacity enhanced with the decrease of Fe/Zr molar ratios. Phosphate adsorption on MZION could be well described by the Freundlich equilibrium model and pseudo-second-order kinetics. The adsorption of phosphate was highly pH dependent and decreased with increasing pH from 1.5 to 10.0. The adsorption was slightly affected by ionic strength. With the exception of HCO{sub 3}{sup −}, co-existing anions showed minimum or no effect on their adsorption performance. After adsorption, phosphate on these MZION could be easily desorbed by 0.1 M NaOH solution. The phosphate adsorption mechanism of MZION followed the inner-sphere complexing mechanism, and the surface −OH groups played a significant role in the phosphate adsorption. Additionally, the main

  12. Chemical solution deposition of functional oxide thin films

    CERN Document Server

    Schneller, Theodor; Kosec, Marija

    2014-01-01

    Chemical Solution Deposition (CSD) is a highly-flexible and inexpensive technique for the fabrication of functional oxide thin films. Featuring nearly 400 illustrations, this text covers all aspects of the technique.

  13. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    Science.gov (United States)

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  14. Artefacts in multimodal imaging of titanium, zirconium and binary titanium–zirconium alloy dental implants: an in vitro study

    Science.gov (United States)

    Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-01-01

    Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719

  15. Effect of self-interstitial diffusion anisotropy in electron-irradiated zirconium: A cluster dynamics modeling

    International Nuclear Information System (INIS)

    Christien, F.; Barbu, A.

    2005-01-01

    A model based on the cluster dynamics approach was proposed in [A. Hardouin Duparc, C. Moingeon, N. Smetniansky-de-Grande, A. Barbu, J. Nucl. Mater. 302 (2002) 143] to describe point defect agglomeration in metals under irradiation. This model is restricted to materials where point defect diffusion is isotropic and is thus not applicable to anisotropic metals such as zirconium. Following the approach proposed by Woo [C.H. Woo, J. Nucl. Mater. 159 (1988) 237], we extended in this work the model to the case where self-interstitial atoms (SIA) diffusion is anisotropic. The model was then applied to the loop microstructure evolution of a zirconium thin foil irradiated with electrons in a high-voltage microscope. First, the inputs were validated by comparing the numerical results with Hellio et al. experimental results [C. Hellio, C.H. de Novion, L. Boulanger, J. Nucl. Mater. 159 (1988) 368]. Further calculations were made to evidence the effect of the thin foil orientation on the dislocation loop microstructure under irradiation. The result is that it is possible to reproduce for certain orientations the 'unexpected' vacancy loop growth experimentally observed in electron-irradiated zirconium [M. Griffiths, M.H. Loretto, R.E. Sallmann, J. Nucl. Mater. 115 (1983) 313; J. Nucl. Mater. 115 (1983) 323; Philos. Mag. A 49 (1984) 613]. This effect is directly linked to SIA diffusion anisotropy

  16. The separation of plutonium from uranium and fission products on zirconium phosphate columns

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I; Ruvarac, A [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    In recent years special attention has been given to the ion-exchange properties of zirconium phosphate and similar compounds in aqueous solutions. These inorganic cation exchangers are stable in oxidizing media and at elevated temperatures. Their resistance to ionizing radiation makes them particularly suitable for work with radioactive solutions. On account of this we considered ir worthwhile to investigate the separation of plutonium from uranium and fission products on zirconium phosphate columns. We were interested in nitric and solutions containing macro-amounts of uranium (a few grams per litre), and micro-amounts of plutonium and long-lived fission products. To obtain a better insight into the ion-exchange behaviour of the different ionic species towards zirconium phosphate, we first determined the dependence of the distribution coefficients of uranium, plutonium and fission product cations on the aqueous nitric acid concentration. Then, taking the distribution data as a guide, we separated plutonium on small glass columns filled with zirconium phosphate and calculated the decontamination factors (author)

  17. Atomistic studies of cation transport in tetragonal ZrO2 during zirconium corrosion

    International Nuclear Information System (INIS)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-01-01

    Zirconium alloys are the major fuel cladding materials in current reactors. The water-side corrosion is a significant degradation mechanism of these alloys. During corrosion, the transport of oxidizing species in zirconium dioxide (ZrO 2 ) determines the corrosion kinetics. Previously, it has been argued that the outward diffusion of cations is important for forming protective oxides. In this work, the migration of Zr defects in tetragonal ZrO 2 is studied with temperature accelerated dynamics and molecular dynamics simulations. The results show that Zr interstitials have anisotropic diffusion and migrate preferentially along the [001] or c direction in tetragonal ZrO 2 . The compressive stresses can increase the Zr interstitial migration barrier significantly. The migration of Zr interstitials at a grain boundary is much slower than in a bulk oxide. The implications of these atomistic simulation results in the Zr corrosion are discussed. (authors)

  18. Raman spectroscopy study of the tetragonal-to-monoclinic transition in zirconium oxide scales and determination of overall oxygen diffusion by nuclear microanalysis of O18

    International Nuclear Information System (INIS)

    Godlewski, J.; Lambertin, M.; Gros, J.P.; Wadier, J.F.; Weidinger, H.

    1991-01-01

    This paper reports on two allotropic forms of zirconium oxide, monoclinic and tetragonal that have been identified in the scales formed on zirconium alloys. The transition from tetragonal to monoclinic has been followed by Z-ray measurements and Raman laser spectroscopy. Information on the average content of the tetragonal phase was obtained by X-ray diffraction, whereas Raman laser analyses on tapered sections revealed its distribution through the scale thickness. Oxidation exposures were made in an autoclave, using H 2 O 18 and D 2 O 18 to determine the overall diffusion coefficients. In particular, oxide scales have been studied on Zircaloy-4 with three different precipitate sizes, and on a Zr-1Nb alloy, after exposure in an autoclave for between 3 and 100 days. The specimens were analyzed in detail in the vicinity of the kinetics transition point, where the acceleration of corrosion occurs. Raman spectroscopy analyses enabled the crystallographic nature of the ZrO 2 to be determined. Close to the interface, the tetragonal phase content is about 40%, when after the transition the tetragonal phase is transformed into monoclinic. The O 18 diffusion treatment was carried out in an autoclave at 400 degrees C under pressure on specimens previously oxidized for between 3 and 100 days in natural water vapor pressure. The diffusion profiles were determined by nuclear microanalysis using the O 18 (p, α) → N 15 reaction. Based on these profiles, the volume and grain boundary diffusion coefficients were calculated for each material and for each oxidation time

  19. Growth and thermal oxidation of Ru and ZrO2 thin films as oxidation protective layers

    NARCIS (Netherlands)

    Coloma Ribera, R.

    2017-01-01

    This thesis focuses on the study of physical and chemical processes occurring during growth and thermal oxidation of Ru and ZrO2 thin films. Acting as oxidation resistant capping materials to prevent oxidation of layers underneath, these films have several applications, i.e., in microelectronics

  20. Thermoluminescent response of aluminium oxide thin films subject to gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, A.; Escobar A, L.; Camps, E.; Villagran, E.; Gonzalez, P.R

    2006-07-01

    The thermoluminescent (TL) properties of amorphous aluminium oxide thin films (thicknesses as low as 0.3 {mu}m) subjected to gamma (Co-60) irradiation are reported. Aluminium oxide thin films were prepared by laser ablation from an Al{sub 2}O{sub 3} target using a Nd: YAG laser with emission at the fundamental line. The films were exposed to gamma radiation (Co-60) in order to study their TL response. Thermoluminescence glow curves exhibited two peaks at 110 and 176 C. The high temperature peak shows good stability and 30% fading in the first 5 days after irradiation. A linear relationship between absorbed dose and the thermoluminescent response for doses span from 150 mGy to 100 Gy was observed. These results suggest that aluminium oxide thin films are suitable for detection and monitoring of gamma radiation. (Author)

  1. Experimental studies of relevance on zirconium nitrate raffinate sludge for its disposal as well as zirconium recovery

    International Nuclear Information System (INIS)

    Brahmananda Reddy, G.; Narasimha Murty, B.; Ravindra, H.R.

    2013-01-01

    One of the many routes of production of nuclear grade zirconium dioxide involve separation of zirconium and hafnium by solvent extraction of zirconium nitrate using tri-n-butyl phosphate followed by precipitation of zirconium with ammonia and finally calcination of the so obtained hydrated zirconia at elevated temperature. The zirconium feed solution as is generated from digestion of zirconium washed dried frit (produced by the caustic fusion of zircon sand which is one of the beach sand heavy minerals) in nitric acid contain considerable amount of sludge material and after solvent extraction this whole sludge material rests with raffinate. This sludge material has a scope to contain considerable amounts of zirconium along with other metal ions such as hafnium, aluminium, iron, etc. besides nitric acid and it constitutes one of the important solid wastes that needs to be disposed suitably. One of the disposal means of this sludge material is to use it as a land fill for which two important criteria are to be viz the pH of 10% solid waste solution should be near to neutral pH and the loss on ignition at 550℃ on dry basis of the sludge to be below 20%. In order to study the implications of presence of varying amounts of zirconium nitrate in the sludge on the pH of 10% solution of the sludge various synthetic zirconium nitrate solid waste were prepared using the sludge material generated at the laboratory during the analysis of zirconium washed dried frit. Presence of zirconium in the sludge is expected to decrease the overall pH of the 10% solution of the sludge because zirconium is prone to hydrolyze especially locally when zirconium ion comes into contact with water according to the chemical equation Zr 4+ H 2 O → ZrO 2+ + 2H + . From this equation, it is clear that for every one mole of zirconium ions two moles of hydrogen ions are produced. This is verified experimentally using the synthetically prepared sludge materials with varying amounts of zirconium

  2. Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hai Jian; Lu, Zheng; Wang, Dong Mei; Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang (China)

    2017-02-15

    To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of Fe-9Cr-2W-0.3Y{sub 2}O-3 and Fe-9Cr-2W-0.3Zr-0.3Y{sub 2}O{sub 3} were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal δ-phase Y{sub 4}Zr{sub 3}O{sub 12} oxides and body-centered cubic Y{sub 2}O{sub 3} oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of Y{sub 4}Zr{sub 3}O{sub 12} particles is much smaller than that of Y{sub 2}O{sub 3}. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is 1.1 x 10{sup 23}/m{sup 3} with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time.

  3. Thin film ionic conductors based on cerium oxide

    International Nuclear Information System (INIS)

    Haridoss, P.; Hellstrom, E.; Garzon, F.H.; Brown, D.R.; Hawley, M.

    1994-01-01

    Fluorite and perovskite structure cerium oxide based ceramics are a class of materials that may exhibit good oxygen ion and/or protonic conductivity. The authors have successfully deposited thin films of these materials on a variety of substrates. Interesting orientation relationships were noticed between cerium oxide films and strontium titanate bi-crystal substrates. Near lattice site coincidence theory has been used to study these relationships

  4. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Bijkerk, Frederik

    2015-01-01

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO2 films were found to show Arrhenius behaviour. However, a

  5. Localized deformation of zirconium-liner tube

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Uchida, Masaaki

    1988-03-01

    Zirconium-liner tube has come to be used in BWR. Zirconium liner mitigates the localized stress produced by the pellet-cladding interaction (PCI). In this study, simulating the ridging, stresses were applied to the inner surfaces of zirconium-liner tubes and Zircaloy-2 tubes, and, to investigate the mechanism and the extent of the effect, the behavior of zirconium liner was examined. As the result of examination, stress was concentrated especially at the edge of the deformed region, where zirconium liner was highly deformed. Even after high stress was applied, the deformation of Zircaloy part was small, since almost the concentrated stress was mitigated by the deformation of zirconium liner. In addition, stress and strain distributions in the cross section of specimen were calculated with a computer code FEMAXI-III. The results also showed that zirconium liner mitigated the localized stress in Zircaloy, although the affected zone was restricted to the region near the boundary between zirconium liner and Zircaloy. (author)

  6. In Vivo Wear Performance of Cobalt-Chromium Versus Oxidized Zirconium Femoral Total Knee Replacements.

    Science.gov (United States)

    Gascoyne, Trevor C; Teeter, Matthew G; Guenther, Leah E; Burnell, Colin D; Bohm, Eric R; Naudie, Douglas R

    2016-01-01

    This study examines the damage and wear on the polyethylene (PE) inserts from 52 retrieved Genesis II total knee replacements to identify differences in tribological performance between matched pairs of cobalt-chromium (CoCr) and oxidized zirconium (OxZr) femoral components. Observer damage scoring and microcomputed tomography were used to quantify PE damage and wear, respectively. No significant differences were found between CoCr and OxZr groups in terms of PE insert damage, surface penetration, or wear. No severe damage such as cracking or delamination was noted on any of the 52 PE inserts. Observer damage scoring did not correlate with penetrative or volumetric PE wear. The more costly OxZr femoral component does not demonstrate clear tribological benefit over the standard CoCr component in the short term with this total knee replacement design. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Influence of hydratation on the characteristics of zirconium alloys oxide layers

    Czech Academy of Sciences Publication Activity Database

    Gosmanová, G.; Kraus, I.; Kolega, M.; Vrtílková, V.; Weishauptová, Zuzana

    2008-01-01

    Roč. 54, č. 1 (2008), s. 1576-1580 ISSN 1210-0471 R&D Projects: GA ČR GA106/04/0043 Institutional research plan: CEZ:AV0Z30460519 Keywords : zirconium alloys * corrosion layer * hydrated ZrO2 Subject RIV: JF - Nuclear Energetics

  8. Effect of anodization on the surface characteristics and electrochemical behaviour of zirconium in artificial saliva.

    Science.gov (United States)

    Romonti, Daniela E; Gomez Sanchez, Andrea V; Milošev, Ingrid; Demetrescu, Ioana; Ceré, Silvia

    2016-05-01

    The paper is focused on elaboration of ZrO2 films on pure zirconium via anodizing in phosphoric acid with and without fluoride at constant potentials of 30 V and 60 V. The structure and composition of the films were investigated using scanning electronic microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The composition of the oxides formed at both potentials can be identified as monoclinic ZrO2. In addition to Zr and O, the layers formed in phosphoric acid contain phosphorus originating from the phosphoric acid. When the phosphoric acid solution contains NaF, fluorine is also incorporated into the oxide layer. The oxides formed at a higher voltage have greater roughness than those formed at 30 V. Anodized samples exhibit smaller current densities during anodic polarization compared to the as-received zirconium covered with native oxide. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Preparation and characterization of vanadium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, O.; Plesch, G. [Comenius University of Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, 84215 Bratislava (Slovakia); Roch, T. [Comenius University of Bratislava, Faculty of Mathematics Physics and Informatics, Department of Experimental Physics, 84248 Bratislava (Slovakia)

    2013-04-16

    The thermotropic VO{sub 2} films have many applications, since they exhibit semiconductor-conductor switching properties at temperature around 70 grad C. Vanadium oxide thin films were prepared via sol-gel method. Spin coater was used to depose these films on Si/SiO{sub 2} and lime glass substrates. Thin films of V{sub 2}O{sub 5} can be reduced to metastable VO{sub 2} thin films at the temperature of 450 grad C under the pressure of 10{sup -2} Pa. These films are then converted to thermotropic VO{sub 2} at 700 grad C in argon under normal pressure. (authors)

  10. Zirconium oxide deposits (ZrO2) and titanium oxide (TiO2) on 304l stainless steel

    International Nuclear Information System (INIS)

    Davila N, M. L.

    2015-01-01

    This research project aims to carry out the surface and electrochemical characterization to obtain the optimum conditions of the hydrothermal deposits of zirconium oxide ZrO 2 (baddeleyite) and titanium oxide TiO 2 (anatase and rutile phases) on 304l stainless steel, simulating an inhibiting protective layer. 304l steel specimens were cut, pre-oxidized in water at a temperature of 288 degrees Celsius and 8 MPa, similar to those of a typical BWR conditions. From the titanium oxide anatase crystalline phase, the rutile phase was obtained by a heat treatment at 1000 degrees Celsius. The Sigma-Aldrich pre-oxidized powders and steel 304l were characterized using techniques of X-ray diffraction, scanning electron microscopy, X-ray dispersive energy, chemical mapping and Raman spectrometry. The pre-oxidized steel has two oxide layers, an inner layer with nano metric crystals and another outer of larger crystals to 1μm, with the formation of hematite and magnetite, this predominating. The surface that contacted the sample holder has larger crystals. Hydrothermal deposits were carry out from suspensions of 10, 100 and 1000 ppm, of the crystal phases of anatase, rutile and baddeleyite, on the pre-oxidized steel at a temperature of 150 degrees Celsius for 2 and 7 days, samples were analyzed by X-ray diffraction, scanning electron microscopy, X-ray dispersive energy, Raman spectrometry and Tafel polarization. The suspension to 1000 ppm for 7 days coated surface most; the baddeleyite deposit is noticed more homogeneous than anatase and rutile. The deposit is favored when hematite and magnetite crystals are larger. The chemical mapping on deposits show that even after being immersed in water to 288 degrees Celsius during 30 days, the deposits are still present although a loss is observed. A reference electrode was assembled to conduct electrochemical tests of Tafel able to withstand a temperature of 288 degrees Celsius and pressure of 8 MPa. The baddeleyite deposit presented

  11. Zirconium isotope separation process

    International Nuclear Information System (INIS)

    Peterson, S.H.; Lahoda, E.J.

    1988-01-01

    A process is described for reducing the amount of zirconium 91 isotope in zirconium comprising: forming a first solution of (a) a first solvent, (b) a scavenger, and (c) a zirconium compound which is soluble in the first solvent and reacts with the scavenger when exposed to light of a wavelength of 220 to 600 nm; irradiating the first solution with light at the wavelength for a time sufficient to photoreact a disproportionate amount of the zirconium compound containing the zirconium 91 isotope with the scavenger to form a reaction product in the first solution; contacting the first solution, while effecting the irradiation, with a second solvent which is immiscible with the first solvent, which the second solvent is a preferential solvent for the reaction product relative to the first solvent, such that at least a portion of the reaction product is transferred to the second solvent to form a second solution; and separating the second solution from the first solution after the contacting

  12. Multiferroic iron oxide thin films at room temperature

    Czech Academy of Sciences Publication Activity Database

    Gich, M.; Fina, I.; Morelli, Alessio; Sánchez, F.; Alexe, M.; Gazquez, J.; Fontcuberta, J.; Roig, A.

    2014-01-01

    Roč. 26, č. 27 (2014), s. 4645-4652 ISSN 0935-9648 Institutional support: RVO:68378271 Keywords : multiferroic * iron oxide * thin film Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 17.493, year: 2014

  13. Zirconium for nitric acid solutions

    International Nuclear Information System (INIS)

    Yau, T.L.

    1984-01-01

    The excellent corrosion resistance of zirconium in nitric acid has been known for over 30 years. Recently, there is an increasing interest in using zirconium for nitric acid services. Therefore, an extensive research effort has been carried out to achieve a better understanding of the corrosion properties of zirconium in nitric acid. Particular attention is paid to the effect of concentration, temperature, structure, solution impurities, and stress. Immersion, autoclave, U-bend, and constant strain-rate tests were used in this study. Results of this study indicate that the corrosion resistance of zirconium in nitric acid is little affected by changes in temperature and concentration, and the presence of common impurities such as seawater, sodium chloride, ferric chloride, iron, and stainless steel. Moreover, the presence of seawater, sodium chloride, ferric chloride, and stainless steel has little effect on the stress corrosion craking (SCC) susceptibility of zirconium in 70% nitric acid at room temperatures. However, zirconium could be attacked by fluoride-containing nitric acid and the vapors of chloride-containing nitric acid. Also, high sustained tensile stresses should be avoided when zirconium is used to handle 70% nitric acid at elevated temperatures or > 70% nitric acid

  14. Experimental and thermodynamic study of the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems

    International Nuclear Information System (INIS)

    Jourdan, J.

    2009-11-01

    This work is a contribution to the development of innovative concepts for fuel cladding in pressurized water nuclear reactors. This concept implies the insertion of rare earth (erbium and gadolinium) in the zirconium fuel cladding. The determination of phase equilibria in the systems is essential prior to the implementation of such a promising solution. This study consisted in an experimental determination of the erbium-zirconium phase diagram. For this, we used many different techniques in order to obtain diagram data such as solubility limits, solidus, liquidus or invariant temperatures. These data allowed us to present a new diagram, very different from the previous one available in the literature. We also assessed the diagram using the CALPHAD approach. In the gadolinium-zirconium system, we determined experimentally the solubility limits. Those limits had never been determined before, and the values we obtained showed a very good agreement with the experimental and assessed versions of the diagram. Because these alloys are subjected to oxygen diffusion throughout their life, we focused our attention on the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems. The first system has been investigated experimentally. The alloys fabrication has been performed using powder metallurgy. In order to obtain pure raw materials, we fabricated powder from erbium and zirconium bulk metals using hydrogen absorption/desorption. The characterisation of the ternary pellets allowed the determination of two ternary isothermal sections at 800 and 1100 C. For the gadolinium-oxygen-zirconium system, we calculated the phase equilibria at temperatures ranging from 800 to 1100 C, using a homemade database compiled from literature assessments of the oxygen-zirconium, gadolinium-zirconium and gadolinia-zirconia systems. Finally, we determined the mechanical properties, in connexion with the microstructure, of industrial quality alloys in order to identify the influence of

  15. Structural and optical properties of electrodeposited molybdenum oxide thin films

    International Nuclear Information System (INIS)

    Patil, R.S.; Uplane, M.D.; Patil, P.S.

    2006-01-01

    Electrosynthesis of Mo(IV) oxide thin films on F-doped SnO 2 conducting glass (10-20/Ω/□) substrates were carried from aqueous alkaline solution of ammonium molybdate at room temperature. The physical characterization of as-deposited films carried by thermogravimetric/differential thermogravimetric analysis (TGA/DTA), infrared spectroscopy and X-ray diffraction (XRD) showed the formation of hydrous and amorphous MoO 2 . Scanning electron microscopy (SEM) revealed a smooth but cracked surface with multi-layered growth. Annealing of these films in dry argon at 450 deg. C for 1 h resulted into polycrystalline MoO 2 with crystallites aligned perpendicular to the substrate. Optical absorption study indicated a direct band gap of 2.83 eV. The band gap variation consistent with Moss rule and band gap narrowing upon crystallization was observed. Structure tailoring of as-deposited thin films by thermal oxidation in ambient air to obtain electrochromic Mo(VI) oxide thin films was exploited for the first time by this novel route. The results of this study will be reported elsewhere

  16. Process for etching zirconium metallic objects

    International Nuclear Information System (INIS)

    Panson, A.J.

    1988-01-01

    In a process for etching of zirconium metallic articles formed from zirconium or a zirconium alloy, wherein the zirconium metallic article is contacted with an aqueous hydrofluoric acid-nitric acid etching bath having an initial ratio of hydrofluoric acid to nitric acid and an initial concentration of hydrofluoric and nitric acids, the improvement, is described comprising: after etching of zirconium metallic articles in the bath for a period of time such that the etching rate has diminished from an initial rate to a lesser rate, adding hydrofluoric acid and nitric acid to the exhausted bath to adjust the concentration and ratio of hydrofluoric acid to nitric acid therein to a value substantially that of the initial concentration and ratio and thereby regenerate the etching solution without removal of dissolved zirconium therefrom; and etching further zirconium metallic articles in the regenerated etching bath

  17. Amperometric detection and electrochemical oxidation of aliphatic amines and ammonia on silver-lead oxide thin-film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jisheng [Iowa State Univ., Ames, IA (United States)

    1996-01-08

    This thesis comprises three parts: Electrocatalysis of anodic oxygen-transfer reactions: aliphatic amines at mixed Ag-Pb oxide thin-film electrodes; oxidation of ammonia at anodized Ag-Pb eutectic alloy electrodes; and temperature effects on oxidation of ethylamine, alanine, and aquated ammonia.

  18. Surface and sub-surface thermal oxidation of ruthenium thin films

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Zoethout, E.; Yakshin, Andrey; Bijkerk, Frederik

    2014-01-01

    For next generation Extreme UV photolithography, multilayer coatings may require protective capping layers against surface contamination. Ruthenium, as a low-oxidation metal, is often used as a reference material. The oxidation behaviour of Ru thin films has been studied using X-ray reflectometry

  19. Zirconium and cast zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Krone, K

    1977-04-01

    A survey is given on the occurence of zirconium, production of Zr sponge and semi-finished products, on physical and mechanical properties, production of Zr cast, composition of the commercial grades and reactor grades qualities, metal cutting, welding, corrosion behavior and use.

  20. Synthesis of zirconium by zirconium tetrachloride reduction by magnesio-thermia. Experimental study and modelling

    International Nuclear Information System (INIS)

    Basin, N.

    2001-01-01

    This work deals with the synthesis of zirconium. The ore is carbo-chlorinated to obtain the tetrachloride which is then purified by selective condensation and extractive distillation. Zirconium tetrachloride is then reduced by magnesium and the pseudo-alloy is obtained according to the global following reaction (Kroll process): ZrCl 4 + 2 Mg = 2 MgCl 2 . By thermodynamics, it has been shown that the volatilization of magnesium chloride and the formation of zirconium sub-chlorides are minimized when the combined effects of temperature and of dilution with argon are limited. With these conditions, the products, essentially zirconium and magnesium chloride, are obtained in equivalence ratio in the magnesio-thermia reaction. The global kinetics of the reduction process has been studied by a thermal gravimetric method. A thermo-balance device has been developed specially for this kinetics study. It runs under a controlled atmosphere and is coupled to a vapor tetrachloride feed unit. The transformation is modelled supposing that the zirconium and magnesium chloride formation result: 1)of the evaporation of magnesium from its liquid phase 2)of the transfer of magnesium and zirconium tetrachloride vapors towards the front of the reaction located in the gaseous phase 3)of the chemical reaction. In the studied conditions, the diffusion is supposed to be the limiting process. The influence of the following parameters: geometry of the reactive zone, temperature, scanning rate of the argon-zirconium tetrachloride mixture, composition of the argon-zirconium tetrachloride mixture has been experimentally studied and confronted with success to the model. (O.M.)

  1. Kinetics of solid-gas reactions characterized by scanning AC nano-calorimetry with application to Zr oxidation

    International Nuclear Information System (INIS)

    Xiao, Kechao; Lee, Dongwoo; Vlassak, Joost J.

    2014-01-01

    Scanning AC nano-calorimetry is a recently developed experimental technique capable of measuring the heat capacity of thin-film samples of a material over a wide range of temperatures and heating rates. Here, we describe how this technique can be used to study solid-gas phase reactions by measuring the change in heat capacity of a sample during reaction. We apply this approach to evaluate the oxidation kinetics of thin-film samples of zirconium in air. The results confirm parabolic oxidation kinetics with an activation energy of 0.59 ± 0.03 eV. The nano-calorimetry measurements were performed using a device that contains an array of micromachined nano-calorimeter sensors in an architecture designed for combinatorial studies. We demonstrate that the oxidation kinetics can be quantified using a single sample, thus enabling high-throughput mapping of the composition-dependence of the reaction rate.

  2. Difference in surface reactions between titanium and zirconium in Hanks' solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization

    International Nuclear Information System (INIS)

    Tsutsumi, Y.; Nishimura, D.; Doi, H.; Nomura, N.; Hanawa, T.

    2009-01-01

    Titanium and zirconium were immersed in Hanks' solution with and without calcium and phosphate ions, and the surfaces were characterized with X-ray photoelectron spectroscopy (XPS) to determine the mechanism of calcium phosphate formation on titanium in simulated body fluids and in a living body. In addition, they were cathodically polarized in the above solutions. XPS characterization and cathodic polarization revealed differences in the surface properties in the ability of calcium phosphate formation between titanium and zirconium. The surface oxide film on titanium is not completely oxidized and is relatively reactive; that on zirconium is more passive and protective than that on titanium. Neither calcium nor phosphate stably exists alone on titanium, and calcium phosphate is naturally formed on it; calcium phosphate formed on titanium is stable and protective. On the other hand, calcium is never incorporated on zirconium, while zirconium phosphate, which is easily formed on zirconium, is highly stable and protective. Our study presents new information regarding the surface property of titanium and demonstrates that the characteristics of titanium and zirconium may be applied to various medical devices and new surface modification techniques.

  3. Experimental results of core-concrete interactions using molten steel with zirconium

    International Nuclear Information System (INIS)

    Copus, E.R.; Blose, R.E.; Brockmann, J.E.; Gomez, R.D.; Lucero, D.A.

    1990-07-01

    Four inductively sustained experiments, QT-D, QT-E, SURC-3, and SURC-3A, were performed in order to investigate the additional effects of zirconium metal oxidation on core debris-concrete interactions using molten stainless steel as the core debris simulant. The QT-D experiment ablated 18 cm of concrete axially during 50 minutes of interaction on limestone-common sand concrete using a 10 kg charge of 304 stainless steel to which 2 kg of zirconium metal was added subsequent to the onset of erosion. The QT-E experiment ablated 10 cm of limestone-common sand concrete axially and 10 cm radially during 35 minutes of sustained interaction using 50 kg of stainless steel and 10 kg of zirconium. The SURC-3 experiment had a 45 kg charge of stainless steel to which 1.1 kg of zirconium was subsequently added. SURC-3 axially eroded 33 cm of limestone concrete during two hours of interaction. The fourth experiment, SURC-3A, eroded 25 cm of limestone concrete axially and 9 cm radially during 90 minutes of sustained interaction. It utilized 40 kg of stainless steel and 2.2 kg of added zirconium as the charge material. All four experiments showed in a large increase in erosion rate, gas production, and aerosol release following the addition of Zr metal to the melt. In the SURC-3 and SURC-3A tests the measured erosion rates increased from 14 cm/hr to 27 cm/hr, gas release increased from 50 slpm to 100 slpm, and aerosol release increased from .02 q/sec to .04 q/sec. The effluent gas was composed of 80% CO, 10% CO 2 , and 2% H 2 before Zr addition and 92% CO, 4% CO 2 , 4% H 2 during the Zr interactions which lasted 10--20 minutes. Addition measurements indicated that the melt pool temperature ranged from 1600 degree C--1800 degree and that the aerosols produced were comprised primarily of Te and Fe oxides. 21 refs., 120 figs., 51 tabs

  4. Experimental results of core-concrete interactions using molten steel with zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Copus, E.R.; Blose, R.E.; Brockmann, J.E.; Gomez, R.D.; Lucero, D.A. (Sandia National Labs., Albuquerque, NM (USA))

    1990-07-01

    Four inductively sustained experiments, QT-D, QT-E, SURC-3, and SURC-3A, were performed in order to investigate the additional effects of zirconium metal oxidation on core debris-concrete interactions using molten stainless steel as the core debris simulant. The QT-D experiment ablated 18 cm of concrete axially during 50 minutes of interaction on limestone-common sand concrete using a 10 kg charge of 304 stainless steel to which 2 kg of zirconium metal was added subsequent to the onset of erosion. The QT-E experiment ablated 10 cm of limestone-common sand concrete axially and 10 cm radially during 35 minutes of sustained interaction using 50 kg of stainless steel and 10 kg of zirconium. The SURC-3 experiment had a 45 kg charge of stainless steel to which 1.1 kg of zirconium was subsequently added. SURC-3 axially eroded 33 cm of limestone concrete during two hours of interaction. The fourth experiment, SURC-3A, eroded 25 cm of limestone concrete axially and 9 cm radially during 90 minutes of sustained interaction. It utilized 40 kg of stainless steel and 2.2 kg of added zirconium as the charge material. All four experiments showed in a large increase in erosion rate, gas production, and aerosol release following the addition of Zr metal to the melt. In the SURC-3 and SURC-3A tests the measured erosion rates increased from 14 cm/hr to 27 cm/hr, gas release increased from 50 slpm to 100 slpm, and aerosol release increased from .02 q/sec to .04 q/sec. The effluent gas was composed of 80% CO, 10% CO{sub 2}, and 2% H{sub 2} before Zr addition and 92% CO, 4% CO{sub 2}, 4% H{sub 2} during the Zr interactions which lasted 10--20 minutes. Addition measurements indicated that the melt pool temperature ranged from 1600{degree}C--1800{degree} and that the aerosols produced were comprised primarily of Te and Fe oxides. 21 refs., 120 figs., 51 tabs.

  5. Residual stresses in high temperature corrosion of pure zirconium using elasto-viscoplastic model: Application to the deflection test in monofacial oxidation

    Science.gov (United States)

    Fettré, D.; Bouvier, S.; Favergeon, J.; Kurpaska, L.

    2015-12-01

    The paper is devoted to modeling residual stresses and strains in an oxide film formed during high temperature oxidation. It describes the deflection test in isothermal high-temperature monofacial oxidation (DTMO) of pure zirconium. The model incorporates kinetics and mechanism of oxidation and takes into account elastic, viscoplastic, growth and chemical strains. Different growth strains models are considered, namely, isotropic growth strains given by Pilling-Bedworth ratio, anisotropic growth strains defined by Parise and co-authors and physically based model for growth strain proposed by Clarke. Creep mechanisms based on dislocation slip and core diffusion, are used. A mechanism responsible for through thickness normal stress gradient in the oxide film is proposed. The material parameters are identified using deflection tests under 400 °C, 500 °C and 600 °C. The effect of temperature on creep and stress relaxation is analyzed. Numerical sensitivity study of the DTMO experiment is proposed in order to investigate the effects of the initial foil thickness and platinum coating on the deflection curves.

  6. Synthesis of electro-active manganese oxide thin films by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Anna R. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States); Rajagopalan, Ramakrishnan [Department of Engineering, The Pennsylvania State University, Dubois, PA 15801 (United States); Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Carter, Joshua D. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States)

    2014-04-01

    The good stability, cyclability and high specific capacitance of manganese oxide (MnO{sub x}) has recently promoted a growing interest in utilizing MnO{sub x} in asymmetric supercapacitor electrodes. Several literature reports have indicated that thin film geometries of MnO{sub x} provide specific capacitances that are much higher than bulk MnO{sub x} powders. Plasma enhanced chemical vapor deposition (PECVD) is a versatile technique for the production of metal oxide thin films with high purity and controllable thickness. In this work, MnO{sub x} thin films deposited by PECVD from a methylcyclopentadienyl manganese tricarbonyl precursor are presented and the effect of processing conditions on the quality of MnO{sub x} films is described. The film purity and oxidation state of the MnO{sub x} films were studied by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Preliminary electrochemical testing of MnO{sub x} films deposited on carbon fiber electrodes in aqueous electrolytes indicates that the PECVD synthesized films are electrochemically active. - Highlights: • Plasma enhanced chemical vapor deposition of manganese oxide thin films. • Higher plasma power and chamber pressure increase deposition rate. • Manganese oxide thin films are electrochemically active. • Best electrochemical performance observed for pure film with low stress • Lower capacitance observed at higher scan rates despite thin film geometry.

  7. X-ray K-absorption edge of zirconium in some perovskite type zirconates

    Energy Technology Data Exchange (ETDEWEB)

    Chougule, B K; Patil, R N [Shivaji Univ., Kolhapur (India). Dept. of Physics

    1979-01-01

    The chemical shifts in the X-ray K-absorption edges of zirconium in the zirconates of calcium, strontium, barium and lead and zirconium oxide have been investigated employing a 400 mm bent crystal X-ray spectrograph. It has been found that the discontinuity shifts towards the high energy side with respect to that in the pure metal and that the chemical shift depends upon the size of the next nearest cation. The larger the size of the cation, smaller is the chemical shift. Dependence of the shift on the crystal structure and the packing factor of the perovskite is also reported.

  8. The Development of an In-Situ TEM Technique for Studying Corrosion Behavior as Applied to Zirconium-Based Alloys

    Science.gov (United States)

    Harlow, Wayne

    Zirconium-based alloys are a commonly used material for nuclear fuel rod cladding, due to its low neutron cross section and good corrosion properties. However, corrosion is still a limiting factor in fuel rod lifespan, which restricts burn up levels, and thus efficiency, that can be achieved. While long-term corrosion behavior has been studied through both reactor and autoclave samples, the oxide nucleation and growth behavior has not been extensively studied. This work develops a new technique to study the initial stages of corrosion in zirconium-based alloys and the microstructural effects on this process by developing an environmental cell system for the TEM. Nanoscale oxidation parameters are developed, as is a new FIB technique to support this method. Precession diffraction is used in conjunction with in-situ TEM to observe the initial stages of corrosion in these alloys, and oxide thickness is estimated using low-loss EELS. In addition, the stress stabilization of tetragonal ZrO 2 is explored in the context of sample preparation for TEM. It was found that in-situ environmental TEM using an environmental cell replicates the oxidation behavior observed in autoclaved samples in both oxide structure and phases. Utilizing this technique, it was shown that cracking of the oxide layer in zirconium-based alloys is related to oxide relaxation, and not thermal changes. The effect of secondary phase particles on oxidation behavior did not present significant results, however a new method for studying initial oxidation rates using low-loss EELS was developed.

  9. Neutron activation of chlorine in zirconium and zirconium alloys use of the matrix as comparator

    International Nuclear Information System (INIS)

    Cohen, I.M.; Gomez, C.D.; Mila, M.I.

    1981-01-01

    A procedure is described for neutron activation analysis of chlorine in zirconium and zirconium alloys. Calculation of chlorine concentration is performed relative to zirconium concentration in the matrix in order to minimize effects of differences in irradiation and counting geometry. Principles of the method and the results obtained are discussed. (author)

  10. The solubilities and solubility products of zirconium hydroxide and oxide after aging at 278, 313, and 333 K

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Taishi; Uemura, Takuya; Sasaki, Takayuki; Takagi, Ikuji [Kyoto Univ. (Japan). Dept. of Nuclear Engineering; Moriyama, Hirotake [Kyoto Univ. (Japan). Research Reactor Inst.

    2016-07-01

    The solubilities of zirconium hydroxide and oxide after aging at 278, 313, and 333 K were measured at 278, 298, 313, and 333 K in the pH{sub c} range of 0.3-7 in a 0.5 M ionic strength solution of NaClO{sub 4} and HClO{sub 4}. Size distributions of the colloidal species were investigated by ultrafiltration using membranes with different pore sizes, and the solid phases were examined by X-ray diffraction. The apparent solubility of zirconium amorphous hydroxide (Zr(OH){sub 4}(am)), prepared by the oversaturation method, decreased with increasing aging temperature (T{sub a}), and the size distributions obtained after aging at elevated temperatures indicated the growth of the colloidal species. We, therefore, suggested that agglomeration of the colloidal species and dehydration and crystallization of Zr(OH){sub 4}(am) as the solubility-limiting solid phase occurred over the course of aging at elevated temperatures. For sample solutions of the crystalline oxide (ZrO{sub 2}(cr)), the aging temperature had no significant effect on the solubility, but the solubility data at lower temperatures were found to be slightly higher than those at higher temperatures, implying a small fraction of the amorphous components. In the analysis of different solid phases (Zr(OH){sub 4}(s,T{sub a}), T{sub a} = 278, 313, and 333 K) depending on the aging temperatures, the solubility products (K{sub sp}, T{sub a}) were determined at different measurement temperatures, and the enthalpy change (Δ{sub r}H {sup circle}) for Zr{sup 4+} 4OH{sup -} <=> Zr(OH){sub 4}(s,T{sub a}) was calculated using the van't Hoff equation. The solid-phase-transformation process at elevated temperatures was also analyzed based on the obtained K{sub sp}, T{sub a} and Δ{sub r}H {sup circle} values.

  11. Quantification of chlorine in zirconium oxide and biological samples by instrumental NAA utilizing PCF of Dhruva reactor

    International Nuclear Information System (INIS)

    Shinde, Amol D.; Reddy, A.V.R.; Acharya, R.; Balaji Rao, Y.

    2012-01-01

    Recently studies on chlorine contents in various samples are being pursued due to its corrosive nature. Chlorine present at trace level in various finished products as well as powder is used as a raw material for production of different types of zircaloys used as structural materials in nuclear technology. As a part of quality assurance program, it is necessary to quantify chlorine accurately with suitable and simple technique. In the present work we have applied instrumental neutron activation analysis (INAA) utilizing its short-lived activation product ( 38 Cl, 37 min, 1642 and 2168 keV) for its estimation. Pneumatic Carrier Facility (PCF) of Dhruva reactor, BARC was used sample irradiation of zirconium oxide dry powder, synthetic wax and IAEA RMs 1515 (Apple leaves) and Lichen 336. (author)

  12. Surface and sub-surface thermal oxidation of thin ruthenium films

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Kokke, S.; Zoethout, E.; Yakshin, Andrey; Bijkerk, Frederik

    2014-01-01

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low

  13. Characterization of oxidation products on a ZrFe2-type laves intermetallic exposed to 200degreeC steam

    International Nuclear Information System (INIS)

    Abraham, D. P.; Dietz, N.; Finnegan, N.

    2000-01-01

    The release of radioactive elements from the stainless steel-15 wt% zirconium (SS-15Zr) metal waste form will be governed by the corrosion behavior of ZrFe 2 -type intermetallics phases present in the alloy. In this article, oxidation products that formed on a ZrFe 2 -type intermetallic sample exposed to 200 C steam were characterized by Auger Electron Spectroscopy (AES) and Transmission Electron Microscopy (TEM). The data revealed two oxide layers on the sample surface: an outer crystalline iron-oxide layer and an inner amorphous zirconium-rich layer believed to be zirconium oxide. Thermodynamic considerations indicate that the zirconium-rich layer formed first. The iron-oxide layer appears to have resulted from the diffusion of iron through the zirconium-rich layer to the oxide-vapor interface

  14. Study of the oxidation behavior of zirconoium and its alloys

    International Nuclear Information System (INIS)

    Costa, I.

    1985-01-01

    The oxidation behavior of zirconium, zircaloy-4 and Zr-2,5% Nb alloy, as well as the influence of temperature, oxidising atmosphere, metal composition, heat treatment, surface treatment and specimen size on the oxidation of these materials in the temperature range 350 - 900 0 C and at atmospheric pressure have been studied with the aid of thermogravimetry. The results indicate that oxidation rate increases with temperature and the rate of oxidation of the zirconium alloys was appreciable beyond 600 0 C. At temperature higher than 500 0 C, the oxidation curves of the zirconium alloys revealed a rate transition, the kinetics after transition being either mixed parabolic and linear or linear. The transition produced an alteration in oxide characteristics, from being dark and adherent and protective, to white or grey and revealing at times cracks and scaling. The oxidation atmospheres were oxygen and air, and the results showed that the extent of oxidation in air was higher than that in oxygen. Among the metals, zirconium showed a low degree of oxidation, and the alloy Zr-2,5% Nb the lowest resistance to oxidation. Specimens heat treated in the α-phase showed the highest resistance to oxidation, and those heat treated in the β-phase the lowest. Surface treatments in aqueous solutions containing a high concentration of the fluoride ion, left behind fluorates on the surface and increased the oxidation rates of zirconium and zircaloy-4. Specimens with a high proportion of corners in relation to the total area, showed a high extent of oxidation giving rise to cracks in the oxide at the corners. (Author) [pt

  15. Chemical aspects of hydrogen ingress in zirconium and zircaloy pressure tubes: ageing management of Indian PHWR coolant channels - determination of hydrogen and deuterium

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Shankaran, P.S.; Yadav, C.S.; Ramanjaneyulu, P.S.; Venugopal, V.; Ramakumar, K.L.; Chhapru, G.C.; Prasad, R.; Jain, H.C.; Sood, D.D.

    2009-02-01

    Pressurized heavy water reactors (PHWRs) use zirconium and zirconium based alloys as clad and coolant tubes since its beginning. The first ever zircaloy-2 pressure tube failure occurred in 1983 at Ontario Hydro's Pickering Unit 2 in Canada which necessitated a thorough examination of causes of such failure. The failure was attributed to massive hydriding at the failed spot of pressure tube. Continuous usage of zirconium alloys could result in their hydrogen and deuterium pick-up leading to hydrogen/ deuterium embrittlement. The life of the zircaloy coolant channels is dictated by hydrogen/deuterium content and hence ageing management of the pressure tubes is essential for ensuring their trouble-free usage. It is desirable to have a sound knowledge on the chemical aspects of zirconium and zirconium based alloys metallurgy, the mechanistic principles of hydrogen ingress into the pressure tubes during in reactor service, and identifying suitable analytical methodologies for precise and accurate determination of hydrogen in wafer thin sliver samples carved out from insides of pressure tubes without causing any structural damage so that it can continue to remain in service. This is desirable so that the ageing management does not result in cost-escalation. This report is divided in to three main parts. The first part deals with the chemical aspects of zirconium and zirconium based alloy metallurgy, the mechanism of hydrogen pick-up and hydride formation in zirconium matrix. The second part describes various methodologies and their limitations, available for hydrogen/deuterium determination. The third part deals in detail, about the extensive investigations carried out at Radioanalytical Chemistry Division (RACD) in Radiochemistry and Isotope Group for establishing an indigenously developed hot vacuum extraction system in combination with quadrupole mass spectrometry for precise determination of hydrogen and deuterium in wafer thin sliver sample of zircaloy. The

  16. Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications

    KAUST Repository

    Ghoneim, Mohamed T.; Zidan, Mohammed A.; Al-Nassar, Mohammed Y.; Hanna, Amir; Kosel, Jü rgen; Salama, Khaled N.; Hussain, Muhammad Mustafa

    2015-01-01

    A flexible version of traditional thin lead zirconium titanate ((Pb1.1Zr0.48Ti0.52O3)-(PZT)) based ferroelectric random access memory (FeRAM) on silicon shows record performance in flexible arena. The thin PZT layer requires lower operational

  17. Nanoporous cerium oxide thin film for glucose biosensor.

    Science.gov (United States)

    Saha, Shibu; Arya, Sunil K; Singh, S P; Sreenivas, K; Malhotra, B D; Gupta, Vinay

    2009-03-15

    Nanoporous cerium oxide (CeO(2)) thin film deposited onto platinum (Pt) coated glass plate using pulsed laser deposition (PLD) has been utilized for immobilization of glucose oxidase (GOx). Atomic force microscopy studies reveal the formation of nanoporous surface morphology of CeO(2) thin film. Response studies carried out using differential pulsed voltammetry (DPV) and optical measurements show that the GOx/CeO(2)/Pt bio-electrode shows linearity in the range of 25-300 mg/dl of glucose concentration. The low value of Michaelis-Menten constant (1.01 mM) indicates enhanced enzyme affinity of GOx to glucose. The observed results show promising application of the nanoporous CeO(2) thin film for glucose sensing application without any surface functionalization or mediator.

  18. Modification in band gap of zirconium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S. [Department of Physics, ISLE, IPS Academy, Indore (M.P.) (India); Mishra, A. [School of Physics, Devi Ahilya Vishwavidyalaya, Indore (M.P.) (India); Shrivastava, B. D. [Govt. P. G. College, Biora (M.P.) (India)

    2016-05-06

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  19. The nature of γ-hydride in crept zirconium single crystals

    International Nuclear Information System (INIS)

    Akhtar, A.

    1977-01-01

    Single crystals prepared from crystal bar zirconium have been subjected to uniaxial tensile-creep under a vacuum of 10 -4 Pa for 160 h. Transmission electron microscopy of crept crystals has revealed the presence of thin fct γ-zirconium hydride platelets lying parallel to (1100) planes and elongated along the [1120]sub(α) direction. The platelets maintain the following lattice relationship with the hcp (α) matrix: [1120]sub(α)//[110]sub(γ), (0001)sub(α)//(001)sub(γ). This relationship is different from that obtained for needle γ-hydride generally observed in quenched samples. Lattice misfit calculations indicate that the platelets have a large positive misfit normal to the plane of the disc and a small misfit in the plane of the disc, which remains parallel to (1010)sub(α). Displacement fringe contrast is observed inside the platelets under conditions consistent with the lattice misfit. It is proposed that the nucleation of these precipitates occurs at stacking faults in the presence of applied stress. (Auth.)

  20. Synthesis and characterization of zinc oxide thin films prepared by ...

    African Journals Online (AJOL)

    Zinc oxide thin films were prepared with ammonia/ammonium chloride buffer as the reaction moderating agent in the chemical bath deposition technique. An observable color change during the reaction due to variations in the reactants concentration indicated the existence of the cupric (CuO) and cuprous (Cu2O) oxides ...

  1. Investigation of chlorination of zirconium and hafnium and their compounds in discharge from hollow cathode

    International Nuclear Information System (INIS)

    Ioffe, R.B.; Korovin, Yu.I.

    1978-01-01

    The possibility is investigated of chlorinating various zirconium and hafnium compounds (metal, oxide, carbide) in a hot discharge from a hollow cathode with various chlorinating reagents: copper monochloride, nickel chloride, magnesium chloride, for the purpose of accelerating their entrance into the excitation zone. It has been shown thermodynamically and experimentally that chlorination of metal zirconium and hafnium and their carbides with copper monochloride in hot hollow cathode conditions provides a sharp increase in the intensity of the lines of these elements

  2. Effect of zirconium addition on welding of aluminum grain refined by titanium

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2011-01-01

    Aluminum and its alloys solidify in large grains columnar structure which tends to reduce their mechanical behaviour and surface quality. Therefore, they are industrially grain refined by titanium or titanium + boron. Furthermore, aluminum oxidizes in ordinary atmosphere which makes its weldability difficult and weak. Therefore, it is anticipated that the effect of addition of zirconium at a weight percentages of 0.1% (which proved to be an effective grain refiner on the weldability of aluminum grain refined by Ti) is worthwhile investigating. This formed the objective of this research work. In this paper, the effect of zirconium addition at a weight percentage of 0.1%, which corresponds to the peritctic limit on the aluminum-zirconium phase diagram, on the weldability of aluminum grain refined by Ti is investigated. Rolled sheets of commercially pure aluminum, Al grain refined Ti of 3 mm thickness were welded together using Gas Tungsten Arc Welding method (GTAW), formerly known as TIG. A constant air gap was maintained at a constant current level, 30 ampere AC, was used because it removes the oxides of the welding process under the same process parameters. Metallographic examination of weldments of the different combinations of aluminum and its microalloys at the heat affected zone, HAZ, and base metal was carried out and examined for width, porosity, cracks and microhardness. It was found that grain refining of commercially pure aluminum by Ti resulted in enhancement of its weldability. Similarly, addition of zirconium to Al grain refined by Ti resulted in further enhancement of the weldment. Photomicrographs of the HAZ regions are presented and discussed. (author)

  3. Plasma arc melting of zirconium

    International Nuclear Information System (INIS)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-01-01

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  4. Surface and sub-surface thermal oxidation of thin ruthenium films

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kokke, S.; Zoethout, E. [FOM Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  5. Oxidation of Zircaloy-4 in steam-nitrogen mixtures at 600-1200 °C

    Science.gov (United States)

    Steinbrueck, Martin; da Silva, Fabio Oliveira; Grosse, Mirco

    2017-07-01

    High-temperature oxidation of zirconium alloys in steam-nitrogen atmospheres may be relevant during various nuclear accident scenarios. Therefore, isothermal oxidation tests with Zircaloy-4 in steam-nitrogen mixtures have been performed at 600, 800, 1000, and 1200 °C using thermogravimetry. The gas compositions were varied between 0 and 100 vol% nitrogen including 0.1 and 90 vol%. The strong effect of nitrogen on the oxidation kinetics of zirconium alloys was confirmed in these tests in mixed steam-nitrogen atmospheres. Even very low concentrations of nitrogen (starting from less than 1 vol%) strongly increase reaction kinetics. Nitrogen reduces transition time from protective to non-protective oxide scale (breakaway). The formation of zirconium nitride, ZrN, and its re-oxidation is the main reason for the highly porous oxide scales after transition. The results of this study have shown the safety relevant role of nitrogen during severe accidents and, more generally, suggest the need of using well controlled gas atmospheres for experiments on oxidation of zirconium alloys.

  6. Evaluation of thermodynamic data on zirconium and hafnium halides and oxyhalides by means of transport experiments

    International Nuclear Information System (INIS)

    Dittmer, G.; Niemann, U.

    1987-01-01

    A consistent set of thermodynamic data for zirconium and hafnium halides, oxides and oxyhalides was achieved. It was found that formation enthalpies of gaseous compounds could be derived from solubility measurements together with theoretical estimations and a revision of literature data. Free energy functions were calculated employing statistical mechanics. Data for liquid and solid compounds were obtained via sublimation and vaporization data. Chemical equilibria of zirconium and hafnium with halogens are discussed. 51 refs.; 16 figs.; 14 tabs

  7. Investigation on the effect of Zr doping in ZnO thin films by spray pyrolysis

    International Nuclear Information System (INIS)

    Gokulakrishnan, V.; Parthiban, S.; Jeganathan, K.; Ramamurthi, K.

    2011-01-01

    Zirconium doped zinc oxide thin films with enhanced optical transparency were prepared on Corning 1737 glass substrates at the substrate temperature of 400 o C by spray pyrolysis method for various doping concentrations of zirconium (IV) chloride in the spray solution. The X-ray diffraction studies reveal that the films exhibit hexagonal crystal structure with polycrystalline grains oriented along (0 0 2) direction. The crystalline quality of the films is found to be deteriorating with the increase of doping concentration and acquires amorphous state for higher concentration of 8 at.% in precursor solution. The average transmittance for 5 at.% (solution) zirconium doped ZnO film is significantly increased to ∼92% in the visible region of 500-800 nm. The room temperature photoluminescence (PL) spectra of films show a band edge between 3.41 and 3.2 eV and strong blue emission at 2.8 eV irrespective of doping concentration and however intensity increases consistently with doping levels. The vacuum annealing at 400 o C reduced the resistivity of the films significantly due to the coalescence of grains and the lowest resistivity of 2 x 10 -3 Ω cm is observed for 3 at.% (solution) Zr doped ZnO films which envisages that it is a good candidate for stable TCO material.

  8. Management of waste cladding hulls. Part II. An assessment of zirconium pyrophoricity and recommendations for handling waste hulls

    International Nuclear Information System (INIS)

    Kullen, B.J.; Levitz, N.M.; Steindler, M.J.

    1977-11-01

    This report reviews experience and research related to the pyrophoricity of zirconium and zirconium alloys. The results of recent investigations of the behavior of Zircaloy and some observations of industrial handling and treatment of Zircaloy tubing and scrap are also discussed. A model for the management of waste Zircaloy cladding hulls from light water reactor fuel reprocessing is offered, based on an evaluation of the reviewed information. It is concluded that waste Zircaloy cladding hulls do not constitute a pyrophoric hazard if, following the model flow sheet, finely divided metal is oxidized during the management procedure. Steps alternative to the model are described which yield zirconium in deactivated form and also accomplish varying degrees of transuranic decontamination. Information collected into appendixes is (1) a collation of zirconium pyrophoricity data from the literature, (2) calculated radioactivity contents in Zircaloy cladding hulls from spent LWR fuels, and (3) results of a laboratory study on volatilization of zirconium from Zircaloy using HCl or Cl 2

  9. Transparent conductive zinc oxide basics and applications in thin film solar cells

    CERN Document Server

    Klein, Andreas; Rech, Bernd

    2008-01-01

    Zinc oxide (ZnO) belongs to the class of transparent conducting oxides which can be used as transparent electrodes in electronic devices or heated windows. In this book the material properties of, the deposition technologies for, and applications of zinc oxide in thin film solar cells are described in a comprehensive manner. Structural, morphological, optical and electronic properties of ZnO are treated in this review. The editors and authors of this book are specialists in deposition, analysis and fabrication of thin-film solar cells and especially of ZnO. This book is intended as an overview and a data collection for students, engineers and scientist.

  10. Strain-induced phenomenon in complex oxide thin films

    Science.gov (United States)

    Haislmaier, Ryan

    Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena. The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titanium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO 3 films, the critical effects of

  11. Thermoluminescent characterization of thin films of aluminium oxide submitted to beta and gamma radiation

    International Nuclear Information System (INIS)

    Villagran, E.; Escobar A, L.; Camps, E.; Gonzalez, P.R.; Martinez A, L.

    2002-01-01

    By mean of the laser ablation technique, thin films of aluminium oxide have been deposited on kapton substrates. These films present thermoluminescent response (Tl) when they are exposed to beta and gamma radiation. The brilliance curves show two peaks between 112 C and 180 C. A dose-response relationship study was realized and the Tl kinetic parameters were determined using the computerized deconvolution of the brilliance curve (CGCD). The thin films of aluminium oxide have potential applications as ultra.thin radiation dosemeters. (Author)

  12. Corrosion of zirconium alloys in alternating pH environment

    International Nuclear Information System (INIS)

    Mayer, P.; Manolescu, A.V.

    1985-01-01

    Behaviour of two commercial alloys, Zircaloy-2 and zirconium-2.5 wt% niobium were investigated in an environment of alternating pH. Corrosion advancement and scale morphology of coupons exposed to aqueous solution of LiOH (pH 10.2 and 14) were followed as a function of temperature (300-360 degreesC) and time (up to 165 days). The test sequence consisted of short term exposure to high pH and re-exposure to low pH solutions for extended period of time followed by a short term test in high pH. The results of these tests and detailed post-corrosion analysis indicate a fundamental difference between the corrosion behaviour of these two materials. Both alloys corrode fast in high pH environments, but only zirconium-2.5 wt% niobium continues to form detectable new oxide in low pH solution

  13. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  14. Altering properties of cerium oxide thin films by Rh doping

    International Nuclear Information System (INIS)

    Ševčíková, Klára; Nehasil, Václav; Vorokhta, Mykhailo; Haviar, Stanislav; Matolín, Vladimír

    2015-01-01

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO x thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO x thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce 4+ and Ce 3+ and rhodium occurs in two oxidation states, Rh 3+ and Rh n+ . We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO x thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO x thin films leads to preparing materials with different properties

  15. Zirconium ignition in exposed fuel channel

    Energy Technology Data Exchange (ETDEWEB)

    Elias, E., E-mail: merezra@technion.ac.il; Hasan, D.; Nekhamkin, Y.

    2015-05-15

    Highlights: • We demonstrate the idea of runaway zirconium–steam reactions in severe accidents in today's LWRs. • We predict the thermal-hydraulics conditions relevant to cladding oxidation in an exposed fuel channel of a partially uncovered core. • The Semenov theory of metal combustion is extended to define a criterion for runaway oxidation reaction in fuel cladding. - Abstract: A theoretical model based on simultaneous solution of the heat and mass transfer equations is developed for predicting the rate of thermo-chemical reaction between zirconium cladding and a hot steam environment. Ignition conditions relevant to cladding oxidation in an exposed fuel channel of a partially uncovered core are predicted based on the theory of metal combustion. A range of decay power, convective heat transfer coefficients, and initial temperatures leading to uncontrolled runaway cladding oxidation is identified. The model could be readily integrated as part of a fuel channel analysis code for predicting possible outcomes of different accident mitigation procedures in light water nuclear reactors under LOCA conditions.

  16. Zirconium behaviour in purex process solutions

    International Nuclear Information System (INIS)

    Shu, J.

    1982-01-01

    The extraction behaviour of zirconium, as fission product, in TBP/diluent- HNO 3 -H 2 O systems, simulating Purex solutions, is studied. The main purpose is to attain an increasing in the zirconium decontamination factor by adjusting the extraction parameters. Equilibrium diagram, TBP concentration, aqueous:organic ratio, salting-out effects and, uranium loading in the organic phase were the main factors studied. All these experiments had been made with zirconium in the 10 - 2 - 10 - 3 concentration range. The extractant degradation products influence uppon the zirconium behaviour was also verified. With the obtained data it was possible to introduce some modification in the standard Purex flow-sheet in order to obtain the uranium product with higher zirconium decontamination. (Author) [pt

  17. Effect of Zirconium Oxide and Zinc Oxide Nanoparticles on Physicochemical Properties and Antibiofilm Activity of a Calcium Silicate-Based Material

    Science.gov (United States)

    Guerreiro-Tanomaru, Juliane Maria; Trindade-Junior, Adinael; Cesar Costa, Bernardo; da Silva, Guilherme Ferreira; Drullis Cifali, Leonardo; Basso Bernardi, Maria Inês

    2014-01-01

    The aim of the present study was to evaluate the antibiofilm activity against Enterococcus faecalis, compressive strength. and radiopacity of Portland cement (PC) added to zirconium oxide (ZrO2), as radiopacifier, with or without nanoparticulated zinc oxide (ZnO). The following experimental materials were evaluated: PC, PC + ZrO2, PC + ZrO2 + ZnO (5%), and PC + ZrO2 + ZnO (10%). Antibiofilm activity was analyzed by using direct contact test (DCT) on Enterococcus faecalis biofilm, for 5 h or 15 h. The analysis was conducted by using the number of colony-forming units (CFU/mL). The compressive strength was performed in a mechanical testing machine. For the radiopacity tests, the specimens were radiographed together with an aluminium stepwedge. The results were submitted to ANOVA and Tukey tests, with level of significance at 5%. The results showed that all materials presented similar antibiofilm activity (P > 0.05). The addition of nanoparticulated ZnO decreased the compressive strength of PC. All materials presented higher radiopacity than pure PC. It can be concluded that the addition of ZrO2 and ZnO does not interfere with the antibiofilm activity and provides radiopacity to Portland cement. However, the presence of ZnO (5% or 10%) significantly decreased the compressive strength of the materials. PMID:25431798

  18. Nanostructured manganese oxide thin films as electrode material for supercapacitors

    Science.gov (United States)

    Xia, Hui; Lai, Man On; Lu, Li

    2011-01-01

    Electrochemical capacitors, also called supercapacitors, are alternative energy storage devices, particularly for applications requiring high power densities. Recently, manganese oxides have been extensively evaluated as electrode materials for supercapacitors due to their low cost, environmental benignity, and promising supercapacitive performance. In order to maximize the utilization of manganese oxides as the electrode material for the supercapacitors and improve their supercapacitive performance, the nanostructured manganese oxides have therefore been developed. This paper reviews the synthesis of the nanostructured manganese oxide thin films by different methods and the supercapacitive performance of different nanostructures.

  19. Oxidation of Zircaloy-4 in steam-nitrogen mixtures at 600–1200 °C

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrueck, Martin, E-mail: martin.steinbrueck@kit.edu; Oliveira da Silva, Fabio; Grosse, Mirco

    2017-07-15

    High-temperature oxidation of zirconium alloys in steam-nitrogen atmospheres may be relevant during various nuclear accident scenarios. Therefore, isothermal oxidation tests with Zircaloy-4 in steam-nitrogen mixtures have been performed at 600, 800, 1000, and 1200 °C using thermogravimetry. The gas compositions were varied between 0 and 100 vol% nitrogen including 0.1 and 90 vol%. The strong effect of nitrogen on the oxidation kinetics of zirconium alloys was confirmed in these tests in mixed steam-nitrogen atmospheres. Even very low concentrations of nitrogen (starting from less than 1 vol%) strongly increase reaction kinetics. Nitrogen reduces transition time from protective to non-protective oxide scale (breakaway). The formation of zirconium nitride, ZrN, and its re-oxidation is the main reason for the highly porous oxide scales after transition. The results of this study have shown the safety relevant role of nitrogen during severe accidents and, more generally, suggest the need of using well controlled gas atmospheres for experiments on oxidation of zirconium alloys.

  20. Anisotropy of mechanical properties of zirconium and zirconium alloys

    International Nuclear Information System (INIS)

    Medrano, R.E.

    1975-01-01

    In studies of technological applications of zirconium to fuel elements of nuclear reactor, it was found that the use of plasticity equations for isotropic materials is not in agreement with experimental results, because of the strong anisotropy of zirconium. The present review describes recent progress on the knowledge of the influence of anisotropy on mechanical properties, after Douglass' review in 1971. The review was written to be selfconsistent, changing drastically the presentation of some of the referenced papers. It is also suggested some particular experiments to improve developments in this area

  1. Co-sputtered ZnO:Si thin films as transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Faure, C. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France); Clatot, J. [LRCS, 33 Rue St Leu, F-80039 Amiens (France); Teule-Gay, L.; Campet, G. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France); Labrugere, C. [CeCaMA, Universite de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac, F-33608 (France); Nistor, M. [National Institute for Lasers, Plasmas and Radiation Physics, L22, PO Box MG-36, 77125 Bucharest-Magurele (Romania); Rougier, A., E-mail: rougier@icmcb-bordeaux.cnrs.fr [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France)

    2012-12-01

    Silicon doped Zinc Oxide thin films, so-called SZO, were deposited at room temperature on glass and plastic substrates by co-sputtering of ZnO and SiO{sub 2} targets. The influence of the SiO{sub 2} target power supply (from 30 to 75 W) on the SZO thin film composition and crystallinity is discussed. Si/Zn atomic ratio, determined by X-ray microprobe, increases from 1.2 to 8.2 at.%. For Si/Zn ratio equal and lower than 3.9%, SZO (S{sub 3.9}ZO) thin films exhibit the Wurzite structure with the (0 0 2) preferred orientation. Larger Si content leads to a decrease in crystallinity. With Si addition, the resistivity decreases down to 3.5 Multiplication-Sign 10{sup -3} Ohm-Sign {center_dot}cm for SZO thin film containing 3.9 at.% of Si prior to an increase. The mean transmittance of S{sub 3.9}ZO thin film on glass substrate approaches 80% (it is about 90% for the film itself) in the visible range (from 400 to 750 nm). Co-sputtered SZO thin films are suitable candidates for large area transparent conductive oxides. - Highlights: Black-Right-Pointing-Pointer Si doped ZnO thin films by co-sputtering of ZnO and SiO{sub 2} targets. Black-Right-Pointing-Pointer Minimum of resistivity for Si doped ZnO thin films containing 3.9% of Si. Black-Right-Pointing-Pointer Si and O environments by X-ray Photoelectron Spectroscopy.

  2. Components made of corrosion-resistent zirconium alloy and method for its production

    International Nuclear Information System (INIS)

    Hanneman, R.E.; Urquhart, A.W.; Vermilyea, D.A.

    1977-01-01

    The invention deals with a method to increase the resistance of zirconium alloys to blister corrosion which mainly occurs in boiling-water nuclear reactors. According to the method described, the surface of the alloy body is coated with a thin film of a suitable electronically conducting material. Gold, silver, platinum, nickel, chromium, iron and niobium are suitable as coating materials. The invention is more closely explained by means of examples. (GSC) [de

  3. Monochloro non-bridged half-metallocene-type zirconium complexes containing phosphine oxide-(thio)phenolate chelating ligands as efficient ethylene polymerization catalysts.

    Science.gov (United States)

    Tang, Xiao-Yan; Wang, Yong-Xia; Liu, San-Rong; Liu, Jing-Yu; Li, Yue-Sheng

    2013-01-14

    A series of novel monochloro half-zirconocene complexes containing phosphine oxide-(thio)phenolate chelating ligands of the type, ClCp'Zr[X-2-R(1)-4-R(2)-6-(Ph(2)P=O)C(6)H(2)](2) (Cp' = C(5)H(5), 2a: X = O, R(1) = Ph, R(2) = H; 2b: X = O, R(1) = F, R(2) = H; 2c: X = O, R(1) = (t)Bu, R(2) = H; 2d: X = O, R(1) = R(2) = (t)Bu; 2e: X = O, R(1) = SiMe(3), R(2) = H; 2f: X = S, R(1) = SiMe(3), R(2) = H; Cp' = C(5)Me(5), 2g: X = O, R(1) = SiMe(3), R(2) = H), have been synthesized in high yields. These complexes were identified by (1)H {(13)C} NMR and elemental analyses. Structures for 2b, 2c and 2f were further confirmed by X-ray crystallography. Structural characterization of these complexes reveals crowded environments around the zirconium. Complexes 2b and 2c adopt six-coordinate, distorted octahedral geometry around the zirconium center, in which the equatorial positions are occupied by three oxygen atoms of two chelating phosphine oxide-bridged phenolate ligands and a chlorine atom. The cyclopentadienyl ring and one oxygen atom of the ligand are coordinated on the axial position. Complex 2f also folds a six-coordinate, distorted octahedral geometry around the Zr center, consisting of a Cp-Zr-O (in P=O) axis [177.16°] and a distorted plane of two sulfur atoms and one oxygen atom of two chelating phosphine oxide-bridged thiophenolate ligands as well as a chlorine atom. When activated by modified methylaluminoxane (MMAO), all the complexes exhibited high activities towards ethylene polymerization at high temperature (75 °C), giving high molecular weight polymers with unimodal molecular weight distribution. The formation of 14-electron, cationic metal alkyl species might come from the Zr-O (in phenol ring) bond cleavage based on the DFT calculations study.

  4. Modification of structural phase state in superficial layers of fuel tubes made of Zirconium alloys

    International Nuclear Information System (INIS)

    Volkov, N.; Kalin, B.; Pimenov, Y.; Timoshin, S.

    2011-01-01

    The paper presents the results obtained in developing the method for introduction of the required changes into states and properties of outer surface on fuel rod cladding made of zirconium alloys E110 and E635 through irradiation by radial Ar + ion beam with a broad energy spectrum. In particular, the paper demonstrates that ion beam treatment of the claddings surface, at the final stage of their fabrication, can upgrade substantially quality of outer tubular surface after mechanical polishing (the cleaner surface, the lower roughness, removal of technological transversal scratches). In addition, the ion beam irradiation results in higher micro-hardness of the modified layer and in better tribological parameters. Kinetic effects in growth of oxide films were studied for the tubular samples of zirconium alloys after ion-beam treatment (cleaning and polishing by radial Ar + ion beam). Also, corrosion tests of the tubular samples were carried out in water (at 350 0 C) and steam (at 350, 375 and 400 0 C) with duration up to 3000 hours. It was revealed that oxide layer consisting mainly of zirconium dioxide in monoclinic modification was formed on tubular surface after oxidation at 3500 0 C in water or steam. The oxidizing process in the pressurized steam created thicker oxide layer on tubular surface than that in the pressurized water. Experimental data were used to determine optimal conditions for ion-beam treatment of outer fuel tube surface. The tubular samples with the following geometrical parameters were investigated: length - up to 500 mm, diameter - 9,15 mm. Optimal regimes for ion-beam cleaning and polishing of the tubular samples were studied up to the process rate of 1 meter per minute. Within the frames of linear approximation, analytical relationships were derived for time dependent growth of oxide films and used to evaluate thickness of oxide film under test conditions (duration . up to 10000 hours). Thickness of oxide films can cover the range from 6

  5. Thermal oxidation of Ni films for p-type thin-film transistors

    KAUST Repository

    Jiang, Jie; Wang, Xinghui; Zhang, Qing; Li, Jingqi; Zhang, Xixiang

    2013-01-01

    p-Type nanocrystal NiO-based thin-film transistors (TFTs) are fabricated by simply oxidizing thin Ni films at temperatures as low as 400 °C. The highest field-effect mobility in a linear region and the current on-off ratio are found to be 5.2 cm2 V-1 s-1 and 2.2 × 103, respectively. X-ray diffraction, transmission electron microscopy and electrical performances of the TFTs with "top contact" and "bottom contact" channels suggest that the upper parts of the Ni films are clearly oxidized. In contrast, the lower parts in contact with the gate dielectric are partially oxidized to form a quasi-discontinuous Ni layer, which does not fully shield the gate electric field, but still conduct the source and drain current. This simple method for producing p-type TFTs may be promising for the next-generation oxide-based electronic applications. © 2013 the Owner Societies.

  6. New solvent extraction process for zirconium and hafnium

    International Nuclear Information System (INIS)

    Takahashi, M.; Katoh, Y.; Miyazaki, H.

    1984-01-01

    The authors' company developed a new solvent extraction process for zirconium and hafnium separation, and started production of zirconium sponge by this new process in September 1979. The process utilizes selective extraction of zirconium oxysulfate using high-molecular alkyl amine, and has the following advantages: 1. This extraction system has a separation factor as high as 10 to 20 for zirconium and hafnium in the range of suitable acid concentration. 2. In the scrubbing section, removal of all the hafnium that coexists with zirconium in the organic solvent can be effectively accomplished by using scrubbing solution containing hafnium-free zirconium sulfate. Consequently, hafnium in the zirconium sponge obtained is reduced to less than 50 ppm. 3. The extractant undergoes no chemical changes but is very stable for a long period. In particular, its solubility in water is small, about 20 ppm maximum, posing no environmental pollution problems such as are often caused by other process raffinates. At the present time, the zirconium and hafnium separation operation is very stable, and zirconium sponge made by this process can be applied satisfactorily to nuclear reactors

  7. Chemistry, spectroscopy and isotope separation of zirconium and its compounds as revealed by laser diagnostics of laser produced metal beams

    International Nuclear Information System (INIS)

    Hackett, P.A.; Humphries, M.; Rayner, D.M.; Bourne, O.L.; Mitchell, A.

    1986-01-01

    Recent work from the author's laboratory on zirconium beams is reviewed. Zirconium metal beams have been produced by laser vaporization of solid zirconium targets coupled with supersonic expansion of helium gas. The resultant supersonic metal beam is shown to present an ideal environment for various spectroscopic techniques. The state distribution of zirconium atoms in the beam is obtained from low resolution laser induced fluorescence (LIF) studies. High resolution LIF studies give information on the hyperfine splitting in the ground state of the zirconium-91 isotope. Information on the hyperfine splitting in the excited state is obtained from quantum beat spectroscopy. Low resolution 2 color multiphoton ionization spectroscopy using a XeCl laser allows isotope separation of all isotopes of zirconium. These metal beams are highly reactive and can be used to produce novel chemical species. The results of two studies in which a reactant is added to the expansion gas are reported here. Zirconium oxide (ZrO), a molecule observed in the emission spectra of cool stars and in laboratory studies at high temperatures, is produced in a low temperature, collision free environment by adding small quantities of oxygen to the expansion gas. Zirconium fluoride (ZrF), a molecule previously unobserved, is produced by the addition of small quantities of CF/sub 4/

  8. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    International Nuclear Information System (INIS)

    Krockenberger, Y.

    2006-01-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  9. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Krockenberger, Y.

    2006-07-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  10. Morphology selection for cupric oxide thin films by electrodeposition.

    Science.gov (United States)

    Dhanasekaran, V; Mahalingam, T; Chandramohan, R

    2011-10-01

    Polycrystalline cupric oxide thin films were deposited using alkaline solution bath employing cathodic electrodeposition method. The thin films were electrodeposited at various solution pH. The surface morphology and elemental analyzes of the films were studied using scanning electron microscopy (SEM) and energy dispersive X-ray analysis, respectively. SEM studies revealed that the surface morphology could be tailored suitably by adjusting the pH value during deposition. Mesh average on multiple lattice mode atomic force microscopy image was obtained and reported. Copyright © 2011 Wiley-Liss, Inc.

  11. Creep behavior under internal pressure of zirconium alloy cladding oxidized in steam at high temperature

    International Nuclear Information System (INIS)

    Chosson, Raphael

    2014-01-01

    During hypothetical Loss-Of-Coolant-Accident (LOCA) scenarios, zirconium alloy fuel cladding tubes creep under internal pressure and are oxidized on their outer surface at high temperature (HT). Claddings become stratified materials: zirconia and oxygen-stabilized α phase, called α(O), are formed on the outer surface of the cladding whereas the inner part remains in the β domain. The strengthening effect of oxidation on the cladding creep behavior under internal pressure has been highlighted at HT. In order to model this effect, the creep behavior of each layer had to be determined. This study focused on the characterization of the creep behavior of the α(O) phase at HT, through axial creep tests performed under vacuum on model materials, containing from 2 to 7 wt.% of oxygen and representative of the α(O) phase. For the first time, two creep flow regimes have been observed in this phase. Underlying physical mechanisms and relevant microstructural parameters have been discussed for each regime. The strengthening effect due to oxygen on the α(O) phase creep behavior at HT has been quantified and creep flow equations have been identified. A ductile to brittle transition criterion has been also suggested as a function of temperature and oxygen content. Relevance of the creep flow equations for each layer, identified in this study or from the literature, has been discussed. Then, a finite element model, describing the oxidized cladding as a stratified material, has been built. Based on this model, a fraction of the experimental strengthening during creep is predicted. (author) [fr

  12. Fine-grained zirconium-base material

    Science.gov (United States)

    Van Houten, G.R.

    1974-01-01

    A method is described for making zirconium with inhibited grain growth characteristics, by the process of vacuum melting the zirconium, adding 0.3 to 0.5% carbon, stirring, homogenizing, and cooling. (Official Gazette)

  13. Microhardness and microplasticity of zirconium nitride

    International Nuclear Information System (INIS)

    Neshpor, V.S.; Eron'yan, M.A.; Petrov, A.N.; Kravchik, A.E.

    1978-01-01

    To experimentally check the concentration dependence of microhardness of 4 group nitrides, microhardness of zirconium nitride compact samples was measured. The samples were obtained either by bulk saturation of zirconium iodide plates or by chemical precipitation from gas. As nitrogen content decreased within the limits of homogeneity of zirconium nitride samples where the concentration of admixed oxygen was low, the microhardness grew from 1500+-100 kg/mm 2 for ZrNsub(1.0) to 27000+-100 kg/mm 2 for ZrNsub(0.78). Microplasticity of zirconium nitride (resistance to fracture) decreased, as the concentration of nitrogen vacancies was growing

  14. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    Science.gov (United States)

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  15. Zirconium

    Science.gov (United States)

    Bedinger, G.M.

    2013-01-01

    Zirconium is the 20th most abundant element in the Earth’s crust. It occurs in a variety of rock types and geologic environments but most often in igneous rocks in the form of zircon (ZrSiO4). Zircon is recovered as a coproduct of the mining and processing of heavy mineral sands for the titanium minerals ilmenite and rutile. The sands are formed by the weathering and erosion of rock containing zircon and titanium heavy minerals and their subsequent concentration in sedimentary systems, particularly in coastal environments. A small quantity of zirconium, less than 10 kt/a (11,000 stpy), compared with total world production of 1.4 Mt (1.5 million st) in 2012, was derived from the mineral baddeleyite (ZrO2), produced from a single source in Kovdor, Russia.

  16. Evaluation of steam corrosion and water quenching behavior of zirconium-silicide coated LWR fuel claddings

    Science.gov (United States)

    Yeom, Hwasung; Lockhart, Cody; Mariani, Robert; Xu, Peng; Corradini, Michael; Sridharan, Kumar

    2018-02-01

    This study investigates steam corrosion of bulk ZrSi2, pure Si, and zirconium-silicide coatings as well as water quenching behavior of ZrSi2 coatings to evaluate its feasibility as a potential accident-tolerant fuel cladding coating material in light water nuclear reactor. The ZrSi2 coating and Zr2Si-ZrSi2 coating were deposited on Zircaloy-4 flats, SiC flats, and cylindrical Zircaloy-4 rodlets using magnetron sputter deposition. Bulk ZrSi2 and pure Si samples showed weight loss after the corrosion test in pure steam at 400 °C and 10.3 MPa for 72 h. Silicon depletion on the ZrSi2 surface during the steam test was related to the surface recession observed in the silicon samples. ZrSi2 coating (∼3.9 μm) pre-oxidized in 700 °C air prevented substrate oxidation but thin porous ZrO2 formed on the coating. The only condition which achieved complete silicon immobilization in the oxide scale in aqueous environments was the formation of ZrSiO4 via ZrSi2 coating oxidation in 1400 °C air. In addition, ZrSi2 coatings were beneficial in enhancing quenching heat transfer - the minimum film boiling temperature increased by 6-8% in the three different environmental conditions tested. During repeated thermal cycles (water quenching from 700 °C to 85 °C for 20 s) performed as a part of quench tests, no spallation and cracking was observed and the coating prevented oxidation of the underlying Zircaloy-4 substrate.

  17. High-temperature oxidation of Zircaloy-2 and Zircaloy-4 in steam

    International Nuclear Information System (INIS)

    Urbanic, V.F.; Heidrick, T.R.

    1978-01-01

    At temperatures above the (α + β)/β transformation temperature for zirconium alloys, steam reacts with β-Zr to form a superficial layer of zirconium oxide (ZrO 2 ) and an intermediate layer of oxygen-stabilized α-Zr. Reaction kinetics and the rate of growth of the combined (ZrO 2 + α-Zr) layer for Zircaloy-2 and Zircaloy-4 oxidation in steam were measured over the temperature range 1050-1850 o C. The reaction rates for both alloys were similar, obeyed parabolic kinetics and were not limited by gas phase diffusion. The parabolic rate constants were consistently less than those given by the Baker and Just correlation for zirconium oxidation in steam. A discontinuity was found in the temperature dependence of both the reaction rate and the rate of growth of the combined (ZrO 2 + α-Zr) layer. The discontinuity is attributed to a change in the oxide microstructure at the discontinuity temperature, an observation which is consistent with the zirconium-oxygen phase diagram. (author)

  18. Analysis of the deconvolution of the thermoluminescent curve of the zirconium oxide doped with graphite; Analisis de la deconvolucion de la curva termoluminiscente del oxido de zirconio dopado con grafito

    Energy Technology Data Exchange (ETDEWEB)

    Salas C, P. [IMP, 07000 Mexico D.F. (Mexico); Estrada G, R. [Depto. de Fisica y Matematicas, UIA, Unidad Stanta Fe, 01000 Mexico D.F. (Mexico); Gonzalez M, P.R.; Mendoza A, D. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2003-07-01

    In this work, we present a mathematical analysis of the behavior of the thermoluminescent curve (Tl) induced by gamma radiation in samples made of zirconium oxide doped with different amounts of graphite. In accordance with the results gamma radiation induces a Tl curve with two maximum of emission localized in the temperatures at 139 and 250 C, the area under the curve is increasing as a function of the time of exposition to the radiation. The analysis of curve deconvolution, in accordance with the theory which indicates that this behavior must be obey a Boltzmann distribution, we found that each one of them has a different growth velocity as the time of exposition increase. In the same way, we observed that after the irradiation was suspended each one of the maximum decrease with different velocity. The behaviour observed in the samples is very interesting because the zirconium oxide has attracted the interest of many research groups, this material has demonstrated to have many applications in thermoluminescent dosimetry and it can be used in the quantification of radiation. (Author)

  19. Vanadium oxide thin films deposited on silicon dioxide buffer layers by magnetron sputtering

    International Nuclear Information System (INIS)

    Chen Sihai; Ma Hong; Wang Shuangbao; Shen Nan; Xiao Jing; Zhou Hao; Zhao Xiaomei; Li Yi; Yi Xinjian

    2006-01-01

    Thin films made by vanadium oxide have been obtained by direct current magnetron sputtering method on SiO 2 buffer layers. A detailed electrical and structural characterization has been performed on the deposited films by four-point probe method and scanning electron microscopy (SEM). At room temperature, the four-point probe measurement result presents the resistance of the film to be 25 kU/sheet. The temperature coefficient of resistance is - 2.0%/K. SEM image indicates that the vanadium oxide exhibits a submicrostructure with lamella size ranging from 60 nm to 300 nm. A 32 x 32-element test microbolometer was fabricated based on the deposited thin film. The infrared response testing showed that the response was 200 mV. The obtained results allow us to conclude that the vanadium oxide thin films on SiO 2 buffer layers is suitable for uncooled focal plane arrays applications

  20. Study of thin metal films and oxide materials for nanoelectronics applications

    OpenAIRE

    De Los Santos Valladares, Luis

    2012-01-01

    Appendix A Pages 132-134 have been removed from this online version of the thesis for publisher copyright reasons. These had contained page images from the cover of Nanotechnology, Vol. 21, Nov 2010 and its corresponding web alert Different types of thin metal films and oxide materials are studied for their potential application in nanoelectronics: gold and copper films, nickel nanoelectrodes, oxide nanograin superconductors, carboxyl ferromagnetic microspheres and graphene oxide...

  1. Solvent extraction of zirconium

    International Nuclear Information System (INIS)

    Kim, S.S.; Yoon, J.H.

    1981-01-01

    The extraction of zirconium(VI) from an aqueous solution of constant ionic strength with versatic acid-10 dissolved in benzen was studied as a function of pH and the concentration of zirconium(VI) and organic acid. The effects of sulphate and chlorine ions on the extraction of the zirconium(VI) were briefly examined. It was revealed that (ZrOR 2 .2RH) is the predominant species of extracted zirconium(VI) in the versatic acid-10. The chemical equation and the apparent equilibrium constants thereof have been determined as follows. (ZrOsup(2+))aq+ 2(R 2 H 2 )sub(org) = (ZrOR 2 .2RH)sub(org)+2(H + )aq Ksub(Zr) = (ZrOR 2 .2RH)sub(org)(H + ) 2 /(ZrOsup(2+))sub(aq)(R 2 H 2 )sup(2)sub(org) = 3.3 x 10 -7 . The synergistic effects of TBP and D2EHPA were also studied. In the mixed solvent with 0.1M TBP, the synergistic effect was observed, while the mixed solvent with D2EHPA showed the antisynergistic effect. (Author)

  2. Effect of oxide additives on radiolytic decomposition of zirconium and thorium nitrates

    International Nuclear Information System (INIS)

    Joshi, N.G.; Garg, A.N.; Natarajan, V.; Sastry, M.D.

    1996-01-01

    Gamma ray-induced decomposition of the binary mixtures of zirconium and thorium nitrates with 2.5, 5 and 10 mol% of V 2 O 5 , PbO, ThO 2 , ZrO 2 , and MnO 2 has been studied at different doses up to 260 kGy. Radiation chemical yield G(NO 2 - )-values are enhanced by V 2 O 5 , PbO, and ThO 2 but are decreased by ZrO 2 and MnO 2 . The effect of radiation dose on the G(NO 2 - ) values of the binary mixtures of zirconium nitrate with 10 mol% of As 2 O 3 , CuO, MgO, MoO 3 , PbO, ZnO, V 2 O 5 , ThO 2 , MnO 2 and ZrO 2 has been studied. ESR and TL measurements suggest the formation of radical species which interact with the damage entities to enhance or retard the decomposition of the nitrates. A possible mechanism based on the interaction of radical species has been suggested. (Author)

  3. Zirconium titanate thin film prepared by surface sol-gel process and effects of thickness on dielectric property

    CERN Document Server

    Kim, C H

    2002-01-01

    Single phase of multicomponent oxide ZrTiO sub 4 film could be prepared through surface sol-gel route simply by coating the mixture of 100mM zirconium butoxide and titanium butoxide on Pt/Ti/SiO sub 2 /Si(100) substrate, following pyrolysis at 450 .deg. C, and annealing it at 770 .deg. C. The dielectric constant of the film was reduced as the film thickness decreased due to of the interfacial effects caused by layer/electrode and a few voids inside the multilayer. However, the dielectric property was independent of applied dc bias sweeps voltage (-2 to +2 V). The dielectric constant of bulk film, 31.9, estimated using series-connected capacitor model was independent of film thickness and frequency in the measurement range, but theoretical interfacial thickness, t sub i , was dependent on the frequency. It reached a saturated t sub i value, 6.9 A, at high frequency by extraction of some capacitance component formed at low frequency range. The dielectric constant of bulk ZrTiO sub 4 pellet-shaped material was 3...

  4. The behaviour of zirconium alloys in Santowax OM organic coolant at high temperatures

    International Nuclear Information System (INIS)

    Sawatzky, A.

    1964-10-01

    Zirconium alloys have been exposed to Santowax OM at temperatures of 320 to 400 o C for times as long as 5000 hours. Short-term experiments (less than 2 weeks) were done in stainless-steel bombs and small out-of-pile loops. The X-7 organic loop in the NRX reactor was used to study long-term oxidation and hydriding both in-flux and out-of-flux. The results obtained lead to several tentative conclusions: Aluminum cladding serves as an effective hydrogen barrier; Considerable protection against hydriding is given by zirconium oxide, provided impurities in the organic are carefully controlled; Hydriding is greatly enhanced by the presence of chlorine in the coolant; and, Hydriding is somewhat enhanced by neutron irradiation. Of considerable significance is the fact that a Zircaloy-4 in-reactor test section of the X-7 loop was exposed to Santowax OM at 320 to 400 o C for more than 5000 hours without excessive hydriding. (author)

  5. Analyzing nitrogen concentration using carrier illumination (CI) technology for DPN ultra-thin gate oxide

    International Nuclear Information System (INIS)

    Li, W.S.; Wu, Bill; Fan, Aki; Kuo, C.W.; Segovia, M.; Kek, H.A.

    2005-01-01

    Nitrogen concentration in the gate oxide plays a key role for 90 nm and below ULSI technology. Techniques like secondary ionization mass spectroscopy (SIMS) and X-ray photoelectron spectroscopy (XPS) are commonly used for understanding N concentration. This paper describes the application of the carrier illuminationTM (CI) technique to measure the nitrogen concentration in ultra-thin gate oxides. A set of ultra-thin gate oxide wafers with different DPN (decoupled plasma nitridation) treatment conditions were measured using the CI technique. The CI signal has excellent correlation with the N concentration as measured by XPS

  6. Purification of zirconium concentrates

    International Nuclear Information System (INIS)

    Brown, A.E.P.

    1976-01-01

    A commercial grade ZrO 2 and an ammonium uranate (yellow cake) are obtained from the caldasito ore processing. This ore is found in the Pocos de Caldas Plateau, State of Minas Gerais, Brazil. Caldasito is an uranigerous zirconium ore, a mixture of zircon and baddeleyite and contains 60% ZrO 2 and 0,3% U 3 O 8 . The chemical opening of the ore was made by alkaline fusion with NaOH at controlled temperature. The zirconium-uranium separation took place by a continuous liquid-liquid extraction in TBP-varsol-HNO 3 -H 2 O system. The raffinate containing zirconium + impurities (aluminium, iron and titanium) was purified by an ion exchange operation using a strong cationic resin [pt

  7. Determination of zirconium by fluoride ion selective electrode

    International Nuclear Information System (INIS)

    Mahanty, B.N.; Sonar, V.R.; Gaikwad, R.; Raul, S.; Das, D.K.; Prakash, A.; Afzal, Md.; Panakkal, J.P.

    2010-01-01

    Full text: Zirconium is used in a wide range of applications including nuclear clad, catalytic converters, surgical appliances, metallurgical furnaces, superconductors, ceramics, lamp filaments, anti corrosive alloys and photographical purposes. Irradiation testing of U-Zr and U-Pu-Zr fuel pins has also demonstrated their feasibility as fuel in liquid metal reactors. Different methods that are employed for the determination of zirconium are spectrophotometry, potentiometry, neutron activation analysis and mass spectrometry. Ion-selective electrode (ISE), selective to zirconium ion has been studied for the direct potentiometric measurements of zirconium ions in various samples. In the present work, an indirect method has been employed for the determination of zirconium in zirconium nitrate sample using fluoride ion selective electrode. This method is based on the addition of known excess amount of fluoride ion to react with the zirconium ion to produce zirconium tetra fluoride at about pH 2-3, followed by determination of residual fluoride ion selective electrode. The residual fluoride ion concentrations were determined from the electrode potential data using calibration plot. Subsequently, zirconium ion concentrations were determined from the concentration of consumed fluoride ions. A precision of about 2% (RSD) with the mean recovery of more than 94% has been achieved for the determination of zirconium at the concentration of 4.40 X 10 -3 moles lit -1

  8. Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

    Science.gov (United States)

    Aziz, Md. Abdul; Shanmugam, Sangaraju

    2017-01-01

    A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm-1) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 × 10-9 cm2 min-1) and superior ion selectivity (2.95 × 107 S min cm-3). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm-2 current density.

  9. Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2018-02-01

    Full Text Available Zinc oxide (ZnO thin films have been widely investigated due to their multifunctional properties, i.e., catalytic, semiconducting and optical. They have found practical use in a wide number of application fields. However, the presence of a compact micro/nanostructure has often limited the resulting material properties. Moreover, with the advent of low-dimensional ZnO nanostructures featuring unique physical and chemical properties, the interest in studying ZnO thin films diminished more and more. Therefore, the possibility to combine at the same time the advantages of thin-film based synthesis technologies together with a high surface area and a porous structure might represent a powerful solution to prepare ZnO thin films with unprecedented physical and chemical characteristics that may find use in novel application fields. Within this scope, this review offers an overview on the most successful synthesis methods that are able to produce ZnO thin films with both framework and textural porosities. Moreover, we discuss the related applications, mainly focused on photocatalytic degradation of dyes, gas sensor fabrication and photoanodes for dye-sensitized solar cells.

  10. Thermofluency in zirconium alloys

    International Nuclear Information System (INIS)

    Orozco M, E.A.

    1976-01-01

    A summary is presented about the theoretical and experimental results obtained at present in thermofluency under radiation in zirconium alloys. The phenomenon of thermofluency is presented in a general form, underlining the thermofluency at high temperature because this phenomenon is similar to the thermofluency under radiation, which ocurrs in zirconium alloys into the operating reactor. (author)

  11. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  12. Quantitative analysis of nickel in zirconium and zircaloy; Dosage du nickel dans le zirconium et dans le zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Rastoix, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    A rapid spectrophotometric has been developed for determination of 10 to 1000 ppm of Ni in zirconium and zircaloy using dimethylglyoxime. Iron, copper, tin and chromium, do not interfere at the concentration usually present in zirconium and its alloys. (author) [French] On determine colorimetriquenent 10 a 1000 ppm de Ni dans le zirconium et le zircaloy par photo colorimetrie a 440 m{mu} de la dimethylglyoxime nickelique. Le dosage est rapide. Le fer, le cuivre, l'etain, le chrome ne genent pas aux concentrations habituellement rencontrees dans le zirconium et ses alliages. (auteur)

  13. 40 CFR 721.9973 - Zirconium dichlorides (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Zirconium dichlorides (generic). 721... Substances § 721.9973 Zirconium dichlorides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as zirconium dichlorides (PMNs P...

  14. Molten salt scrubbing of zirconium or hafnium tetrachloride

    International Nuclear Information System (INIS)

    Lee, E.D.; McLaughlin, D.F.

    1990-01-01

    This patent describes a continuous process for removing impurities of iron or aluminum chloride or both from vaporous zirconium or hafnium chloride or both. It comprises: introducing impure zirconium or hafnium chloride vapor or both into a middle portion of an absorbing column containing a molten salt phase, the molten salt phase absorbing the impurities of iron or aluminum chloride or both to produce chloride vapor stripped of zirconium or hafnium chloride; introducing sodium or potassium chloride or both into a top portion of the column; controlling the top portion of the column to between 300--375 degrees C.; heating a bottom portion of the column to 450--550 degrees C. To vaporize zirconium chloride or hafnium chloride or hafnium and zirconium chloride from the molten salt; withdrawing molten salt substantially free of zirconium and hafnium chloride from the bottom portion of the column; and withdrawing zirconium chloride or hafnium chloride or hafnium and zirconium chloride vapor substantially free of impurities of iron and aluminum chloride from the top of the column

  15. Hip Dislocation Increases Roughness of Oxidized Zirconium Femoral Heads in Total Hip Arthroplasty: An Analysis of 59 Retrievals

    Science.gov (United States)

    Moussa, Mohamed E.; Esposito, Christina I.; Elpers, Marcella E.; Wright, Timothy M.; Padgett, Douglas E.

    2014-01-01

    The aims of this study were to assess damage on the surface of retrieved oxidized zirconium metal (OxZr) femoral heads, to measure surface roughness of scratches, and to evaluate the extent of surface effacement using scanning electron microscopy (SEM). Ceramic zirconia-toughened alumina (ZTA) heads were analyzed for comparison. OxZr femoral heads explanted for recurrent dislocation had the most severe damage (p<0.001). The median surface roughness of damaged OxZr femoral heads was 1.49μm, compared to 0.084μm for damaged ZTA heads and 0.052μm for undamaged OxZr (p<0.001). This may be of clinical concern because increased surface roughness has the potential to increase the wear of polyethylene liners articulating against these OxZr heads in THA. PMID:25443362

  16. Advances in zirconium technology for nuclear reactor application

    International Nuclear Information System (INIS)

    Ganguly, C.

    2002-01-01

    Zirconium alloys are extensively used as a material for cladding nuclear fuels and for making core structurals of water-cooled nuclear power reactors all over the world for generation of nearly 16 percent of the worlds electricity. Only four countries in the world, namely France, USA, Russia and India, have large zirconium industry and capability to manufacture reactor grade zirconium sponge, a number of zirconium alloys and a wide variety of structural components for water cooled nuclear reactor. The present paper summarises the status of zirconium technology and highlights the achievement of Nuclear Fuel Complex during the last ten years in developing a wide variety of zirconium alloys and components for water-cooled nuclear power programme

  17. The origin of local strain in highly epitaxial oxide thin films.

    Science.gov (United States)

    Ma, Chunrui; Liu, Ming; Chen, Chonglin; Lin, Yuan; Li, Yanrong; Horwitz, J S; Jiang, Jiechao; Meletis, E I; Zhang, Qingyu

    2013-10-31

    The ability to control the microstructures and physical properties of hetero-epitaxial functional oxide thin films and artificial structures is a long-sought goal in functional materials research. Normally, only the lattice misfit between the film and the substrate is considered to govern the physical properties of the epitaxial films. In fact, the mismatch of film unit cell arrangement and the Surface-Step-Terrace (SST) dimension of the substrate, named as "SST residual matching", is another key factor that significantly influence the properties of the epitaxial film. The nature of strong local strain induced from both lattice mismatch and the SST residual matching on ferroelectric (Ba,Sr)TiO3 and ferromagnetic (La,Ca)MnO3 thin films are systematically investigated and it is demonstrated that this combined effect has a dramatic impact on the physical properties of highly epitaxial oxide thin films. A giant anomalous magnetoresistance effect (~10(10)) was achieved from the as-designed vicinal surfaces.

  18. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    OpenAIRE

    Ruijin Hong; Jialin Ji; Chunxian Tao; Daohua Zhang; Dawei Zhang

    2017-01-01

    Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO) and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD), optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B ...

  19. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Quesnel, David J. [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the

  20. Cathodic arc sputtering of functional titanium oxide thin films, demonstrating resistive switching

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Petr, E-mail: pshvets@innopark.kantiana.ru; Maksimova, Ksenia; Demin, Maxim; Dikaya, Olga; Goikhman, Alexander

    2017-05-15

    The formation of thin films of the different stable and metastable titanium oxide phases is demonstrated by cathode arc sputtering of a titanium target in an oxygen atmosphere. We also show that sputtering of titanium in vacuum yields the formation of titanium silicides on the silicon substrate. The crystal structure of the produced samples was investigated using Raman spectroscopy and X-ray diffraction. We conclude that cathode arc sputtering is a flexible method suitable for producing the functional films for electronic applications. The functionality is verified by the memory effect demonstration, based on the resistive switching in the titanium oxide thin film structure.

  1. Ellipsometric investigations of pyrolytically deposited thin indium oxide films

    International Nuclear Information System (INIS)

    Winkler, U.

    1980-01-01

    Ellipsometric measurements have been carried out of thin indium oxide films deposited pyrolytically on glass substrates. It was found that the roughness of the films affected the measuring results. Therefore, only after applying a two-layer model a reasonable interpretation of the measuring results became possible

  2. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José ; Burriel, Mó nica

    2010-01-01

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation

  3. Strengthening and elongation mechanism of Lanthanum-doped Titanium-Zirconium-Molybdenum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ping, E-mail: huping1985@126.com [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Jinduicheng Molybdenum Co., Ltd., Xi’an 710068 (China); Hu, Bo-liang; Wang, Kuai-she; Song, Rui; Yang, Fan [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Yu, Zhi-tao [Ruifulai Tungsten & Molybdenum Co., Ltd., Xi’an 721914 (China); Tan, Jiang-fei [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Cao, Wei-cheng; Liu, Dong-xin; An, Geng [Jinduicheng Molybdenum Co., Ltd., Xi’an 710068 (China); Guo, Lei [Ruifulai Tungsten & Molybdenum Co., Ltd., Xi’an 721914 (China); Yu, Hai-liang [School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, NSW 2522 (Australia)

    2016-12-15

    The microstructural contributes to understand the strengthening and elongation mechanism in Lanthanum-doped Titanium-Zirconium-Molybdenum alloy. Lanthanum oxide particles not only act as heterogeneous nucleation core, but also act as the second phase to hinder the grain growth during sintering crystallization. The molybdenum substrate formed sub-grain under the effect of second phase when the alloy rolled to plate.

  4. Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbücher, C. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); Hildebrandt, E.; Sharath, S. U.; Kurian, J.; Komissinskiy, P.; Alff, L. [Technische Universität Darmstadt, Institute of Materials Science, 64287 Darmstadt (Germany); Szot, K. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); University of Silesia, A. Chełkowski Institute of Physics, 40-007 Katowice (Poland); Breuer, U. [Forschungszentrum Jülich GmbH, Central Institute for Engineering, Electronics and Analytics (ZEA-3), 52425 Jülich (Germany); Waser, R. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); RWTH Aachen, Institute of Electronic Materials (IWE 2), 52056 Aachen (Germany)

    2016-06-20

    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO{sub 2−x}) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfC{sub x}) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfC{sub x} surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO{sub 2} thin films prepared and measured under identical conditions, the formation of HfC{sub x} was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.

  5. Oxidation of Zr and thin (0.2-4 nm) Zr films on Ag: An ESCA investigation

    International Nuclear Information System (INIS)

    Steiner, P.; Sander, I.; Siegwart, B.; Huefner, S.

    1987-01-01

    The oxidation of polycrystalline Zr under 10 -8 -10 -3 mbar oxygen pressure in the temperature range 25 0 -350 0 C is obtained from ESCA experiments. Changes in the ESCA spectra for thin Zr films on Ag oxidized at 250 0 C are observed and compared to the bulk Zr-metal. Thin Ag overlayers on Zr show a catalytic increase of the room temperature oxidation of Zr. (orig.)

  6. A photoelectrochemical (PEC) study on graphene oxide based hematite thin films heterojunction (R-GO/Fe2O3)

    Science.gov (United States)

    Sharma, Poonam; Zachariah, Michael; Ehrman, Sheryl; Shrivastava, Rohit; Dass, Sahab; Satsangi, Vibha; Michael Zachariah, Sheryl Ehrman Collaboration; Rohit Shrivastava, Sahab Dass Collaboration; Vibha R Satsangi, Poonam Sharma Team

    2013-03-01

    Graphene has an excellent electronic conductivity, a high theoretical surface area of 2630 m2/g and excellent mechanical properties and, thus, is a promising component for high-performance electrode materials. Following this, GO has been used to modify the PEC response of photoactive material hematite thin films in PEC cell. A reduced graphene oxide/iron oxide (R-GO/Fe2O3) thin film structure has been successfully prepared on ITO by directly growing iron oxide particles on the thermally reduced graphene oxide sheets prepared from suspension of exfoliated graphene oxide. R-GO/Fe2O3 thin films were tested in PEC cell and offered ten times higher photocurrent density than pristine Fe2O3 thin film sample. XRD, SEM, EDS, UV-Vis, Mott-Schottky and Raman studies were carried out to study spectro-electrochemical properties. Enhanced PEC performance of these photoelectrodes was attributed to its porous morphology, improved conductivity upon favorable carrier transfer across the oxides interface.

  7. Oxide properties of autoclaved zircaloy cladding tubes investigated by the photoelectric polarization method

    International Nuclear Information System (INIS)

    Nystrand, A.C.

    2000-06-01

    Corrosion of zirconium alloys is an important lifetime limiting factor for the nuclear reactor fuel. The corrosion resistance of a metal is highly dependent on the ability of the surface metal oxide to transport electrons and ions, which is related to the stoichiometry of the oxide and the oxide defect concentration. The Photoelectric Polarization Method (PEP) is a structure sensitive method which earlier has been investigated as a possible method to study the defect structure in zirconium oxides. The purpose of the following work is, by using more optimized experimental equipment, to verify if the PEP method is a suitable method to study the defect structure in zirconium oxides and to predict the corrosion resistance for different zirconium alloys. The conclusions from the experiments are as follows: - The modifications of the experimental setup by means of a new source of light (deuterium lamp) and a new oscilloscope with an amplifier gave distinct Vpep signals. - The photoresponse is negative for all types of cladding and under all kind of oxidation regimes and hence the oxide is a n-type semiconductor with deficiency of oxygen. - The method needs to be verified by testing semiconductors with a known defect concentration

  8. Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on zirconium

    International Nuclear Information System (INIS)

    M, Sandhyarani; T, Prasadrao; N, Rameshbabu

    2014-01-01

    Highlights: • Uniform oxide films were formed on zirconium by plasma electrolytic oxidation. • Silicate in electrolyte alter the growth of m-ZrO 2 from (1 ¯ 11) to (2 0 0) orientation. • Addition of KOH to electrolyte improved the corrosion resistance of oxide films. • Silicon incorporated oxide films showed higher surface roughness and wettability. • Human osteosarcoma cells were strongly adhered and spreaded on all the oxide films. - Abstract: Development of oxide films on metallic implants with a good combination of corrosion resistance, bioactivity and cell adhesion can greatly improve its biocompatibility and functionality. Thus, the present work is aimed to fabricate oxide films on metallic Zr by plasma electrolytic oxidation (PEO) in methodically varied concentrations of phosphate, silicate and KOH based electrolyte systems using a pulsed DC power source. The oxide films fabricated on Zr are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, corrosion resistance, apatite forming ability and osteoblast cell adhesion. Uniform films with thickness varying from 6 to 11 μm are formed. XRD patterns of all the PEO films showed the predominance of monoclinic zirconia phase. The film formed in phosphate + KOH electrolyte showed superior corrosion resistance, which can be ascribed to its pore free morphology. The films formed in silicate electrolyte showed higher apatite forming ability with good cell adhesion and spreading over its surface which is attributed to its superior surface roughness and wettability characteristics. Among the five different electrolyte systems employed in the present study, the PEO film formed in an electrolyte system with phosphate + silicate + KOH showed optimum corrosion resistance, apatite forming ability and biocompatibility

  9. Development of solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Kab; Kim, Sun Jae; Jung, Choong Hwan; Kim, Kyung Hoh; Park, Ji Yun; Oh, Suk Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    Solid Oxide Fuel Cell (SOFC) technologies that use zirconium oxide as the electrolyte material were studied in this present report. SOFC exhibits a very high power generation efficiency of over 50 %, and does not discharge pollution materials such as dusts, sulfur dioxide, and nitrogen oxide. Zirconia, Ni/YSZ (yttria stabilized zirconia), and La-Sr-Mn-Oxide materials were developed for the electrolyte material, for the anode, and for the cathode, respectively. After making thin zirconia plate using tape casting process, anode and cathode powders were screen printed on the zirconia plate for fabricating unit cells. A test system composed of a vertical tube furnace, digital multimeter, DC current supplier, and measuring circuit was constructed for testing the unit cell performance. This system was controlled by a home-made computer program. Founded on this unit cell technology and system, a multi-stack SOFC system was studied. This system was composed of 10 unit cells each of them had an electrode area of 40 x 40 mm. Based on this system design, large and thin zirconia plates of 70 x 70 mm in area was fabricated for the electrolyte. Different from in the unit cell system, interconnectors are needed in the multi-stack system for connecting unit cells electrically. For this interconnectors, Inconel 750 alloy was selected, sliced into wafers, machined, surface finished, and then Pt-plated. 55 figs, 8 tabs, 51 refs. (Author).

  10. Development of solid oxide fuel cell technology

    International Nuclear Information System (INIS)

    Kang, Dae Kab; Kim, Sun Jae; Jung, Choong Hwan; Kim, Kyung Hoh; Park, Ji Yun; Oh, Suk Jin

    1995-01-01

    Solid Oxide Fuel Cell (SOFC) technologies that use zirconium oxide as the electrolyte material were studied in this present report. SOFC exhibits a very high power generation efficiency of over 50 %, and does not discharge pollution materials such as dusts, sulfur dioxide, and nitrogen oxide. Zirconia, Ni/YSZ (yttria stabilized zirconia), and La-Sr-Mn-Oxide materials were developed for the electrolyte material, for the anode, and for the cathode, respectively. After making thin zirconia plate using tape casting process, anode and cathode powders were screen printed on the zirconia plate for fabricating unit cells. A test system composed of a vertical tube furnace, digital multimeter, DC current supplier, and measuring circuit was constructed for testing the unit cell performance. This system was controlled by a home-made computer program. Founded on this unit cell technology and system, a multi-stack SOFC system was studied. This system was composed of 10 unit cells each of them had an electrode area of 40 x 40 mm. Based on this system design, large and thin zirconia plates of 70 x 70 mm in area was fabricated for the electrolyte. Different from in the unit cell system, interconnectors are needed in the multi-stack system for connecting unit cells electrically. For this interconnectors, Inconel 750 alloy was selected, sliced into wafers, machined, surface finished, and then Pt-plated. 55 figs, 8 tabs, 51 refs. (Author)

  11. Electrochemical Water Oxidation by a Catalyst-Modified Metal-Organic Framework Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shaoyang; Pineda-Galvan, Yuliana; Maza, William A.; Epley, Charity C.; Zhu, Jie; Kessinger, Matthew C.; Pushkar, Yulia; Morris, Amanda J. (VP); (Purdue)

    2016-12-15

    Water oxidation, a key component in artificial photosynthesis, requires high overpotentials and exhibits slow reaction kinetics that necessitates the use of stable and efficient heterogeneous water-oxidation catalysts (WOCs). Here, we report the synthesis of UiO-67 metal–organic framework (MOF) thin films doped with [Ru(tpy)(dcbpy)OH2]2+ (tpy=2,2':6',2''-terpyridine, dcbpy=5,5'-dicarboxy-2,2'-bipyridine) on conducting surfaces and their propensity for electrochemical water oxidation. The electrocatalyst oxidized water with a turnover frequency (TOF) of (0.2±0.1) s-1 at 1.71 V versus the normal hydrogen electrode (NHE) in buffered solution (pH~7) and exhibited structural and electrochemical stability. The electroactive sites were distributed throughout the MOF thin film on the basis of scan-ratedependent voltammetry studies. This work demonstrates a promising way to immobilize large concentrations of electroactive WOCs into a highly robust MOF scaffold and paves the way for future photoelectrochemical water-splitting systems.

  12. Applications for zirconium and columbium alloys

    International Nuclear Information System (INIS)

    Condliff, A.F.

    1986-01-01

    Currently, zirconium and columbium are used in a wide range of applications, overlapping only in the field of corrosion control. As a construction material, zirconium is primarily used by the nuclear power industry. The use of zirconium in the chemical processing industry (CPI) is, however, increasing steadily. Columbian alloys are primarily applied as superconducting alloys for research particle accelerators and fusion generators as well as in magnetic resonance imaging for medical diagnosis

  13. TiFeCoNi oxide thin film - A new composition with extremely low electrical resistivity at room temperature

    International Nuclear Information System (INIS)

    Yang, Ya-Chu; Tsau, Chun-Huei; Yeh, Jien-Wei

    2011-01-01

    We show the electrical resistivity of a TiFeCoNi oxide thin film. The electrical resistivity of the TiFeCoNi thin film decreased sharply after a suitable period of oxidation at high temperature. The lowest resistivity of the TiFeCoNi oxide film was 35 ± 3 μΩ-cm. The low electrical resistivity of the TiFeCoNi oxide thin film was attributed to Ti, which is more reactive than the other elements, reacting with oxygen at the initial stage of annealing. The low resistivity is caused by the remaining electrons.

  14. Study on application of zirconium dioxide for upgrading quality of pouring cups used in continuous steel casting technology

    International Nuclear Information System (INIS)

    Pham Ba Kien; Vu Thanh Quang and Ngo Van Tuyen

    2004-01-01

    This theme studies on technology of zirconium oxide powder stabilized by calcium and testing production of steel pouring cup made of the stabilized dioxide zirconium ceramic. As a product of the theme, the steel pouring cup has had the following main characteristics: heat resistance > 1700 o C, density of 4.7 g/cm 3 , apparent sponge degree of 1.63%, compressibility of 3300 kg/cm 2 . The quality of the cup has been tested and highly evaluated during the actual production. (author)

  15. The development of zirconium alloy and its manufacturing

    International Nuclear Information System (INIS)

    Yuan Gaihuan; Yue Qiang

    2015-01-01

    Nuclear power which acts as one of low-carbon energy resources is the most realistic in large-scale application. It is also the preferred choice for many countries to develop energy resources and optimize its structure. Zirconium alloy is a key structural material for nuclear power plant fuel assemblies and cladding tubes of zirconium alloy are often referred as the first safeguard to nuclear power safety. With the development of nuclear power, three kinds of zirconium alloys Zr-Sn, Zr-Nb, Zr-Sn-Nb and with the representative products of Zr-4, M5, Zirlo respectively are developed and widely applied. Because of its severe operating environment and influence to nuclear safety, the requirements to zirconium alloys for physical and chemical properties, nuclear capability, tolerance and surface quality are very strict. The in-depth research and its manufacture capability become one of the main barriers for many countries who are developing the nuclear energy. In recent years, a stated-owned company, State Nuclear Bao Ti Zirconium Industry Company ('SNZ' for short) as well as National R and D Center for Nuclear Grade Zirconium material, is founded to meet the requirement of the rapid development of China's nuclear power industry. SNZ is dedicated for the fabrication and the research of nuclear grade zirconium products. After the successful completion of technology transfer of manufacturing for production chain and fully grasped of the manufacturing technology for the nuclear grade zirconium sponge through zirconium alloy tube, rod and strip products. National R and D Center for Nuclear Grade Zirconium material is cooperating with universities, nuclear energy research and design institutes and the owners of nuclear power plant to develop new zirconium alloy of self-owned brand. Through the selection of components, in-process testing and product inspection, four kinds of new zirconium alloys owns better performance than currently commercialized M5, Zirlo etc

  16. Synthesis of organometallic hydroxides of titanium, vanadium, cobalt and chromium as precursors of thin films type MaOb

    International Nuclear Information System (INIS)

    Montero Villalobos, Mavis

    2001-01-01

    This study shows the results obtained from a general objective that was the synthesis and characterization of precursors of thin films of metallic oxides, two different routes of synthesis have been practiced: route molecular precursors and route Sol-Gel technic. In the first route one of the objectives of the investigation is to obtain a molecular precursor of material type M a O b a route of synthesis have been tried proved that involves anhydrous chlorides of the transition metals and linked R that are alcoxides of metal such as silicon, titanium and zirconium. In the second route the general objective to create thin films of metallic oxide has been maintained but the way to resolve the problem has changed, not giving so much emphasis to the molecular precursors as it was originally presented (this due mainly to its instability and difficulty of synthesis), but being supported in the sun-gel chemistry. It was started a new synthesis line through the sun-gel chemistry that is more versatile and simplifies the process in the film formation [es

  17. Radiochemical studies on amorphous zirconium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, A; Moores, G E [Salford Univ. (UK). Dept. of Chemistry and Applied Chemistry

    1981-01-01

    Amorphous zirconium phosphate (ZrP) is used in some hemodialysis machines for the regeneration of dialysate. Its function is to adsorb ammonium ions formed by the pretreatment of urea by urease. It also adsorbs Ca, Mg and K ions but leaches phosphate ions which are then removed (along with F/sup -/ ions) by a bed of hydrous zirconium oxide. The sodium form of ZrP is used although other forms have been suggested for use. The work reported here describes some preliminary radiochemical studies on the mechanism of release of phosphate ions and its possible relationship to sodium ion-exchange. /sup 32/P labelled material (HHZrP) was used for elution experiments with deionized water and buffer solutions having the pH's 4.2, 7.0 and 9.2. Buffer solutions used were as supplied by BDH. Elution was at four different temperatures in the range 293 to 363/sup 0/C. In the second series of experiments HHZrP was suspended in a NaCl solution labelled with /sup 22/Na. From this, /sup 22/Na labelled ZrP (NaHZrP) was prepared and eluted in the same way as the HHZrP. Results are given and discussed.

  18. The Microstructures and Electrical Resistivity of (Al, Cr, TiFeCoNiOx High-Entropy Alloy Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Chun-Huei Tsau

    2015-01-01

    Full Text Available The (Al, Cr, TiFeCoNi alloy thin films were deposited by PVD and using the equimolar targets with same compositions from the concept of high-entropy alloys. The thin films became metal oxide films after annealing at vacuum furnace for a period; and the resistivity of these thin films decreased sharply. After optimum annealing treatment, the lowest resistivity of the FeCoNiOx, CrFeCoNiOx, AlFeCoNiOx, and TiFeCoNiOx films was 22, 42, 18, and 35 μΩ-cm, respectively. This value is close to that of most of the metallic alloys. This phenomenon was caused by delaminating of the alloy oxide thin films because the oxidation was from the surfaces of the thin films. The low resistivity of these oxide films was contributed to the nonfully oxidized elements in the bottom layers and also vanishing of the defects during annealing.

  19. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Energy Technology Data Exchange (ETDEWEB)

    Horak, P., E-mail: phorak@ujf.cas.cz [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Řež (Czech Republic); Bejsovec, V.; Vacik, J.; Lavrentiev, V. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Řež (Czech Republic); Vrnata, M. [Department of Physics and Measurements, The University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Kormunda, M. [Department of Physics, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem (Czech Republic); Danis, S. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)

    2016-12-15

    Highlights: • A rapid oxidation process of thin copper films. • Sheet resistance up to 10{sup 9} Ω/◊. • Mixed oxide phase at 200 °C with significant hydroxide presence. • Gas sensing response to 1000 ppm of hydrogen and methanol vapours. • Increased sensitivity with Pd and Au catalyst to hydrogen and methanol, respectively. - Abstract: Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C–600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C–600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu{sub 2}O phase was identified. However, the oxidation at 200 °C led to a more complicated composition − in the depth Cu{sub 2}O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH){sub 2}. A limited amount of Cu{sub 2}O was also found in samples annealed at 600 °C. The sheet resistance R{sub S} of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing R{sub S} was measured in the range 2.64 MΩ/□–2.45 GΩ/□. The highest R{sub S} values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the {sup 16}O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed

  20. Hard X-ray photoemission spectroscopy of transition-metal oxide thin films and interfaces

    International Nuclear Information System (INIS)

    Wadati, H.; Fujimori, A.

    2013-01-01

    Highlights: •Photoemission spectroscopy is a powerful technique to study the electronic structures of transition-metal oxides. •Hard X-ray photoemission spectroscopy (HXPES) is a new type of photoemission spectroscopy which can probe bulk states. •HXPES is very suitable for studying oxide thin films such as the composition dependence and the film thickness dependence. -- Abstract: Photoemission spectroscopy is a powerful experimental technique to study the electronic structures of solids, especially of transition-metal oxides. Recently, hard X-ray photoemission spectroscopy (HXPES) has emerged as a more relevant experimental technique to obtain clear information about bulk states. Here, we describe how HXPES can be conveniently applied to study the interesting subjects on oxide thin films such as the composition dependence and the film thickness dependence of the electronic structures and the interfacial electronic structure of multilayers

  1. Evaluation of a Ductility after High Temperature Oxidation with the Three-Point Bend Test in Zirconium Alloys

    International Nuclear Information System (INIS)

    Jung, Yang Il; Park, Sang Yoon; Park, Jeong Yong; Jeong, Yong Hwan

    2010-01-01

    In a light water reactor, the fuel cladding play an important role of preventing leakage of radioactive materials into the coolant, and thus the mechanical integrity of the cladding should be guaranteed under the conditions of normal and transient operation. In the case of a loss of coolant accident (LOCA), the cladding is subjected to a high temperature oxidation which is finally quenched because of an emergency coolant reflooding into the core. In this situation, the current LOCA criteria consist of five separate requirements: i) peak cladding temperature, ii) maximum cladding oxidation, iii) maximum hydrogen generation, iv) coolable geometry, and v) long-term cooling. The claddings lose their ductility due to the microstructural phase transformation from beta to martensite alpha-prime. and hydrogen up-take after LOCA. Since the reduction in ductility can induce embrittlement of claddings, post-quench ductility is one of the major concerns in transient operation circumstances. For the analysis, usually ring compression test are performed on ring samples cut from the tube to examine the oxidized cladding ductility. However, the test would not be applicable to the platelet samples which are general form of a specimen for developing alloys. As a high burn-up fuel cladding materials, Zircaloys are being replaced by modern zirconium alloys such as ZIRLO, and M5. Korea has also developed a new fuel cladding material HANA (high performance alloy for nuclear application) by the Korea Atomic Energy Research Institute. Because of the different composition of the newer claddings in comparison with the conventional Zircaloy-4, the high temperature oxidation behavior and the ductility after the oxidation would be different, and the properties should be evaluated how much the newer claddings were improved

  2. Effect of DC Plasma Electrolytic Oxidation on Surface Characteristics and Corrosion Resistance of Zirconium

    Directory of Open Access Journals (Sweden)

    Maciej Sowa

    2018-05-01

    Full Text Available Zr is a valve metal, the biocompatibility of which is at least on par with Ti. Recently, numerous attempts of the formation of bioactive coatings on Zr by plasma electrolytic oxidation (PEO in solutions that were based on calcium acetate and calcium β-glycerophosphate were made. In this study, the direct current (DC PEO of commercially pure zirconium in the solutions that contained Ca(H2PO22, Ca(HCOO2, and Mg(CH3COO2 was investigated. The treatment was conducted at 75 mA/cm2 up to 200, 300, or 400 V. Five process stages were discerned. The treatment at higher voltages resulted in the formation of oxide layers that had Ca/P or (Mg+Ca/P ratios that were close to that of hydroxyapatite (Ca/P = 1.67, determined by SEM/EDX. The corrosion resistance studies were performed using electrochemical impedance spectroscopy (EIS and DC polarization methods. R(Q[R(QR] circuit model was used to fit the EIS data. In general, the coatings that were obtained at 200 V were the most corrosion resistant, however, they lacked the porous structure, which is typical for PEO coatings, and is sought after in the biomedical applications. The treatment at 400 V resulted in the formation of the coatings that were more corrosion resistant than those that were obtained at 300 V. This was determined mainly by the prevailing plasma regime at the given process voltage. The pitting resistance of Zr was also improved by the treatment, regardless of the applied process conditions.

  3. Studies of oxide-based thin-layered heterostructures by X-ray scattering methods

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O. [Thales Research and Technology France, Route Departementale 128, F-91767 Palaiseau Cedex (France)]. E-mail: olivier.durand@thalesgroup.com; Rogers, D. [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Universite de Technologie de Troyes, 10-12 rue Marie Curie, 10010 (France); Teherani, F. Hosseini [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Andrieux, M. [LEMHE, ICMMOCNRS-UMR 8182, Universite d' Orsay, Batiment 410, 91410 Orsay (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)

    2007-06-04

    Some X-ray scattering methods (X-ray reflectometry and Diffractometry) dedicated to the study of thin-layered heterostructures are presented with a particular focus, for practical purposes, on the description of fast, accurate and robust techniques. The use of X-ray scattering metrology as a routinely working non-destructive testing method, particularly by using procedures simplifying the data-evaluation, is emphasized. The model-independent Fourier-inversion method applied to a reflectivity curve allows a fast determination of the individual layer thicknesses. We demonstrate the capability of this method by reporting X-ray reflectometry study on multilayered oxide structures, even when the number of the layers constitutive of the stack is not known a-priori. Fast Fourier transform-based procedure has also been employed successfully on high resolution X-ray diffraction profiles. A study of the reliability of the integral-breadth methods in diffraction line-broadening analysis applied to thin layers, in order to determine coherent domain sizes, is also reported. Examples from studies of oxides-based thin-layers heterostructures will illustrate these methods. In particular, X-ray scattering studies performed on high-k HfO{sub 2} and SrZrO{sub 3} thin-layers, a (GaAs/AlOx) waveguide, and a ZnO thin-layer are reported.

  4. Electrochemical-metallothermic reduction of zirconium in molten salt solutions

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Talko, F.

    1990-01-01

    This patent describes a method for separating hafnium from zirconium of the type wherein a feed containing zirconium and hafnium chlorides is prepared from zirconium-hafnium chloride and the feed is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a hafnium chloride enriched stream is taken from the top of the column and a zirconium enriched chloride stream is taken from the bottom of the column. It comprises: reducing the zirconium enriched chloride stream taken from the distillation column to metal by electrochemically reducing an alkaline earth metal in a molten salt bath with the molten salt in the molten salt bath consisting essentially of a mixture of at least one alkali metal chloride and at least one alkaline earth metal chloride and zirconium chloride, with the reduced alkaline earth metal reacting with the zirconium chloride to produce zirconium metal and alkaline earth metal chloride

  5. Nanoscale reduction of graphene oxide thin films and its characterization

    KAUST Repository

    Lorenzoni, M.; Giugni, Andrea; Di Fabrizio, Enzo M.; Pé rez-Murano, Francesc; Mescola, A.; Torre, Bruno

    2015-01-01

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip

  6. Indium Tin Oxide thin film gas sensors for detection of ethanol vapours

    International Nuclear Information System (INIS)

    Vaishnav, V.S.; Patel, P.D.; Patel, N.G.

    2005-01-01

    Indium Tin Oxide (ITO: In 2 O 3 + 17% SnO 2 ) thin films grown on alumina substrate at 648 K temperatures using direct evaporation method with two gold pads deposited on the top for electrical contacts were exposed to ethanol vapours (200-2500 ppm). The operating temperature of the sensor was optimized. The sensitivity variation of films having different thickness was studied. The sensitivity of the films deposited on Si substrates was studied. The response of the film with MgO catalytic layer on sensitivity and selectivity was observed. A novel approach of depositing thin stimulating layer of various metals/oxides below the ITO film was tried and tested

  7. Thermodynamic analysis of thermal plasma process of composite zirconium carbide and silicon carbide production from zircon concentrates

    International Nuclear Information System (INIS)

    Kostic, Z.G.; Stefanovic, P.Lj.; Pavlovic; Pavlovic, Z.N.; Zivkovic, N.V.

    2000-01-01

    Improved zirconium ceramics and composites have been invented in an effort to obtain better resistance to ablation at high temperature. These ceramics are suitable for use as thermal protection materials on the exterior surfaces of spacecraft, and in laboratory and industrial environments that include flows of hot oxidizing gases. Results of thermodynamic consideration of the process for composite zirconium carbide and silicon carbide ultrafine powder production from ZrSiO 4 in argon thermal plasma and propane-butane gas as reactive quenching reagents are presented in the paper. (author)

  8. Optimisation of chemical solution deposition of indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Tor Olav Løveng; Einarsrud, Mari-Ann; Grande, Tor, E-mail: grande@ntnu.no

    2014-12-31

    An environmentally friendly aqueous sol–gel process has been optimised to deposit indium tin oxide (ITO) thin films, aiming to improve the film properties and reduce the deposition costs. It was demonstrated how parameters such as cation concentration and viscosity could be applied to modify the physical properties of the sol and thereby reduce the need for multiple coatings to yield films with sufficient conductivity. The conductivity of the thin films was enhanced by adjusting the heat treatment temperature and atmosphere. Both increasing the heat treatment temperature of the films from 530 to 800 °C and annealing in reducing atmosphere significantly improved the electrical conductivity, and conductivities close to the state of the art sputtered ITO films were obtained. A pronounced decreased conductivity was observed after exposing the thin films to air and the thermal reduction and ageing of the film was studied by in situ conductivity measurements. - Highlights: • Spin coating of indium tin oxide using an aqueous solution was optimised. • The conductivity was enhanced by thermal annealing in reducing atmosphere. • The conductivity of is comparable to the conductivity of sputtered films. • A relaxation process in the reduced thin film was observed after exposure in air.

  9. Preparation of Zinc Oxide (ZnO) Thin Film as Transparent Conductive Oxide (TCO) from Zinc Complex Compound on Thin Film Solar Cells: A Study of O2 Effect on Annealing Process

    Science.gov (United States)

    Muslih, E. Y.; Kim, K. H.

    2017-07-01

    Zinc oxide (ZnO) thin film as a transparent conductive oxide (TCO) for thin film solar cell application was successfully prepared through two step preparations which consisted of deposition by spin coating at 2000 rpm for 10 second and followed by annealing at 500 °C for 2 hours under O2 and ambient atmosphere. Zinc acetate dehydrate was used as a precursor which dissolved in ethanol and acetone (1:1 mol) mixture in order to make a zinc complex compound. In this work, we reported the O2 effect, reaction mechanism, structure, morphology, optical and electrical properties. ZnO thin film in this work shows a single phase of wurtzite, with n-type semiconductor and has band gap, carrier concentration, mobility, and resistivity as 3.18 eV, 1.21 × 10-19cm3, 11 cm2/Vs, 2.35 × 10-3 Ωcm respectively which is suitable for TCO at thin film solar cell.

  10. A nanogravimmetric investigation of the charging processes on ruthenium oxide thin films and their effect on methanol oxidation

    International Nuclear Information System (INIS)

    Santos, M.C.; Cogo, L.; Tanimoto, S.T.; Calegaro, M.L.; Bulhoes, L.O.S

    2006-01-01

    The charging processes and methanol oxidation that occur during the oxidation-reduction cycles in a ruthenium oxide thin film electrode (deposited by the sol-gel method on Pt covered quartz crystals) were investigated by using cyclic voltammetry, chronoamperometry and electrochemical quartz crystal nanobalance techniques. The ruthenium oxide rutile phase structure was determined by X-ray diffraction analysis. The results obtained during the charging of rutile ruthenium oxide films indicate that in the anodic sweep the transition from Ru(II) to Ru(VI) occurs followed by proton de-intercalation. In the cathodic sweep, electron injection occurs followed by proton intercalation, leading to Ru(II). The proton intercalation/de-intercalation processes can be inferred from the mass/charge relationship which gives a slope close to 1 g mol -1 (multiplied by the Faraday constant) corresponding to the molar mass of hydrogen. From the chronoamperometric measurements, charge and mass saturation of the RuO 2 thin films was observed (440 ng cm -2 ) during the charging processes, which is related to the total number of active sites in these films. Using the electrochemical quartz crystal nanobalance technique to study the methanol oxidation reaction at these films was possible to demonstrate that bulk oxidation occurs without the formation of strongly adsorbed intermediates such as CO ads , demonstrating that Pt electrodes modified by ruthenium oxide particles can be promising catalysts for the methanol oxidation as already shown in the literature

  11. Growth and surface characterization of sputter-deposited molybdenum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, Chintalapalle V.; Atuchin, Victor V.; Kesler, V. G.; Kochubey, V. A.; Pokrovsky, L. D.; Shutthanandan, V.; Becker, U.; Ewing, Rodney C.

    2007-04-15

    Molybdenum oxide thin films were produced by magnetron sputtering using a molybdenum (Mo) target. The sputtering was performed in a reactive atmosphere of argon-oxygen gas mixture under varying conditions of substrate temperature (Ts) and oxygen partial pressure (pO2). The effect of Ts and pO2 on the growth and microstructure of molybdenum oxide films was examined in detail using reflection high-energy electron diffraction (RHEED), Rutherford backscattering spectrometry (RBS), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) measurements. The analyses indicate that the effect of Ts and pO2 on the microstructure and phase of the grown molybdenum oxide thin films is remarkable. RHEED and RBS results indicate that the films grown at 445 *C under 62.3% O2 pressure were stoichiometric and polycrystalline MoO3. Films grown at lower pO2 were nonstoichiometric MoOx films with the presence of secondary phase. The microstructure of the grown Mo oxide films is discussed and conditions were optimized to produce phase pure, stoichiometric, and highly textured polycrystalline MoO3 films.

  12. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    Directory of Open Access Journals (Sweden)

    Ruijin Hong

    2017-01-01

    Full Text Available Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD, optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B molecules based on the Au/graphene oxide/Ag sandwich nanostructure substrate were obviously enhanced due to the bimetal layer and GO layer with tunable absorption intensity and fluorescence quenching effects.

  13. Dynamically formed hydrous zirconium (IV) oxide-polyelectrolyte membranes. III: Poly(acrylic acid) and substituted poly(acrylic acid) homo, co and terpolymer membranes

    International Nuclear Information System (INIS)

    Van Reenen, A.J.; Sanderson, R.D.

    1989-01-01

    A series of acrylic acid and substituted acrylic acid homo, co and terpolymers was synthesised. These polymers were used as polyelectrolytes in dynamically formed hydrous zirconium (iv) oxide-polyelectrolyte membranes. Substitution of the acrylic acid α-hydrogen was done to increase the number of carboxylic acid groups per monomer unit and to change the acid strength of acrylic acid carboxylic acid group. None of these changes improved the salt rejection of these membranes over that of commercially used poly(acrylic acid). Improvement in rejection was found when a hydrophobic comonomer, vinyl acetate, was used in conjunction with acrylic acid in a copolymer dynamic membrane. 16 refs., 6 figs., 1 tab

  14. Recent Advances of Solution-Processed Metal Oxide Thin-Film Transistors.

    Science.gov (United States)

    Xu, Wangying; Li, Hao; Xu, Jian-Bin; Wang, Lei

    2018-03-06

    Solution-processed metal oxide thin-film transistors (TFTs) are considered as one of the most promising transistor technologies for future large-area flexible electronics. This review surveys the recent advances in solution-based oxide TFTs, including n-type oxide semiconductors, oxide dielectrics and p-type oxide semiconductors. Firstly, we provide an introduction on oxide TFTs and the TFT configurations and operating principles. Secondly, we present the recent progress in solution-processed n-type transistors, with a special focus on low-temperature and large-area solution processed approaches as well as novel non-display applications. Thirdly, we give a detailed analysis of the state-of-the-art solution-processed oxide dielectrics for low-voltage electronics. Fourthly, we discuss the recent progress in solution-based p-type oxide semiconductors, which will enable the highly desirable future low-cost large-area complementary circuits. Finally, we draw the conclusions and outline the perspectives over the research field.

  15. Problems of zirconium metal production in Czechoslovakia

    International Nuclear Information System (INIS)

    Vareka, J.; Vaclavik, E.

    1975-01-01

    The problems are summed up of the production and quality control of zirconium sponge. A survey is given of industrial applications of zirconium in form of pure metal or alloys in nuclear power production, ferrous and non-ferrous metallurgy, chemical engineering and electrical engineering. A survey is also presented of the manufacture of zirconium metal in advanced capitalist countries. (J.B.)

  16. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir; Hussain, Aftab M.; Omran, Hesham; Alshareef, Sarah; Salama, Khaled N.; Hussain, Muhammad Mustafa

    2015-01-01

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (Zn

  17. Corrosion behavior of stainless steel and zirconium in nitric acid containing highly oxidizing species

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Fujita, Tomonari

    1994-01-01

    Corrosion behavior of 304ELC, 310Nb stainless steels and Zirconium was investigated in the simulated dissolver solution of a reprocessing plant to obtain fundamental data for life prediction. Corrosion of heat transfer surface was also investigated in nitric acid solutions containing Ce ion. The results obtained are as follows: (1) Stainless steels showed intergranular corrosion in the simulated dissolver solution. The corrosion rate increased with time and reached to a constant value after several hundred hours of immersing time. The constant corrosion rate changed depending on potential suggesting that corrosion potential dominates the corrosion process. 310Nb showed superior corrosion resistance to 304ELC. (2) Corrosion rate of stainless steels increased in the heat transfer condition. The causes of corrosion enhancement are estimated to be higher corrosion potential and higher temperature of heat transfer surface. (3) Zirconium showed perfect passivity in all the test conditions employed. (author)

  18. solution growth and characterization of copper oxide thin films ...

    African Journals Online (AJOL)

    Thin films of copper oxide (CuO) were grown on glass slides by using the solution growth technique. Copper cloride (CuCl ) and potassium telluride (K T O ) were used. Buffer 2 2e 3 solution was used as complexing agent. The solid state properties and optical properties were obtained from characterization done using PYE ...

  19. Development and characterization of ultra-thin dosemeters of aluminium oxide

    International Nuclear Information System (INIS)

    Villagran V, E.

    2003-01-01

    The aim of the present thesis work has been to investigate the thermoluminescent (Tl) response of aluminium oxide thin films with thicknesses of the order of 300 nm prepared by laser ablation. Aluminium oxide thin films show Tl response after they are subject to ultraviolet, beta and gamma radiation. The Tl curves exhibit peaks around 75 C and 169 C for UV radiation, 112 C and 180 C for beta particles and 110 C and 176 C for gamma radiation. In order to improve the Tl response some growth parameters such as power density and distance target-substrate were varied. The relation dose-response shows a non-linear behavior for UV irradiation; a linear behavior for beta-particles dose from 150 mGy to 50 Gy, and a linear behavior for gamma radiation dose from 5 Gy to 100 Gy. The kinetic Tl parameters were determined by Computerized Glow Curve Deconvolution (CGCD) method as well as using analytical methods. The CGCD results show that the high temperature peak is composed by four peaks with maximums in 165.7, 188.1, 215.3, 246.5 C. These obey a second order kinetics. The trap depth (E) values are 1.4, 1.6, 1.8 and 2.0 eV respectively. The different analytical results show a trap depth values of 0.914, 0.82 and 0.656 eV respectively. Oxide aluminium thin films obtained would be a suitable tool owing to their potential applications in clinical dosimetry, in the dose distributions due to weekly penetrating radiation determination, and in interfaces dosimetry. (Author)

  20. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  1. Phase Transformations in a Uranium-Zirconium Alloy containing 2 weight per cent Zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Lagerberg, G

    1961-04-15

    The phase transformations in a uranium-zirconium alloy containing 2 weight percent zirconium have been examined metallographically after heat treatments involving isothermal transformation of y and cooling from the -y-range at different rates. Transformations on heating and cooling have also been studied in uranium-zirconium alloys with 0.5, 2 and 5 weight per cent zirconium by means of differential thermal analysis. The results are compatible with the phase diagram given by Howlett and Knapton. On quenching from the {gamma}-range the {gamma} phase transforms martensitically to supersaturated a the M{sub S} temperature being about 490 C. During isothermal transformation of {gamma} in the temperature range 735 to 700 C {beta}-phase is precipitated as Widmanstaetten plates and the equilibrium structure consists of {beta} and {gamma}{sub 1}. Below 700 C {gamma} transforms completely to Widmanstaetten plates which consist of {beta} above 660 C and of a at lower temperatures. Secondary phases, {gamma}{sub 2} above 610 C and {delta} below this temperature, are precipitated from the initially supersaturated Widmanstaetten plates during the isothermal treatments. At and slightly below 700 C the cooperative growth of |3 and {gamma}{sub 2} is observed. The results of isothermal transformation are summarized in a TTTdiagram.

  2. Raman and XPS characterization of vanadium oxide thin films with temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ureña-Begara, Ferran, E-mail: ferran.urena@uclouvain.be [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium); Crunteanu, Aurelian [XLIM Research Institute, UMR 7252, CNRS/Université de Limoges, Limoges (France); Raskin, Jean-Pierre [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium)

    2017-05-01

    Highlights: • Comprehensive study of the oxidation of VO{sub 2} thin films from R.T. up to 550 °C. • Phase changes and mixed-valence vanadium oxides formed during the oxidation process. • Reported Raman and XPS signatures for each vanadium oxide. • Monitoring of the current and resistance evolution at the surface of the films. • Oxidation model describing the evolution of the vanadium oxides and phase changes. - Abstract: The oxidation mechanisms and the numerous phase transitions undergone by VO{sub 2} thin films deposited on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates when heated from room temperature (R.T.) up to 550 °C in air are investigated by Raman and X-ray photoelectron spectroscopy. The results show that the films undergo several intermediate phase transitions between the initial VO{sub 2} monoclinic phase at R.T. and the final V{sub 2}O{sub 5} phase at 550 °C. The information about these intermediate phase transitions is scarce and their identification is important since they are often found during the synthesis of vanadium dioxide films. Significant changes in the film conductivity have also been observed to occur associated to the phase transitions. In this work, current and resistance measurements performed on the surface of the films are implemented in parallel with the Raman measurements to correlate the different phases with the conductivity of the films. A model to explain the oxidation mechanisms and phenomena occurring during the oxidation of the films is proposed. Peak frequencies, full-width half-maxima, binding energies and oxidation states from the Raman and X-ray photoelectron spectroscopy experiments are reported and analyzed for all the phases encountered in VO{sub 2} films prepared on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates.

  3. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric

    KAUST Repository

    Nayak, Pradipta K.

    2013-07-18

    We report high performance solution-deposited indium oxide thin film transistors with field-effect mobility of 127 cm2/Vs and an Ion/Ioff ratio of 106. This excellent performance is achieved by controlling the hydroxyl group content in chemically derived aluminum oxide (AlOx) thin-film dielectrics. The AlOx films annealed in the temperature range of 250–350 °C showed higher amount of Al-OH groups compared to the films annealed at 500 °C, and correspondingly higher mobility. It is proposed that the presence of Al-OH groups at the AlOx surface facilitates unintentional Al-doping and efficient oxidation of the indium oxide channel layer, leading to improved device performance.

  4. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric

    KAUST Repository

    Nayak, Pradipta K.; Hedhili, Mohamed N.; Cha, Dong Kyu; Alshareef, Husam N.

    2013-01-01

    We report high performance solution-deposited indium oxide thin film transistors with field-effect mobility of 127 cm2/Vs and an Ion/Ioff ratio of 106. This excellent performance is achieved by controlling the hydroxyl group content in chemically derived aluminum oxide (AlOx) thin-film dielectrics. The AlOx films annealed in the temperature range of 250–350 °C showed higher amount of Al-OH groups compared to the films annealed at 500 °C, and correspondingly higher mobility. It is proposed that the presence of Al-OH groups at the AlOx surface facilitates unintentional Al-doping and efficient oxidation of the indium oxide channel layer, leading to improved device performance.

  5. Optical characterisation of thin film cadmium oxide prepared by a ...

    African Journals Online (AJOL)

    The optical transmission spectra of transparent conducting cadmium oxide (CdO) thin films deposited by a modified reactive evaporation process onto glass substrates have been measured. The interference fringes were used to calculate the refractive index, thickness variation, average thickness and absorption coefficient ...

  6. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing

    International Nuclear Information System (INIS)

    Panky, Sreedevi; Thandavan, Kavitha; Sivalingam, Durgajanani; Sethuraman, Swaminathan; Krishnan, Uma Maheswari; Jeyaprakash, Beri Gopalakrishnan; Rayappan, John Bosco Balaguru

    2013-01-01

    Nanostructured cerium oxide (CeO 2 ) thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique with cerium nitrate salt, Ce(NO 3 ) 3 ·6H 2 O as precursor. Fluorine doped cadmium oxide (CdO:F) thin film prepared using spray pyrolysis technique acts as the TCO film and hence the bare electrode. The structural, morphological and elemental characterizations of the films were carried out using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The diffraction peak positions in XRD confirmed the formation of highly crystalline ceria with cubic structure and FE-SEM images showed uniform adherent films with granular morphology. The band gaps of CeO 2 and TCO were found to be 3.2 eV and 2.6 eV respectively. Lipase enzyme was physisorbed on the surface of CeO 2 /TCO film to form the lipase/nano-CeO 2 /TCO bioelectrode. Sensing studies were carried out using cyclic voltammetry and amperometry, with lipase/nano-CeO 2 /TCO as working electrode and tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33–1.98 mM) with a lowest detection limit of 2 μM with sharp response time of 5 s and a shelf life of about 6 weeks. -- Graphical abstract: Nanostructured cerium oxide thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique. Fluorine doped cadmium oxide (CdO:F) thin film acts as the TCO film and hence the working electrode. Lipase enzyme was physisorbed on the surface of CeO 2 /TCO film and hence the lipase/nano-CeO 2 /TCO bioelectrode has been fabricated. Sensing studies were carried out using cyclic voltammetry and amperometry with tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33–1.98 mM) with a lowest detection limit of 2 μM with sharp response time of 5 s and a shelf life of about 6

  7. Corrosion resistance of ZrNxOy thin films obtained by rf reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Ariza, E.; Rocha, L.A.; Vaz, F.; Cunha, L.; Ferreira, S.C.; Carvalho, P.; Rebouta, L.; Alves, E.; Goudeau, Ph.; Riviere, J.P.

    2004-01-01

    The main aim of this work is the investigation of the corrosion resistance of single layered zirconium oxynitride, ZrN x O y , thin films in artificial sweat solution at ambient temperature. The films were produced by rf reactive magnetron sputtering, using a pure Zr target at a constant temperature of 300 deg. C. Two different sets of samples were produced. In the first set of films, the substrate bias voltage was the main variable, whereas in the second set, the flow rate of reactive gases (oxygen/nitrogen ratio) was varied. The control of the amount of oxygen allowed the film properties to be tailored from those of covalent zirconium nitride to those of the correspondent ionic oxide. The corrosion behaviour was evaluated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) tests. The analysis of EIS data provided detailed information of the corrosion processes occurring at the surface of the system throughout the immersion time. The modifications of the coating microstructure and/or chemical composition induced by the variation of the deposition parameters were also evaluated and correlated with the corrosion mechanisms occurring in each system

  8. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    International Nuclear Information System (INIS)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-01-01

    Tungsten oxide (WO x ) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10 −4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WO x -based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 10 6 , a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm 2 /V s was realized. Our results demonstrated that WO x -based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  9. Inhibitors for the corrosion of reactive metals: titanium and zirconium and their alloys in acid media

    International Nuclear Information System (INIS)

    Petit, J.A.; Chatainier, G.; Dabosi, F.

    1981-01-01

    The search for effective corrosion inhibitors for titanium and zirconium in acid media is growing because of the considerable increase in the use of these materials in chemical process equipment. It still remains limited, as appears from this review, because of the exceptionally high corrosion resistance of the metals. Titanium has received the greater attention. Its corrosion rate can be lowered by introduction in the medium of multivalent ions, inorganic and organic oxidants. Care should be taken to hold the concentration at a level exceeding some critical value, otherwise the corrosion rate increases. Complexing organic agents do not show such hazardous behaviour. The very rapid corrosion of titanium and zirconium in fluoride media may be lessened by complexing the fluoride ions. Though rarely encountered, localized corrosion may be avoided by using inhibitors. In some cases good corrosion inhibitors for titanium are dissolution accelerators for zirconium. (author)

  10. The fluorimetric titration of zirconium in the ppm-range

    International Nuclear Information System (INIS)

    Linden, W.E. von der; Boef, G. den; Ozinga, W.

    1976-01-01

    A fluorimetric titration of zirconium(IV) with EDTA is proposed. The fluorescence intensity of the zirconium-morin complex is used to indicate the end-point. More than twenty other cations were investigated and it was found that they did not interfere, neither did common anions. Mercury(II) can only be tolerated in amount not exceeding that of zirconium. Bismuth(III) interferes and hafnium(IV0 is titrated together with zirconium. The relative standard deviation of the titration of 10ml of a solution containing 1 ppm of zirconium does not exceed 1.5%

  11. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Meier, R. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Heidelberg University, Institute of Physical Chemistry, Im Neuenheimer Feld 253, Heidelberg 69120 (Germany); Souček, P., E-mail: Pavel.Soucek@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Fanghänel, Th. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Heidelberg University, Institute of Physical Chemistry, Im Neuenheimer Feld 253, Heidelberg 69120 (Germany)

    2016-04-15

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An–Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An–Al alloys using a LiCl–KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions. - Highlights: • Recovery of actinides was shown by electrorefining of U/Pu–Zr alloys in LiCl–KCl. • Constant current density of 20 mA/cm{sup 2} is applied. • Most of the actinides were dissolved avoiding zirconium co-dissolution. • Deterioration of the deposit quality by a small amount of co-deposited Zr is not observed.

  12. Assessing the antimicrobial activity of zinc oxide thin films using disk diffusion and biofilm reactor

    International Nuclear Information System (INIS)

    Gittard, Shaun D.; Perfect, John R.; Monteiro-Riviere, Nancy A.; Wei Wei; Jin Chunming; Narayan, Roger J.

    2009-01-01

    The electronic and chemical properties of semiconductor materials may be useful in preventing growth of microorganisms. In this article, in vitro methods for assessing microbial growth on semiconductor materials will be presented. The structural and biological properties of silicon wafers coated with zinc oxide thin films were evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, and MTT viability assay. The antimicrobial properties of zinc oxide thin films were established using disk diffusion and CDC Biofilm Reactor studies. Our results suggest that zinc oxide and other semiconductor materials may play a leading role in providing antimicrobial functionality to the next-generation medical devices

  13. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    Science.gov (United States)

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  14. Layered Cu-based electrode for high-dielectric constant oxide thin film-based devices

    International Nuclear Information System (INIS)

    Fan, W.; Saha, S.; Carlisle, J.A.; Auciello, O.; Chang, R.P.H.; Ramesh, R.

    2003-01-01

    Ti-Al/Cu/Ta multilayered electrodes were fabricated on SiO 2 /Si substrates by ion beam sputtering deposition, to overcome the problems of Cu diffusion and oxidation encountered during the high dielectric constant (κ) materials integration. The Cu and Ta layers remained intact through the annealing in oxygen environment up to 600 deg. C. The thin oxide layer, formed on the Ti-Al surface, effectively prevented the oxygen penetration toward underneath layers. Complex oxide (Ba x Sr 1-x )TiO 3 (BST) thin films were grown on the layered Ti-Al/Cu/Ta electrodes using rf magnetron sputtering. The deposited BST films exhibited relatively high permittivity (150), low dielectric loss (0.007) at zero bias, and low leakage current -8 A/cm 2 at 100 kV/cm

  15. SEPARATING HAFNIUM FROM ZIRCONIUM

    Science.gov (United States)

    Lister, B.A.J.; Duncan, J.F.

    1956-08-21

    A dilute aqueous solution of zirconyl chloride which is 1N to 2N in HCl is passed through a column of a cation exchange resin in acid form thereby absorbing both zirconium and associated hafnium impurity in the mesin. The cation exchange material with the absorbate is then eluted with aqueous sulfuric acid of a O.8N to 1.2N strength. The first portion of the eluate contains the zirconium substantially free of hafnium.

  16. Ferroelectric thin films using oxides as raw materials

    Directory of Open Access Journals (Sweden)

    E.B. Araújo

    1999-01-01

    Full Text Available This work describes an alternative method for the preparation of ferroelectric thin films based on pre-calcination of oxides, to be used as precursor material for a solution preparation. In order to show the viability of the proposed method, PbZr0.53Ti0.47O3 and Bi4Ti3O12 thin films were prepared on fused quartz and Si substrates. The results were analyzed by X-ray Diffraction (XRD, Scanning Electron Microscopy (SEM, Infrared Spectroscopy (IR and Rutherford Backscattering Spectroscopy (RBS. The films obtained show good quality, homogeneity and the desired stoichiometry. The estimated thickness for one layer deposition was approximately 1000 Å and 1500 Å for Bi4Ti3O12 and PbZr0.53Ti0.47O3 films, respectively.

  17. Low-temperature growth and electronic structures of ambipolar Yb-doped zinc tin oxide transparent thin films

    Science.gov (United States)

    Oh, Seol Hee; Ferblantier, Gerald; Park, Young Sang; Schmerber, Guy; Dinia, Aziz; Slaoui, Abdelilah; Jo, William

    2018-05-01

    The compositional dependence of the crystal structure, optical transmittance, and surface electric properties of the zinc tin oxide (Zn-Sn-O, shortened ZTO) thin films were investigated. ZTO thin films with different compositional ratios were fabricated on glass and p-silicon wafers using radio frequency magnetron sputtering. The binding energy of amorphous ZTO thin films was examined by a X-ray photoelectron spectroscopy. The optical transmittance over 70% in the visible region for all the ZTO films was observed. The optical band gap of the ZTO films was changed as a result of the competition between the Burstein-Moss effect and renormalization. An electron concentration in the films and surface work function distribution were measured by a Hall measurement and Kelvin probe force microscopy, respectively. The mobility of the n- and p-type ZTO thin films have more than 130 cm2/V s and 15 cm2/V s, respectively. We finally constructed the band structure which contains band gap, work function, and band edges such as valence band maximum and conduction band minimum of ZTO thin films. The present study results suggest that the ZTO thin film is competitive compared with the indium tin oxide, which is a representative material of the transparent conducting oxides, regarding optoelectronic devices applications.

  18. Spectrophotometric titration of zirconium in siliceous materials

    International Nuclear Information System (INIS)

    Sugawara, K.F.; Su, Y.-S.; Strzegowski, W.R.

    1978-01-01

    An accurate and selective complexometric titration procedure based upon a spectrophotometrically detected end-point has been developed for the determination of zirconium in glasses, glass-ceramics and refractories. A p-bromomandelic acid separation step for zirconium imparts excellent selectivity to the procedure. The method is particularly important for the 1 to 5% concentration range where a simple, accurate and selective method for the determination of zirconium has been lacking. (author)

  19. Characterization for rbs of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide

    International Nuclear Information System (INIS)

    Pedrero, E.; Vigil, E.; Zumeta, I.

    1999-01-01

    The depth of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide was characterized using Rutherford Backscattering Spectrometry. Film depths are compared in function of bath and suspension parameters

  20. Oriented growth of thin films of samarium oxide by MOCVD

    Indian Academy of Sciences (India)

    Unknown

    Very thin layers of rare earth oxides, such as Sm2O3 and epitaxial Gd2O3, grown by thermal ... As the inorganic salts of the lanthanides, such as their halides, are ... sodium hydroxide, followed by the addition of ethanolic. 1,10-phenanthroline ...

  1. Wear and chemistry of zirconium-silicate, aluminium-silicate and zirconium-aluminium-silicate glasses in alkaline medium

    International Nuclear Information System (INIS)

    Rouse, C.G.; Lemos Guenaga, C.M. de

    1984-01-01

    A study of the chemical durability, in alkaline solutions, of zirconium silicate, aluminium silicate, zirconium/aluminium silicate glasses as a function of glass composition is carried out. The glasses were tested using standard DIN-52322 method, where the glass samples are prepared in small polished pieces and attacked for 3 hours in a 800 ml solution of 1N (NaOH + NA 2 CO 3 ) at 97 0 C. The results show that the presence of ZrO 2 in the glass composition increases its chemical durability to alkaline attack. Glasses of the aluminium/zirconium silicate series were melted with and without TiO 2 . It was shown experimentally that for this series of glasses, the presence of both TiO 2 and ZrO 2 gave better chemical durability results. However, the best overall results were obtained from the simpler zirconium silicate glasses, where it was possible to make glasses with higher values of ZrO 2 . (Author) [pt

  2. Study of oxide/metal/oxide thin films for transparent electronics and solar cells applications by spectroscopic ellipsometry

    Directory of Open Access Journals (Sweden)

    Mihaela Girtan

    2017-05-01

    Full Text Available A comprehensive study of a class of Oxide/Metal/Oxide (Oxide = ITO, AZO, TiO2 and Bi2O3, Metal = Au thin films was done by correlating the spectrophotometric studies with the ellispometric models. Films were deposited by successive sputtering from metallic targets In:Sn, Zn:Al, Ti and Bi in reactive atmosphere (for the oxide films and respective inert atmosphere (for the metallic Au interlayer films on glass substrates. The measurements of optical constants n—the refractive index and k—the extinction coefficient, at different incident photon energies for single oxide films and also for the three layers films oxide/metal/oxide samples were made using the spectroscopic ellipsometry (SE technique. The ellipsometry modelling process was coupled with the recorded transmission spectra data of a double beam spectrophotometer and the best fitting parameters were obtained not only by fitting the n and k experimental data with the dispersion fitting curves as usual is practiced in the most reported data in literature, but also by comparing the calculated the transmission coefficient from ellipsometry with the experimental values obtained from direct spectrophotometry measurements. In this way the best dispersion model was deduced for each sample. Very good correlations were obtained for the other different thin films characteristics such as the films thickness, optical band gap and electrical resistivity obtained by other measurements and calculation techniques. The ellipsometric modelling, can hence give the possibility in the future to predict, by ellipsometric simulations, the proper device architecture in function of the preferred optical and electrical properties.

  3. Effect of oxygen deficiency on electronic properties and local structure of amorphous tantalum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Denny, Yus Rama [Department of Physics Education, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Firmansyah, Teguh [Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Oh, Suhk Kun [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Kang, Hee Jae, E-mail: hjkang@cbu.ac.kr [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Yang, Dong-Seok [Department of Physics Education, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Heo, Sung; Chung, JaeGwan; Lee, Jae Cheol [Analytical Engineering Center, Samsung Advanced Institute of Technology, Suwon 16678 (Korea, Republic of)

    2016-10-15

    Highlights: • The effect of oxygen flow rate on electronic properties and local structure of tantalum oxide thin films was studied. • The oxygen deficiency induced the nonstoichiometric state a-TaOx. • A small peak at 1.97 eV above the valence band side appeared on nonstoichiometric Ta{sub 2}O{sub 5} thin films. • The oxygen flow rate can change the local electronic structure of tantalum oxide thin films. - Abstract: The dependence of electronic properties and local structure of tantalum oxide thin film on oxygen deficiency have been investigated by means of X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results showed that the oxygen flow rate change results in the appearance of features in the Ta 4f at the binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV whose peaks are attributed to Ta{sup 1+}, Ta{sup 2+}, Ta{sup 3+}/Ta{sup 4+}, and Ta{sup 5+}, respectively. The presence of nonstoichiometric state from tantalum oxide (TaOx) thin films could be generated by the oxygen vacancies. In addition, XAS spectra manifested both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the decrease of oxygen deficiency.

  4. Thermal behaviour of nitrogen implanted into zirconium

    International Nuclear Information System (INIS)

    Miyagawa, S.; Ikeyama, M.; Saitoh, K.; Nakao, S.; Niwa, H.; Tanemura, S.; Miyagawa, Y.

    1994-01-01

    Zirconium films were implanted with 15 N ions of energy 50keV to a total fluence of 1x10 18 ionscm -2 in an attempt to study the formation process and thermal stability of ZrN layers produced by high fluence implantation of nitrogen. Subsequent to the implantation at room temperature, samples were annealed at temperatures of 300 C-900 C. The depth profiles of the implanted nitrogen were measured by nuclear reaction analysis using the 15 N(p,αγ) 12 C at E R =429keV, and the surfaces were examined by thin film X-ray diffraction (XRD) and scanning electron microscopy. There were many blisters 0.2-0.4μm in diameter on the surface of the as-implanted samples and double peaks were observed in the nitrogen depth profiles; they were in both sides of the mean projected range. It was found that most of the blisters became extinct after annealing above 400 C, and the XRD peak (111) intensity was increased with the increase in the annealing temperature. Moreover, 14 N and 15 N implantations were superimposed on Zr samples in order to study the atomic migration of nitrogen at each stage of high fluence implantation. It was found that the decrease in the peak at the deeper layers was related to blister extinction and nitrogen diffusion into underling zirconium which could be correlated with radiation damage induced by post-implanted ions. ((orig.))

  5. Ductile zirconium powder by hydride-dehydride process

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, T S [BHABHA ATOMIC RESEARCH CENTRE, BOMBAY (INDIA); CHAUDHARY, S [NUCLEAR FUEL COMPLEX, HYDERABAD (INDIA)

    1976-09-01

    The preparation of ductile zirconium powder by the hydride-dehydride process has been described. In this process massive zirconium obtained from Kroll reduction of ZrCl/sub 4/ is first rendered brittle by hydrogenation and the hydride crushed and ground in a ball mill to the required particle size. Hydrogen is then hot vacuum extracted to yield the metal powder. The process has been successfully employed for the production of zirconium powders with low oxygen content and having hardness values in the range of 115-130 BHN, starting from a zirconium sponge of 100-120 BHN hardness. Influence of surface characteristics of the starting metal on its hydriding behaviour has been studied and the optimum hydriding-dehydriding conditions established.

  6. Joint titrimetric determination of zirconium and hafnium

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Botbol, Moises; Bianco de Salas, G.N.; Cornell de Casas, M.I.

    1980-01-01

    A method for the joint titrimetric determination of zirconium and hafnium, which are elements of similar chemical behaviour, is described. The disodic salt of the ethylendiaminetetracetic acid (EDTA) is used for titration, while xilenol orange serves as final point indicator. Prior to titration it is important to evaporate with sulfuric acid, the solution resulting from the zirconium depolymerization process, to adjust the acidity and to eliminate any interferences. The method, that allows the quick and precise determination of zirconium and hafnium in quantities comprised between 0.01 and mg, was applied to the analysis of raw materials and of intermediate and final products in the fabrication of zirconium sponge and zircaloy. (M.E.L.) [es

  7. Thin-film method-XRF determination of the composition of rare earth oxides

    International Nuclear Information System (INIS)

    Xiao Deming

    1992-01-01

    The author describes the thin-film sample preparation by precipitation-pumping filtering method and the composition of rare earth oxide materials by XRF determination. The determination limits are 0.01% to 0.17%. The coefficients of variation are in the range of 0.85% to 14.9%. The analytical results of several kinds of rare earth oxide materials show that this method can be applied to the determination of the composition of rare earth oxide mixtures

  8. Catalytic activity of metall-like carbides in carbon oxide oxidation reaction

    International Nuclear Information System (INIS)

    Kharlamov, A.I.; Kosolapova, T.Ya.; Rafal, A.N.; Kirillova, N.V.

    1980-01-01

    Kinetics of carbon oxide oxidation upon carbides of hafnium, niobium, tantalum, molybdenum, zirconium and chromium is studied. Probable mechanism of the catalysts action is suggested. The established character of the change of the carbide catalytic activity is explained by the change of d-electron contribution to the metal-metal interaction

  9. Articulation of Native Cartilage Against Different Femoral Component Materials. Oxidized Zirconium Damages Cartilage Less Than Cobalt-Chrome.

    Science.gov (United States)

    Vanlommel, Jan; De Corte, Ronny; Luyckx, Jean Philippe; Anderson, Melissa; Labey, Luc; Bellemans, Johan

    2017-01-01

    Oxidized zirconium (OxZr) is produced by thermally driven oxidization creating an oxidized surface with the properties of a ceramic at the top of the Zr metal substrate. OxZr is much harder and has a lower coefficient of friction than cobalt-chrome (CoCr), both leading to better wear characteristics. We evaluated and compared damage to the cartilage of porcine patella plugs, articulating against OxZr vs CoCr. Our hypothesis was that, owing to its better wear properties, OxZr would damage cartilage less than CoCr. If this is true, OxZr might be a better material for the femoral component during total knee arthroplasty if the patella is not resurfaced. Twenty-one plugs from porcine patellae were prepared and tested in a reciprocating pin-on-disk machine while lubricated with bovine serum and under a constant load. Three different configurations were tested: cartilage-cartilage as the control group, cartilage-OxZr, and cartilage-CoCr. Macroscopic appearance, cartilage thickness, and the modified Mankin score were evaluated after 400,000 wear cycles. The control group showed statistically significant less damage than plugs articulating against both other materials. Cartilage plugs articulating against OxZr were statistically significantly less damaged than those articulating against CoCr. Although replacing cartilage by an implant always leads to deterioration of the cartilage counterface, OxZr results in less damage than CoCr. The use of OxZr might thus be preferable to CoCr in case of total knee arthroplasty without patella resurfacing. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Comprehensive review on the development of high mobility in oxide thin film transistors

    Science.gov (United States)

    Choi, Jun Young; Lee, Sang Yeol

    2017-11-01

    Oxide materials are one of the most advanced key technology in the thin film transistors (TFTs) for the high-end of device applications. Amorphous oxide semiconductors (AOSs) have leading technique for flat panel display (FPD), active matrix organic light emitting display (AMOLED) and active matrix liquid crystal display (AMLCD) due to their excellent electrical characteristics, such as field effect mobility ( μ FE ), subthreshold swing (S.S) and threshold voltage ( V th ). Covalent semiconductor like amorphous silicon (a-Si) is attributed to the anti-bonding and bonding states of Si hybridized orbitals. However, AOSs have not grain boundary and excellent performances originated from the unique characteristics of AOS which is the direct orbital overlap between s orbitals of neighboring metal cations. High mobility oxide TFTs have gained attractive attention during the last few years and today in display industries. It is progressively developed to increase the mobility either by exploring various oxide semiconductors or by adopting new TFT structures. Mobility of oxide thin film transistor has been rapidly increased from single digit to higher than 100 cm2/V·s in a decade. In this review, we discuss on the comprehensive review on the mobility of oxide TFTs in a decade and propose bandgap engineering and novel structure to enhance the electrical characteristics of oxide TFTs.

  11. Growth and surface characterization of sputter-deposited molybdenum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, C.V. [Nanoscience and Surface Chemistry Laboratory, Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: ramanacv@umich.edu; Atuchin, V.V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, V.G. [Technical Centre, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Kochubey, V.A. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Pokrovsky, L.D. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Shutthanandan, V. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Becker, U. [Nanoscience and Surface Chemistry Laboratory, Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Ewing, R.C. [Nanoscience and Surface Chemistry Laboratory, Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2007-04-15

    Molybdenum oxide thin films were produced by magnetron sputtering using a molybdenum (Mo) target. The sputtering was performed in a reactive atmosphere of an argon-oxygen gas mixture under varying conditions of substrate temperature (T {sub s}) and oxygen partial pressure (pO{sub 2}). The effect of T {sub s} and pO{sub 2} on the growth and microstructure of molybdenum oxide films was examined in detail using reflection high-energy electron diffraction (RHEED), Rutherford backscattering spectrometry (RBS), energy-dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) measurements. The analyses indicate that the effect of T {sub s} and pO{sub 2} on the microstructure and phase of the grown molybdenum oxide thin films is remarkable. RHEED and RBS results indicate that the films grown at 445 deg. C under 62.3% O{sub 2} pressure were stoichiometric and polycrystalline MoO{sub 3}. Films grown at lower pO{sub 2} were non-stoichiometric MoO {sub x} films with the presence of secondary phase. The microstructure of the grown Mo oxide films is discussed and conditions were optimized to produce phase pure, stoichiometric, and highly textured polycrystalline MoO{sub 3} films.

  12. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    Science.gov (United States)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  13. Low Temperature Synthesis of Fluorine-Doped Tin Oxide Transparent Conducting Thin Film by Spray Pyrolysis Deposition.

    Science.gov (United States)

    Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul

    2016-02-01

    Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.

  14. Voltammetric determination of zirconium using azo compounds

    International Nuclear Information System (INIS)

    Orshulyak, O.O.; Levitskaya, G.D.

    2008-01-01

    The optimum conditions for zirconium complexation with azo compounds are found. The applicability of Eriochrome Red B, Calcon, and Calcion to the voltammetric determination of zirconium, total Zr(IV) and Hf(IV), and Zr(IV) in the presence of Zn(II), Cu(II), Cd(II), Ni(II), or Ti(IV) is demonstrated. The developed procedures are used to determine zirconium in a terbium alloy and in an alloy for airplane wheel drums [ru

  15. Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film

    International Nuclear Information System (INIS)

    Singh, S. P.; Arya, Sunil K.; Pandey, Pratibha; Malhotra, B. D.; Saha, Shibu; Sreenivas, K.; Gupta, Vinay

    2007-01-01

    Cholesterol oxidase (ChOx) has been immobilized onto zinc oxide (ZnO) nanoporous thin films grown on gold surface. A preferred c-axis oriented ZnO thin film with porous surface morphology has been fabricated by rf sputtering under high pressure. Optical studies and cyclic voltammetric measurements show that the ChOx/ZnO/Au bioelectrode is sensitive to the detection of cholesterol in 25-400 mg/dl range. A relatively low value of enzyme's kinetic parameter (Michaelis-Menten constant) ∼2.1 mM indicates enhanced enzyme affinity of ChOx to cholesterol. The observed results show promising application of nanoporous ZnO thin film for biosensing application without any functionalization

  16. The effect of Mg dopants on magnetic and structural properties of iron oxide and zinc ferrite thin films

    Science.gov (United States)

    Saritaş, Sevda; Ceviz Sakar, Betul; Kundakci, Mutlu; Yildirim, Muhammet

    2018-06-01

    Iron oxide thin films have been obtained significant interest as a material that put forwards applications in photovoltaics, gas sensors, biosensors, optoelectronic and especially in spintronics. Iron oxide is one of the considerable interest due to its chemical and thermal stability. Metallic ion dopant influenced superexchange interactions and thus changed the structural, electrical and magnetic properties of the thin film. Mg dopped zinc ferrite (Mg:ZnxFe3-xO4) crystal was used to avoid the damage of Fe3O4 (magnetite) crystal instead of Zn2+ in this study. Because the radius of the Mg2+ ion in the A-site (tetrahedral) is almost equal to that of the replaced Fe3+ ion. Inverse-spinel structure in which oxygen ions (O2-) are arranged to form a face-centered cubic (FCC) lattice where there are two kinds of sublattices, namely, A-site and B-site (octahedral) interstitial sites and in which the super exchange interactions occur. In this study, to increase the saturation of magnetization (Ms) value for iron oxide, inverse-spinal ferrite materials have been prepared, in which the iron oxide was doped by multifarious divalent metallic elements including Zn and Mg. Triple and quaternary; iron oxide and zinc ferrite thin films with Mg metal dopants were grown by using Spray Pyrolysis (SP) technique. The structural, electrical and magnetic properties of Mg dopped iron oxide (Fe2O3) and zinc ferrite (ZnxFe3-xO4) thin films have been investigated. Vibrating Sample Magnetometer (VSM) technique was used to study for the magnetic properties. As a result, we can say that Mg dopped iron oxide thin film has huge diamagnetic and of Mg dopped zinc ferrite thin film has paramagnetic property at bigger magnetic field.

  17. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    Science.gov (United States)

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  18. Thin-film transistors with a channel composed of semiconducting metal oxide nanoparticles deposited from the gas phase

    International Nuclear Information System (INIS)

    Busch, C.; Schierning, G.; Theissmann, R.; Nedic, A.; Kruis, F. E.; Schmechel, R.

    2012-01-01

    The fabrication of semiconducting functional layers using low-temperature processes is of high interest for flexible printable electronics applications. Here, the one-step deposition of semiconducting nanoparticles from the gas phase for an active layer within a thin-film transistor is described. Layers of semiconducting nanoparticles with a particle size between 10 and 25 nm were prepared by the use of a simple aerosol deposition system, excluding potentially unwanted technological procedures like substrate heating or the use of solvents. The nanoparticles were deposited directly onto standard thin-film transistor test devices, using thermally grown silicon oxide as gate dielectric. Proof-of-principle experiments were done deploying two different wide-band gap semiconducting oxides, tin oxide, SnO x , and indium oxide, In 2 O 3 . The tin oxide spots prepared from the gas phase were too conducting to be used as channel material in thin-film transistors, most probably due to a high concentration of oxygen defects. Using indium oxide nanoparticles, thin-film transistor devices with significant field effect were obtained. Even though the electron mobility of the investigated devices was only in the range of 10 −6 cm 2V−1s−1 , the operability of this method for the fabrication of transistors was demonstrated. With respect to the possibilities to control the particle size and layer morphology in situ during deposition, improvements are expected.

  19. Effects of titanium and zirconium on iron aluminide weldments

    Energy Technology Data Exchange (ETDEWEB)

    Mulac, B.L.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States). Center for Welding, Joining, and Coatings Research; Burt, R.P. [Alumax Technical Center, Golden, CO (United States); David, S.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen embrittlement. Titanium inoculation effectively refined the fusion zone microstructure in iron aluminide weldments, but the inoculated weldments had a reduced fracture strength despite the presence of a finer microstructure. The weldments fractured by transgranular cleavage which nucleated at cracked second phase particles. With titanium inoculation, second phase particles in the fusion zone changed shape and also became more concentrated at the grain boundaries, which increased the particle spacing in the fusion zone. The observed decrease in fracture strength with titanium inoculation was attributed to increased spacing of second phase particles in the fusion zone. Current research has focused on the weldability of zirconium- and carbon-alloyed iron aluminides. Preliminary work performed at Oak Ridge National Laboratory has shown that zirconium and carbon additions affect the weldability of the alloy as well as the mechanical properties and fracture behavior of the weldments. A sigmajig hot cracking test apparatus has been constructed and tested at Colorado School of Mines. Preliminary characterization of hot cracking of three zirconium- and carbon-alloyed iron aluminides, each containing a different total concentration of zirconium at a constant zirconium/carbon ratio of ten, is in progress. Future testing will include low zirconium alloys at zirconium/carbon ratios of five and one, as well as high zirconium alloys (1.5 to 2.0 atomic percent) at zirconium/carbon ratios of ten to forty.

  20. Properties of Spray Pyrolysied Copper Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2017-02-01

    Full Text Available Copper oxide (CuO thin films were deposited on well cleaned glass substrates by spray pyrolysis technique (SPT from cupric acetate (Cu(CH3COO2.H2O precursor solutions of 0.05 – 0.15 M molar concentrations (MC at a substrate temperature of 350 °C and at an air pressure of 1 bar. Effect of varying MC on the surface morphology, structural optical and electrical properties of CuO thin films were investigated. XRD patterns of the prepared films revealed the formation of CuO thin films having monoclinic structure with the main CuO (111 orientation and crystalline size ranging from 8.02 to 9.05 nm was observed. The optical transmission of the film was found to decrease with the increase of MC. The optical band gap of the thin films for 0.10 M was fond to be 1.60 eV. The room temperature electrical resistivity varies from 31 and 24 ohm.cm for the films grown with MC of 0.05 and 0.10 M respectively. The change in resistivity of the films was studied with respect to the change in temperature was shown that semiconductor nature is present. This information is expected to underlie the successful development of CuO films for solar windows and other semi-conductor applications including gas sensors.